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ABSTRACT

Constant false alarm rate is one of the essential algorithms in a RADAR detection

system. It allows the RADAR system to dynamically set thresholds based on the data

power level to distinguish targets with interfering noise and clutters.

To have a better acknowledgment of constant false alarm rate approaches perfor-

mance, three clutter models, Gamma, Weibull, and Log-normal, have been introduced

to evaluate the detection’s capability of each constant false alarm rate algorithm.

The order statistical constant false alarm rate approach outperforms other conven-

tional constant false alarm rate methods, especially in clutter evolved environments.

However, this method requires high power consumption due to repeat sorting.

In the automotive RADAR system, the computational complexity of algorithms

is essential because this system is in real-time. Therefore, the algorithms must be

fast and efficient to ensure low power consumption and processing time.

The reduced computational complexity implementations of cell-averaging and or-

der statistic constant false alarm rate were explored. Their big O and processing time

has been reduced.
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Chapter 1

INTRODUCTION

1.1 Background

Suppose in some statistical tests, we have two simple hypotheses, the null hypoth-

esis and the alternative hypothesis. We can apply the Neyman-Person test and the

likelihood ratio test approach to provide decision rules for deciding hypothesis. The

distributions of data must be fully specified. However, in most statistical problems,

the data models do not perfectly match with any distributions; also, it keeps changing

over time. In order to provide accurate and reliable detection, the algorithm must

dynamically and intelligently adjust the threshold level.

The constant false alarm rate(CFAR) test can provide great performances with

the unknown distribution data. It applies a moving window across the data to select

reference cells then calculates the threshold. This approach checks the neighbors’

power to estimate noise level, and the threshold is set to limit the false alarm rate.

The cell-averaging CFAR, smallest-of CFAR, and greatest-of CFAR are the most clas-

sical CFAR approaches. These methods are good at operating in the homogeneous

environment. For a more complicated environment or clutter evolved background, we

need to investigate more sophisticated CFAR approaches. Also, there are some com-

bined CFAR methods like OSCA-CFAR[1], SOCA-CFAR[2], and GOCA-CFAR[2],

they perform with low processing power. The performance of OSCA-CFAR in one of

directions(applied CA-CFAR) will be damaged when homogeneous assumptions are

violated. GOCA-CFAR has a strong masking effect problem and SOCA-CFAR easily

detects noise peak as target which leads to high false alarm rate.
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1.2 Motivation

In the automotive radar system, we need to have some statistical detection ap-

proaches that are able to dynamically set thresholds to identify targets against the

noise background. Complicated traffic conditions will lead to data returned by radar

with a lot unwanted noise. These approaches also need to maintain high performance

when the environments evolved with clutters and multiple targets present. For ex-

ample, in some radar applications like [3–5], there has multiple targets show up with

noisy background, target detection becomes a limiting factor when the density of tar-

gets is large and there is no clear distinction between the targets and clutter. Under

this circumstance, we wish to adjust the threshold level to identify targets and avoid

clutter affects in constant false alarm rate algorithms.

For radar data in range-Doppler domain, we need to make sure the algorithms’

performance for both directions are not deteriorates. High computations means high

power consumption and more processing time. For the real-time detection system, we

wish to reduce the algorithm’s computational complexity. Toward this, we are inves-

tigating some efficient implementations of conventional CFAR approaches to achieve

this goal. In this study, the computational complexity of algorithms is evaluated with

Big O notation and central processing unit(CPU) time.

1.3 Contribution

The goal of this study is to investigate the performance of cell-averaging CFAR,

and order-statistic CFAR, and how they operate in different environments, homoge-

neous, multiple targets, clutter evolved environment, and experimental data. First,

we introduce the procedures and implementations of cell-averaging CFAR and order-

statistic CFAR.
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To check the performance in a higher dimension, for example, the experimental

data in the range-Doppler domain, the two-dimensional CFAR data structure is also

being introduced. Some classical clutter distribution models, Gamma, Weibull, and

Log-normal, are added into the testing background. Here, we calculated the proba-

bility of detection and probability of false alarm rate of detection results and plotted

these parameters with receiver operating curves to compare the performances.

Consider the computational complexity of these two CFAR approaches; we calcu-

lated the big O of each process. We also investigated the efficient implementations of

these two algorithms. The comparison of efficient methods with conventional CFAR

algorithms is given.

We tested the performance of CFAR approaches with the experimental data. To

have more concise targets and get the number of targets instead of point targets, and

the clustering method to group the CFAR result data has been applied.

1.4 Organization

In this study, we basically have these sections:

� Chapter2 - Introduce the detection test statistics we are using in this report to

evaluate the performance of algorithms.

� Chapter3 - Introduce the procedure of cell-averaging CFAR and order-statistic

CFAR, analyze the performance of these two methods in some homogeneous

environments. Also, explain the two-dimensional (2D) CFAR data structure

and show the test results in the 2D homogeneous Gaussian noise environment.

� Chapter4 - Introduce three clutter models, Gamma, Weibull, and Log-normal.

Investigate the performance of two CFAR approaches in these clutters evolved

3



environments. The ROC curves of the probability of detection with the proba-

bility of false alarm rates are given.

� Chapter5 - Calculate the big O of CFAR methods. Compare the different sorting

methods that affect the computational complexity of OS-CFAR. Investigate the

efficient implementations of CA-CFAR and OS-CFAR.

� Chapter6 - Introduce the experimental data to do the CFAR tests. Apply clus-

tering method density-based spatial clustering of applications with noise (DB-

SCAN) to group the CFAR results. Analyze the CFAR methods’ performances

with clustering results.
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Chapter 2

DETECTION TEST STATISTIC

2.1 Constant False Alarm Rate

Constant false alarm rate (CFAR) detection refers to a common form of the adap-

tive algorithm used in radar systems to detect target returns against a background

of noise, clutter and interference.[6] This algorithm’s aim is setting a high enough

threshold to limit false alarm rate within a tolerable range, but low enough to allow

more targets to be detected.

If the background of targets to be detected is constant in time and space, then

a fixed threshold level can be selected. The threshold level provides a specific false

alarm probability, which can be determined by the probability density function of the

background noise and the signal to noise ratio(SNR) of targets. However, in most

radar detection systems, the background is usually mixed with a large number of

clutter and interference sources, and their presence means that the noise level will

vary in space and time. In this case, the constant false alarm rate algorithm can

adjust the threshold according to the dynamic change of background noise level, so

as to maintain the constant false alarm probability.

5



2.2 Performance Metrics

In this thesis, two constant false alarm rate algorithms mainly talked about are

cell averaging CFAR and order statistic CFAR. In order to have a more standardized

evaluation criterion to compare these two methods, the following detection perfor-

mance metrics are introduced.

2.2.1 Probability of Detection and False Alarm

In detection theory, we want to identify which hypothesis is the truth:

H0 : θ ∈ Θ0, null hypothesis H1 : θ ∈ Θ1, alternative hypothesis (2.1)

The hypothesis H0 corresponds to the case that target represents, and hypothesis H1

corresponds to the case that detection consists of noise only.

The probability of false alarm and detection are defined as follow,

PFA = Pr (H1|H0) =

∫
X
p (x|θ) dx, for θ in Θ0 (2.2)

PD = Pr (H1|H1) =

∫
X
p (x|θ) dx, for θ in Θ1 (2.3)

In constant false alarm rate results, the probability of detection(PD) means a

target being detected. The probability of false alarm(PFA) is the probability of finding

a spike of noise or clutter mistaken by the CFAR algorithm as a target. The goal of

CFAR algorithms is to adaptively estimate the noise power and set the threshold to

be high enough to limit the false alarm rate within a tolerable range. The probability

of detection can help characterize the odds of detection over thousands of trail runs.

2.2.2 Receiver Operating Characteristic(ROC)

The receiver operating characteristic curve, or ROC curve, is a graphical plot

that is very useful for evaluating the performance of diagnostic tests and evaluating

6



the accuracy of a statistical model.[7] In this thesis, ROC curves are plots of the

probability of detection(PD) versus the probability of false alarm(PFA) with given

different signal to noise ratio(SNR) to assess the performance of CFAR algorithms.

Figure 2.1: Example ROC Curves of PD vs. PFA

Fig.(2.1) shows an example of ROC curves plot between the probability of detec-

tion and probability of false alarm. The function of PD for given PFA in the white

Gaussian noise environment is,

PD =
1

2
erfc(erfc−1(2PFA)−

√
SNR) (2.4)

where erfc is the complementary error function (erfc) which is defined as,

erfcx = 1− erfx (2.5)

where erf is the error function of a complex variable defined as:[8]

erfx =
2√
π

∫ x

0

e−t
2

dt (2.6)
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2.3 Computation Complexity

The amount of resources required for executing a particular algorithm is the com-

putational complexity of that algorithm. Time complexity and space complexity are

two key points as considered, of which time complexity is the one which is analyzed

the most. Sometimes the big O notation is denoted as the complexity of the worst

case for the algorithms. The big O notation is used to classify algorithms according

to how their run time or space requirements grow as the input size grows.[9] Let us

set the data size as n, where the computational complexity for the method is f(n).

In the real-time radar detection system, we want all methods to be achieved fast

enough with low computation. For CFAR detection algorithms, the computation

complexity of cell averaging CFAR is relatively low, since this method only takes a

mean level of background. However, when considering the order statistic CFAR, the

sorting method and repeating sorting issue can cause a huge amount of computation.

Therefore, computational complexity should also be considered when comparing the

performance of these two algorithms. By analyzing the computational complexity of

these algorithms, we can also ensure their performance does not get too much damage

to achieve more rapid and efficient algorithms.
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Chapter 3

CONSTANT FALSE ALARM RATE DETECTION

In this chapter, we are introducing the procedure of two constant false alarm

rate algorithms, which are Cell Averaging CFAR(CA-CFAR) and Order Statistic

CFAR(OS-CFAR). This chapter includes the performance of these two methods in

different scenarios. The two-dimensional data structure of the CFAR method is also

shown.

The following Fig.(3.1) shows the general architecture of CFAR algorithms:

Figure 3.1: Procedure of 1D-CFAR
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3.1 Cell Averaging Constant False Alarm Rate

Cell averaging CFAR(CA-CFAR) was developed early on, in 1947, by Howard

Finn.[10] CA-CFAR is the most typical method in the simple detection scheme. It is

accomplished with the threshold of detection by taking the mean level of the noise

floor. In the homogeneous environment, CA-CFAR shows excellent performances.

When enlarging the window size of training cells in CA-CFAR, the probability of

detection also increases.

However, when the environment gets more complicated and introduces some clut-

ters, the performance of CA-CFAR becomes worse.

In the Cell Averaging CFAR, the power threshold is calculated by taking the

average of the training cells’ power surrounding the cell under test(CUT). To avoid

the self-interference in case a target is located near the CUT, there are some guard

cells surrounding CUT. Let x1, x2, ..., xw be the reference cells surrounding the cell

under test x. We calculate the threshold multiplier alpha base on the probability of

false alarm and the number of training cells.

Following the procedure shows in the Fig.(3.2):

Take the average of all training cells in the window to get estimated noise level

power,

E =
1

W

W∑
i=1

xi (3.1)

Take the average as the reference power and times with threshold multiplier,

ZT = α ∗ E (3.2)

Threshold multiplier is calculated based on number of training cells and PFA,

α = P
−1
W
FA − 1 (3.3)

10



Figure 3.2: Procedure of 1D-CACFAR

Compare the cell under test with the threshold,

X ≶ ZT (3.4)

Move to the next test cell.

In the cell-averaging CFAR method, the PFA can be derived from the equation of

threshold multiplier α, and the probability of detection is given by,

PD = (1 +
α

1 + SNR
)−W (3.5)

where SNR is the signal to noise ratio of a target.

The size of the training window and probability of false alarm(PFA) is pre-selected

by designers. The PFA should be low enough to avoid the wrong detection, and the

11



size of training window N should be large enough to get efficient references. Both of

these two elements will influence the performance of CA-CFAR detection. When we

increase the window size, the probability of detection will also increase. As the number

of cells utilized in estimating the mean level increases, the probability of detection

approaches that of the classical Neyman-Person.[11] But sometimes it’s not necessary

to pick a very large size. This will introduce some unnecessary computations. There

is a trade-off to chose the value of PFA. When we pick a PFA that is too small,

sometimes it might cause CA-CFAR to not fully detect all the targets, which means

a lower probability of detection. If we pick a PFA that is too large, although we can

maintain a high probability of detection, there also will be a high rate to detect noise

or clutter as targets.
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Figure 3.3: CA-CFAR(w=24, nGuard=2), PFA = 1× 10−5)

The number of training cells, the number of guard cells, and pre-setting PFA

are important parameters that can influence the performance of CA-CFAR. Fig.(3.3)

shows the performance of CA-CFAR in four different scenarios. In the homoge-

neous noise environment, CA-CFAR provides a good detection that can be noticed
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in figure(a). Also, CA-CFAR gets good results in the local clutter and single-target

situation. From the figure(c), the threshold near the target is relatively high, since

this caused some problems in the last situation. In the multiple targets detection sce-

nario, the masking effect strongly influences the performance of the detection result.

The closing targets cannot be detected if other targets have higher SNR.

Although CA-CFAR has great detection results in the homogeneous environment

with separately spacing targets, its performance drastically dropped with closing tar-

gets, and clutter wall evolved in the background. This method is not suitable in a

complicated environment and detecting multiple closely spaced targets.

3.2 Order Statistic Constant False Alarm Rate

Although Cell Averaging CFAR detection shows good performances in the homo-

geneous environment, it behaves very sensitively in multiple close targets. It is not

efficient when the background evolves with clutters. Under these situations, Order

Statistic CFAR can provide high performances in the non-homogeneous environment.

It is well known from general signal processing topics that estimation procedures

are much more robust if they are based on ordered statistics.[12] In the Order Statistic

CFAR, the reference cells are used to calculate the threshold picked from the sorted

training cells. Due to which, OS-CFAR is not like the CA-CFAR taking the mean level

of all cells in the window, which can mitigate the influences from clutter and noise.

Same architecture as CA-CFAR, OS-CFAR has cells under test(CUT) surrounded

with guard cells. OS-CFAR also uses the sliding window to take reference cells.

Following the procedure shows in the Fig.(3.4). Combine all the training cells

together, and sort them according to increasing magnitude, resulting in the ordered
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Figure 3.4: Procedure of 1D-OSCFAR

sequence,

x1 ≤ x2 ≤ ... ≤ xk ≤ ... ≤ xw (3.6)

Pick the reference cell by taking kth cell from sorted training cell window,

E = xk (3.7)

Calculate the decision threshold by taking the product of estimated noise level

power with threshold multiplier,

ZT = α ∗ E (3.8)

Compare the magnitude of CUT with threshold,

X ≶ ZT (3.9)

Move to next test cell.
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The threshold multiplier α can control the probability of false alarm, and the

factor can be derived from the PFA function. Assume the random variable x has a

probability density function p(x) and distribution function as P (X). And the k-th

selected sample has a probability density function that can be derived from p(x) and

P (X).

pk(x) = k

(
w

k

)
P (X)k−1 [1− P (X)]w−k p(x) (3.10)

For Reyleigh distribution for H0 and H1 and square law detector,

p(x) = e−x, P (X) = 1− p(x) (3.11)

The probability of false alarm will be the average of probability crossing the thresh-

old ZT ,

PFA = Ex {P [X > ZT |H0]} =

∫ ∞
0

e−αxkpk(x)dx (3.12)

By using Eq.(3.10) and Eq.(3.12) we can get,

PFA = k

(
w

k

)
Γ (k − 1) Γ (α + w − k)

Γ (α + w) !
(3.13)

=
k∏
i

[
1 +

α

w − i

]−1

(3.14)

After comparison in each cell under test, the presence of a target in the current

CUT when its power is over than the threshold level, the probability of detection as

shown in the equation below,

PD = k

(
w

k

)
Γ(k − 1)Γ( α

1+S
+ w − k)

Γ( α
1+S

+ w)
(3.15)

=
k∏
i

[
1 +

α
1+S

w − i

]−1

(3.16)

where S is the average of signal to noise ratio.

Same as CA-CFAR, the probability of false alarm, the rank of the reference cell,

and the window size of reference cells is pre-selected by designers. The PFA should be
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low enough to avoid false detections, also need to keep the PD enough high based on

the relationship between PD and PFA. The rank selection is a key element to affect

the performance of detection. It also depends on the SNR of targets and the model of

clutter. When the SNR and clutter edges are relatively high, we should pick a higher

rank to avoid the wrong detection. Usually, we pick the rank as 65% to 80% of the

window size.
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Figure 3.5: OS-CFAR(w=24, nGuard=2), PFA=1× 10−5)

In the same testing situations of CA-CFAR, OS-CFAR shows a higher capability

to achieve adaptive detection. Fig.(3.5) shows the OS-CFAR threshold level in four

different scenarios. In the noise only homogeneous environment, there is no significant

difference with the CA-CFAR detection result. Under this circumstance, there is

no need to use OS-CFAR in the homogeneous environment, because OS-CFAR has

higher computation complexity but shares the same performance with CA-CFAR.

The computational complexity of CFAR approaches will be discussed later.

In the next three scenarios, OS-CFAR shows its advantages. OS-CFAR calculates

thresholds that have a more clear edge than CA-CFAR. Additionally, in both target

16



scenarios, the threshold is more or less unchanged compared with the noise only

scenario. The close targets are clearly being detected.

The performance of OS-CFAR and CA-CFAR in different scenarios, basically

showing the same detecting results but also confirms that OS-CFAR has a higher

capability of avoiding masking effect from closing interfering targets.
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3.3 Two Dimensional Constant False Alarm Rate Implementation

When considering two-dimensional signals such as the range Doppler domain, we

also need to consider the two-dimensional detection method. In this section, two-

dimensional constant false alarm rate detection implementation is introduced.

The following Fig.(3.6) shows the data structure of 2D-CFAR:

Figure 3.6: 2D-CFAR Data Structure

When testing data extends to two dimensions, the guard cell band and training

cell window should also extend to two dimensions. Same as the one-dimensional

CFAR method, for CA-CFAR still takes the mean of the power of all the training
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cells. For the OS-CFAR, we still pick the kth cell from the sorting training cells.

Since the reference window turns to two-dimensional, the number of training cells is

increasing. Also, the selection from both directions will influence the performance of

methods.

In the 2D-OSCFAR implementation, instead of sorting the training cells surround-

ing CUT all together, cells are separated into four sections. Then do the sorting and

picking the kth cell in each section. The reference power level is by averaging the

mean level of four section’s kth cells. The result of OS-CFAR and CA-CFAR in

two-dimensional Gaussian noise background is showing,

Figure 3.7: 2D-CACFAR Detected Threshold in Gaussian Noise Background with

PFA = 10−5, Training Cell Window = [5,5], Guard Cell Window = [2,2]
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Figure 3.8: 2D-OSCFAR Detected Threshold in Gaussian Noise Background with

PFA = 10−5, Training Cell Window = [5,5], Guard Cell Window = [2,2], Rank = 0.6

In Fig.(3.7) and Fig.(3.8), in the homogeneous Gaussian noise environment, CA-

CFAR and OS-CFAR both show great performance in setting thresholds and clearly

detected the targets. But CA-CFAR method again has masking effects in the 2D case.

In this case, the detection result is not influenced by this effect. However, we cannot

guarantee the performance of CA-CFAR in the case where interfering targets present

in the reference window. On the other hand, the thresholds calculated from OS-

CFAR are not influenced by the target’s power. In the next chapter, we investigate

two approaches’ performances in different clutter-evolving environments and non-

homogeneous environments.
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Chapter 4

PERFORMANCE ANALYSIS

Radar operating in the open environment will receive return signals coming from

many different sources. The surface reflects signals from the land, sea or other sur-

faces called clutter. CFAR algorithms should have the capability to operate in kinds

of environments such as homogeneous environments, multiple targets scenarios, and

clutter evolved environments. In the real life, the noise and clutter are not match

with Gaussian distribution. In the proceeding chapters, three different clutter mod-

elings participate in the performance analysis of the CFAR algorithm. The previous

chapter introduced the performances of CA-CFAR and OS-CFAR in the Gaussian

noise environment. To have a better performance analysis of CFAR approaches, we

introduce different clutter modelings to evaluate CA-CFAR and OS-CFAR in more

complicated environments.

4.1 Clutter Models

Clutter refers to radio frequency echos returned from different surfaces. Clutter

signals that affect radar performance are typically categorized in terms of backscatter

from the land, the sea, and the atmosphere. [13] Various probability distributions

have been used to model clutter returns for radars operating in a variety of back-

grounds like ground, sea, etc.[14] In this chapter, we will mainly discuss three types

of popular clutter modeling: Gamma, Weibull, and Log-normal. Although these three

mathematical models cannot be precisely the same as reality, they can provide a good

assessment of detection methods.
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4.1.1 Gamma

The Gamma distribution is widely used. It is the maximum entropy probability

distribution (both with respect to a uniform base measure and with respect to a

1
x

base measure) for a random variable x.[15] This distribution is a two-parameter

family of continuous probability distributions.

The amplitude distribution for gamma is:

p (xi) =
1

baΓ (a)
xa−1
i e−

xi
b , xi ≥ 0, a > 0, b > 0 (4.1)

where a is a shape parameter, b is the scale parameter, and Γ is the Gamma function.

The mean of the gamma distribution is µ = ab, and the standard deviation is

σ = ab2.

4.1.2 Weibull

The Weibull distribution is named after the Swedish engineer and scientist Ernst

Hjalmar Waloddi Weibull(1887–1979). This distribution is widely used in engineer-

ing, medicine, and elsewhere.[16] In the radar clutter modeling, the Gaussian distri-

bution is characterized as cloud; the Weibull distribution has been more accurately

characterized as the ground clutter with two parameters: the scaling and shaping

parameters.

In general, the probability density function of Weibull distribution is:

p (xi) =
b

a

xi
a

b−1

e−(xa)
b

, xi ≥ 0, a > 0, b > 0 (4.2)

where a is the scaling parameter and b is the shape or slope parameter.

4.1.3 Log-normal

Donald McAlister in 1879 appears to have been the first to give a comprehensive

view of the log-normal distribution.[17] The log-normal distribution is the statistical
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distribution of the logarithmic values of the related normal distribution. This model

has a remarkable feature. It has long tails which may affect the detection method

performance.

In general, the probability density function of Log-normal distribution is:

p (xi) =
1

xiσ
√

2π
e

{
− (logx−µ)2

2σ2

}
,−∞ < µ <∞, σ ≥ 0 (4.3)

where µ is the mean of distribution and σ is standard deviation.

Table 4.1: Clutter Models and Equations

Clutter Type

Distribution Model Application Equation

Gaussian Clouds p (xi) = 1√
2πσ2

exp
[
−
(
xi
b

)c]
Gamma Land Clutter p (xi) = 1

baΓ(a)
xa−1
i e−

xi
b

Weibull Land Clutter p (xi) = b
a
xi
a
b−1e−(xa)

b

Log-normal Sea Clutter p (xi) = 1
xiσ
√

2π
e

{
− (logx−µ)2

2σ2

}

23



Figure 4.1: Example Case of Four-targets with Weibull Clutter Background

Fig.(4.1) shows one example case of four targets filled with the Weibull clutter

background. In order to set stages of signal to clutter ratio (SNR), targets in one

test are set with the same value of SNR. This scenario has been provided to test the

performance of CFAR approaches.
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4.2 Performance Comparison

After introducing three types of clutter modelings, we can apply these clutters

into the background to compare the performance of CA-CFAR and OS-CFAR.

4.2.1 Performance Comparison in Clutter Environment

To have a better performance analysis, the probability of detection(PD) and the

probability of false alarm(PFA) are being calculated under clutter noise background.

Also, we apply different SNR to run Monte Carlo experiments and plotted results in

receiver operating characteristic (ROC) curves. The SNR here should be the signal

to clutter ratio.

The one-dimensional and two-dimensional gamma clutters being introduced into

the background to test performance. For the 1D case setting, the SNR of targets are

3dB, 5dB, 7dB, 9dB, and 11dB. The shape and scale parameters of gamma are both

set as 1. Also, we set both CA-CFAR and OS-CFAR with the same probability of false

alarm from 10−6 to 1, the same size of training cell window of N=32, and the rank of

OS-CFAR selected as 0.7N. In the 2D case, after we consider the environment evolved

with clutter from both directions, we determine whether the size of the reference cell

windows needs to be increased. We set the size of the guard cell window as [1,1], which

is eight cells surrounding the cell under test (CUT), and the size of the training cells

window set as [3,3], which contains a total of 82 cells. Also, because both algorithms

cannot perform very well and have a high probability of false alarm, the testing stages

of SNR remove the 3dB level.
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Figure 4.2: ROC Curves of CFAR Test Results in 1D Gamma Clutter Environment

Fig.(4.2) presents the contrast result of two methods in the one-dimensional gamma

clutter case. SNR set as 3dB, 5dB, and 7dB, OS-CFAR slightly outperforms CA-

CFAR. When SNR increasing to 9dB, the probability of detection from OS-CFAR

gets great improvement. From the ROC curves of CA-CFAR, the probability of de-

tection all present the same growth trend. However, the performance OS-CFAR gets

significantly enhanced when the SNR of targets increasing.
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Figure 4.3: ROC Curves of CFAR Test Results in 2D Gamma Clutter Environment

On the other hand, Fig.(4.3) shows CFAR detected results in the two-dimensional

gamma clutter environment. When SNR setting in lower stages, OS-CFAR keeps the

high performance as the 1D scenario. However, the probability of detection from CA-

CFAR decreased when compared with the 1D result, especially at 11dB, CA-CFAR

start detecting targets when PFA is increasing at 10−4. With the same configurations,

CA-CFAR lack of capability of detection in gamma clutter conditions.

When we introduced Weibull clutter modeling, the same parameter setting as

the gamma case, the SNR of targets set as five stages from 3dB to 11dB. After

running thousands of trials to counting the actually detected targets, the receiver

operating curves are given in Fig.(4.4). CA-CFAR detection performance sharing

the same increasing trend versus different SNR and CA-CFAR detection results in

gamma clutter background. Its performance has slightly declined. Nevertheless, order

statistic CFAR still maintain a high performance versus Weibull clutter background
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and different value of SNR.

Figure 4.4: ROC Curves of CFAR Test Results in 1D Weibull Clutter Environment

Figure 4.5: ROC Curves of CFAR Test Results in 2D Weibull Clutter Environment
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In the two-dimensional Weibull clutter environment, Fig.(4.5) shows the same

results in the gamma case. CA-CFAR performance gets slightly decreased while OS-

CFAR still maintains well behaved. From the figure, it’s obvious that the OS-CFAR

detection with SNR’s growth, performances are gradually improving.

Considering the log-normal clutter scenario, the same configurations in the Monte-

Carlo simulation. The detection performance of CA-CFAR diminishes drastically

compare with the gamma clutter background. But the performance of OS-CFAR

also gets a certain degree of reduction. Although log-normal distribution cannot be

presented as a compound Gaussian model, it has long tails that can seriously affect

detection performance.

Fig.(4.6) and Fig.(4.7) show the result for the Log-normal environment test. In

the two-dimensional scenarios, the probability of detection for CA-CFAR is decreased

compared with the same SNR level results in the 1D result, which means its perfor-

mance also get deteriorated in the 2D scenario. On the other hand, in the same

SNR setting situation, OS-CFAR starts detecting the targets from the relatively

higher PFA. However, the performance of OS-CFAR gets improving when SNR is

increasing. Still, OS-CFAR performs more efficiently than CA-CFAR against with

log-normal clutter environment.
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Figure 4.6: ROC Curves of CFAR Test Results in 1D Log-normal Clutter Environ-

ment

Figure 4.7: ROC Curves of CFAR Test Results in 2D Log-normal Clutter Environ-

ment
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Combining with the detection results of these three different clutter environments,

it is not surprisingly noticed that OS-CFAR successfully reveals its capability to

detect targets against clutter and noise background. When we increase the signal to

clutter ratio, the performance of OS-CFAR has also been improved. However, the

performance of CA-CFAR has not changed much when SNR increases.Even though,

these two methods almost share the same performance when SNR at a lower stage.

But still, the CA-CFAR approach is not a good choice in clutter evolved environment,

especially in the higher dimensional cases.
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Chapter 5

REDUCING COMPUTATIONAL COMPLEXITY

Based on the analysis of performance comparison between OS-CFAR and CA-

CFAR, it is obvious that OS-CAFR has a higher capability of detection in a more

complicated environment. On the other hand, the OS-CFAR has an outstanding fea-

ture, the computational complexity is higher than other conventional CFAR methods.

However, in some applications, for example, automotive radar, real-time monitoring

systems, etc. The computational complexity of algorithms is an essential factor when

designer selecting algorithms. High computations requires high power consumption

and more processing time. Therefore, we want the computation can be reduced as

much as possible.

Figure 5.1: Cell Under Test Shifts with Training Cells and Guard Cells

Fig.(5.1) shows a simple case of the CFAR method. Whenever the cell under

test(CUT) moves to the next position, the training cell window and guard cells will

follow with the CUT. The number of training cells and guard cells will always be

fixed. From the figure, we can notice that, for the next CUT, there are some training

cells in the previous window that are also showing in the current one. Every time
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the CFAR method is doing an operation to calculate the threshold, there are some

cells that are being repeated considered. Base on this feature, we can reduce the

computations by avoiding repetitions.

In this chapter, under the premise of not damaging the performance of CA-CFAR

and OS-CFAR. We maintain the key characteristics of these methods, and show the

implementations of reduced computational complexity algorithms in detail.

5.1 Cell Averaging Detection Statistic

The main idea of CA-CFAR is to take the mean level of all the cells in the reference

window. Let set the number of detecting data as N , the number of reference cells in

window set as W . Then we can get the computation complexity OCACFAR as N ∗W .

Although the computation complexity of cell averaging constant false alarm rate

algorithm is very low, we still can make some improvements to reduce computations.

At the same time, we maintain the same performance as the conventional CA-CFAR

method.

When the reference window is shifting with the cell under test, some new cells

is coming into the window. Some cells in the previous window do not appear in

the current one, which means every time CA-CFAR taking the mean level from the

window, some cells are repeating calculating. Depending on the size of the window,

the more repetitive exists when the window is bigger.

In order to avoid repeat accumulation, we can directly call the averaging level

from the previous CUT and taking new cells into consideration to adjust the reference.

Also, to maintain the performance of CA-CFAR, the cells excluded from the reference

window still needs to be considered. The big OnewCACFAR in one-dimensional CA-

CFAR method becomes to (here we only consider the computational complexity of
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computing reference value):

OnewCACFAR1D = W + 4 ∗ (N − 1) (5.1)

If we consider higher dimensional data, there are more new cells come into the

window when CUT shift. Assume the number of new cells as n. The big O for efficient

CA-CFAR is:

OnewCACFAR = W + 2n ∗ (N − 1) , n� W (5.2)

Figure 5.2: Big O of Traditional CA-CFAR and Efficient CA-CFAR, W = 50, n = 10

In Fig.(5.2), the comparison of big O for traditional CA-CFAR method and ef-

ficient approach is showing. The data size is being chose from 5 ∗ 103 to 106. No

matter what dimension of data, only data size, number of new cells and reference cell

can influence the computational complexity. From the figure, the big O of traditional

method can be 5 times of efficient approach, also OCACFAR is keeping a rapid growth

trend.
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Figure 5.3: CPU Time of Conventional CA-CFAR Method and Efficient CA-CFAR

Method Versus Different Testing Data Size, Training Cell Window Size W=24

After reducing the computation complexity, the central processing unit(CPU) time

of two methods under the same configurations, averaging the time over 1000 Monte

Carlo simulations, the results are showing in Fig.(5.3), the CPU time of conventional

CA-CFAR basically no change when data size less than 4 ∗ 104, and then it increases

rapidly. However, the reduced computational complexity CA-CFAR method is not

influenced by the increasing data size.
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Algorithm 1 Efficient CA-CFAR

Input: signal x, number of training cells W, PFA

Output: Threshold ZT

1: Compute mean level of reference cells for first CUT, R

2: Compute threshold for first CUT, ZT , Eq.(3.2) and Eq.(3.3)

3: for each cell xi in X except first CUT do

4: Call mean level from previous CUT, R

5: Cells show in current window not in previous window as new

6: Cells show in previous window not in current one as old

7: R = 1
W

(R ∗W + old− new)

8: Compute threshold, ZT , Eq.(3.2)
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5.2 Order Statistic Detection Statistic

In the conventional order statistic CFAR methods, in order to select a suitable

reference cell, we need to do sorting in every reference window. While the reference

window is moving, followed with the cell under test, some cells in the current window

have already done sorting in the previous one. So there are a lot of repetitive sortings,

which results in increased computational complexity. On the other hand, the selection

of the sorting method can also influence the complexity of OS-CFAR. In order to

reduce the computational complexity of the algorithm, we can start by selecting the

sorting method and avoid repetitions.

Some commonly used sorting method with big O are listed in table(5.1).

Table 5.1: Big O of Common Sorting Methods

Name Best Average Worst

Quick Sort nlogn nlogn n2

Merge Sort nlogn nlogn nlogn

Insertion Sort n n2 n2

Bubble Sort n n2 n2

Selection Sort n2 n2 n2

Assume there has a signal with N data that needs to be detected, and the number

of training cells in the window set as W. A comparison sort cannot perform better

than O(nlogn).[18] For the lowest complexity, the big O for the OS-CFAR should

be(only consider the iterations for computing reference cells):

OOSCFAR = N ∗W ∗ logW (5.3)

The key point to implement an efficient algorithm is to avoid repetitive compu-

tations. In the one-dimensional OS-CFAR method, there have two more cells need
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to consider when CUT moving to the next cell. We can save the sorting result from

the previous training windows and maintain the results for all the cells surrounding

the current CUT. Then next step is inserting two new cells into the previous sorting

window. When the dimension of data is increasing, the number of training cells need

to consider are also increasing. But the number of new training cells will never greater

than the size of the training window. Here, we can set the number of new cells as

n, and n � W . When considering new cells join into the already sorted cells, using

the binary searching method is the most efficient way to get the right position of new

cells, and the big O for that approach is logW .

So the efficient OS-CFAR becomes as doing a complete sorting for the first CUT,

and for every CUT after the first one, only need to insert new training cells into the

previously sorted data without some cells are not included in the current training

window. Then the computation complexity of efficient OS-CFAR method is:

OnewOSCFAR = W ∗ logW + (N − 1) ∗ n ∗ logW (5.4)

Table 5.2: Big O of Traditional CA-CFAR, OS-CFAR and Efficient CA-CFAR and

OS-CFAR Approaches

Big O CA-CFAR OS-CFAR

Traditional N*W N*W*logW

Efficient W+2n*(N-1) W*logW+n*(N-1)*logW
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Figure 5.4: The Big O of Traditional CA-CFAR, OS-CFAR Compare with Efficient

CA-CFAR and OS-CFAR, W = 50, n = 10

The result for big O of efficient CA-CFAR and OS-CFAR with traditional CA-

CFAR and OS-CFAR is present in Fig(5.4). For traditional OS-CFAR, its compu-

tational complexity is higher than other methods due to repeat sorting. After we

improved the OS-CFAR approach, the computation can reach the same level as the

traditional CA-CFAR. We all know the CA-CFAR method has very low computa-

tional complexity, which means big O of new OS-CFAR has significant improvement.

Still, the efficient approach of CA-CFAR has the lowest computations.
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Figure 5.5: CPU Time of Conventional CA-CFAR and OS-CFAR Methods, Efficient

CA-CFAR and OS-CFAR Methods Versus Different Testing Data Length, W=24

Since the computational complexity has been reduced, the CPU time should also

be decreased. Fig.(5.5) presents the CPU time change based on different data sizes

through four CFAR algorithms. After we run thousands of Monte Carlo simulations,

it is obviously noticing that the efficient CA-CFAR and OS-CFAR method both

shows great improvements on CPU time. For the efficient OS-CFAR method, its

CPU time is reaching the same level as conventional CA-CFAR, by which means the

computational complexity of the new method has been improved a lot.

40



Algorithm 2 Efficient OS-CFAR

Input: signal X, number of training cells W, PFA, rank k

Output: Threshold ZT

1: Sort training cells in first CUT window, sort

2: Select reference cell from sorted cells, R = xk

3: Compute threshold for first CUT, ZT , Eq.(3.8) and Eq.(3.14)

4: for each cell xi in X except first CUT do

5: Call sorted training cell from previous CUT, sort

6: Save cells in current CUT window and maintain sequence, sort1

7: Use binary search find right position for new cells in current window not in

previous one

8: R = xk

9: Compute threshold, ZT , Eq.(3.8)
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Chapter 6

EXPERIMENTAL DATA

In the previous chapters, the performance of CFAR methods in being considering

the probability of detection and false alarm rate. Since the CFAR method processing

data is cell by cell, then we only can check the results point by point. However,

in real scenarios, most targets have their body shapes, and their speed is changing

continuously. The point target results from the CFAR approach cannot provide ef-

ficient information on the exact number of targets. On the other hand, one CFAR

method detecting more points can’t prove this method is more useful than others.

For example, assume one target has a huge size is being detected by OS-CFAR and

CA-CFAR method. From the detection results, OS-CFAR detected more points than

CA-CFAR, but in fact, no matter how many points are being detected by these two

methods, they share the same performances.

Under this circumstance, we can apply the clustering method to group the CFAR

results. The clustering results are more concise and have a better estimation for

number of targets and its size.

6.1 Clustering Algorithm

Density-based spatial clustering of applications with noise (DBSCAN) is a density-

based clustering algorithm designed to discover clusters and noise in data.[19] It’s

minimum density level estimation based on the threshold for the number of neigh-

bors and minpts(minimum number of neighbors required for a core point) within a

distance.[20]

Based on the definition of density, we can divide the data points into three sets:
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� First, core point. A point is considered a core point when the number of sur-

rounding neighbors exceeds minpts.

� Second, border point. A point considered as border point when the number of

surrounding neighbors less than minpts.

� Third, noise point(labeled with -1). The Noise point is neither the core point

nor the border point, and do not belong to any cluster.

DBSCAN algorithm can compute clusters base on the above three types of points.

DBSCAN searches for clusters by checking the N neighbors of each point in the data

set. If the N neighborhood of point p contains more than minpts points, it creates

a cluster with p as the core point. Then, DBSCAN iteratively aggregates points

that are directly density-reachable from these core points. This process may involve

the merging of some density-reachable clusters. When no new ones are added to any

clusters, the iteration process ends. Here, we call points are directly density-reachable

to core points when point p distance to core point less than radius ε. Assume we have a

point link p− > l− > m− > n− > corepoint, the distance between any two adjacent

points less than radius ε(they are density-reachable), the point p is density-reachable

to the core point.
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Algorithm 3 DBSCAN Algorithm

Input: database X, radius ε, minpts

Output: label: label for database in each cluster

1: for each point p in database X do

2: if label(p) is defined then

3: Continue to next point

4: NeighborPts N : regionQuery(p, ε)

5: if sizeof(N)< minpts then

6: label(p) = −1, noise

7: else

8: C = next cluster

9: ExpandCluster(p, C,N, ε,minpts)

10:

11: ExpandCluster(p, C,N, ε,minpts)

12: label(p) = C

13: for each point q in N do

14: if label(q) = −1 then

15: label(q) = c

16: if label(q) is defined then

17: Continue to next point

18: NeighborPts Np: regionQuery(q, ε)

19: if sizeof(N) > minpts then

20: N = N
⋃
Np, combine neighbors into one cluster

21:

22: regionQuery(p, ε)

23: return all the neighbors of p within the radius ε and p
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6.2 CFAR Detection and DBSCAN Analysis

Here, some range-Doppler radar data from Metawave company allow us to do

the CFAR detection test and clustering analysis.[21] These data are received by four

antenna. Each frame data includes 256 range bins ∗ 128 Doppler bins, which has

max range 330.0096m and velocity from −36.9984m/s to +36.9984m/s.

Figure 6.1: Example of One Frame Range-Doppler Data

Fig.(6.1) shows one frame range-Doppler data. From the figure, we can infer

that there are some static objects and one moving object has relative velocity as

27.67m/s. By using the CFAR detection and cluster analysis, we can get more concise

information of moving and static objects.

After applied the CFAR methods, we can get the range and velocity information

of ’targets’, the results are showing in Fig.(6.2) and Fig.(6.3). These two approaches
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set with same parameters: guard cell window as [2,2], training cell window as [5,10]

and PFA as 10−5. Compare these two figures, CA-CFAR threshold level is higher

than OS-CFAR, and it shows strong mask effect where multiplier high peaks appear,

some small peaks are not being detected. On the other hand, the OS-CFAR has a

relatively smooth threshold level, this approach didn’t influenced by high peaks. We

can get the same conclusion as the previous discussion, OS-CFAR approach seems be

dominate in setting detection statistics.

Figure 6.2: CA-CFAR Threshold Level in Range-Doppler Map

46



Figure 6.3: OS-CFAR Threshold Level in Range-Doppler Map

Figure 6.4: DBSCAN Clustering in CA-CFAR Results
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Figure 6.5: DBSCAN Clustering in OS-CFAR Results

To get the size and quantity information of targets and identify moving targets

with all static object, we can continue applying clustering approach base on the CFAR

results. Here we choose the minpts as 6 and radius ε as 4.5. The clustering results

are given in Fig.(6.4) and Fig.(6.5). The clustering result from OS-CFAR has more

number of groups than result from CA-CFAR, both results have some noise points

labeled with −1. The database from OS-CFAR is larger than CA-CFAR, but also

there are more points at the edge are labeled as noise. Compare the clustering result

on these two database, there are one clustering groups missing in CA-CFAR results.

OS-CFAR results have one cluster labeled 6 which has been identified as noise points

in CA-CFAR results due to insufficient neighbors. Both data sets provide enough

detected data points of moving targets to identify. Base on the comparison on these

two methods, OS-CFAR results provide more information than CA-CFAR.
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Based on the clustering results, CA-CFAR and OS-CFAR almost get share same

performances. In the end, the number and the size of true targets are the most

important to detection problems, we need to investigate more in the future with

more experimental data.
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Chapter 7

FUTURE WORK

In order to applied the algorithms into applications, we still need to tune the pa-

rameters until we find the most efficient sets of numbers can fit for most scenarios. In

order to have more reliable performance estimation and comparison, I need to build

the frequency modulated continuous wave Radar platform to provide more experi-

mental data with known truth. In the future, we wish to investigate some intelligence

algorithms like combining different CFAR methods, also we need to guarantee the low

computational complexity. The current efficient OS-CFAR method still has a lot of

room for improvements. We wish to explore some new sorting methods for OS-CFAR

to avoid the repeat sorting problem. We are interested in CASH-CFAR algorithm and

will study its performance in different environments and compared with OS-CFAR

and CA-CFAR. Also, the computational complexity of clustering methods needs to

be investigated, and we might need to find a more reliable and efficient clustering

method.
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Chapter 8

CONCLUSION

In the course of our research, we have studied two types of constant false alarm

rate(CFAR) algorithms, cell averaging CFAR(CA-CFAR), and order statistic CFAR(OS-

CFAR). Each approach performs very well in the homogeneous environment with

Gaussian noise. CA-CFAR suffers major performative drop-off in the clutter evolved

environments and data extends to a higher dimension. This approach has serious a

masking effect which causes the missing targets and performance damage.

The OS-CFAR approach performs great in clutter evolved environments, it gets

high probability of detection with low false alarm rate. The adjustment of the number

of training cells and select rank can affect the performance a lot. However, this ap-

proach requires high power assumption due to repeat sorting in every sliding window.

The efficient implementations of CA-CFAR and OS-CFAR both achieve a quiet

improvement on computational complexity, their big O and central processing unit(CPU)

time has been decreased a lot and also performances are not deteriorated.

Considering the results from CFAR methods alone, the performance of OS-CFAR

is much better than CA-CFAR no matter in which environment. But after applying

the density-based spatial clustering of applications with noise (DBSCAN) methods

to CFAR results from experimental data, results from OS-CFAR has more identify

groups than CA-CFAR, but the performance of these methods still need to investigate

with more experimental data.

Although CA-CFAR and OS-CFAR are not the best algorithms in detection statis-

tics, and both two algorithms has defects in some scenarios. Compare with CA-CFAR,

OS-CFAR approach is suitable for more complex environments.
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