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ABSTRACT

The rapid advancement of Deep Neural Networks (DNNs), computing, and sensing

technology has enabled many new applications, such as the self-driving vehicle, the

surveillance drone, and the robotic system. Compared to conventional edge devices

(e.g. cell phone or smart home devices), these emerging devices are required to deal

with much more complicated and dynamic situations in real-time with bounded com-

putation resources. However, there are several challenges, including but not limited

to efficiency, real-time adaptation, model stability, and automation of architecture

design.

To tackle the challenges mentioned above, model plasticity and stability are lever-

aged to achieve efficient and online deep learning, especially in the scenario of learning

streaming data at the edge:

First, a dynamic training scheme named Continuous Growth and Pruning (CGaP)

is proposed to compress the DNNs through growing important parameters and prun-

ing unimportant ones, achieving up to 98.1% reduction in the number of parameters.

Second, this dissertation presents Progressive Segmented Training (PST), which

targets catastrophic forgetting problems in continual learning through importance

sampling, model segmentation, and memory-assisted balancing. PST achieves state-

of-the-art accuracy with 1.5X FLOPs reduction in the complete inference path.

Third, to facilitate online learning in real applications, acquisitive learning (AL)

is further proposed to emphasize both knowledge inheritance and acquisition: the

majority of the knowledge is first pre-trained in the inherited model and then adapted

to acquire new knowledge. The inherited model’s stability is monitored by noise

injection and the landscape of the loss function, while the acquisition is realized by

importance sampling and model segmentation. Compared to a conventional scheme,

AL reduces accuracy drop by >10X on CIFAR-100 dataset, with 5X reduction in
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latency per training image and 150X reduction in training FLOPs.

Finally, this dissertation presents evolutionary neural architecture search in light

of model stability (ENAS-S). ENAS-S uses a novel fitness score, which addresses not

only the accuracy but also the model stability, to search for an optimal inherited

model for the application of continual learning. ENAS-S outperforms hand-designed

DNNs when learning from a data stream at the edge.

In summary, in this dissertation, several algorithms exploiting model plasticity

and model stability are presented to improve the efficiency and accuracy of deep

neural networks, especially for the scenario of continual learning.
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Chapter 1

INTRODUCTION

1.1 Motivation

Deep neural networks have been used in various applications, such as smartphones,

self-driving cars, translation applications, etc. The advantage is that DNNs are ac-

curate and general, but on the other hand, they are complicated, computation, and

memory intense. Meanwhile, traditionally, there are two ends from the hardware

perspective: edge devices and cloud center, as shown in Figure 1.1. Edge devices,

such as cellphones and smartwatches, are smart but usually have limited power bud-

gets. On the other side, the giant cloud data center is equipped with a much larger

computing and power budget to handle the training with big data. There is another

category of intelligent systems emerging these years, such as self-driving cars, drones,

and robots. These emerging systems are usually equipped with several GPUs and a

decent capacity of computing. They mainly perform inference, but sometimes they

require the capability of online training. These emerging devices are required to deal

with much more complicated and dynamic situations than traditional edge devices.

In some scenarios, these intelligent systems have to quickly pick up a task, learn it

online in a continuous manner, and react immediately, rather than sending the data

back to the cloud and waiting for the cloud to handle the training. Thus, the ca-

pability of continual learning is a necessary attribute for such an intelligent learning

system.

However, there are several challenges to achieve successful continual learning:

• Efficiency. It is vital to achieve smaller but still accurate models so that the
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Figure 1.1: Emerging Intelligent Systems Are Required to Deal with Dynamic Situ-

ations in Real-time.

deployment of DNN on edge devices would be more efficient.

• Real-time adaptation. The learning system should update its knowledge (i.e. net-

work parameters) according to the new coming data stream in real-time.

• Model stability. A trained DNN model should be stable to preserve the previ-

ously acquired knowledge when learning new knowledge online. In other words,

the network parameters should not be overwritten or interfered by learning new

data.

• Automation of DNN design. The existing DNN architectures are designed by

experts, but in practice, most end users have limited expertise in architecture

design. So it is critical to design DNN architectures according to various appli-

cations and scenarios automatically.

1.2 Thesis Contribution

This dissertation focuses on the aforementioned challenges through two attributes

of DNNs: model plasticity and model stability. Model plasticity refers to the model’s

architecture adaptation, including constructive and destructive ways. Model stability

represents how well the model can preserve previously encoded knowledge over time.

In this dissertation, random noise is injected into the pre-trained model as the per-
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Figure 1.2: Road-map Surrounding Efficient and Online Deep Learning through

Model Plasticity and Stability.

turbation to infer the model stability and then loss landscape, and its corresponding

roughness score are obtained to validate the stability. A model with better stability

has less accuracy drop after perturbation, a smoother and flatter landscape and a

lower roughness score. All these techniques center around exploiting model plasticity

and model stability, shown in Figure 1.2. The contributions of this thesis are:

• A training scheme, called Continuous Growth and Pruning (CGaP) that lever-

ages model plasticity, is proposed to achieve small yet accurate DNN models so

that the deployment of DNNs on hardware would be more efficient. CGaP starts

from training a small network seed, then literally executes continuous growth by

adding important learning units and finally prunes secondary ones for efficient

inference. The inference model generated from CGaP is sparse in the structure,

largely decreasing the inference power and latency when deployed on hardware

platforms. With popular DNN structures on representative datasets, the effi-

cacy of CGaP is benchmarked by both algorithmic simulation and architectural

modeling on Field-programmable Gate Arrays (FPGA).

• A training algorithm named progressive segmented training (PST) is proposed

to mitigate catastrophic forgetting problem in continual learning. Leveraging
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the redundant capacity of a single network, model parameters for each task are

separated into two groups: one important group which is frozen to preserve

current knowledge, and secondary group to be saved (not pruned) for a future

learning. Without additional regularization, the simple yet effective approach

successfully incorporates multiple tasks and achieves state-of-the-art accuracy

in the single-head evaluation on CIFAR-10 and CIFAR-100 datasets. More-

over, the segmented training significantly improves computation efficiency in

continual learning at the edge.

• Considering a real-time situation, continual learning may not be used to learn

everything from scratch. Thus, a novel paradigm named acquisitive learning

(AL) is proposed to enable online learning at the edge based on a prepared in-

herited model. Unlike previous approaches that focus only on model adaptation,

AL emphasizes the importance of both knowledge inheritance and acquisition:

the knowledge is first pre-trained and selected in the cloud (the inherited model

and selection) and then adapted to new knowledge (the acquisition). The inher-

ited model’s stability is monitored by the landscape of the loss function, while

the acquisition is realized segmented training. The combination of knowledge

inheritance and acquisition reduces accuracy drop by >10X on the CIFAR-100

dataset. Furthermore, AL benefits edge computing with 5X reduction in latency

per training image on FPGA prototype and 150X reduction in training FLOPs.

• An evolutionary neural architecture search in light of model stability (ENAS-S)

is proposed to search for an optimal, hardware-friendly inherited architecture

to achieve accurate continual learning at the edge. On CIFAR-10 and CIFAR-

100, experiments present that ENAS-S achieves competitive architectures with

lower catastrophic forgetting and smaller model size when learning from a data
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stream than handcrafted DNNs.

1.3 Thesis Outline

The outline of this thesis is as below:

Chapter 2 introduces the background of machine learning, deep learning, deep

neural networks, and datasets.

Chapter 3 describes the training scheme, CGaP, which grows the network during

training and achieves smaller DNN models with structured sparsity. The content of

this chapter is based primarily on [1].

Chapter 4 presents the training algorithm, PST, which uses model segmentation

to prevent catastrophic forgetting. The content of this chapter is based primarily

on [2].

Chapter 5 describe the novel brain-inspired paradigm named acquisitive learning

(AL), which is proposed to improve accuracy and efficiency for continual learning at

the edge via model stability. Furthermore, the detailed definition and visualization

of model stability is presented in this chapter. The content of this chapter is based

primarily on [3–5].

Chapter 6 develops an evolutionary neural architecture search (ENAS) algorithm

that emphasizes the Stability of the inherited model, namely ENAS-S. ENAS-S aims

to find optimal architectures for accurate continual learning at the edge.

Chapter 7 concludes the dissertation and provides some thoughts on future di-

rections.
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Chapter 2

BACKGROUND

2.1 Development of Machine Learning

Back in 1949, the first step to machine learning was proposed by D.O.Hebb et

al. and named Hebbian Learning [6]. It was based on a neuro-psychological learning

formulation. By building a connection between neurons (nodes), it memorizes the

stimulus. Cells that fire together, wire together.

In 1952, Arthur Samuel from IBM invented a program that could play Checkers.

It could obtain experience during the process of playing, just like human learning.

Arthur Samuel then defined machine learning (ML) as a field of study that gives a

computer the ability without being explicitly programmed [7].

In 1957, an exciting discovery came out, which was called Perceptron. It was

proposed by F. Rosenblatt. Perception is still in use nowadays as it is more practical

than Hebbian Learning rules. The perceptron is designed to illustrate some of the

fundamental properties of intelligent systems in general, without becoming too deeply

enmeshed in the special and usually unknown conditions which hold for particular

biological organisms [8].

In 1960, B.Widrow et al. [9] brought out something called Delta Learning that

is then used as a practical procedure for perceptron training. It is also known as

the Least Square problem. A combination of those two ideas creates a good linear

classifier.

However,in 1969 M. Minsky [10] doubt that the perceptron learning cannot clas-

sify XOR problem (Figure 2.1 [11]) with linear classification. The machine learning
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stopped development until 1980.

Figure 2.1: Linear Classification Is Not Able to Solve the XOR Problem

In 1981, P.J. Werbos et al. brought out multi-layer perceptron (MLP) with back-

propagation (BP) [12]. Then in 1986, with the publishing of a paper by Rumelhart,

Hinton, and Williams [13] et al., the importance of the back-propagation was appreci-

ated by the machine learning community at large. Till now, back-propagation is still

the main ingredient in machine learning algorithms. Figure 2.2(a) and Figure 2.2(b)

provide examples of MLP and BP.

Another important discovery is called Neocognitron [14], a hierarchical and multi-

layered artificial neural network proposed by Kunihiko Fukushima et al. in the 1980s.

It has been used for handwritten character recognition and other pattern recognition

tasks and served as the inspiration for convolutional neural networks (CNNs). The

inspiration for convolution and pooling came from this.

In 1998, researchers lead by Yann LeCun et al. proposed a seven-layer convolution-

based network: LeNet-5 [15]. LeNet-5 is a convolutional network designed for hand-

written and machine-printed character recognition. LeNet-5 improved the accuracy
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(a) An example of multi-layer perceptron

structure.

(b) An example of error/loss/gradient

back-propagation.

Figure 2.2: Multi-layer Perceptron with Loss Gradient Back-propagated.

Figure 2.3: Architecture of LeNet-5, a Small but Clever CNN.

of handwritten digits to above 99%. Fig 2.3 [15] shows the structure of LeNet-5.

However, convolutional networks were not brought to the forefront because of the

proposal of Support Vector Machines (SVM) [16] by Vapnik and Cortes in 1995 with

very strong theoretical standing and empirical results. This was the time separating

the ML community into two crowds as neural network (NN) or SVM advocates.

After decades of development (several useful research such as decision tree [17],

random forests [18], Adaboost et al. [19], and ways to avoid gradient vanishing),

AlexNet [20] from the Hinton group won the prize with huge advantage on ImageNet

dataset [21] in 2012, raising an upsurge of deep learning. AlexNet (Figure 2.4 [20]) is
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Figure 2.4: Architecture of AlexNet

Figure 2.5: Architecture of VGG-16.

Figure 2.6: Architecture of GoogLeNet.

a well-designed CNN, with ReLU, dropout and other techniques, in a larger size and

deeper. The idea of deep neural networks (DNNs) has developed since then. Several

deep and accurate network such as VGG (Figure 2.5) [22], GoogLeNet (Figure 2.6) [23]

and so on, appeared.

In 2016, Kaiming He et al. proposed ResNets (Figure 2.7) [24], which feed the

output of two successive convolutional layers and also bypass the input to the next
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(a) Architecture of ResNet

(b) Residual unit

Figure 2.7: Architecture of ResNet and the Residual Unit.

layers via skip-connections. ResNets make deep learning way deeper and successfully

prevent vanishing gradient. In Chapter 6, this dissertation also validates that ResNet

skip-connections also improve model stability and smoothness of loss landscape.

Some other algorithms that usually apply to unsupervised learning and reinforce-

ment learning are neglected here as they are not tightly related to this dissertation.

2.2 Dataset and Framework

Different datasets for a variety of machine learning tasks are collected and la-

beled to test the model’s performance. The commonly used datasets include MNIST,

CIFAR-10, CIFAR-100, SVHN, and ImageNet for image classification, as shown in

Figure 2.8.
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(a) MNIST. (b) CIFAR-10 (c) SVHN

(d) CIFAR-100 (e) ImageNet.

Figure 2.8: Examples of Commonly Used Datasets.

MNIST [15] is a dataset for handwritten digits with 60,000 training images and

10,000 test images. There are ten classes with ten digits. The image is in greyscale

(thus, one color channel) and the size of 28× 28.

CIFAR-10 and CIFAR-100 [25] is a dataset of 3-channel image including 50,000

training images and 10,000 test images including 10-class and 100-class, respectively.
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Each image is with size of 32× 32× 3.

The Street View House Number (SVHN) [26] is a real-world color image dataset

resized to a fixed resolution of 32× 32 pixels. It contains 73,257 training images and

26,032 testing images.

ImageNet [21] is a large-scale dataset including 1000 categories and 1.2 million

images in the training set, and 50,000 images, 50 per class in the testing set. Top-1

and Top-5 error rate or score is the metrics used to measure classification performance.

The top-1 score is to check if the predicted top class is the same as the given label.

The top-5 score is to check if one of the predicted top 5 classes is the same as the

provided label.

Deep learning frameworks offer building blocks for designing, training, and validat-

ing deep neural networks through a high-level programming interface. Widely used

deep learning frameworks such as PyTorch, TensorFlow, Caffe2, Cognitive toolkit,

MXNet, and others rely on GPU-accelerated libraries such as cuDNN and NCCL to

deliver high-performance multi-GPU accelerated training. Frameworks used in each

work are described in each chapter.
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Chapter 3

CGAP: CONTINUOUS GROWTH AND PRUNING FOR EFFICIENT DEEP

LEARNING

3.1 Introduction

Deep Neural Networks have various applications including image classification [20],

object detection [27], speech recognition [28] and natural language processing [29].

However, the accuracy of DNNs heavily relies on massive amounts of parameters and

deep structures, making it hard to deploy DNNs on resource-limited embedded sys-

tems. When training or inferring the DNN models on hardware, the model must

be stored in the external memory such as dynamic random-access memory (DRAM)

and fetched multiple times. These operations are expensive in computation, memory

access, and energy consumption. For example, Figure 3.1 shows the energy consump-

tion of one inference pass in several modern DNN structures, simulated by the FPGA

performance model [30] under the setting of 300 MHz operating frequency and 19.2

GB/s DRAM bandwidth. The input image size is 32× 32. A typical DNN model is

too large to fit in on-chip memory. For instance, VGG-19 [22] has 20.4M parameters.

Running such a model requires frequent external memory access, exacerbating the

power consumption of a typical embedded system.

Previous researches have designed customized hardware for DNN acceleration [31,

32]. Most of them are limited to relatively small neural networks, such as LeNet-5 [15].

For larger networks such as AlexNet [20] and VGG-16 [22], additional efforts are

usually required to improve the hardware efficiency [33,34]. For example, [33] saves the

energy through data gating and zero skipping. Some other works focus on data reuse
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Figure 3.1: Energy Breakdown for Modern DNN Structures, Results from Simulation

by the FPGA Performance Model. Due to the Redundancy in Parameters, Multiply-

accumulator (MAC) and External Memory (DRAM) Access Dominate the Energy

Consumption.
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Figure 3.2: The Proposed CGaP Scheme. CGaP Starts the Training from a Seed

Network Instead of an Over-parameterized One, Gradually Grows Important Learn-

ing Units During the Training and Reaches Peak Capacity at the End of Growth,

Then Prunes Secondary Filters and Neurons to Generate an Inference Model with

Structured Sparsity and Up-to-date Accuracy.

of convolutional layers and demonstrate the results on specific hardware [31, 35–37].

However, their improvements are limited on those networks where fully-connected

layer is widely used, such as RNNs and LSTMs.
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To support more general models, network pruning is a popular approach by remov-

ing secondary weights and neurons. Network pruning executes a three-step procedure,

which 1) trains a pre-designed network from scratch, 2) removes less important con-

nections or filters/neurons according to a saliency score (a metrics to measure the

importance of weights and learning units) [38–42], or by adding a regularization term

into the loss function [43,44], and 3) fine-tunes to recover the accuracy.

However, the above pruning techniques suffer from two limitations: (1) training

a large and fixed network from scratch could be sub-optimal as it introduces redun-

dancy; (2) in the process of training, pruning only discards less important weights

at the end of training but does not strengthen important weights and nodes. These

limitations of network pruning confine the learning performance as well as the model

pruning efficiency (i.e., how many parameters can be removed and how structured

the sparsity is).

In contrast to the static DNN model, the biological nervous system exhibits active

growth and pruning through the lifetime. [45–47] have observed that the rapid growth

of neurons and synapses takes place in an infant’s brain and is vital to the maturity

of an adult’s brain. In brains, some neurons and synapses are used more frequently

and are consequently strengthened. Those neurons and synapses that are not used

consistently are weakened and removed. The structural plasticity of brain is central

to the study of developmental biology.

Inspired by this observation from biology, we propose a training scheme named

Continuous Growth and Pruning (CGaP), which leverages structural plasticity to

tackle the aforementioned limitations of pruning techniques. Instead of training an

over-parameterized network from scratch, CGaP starts the training from a small net-

work seed (Figure 3.2(a)), whose size is as low as 0.1%-3% of the full-size reference

model. In each iteration of the growth, CGaP locally sorts neurons and filters (also
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known as output channels in some literature) according to our saliency score (Sec-

tion 3.3.2). Based on the saliency score, important learning units are selected and the

corresponding new units are added (see Figure 3.2(b)). The selection and addition

of important units help reinforce the learning and increase model capacity. Then a

filter-wise and neuron-wise pruning will be executed on the post-growth model (Fig-

ure 3.2(c)) based on pruning metrics. Finally, CGaP generates a significantly sparse

and structured inference model (Figure 3.2(d)) with accuracy improved. In the gen-

erated inference model, large amounts of filters and neurons have been removed,

achieving structured pruning. Compared to non-structured pruning [38], CGaP ben-

efits hardware implementation as it reduces the computation volume and memory

access without any additional hardware architecture change.

Algorithmic experiments and hardware simulations validate that CGaP signifi-

cantly decreases the number of external and on-chip memory accesses, accelerating

the inference by bypassing the removed filters and neurons. On the algorithm side,

we demonstrate the performance in accuracy and model pruning on several networks

and datasets. For instance, CGaP reduces 78.9% parameters of VGG-19 with +0.37%

accuracy improvement on CIFAR-100 [25], 85.8% parameters with +0.23% accuracy

improvement on SVHN [26]. For ResNet-110 [24], CGaP reduces 64.0% parameters

with +0.09% accuracy improvement on CIFAR-10 [25]. These results exceed the

state-of-the-art pruning methods [38–41, 48, 49]. Furthermore, we validate the effi-

ciency of the inference model generated from CGaP using FPGA simulator [30]. For

one inference pass of VGG-19 on CIFAR-100, previous non-structured pruning ap-

proach [38] requires energy consumption of 2.7× 109 pJ in accessing DRAM and 5.6

ms inference latency, while CGaP requires only 2.2× 109 pJ and 4.4 ms latency.

The contribution of this work is as follows:

• A brain-inspired training flow (CGaP) with a dynamic structure is proposed.
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CGaP grows the network from a small seed and effectively reduces over-parameterization

without sacrificing accuracy.

• The advantage of structured sparsity of the inference model generated from

CGaP is validated using a high-level FPGA performance model including on-

chip buffer access energy, external memory access energy and inference latency.

• The discussion and understanding of the reason that the growth improves the

learning efficiency are provided.

The rest of the paper is organized as follows. Section 3.2 introduces the back-

ground of model pruning. Section 3.3 demonstrates the saliency score used to se-

lect the learning units. Section 3.4 describes the proposed Continuous Growth and

Pruning scheme. Section 3.5 presents the experimental results from algorithmic sim-

ulations. Section 3.6 demonstrates the simulation results from FPGA performance

modeling. Section 3.7 discusses the understanding of network plasticity as well as

ablation study. Section 3.8 concludes this work and discusses the insight into future

work.

3.2 Previous Work

There have been broad interests in reducing the redundancy of DNNs in order to

deploy them on a resource-limited hardware platform. The structural surgery is a

widely used approach and can be categorized into destructive direction and construc-

tive direction. We will discuss these two directions, as well as orthogonal approaches

to our methods in this section.
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3.2.1 Destructive Methods

The destructive methods zero out specific connections or remove filters or neu-

rons in convolutional or fully-connected layers, generating a sparse model. Weight

magnitude pruning [38] pruned weights by setting the selected weights to zeros. The

selection is based on L1-norm, i.e., the absolute value of the weight. Weight mag-

nitude pruning generates a sparse weight matrix, but not in a structured way. In

this case, specific hardware design [50] is needed to take advantage of the optimized

inference model, otherwise the non-structured sparsity does not benefit hardware ac-

celeration due to the overhead in model management. The kernel-wise pruning [39]

pruned kernels layer by layer based on the saliency metrics of each filter and achieved

structured sparsity in the inference model. Compared to [39], CGaP prunes filters,

leading to a more structured inference model. Besides the saliency-based pruning,

the penalty-based approach has been explored by [44,51] and structured sparsity was

achieved. Our method is different from all the above pruning schemes from two per-

spectives: (1) We start training from a small seed other than an over-parameterized

network; (2) Besides removing secondary filters/neurons, we also reinforce important

ones to further improve learning accuracy and model compactness.

3.2.2 Constructive Methods

The constructive approaches include techniques that add new connections or fil-

ters to enlarge the model capacity. [52, 53] increased network size by adding random

neurons with fresh initialization (i.e., weights are randomly initialized, without pre-

trained information). They evaluated their approach on basic XOR problems. Differ-

ent from their approach, CGaP selectively adds neurons and filters that are initialized

with the information learned from the previous training. Meanwhile, CGaP is val-
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idated on modern DNNs and datasets under more realistic scenarios. [54] grew the

smallest Neural Tree Networks (NTN) to minimize the number of classification errors

on Boolean function learning tasks, and used pruning to enhance the generalization

of NTN. [55] improved the accuracy of radial basis function (RBF) networks on

function approximation tasks by adding and removing hidden neurons. To enhance

the accuracy of spike-based classifiers, [56] progressively added dendrites to the net-

work, and then optimized the topology of the dendritic tree. Different from them,

CGaP aims at improving the efficiency of the inference model of modern Deep Neu-

ral Networks on image classification tasks. [57] constructed the DNN by activating

connections and choosing a set of convolutional filters among a bunch of randomly

generated filters according to their influence on the training performance. However,

this approach highly depends on trial and error to find the optimal set of filters that

could reduce loss the most. This approach is sensitive to power and timing budgets,

limiting its extension on large datasets. Unlike their work, CGaP directly grows the

network from a seed, minimizing the effort on trail and error.

3.2.3 Orthogonal Methods

The orthogonal methods, such as low-precision quantization and low-rank decom-

position, compress the DNN models by quantizing the parameters to fewer bits [58,59],

or by finding a low-rank approximation [60, 61]. Note that our CGaP approach can

be combined with these orthogonal methods to further improve inference efficiency.

3.3 Saliency Score

In this section, we describe the detailed methodology of CGaP, starting from the

saliency score, which is used to sample the importance of a learning unit. Section 3.3.1

defines the terminology we use in this paper. Section 3.3.2 provides the mathematical
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proof of the saliency score we adopt.

3.3.1 Terminology

A DNN can be treated as a feedforward multi-layer architecture that maps the

input images to certain output vectors. Each layer is a certain function, such as

convolution, ReLU, pooling and inner product, whose input is X , output is Y and

parameter isW in case of convolutional and fully-connected layers. Hereby the convo-

lutional layer (conv-layer) is formulated as: Yl = Xl ∗ Wl, wherein Xl ∈ RIl×Wil×Hil ,

Yl ∈ ROl×Wol×Hol ⇔ Xl+1 ∈ RIl+1×Wil+1×Hil+1 , Wl ∈ ROl×Il×K×K , where subscript

l denotes the index of the layer. And the fully-connected layer is represented by:

Yl = Xl · Wl, where the input Xl ∈ RIl , the output Yl ∈ ROl ⇔ Xl+1 ∈ RIl+1 , and the

parameter matrix is Wl ∈ ROl×Il .

Convolutional layer (conv-layer) l the 4 dimensions of its weight matrix are:

the number of output channels Ol, the number of input channels Il, and the kernel

width and height K, respectively. We denote the o-th 3D filter, which generates the

o-th output channel in the feature map, as W o
l ∈ RIl×K×K . The i-th 2D kernel in

the o-th filter is denoted as W o,i
l ∈ RK×K . On the other hand, a 4D weight tensor

Wi
l ∈ ROl×1×K×K , which operates on the i-th input feature map, is a package of Ol

kernels across all output channels. For example, in Figure 3.3, W j
l,picked is a 3D filter

consisting of Il kernels, and Wj
l+1,projected as well as Wj

l+1,mapped are both 4D tensors

with dimension of Ol × 1 ×K ×K, which include all the output channels but have

only one input channel located at j. The W o,i,m,n
l ∈ R1×1 refers to one weight at the

m-th row and the n-th column in the o-th filter of the i-th input channel.
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Fully-connected layer (fc-layer) l input Xl propagate from one hidden activation

i to the next layer. We refer the whole set of W i
l,fan−out as a neuron N i

l . This

neuron receives information from previous layer l − 1 through its fan-in weights

W i
l,fan−in ∈ R1×Il−1 (as shown in Figure 3.4) and propagates to the next layer through

fan-out weights W i
l,fan−out ∈ ROl×1. Also note that the output dimension of layer

l−1 equals to the input dimension of layer l, i.e., Ol−1 = Il. The weight pixel in layer

l at the cross-point of row o and column i is denoted as W o,i
l,fan−out ∈ R1×1. Moreover,

the ‘depth’ of a DNN model indicates the number of layers, and the ‘width’ of a DNN

model refers to the number of filters or neurons of each layer.

Learning units Growing or pruning a filterW o
l indicates adding or removingW o

l ∈

RIl×K×K and its corresponding output feature map. Growing or pruning a neuron

N i
l means adding or removing both W i

l,fan−out ∈ ROl×1 and W i
l,fan−in ∈ R1×Il−1 .

3.3.2 Saliency Score

We adopt a saliency score to measure the effect of a single filter/neuron on the loss

function, i.e., the importance of each learning unit. The saliency score is developed

from Taylor Expansion of the loss function. Previously, [62] applied it on pruning.

In this paper, we adopt this saliency score and apply it on the growth and pruning

scheme. In this section, we provide a mathematical formulation of the saliency score.

The saliency score represents the difference between the loss with and without each

unit. In other words, if the removal of a filter/neuron leads to relatively small accuracy

degradation, this unit is recognized as an unimportant unit, and vice versa. Thus,

the objective function to get the filter with the highest saliency score is formulated
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as:

argmin
W o

l

|∆L(W o
l )| ⇔ argmin

W o
l

|L(Y ;X ,W)− L(Y ;X ,W o
l = 0)|. (3.1)

Using the first-order of the Taylor Expansion:

|L(Y ;X ,W)− L(Y ;X ,W o
l = 0)| at W o

l = 0. (3.2)

we get:

|∆L(W o
l )| ' |∂L(Y ;X ,W)

∂W o
l

W o
l |

=

Il∑
i=0

K∑
m=0

K∑
n=0

|∂L(Y ;X ,W)

∂W o,i,m,n
l

W o,i,m,n
l |. (3.3)

Similarly, the saliency score of a neuron is derived as:

|∆L(N i
l )| ' |

∂L(Y ;X ,W)

∂W i
l,fan−out

W i
l,fan−out| =

Ol∑
o=0

|∂L(Y ;X ,W)

∂Wl,fan−out
o,iW

o,i
l,fan−out|. (3.4)

3.4 CGaP Methodology

With the saliency score as the foundation, we develop the entire CGaP flow atop.

This section explains the overall flow and the detailed implementation of each step

in CGaP.

The CGaP scheme is described in Algorithm 1. Starting from a small network

seed, the growth takes place periodically at a frequency of fgrowth (see Algorithm 1

line 4, where ‘%’ denotes the operation to obtain the remainder of division). During

each growth, important learning units are chosen and grown at growth ratio β layer

by layer from the bottom (input) to top (output), based on the local ranking of the

saliency score. The growth phase stops when reaching a capacity threshold τcapa.,

followed by several epochs of training on the peak model Mpeak. When the training

accuracy reaches a threshold τaccu., the pruning phase starts. Pruning is performed

layer by layer, from the bottom layer to the top layer, at the frequency of fpruning.

The details in the growth phase and the pruning phase is demonstrated as follows.
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Algorithm 1 Entire flow

Input: Model seed Minitial

1: Initialize a small network model Mcurrent ←Minitial.

2: for epoch = 1 to E do

3: Train current model Mcurrent and fetch Accuracy.

4: if epoch% 1
fgrowth

= 0 and Mcurrent <τcapa. then

5: Grow the network according to Algorithm 2

6: Mcurrent ←Mgrown.

7: end if

8: Mpeak ←Mcurrent.

9: if epoch% 1
fpruning

= 0 and Accuracy > τaccu. then

10: Prune the network following Algorithm 3

11: Mcurrent ←Mpruned.

12: end if

13: end for

14: Mfinal ←Mcurrent and test Mfinal.

Output: Final compact model Mfinal

3.4.1 Growth Phase

Algorithm 2 presents the methodology in the growth phase. Each iteration of

growth in a layer consists of two steps: growth in layer l and mapping in the adjacent

layer. There are two conditions need to be discussed separately: convolutional layers

(Figure 3.3) and fully-connected layers (Figure 3.4). Due to the difference between

these two kinds of operation as discussed previously, after the growth of layer l, the

mapping in conv-layer takes place at the adjacent layer l+1. In fc-layers, the mapping

is in layer l − 1.
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Algorithm 2 Growth phase

Input: Current network Mcurrent

1: for each layer l = 1 to L do

2: for each filter W o
l in conv-layer l, or each neuron N i

l in fc-layer l do

3: Calculate growth score GSW o
l

according to Eq. 3.3 and GSN i
l

according to

Eq. 3.4.

4: end for

5: Sort all units and select βOl filters or βIl neurons with the highest GSW o
l

or

GSN i
l
.

6: for each filter j = 1 to βOl (for fc-layer, βIl) do

7: Add one filter/neuron on the side of the each picked filter/neuron in layer l.

8: Initialize picked and new-born filters (neurons) according to Eq. 3.5 and

Eq. 3.6.

9: Map corresponding input-wise weight in layer l + 1 (fan-in weights in layer

l − 1).

10: Initialize projected and mapped filters according to Eq. 3.7 and Eq. 3.8 (neu-

rons according to Eq. 3.9 and Eq. 3.10).

11: end for

12: end for

Output: Mgrown

Growth in conv-layer l According to the local ranking of the saliency score

(Eq. 3.3), we sort all the 3D filters in this layer. With a growth ratio β, βOl,t filters

are selected in the l-th layer at the t-th growth. On the side of each selected filter

Wj
l,picked ∈ RIl×K×K , as shown in Figure 3.3, we create a new filter that has the same
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Figure 3.3: Illustration of Two-step Growth in Conv-layers. The Growth Phase

Follows a Two-step (Growing and Mapping) Procedure. After the Filter W j
l,picked

(Green) Is Picked and Split Aside, Giving Birth To W j
l,newborn (Orange), the Projected

Input-wise Filter, W j
l+1,projected (Blue) in Layer l+1, Is as Well Split aside, Generating

W j
l+1,mapped (Black).

size, named Wj
l,newborn ∈ RIl×K×K .

In the ideal case, the new filter Wj
l,newborn and existing filter Wj

l,picked are expected

to collaborate with each other and optimize the learning. The existing filter Wj
l,picked

has already learned on the current task. To keep the same learning pace between the

existing filter and the new filter, we initialize Wj
l,newborn as follows:

Wj
l,newborn = σWj

l,picked +X ∼ U([−µ, µ]), (3.5)

Wj
l,picked = σWj

l,picked +X ∼ U([−µ, µ]), (3.6)

where σ ∈ (0, 1] is a scaling factor and X is a constant following uniform distribution

in [−µ, µ], where µ ∈ (0, 1]. Instead of random initialization, the above initialization

helps reconcile the learning status of the newborn filters with the old filters. Mean-

while, the scaling factor prevents output from an exponential explosion caused by

the feedforward propagation Yl = Xl ∗ Wl. The noise X prevents the learning from
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sticking at a local minimum that leads to sub-optimal solutions. No matter which

distribution the noise X follows, X in a reasonable range is able to provide similar

performance. However, other distributions usually introduce more hyper-parameters

and thus, require more efforts in parameter tuning. For example, Gaussian noise

introduces more hyper-parameter, e.g., the standard deviation, than uniform noise.

For simplicity, we use uniformly distributed noise.

Mapping in conv-layer l+ 1 After the number of filters in layer l grows from Ol,t

to (1+β)Ol,t, the number of output feature maps also increases from Ol,t to (1+β)Ol,t.

Therefore, the input-wise dimension of layer l+ 1 should increase correspondingly in

order to be consistent in data propagation. To match the dimension, we first locate

the 4D tensor Wj
l+1,projected in layer l+1, which processes the feature maps generated

by W j
l,picked. Then we add a new 4D tensor Wj

l+1,mapped adjacent to Wj
l+1,projected.

The Wj
l+1,mapped and Wj

l+1,projected are initialized as follows:

Wj
l+1,mapped = σWj

l+1,projected +X ∼ U([−µ, µ]), (3.7)

Wj
l+1,projected = σWj

l+1,projected +X ∼ U([−µ, µ]). (3.8)

To summarize, as illustrated in Figure 3.3, the filter W j
l,picked (green) is selected

according to the saliency score and a new tensor W j
l,newborn (orange) is added. Then

the input-wise tensor Wj
l+1,projected (in blue dashed rectangular) in layer l + 1 is

projected, and Wj
l+1,mapped (in black dashed rectangular) is generated.

After layer l grows and layer l + 1 is mapped, layer l + 1 grows and layer l + 2 is

mapped, so on and so forth till the last convolutional layer. It is worth mentioning that

for the ‘projection shortcuts’ [24] with 1×1 convolutions in ResNet [24], the dimension

mapping is between the two layers that the shortcut connects, not necessarily to be

the adjacent layers.
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Figure 3.4: Illustration of Two-step Growth in FC-layers. First, Fan-out Weights

wj
L,Newborn (Orange) Is Added, Then Fan-in Weights Wj

l−1,mapped (Black) Form the

Connections from the Newborn Neuron to All Neurons in Layer l − 1.

Growth and mapping in fc-layers As illustrated in Figure 3.4, the neuron growth

in fc-layers l occurs at fan-out weights, and its initialization follows Eq. 3.5 and 3.6.

The mapping in fc-layers take place in the fan-in weights as follows:

Wj
l−1,mapped = σWj

l−1,projected +X ∼ U([−µ, µ]), (3.9)

Wj
l−1,projected = σWj

l−1,projected +X ∼ U([−µ, µ]). (3.10)

After growing the last conv-layer, We flatten the output feature map of this conv-

layer, treat it as the input from layer l − 1 and map in the same manner.

3.4.2 Pruning Phase

Pruning in each layer consists of two steps: weight pruning and unit pruning.

First, we sort weight pixels locally in each conv-layer according to Eq.3.11:

PSW o,i,m,n
l

=|∂L(Y ;X ,W)

∂W o,i,m,n
l

W o,i,m,n
l | (3.11)
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Algorithm 3 Pruning phase

Input: Current network Mcurrent

1: for each weight W o,i,m,n
l ∈ R1×1 in conv-layer l or each W o,i

l ∈ R1×1 in fc-layer l

do

2: Calculate weight pruning score PSW according to Eq. 3.11 for conv-layers and

Eq. 3.12 for fc-layers.

3: end for

4: Sort weights by PSW .

5: Zero-out the lowest γW
∏

(Ol, Il, K,K) weights in conv-layer and γW
∏

(Il, Ol)

weights in fc-layer.

6: for each filter W o
l (neuron N i

l ) in all layers do

7: Zero-out entire filter W o
l (neuron N i

l ) if the weight sparsity is larger than prun-

ing rate γF (γN).

8: end for

Output: Mpruned

and in each fc-layer according to Eq.3.12:

PSW o,i
l

=|∂L(Y ;X ,W)

∂Wl,fan−out
o,iW

o,i
l,fan−out| (3.12)

In each layer, 100γW% weight pixels with the lowest PSW are set as zero, where

γW ∈ (0, 1) is the weight pruning rate. Then the entire filter/neuron whose sparsity

is larger than the filter/neuron pruning rate γF or γN ∈ (0, 1) is set to zero. In

this way, a large amount of entire filters/neurons are pruned, leading to a compact

inference model.
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3.5 Algorithmic Experiments

To evaluate the proposed approach, we present experimental results in this sec-

tion. We perform experiments on several modern DNN structures (LeNet [15], VGG-

Net [22], ResNet [24]) and representative datasets (MNIST [15], CIFAR-10, CIFAR-

100 [25], SVHN [26]).

3.5.1 Training Setup

Network structures The LeNet-5 architecture consists of two sets of convolu-

tional, ReLU [63] and max pooling layers, followed by two fully-connected layers and

finally a softmax classifier. The VGG-16 and VGG-19 structures we use have the

same convolutional structure as [22] but are redesigned with only two fully-connected

to be fairly compared with the pruning-only method [39]. Therefore, the VGG-16

(VGG-19) has 13 (16) convolutional layers, each is followed by a batch normaliza-

tion layer [64] and a ReLU activation. The structures of ResNet-56 and ResNet-110

follow [39]. Each convolutional layer is followed by a batch normalization layer and

ReLU activation. During the training, the depth of the networks remains constant

since CGaP does not touch the depth of the network, but the width of each layer

changes.

Note that in the following text, we denote the full-size models trained from scratch

without sparsity regularization as ‘baseline’ models. The three-step pruning schemes

that remove weights or filters but do not execute network growth are denoted as

‘pruning-only’ models.

Datasets MNIST is a handwritten digit dataset in grey-scale (i.e., one color chan-

nel) with 10 classes from digit 0 to digit 9. It consists of 60,000 training images

and 10,000 testing images. The CIFAR-10 dataset consists of 60,000 32 × 32 color
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images in 10 classes, with 5000 training images and 1000 testing images per class.

The CIFAR-100 dataset has 100 classes, including 500 training images and 100 test-

ing images per class. The Street View House Number (SVHN) is a real-world color

image dataset that is resized to a fixed resolution of 32×32 pixels. It contains 73,257

training images and 26,032 testing images.

Hyper-parameters We set the learning rate to be 0.1 and divide by 10 for every

30% of the training epochs. We train our model using Stochastic Gradient Descent

(SGD) with a batch size of 128 examples, a momentum of 0.9, and a weight decay of

0.0005. The loss function is the cross-entropy loss with softmax function. We train

60, 200, 220 and 100 epochs on MNIST, CIFAR-10, CIFAR-100 and SVHN datasets,

respectively. In the growth phase, we have hyper-parameters set as follows: the

growth stopping condition τcapa. = O1,baseline, i.e., the growth stops at the t-th growth

if the number of filters in the (t+ 1)-th growth is larger than the baseline model. The

growth ratio β is set as 0.6. The growth frequency fgrowth is set as 1/3. The scaling

factor σ in Eq. 3.5 to Eq. 3.10 is set to 0.5 and µ is 0.1. The pruning frequency fpruning

is set to be 1. The setting of the weight pruning rate γW follows [38], [39] and [41]

for LeNet-5, VGG-Net and ResNet, respectively. γF and γN is set to be same as γW .

Framework and platform The experiments are performed with PyTorch [65]

framework on one NVIDIA GeForce GTX 1080 Ti platform. It is worth mentioning

that experiments performed with different frameworks may have variation in accu-

racy and performance. Thus, to have a fair comparison among CGaP, baseline and

pruning-only methods, all the results in Table 3.1, 3.2, 3.3 and 3.4 are obtained from

experiments with PyTorch framework.
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3.5.2 Performance Evaluation

With training setup as aforementioned, we perform experiments on several datasets

with modern DNN architectures. In Table 3.1, Table 3.2, Table 3.3 and Table 3.4,

we summarize the performance attained by CGaP on MNIST, CIFAR-100, SVHN,

and CIFAR-10 datasets, respectively. To be specific, the second column ‘Accuracy’

denotes the inference accuracy in percentage achieved by the baseline model, the

up-to-date pruning-only approaches and CGaP approach, respectively.

The column ‘FLOPs’ represent the calculated number of FLOPs of a single in-

ference pass. The calculation of FLOPs follows the method described in [62]. Fewer

FLOPs means lower computation cost in one inference pass. The neighboring column,

‘Pruned’, represents the reduction of FLOPs in the compressed model as compared to

the baseline model. The column ‘Param.’ stands for the number of parameters of the

inference model. Fewer parameters promise a smaller model size. The last column,

‘Pruned’, denotes the percentage pruned in parameters compared to the baseline.

Larger pruned percentage implies fewer computation operations and more compact

model. The best result of each column is highlighted in bold.

The results shown in Table 3.1 to 3.4 prove that CGaP outperforms the previous

pruning-only approaches in accuracy and model size. For instance, as displayed in

Table 3.4, on ResNet-56, our CGaP approach achieves 93.20% accuracy with 32.5%

reduction in FLOPs and 37.6% reduction in parameters, while the up-to-date pruning-

only method [48] that deals with static structure only reaches 92.56% accuracy with

32.1% reduction in FLOPs and 14.1% reduction in parameters. On ResNet-110,

though [49] achieves 0.09% higher accuracy than CGaP, CGaP overwhelms it by

trimming 22.5% more FLOPs.
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Table 3.1: Evaluation of the Performance on MNIST.

Method Accuracy FLOPs Pruned Param. Pruned

LeNet5-Baseline 99.29 4.59M – 431K –

Pruning [40] 99.26 0.85M 81.5% 112K 74.0%

Pruning [38] 99.23 0.73M 84.0% 36K 92.0%

CGaP 99.36 0.44M 90.4% 8K 98.1%

Table 3.2: Evaluation of the Performance on CIFAR-100.

Method Accuracy FLOPs Pruned Param. Pruned

VGG19 - Baseline 72.63 797M – 20.4M –

Pruning [48] 71.85 NA – 10.1M 50.5%

Pruning [41] 72.85 501M 37.1% 5.0M 75.5%

CGaP 73.00 373M 53.2% 4.3M 78.9%

Table 3.3: Evaluation of the Performance on SVHN.

Method Accuracy FLOPs Pruned Param. Pruned

VGG19 - Baseline 96.02 797M – 20.4M –

Pruning [41] 96.13 398M 50.1% 3.1M 84.8%

CGaP 96.25 206M 74.2% 2.9M 85.8%

3.5.3 Visualization of the Dynamic Structures

Figure 3.5 presents the dynamic model size during CGaP training. During the

growth phase, the model size continuously increases and reaches a peak capacity.

When the pruning phase starts, the model size drops.

Furthermore, the sparsity achieved by CGaP is structured. In other words, large

amounts of filters and neurons are entirely pruned. For instance, the baseline LeNet-
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Table 3.4: Evaluation of the Performance on CIFAR-10.

Method Accuracy FLOPs Pruned Param. Pruned

VGG16 - Baseline 93.25 630M – 15.3M –

Pruning [39] 93.40 410M 34.9% 5.4M 64.7%

CGaP 93.59 280M 56.2% 4.5M 70.6%

ResNet-56 - Baseline 93.03 268M – 0.85M –

Pruning [48] 92.56 182M 32.1% 0.73M 14.1%

Pruning [66] 90.20 134M 50.0% NA -

CGaP 93.20 181M 32.5% 0.53M 37.6%

ResNet-110 - Baseline 93.34 523M – 1.72M –

Pruning [39] 93.11 310M 40.7% 1.16M 32.6%

Pruning [49] 93.52 300M 40.8% NA –

CGaP 93.43 192M 63.3% 0.62M 64.0%
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Figure 3.5: Number of Parameters During Training, Plotted at the End of Each

Epoch. In the Beginning, the Model Size Increases Gradually Due to the Growth.

After the Growth Ends and Several Epochs of Training on the Peak Model, One Drop

Can Be Observed after the First Pruning. There Are Several Iterations of Pruning

at a Frequency of 1.
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Figure 3.6: The VGG-19 Structures Learned by CGaP on CIFAR-100 and SVHN

Datasets. The Shared Y-axis for Three Sub-figures Is the Number of Parameters of

the Model.

5 without sparsity regularization has 20, 50 filters in conv-layer 1 and conv-layer 2,

500 and 10 neurons in fc-layer 1 and fc-layer 2, denoted as [20-50-500-10] (number of

filters/neurons in [conv1-conv2-fc1-fc2]). The model achieved by CGaP contains only

8, 17 filters and 23, 10 neurons, denoted as [8-17-23-10]. Compared to baseline results,

CGaP significantly decreases 60%, 66%, 95.4% units for each layer (the output layer

should remain the same as the number of classes all the time). In this case, the

pruned filters and neurons are skipped in the inference pass and thus accelerating the

computation pipeline on hardware.

Another example is provided in Figure 3.6, which visualizes the VGG-19 structures

from CGaP as well as the baseline structure on two different tasks. In the baseline

model, the width (number of filters/neurons) of each layer is abundant, from 64 filters

(the bottom conv-layers) to 512 filters (the top conv-layers). The baseline VGG-19

structure is designed to have a large enough size in order to guarantee the learning

capacity. However, it turns out to be redundant, as proved by the structure that

CGaP generated: 37.7% to 82.6% filters are pruned out in each layer. Meanwhile,

in the baseline model, the top conv-layers are designed to have more filters than the
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Figure 3.7: Saliency-based Growth Outperforms Random Growth. The Loss Is Mono-

tonically Decreasing from Epoch 0 to 220 with Small Glitches. Here We Zoomed in

from Epoch 120 to 220 to Show the Loss at the End of the Training.

bottom layers, but CGaP shows that it is not always necessary for top layers to have

a relatively large size.

3.5.4 Validating the Saliency-based Growth

Figure 3.7 validates the efficacy of our saliency-based growth policy. Selective

growth, which emphasizes the important units according to the saliency score, has

lower cross-entropy loss than randomly growing some units. The spiking in Figure 3.7

is caused by the first iteration of pruning and this loss is recovered by the following

iterative fine-tuning. In selective growth, this loss is 1.4× lower than that in random

growth. This phenomenon supports our argument that selective growth assists the

pruning phase. The detailed understanding of growth will be further discussed in

Section 3.7.

To summarize the results from the algorithm simulations, the proposed CGaP

approach:
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• Largely compresses the model size by 37.6% (ResNet-56) to 98.1% (LeNet-5)

for representative DNN structures.

• Decreases the inference cost, to be specific, number of FLOPs, by 32.5% (ResNet-

56) to 90.4% (LeNet-5) on various datasets.

• Does not sacrifice accuracy and even improves accuracy.

• Outperforms the state-of-the-art pruning-only methods that deal with fixed

structures.

3.6 Experiments on FPGA Simulator

The results above demonstrate that CGaP generates an accurate and small in-

ference model. In this section, we further evaluate the on-chip inference cost of the

generated models and compare CGaP with previous non-structured pruning [38]. As

CGaP achieves structured sparsity, CGaP outperforms the previous work on non-

structured pruning in hardware acceleration and power efficiency. We validate this

by performing the estimation of buffer access energy, DRAM access energy and la-

tency using the performance model for FPGA [30].

3.6.1 Overview of the FPGA Simulator

[30] is a high-level performance model designed to estimate the number of external

and on-chip memory access, as well as the latency. The resource costs are formulated

by the acceleration strategy as well as the design variables that control the loop tiling

and unrolling. The performance model has been validated across several modern DNN

algorithms in comparison to on-board testings on two FPGAs, with the differences

within 3%, [30].

In the following experiments, the setup follows: the pixels and weights are both
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(a) Comparison of Three Schemes in Buffer

Access Energy (pJ) for VGG-16 on CIFAR-
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(b) Comparison of Three Schemes in DRAM

Access Energy (pJ) for VGG-16 on CIFAR-

10, VGG-19 on CIFAR-100, ResNet-56 and

ResNet-110 on CIFAR-10.
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(c) Comparison of Three Schemes in On-chip Infer-

ence Latency (ms) for VGG-16 on CIFAR-10, VGG-

19 on CIFAR-100, ResNet-56 and ResNet-110 on

CIFAR-10.

Figure 3.8: Estimation on FPGA Performance Model.

16-bit fixed point, the data width of DRAM controller is 512 bits, the accelerator

operating frequency is 300 MHz, and the DRAM bandwidth is 19.2 GB/second. The

parameters related to loop tiling and unrolling follow the setting in [30].

3.6.2 Results from FPGA Performance Model

The on-chip and external memory access energy across VGG-16, VGG-19, ResNet-

56 and ResNet-110 is displayed in Figure 3.8(a) and Figure 3.8(b), respectively. The

inference latency is shown in Figure 3.8(c). Though the models generated from
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weight magnitude pruning and CGaP have the same sparsity, CGaP outperforms

non-structured magnitude weight pruning in hardware efficiency and acceleration.

For example, with the same setup of the pruning ratio during training, magnitude

weight pruning decreases 1.0% on-chip access energy, 1.0% DRAM access energy and

0.8% latency for VGG-19 on CIFAR-100, while the CGaP achieves 21.6%, 15%, and

21.1% reduction. The non-structured weight pruning [38] is able to improve the power

and latency efficiency in comparison to baseline. However, the improvement is lim-

ited. In contrast, CGaP achieves significant acceleration and energy reduction. The

reason is that the non-structured sparsity, i.e., scattered weight distribution, leads to

irregular memory access that weakens the acceleration on hardware in a real scenario.

3.7 Discussion

In Section 3.5 and 3.6, the performance of CGaP has been comprehensively eval-

uated on algorithm platforms and hardware platforms. In this section, we provide a

more in-depth understanding of the growth to explain why selective growth is able to

improve the performance from the traditional pipelines. Furthermore, we provide a

thorough ablation study to validate the robustness of the proposed CGaP method.

Understanding the growth Figure 3.9 illustrates a visualization of the weights

in the bottom conv-layer (conv1 1) in VGG-19, at the moment of initialization, after

the first growth, after the last growth and when training ends. Inside each figure,

the upper bar is the CGaP model, whose size varies at different training moments.

The lower bar is from the baseline model, whose size is static during training. At

the initialization moment (Figure 3.9(a)), CGaP model only has 8 filters in this layer

while the baseline model has 64 filters. Then the number of filters grows to 13 after

one iteration growth (Figure 3.9(b)), meaning the most important 5 filters are selected
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(a) Initial seed

CGaP Baseline

(a) Initial seed

CGaP Baseline

(b) After The first growth

CGaP Baseline

(b) After The first growth

CGaP Baseline

(c) Post-growth(c) Post-growth

(d) Final model (binary)

Light color denotes pruned filters

(d) Final model (binary)

Light color denotes pruned filters

Figure 3.9: Visualization of the Filters in conv1 1 in VGG-19 on CIFAR-100 at Four

Specific Moments (a-d). Inside Each Figure, the Top Bar Is CGaP Model and the

Bottom Bar Is Baseline Model. X-axis Is the Index of Output-wise Weights and

Y-axis Is the Index of Input-wise Weights.

and added. It is clear that the pattern in Figure 3.9(b) is more active than that in (a),

indicating the filters have already fetched effective features from the input images.

More important, along with the growing, the pattern in CGaP model becomes more

structured than that in the baseline model, as shown in Figure 3.9(c). Benefiting from

this well-structured pattern, our CGaP model has higher learning accuracy than the
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Initial seeds ‘2’ ‘4’ ‘6’ ‘8’ ‘10’ ‘12’

#filters

conv1 n 2 4 6 8 10 12

conv2 n 4 8 12 16 20 24

conv3 n 8 16 24 32 40 48

conv4 n 16 32 48 64 80 96

conv5 n 16 32 48 64 80 96

Initial #param (M) 0.01 0.06 0.13 0.23 0.36 0.53

Testing accuracy* -0.69% -0.2% -0.16% +0.37% +0.04% 0.29%

*Relative accuracy of the final model on CIFAR-100 as compared to the baseline.

Table 3.5: The Impact of Various Structures and and Sizes of the Initial Seed of

VGG-19.

baseline model. From Figure 3.9(c) to Figure 3.9(d), relatively unimportant filters are

removed, and important ones are kept. We observe that most of the filters that are

favored by the growth, such as filters at index 36, 48, 72, 96 in Figure 3.9(c), are still

labeled as important filters in Figure 3.9(d) even after a long training process between

the growth phase and the pruning phase. Leveraging the growth policy, the model is

able to recover quickly from the loss caused by pruning (the spiking in Figure 3.7).

Robustness of the seed The performance of CGaP is stable under the variation

of the initial seeds. To prove this, we scan several seeds in different size and present

the variation in accuracy and inference model size. The structure of 6 scanned seeds

is listed in Table 3.5. Each seed has a different number of filters in each layer, e.g.,

seed ‘2’ has 2 filters in block conv1. The size of the seeds varies from 0.01M to 0.53M.

Figure 3.10 presents the final model size and the number of growth of each seed. A

larger seed leads to a larger final model but requires fewer iterations of growth to

reach the intended model size. Generally speaking, there is a trade-off between the
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Figure 3.10: A Larger Seed Leads to a Larger Final Model but Fewer Iterations in

the Growth Phase.

inference accuracy and the model size. Though the seed varies a lot from each other,

the final accuracy is quite robust, as listed in the ‘Accuracy’ row in Table 3.5. It is

worth mentioning that, even though the seed ‘2’ degrades the accuracy of 0.69% from

baseline, the inference model size is only 2.4M, significantly smaller than the baseline

size (20.4M).

Robustness of the hyper-parameters CGaP is conditioned on a set of hyper-

parameters to achieve optimal performance, while it is stable under the variation of

these hyper-parameters. Empirically, we leverage the following experience to perform

parameter optimization: a smaller growth rate β for a larger seed and vice versa;

threshold τcapa is set based on the user’s intended model size; a smaller fgrowth for a

complicated dataset and vice versa; a relatively greedy growth (larger β and fgrowth)

prefers a larger noise µ but smaller σ to push the model away from sticking at a local

minimum. Tuning of the pruning ratio of each layer is in a similar manner to that of

the other pruning works [38] [39].
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In particular, we scan 121 combinations of the scaling factor σ and noise µ in the

range [0.0, 1.0] with the step=0.1 and provide the following discussion. For VGG16

on CIFAR-10, the accuracy of several corner cases are 90% (µ=1, σ=0, which is a

case of random initialization), 89% (µ=1, σ=1), 84% (µ=0, σ=1, which is another

case of mimicking its neighbor without scaling) and 10% (µ=0, σ=0, the training is

invalid in this case), 93% (µ=0, σ=0, which is another case of mimicking its neighbor

with scaling), 88% (µ=0.5, σ=0, which is another case of random initialization). The

best accuracy of 93.6% is under µ=0.1, σ=0.5. The combinations in the zone that

µ ∈ [0, 0.5] and σ ∈ (0, 0.5] always provide >92% accuracy. To summarize, σ impacts

more than µ as µ is relatively small; σ should not be too large and 0.5 is safe for

future tasks and networks; adding a noise improves the accuracy (like from 93% to

93.6%) as it prevents local minimum; inheriting from the neighbor is more efficient

than randomly initializing since the network is able to resume the learning right after

the growth.

3.8 Conclusion and Future Work

Modern DNNs typically start training from a fixed and over-parameterized net-

work, which leads to redundancy and is lack of structural plasticity. We propose

a novel dynamic training algorithm, Continuous Growth and Pruning, that initial-

izes training from a small network, expands the network width continuously to learn

important learning units and structures and finally prunes secondary ones. The ef-

fectiveness of CGaP depends on where to start and stop the growth, which learning

unit (filter and neuron) should be added, and how to initialize the newborn units to

ensure model convergence. Our experiments on benchmark datasets and architectures

demonstrate the advantage of CGaP on learning efficiency (accurate and compact).

We further validate the energy and latency efficiency of the inference model gener-
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ated by CGaP on FPGA performance simulator. Our approach and analysis will help

shed light on the development of adaptive neural networks for dynamic tasks such as

continual and lifelong learning.
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Chapter 4

SINGLE-NET CONTINUAL LEARNING WITH PROGRESSIVE SEGMENTED

TRAINING

4.1 Introduction

The rapid advancement of computing and sensing technology has enabled many

new edge applications, such as the self-driving vehicle, the surveillance drone, and the

robotic system. Compared to conventional edge devices (e.g. cell phone or smart home

devices), these emerging devices are required to deal with much more complicated and

dynamic situations with limited power budget. One of the necessary attributes is the

capability of efficient continual learning (i.e. online learning): when encountering a

sequence of tasks over time, the edge device should capture the new observation

and update its knowledge (i.e. the network parameters [67,68]) in real time, without

interfering or overwriting previously acquired knowledge, and such a learning should

be computationally efficient at the edge. Recent literature [69–76] have intensively

studied this topic. It is believed that, to achive efficient online learning, such an edge

computing system should have the following features:

Online adaption. The system should be able to update its knowledge accord-

ing to a continuum of data, without independent and identically distributed (i.i.d.)

assumption on this data stream. For a dynamic system (e.g. a self-driving vehicle),

it is preferred that such adaption is completed locally and in real time.

Preservation of prior knowledge. When new data arrives in a stream, previous

data are very limited or even no longer exist. Yet the acquired knowledge from

previous data should not be forgotten (i.e. overwritten or deteriorated due to the
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learning of new data). In other words, the prior distribution of the model parameters

should be preserved.

Single-head evaluation. The system should be able to differentiate the tasks

and achieve successful inter-task classification without the prior knowledge of the

task identifier (i.e. which task current data belongs to). In the case of single-head,

the neural network output should consist of all the classes seen so far. In contrast,

multi-head evaluation only deals with intra-task classification where the network out-

put only consists of a subset of all the classes. Multi-head classification is more

appropriate for multi-task learning than continual learning [69].

Resource constraint. Due to the limited power and memory budget at the

edge, the resource usage such as the model size, the computation cost, and storage

requirements should be bounded during continual learning from sequential tasks,

rather than increasing proportionally or even exponentially over time.

(1) Dynamic network structure. These methods [75–80] usually expand the

new knowledge by growing the network structure. For example, [77] progressively

adds new network branches for new tasks and keeps previously learned features in

lateral connections. In this case, prior knowledge and new knowledge are usually

separated into different feedforward paths. Moreover, the newly added branches have

never been exposed to the previous data and thus is blind to previous tasks. Due to

these fundamental reasons, the performance of dynamic architectures on the single-

head classification lags behind, although they were able to maintain the accuracy in

multi-head classification with the priori of task identification. The second family is (2)

single network structure. In contrast to a dynamic structure, these methods learn

sequential tasks with a single, static network structure all the time. The knowledge

of prior and new tasks are packed in a single network that is exposed to all tasks over

time. In this case, the challenge is shifted to minimizing the interference among tasks
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and preserving prior knowledge in the same network. As a contemporary neural

network has a large capacity to accommodate multiple tasks, we believe a single

network provides a promising basis for continual learning.

In the family of the single-network methods, previous works have explored the

regularization methods [67,68,70,81,82], the parameter isolation methods [83,84] and

the memory rehearsal methods [71,73,74,85,86]. The regularization methods leverage

a penalty term in the loss function to regularize the parameters when updating for

new tasks. However, as more and more tasks appear, the parameters tend to be

biased towards the new tasks, and the system gradually drifts away from previous

distribution. To mitigate such a knowledge asymmetry, regularization methods can be

combined with memory rehearsal methods [87,88]. Recent works such as iCaRL [74]

and GEM [73] have proven the efficacy of replaying the memory (i.e. train the system

with a subset of the previously seen data) in abating the network parameters drifting

far away from previous knowledge. Parameter isolation approaches [83, 84] allocate

subsets of parameters for previous tasks and prune the rest for learning new tasks.

In this case, the rest of the parameters no longer contain prior knowledge, violating

the aforementioned properties of an ideal continual learning system. For instance,

PackNet [83] and Piggyback [84] achieve strong performance on multi-head evaluation

but not on single-head.

To achieve continual learning with the preservation of prior knowledge, we propose

single-net continual learning with Progressive Segmented Training, namely PST, as

shown in Figure 3.2. When new data comes in, PST adapts the network parameters

with memory-assisted balancing, then important parameters are identified according

to their contribution to this task. Next, to alleviate catastrophic forgetting, PST

performs model segmentation by reinforcing important parameters (through retrain-

ing) and then freezing them in the future training; while the secondary parameters
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will be saved (not pruned) and updated by future tasks. Through experiments on

CIFAR-10 [25] and CIFAR-100 [25] dataset with modern deep neural networks, we

demonstrate that PST achieves state-of-the-art single-head accuracy and successfully

preserves the previously acquired knowledge in the scenario of continual learning.

Moreover, benefiting from model segmentation, the amount of computation needed

to learn a new task keeps reducing. This property brings PST high efficiency in com-

putation as compared to other regularization methods. We prove the efficiency of

PST with simulated results.

The contribution of this paper is as follows:

• We summarize important features of a successful continual learning system

and propose a novel training scheme, namely Progressive Segmented Training

(PST), to mitigate catastrophic forgetting in continual learning.

• Different from previous works in which new observation overwrites the entire

acquired knowledge, PST leverages parameter segmentation for each task to

prevent knowledge overwriting or deterioration. Experiments on CIFAR-10

and CIFAR-100 dataset prove that PST successfully alleviates catastrophic

forgetting and reaches state-of-the-art single-head accuracy in the learning of

streamed data.

• We present the advantage of PST in the scenario of edge computing from the

perspective of accuracy and computation cost. With the FPGA-based 16-bit

fixed-point training accelerator, we further validate that PST significantly re-

duces computational cost when learning at the edge.

• We demonstrate a detailed ablation study and discussion to analyze the role of

each component in PST.
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The rest of this paper is organized as follows: Section 4.2 describes previous efforts

on continual learning. Section 4.3 describes the training routine of PST as well as a

detailed description of each component. Section 4.4 demonstrates in-depth analysis of

PST on CIFAR-10 and extensive results on CIFAR-100 when learning streamed tasks.

Section 4.5 emphasizes the efficiency of PST when learning at the edge. Section 4.6

presents the ablation study of each components in PST and memory budget. Finally,

we conclude this work in Section 4.7.

4.2 Related Work

In this section, we review previous efforts to alleviate catastrophic forgetting in

continual learning. Basically, there are two families of these works: (1) dynamic

network structure and (2) single network structure.

Dynamic network structure Methods with expandable or growing network struc-

tures are categorized in this family. [77] progressively adds a new branch of neural

networks for each new task and leaves the old knowledge untouched. [79] expands

fixed amount of neurons to learn new knowledge and partially retrains weights that

are associated with old tasks. [75] combines two individual models that are trained

on old and new classes through dual distillation. [78] uses reinforcement learning to

adaptively expand the each layer of network when new task arrives. Due to the nature

of dynamic structures, the inference of old and new tasks are separated in different

paths and thus, these methods usually perform better on multi-head protocol with

task identification provided. Compared to the dynamic network family, the proposed

PST encodes entire knowledge of all the tasks into a single networks in order to

achieve single-head evaluation.

48



Single network structure In contrast to dynamic family, some previous work

embody all the tasks in a single network, i.e.static network structure. Techniques

such as regularization, parameter isolation and memory rehearsal (including pseudo

memory) are explored.

Regularization. [67,68,83] add penalty term in the objective function to regu-

larize the parameter updating for new tasks, or use knowledge distillation [82,89,90]

and bias correction [90] to constrain the learning between new and old classes. Along

with learning more and more tasks, network parameters gradually drift away and

become biased towards new tasks since regularization is soft constraint on parameter

updating. Different from them, PST does not require additional term in loss function

and applies hard constraint on parameter updating rather than soft constraint.

Parameter isolation. PackNet [84] iteratively prunes unimportant weights and

fine-tunes them in the learning of new tasks. Similarly, Piggyback [83] prunes net-

work parameters with learning a mask from network quantization. PackNet [83]

and Piggyback [84] achieve strong performance on multi-head evaluation but not on

single-head. We argue that pruning secondary parameters is sub-optimal in the case

of single-head protocol since pruning destroys parameter distribution. Detailed dis-

cussion is provided in Section 4.4.1. Different from PackNet and Piggyback, PST

implements segmentation by consolidating important parameters for past tasks and

saving secondary parameters for new tasks. In other words, new tasks are learned

from scratch (weights are zero) in PackNet and Piggyback and thus, old tasks and

new tasks are disjoint; but in PST, new tasks are learned based on old tasks so that

weight distribution can be preserved.

Memory rehearsal and pseudo memory rehearsal. To mitigate knowledge

bias towards new tasks, some methods store previous data and retrain them [71,

73, 74, 85, 86], or train Generative Adversarial Networks (GANs) to generate and
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Algorithm 4 PST training routine

Input:{Xs, . . . , X t}

Require Θ = (Θfixed; Θfree)

Require P = (P1, . . . , Ps−1)

1: Memory-assisted training and balancing: Θfree → Θ′free

2: Importance sampling: identify Θimportant in Θ′free

3: Model segmentation: Θimportant → Θ′important

4: (Θfixed; Θ′important)→ Θ′fixed

5: Θsecondary → Θ′free

Output: Θ′ = (Θ′fixed; Θ′free)

Output: P ′ = (P1, . . . , Pt)

discriminate images and then learn the data distribution [91–93]. Memory rehearsal

methods require additional storage to store previous data or extra model parameters

to generate and discriminate data. However, the scalability is not a concern as long

as the storage or the GAN model size is constrained in the learning of streamed data.

4.3 Method

In this section, we first describe the terminology and algorithm of PST. Then

we interpret three major components: memory-assisted training and balancing, im-

portance sampling and model segmentation in Section 4.3.2, Section 4.3.3 and Sec-

tion 4.3.4, respectively.

4.3.1 Overview of PST

Terminology The continual learning problem can be formulated as follows: the

machine learning system is continuously exposed to a stream of labeled input data
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Fixed parameters of Ti-1

Free parameters for Ti

Important parameters for Ti

Figure 4.1: The Flow Chart of Progressive Segmented Training (PST). (A) We Allow

the Current Task Ti and a Memory Set to Update the Free Parameters Θfree (in Light

Blue) in the Network While Sharing Fixed Parameters θFixed (in Grey) Learned from

Previous Tasks. The Fixed-size Memory Set Is Used to Keep the Balance of Training

among Various Tasks. (B) We Sort and Select Important Parameters Θimportant (in

Dark Blue) for Task Ti, and Reinforce Them by Retraining. These Important Pa-

rameters Are Kept Frozen and Will Not Be Updated by Future Tasks. Different from

PackNet And Piggyback, the Secondary Parameters (in Light Blue) Are Not Pruned

in PST. Instead, New Tasks Will Start from Secondary Parameters and Update the

Network, Which Is Essential to Achieve Single-head Classification. For a New Task

Ti+1, the above Training Routine Repeats in (c) and (d), so on and so Forth.

X1, X2, . . ., where Xy =
{
xy1, . . . , x

y
ny

}
correspond to all examples of class y ∈ N.

When the new task {Xs, . . . , X t} comes in, the data of old tasks {X1, . . . , Xs−1}

are no longer available, except a small amount of previously seen data stored in the

memory set P = (P1, . . . , Ps−1).

For a modern deep neural network such as VGG-Net [22] and ResNet [24], the net-

work parameter Θ usually consists of feature extractor ϕ : X → Rd and classification

weight vectors w ∈ Rd. The network keeps updating its parameter Θ according to the

previously seen data X , in order to predict labels Y∗ with its output Y = w>ϕ(X ).

During training the network with data corresponding to classes {X1, . . . , Xs−1}, our
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target is to minimize the loss function L(Y ;Xs−1; Θ) of this (s − 1)-class classifier.

Similarly, with the introduction of a new task with classes {Xs, . . . , X t}, the target

now is to minimize L(Y ;Xt; Θ) of this t-class classifier.

Training routine Every time when a new task is available, PST calls a training

routine (Figure 4.1 and Algorithm 4) to update the parameter Θ to Θ′, and the

memory set P to P ′, according to the current training data {Xs, . . . , X t} and a small

amount of previously seen data (memory set) P . The training routine consists of

three major components: (1) memory-assisted training and balancing, (2) importance

sampling and (3) model segmentation, as illustrated in the following subsections.

4.3.2 Memory-assisted Training and Balancing

Figure 4.1 illustrates PST training routine for task Ti and task Ti+1. In Figure 4.1a,

which is the moment that task Ti comes in, the network consists of two portions:

parameters Θfixed (grey blocks) are fixed for previous tasks, and parameters Θfree

(light blue blocks) are trainable for current and future tasks. We allow Θfree to be

updated for task Ti, with Θfixed included in the feedforward path. To mitigate the

parameters bias towards new task, a memory set is used to assist the training. The

memory set is sampled uniformly and randomly from all the classes in previous tasks,

which is a simple yet highly efficient approach, as explained in RWalk work [70]. For

example, if the memory budget is K and s− 1 classes have been learned in previous

tasks, then the memory set stores K
s−1

images for each class. We mix samples from

this memory set with equal samples per class from the current task, i.e. K samples

of the memory and K
s−1
× (t− s+ 1) samples from current task, and provide them to

the network: (i) for a few epochs at the beginning of the training; (ii) periodically

(e.g. every 3 epochs) during training; (iii) for a few epochs at the end of the training
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to fine-tune classification layer (i, ii, iii are noted in Figure 4.3). In comparison to

most related works, which adopt the single-stage (step ii) optimization technique, the

proposed three-step optimization strategy performs much better. One of the primary

reasons behind catastrophic forgetting is knowledge drift in both feature extraction

and classification layers. The three-pronged strategy helps minimize this drift in the

following ways: step i provides a well-balanced initialization; step ii reviews previous

data and thus, consolidates previous learned knowledge for the entire network; step

iii corrects bias by balancing classification layers, which is simple yet efficient as

compared to [90] that utilizes an extra Bias Correction Layer after the classifier.

After memory-assisted training and balancing, the network parameters are updated

from Θ = (Θfixed; Θfree) to Θ′ = (Θfixed; Θ′free), as stated in Algorithm 1 line 1.

4.3.3 Importance Sampling

After the network has learned on task Ti, PST samples crucial learning units for

the current task: for feature extraction layers (i.e. convolutional layers), PST samples

important filters ; for fully-connected layers, PST samples important neurons. The

definitions of filter and neuron are as follows:

The l-th convolutional layer can be formulated as: the output of this layer Yl =

Xl ∗ Θl, where Θl ∈ ROl×Il×K×K . The set of weights that generates the o-th output

feature map is denoted as a filter Θo
l , where Θo

l ∈ RIl×K×K . The l-th fully-connected

layer can be represented by: Yl = Xl · Θl, where Θl ∈ ROl×Il . The set of weights Θt
l

that connected to the t-th class can be denoted as a neuron, where Θt
l ∈ R1×Il .

The filter/neuron sampling is based on an importance score that is adopted in PST

to measure the effect of a single filter/neuron on the loss function, i.e. the importance

of each filter/neuron. The importance score is developed from the Taylor Expansion

of the loss function. Previously, Molchanov et al. [62] applied it on pruning secondary
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parameters. The importance score represents the difference between the loss with

and without each filter/neuron. In other words, if the removal of a filter/neuron leads

to relatively small accuracy degradation, this unit is recognized as an unimportant

unit, and vice versa. Thus, the objective function to get the filter with the highest

importance score is formulated as:

argmin
Θo

l

|∆L(Θo
l )| ⇔ argmin

Θo
l

|L(Y ;X ; Θ)− L(Y ;X ; Θo
l = 0)| (4.1)

Using the first-order of Taylor Expansion of |L(Y ;X ; Θ)−L(Y ;X ; Θo
l = 0)| at Θo

l = 0,

we get:

|∆L(Θo
l )| ' |

∂L(Y;X ;Θ)
∂Θo

l
Θo

l | =
∑Il

i=0

∑K
m=0

∑K
n=0 |

∂L(Y;X ;Θ)

∂Θo,i,m,n
l

Θo,i,m,n
l | (4.2)

where ∂L(Y;X ;Θ)

∂Θo,i,m,n
l

is the gradient of the loss function with respect to parameter Θo,i,m,n
l .

Similarly, the saliency score of a neuron is derived as:

|∆L(Θt
l)| ' |

∂L(Y;X ;Θ)
∂Θt

l
Θt

l | =
∑Il

i=0 |
∂L(Y;X ;Θ)

∂Θt,i
l

Θt,i
l | (4.3)

where ∂L(Y;X ;Θ)

∂Θt,i
l

is the gradient of the loss with respect to parameter Θt,i
l .

Based on the importance score, we sort the learning units layer by layer and

identify the top β units (dark blue blocks in Figure 4.1b). In the following model

segmentation step, we deal with the location of important parameters, rather than

the value of these parameters, which will be explained in the next subsection. β

is an empirical hyper-parameter that should be approximately proportional to the

complexity of the current task. For example, when incrementally learning 10 classes

of CIFAR-100 at a time, β can be 10%; when learning 20 classes per task, β can be

20%.

Due to the nature of continual learning, the total number of tasks is not known

beforehand, so the network can be reserved with a larger capacity in order to freeze
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enough knowledge for previous tasks and leave enough space for future tasks. Once

the continual learning is complete, one can leverage model compression approaches [1,

38,39,58,59] to compress the model size. It is also worth mentioning that importance

sampling is only performed once after each task, so that the computation cost of this

step is negligible.

4.3.4 Model Segmentation and Reinforcement

After important units are sampled according to the importance score, current

network parameter Θ′ = (Θfixed; Θimportant; Θsecondary), where Θfixed are the frozen

parameters for all the previous tasks, Θimportant are important parameters for the cur-

rent task, and Θsecondary are unimportant parameters for the current task, as stated in

Algorithm 4 line 2. Our ideal target is to reinforce Θimportant in a way such that their

contribution to the current task is as crucial as possible. Previously, Liu et al. [48]

observed that the sampled network architecture itself (rather than the selected pa-

rameters) is more indispensable to the learning efficacy. Inspired by this conclusion,

we keep the Θfixed and Θsecondary intact, randomly initialize Θimportant and retrain

them with current training data assisted by memory set to obtain Θ′important. This

step reinforces the contribution of Θimportant to the learning, as proved by our experi-

mental results demonstrated in Figure 4.2 and Table 4.2. After model segmentation,

Θ′important along with the aforementioned Θfixed will be kept frozen in the future tasks,

and Θsecondary will be used to learn new knowledge.

4.4 Accuracy: learning streamed tasks

In this section, we present experimental results to verify the efficacy of PST. The

experiments are performed with PyTorch [65] on one NVIDIA GeForce RTX 2080

platform.
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Datasets. The CIFAR [25] dataset consists of 50,000 training images and 10,000

testing images in color with size 32 × 32. There are 10 classes for CIFAR-10 and

100 classes for CIFAR-100. In Section 4.4.1, CIFAR-10 is divided into 2 tasks, i.e. 5

classes per task, to provide a comprehensive analysis of PST. In Section 4.4.2 and 4.5,

following iCaRL [74], CIFAR-100 is divided into 5, 10, 20 or 50 classes per task, to

demonstrate extensive experiments. For each experiment, we shuffle the class order

and run 5 times to report the average accuracy.

Network structures. In the following experiment, the structure and size of

VGG-16 [22] we use for CIFAR-10 dataset follows [22]. The structure and size of

32-layer ResNet for CIFAR-100 dataset follows the design of iCaRL [74]. Each convo-

lutional layer in VGG-16 and ResNet is followed by a batch normalization layer [64].

As aforementioned in Section 4.3.3, the number of classes will occur is unknown in

a continual learning scenario. Thus, we leave 1.2× space at the final classification

layer in the following experiments, i.e. 12 outputs for CIFAR-10 and 120 outputs for

CIFAR-100. It is worth mentioning that the number of classes reserved at the final

classification layer does not affect the overall performance, as there is no feedback

from vacant classes.

Experimental setup. Standard Stochastic Gradient Descent with momentum

0.9 and weight decay 5E-4 are used for training. The initial learning rate is set to

0.1 and is divided by 10 for every 40% and 80% of the total training epochs. On

CIFAR-10 and CIFAR-100 datasets, we train 180 and 100 epochs at the stage of

memory-assisted training and balancing, 120 and 60 epochs at the stage of model

segmentation. β is set as proportional to the complexity of the current task. For

example, when incrementally learning 5 classes of CIFAR-10 at a time, β is set to

50%; when incrementally learning 10 classes of CIFAR-100 at a time, β is set to

10%. The memory storage is set as K = 2000 images for a fair comparison with the
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Figure 4.2: Comparison of Weight Distribution Between Pruning-based Approaches

and Our PST. Pruning-based Approaches Lose Prior Knowledge Due to Pruning, and

PST Preserves Prior Knowledge by Segmentation.

previous work [74].

Evaluation protocol. As mentioned in Section 4.1, single-head evaluation is

more practical and valuable than multi-head evaluation in the scenario of continual

learning Therefore, we evaluate single-head accuracy for the following experiments.

To report the single-head overall accuracy if input data {X1, . . . , X t} have been

observed so far, we test the network with testing data that sampled uniformly and

randomly from class 1 to class t and predict a label out of t classes {1, . . . , t}. For the

first task accuracy (such as Fig 4.5) , we test the network with testing data collected

from the first task T1 (supposing classes {1, . . . , g}) and predict a label out of t classes

{1, . . . , t} to report single-head T1 accuracy (Figure 4.5(a)); or, predict a label out of

g classes {1, . . . , g} to report multi-head T1 accuracy (Figure 4.5(b)).

4.4.1 In-depth Analysis

We divide CIFAR-10 into 2 tasks (5 classes each) and analyze the PST training

routine step by step in this subsection. The learning curve is present in Figure 4.3.
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Figure 4.3: The Learning Curve of 2 Tasks on CIFAR-10 with Each Step Annotated.

From epoch 0 to epoch 180, T1 is trained and reaches baseline accuracy. The

weight distribution after training T1 is present in Figure 4.2a. At epoch 180, we

sample the top 50% (since there are 2 tasks totally) important parameters and retrain

them with the secondary parameters untouched (epoch 180 to epoch 300), which

is the model segmentation step. The weight distribution after this step is shown

in Figure 4.2d. It is worth mentioning that previous works, such as PackNet [84]

and Piggyback [83], prune the secondary parameters and thus, distort the weight

distribution (Figure 4.2b). At epoch 300, task T2 appears and updates the parameters.

At the same time, the acquired knowledge of T1 is disturbed by T2 updating,

leading to an accuracy degradation on T1 (see the green curve at epoch 300). From

epoch 300 to the end is the step of T2 training, during which the memory data is

injected following (i), (ii), and (iii) to balance. After T2 training, we again plot

the weight distribution for the pruning-based approach (in Figure 4.2c) and PST ap-

proach (in Figure 4.2e). It is observed that the pruning approach fails to preserve the

prior knowledge, as the weight distribution after learning T2 shifts far away from the

previous one. In contrast, PST well preserves prior knowledge (i.e. similar weight dis-
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tribution after learning T1 and after learning T2). Compared to the baseline accuracy,

pruning-based approaches forget 31% on overall accuracy while segmentation-based

PST only forgets 5%.

4.4.2 Extensive Results

Accuracy for incrementally learning multi-classes. We compare PST with

state-of-the-art approaches that reported single-head accuracy: MAS [83], EWC [67],

RWalk [70], SI [68], LwF.MC [82], DMC [76], iCaRL.MC [74] and two baselines: fixed

representation, finetuning. Fixed representation denotes the method that we fix the

feature extraction layers for the previously learned tasks and only train classifica-

tion layers for new tasks. Finetuning denotes the method that the network trained

on previous tasks is directly fine-tuned by new tasks, without strategies to prevent

catastrophic forgetting. LwF.MC denotes the method that uses LwF [82] but is eval-

uated with multi-class single-head classification. iCaRL.MC denotes the method uses

iCaRL but replaces their Nearest-Mean-of-Exemplar [74] classifier with a regular out-

put classifier for a fair comparison with PST. The results of MAS, EWC, RWalk, SI

and DMC are from [76], which is implemented with the official code 1 . The results

of fix representation, finetune, LwF.MC and iCaRL are from [74]. We adopt the same

memory size for fair comparison between baselines and PST.

The single-head overall accuracy when incrementally learning 20 tasks (5 classes

per task), 10 tasks (10 classes per task), 5 tasks (20 classes per task) and 2 tasks

(50 classes per task) are reported in Figure 4.4. Among 9 different approaches, PST

achieves the best accuracy on the 2-task scenario and the second best accuracy on

the other scenarios. Compare to finetuning, PST largely prevents the model from

catastrophic forgetting. Though PST achieves lower accuracy than iCaRL in some

1https://github.com/facebookresearch/agem
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Figure 4.4: Single-head Overall Accuracy on CIFAR-100 When Incrementally Learn-

ing 20, 10, 5, 2 Tasks in a Sequence. PST Has the Best Accuracy of 2 Tasks and the

Second Best Accuracy of 5, 10, 20 Tasks. Though iCaRL.MC Has Better Accuracy

than PST, It Requires >24× Computation Cost than PST (See Figure 4.6 for Details)

cases, PST is more than 24× efficient in computation cost, as shown in Figure 4.6.

This efficiency is benefiting from model segmentation: iCaRL has to update the

entire network parameters for every new observation, but PST only requires updating

partial network parameters, as the parameters related to previous tasks are frozen.

Meanwhile, PST outperforms iCaRL in the multi-head protocol, as present in the

following paragraph.

Accuracy of the first task. Figure 4.5(a) compares the single-head accuracy on

the first task T1 in PST with several previous approaches that reported T1 accuracy

in their papers. It also presents the multi-head accuracy on T1 in PST and the

baseline accuracy. PST achieves the best single-head accuracy on T1 among all the

approaches, i.e. the least forgetting. Moreover, when T1 data is evaluated in a multi-

head classification setting, as shown in Figure 4.5(b), PST is stable and always on

par with the baseline (the model that is only trained on T1, so without forgetting).

This phenomenon demonstrates that PST effectively preserves the knowledge related

to T1 through model segmentation. Without these strategies, it is hard to keep the

previously acquired knowledge. For example, GEM [73] reported unstable multi-head
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Figure 4.5: (a) Single-head Accuracy and (b) Multi-head Accuracy of the First Task

T1 over Time When the Model Is Trained with a Sequence of 20 Tasks on CIFAR-100.

T1 accuracy, which is because the parameters gradually drift away from T1 knowledge

after a long period of learning on new tasks.

4.5 Computation Cost: Learning at the Edge

4.5.1 Simulated Results

In a more realistic situation, continual learning may not be used to train a model

from scratch at the edge. Instead, we will have a model which is well trained in

the cloud and once deployed, might only be required to learn a few new classes in an
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Figure 4.6: Comparison of the Computation Cost of PST and the Regularization

Method. In the Scenario of Edge Learning, More than 24× Reduction in FLOPs for

the Weight Update Path (Top), and 1.5× Reduction for Complete Path (Bottom)

Are Achieved.

online manner on the edge devices. In this section, we developed experiments to show

that PST benefits continual training at the edge from the perspective of accuracy and

computation cost.

In Table 4.1, we test such a system where the base model is pre-trained (similar

to training on the cloud) with 10, 30, 50, 70 or 90 classes of CIFAR-100 as task T1

and the new task T2 consisting of 10 disjoint classes has to be learned at the edge

continually. The number of the trainable parameters for T2 remains the same across

these 5 experiments. As shown in Table 4.1, if large amounts of data have been

well trained in the cloud and stored in the segmented PST model, the training of

incremental data at the edge causes marginal forgetting (e.g. 0.08) of the acquired

knowledge.
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Table 4.1: With Increasing Data Trained in the Cloud, PST Effectively Mitigates

Forgetting. Note That in This Experiment, the Network Size Is Much Smaller than

That in Section 4.4.2.

Classes Accuracy Accuracy’ Forgetting

(T1+T2) (after T1) (after T2) (∆Accuracy*)

10+10 0.77 0.32 0.45

30+10 0.78 0.60 0.18

50+10 0.78 0.64 0.14

70+10 0.79 0.67 0.12

90+10 0.77 0.69 0.08

*∆Accuracy = Accuracy-Accuracy’

Moreover, we estimate the computation cost during training, i.e. the number of

floating point operations (FLOPs), required by PST and regularization approaches

such as iCaRL [74] and EWC [67], as shown in Figure 4.6. Computation cost is a

critical overhead when deploying Deep Neural Networks on edge devices [38, 39, 42,

94]. Edge learning prefers algorithms with low computation cost rather than that

with higher one. Training at the edge includes three paths [95, 96], i.e. (1) Forward

path (2) Backward path (3) Weight update path. As more and more tasks come in,

the trainable parameters become fewer and fewer in PST, i.e., weight update path

gradually requires fewer operations, but regularization methods require a constant

number of operations at all times, as the model is not segmented. Thus, given the

model is pre-trained in the cloud with a large amount of data and loaded at the

edge, PST reduces more than 24× FLOPs in the weight update path, and more

than 1.5× FLOPs in complete path (including all three paths), as compared to the
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Table 4.2: Switching off Different Components of PST Leads to Accuracy Drop to

Different Extents. In the Table, Negative Numbers Indicate Accuracy Drop, e.g. -0.32

Means 32% Accuracy Drop. Removing Significance Sampling or Model Segmentation

Leads to Significant Accuracy Drop, While Removing Memory Leads to Small Ac-

curacy Drop. It Shows That Significance Sampling and Model Segmentation Are

Indispensable Steps for PST, and Memory-assisted Balancing Is Supplementary.

Model 20 tasks 10 tasks 5 tasks

Hybrid 1 (removing significance sampling) -0.32 -0.38 -0.45

Hybrid 2 (removing model segmentation) -0.32 -0.38 -0.42

Hybrid 3 (removing memory balancing) -0.06 -0.08 -0.11

regularization methods such as iCaRL [74]. Especially, weight update path usually

costs 2× latency than the other two paths so that PST can largely speed up the

training. Benefiting from segmentation, PST outperforms other continual learning

schemes in computation efficiency.

4.6 Ablation Study and Discussion

In this section, we analyze the importance of each component in PST by perform-

ing an ablation study and demonstrate that PST is highly efficient in edge computing

by virtue of single-net segmentation.

4.6.1 Analysis of Each Component in PST

We remove each component from PST and repeat the experiments performed in

Figure 4.4. The overall accuracy change after the last task is reported in Table 4.2.

Replacing significance sampling with a random sampling leads to model Hybrid 1 ;
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Figure 4.7: Overall Single-head Accuracy When Incrementally Learning 10 Tasks

under Different Memory Budget.

removing model segmentation step (no reinforcement on Θimportant) leads to model

Hybrid 2 ; removing the memory-assisted balancing leads to model Hybrid 3. The

results of hybrid models prove that each component in PST is contributing to the

overall performance. Especially, significance sampling and model segmentation are

indispensable steps for PST since removing them leads to significant accuracy drop,

and memory-assisted balancing is supplementary.

4.6.2 Memory Budget

For PST, the accuracy gap between single-head and multi-head of T1 mentioned

above could be caused by the imbalance between old and new knowledge (the network

is biased to new knowledge than old knowledge since old data are no longer used to

train the network). Memory-assisted balancing in PST alleviates this obstacle but

cannot completely prevent. Indeed, there has hitherto been no approach to prevent

this knowledge asymmetry. With more data saved from previous tasks, the forgetting

is reduced. But such a trend gradually saturates, as shown in Figure 4.7.
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4.7 Conclusion

A successful continual learning system that is exposed to a continuous data stream

should have the properties of online adaption, preservation of prior knowledge, single-

head evaluation and resource constraint, to alleviate or even prevent catastrophic

forgetting of previously acquired knowledge. To satisfy these properties and mini-

mize catastrophic forgetting, we propose a novel scheme named single-net continual

learning with Progressive Segmented Training (PST). Benefiting from its components

(memory-assisted training and balancing, importance sampling, and model segmen-

tation), PST achieves state-of-the-art single-head accuracy on incremental tasks on

CIFAR datasets, with far lower computation cost. We further demonstrate that PST

favors edge computing due to its segmented training method. In future work, we

plan to study the detailed mechanism of catastrophic forgetting further and improve

PST. Moreover, we plan to explore compressing or even eliminating the memory data

without sacrificing the performance.
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Chapter 5

ONLINE KNOWLEDGE ACQUISITION WITH SELECTIVE INHERITED

MODEL

5.1 Introduction

The rapid development of machine learning algorithms and computing hardware

has accelerated the implementation of many modern edge applications, such as au-

tonomous vehicles, surveillance drones, and robots. These emerging edge devices are

equipped with much more computing power than before. Meanwhile, they are re-

quired to handle more complicated and dynamic scenarios locally and in real-time,

as compared to conventional edge devices such as mobile phones. One of the critical

demands is the capability to learn from a data stream over time, i.e. the capability of

continual learning (a.k.a. lifelong learning) [2,67,74,82,97]. Such a capability requires

the system to learn from new observations without interfering or overwriting previous

knowledge (i.e. model parameters). Furthermore, the learning should be bounded by

computation and energy resources, including but not limited to the model size, the

computation cost and storage, while still completing the process in real-time.

Today the biggest challenge in continual learning is known as catastrophic forget-

ting [98], as shown in Figure 5.1. When a model is updated to a sequence of new

tasks with very limited or even no access to previous input data, prior knowledge is

deteriorated, leading to severe accuracy drop (i.e. forgetting). While there have been

multiple attempts to mitigate catastrophic forgetting [67, 73, 74, 82–84, 99], they all

follow a conventional procedure of continual learning: updating the model class by

class, from scratch, as shown in Figure 5.1(a). To be specific, when the network starts

67



...

plane          car            bird                     horse        ship        truck

(a) Conventional Continual Learning: Incrementally Learn One Class after An-

other from Scratch.

0 2 5 5 0 7 5 1 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

7 0 8 0 9 0 1 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 C o n v e n t i o n a l  s c h e m e
- 8 0 . 3 %

Ov
era

ll a
ccu

rac
y

E p o c h

C a t a s t r o p h i c  
f o r g e t t i n g

   T 1    T 2    T 3   . . . . . .   T 5    . . . . . .         T 9   T 1 0   

 A L  -  M o d e l 1  w i t h  1 0 0 %  m e m o r y
 A L  -  M o d e l 1  w i t h  5 0 %  m e m o r y
 A L  -  M o d e l  2  w i t h  1 0 0 %  m e m o r y

 T 9                       T 1 0   

E p o c h

S e l e c t i o n  o f  
i n h e r i t e d  m o d e l - 2 0 . 1 %

- 1 2 . 6 %

- 3 2 . 0 %

B a s e l i n e
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Figure 5.1: When Learning from a Data Stream of CIFAR-10, Conventional Continual

Learning Suffers Catastrophic Forgetting, While the Proposed Acquisitive Learning

Successfully Mitigates Such Forgetting by >6X on CIFAR-10. A Well Selective In-

herited Model , Knowledge Acquisition and Memory Rehearsal All Contribute the

Accurate Learning. Among Them, the Quality of the Inherited Model Is More Vital

than the Amount of Memory Used to Replay. Model 1 Refers to ResNet-56 with

Better Landscape; Model 2 Refers to ResNet-56-NS with Worse Landscape.

to learn new knowledge from a data stream, there is no prior knowledge embedded in

this network. In this scenario, the network parameters are randomly initialized, and

the learning process only focuses on model adaptation. Such a conventional learning

flow is suffering from severe accuracy drop and excessive computation cost [2]. More-

over, focusing only on model adaption is not the complete picture from biology. It is
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Figure 5.2: The Flow of Acquisitive Learning Emphasizes the Importance of Both

Knowledge Inheritance and Acquisition.

observed in [100–102] that the brain inherits knowledge in specific neurophysiological

structures (i.e. hardwired), through a long and careful evolution process. Besides

model adaptation, the hardwired model that is selected and inherited is also critical

to the quality of intelligence.

To overcome the above limitations of current continual learning, we propose a

novel scheme, namely acquisitive learning (AL), as shown in Figure 5.2. Inspired by

the inherited brain model, AL emphasizes the importance of both knowledge inher-

itance and acquisition: the majority of knowledge is first pre-trained and preserved

in the inherited model, and then the model is adapted to new streaming data (the

acquisition). More important, we confirm the vital correlation between the quality

of the inherited model and its acquisition capacity on new knowledge. Though con-

solidating prior knowledge by pre-training feature extraction layers of a model has

been previously explored in transfer learning [103], such a model is still suffering from
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accuracy drop when the feature space rarely overlaps between old and new data.

Such an accuracy drop is because the one-shot pre-trained model is too stochastic to

generalize better for new observations.

In this paper, we claim that the pre-trained inherited model should be elabo-

rately selected to optimize future learning performance. Accordingly, we propose a

noise-based approach to evaluate and select the inherited model with better stability.

Such an approach is validated by visualizing the loss landscape [104] and measuring

the roughness of the landscape with quadratic linear regression. That being said,

we believe the selection criteria should not be limited to what is proposed in this

paper. For the acquisition step, we leverage importance sampling from Progressive

Segmented Training (PST) [2] to identify and freeze important parameters for the

inherited model, and only train the secondary parameters to acquire new knowledge.

In this process, a small and bounded memory set is used to retrieve the previous

knowledge.

In summary, model inheritance, knowledge acquisition with importance sampling

and memory replay all contribute to the final accuracy in such a learning from stream-

ing data. The combination of these techniques reduces the accuracy drop due to

catastrophic forgetting by 6.6X on CIFAR-10 (Figure 5.1(b)) and 11.5X CIFAR-

100 dataset(Figure 5.8(b)), respectively. Among these techniques, selective inherited

model plays an indispensable role in maintaining the accuracy, while memory replay

plays a complementary role, as verified by the results in Figure 5.1(b) and in future

sections. Further more, AL is efficient in hardware computation cost. AL reduces the

latency per training image by 5X and overall training FLOPs by 150X as benchmarked

by FPGA prototype.

To summarize, the contribution of this paper is as below:

• We propose a brain-inspired scheme for learning from streaming data, namely
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acquisitive learning (AL). Different from conventional continual learning that

only focuses on model adaptation, AL emphasizes the importance of both knowl-

edge inheritance and acquisition.

• With experiments on various deep neural networks and datasets, we demon-

strate that the proposed AL effectively reduces catastrophic forgetting when

learning from streamed data.

• Experiments show that the acquisition is strongly related to the quality of the

inherited model and thus, the inherited model should be elaborately selected

rather than being one-shot attained. In this paper, we leverage landscape visu-

alization and roughness measurement to select the mode.

• We further implement the training of AL on FPGA and benchmark the signif-

icant reduction in computation cost, which enables AL on a edge device.

5.2 Preliminaries

This section presents the terminology, previous works the and biology background.

5.2.1 Terminology

A deep neural network (DNN) such as VGG-Net [22] and ResNet [24] usually con-

sists of a feature extractor ϕ : X → Rd and classification weight vectors w ∈ Rd, also

known as convolutional layers and fully-connected layers. The network parameters

Θ (ϕ and w) keep being updated according to input data X , and calculating output

Y = w>ϕ(X ) in order to predict labels Y∗.

When learning the first task with input data {X1, . . . , Xs−1}, DNN tries to mini-

mize the loss L(Y ;Xs−1; Θ) of this (s−1)-class classifier. When a new task with input

data {Xs, . . . , X t} arrives, DNN tries to minimize L(Y ;Xt; Θ) of this t-class classifier
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Figure 5.3: The Main Reason of Catastrophic Forgetting Is the Drift in the Feature

Space. Left: Visualizing the Euclidean Distance Between ϕ(X ) Of Each Input Image

and the Feature Center (i.e. the Normalized ϕ(X ) Of All the Input Images) after

Learning 10 Classes from CIFAR-100 with ResNet-56. Wrongly Classified Samples

Are Relatively Further from the Feature Center. Right: After Learning Another 10

Classes from CIFAR-100, the Feature Center Drifts so That the Correlation Between

Euclidean Distance and Classification Is Deteriorated.

by updating Θ. Usually, after the input data of the new task {Xs, . . . , X t} arrives,

the input data of previous task {X1, . . . , Xs−1} is no longer available, except a small

subset stored in the memory set P = (P1, . . . , Ps−1).

5.2.2 Conventional Approach of Continual Learning

The conventional approach of continual learning starts from a set of fresh, ran-

domly initialized network parameters Θ, and each incoming task updates entire Θ or

partial Θ. They leverage different techniques such as regularization [67,82], parame-

ter isolation [83,84], memory replay [73,74], or network expansion [77,99] to mitigate

catastrophic forgetting.

Regularization-based approaches add penalty term in the loss function to regular-
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ize the parameter updating space. Parameter isolation approaches assign a subset of

network parameters to specific task updating. Memory replay approaches train the

model with a small subset of previously seen data. Network expansion approaches

expand network by adding new branches or parameters to include new knowledge.

However, as the network is not inheriting any prior knowledge, each new task can eas-

ily update the weight distribution and cause feature drifting, as shown in Figure 5.3,

and thus causing catastrophic forgetting. In other words, conventional approach fo-

cuses more on model adaptation to new tasks, without inheriting any prior knowledge.

In contrast to them, acquisitive learning emphasizes both knowledge inheritance and

acquisition.

5.2.3 Difference from Transfer Learning

It is worth some words here to differentiate transfer learning with the proposed

acquisitive learning. Transfer learning (or domain adaptation) is a method where a

network developed for one task is reused to learn a new task. It can be formulated

as follows: for a new task with input data {Xs, . . . , X t}, DNN tries to minimize

L(Y ;Xs...t; Θ) of this (t − s + 1)-class classifier by reusing network ϕ pre-trained on

{X1, . . . , Xs−1} and fine-tuning classification weight vectors w. Thus, the differences

between transfer learning and the proposed AL are: (1) transfer learning only focuses

on the learning of new tasks while AL requires to learn new tasks as well as remember

the old tasks; (2) transfer learning is usually one-time knowledge transfer, while AL

requires to learn a sequential of tasks; (3) transfer learning usually freezes entire

feature extractor ϕ and only fine-tune classification layers, limiting the acquisition of

new knowledge.In AL, we only freeze selected parameters to help remember previous

knowledge and leave enough Θ to acquire new knowledge; (4) transfer learning do not

select pre-trained model, but directly use the one-shot trained model without quality
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evaluation.

5.2.4 Biology Background: Moravec’s Paradox

There have been increasing evidences [100–102] showing that the brain inher-

its knowledge in specific neurophysiological structures, through a long and careful

evolution process, while the capability to adapt in the field is comparatively much

more challenging. This was identified as the Moravec’s paradox [102], and has led to

research outcomes that support the hardwired model of learning. Indeed, the intelli-

gence in nature may be determined more by the long-term genetics and inheritance

rather than the short-term adaptation [100]. Therefore, to successfully learn new

knowledge, the quality of both knowledge inheritance and acquisition is critical.

5.3 Acquisitive Learning

With preliminaries defined in the previous section, we describe acquisitive learning

from two perspectives: model inheritance and knowledge acquisition.

5.3.1 Model Inheritance

Prepare inherited model In this subsection, we explain how to prepare the in-

herited model. Throughout this paper, we refer to a network that has been well

pre-trained on some data as the inherited model.

Acquisitive learning first trains the network with randomly selected classes from

a dataset, and then samples crucial learning units (convolution filters and fully-

connected neurons) for the current task. The importance sampling is based on an

important score that has been proven in [2,62]. The score is used to measure if a unit

is important to the loss function.
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For a filter Θo
l ∈ RIl×K×K , the score is formulated as:

|∆L(Θo
l )| ' |

∂L(Y ;X ; Θ)

∂Θo
l

Θo
l | (5.1)

=

Il∑
i=0

K∑
m=0

K∑
n=0

|∂L(Y ;X ; Θ)

∂Θo,i,m,n
l

Θo,i,m,n
l |, (5.2)

where ∂L(Y;X ;Θ)

∂Θo,i,m,n
l

is the gradient of the loss function with respect to the parameter

Θo,i,m,n
l .

For a neuron Θt
l ∈ R1×Il , the score is formulated as:

|∆L(Θt
l)| ' |

∂L(Y ;X ; Θ)

∂Θt
l

Θt
l | =

Il∑
i=0

|∂L(Y ;X ; Θ)

∂Θt,i
l

Θt,i
l |, (5.3)

where ∂L(Y;X ;Θ)

∂Θt,i
l

is the gradient of the loss with respect to the parameter Θt,i
l .

Based on the importance score, we sort the learning units layer by layer and

identify the top β units for the inherited model. We following the same setting in [2]

for β: it should be roughly proportional to the amount of the inherited knowledge. In

the following adaptation, these important units are not updated but kept unchanged,

in order to preserve inherited knowledge.

Noise injection After several candidate models are prepared, we use noise injection

to evaluate the model stability. For each layer l in a neural network, we apply noise

as below:

Θ̃l = Θl + α · nl, (5.4)

where Θl is the noise-free weight tensor in the l-th layer, α is a constant scaling

coefficient, and nl is the noise tensor of the l-th layer that follows normal distribution

nl ∼ N (0, σ2
l ) (σl is the standard deviation of Θl).

Noise injection methods have been used in other applications such as adversarial

attack [105], where noise is treated as a trainable parameter during training. In our
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work, we perform a one-shot injection of noise to the candidate models. A drop in

testing accuracy is observed for the model with noisy tensor Θ̃ as compared to the

model with Θ. Based on this accuracy drop, we are able to monitor the stability

of the inherited model: with noise of the same σ injected, model that has a larger

accuracy drop is considered less stable and vice versa. The intuition behind this claim

is that a more stable model has a higher tolerance to disturbance.

Landscape visualization and roughness measurement Following the above-

mentioned method, we are able to obtain inherited models with consolidated knowl-

edge. We leverage landscape visualization tool [104] to visualize the minima of the

loss function and then calculate the roughness using linear regression. In [104], filter

normalization is used to remove the scaling effect, and a 3-dimension matrix (x, y,

z, where x, y are the coordinates and z is the loss function) is finally extracted and

plotted for visualization. To further quantify the roughness of the landscape, we fit

this 3D data using quadratic linear regression and obtain mean square error (MSE)

to represent the roughness:

ẑj = wj4x
2
j + wj3y

2
j + wj2xj + wj1yj + wj0 (5.5)

ŵ = argmin
wj

1

n

n∑
j=0

(zj − ẑj)2, (5.6)

where wj represent the learned feature weights or coefficients. We define the roughness

as MSE(z;x2, y2, x, y; ŵ). Models with smaller MSE are more flat and smooth, and

vice versa. The roughness score can be used to represent model stability.

5.3.2 Knowledge Acquisition

With the inherited model fully pre-trained and important units selected, acquis-

itive learning leverages techniques proposed in PST [2] to learn new observations.
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PST techniques include model segmentation, memory-assisted training and balanc-

ing. When a new observation arrives, only the secondary parameters (i.e. those are

not frozen) in the inherited model are updated while the important parameters for

the inherited model are frozen. In other words, the model is segmented to the in-

herited part and the acquisition part. Meanwhile, a small subset of data containing

uniformly and randomly sampled images per class from all the trained classes so far

is mixed with new observations (i.e. each class in {X1, . . . , X t} contains the same

number of images) to train and balance the model.

By using techniques including importance sampling, model segmentation, memory-

assisted training and balancing, the acquisitive learning scheme is able to acquire new

knowledge based on an inherited model. It is worth mentioning that the techniques

used to consolidate inherited knowledge and to acquire new knowledge are flexible.

In this paper, we focus more on the acquisitive learning methodology.

5.4 Experimental Results

In this section, we develop various experiments to verify the efficacy of the pro-

posed acquisitive learning flow.

5.4.1 Experiment Setup

The experiments in Section 5.4 B-D are performed with pytorch [65] on one

NVIDIA GeForce RTX 2080 platform. We use stochastic gradient descent with mo-

mentum of 0.9 and weight decay of 0.0005. For each experiment, we shuffle the

class order and run 5 times to report the average accuracy. In Section 5.4.5, Intel

Stratix-10 GX equipped with the 4Gb DDR3 with 17Gb/s bandwidth was used as

the target hardware. Latency was measured using simulation of the CNN training

accelerator [106] at 240MHz.
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Datasets The CIFAR dataset [25] consists of 50,000 training images and 10,000

testing images in color with size 32 × 32. CIFAR-10 consists of 10 classes, and

CIFAR-100 consists of 100 classes. In the following experiments, we first train a

subset of classes to produce the inherited model, and then we treat the unseen classes

as new knowledge that needs to be acquired. The balanced memory set contains 200

and 20 images for each class for CIFAR-10 and CIFAR-100, respectively, so that the

total memory size is bounded within 2,000 images for both CIFAR-10 and CIFAR-100

datasets , aligning with previous works [2, 74].

Network structure The network structures of VGG-16 [22], ResNets [24], DenseNet

[107] used in the following experiment are standard structures following [104]. Since

the total number of classes is unknown in a real-world application, we leave 1.2×

space at the final classification layer in the following experiments, i.e. 12 outputs for

CIFAR-10 and 120 outputs for CIFAR-100. Note that the extra space reserved at the

final classification layer does not affect the evaluation since there is no feedback from

vacant outputs.

Evaluation protocol ‘Pre-trained accuracy’ or ‘accuracy of the inherited model’

refers to the testing accuracy of (s−1)-class classifier if input data is {X1, . . . , Xs−1}.

‘Accuracy on the new task’ refers to the testing accuracy of (t−s+1)-class classifier for

input data {Xs, . . . , X t} as new observations. ‘Overall accuracy’ refers to the testing

accuracy of t-class classifier on all the data seen so far. ‘Accuracy forgetting’ refers

to the accuracy drop from pre-trained accuracy to overall accuracy during continual

learning.
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Figure 5.4: Accuracy Drop Is Minimized with the an Increasing Amount of Knowledge

in the Inherited Model. Top: VGG-16 on CIFAR-10 Dataset. Bottom: ResNet-56 on

CIFAR-100 Dataset. ‘X+Y’ Means That X Classes Are Pre-trained and Y Classes

Are Learned as the New Acquisition. There Is No Overlapping of Classes in X and

Y.

5.4.2 Amount of Inherited Knowledge

We first explore whether and how the amount of inherited knowledge impacts the

acquisition capacity. We mimic the different amount of inherited knowledge using

different numbers of pre-trained classes and plot the results in Figure 5.4. ‘X+Y’

refers to the scenario when X classes are pre-trained in the inherited model and Y

classes need to be acquired. For the new task Y, we use the same number of classes

across experiments and keep the number of active filters/neurons for this new task the

same. The inherited model size (frozen filters/neurons) is proportional to the number

of classes in X across experiments. In Figure 5.4 (top) for ‘1+1’ case on CIFAR-10

with VGG-16 network, the accuracy drops from 100% to 50.5% (49.5% forgetting);
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Figure 5.5: After injecting noise with the same α, more accuracy drop is observed

for less stable models, and vice versa. This ranking is consistent with that from the

landscape visualization and roughness measurement shown in Figure 5.6.

but for ‘9+1’ case, the accuracy drops from 93.0% to 88.0% (5.0% forgetting). In

Figure 5.4 (bottom), the accuracy forgetting is 40.5% for ‘10+10’ case but only 7.7%

for ‘90+10’ case. It is concluded that, with more knowledge embedded in the inherited

model, less forgetting is observed for acquisition, and such a trend gradually saturates.

5.4.3 Quality of the Inherited Model

Besides the amount of inherited knowledge, the inherited model itself is also a

critical factor in acquisitive learning. After the preparation of several candidate mod-

els, we inject noise to each model following Equation 5.4 with α = 0.01, 0.05, 0.1, 0.5

and 1.0, and document the accuracy drop caused by this disturbance in Figure 5.5.

For example, with noise of α = 1.0 injected, ResNet-56 without shortcuts (ResNet-

56-NS) drops 70.9% in accuracy, while DenseNet-121 drops 15.4% in accuracy. Thus,

we consider the former model is worse than the latter one in model stability.

As explained in [104], different deep learning models have a different landscape of

the loss function, where wide and flat minima generalizes better and sharp minima

with many small regions of convexity generalizes more poorly. The quality of the
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(a) VGG-16 (b) ResNet-20 and ResNet-20 without shortcuts (d) DenseNet, 121 layers(c) ResNet-56 and ResNet-56 without shortcuts

11.1 15.51.9 8.2 38.9 1.8Roughness:

Figure 5.6: Landscape Visualization of the Loss Function for 6 Models. Shallow

Models (like VGG-16) Have Smooth Landscapes. Deep Models with Shortcuts Has

Smoother Landscapes than the One Without Shortcuts.

landscape is influenced by model depth, model size, batch size, and skip connections

(i.e.‘shortcuts’) between layers. We select and plot six models that are pre-trained

on the same 9 classes of CIFAR-10 but with different landscapes in Figure 5.6 and

their corresponding roughness measurement in Table 5.1: VGG-16, ResNet-20 with

and without shortcuts, ResNet-56 with and without shortcuts, and DenseNet-121.

Among them, VGG-16, ResNet-20, ResNet-56 and DenseNet-121 have relatively flat

landscapes and thus lower roughness; ResNet-20 without shortcuts (ResNet-20-NS)

and ResNet-56 without shortcuts (ResNet-56-NS) have relatively sharp landscapes

and higher roughness. The landscape of ResNet-56-NS is the most chaotic one. Note

that these six models exhibit the same amount of inherited knowledge (9 classes) but

show different quality in acquisition.

For each of these six inherited models, we add one new class to acquire and report

the accuracy in Table 5.1. The first row shows the accuracy of the inherited models on

9 classes, and the second row represents the accuracy on the new task. We focus more

on the relative accuracy between the first row to the second row, shown in the row

‘accuracy drop’, as this data represents the generalization ability of the pre-trained

model on new observations, i.e. the acquisition capacity of the inherited model. On

ResNet-20-NS and ResNet-56-NS models that have sharper landscapes, we observe

9.1% and 19.3% accuracy drop, respectively. This drop is more severe as compared to
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Table 5.1: Acquisition Capacity for Different Models Shown in Figure 5.6. CIFAR-10

‘9+1’ Is Used Here.

Network VGG-16 ResNet-20 ResNet-20-NS ResNet-56 ResNet-56-NS DenseNet-121

Pre-trained accuracy 0.927 0.915 0.901 0.923 0.790 0.935

Accuracy on the new task 0.865 0.851 0.810 0.860 0.597 0.883

Accuracy drop 0.062 0.064 0.091 0.063 0.193 0.052

Roughness (×10−3) 1.9 11.1 15.5 8.2 38.9 1.8
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Figure 5.7: Learning Curve for ‘9+1’ Experiment on CIFAR-10 with Two Models.

Because of the Smoother Landscape of ResNet-56, Its Acquisition on New Task Is

Better than ResNet-56-NS.

other models, indicating that the knowledge acquisition capacity of these two models

are poor. In Figure 5.7, we also plot the learning curve for ‘9+1’ simulation with

ResNet-56 and ResNet-56-NS. ResNet-56-NS has worse acquisition capacity on new

tasks than ResNet-56. These results indicate that the quality of the inherited model

is another vital factor in knowledge acquisition.
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5.4.4 Learning from a Data Stream with AL

We design experiments to verify that acquisitive learning is a more effective

approach to learn from streaming data as compared to current continual learning

scheme. On one side, we simulate the conventional continual learning that starts

learning from scratch and learns each task (1 class from CIFAR-10 or 10 classes from

CIFAR-100) in a sequence. We follow the techniques described in Section 5.3.2 to

learn new tasks. β is set as 0.1 for the first task. The overall accuracy of conventional

method is plotted in gray in Figure 5.8(a) and Figure 5.8(b). On the other side, by

assuming inherited knowledge contains much more classes than new observations, we

prepare inherited models that are pre-trained on 5 to 9 classes for CIFAR-10 dataset

and then incrementally train the network with 1 class from the rest of dataset (Fig-

ure 5.8(a)), following the techniques described in Section 5.3. β is set as 0.5 for the

inherited model in ‘I5’ experiment, and 0.9 for the inherited model in ‘I9’ experiment,

so on and so forth. Similarly, we pre-train 50 to 90 classes on the CIFAR-100 dataset

and then incrementally learn 10 classes from the rest of the dataset (Figure 5.8(b)).

The results on acquisitive learning starting from different inherited models are

plotted in colors in Figure 5.8. For CIFAR-10, with the conventional scheme, the

final overall accuracy for 10 classes is 41.5%, while AL achieves 83.8% accuracy. The

accuracy forgetting is 58.5% for the conventional scheme and 8.8% for AL, reduc-

ing the accuracy forgetting by 6.6X. For CIFAR-100, conventional scheme forgets

81.9% accuracy after learning 100 classes, while acquisitive learning forgets only 7.1%

accuracy, reducing the accuracy forgetting by 11.5X.
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(a) Incrementally Learning 1 Class of CIFAR-10

with VGG-16.
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(b) Incrementally Learning 10 Classes of CIFAR-

100 with ResNet-20.

Figure 5.8: The Comparison of Overall Accuracy Between Conventional Continual

Learning and the Proposed Acquisitive Learning When (a) Incrementally Learning 1

Class in a Sequence on CIFAR-10 (B) Incrementally Learning 10 Classes in a Sequence

on CIFAR-100. In the Figure, ‘I9’ Means That AL Starts Training from a Model That

Is Pre-trained on 9 Classes. Similarly, ‘I50’ Means the Inherited Model Is Pre-trained

on 50 Classes.

5.4.5 Computation Cost and FPGA Prototyping

We benchmark the computation cost, including latency, energy efficiency and

floating-point operations (FLOPs), of both conventional scheme and proposed AL.
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FPGA measurement 

with

Intel Stratix-10 GX 

at 240 MHz

(b) Number of FLOPs needed for acquisition of various number of new 

classes, derived from the FPGA result

(a) Latency per training image

Figure 5.9: Comparison on Computation Cost Between Conventional Continual

Learning and Proposed Acquisitive Learning.

In FPGA simulation, the computation flow of the forward and backward pass

of the proposed learning algorithm remains the same as the conventional training.

However, during the weight update phase, we need to compute the selected weight

gradients by convolving input activations with the activation gradients and update

corresponding weights. The proposed learning approach was evaluated based on a

FPGA training accelerator [106]. Details of the selected weights in each layer that

have to be updated were given as an input to the accelerator. With the segmented

training in AL, the control logic in FPGA completely skips the DRAM access of the
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frozen weights thereby reducing the off-chip communication and latency during the

weight gradient computation. The weight gradient computation is performed only for

the unfrozen weights. During the entire weight update phase, the frozen weights in

DRAM remain untouched.

Figure 5.9(a) shows the latency breakdown of ResNet-20 for Forward Pass (FP),

Backward Pass (BP) and Weight Update (WU) of training, from FPGA measurement.

The bar graph highlighted with blue colored text shows the latency of the AL scheme

to acquire one class of CIFAR-10. Using AL, we achieve 5X reduction in latency for

WU phase per training image by only updating the selected weights (‘AL-WU’ in

Figure 5.9(a)), compared to the conventional scheme.

Figure 5.9(b) shows the number of training FLOPs. As AL only needs to acquire

a few classes with the main model segmented, the training FLOPs is largely re-

duced as compared to conventional training. Learning 1 class (‘99+1’ scheme) and 10

classes (‘90+10’ scheme) from CIFAR-100 with AL reduces FLOPs by 15X and 150X,

respectively. Based on FPGA values, Table 5.2 further derives the simulated through-

put (TFLOPs/s) required for training different numbers of new acquired classes, on

CIFAR-10, CIFAR-100 and ImageNet [21] with ResNet-56. We assume a typical

hardware platform (such as FPGA and GPU) that manages the input image stream

at 30 frames/second [108], exhibits power budget of 100W [109] and energy efficiency

of 20 GFLOPs/second/Watt per platform. As AL effectively reduces computation

cost, such a platform is able to support the acquisition of as many as 50 classes with

one platform for CIFAR-100, or 500 classes with 10 platforms for ImageNet.

5.4.6 FPGA Demonstration

In this section, we demonstrate online CIFAR-10 CNN learning on an FPGA-based

16-bit fixed-point training accelerator [110,111] on Intel Stratix-10 MX FPGA [112].
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Table 5.2: Required Throughput (TFLOPs/Second) and the Number of Hardware

Platforms∗ Needed to Learn Various Number of Classes with AL.

Number of Classes 1000 500 100 50 10 5 1

CIFAR-10 - - - - 2.7 2.0 1.8

CIFAR-100 - - 2.7 2.0 1.8 1.8 1.8

ImageNet 22.0 16.6 14.8 14.7 14.7 14.7 14.7

100 platforms 10 platforms 2 platforms 1 platform

*We assume that one hardware platform provides 20 GFLOPs/s/Watt with 100W.
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(d) Demonstration on Intel Stratix-10 MX FPGA board

Figure 5.10: FPGA Demonstration of PST Algorithm.

The CNN training hardware is flexible to support forward pass (FP), backward pass

(BP) and weight update (WU) phases of training.

Figure 5.10 presents the overall FPGA system setup [5] to train CNNs using

PST algorithm. For simplicity, the CNN structure used here is 16C3-16C3-MP-32C3-

32C3-MP-64C3-64C3-MP-FC, where ‘NCk’ refers to convolution layer with ‘N’ output
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feature maps and kernel size of ‘k’, ‘MP’ refers to max pooling layer and ‘FC’ refers

to a fully-connected layer. First, as shown in Figure 5.10a, a large amount of weights

is pre-trained and selected with 9 classes from CIFAR-10 dataset. The pre-trained

model and a binary mask representing the frozen weights are fed to the RTL generator.

The RTL generator generates the customized training accelerator based on the pre-

trained model structure and generates HBM2 memory initialization files to load the

model parameters, as shown in Figure 5.10b. The frozen weights stored in HBM2 are

used by the FPGA training accelerator to perform inference on pre-trained classes.

The model is then exposed to a new, unlearned class from CIFAR-10, and updated

accordingly in real-time on the FPGA, as shown in Figure 5.10c. The entire system is

demonstrated on Intel Stratix-10 MX FPGA board (Figure 5.10d). Benefiting from

the model segmentation, the online training of new observations requires much less

computation cost and lower latency, as compared to traditional continual learning

scheme that updates the entire network. As shown in Figure 5.10e, the breakdown

graph shows that the PST saves 4.2× latency per image in the weight update (WU)

phase as compared to traditional algorithms.

5.5 Conclusion

In this paper, we propose a new perspective to mitigate catastrophic forgetting

in continual learning: acquisitive learning. Different from previous continual learning

that learns from scratch and focuses only on model adaptation, acquisitive learning

(AL) addresses both knowledge inheritance and acquisition, inspired by the Moravec’s

paradox. With AL, the accuracy drop in learning sequential tasks is reduced by 6.6X

and 11.5X for CIFAR-10 and CIFAR-100 datasets, respectively, as compared to the

conventional scheme. Meanwhile, we confirm that the amount of inherited knowledge

and the quality of inherited model are important to the capacity of knowledge acqui-
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sition. Furthermore, benefiting from segmented training, the weight update latency

is reduced by 5X as benchmarked by FPGA prototype, training FLOPs is reduced

by 150X, enabling knowledge acquisition at the edge. In the future, we plan to in-

vestigate more criteria to select the inherited model, and techniques to automatically

generate better models for more accurate and stable acquisition. We will also develop

more flexible and efficient hardware techniques for the implementation of AL.

89



Chapter 6

EVOLUTIONARY NAS IN LIGHT OF MODEL STABILITY

FOR ACCURATE CONTINUAL LEARNING

6.1 Introduction

As the cornerstone of deep learning, the advance of deep neural networks (DNN)

has enabled great success in diverse real-world applications, such as image classi-

fication [20], speech recognition [28], object detection [113] and natural language

processing [29]. Recent years, along with the rapid development of computation

hardware, there is an emerging category of edge devices, including but not limited to

autonomous vehicles and drones. These edge devices are equipped with much higher

computation power (though still lower than the cloud center) than traditional edge

devices (such as mobile phones). These emerging devices are required to deal with

much more complicated and dynamic situations. In some scenarios, these intelligent

systems have to quickly pick up a new task, learn it online in a continuous manner,

and react immediately, rather than sending the data back to the cloud and waiting

for the cloud to handle the training. Thus, the capability of continual learning is a

necessary attribute for such an intelligent edge system.

In conventional continual learning algorithms, researchers usually split a full dataset

into several sub-dataset as different tasks, and then incrementally train tasks one by

one, starting from a randomly initialized, handcrafted model [67, 82, 114]. However,

considering a real-life situation, continual learning may not be used to train a model

from scratch at the edge. Instead, the model is usually pre-trained offline with large

amounts of observations (i.e. cloud data) and deployed on edge devices. Once de-
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ployed, the edge device only needs to continuously learn a few new observations

based on the pre-trained model. Such a pre-trained model is referred to as inherited

model, and the pre-trained data is referred to as inherited knowledge in [4]. [4] fur-

ther claims that different inherited models have different capabilities in learning new

data (knowledge acquisition) while maintaining the accuracy of old knowledge. In

the context of continual learning, most of the models quickly fall into the pain-point

of catastrophic forgetting [67] while a few models are able to keep decent accuracy

after learning a sequence of new tasks. Such capability of remembering old knowledge

while acquiring new knowledge is referred to as the inherited model’s stability [115].

However, it is non-trivial to construct an stable and optimal inherited model once

for all due to the following reasons: (1) the model architectures are usually problem-

dependent, if the edge application and distribution of the data are changed, the

architectures must be redesigned accordingly; (2) the existing DNN architectures are

all handcrafted by experts, but in practice, most end users have limited expertise in

architecture design. Thus, neural architecture search (NAS), which automates the

architecture designing according to diverse user needs, is able to effectively tackle the

difficulties mentioned above.

As indicated by [116], NAS leverages a performance estimation strategy during the

search to evaluate the architecture candidates. Most of the existing NAS algorithms

use the classification accuracy (or error rate) on the validation dataset as the perfor-

mance metrics for image classification tasks. However, accuracy itself only represents

the model performance on the current task but overlooks the model’s performance

on future observations. Therefore, in this work, we propose to encompass model

stability in the evaluation metrics during NAS so that the searched architecture not

only learns well on the current task but also learns well on the incoming data stream

without forgetting the previous knowledge. Such a pipeline is sketched in Figure. 6.1.
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Figure 6.1: ENAS-S Leverages Model Stability to Search for an Optimal Architecture

Through the Evolutionary Algorithm. Such an Architecture Is Pre-trained, Deployed

at the Edge, and Then Exposed to a Few New Observations. The Edge Device Is Re-

quired to Acquire New Knowledge as Well as Remembering the Inherited Knowledge

Successfully.

On the other side, the Moravec’s paradox [100–102] claims that brains inherit knowl-

edge in specific neurophysiological structures through a long and careful evolution

process. In order to mimic such an evolution process, we use the evolutionary al-

gorithm (EA) as the search strategy. Meanwhile, we use single-path backbone and

block-based search space, which are budget-friendly in edge computing. Extensive

experiments on popular benchmarks, including CIFAR-10 and CIFAR-100, validate

that the proposed ENAS-S successfully finds architectures that outperform manually

designed architectures when learning from a data stream at the edge.

To our best knowledge, this is the first NAS work leveraging model stability to

address the continual learning scenario. The contribution of this paper is three-folded:

(1) We propose a neural architecture search algorithm, namely ENAS-S, which

leverages model stability as the performance evaluation metrics during searching.

ENAS-S aims to discover the optimal inherited architecture for accurate continual

learning at the edge.
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(2) To relieve computational budget of edge devices, ENAS-S uses the evolutionary

algorithm as the search strategy, a single-path backbone and a block-based library as

the search space.

(3) On CIFAR-10 and CIFAR-100, we demonstrate that ENAS-S finds architec-

tures that outperform handcrafted models in continual learning with much compet-

itive accuracy and much smaller model size. We further provide a comprehensive

analysis of the evolutionary process, including model performance, loss landscape

and architecture components.

6.2 Related work

As summarized by [116], NAS has three main components: search space, search

strategy, and performance estimation strategy. In this section, we introduce the

previous work from these perspectives.

Search space Usually, there are two categories of search space: cell-based and

block-based. [117–121] use basic cells, such as 3×3 and 5×5 separable convolutions,

as the search space. These methods usually use graph-based architecture as backbone

and treat each cell as a node of the graph. On the other hand, [122–126] use basic

blocks from mature DNNs as the search space and these blocks connect end to end,

forming a single-path architecture. Single-path architecture is considered as a more

efficient solution for edge devices to train and inference with limited computation

budget (including memory and power).

Search strategy There are three mainstream algorithms for NAS: gradient-based,

reinforcement learning, and evolutionary algorithm. [127–131] transform the search

space to be continuous and optimize the searching by gradient descent. However,
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gradient-based searching usually requires a graph-based backbone, which is challeng-

ing and less efficient for edge devices. [126, 132–135] use reinforcement learning as

the search strategy and use a performance evaluation metrics (which is usually the

accuracy on validation dataset) as the reward signal to train the controller. However,

reinforcement learning is computation intense, making it hard to be applied to edge

devices. [122,136,136–139] leverage various evolutionary algorithms to search for the

optimal architecture. However, they all use accuracy as the fitness score. Different

from them, ENAS-S leverages both model stability and accuracy as the fitness score.

Performance estimation strategy For the above-mentioned previous work, most

of them use validation accuracy as the fitness score, and the rest consider hardware

cost simultaneously [124,130]. These efforts aim to find an architecture that achieves

the best accuracy on the full testing dataset. In our paper, ENAS-S aims to find an

architecture that not only performs well on the inherited knowledge (cloud data) but

is also able to acquire new knowledge and minimize the catastrophic forgetting. To

our best knowledge, this paper is the first work encompassing model stability in the

fitness evaluation and addressing searching for continual learning scenarios.

6.3 Methodology

This section describes the detailed implementation of three components in NAS,

i.e., search space, search strategy, and performance evaluation strategy.

6.3.1 Search Space

Considering the limited computation budget at the edge, we aim to search for

hardware-friendly architectures so that the training of the inherited model at the

edge is feasible. As discussed in Section 6.2, a smaller search space and a single-path
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Figure 6.2: Structure of Each Block.

architecture are preferred. Thus, ENAS-S search space consists of (1) a library of

mature DNN blocks, (2) a single-path module-based backbone formed by blocks, and

(3) a variable-depth encoding strategy that maps each architecture to a gene sequence

which is used in the evolutionary algorithm.

Block library Block is the most basic unit in ENAS-S. There are two categories

of blocks in the block library: (1) regular blocks which have the stride of 1 and thus

maintaining the output feature map dimension (2) reduction blocks which have a

stride of 2 and thus down-sampling the size of the output feature map. We cover

4 regular blocks and 3 reduction blocks in the library, as shown in Figure 6.2 and

Table 6.1. These blocks are all mature DNN basic units and widely used in previous

NAS work [117, 125, 140, 141]. It worth mentioning that we add an identity block,

which is a dummy block that directly connects input with output. With this block,

95



Encoding Type Name

0

Regular

ResNet block (RB)

1 DenseNet block (DB)

2 MobileNet block (MB)

3 Identity (ID)

4

Reduction

Factorized reduction

5 Average pooling

6 Max pooling

Table 6.1: Block Library in ENAS-S.
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Figure 6.3: ENAS-S Uses a Module-based, Single-path Backbone Which Makes the

Generated Architectures More Efficient to Be Deployed and Trained at the Edge.

ENAS-S is able to generate variable-depth architectures with fixed-length encoding

sequences.

Backbone ENAS-S randomly samples blocks from the block library and links them

together following the backbone structure shown in Figure 6.3. Given an input image,

it is first forwarded to a head convolutional cell, which is a 3× 3 convolutional layer.

It is then forwards into three repeated modules with two reduction cells in between.

Each module is a sequence of LDNA regular blocks, and each block is randomly as-
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signed with a size (architecture width). Finally, it is forwards to a fully-connected

layer with No outputs, where No equals the number of outputs. Assuming there are

Nregu choices of regular blocks and Nredu choices of reduction cells in the block library,

such a backbone reduces the search space to NLDNA
regu ×N2

redu combinations. In our ex-

periments, Nregu = 4, Nredu = 3, LDNA = 5, which means there are approximately 103

architectures, which is much smaller than the previously 1015 [142]. Such a backbone

is also validated by [87].

Gene encoding strategy Gene encoding strategy is a vital step in evolutionary

algorithm. Each architecture is represented by a sequence of numbers, where each

number represents a block. For example, a gene sequence ‘3-1-0-2-0’ represents the

architecture of ‘ID-DB-RB-MB-RB.’ Benefiting from the identity block, though the

gene length is 5, the architecture is indeed 4-layer, achieving variable-depth encoding.

6.3.2 Fitness Evaluation

Fitness evaluation, i.e. L(·) in Equation 6.3, determines the direction and desti-

nation of the NAS. Most of the previous NAS algorithms use accuracy on Dvalid as

the fitness evaluation metrics and thus, find the architecture with the best accuracy

on the current task. However, in the continual learning scenario, we not only care

about accuracy on the current task but also care about whether the accuracy can

maintain when the model is exposed to a sequence of new tasks. In other words,

it is critical that the model is stable so that the catastrophic forgetting is mitigated

when the learning system is acquiring new knowledge from a data stream. Thus, we

need a fitness evaluation metrics that reflects both the model accuracy and the model

stability.

Previously, [4] uses one-shot noise injection to monitor the stability of the inher-
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ited model. For each layer l in a neural network, the applied noise is formulated as

below:

Θ̃l = Θl + α · nl, (6.1)

where Θl is the noise-free weight matrix in the l-th layer with the standard deviation

σl. α ∈ (0.0, 1.0) is a constant scaling coefficient, and nl is the noise matrix of the

l-th layer that follows normal distribution nl ∼ N (0, σ2
l ). After such noise is added

on the clean weights, an accuracy drop ∆Acc = Accpre − Accpost is observed, where

∆Acc. ∈ (0.0, 1.0]. The higher accuracy drop, the weaker model stability, and vice

versa. Therefore, the fitness score of ENAS-S is defined as:

Fitness =
1

∆Acc
× Accpre. (6.2)

6.3.3 Search Strategy

We prefer a computation-friendly NAS algorithm in case the searching needs to be

done at the edge. Mathematically, the NAS is modeled by an optimization problem

formulated as:

arg min
A

= L (A,Dtrain,Dvalid) , s.t. A ∈ A, (6.3)

where L(·) represents the fitness score on Dvalid after training on Dtrain, A is the

architecture andA is the the search space. In this work, we use the simple yet effective

evolutionary algorithm, to be specific, the genetic algorithm [143], to approach the

optimization of L(·). There are two main reasons to use evolutionary algorithm: (1)

as mentioned in Section 6.1, the Moravec’s paradox claims that the intelligence in

nature may be established more by the long-term selection rather than the short-

term adaptation. Therefore, we use the evolutionary algorithm to mimic such a

long-term selection; (2) evolutionary algorithm is a classic and straightforward NAS

search strategy, so it is easier to validate the novel fitness score that we propose. It
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Figure 6.4: Flowchart of the Evolutionary Algorithm.

is worth mentioning that, from implementation point of view, the proposed fitness

score is general and can also be applied to other NAS algorithms.

Figure 6.4 shows the flowchart of evolutionary algorithm. First, an initial pop-

ulation of Nidv individuals is generated, where each individual is a randomly sam-

pled gene sequence following the backbone and the encoding strategy described in

Section 6.3.1. Secondly, each individual undergoes the fitness evaluation on Dvalid.

Assuming inherited knowledge contains much more classes than new observations,

the Dvalid used here is partial dataset containing large amounts of classes, as anno-

tated in Figure 6.1. We also leverage early stopping strategy [139, 144] to speed up

the searching: each individual undergoes a fixed, small number of training epochs

and non-converging individuals are terminated to save time. Through this fitness

evaluation, the fitness score described in Section 6.3.2 is collected for each individual.

The fitness score is proportional to the probability of whether this individual can

retain in the population for the next generation. With the fitness score, promising

individuals are selected from the current population and regarded as the parent in-

dividuals. If EA’s termination criteria are not yet met, these parent individuals will

generate offspring individuals through crossover and mutation operators. Then the

offspring individuals replace the parent individuals, forming the next generation of

the population. Such a recurrent loop continues until the termination criteria is met.
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Algorithm 5 ENAS-S
Input: Dtrain, Dvalid, LDNA, Nidv, Ngen, µ, α, ν.

1: P0 ← Initialize a population with Nidv.

2: for Generation g from g = 0 to Ngen do

3: Evaluate each individual in Pg with the proposed fitness score in Eq. 6.2 on

Dvalid after training E epochs on Dtrain

4: Randomly generate a population Psample from Pg with the probabilities associ-

ated with each entry in Pg.

5: for each individual p1 in Psample do

6: r ← Uniformly generate a number from [0,1]

7: if r < µ then

Crossover. See Algorithm 6.

8: end if

9: r ← Uniformly generate a number from [0,1]

10: if r < ν then

Mutate. See Algorithm 7.

11: end if

12: end for

13: Pg ← Psample Update the population

14: end for

15: Select the individual with the highest fitness score and decode its gene sequence

to DNN architecture A

Output: the optimal architecture A
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Algorithm 6 Crossover.

Input: Population Psample. Individual p1.

1: Randomly select another individual p2 from Psample

2: Randomly select positions from p1 and p2

3: poffspring ← Combine the selected part of p1 and the selected part of p2

4: p1 ← poffspring Replace p1 with poffspring and put back in Psample

Output: Psample.

Algorithm 7 Mutate.

Input: Population Psample. Individual p1.

1: Randomly select a position from p1

2: Replace the selected position with another random encoding of a block with the

same type (regular or reduction) and put back in Psample

Output: Psample.

The termination criteria used in ENAS-S is the number of generations. The detailed

algorithm is illustrated in Algorithm 5.

6.3.4 Continual Learning at the Edge

Problem definition A deep neural network (DNN) usually consists of a feature

extractor ϕ : X → Rd and classification weight vectors w ∈ Rd, also known as

convolutional layers and fully-connected layers. The network parameters Θ (ϕ and w)

keep being updated according to input data X , and calculating output Y = w>ϕ(X )

in order to predict labels Y∗. In the continual learning scenario, when learning the

inherited knowledge with input data {X1, . . . , Xs−1}, DNN tries to minimize the loss

L(Y ;Xs−1; Θ) of this (s−1)-class classifier. When a new edge task with input data

{Xs, . . . , X t} arrives, DNN tries to minimize L(Y ;Xt; Θ) of this t-class classifier by
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updating Θ. Usually, after the input data of the new task {Xs, . . . , X t} arrives, the

input data of previous task {X1, . . . , Xs−1} is no longer available, except a small

subset stored as the memory set P = (P1, . . . , Ps−1).

Continual learning techniques After ENAS-S finds an optimal inherited archi-

tecture, we need to validate its performance in a continual learning scenario. In this

paper, we focus more on this validation rather than the continual learning algorithm

itself. Thus, the techniques used to perform continual learning are very flexible. Here,

we use simplified progressive segmented training ( [3]) as the continual learning al-

gorithm. Following [3, 4], we leverage the importance sampling and memory-assisted

balancing steps to learn new observations based on an inherited model. After ENAS-

S found the optimal architecture, we pre-train this architecture with the cloud data,

i.e. a large amount of classes from the full dataset. For example, 8 classes from

CIFAR-10 are treated as cloud data (inherited knowledge), and the rest two classes

are fed sequentially as edge data (new tasks), annotated as ‘8+1+1’ scheme. Then

we use importance sampling to select and freeze the top β units in the inherited

model. In the online learning phase, these important units are not updated but kept

unchanged in order to preserve inherited knowledge. When a new edge task arrives,

only the secondary parameters in the inherited model are updated. Meanwhile, a

small set of uniformly and randomly sampled images from all the trained classes so

far (i.e. each class in {X1, . . . , X t} contains the same number of images) are mixed

with new observations to train and balance the model.
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6.4 Experimental Results

6.4.1 Experiments Setup

We perform experiments in this paper with PyTorch [145] on a single NVIDIA

GeForce RTX 1080 platform. We use stochastic gradient descent with a momentum

of 0.9 and a weight decay of 0.0005.

Hyper-parameter setting In the experiments, we set the ENAS-S hyper-parameters

as follows: 60 individual are in the population and we search for 6 generations; each

individual has gene length of LDNA = 5; crossover rate µ = 0.8 and mutation rate

ν = 0.05. Noise coefficient α = 0.8. We following the same setting in [2] for β:

it should be roughly proportional to the amount of the inherited knowledge. For

example, β = 0.8 for the ‘8+1+1’ scheme mentioned below.

Datasets and network The CIFAR-10/CIFAR-100 datasets [25] include 50,000

training images and 10,000 testing images in color with size 32 × 32. There are

ten classes for CIFAR-10 and 100 classes for CIFAR-100. In this paper, we aim at

searching for an architecture for the continual learning scenario, so we divide the

full dataset into cloud data and edge data, following [4]. The balanced memory set

contains 200 and 20 images for each class for CIFAR-10 and CIFAR-100, respectively,

so that the total memory size is bounded within 2,000 images for both datasets,

aligning with previous works [2, 114]. The network structures of ResNet56-NS [24],

DenseNet [107] used as control group follow [104].

Evaluation protocol We use the single-head evaluation, which is considered

more realistic and challenging than multi-head evaluation [87]. ‘Single-head overall

accuracy’ refers to the t-class classifier’s testing accuracy on all the data seen so far.
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‘Overall accuracy’ represents the model’s capability of preserving inherited knowledge

and achieving knowledge acquisition, thus reflecting the model stability in continual

learning.

6.4.2 Effectiveness of ENAS-S

First of all, we validated the effectiveness of ENAS-S on evolving and searching

architectures. In Figure 6.5(a) and 6.5(b), we present the distribution of individual’s

Acc and ∆Acc over generations, respectively. In Figure 6.5(c), we plot the mean

and standard deviation of Acc and ∆Acc. From these figures, we can see that along

with evolution, the accuracy of the population is increasing, while the ∆Acc of the

population is decreasing, indicating the improvement of accuracy and model stabil-

ity. Furthermore, the standard deviation of both Acc and ∆Acc is decreasing over

generations, meaning that the searching converges from disorder to order.

Moreover, we visualize the loss landscape of the best individual in each generation

using the tool provided by [104], and plot in Figure 6.6. [104] and [3] point out that

models with better stability have more flat and smoother loss landscape. 6.6 validates

the improvement of model stability over generations.

6.4.3 Effectiveness of the Proposed Fitness Score

Previously, [4] proves that hand-designed DenseNet121 is a relatively stable model

and performs well in the continual learning scenario; on the other side, ResNet56 with-

out shortcuts (ResNet56-NS) has relatively weak model stability and lower accuracy

in continual learning tasks. Thus, in this work, we use DenseNet121 and ResNet56-NS

as the control group. Assuming the inherited knowledge contains much more classes

than new observations, we use a subset of classes as cloud data to search for the archi-

tecture. Next, we treat the unseen classes as new edge tasks and use the architecture
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(a) Distribution of Individuals’ Acc over

Generations.

(b) Distribution of Individuals’ ∆Acc over

Generations.
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(c) Mean and Standard Deviation of Acc and ∆Acc

over Generations.

Figure 6.5: Visualization of the Evolution Process over Generations. It Is Observed

That along with the Evolution, the Acc of the Population Is Getting Higher and

∆Acc of the Population Is Getting Lower. Meanwhile, Their Standard Deviation Is

Reducing Because the Searching Is Converging over Time.

found to acquire these new knowledge. For various amount of inherited knowledge,

we use ENAS-S to search the optimal architectures, once the searching ends, we use

this architecture to learn a sequence of new tasks and plot their single-head overall

accuracy in Figure 6.7. For example, in Figure. 6.7(a)(i), ENAS-S uses 5 classes as
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Gen. 3                                     Gen. 4                                       Gen. 5

Gen. 0                                     Gen. 1                                       Gen. 2

Figure 6.6: Loss Landscape of the Model Evolves from Roughness to Smoothness over

Generations, Indicating the Improvement in Model Stability.

the cloud data to search for the inherited models, and then use the inherited model

to learn a sequence of five 1 class online with the PST algorithm. For the cloud data,

i.e. 5 classes, ENAS-S has a lower accuracy than DenseNet121, which is as expected

since ENAS-S does not only address the accuracy in its fitness score. For the first,

second, and the third edge class, ENAS-S shows less accuracy drop and flatter curve

slope, indicating less catastrophic forgetting is happening. Note that all the mod-

els are suffering from extreme catastrophic forgetting when learning the last one or

two edge classes. This is because the catastrophic forgetting problem in continual

learning remains as unsolved challenge. Furthermore, the ENAS-S architectures are

much smaller in model size, for example, in Figure. 6.7(a)(iv), ENAS-S model outper-

forms DenseNet121 with only 4.5% model size as compared to DenseNet121. Thus,

ENAS-S architectures are more hardware-friendly than handcrafted models because

edge computing favors smaller model size due to the limited computation and storage

resource.
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(b) Using the architecture discovered by ENAS-S to learn a sequence of new tasks on CIFAR-100.

Figure 6.7: Comparison among ENAS-S Architectures and Handcrafted Models in

the Scenario of Continual Learning at the Edge. ENAS-S Architectures Outperform

Hand-designed Models in Mitigating Catastrophic Forgetting with Much Small Model

Size (as Noted in Figure).

Similarly conclusions are observed for CIFAR-100. In Figure. 6.7(b)(v), ENAS-S

architecture achieve 73.5% accuracy on cloud data with 3.51M parameters, while

DenseNet121 achieve 77.2% accuracy on the cloud data with 7.05M parameters.

When these two models learn in edge data, 12.2% accuracy drop is observed for

DenseNet121, but such a drop is only 10.3% for ENAS-S with half of the model size.

Furthermore, benefiting from early stopping policy, ENAS-S spends up to 6 GPU

days in searching, which is much faster than the state-of-the-art NAS which takes

>25 GPU days [122,146].
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Figure 6.8: Left: Average Number of Each Component in an Individual; Right: The

Normalized Trend over Evolutionary Generations.

6.4.4 Architecture Evolution

Each block in the ENAS-S block library consists of several kinds of architecture

components. For example, each ResNet block contributes two 3×3 convolution cells

(conv3×3), and one skip connection (a.k.a shortcut); each DenseNet block contains

three 3×3 convolution cells, three 1×1 convolution cells (conv1×1) and three concate-

nation operations. For each generation, we calculate and plot the average amount of

each component in one individual in Figure 6.8 (left). Meanwhile, we plot the normal-

ized count of each component with respect to the first generation in Figure 6.8 (right).

It is observed that the number of skip-connections and the number of identity are

significantly increasing over generations. We can infer that skip-connection improves

the model stability, and a shallower architecture (i.e. less number of layers) has bet-

ter model stability. This is because shortcuts mitigate the explosion of non-convexity

that occurs when networks grow deeper. Such a conclusion is also validated by [104].

It is also observed that the number of depthwise convolutions and conv1×1 cells are

significantly decreasing. This could because the depthwise convolutions (existing in
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MobileNet block) and conv1×1 cell (existing in DenseNet block, MobileNet block,

and factorized reduction cell) are not favored by model stability though they reduce

computational cost. As for the concatenation operation, it exists in the DenseNet

block and thus, the reduction of conv1×1 may cause the reduction of concatenation

at the same time.

6.5 Conclusion

This paper proposes an evolutionary algorithm-based neural architecture search

method, ENAS-S, that leverages model stability to seek architectures that suffer from

less catastrophic forgetting when learning from a data stream continuously. Mean-

while, benefiting from single-path backbone and block-based search space, ENAS-S

generates architectures that conform edge computing. We validate the efficacy of

ENAS-S on CIFAR-10 and CIFAR-100 datasets and provided a comprehensive anal-

ysis of the evolutionary process. Furthermore, the proposed fitness score is general

and can be applied to different NAS search strategies. ENAS-S further inspires re-

search in various topics related to model stability, such as adversarial attack, etc.
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Chapter 7

SUMMARY

In this dissertation, different yet uniform methods surrounding model plasticity

and model stability are proposed to achieve accurate, efficient and online deep learn-

ing. To be specific, the training scheme CGaP achieves small yet accurate inference

model through network plasticity; PST alleviates catastrophic forgetting problem

and outperforms state-of-the-art single-head accuracy in the continual learning sce-

nario through importance sampling and model segmentation; based on PST, a novel

diagram, acquisitive learning, is further proposed to achieve practical, reliable and

scalable online learning based on the selected inherited models; meanwhile, experi-

ments validate that model stability is a critical factor to accurate continual learning

and thus, ENAS-S is proposed to automatically search for an optimal inherited model

in light of model stability in order to achieve higher accuracy when learning from data

stream at the edge. The aforementioned methods largely improve the accuracy and

efficiency of deep neural networks in the application of continual learning at the edge,

especially for emerging systems such as self-driving vehicles and drones.

Along this road, there are several perspectives deserve further thoughts: is archi-

tecture the only factor that decides model stability? How about initialization and

hyper-parameters which also affect the shape of local minimal? Is continual learning

the only application related to model stability? How about the adversarial attack

and device variation? What is the key to entirely eliminate catastrophic forgetting?

These are all vital topics that deserve more in-depth research.
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N. Lourenço, and P. Machado, “Automatic design of artificial neural networks
for gamma-ray detection,” IEEE Access, vol. 7, pp. 110 531–110 540, 2019.

[145] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
2017.

[146] M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution of deep
convolutional neural networks using cartesian genetic programming,” Evolu-
tionary Computation, vol. 28, no. 1, pp. 141–163, 2020.

122


	LIST OF TABLES
	LIST OF FIGURES
	
	Motivation
	Thesis Contribution
	Thesis Outline

	
	Development of Machine Learning
	Dataset and Framework

	
	Introduction
	Previous Work
	Destructive Methods
	Constructive Methods
	Orthogonal Methods

	Saliency Score
	Terminology
	Saliency Score

	CGaP Methodology
	Growth Phase
	Pruning Phase

	Algorithmic Experiments
	Training Setup
	Performance Evaluation
	Visualization of the Dynamic Structures
	Validating the Saliency-based Growth

	Experiments on FPGA Simulator
	Overview of the FPGA Simulator
	Results from FPGA Performance Model

	Discussion
	Conclusion and Future Work

	
	Introduction
	Related Work
	Method
	Overview of PST
	Memory-assisted Training and Balancing
	Importance Sampling
	Model Segmentation and Reinforcement

	Accuracy: learning streamed tasks
	In-depth Analysis
	Extensive Results

	Computation Cost: Learning at the Edge
	Simulated Results

	Ablation Study and Discussion
	Analysis of Each Component in PST
	Memory Budget

	Conclusion

	
	Introduction
	Preliminaries
	Terminology
	Conventional Approach of Continual Learning
	Difference from Transfer Learning
	Biology Background: Moravec's Paradox

	Acquisitive Learning
	Model Inheritance
	Knowledge Acquisition

	Experimental Results
	Experiment Setup
	Amount of Inherited Knowledge
	Quality of the Inherited Model
	Learning from a Data Stream with AL
	Computation Cost and FPGA Prototyping
	FPGA Demonstration

	Conclusion

	
	Introduction
	Related work
	Methodology
	Search Space
	Fitness Evaluation
	Search Strategy
	Continual Learning at the Edge

	Experimental Results
	Experiments Setup
	Effectiveness of ENAS-S
	Effectiveness of the Proposed Fitness Score
	Architecture Evolution

	Conclusion

	

	REFERENCES


