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ABSTRACT

The first half of this dissertation introduces a minimum cost incentive mechanism

for collecting discrete distributed private data for big-data analysis. The goal of an in-

centive mechanism is to incentivize informative reports and make sure randomization

in the reported data does not exceed a target level. It answers two fundamental ques-

tions: what is the minimum payment required to incentivize an individual to submit

data with quality level ε? and what incentive mechanisms can achieve the minimum

payment? A lower bound on the minimum amount of payment required for guarantee-

ing quality level ε is derived. Inspired by the lower bound, our incentive mechanism

(WINTALL) first decides a winning answer based on reported data, then pays to in-

dividuals whose reported data match the winning answer. The expected payment of

WINTALL matches lower bound asymptotically. Real-world experiments on Amazon

Mechanical Turk are presented to further illustrate novelty of the principle behind

WINTALL.

The second half studies problem of iterative training in Federated Learning. A

system with a single parameter server and M client devices is considered for training

a predictive learning model with distributed data. The clients communicate with the

parameter server using a common wireless channel so each time, only one device can

transmit. The training is an iterative process consisting of multiple rounds. Adaptive

training is considered where the parameter server decides when to stop/restart a new

round, so the problem is formulated as an optimal stopping problem. While this

optimal stopping problem is difficult to solve, a modified optimal stopping problem

is proposed. Then a low complexity algorithm is introduced to solve the modified

problem, which also works for the original problem. Experiments on a real data set

shows significant improvements compared with policies collecting a fixed number of

updates in each iteration.
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Chapter 1

INTRODUCTION

This dissertation focuses on two related topics in machine learning field: (1) de-

signing incentive mechanism for collecting private data, (2) designing algorithm for

distributed learning.

1.1 Background and Introduction on Design of Incentive Mechanisms for Private

Discrete Distribution Estimation

The access to massive personal data via online/offline platforms enables new scien-

tific discoveries, new personalized applications and services, and new machine learning

algorithms. The success of big-data-based applications/services require the partici-

pation of, or access to, a massive population. In many systems, this massive partic-

ipation is a result of a highly popular application or service, such as Gmail, iPhone

or Amazon, which attracts millions of active users. In other systems such as Sur-

veyMonkey or Amazon Mechanical Turk, the massive participation is achieved using

monetary incentives.

This dissertation focuses on the design of incentive mechanisms for attracting

data subjects with monetary incentives instead of services. We consider a big-data

system where the platform elicits personal data from a crowd. The design of efficient

incentive mechanisms differs from other systems in the following aspects.

• The quality of the reported data is “controlled” by an individual, and often

“unverifiable” by the platform. This is because the platform does not have direct

access to true personal data so it will not be able to verify the truthfulness of the

reports. Furthermore, when the privacy-preserving mechanism is controlled by
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individuals, the amount of randomization added to the data is also unverifiable

to the platform. Therefore, the conventional wisdom of “pay according to the

quality” is difficult to implement.

• Many incentive mechanisms aim at “truthfulness” to make sure an individual

has no incentive to alter her/his answer and reports the true data. This how-

ever is not necessary and sometimes should be avoided in collecting personal

information. Companies, such as Google and Apple, increasingly emphasize pri-

vacy protection of their customers and prefer privacy-preserving data instead

of raw personal information. Both Google and Apple have pioneered in using

differential privacy in data collection Erlingsson et al. (2014); Apple (2020)

In light of the challenges above, this dissertation studies the design of incentive

mechanisms aiming at obtaining private data with target quality with minimum pay-

ment, for which we need to understand who should be paid and how much should

be paid? Both questions are highly nontrivial because a platform has limited in-

formation for assessing the quality of reported data. A flat-rate-payment mecha-

nism, which gives a predetermined payment to each data subject, is not cost-efficient.

This is because rational individuals, who are interested in maximizing their payoffs

(payoff = payment− cost), would not want to leak any personal information. So they

will submit completely random answers under a flat-rate-payment mechanism.

This dissertation considers a model where a platform is interested in collecting

private data from N individuals for discrete distribution estimation. The private

data of individual i is denoted by Si, which is a sample drawn from an underlying

discrete distribution θ. An individual reports Xi, where the conditional distribution

of Xi given Si is controlled by user i via εi, the privacy budget (i.e., privacy loss) of

individual i. An example of this model is presented in Figure 1.1.
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Figure 1.1: Example of Platform (Google) Collecting Web Browsing Information

from Individuals

In this example, the platform (Google) is collecting web browsing information from

individuals. Consider three websites that have information about NBA finals: NBA,

ESPN and TNT. The distribution that these three websites are visited is θ =
(

1
2
, 1

3
, 1

6

)
,

which the platform wants to learn. When the web browsing information is reported

to the platform, the answer is randomized to protect user privacy. For example,

the report from the rightmost user was changed from NBA, which is the private

information Si, to ESPN, which is the reported information Xi. An individual can

change the privacy budget ε to adjust the level of randomization. Given this model,

we first derive a lower bound on the minimum payment required given a target quality

level, and then propose an incentive mechanism that matches the lower bound under

some assumptions.
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1.2 Related Work on Design of Incentive Mechanisms for Private Data Collection

Most existing work on privacy-aware data collection Ghosh and Roth (2011);

Fleischer and Lyu (2012); Ligett and Roth (2012); Roth and Schoenebeck (2012);

Ghosh and Ligett (2013); Nissim et al. (2014); Ghosh et al. (2014) assumes that the

data collector is trustworthy and the privacy protection is implemented by the data

collector when the data collector releases the data. Therefore, the goal is to incentivize

truthful reporting from data subjects. This dissertation considers a fundamentally

different model where the data collector is not necessarily trustworthy. Privacy is

embedded in the reporting and the privacy budget is controlled directly by data

subjects. From the best of our knowledge, incentive mechanisms for such a model

have been studied only very recently. The most closely related line of work is Wang

et al. (2015, 2016), which studied the market value of private data by casting the

problem as eliciting private data from privacy-sensitive individuals. Both papers

consider binary data, which is a special case of the model studied in this dissertation.

Cai et al. (2015) investigated a similar problem under a model, where the reported

data is the true answer plus an additive noise with mean zero and variance as a

function of effort level ε. This dissertation does not assume an additive noise model.

In fact, noises introduced by many popular privacy protection mechanisms based on

differential privacy are not additive.

Another line of research closely related to the problem studied in this disserta-

tion is the design of incentive mechanisms for crowdsourcing to obtain high-quality

answers without knowing the ground truth. A popular approach used in crowdsourc-

ing is the peer prediction mechanisms Prelec (2004); Von Ahn and Dabbish (2004);

Miller et al. (2009); Witkowski and Parkes (2012); Radanovic and Faltings (2013,

2014, 2015); Dasgupta and Ghosh (2013); Shnayder et al. (2016), under which each

4



individual is paired with another randomly selected individual and is paid based on

how well her reported data predicts the data from her paired individual. Von Ahn and

Dabbish (2004) proposed an output agreement mechanism where a positive payment

is made if two answers agree. Prelec (2004) introduced the “Bayesian Truth Serum”

(BTS) mechanism, which requires a data subject to provide her own answers as well

as her belief of others’ answers. A high score is given to an answer when the actual

frequency is larger than the prediction. The mechanism has been further extended

in various different settings Witkowski and Parkes (2012); Radanovic and Faltings

(2013, 2014, 2015). Dasgupta and Ghosh (2013); Shnayder et al. (2016) introduced

strong truthfulness mechanisms for binary and non-binary signals in the presence of

multiple questions. Shah and Zhou (2015); Shah et al. (2015); Shah and Zhou (2016)

developed incentive mechanisms for improving quality of labelling in crowdsourcing.

The mechanisms incentivize workers to self-correct their answers in a second stage

after comparing their answers with a reference answer from other workers. The goal

of these mechanisms is to obtain “truthful” answers, while under our model, the plat-

form is interested in eliciting answers with target quality instead of truthful answers.

Gong and Shroff (2018) developed a truthful crowdsourcing incentive mechanisms for

quality, effort and data elicitation. The truthful incentive mechanism aims at maxi-

mizing social welfare instead of minimizing the payment of the data collector, which

also differs from this dissertation.

Khetan and Oh (2016) studies the problem of maximizing accuracy of crowdsouced

data given a fixed budget, under which crowdsoucing tasks are assigned adaptively

based on the answers collected. The dissertation introduced an adaptive mechanism

combined with inference scheme. Wauthier and Jordan (2011) introduced a Bayesian

inference model for crowdsourcing which integrates data collection and learning. The

focus of Wauthier and Jordan (2011); Khetan and Oh (2016) is on task assignment
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instead of incentive mechanisms. Liu and Liu (2015) developed a learning algorithm

to identify low- and high-quality labelers and further used this information to improve

the labelling quality in crowdsourcing. In Cummings et al. (2015), the authors con-

sidered a model under which the data collector can buy data with different variance

levels with different prices. The focus is on incentivizing data providers to report their

true cost functions, and it assumes the variance levels tagged are the true variance

levels of the data, which is fundamental different from our model where the variance

level is unverifiable to the data collector.

1.3 Background and Introduction on Federated Learning

Most existing machine learning applications for big-data analytics require the

models to be trained in data centers, which raises significant privacy concerns when

data used contain sensitive personal information such as clicks, photos, etc. So second

part of this dessertation considers problem of machine learning on distributed data.

Federated learning is a distributed machine learning framework proposed by Google 1

to train a machine learning model with datasets distributed over local devices (such

as mobile phones) instead of in data centers.

Training process is run on distributed device such as mobile phones so that a device

does not need to expose personal data on the device to servers or other devices. The

updates for the model (e.g. the gradients of SGD) will be transmitted to a parameter

server which will aggregate the updates to update the machine learning model. The

updated model will then be broadcast to the devices for the next iteration of training.

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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1.4 Related Work on Federated Learning

Federated learning has applications in many areas Yang et al. (2019), e.g. Google

has implemented federated learning in their Gboard Chen et al. (2019); Hard et al.

(2018), where a neural network language model is trained using data on personal

mobile devices for next-word prediction. Due to randomness and uncertain in data

processing and transmissions, it has been observed that even with dedicated servers,

learning can be slowed down significantly by a few machines that take unusually

long time to complete the training. The problem becomes even worse in Federated

Learning where devices have heterogeneous capacities, and are less reliable. Therefore,

a critical problem in Federated Learning is to schedule the training, in particular for

those algorithms that require iterative training. In the past, Wang and Joshi (2018a,b)

have studied the convergence of the loss function with respect to the number of local

iterations on each client and proposed mechanisms to optimally select the number

of local iterations on each client. This dissertation considers a different problem and

considers when the parameter server should stops the current iteration, updates the

machine learning model and starts the next iteration. Such a decision is based on the

number of updates received, the expected waiting time to receive the next update,

and how the loss function decreases as the number of updates increases.

1.5 Summary of Contributions

Contributions of this dissertation are composed of two related parts. In Chapter 2,

we studied incentive mechanisms for private discrete distribution estimation. We first

derived a lower bound on the minimum payment required for guaranteeing quality

level, and then proposed WINTALL — a novel incentive mechanism. The expected

payment of WINTALL matches the lower bound when the underlying parameter θ
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can be estimated by the platform accurately. We present its application to private

discrete distribution estimation, where WINTALL rewards individuals whose reported

answers match the most popular one. We also presented real-world experiments on

Amazon Mechanical Turk to validate the novelty of WINTALL-inspired mechanisms.

In Chapter 3, we studied the problem of iterative training in Federated Learning.

We consider a system with a single parameter server (PS) and M client devices for

training a predictive learning model with distributed data sets on the client devices.

The clients communicate with the parameter server using a common wireless channel

so each time, only one device can transmit. The training is an iterative process con-

sisting of multiple rounds. At beginning of each round, each client trains the model,

broadcast by the parameter server at the beginning of the round, with its own data.

After finishing training, the device transmits the update to the parameter server when

the wireless channel is available. The server aggregates updates to obtain a new model

and broadcasts it to all clients to start a new round. We consider adaptive training

where the parameter server decides when to stop/restart a new round, and formulate

the problem as an optimal stopping problem. While this optimal stopping problem is

difficult to solve, we propose a modified optimal stopping problem. We first develop

a low complexity algorithm to solve the modified problem, which also works for the

original problem. Experiments on a real data set shows significant improvements

compared with policies collecting a fixed number of updates in each iteration. the

problem as an optimal stopping problem and develop a low complexity algorithm

to solve the stopping rule. Our experiments on real dataset shows the significant

improvements compared with policies that collect a fixed number of updates in each

iteration.
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Chapter 2

A MINIMUM COST INCENTIVE MECHANISM FOR PRIVATE DISCRETE

DISTRIBUTION ESTIMATION

This chapter studies the design of incentive mechanisms aiming at obtaining pri-

vate data with target quality with minimum payment, for which we need to under-

stand who should be paid and how much should be paid? Both questions are highly

nontrivial because a platform has limited information for assessing the quality of re-

ported data. A flat-rate-payment mechanism, which gives a predetermined payment

to each data subject, is not cost-efficient. This is because rational individuals, who

are interested in maximizing their payoffs (payoff = payment− cost), would not want

to leak any personal information. So they will submit completely random answers

under a flat-rate-payment mechanism.

This chapter considers a model where a platform is interested in collecting private

data from N individuals for discrete distribution estimation. The private data of

individual i is denoted by Si, which is a sample drawn from an underlying discrete

distribution θ. An individual reportsXi, where the conditional distribution ofXi given

Si is controlled by user i via εi, the privacy budget (i.e., privacy loss) of individual i.

Given this model, we first derive a lower bound on the minimum payment required

given a target quality level, and then propose an incentive mechanism that matches

the lower bound under some assumptions.

2.1 Main Results

We formulate the design of minimum payment incentive mechanisms as an op-

timization problem in Section 2.2 assuming a cost-aware platform who is interested

9



in minimizing total payment when eliciting private data with required quality, and

strategic individuals who are interested in maximizing their payoffs. In Section 2.3,

we derive a lower bound on the minimum payment. The lower bound is derived by

introducing a genie-aided mechanism, where a genie knows θ. Under the genie-aided

mechanism, the platform pays an individual based on only her reported answer and θ,

so the minimum payment problem can be decoupled to minimum payment problems

for each individual. We further show that any incentive mechanism that does not

have access to θ can be mimicked by the genie-aided mechanism with the same ex-

pected payment. Therefore, the minimum payment under the genie-aided mechanism

is a lower bound on the original problem.

Inspired by the lower bound, we propose WINTALL, a winners-take-all incentive

mechanism in Section 2.3. WINTALL decides the winning value based on the re-

ported data, the privacy protection mechanism, and the target privacy budget ε, and

pays to individuals whose reported data match the winning value. The payment is de-

termined based on the marginal privacy cost of the individuals, the privacy protection

mechanism and the target privacy budget. For example, under the k-ary randomized

response mechanism Kairouz et al. (2016), the winning value turns out to be the most

popular value among the reported data, and the amount of payment is

g′(ε)
(M + ε)ε

M
∑N
i=1 1xi=m∗

N
− 1

, (2.1)

where M is the size of the alphabet (sample space), m∗ is the winning value, and g(ε)

is the cost of reporting data with privacy budget ε.

2.2 Model

Let i be the index of individuals and Si ∈ S be the private data of individual

i, where S is a finite set. We assume Si ∈ S to be a discrete random variable with

10



distribution θ, and assume {Si} are independent across individuals. We remark when

individuals are chosen uniformly at random from a large population like in most online

or offline surveys, it can be viewed as sampling without replacement. Given θ, the

independent assumption holds under sampling without replacement.

Let Xi ∈ X denote the data that individual i reports to the platform, where X is a

finite set and may be different from S. Furthermore, denote by σi(ε) : S → X a data-

reporting mechanism that generates reported data Xi according to the private data

with privacy budget ε. Xi is also a discrete random variable. For example, Google

RAPPOR and Apple iPhone have implemented privacy-preserving mechanisms based

on differential privacy Erlingsson et al. (2014); Apple (2020) where ε is the privacy

budget defined in differential privacy.

We assume that the privacy budget ε and the privacy preserving mechanism

uniquely determine the distribution

PX|S (x|s; ε) . (2.2)

We assume a common privacy preserving mechanism is used by all individuals but

the privacy budget εi is controlled by individual i. We further assume PX|S (x|s; ε)

is differentiable with respect to ε. Note that this assumption means an individual

controls PXi|Si via privacy budget instead of dictating every bit of reported data. We

believe this is a realistic assumption. For example, we can easily envision that Google

or Apple in the future may let users determine the level of privacy-privacy they prefer

and allow the individuals to set the value in their browser or iPhone settings, but it is

difficult to image that an individual would have the time and knowledge to customize

every single bit of her personal data reported to Google or Apple.

11



2.2.1 Cost-Aware Platform

We assume the platform is cost-aware and is interested in collecting data with

target quality levels (i.e. target privacy budget ε for individuals) with minimum pay-

ment. The platform therefore uses an incentive mechanism R (also called a payment

mechanism) such that Ri(X) is the payment to individual i when the reported data

is X, which is a vector such that the ith entry is the reported data of individual i,

i.e., Xi. The goal of the platform is to minimize the total payment
∑

iRi(X) under

the constraint εi ≥ ε†i , where ε†i is the target privacy budget chosen by the platform

and εi is the actual quality level of the data from individual i. In other words, the

platform aims at solving the following problem:

minR E [
∑

iRi(X)] (2.3)

subject to: ε ≥ ε† (2.4)

Ri(X) ≥ 0, ∀X, ∀i. (2.5)

We impose the constraint Ri(X) ≥ 0 for all X and all i so that negative payment

(i.e., penalty) is not allowed, which is common in practice.

2.2.2 Strategic Individuals

We assume individuals are rational and strategic. Each individual is associated

with a cost function gi(ε) which is the cost incurred to individual i when the privacy

budget is ε. We assume gi(·) is an increasing function.

We assume individual i has the following information:

• cost function gi(·),

• belief on θ, denoted by θ̃i (we assume each individual has personalized θ̃i to

model her bias (or lack of information)),

12



• the payment mechanism announced by the platform, and

• the privacy preserving mechanism.

Let Ri(Xi,X−i) denote the payment received by individual i given reported data

X, which is simply a different notation for Ri(X). The payment individual i expects

to receive with privacy budget ε, based on her belief θ̃i, is

hi(ε) = Eθ̃i [Ri(Xi,X−i)]

=
∑
x∈XN

Ri(x)
∏
j

(∑
s∈S

PX|S (xj|s; εj) θ̃is

)
,

where θ̃is is individual i’s belief on the probability that the private signal of individual

j is s, and ∑
s∈S

PX|S (xj|s; εj) θ̃is

is individual i’s belief on the probability individual j reports xj. Recall that we assume

the private signals are independent across users.

Example: Consider the k-ary randomized response mechanism proposed in Kairouz

et al. (2016) for discrete distribution estimation which guarantees differential privacy

budget

ε(d) = log(ε+ 1)

and is proved to be optimal in the low-privacy regime Kairouz et al. (2016). Under

the k-ary randomized response mechanism, given S = s and privacy budget ε,

PX|S(x|s; ε) =


ε+1
ε+M

, x = s

1
ε+M

, x 6= s
,

where M = |S|. It is easy to see that the function is differentiable in ε. We can further

obtain that ∑
s∈S

PX|S (xj|s; εj) θ̃is =
εj θ̃ixj + 1

εj +M
.
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We assume individuals are strategic and are interested in maximizing the expected

payoff, i.e. finding a quality level ε∗i such that

ε∗i ∈ arg max
ε

(hi(ε)− gi(ε)) . (2.6)

Individuals are also rational so that they will not participate if

max
ε

(hi(ε)− gi(ε)) < 0.

2.2.3 Minimum Payment Incentive Mechanism

Summarizing the discussions in the previous two subsections, the design of a

minimum cost incentive mechanism is to solve the following problem:

min
R

E

[∑
i

Ri(X)

]
(2.7)

subject to: Ri(X) ≥ 0, ∀X, ∀i (2.8)

arg max
ε

(hi(ε)− gi(ε)) ≥ ε†i ∀θ̃i,∀i. (2.9)

We next comment on constraint (2.9), which is called Bias-Proof condition in this

chapter.

• Bias-Proof: We require condition (2.9) holds for all θ̃i because the bias θ̃i in

general is unknown (or just partial known) to the platform. This condition

guarantees that individual i chooses quality level at least ε†i regardless of her

bias, which we feel is important in practice where individuals often have only

limited and heterogeneous knowledge about the underlying parameter θ.
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2.3 A Winners-Take-All Incentive Mechanism

Before we present WINTALL, we first derive a lower bound on the payment to

individual i with quality level ε. We define

PX(x; (θ, ε)) =
∑
s∈S

PX|S(x|s; ε)θs,

which is the probability that individual i reports x when the underlying parameter is

θ and the privacy budget of individual i is ε.

To establish a lower bound, we relax the bias-proof constraint and assume θ is

known to all data subjects:

min
R

E

[∑
i

Ri(X)

]
(2.10)

subject to: Ri(X) ≥ 0, ∀X, ∀i (2.11)

arg max
ε

(hi(ε)− gi(ε)) ≥ ε†i θ̃i = θ. (2.12)

Let L(X) denote the optimal solution to the problem.

Theorem 1. Consider the optimization problem defined by (2.10)-(2.12). We have

V l
i

(
ε†i , θ

)
, min

ε≥ε†i
g′i(ε)A(ε, θ) ≤ E [Ri(X)] , (2.13)

where

A(ε, θ) = max
x∈X

{
∂PX(x;(θ,ε))

∂ε

PX(x; (θ, ε))

}
. (2.14)

�

The proof of this theorem is in the appendix. We remark that since the opti-

mization problem (2.10)-(2.12) is a relaxed version of problem (2.7)-(2.9), V l
i (ε, θ) is

a lower bound on the amount of payment to data subject i for reporting data with

privacy budget at least ε.
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Given the lower bound, the question now is whether the lower bound can be

achieved? To answer this question, we first introduce the following notations:

x�(θ, ε) ∈ arg max
x∈X

{
∂PX(x;(θ,ε))

∂ε

PX(x; (θ, ε))

}
, (2.15)

and

x∗(θ, ε†i ) = x�(θ, ε∗i ), (2.16)

where

ε∗i = arg min
ε≥ε†i

g′i(ε)A(ε, θ). (2.17)

Furthermore, define

Wi(θ, ε
†
i ) ,

g′i(ε
∗
i )

∂PX(x�(θ,ε∗i );(θ,ε∗i ))

∂ε

. (2.18)

Note that the lower bound can be written as

min
ε≥ε†i

g′i(ε)
∂PX(x�(θ,ε);(θ,ε))

∂ε

PX(x�(θ, ε); (θ, ε)). (2.19)

Suppose ε is the optimal solution to the problem above. Then it suggests that the

lower bound can be achieved by paying individual i only when she reports x�θ,ε with

a payment of

g′i(ε)
∂PX(x†(θ,ε);(θ,ε))

∂ε

. (2.20)

We remark while (2.19) involves an optimization problem with respect to ε, it is the

average payment a data subject expects to receive given privacy budget ε. A desired

property of a payment mechanism (together the privacy protection mechanism) is

to have the average payment be an increasing function of ε. In other words, a more

accurate reporting should result in higher expected return. If it is the case, then the

optimal solution to (2.19) is ε†i , i.e. the target privacy level. Furthermore, when this

property holds and the target privacy budget is the same for all individuals, then

x∗θ,ε is the same for all individuals as well. The payment could differ when privacy
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cost functions are different. In the following section, we will present conditions and

examples that the desired property mentioned above holds.

The lower bound above suggests the following incentive mechanism.

A Winners-Take-All Incentive Mechanism (WINTALL)

(1) The platform announces target quality level ε†.

(2) Each individual reports her data (which can also be an decision of not partici-

pating).

(3) For non-participating individual, the payment is zero.

(4) From reported data X, the platform estimates θ, denoted by θ̃.

(5) For each participating individual i, the platform pays according to the reported

Xi, the estimation θ̃, and the target quality level ε†i . Specifically, if the reported

data is x∗
(
θ̃, ε†i

)
, individual i receives a payment of Wi

(
θ̃, ε†i

)
; otherwise, no

payment is made to individual i. �

Now let us understand whether the proposed incentive mechanism actually achieves

the lower bound asymptotically. Note that instead of tagging each value a fixed price,

the payment under WINTALL is based on the reported data and the estimation. So

it is a joint learning and incentive mechanism. Since the payment depends on the

estimation, the efficiency of WINTALL depends on the number of data subjects in

the system. When there are a large number of data subjects, the data collector can

accurately estimate θ, so the payment made to each data subject is close to the lower

bound.

We first prove the following theorem, which shows that ε(t) is a bias-proof Nash

equilibrium under WINTALL. Note that under WINTALL, given the estimation θ̃,

the payment to individual i is independent of other individuals’ reports. Furthermore,
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individual i needs to decide on the quality level εi before they receive their private

data. Therefore, we assume that individual i is confident about her belief and uses

her belief on the distribution θ̃i when choosing the quality level εi.

Theorem 2. If for any i,

Wi

(
θ, ε

(t)
i

)
PX (x∗ (θ, ε) ; (θ, ε))− gi(ε)

is strictly concave in ε for given ε(t) and any θ, then the target quality level ε(t) is

a bias-proof Nash equilibrium under WINTALL. With quality level ε
(t)
i , the expected

payment individual i receives is

Wi(θ, ε)PX (x∗ (θ, ε) ; (θ, ε)) , (2.21)

which equals to V l
i

(
ε

(t)
i , θ

)
when θ̃ = θ (i.e. the platform can accurately estimate Θ

from the collected data). �

The proof of this theorem is in the appendix.

‘‘Winners-Take-All”: Suppose {Si} are identically distributed and the target qual-

ity level is the same for all individuals. In this case, x∗
i,θ̃,ε

(t)
i

is independent of i and

can be written as x∗
θ̃,ε
. Therefore, only individuals who report x∗

θ̃,ε
will be paid. In

other words, under WINTALL, after collecting all data, the platform determines a

“winning” report x∗
θ̃,ε

and all payments go to the “winners”.

We now consider WINTALL under the k-ary randomized response mechanism

proposed in Kairouz et al. (2016) for discrete distribution estimation which guarantees

differential privacy budget

ε(d) = log(ε+ 1) :

PX|S(k|m; ε) =


ε+1
ε+M

, k = m

1
ε+M

, k 6= m
.
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Given the k-ary randomized response mechanism, we have

PX(m; (ε; θ)) =
M∑
k=1

PX|S(m|k; (ε, θ))PS(k; (ε, θ))

= θm
ε+ 1

ε+M
+ (1− θm)

1

ε+M

=
θmε+ 1

ε+M
,

and

∂

∂ε
PX(m; (ε; θ)) = − θmε+ 1

(ε+M)2
+

θm
ε+M

=
θmM − 1

(ε+M)2
.

Therefore, we have

PX(m; (ε; θ))
∂
∂ε
PX(m; (ε; θ))

=
εθm + 1

ε+M

(ε+M)2

Mθm − 1

= (ε+M)
ε

M

(
1 +

1
ε

+ 1
M

θm − 1
M

)
,

which is a decreasing function of θm. From that, we conclude that

m∗ = arg min
m

PX(m; (ε; θ))
∂
∂ε
PX(m; (ε; θ))

= arg max
m

θm.

Note that unless θm = 1
M

for all m, i.e., a uniform distribution, we have θm∗ >
1
M
,

which implies that

∂

∂ε
PX(m∗; (ε; θ)) =

θm∗M − 1

(ε+M)2
> 0,

and PX(m∗; (ε; θ)) is strictly concave in ε because ∂
∂ε
PX(m∗; (ε; θ)) is a decreasing

function in ε. We also note that for any ε > 0,

m∗ = arg max
m

θm = arg max
m

PX(m; (θ, ε)).

In other words, the most popular answers in the private data and in the reported

data are the same.

WINTALL with a target quality level ε in this case is as follows.

WINTALL for Private Discrete Distribution Estimation
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• After collecting data from N individuals, denoted by {xi}i=1,··· ,N , the platform

identifies the most popular answer m∗ :

m∗ ∈ arg max
m

∑N
i=1 1xi=m
N

.

Ties are broken uniformly at random.

• The platform pays each user who reports m∗ an amount of

∂g(ε)

∂ε

(M + ε)ε

M
∑N
i=1 1xi=m∗

N
− 1

. (2.22)

�

Remark: We note that the most popular answer in the private data is consistent

with that in the reported data, which creates the incentive for an individual to report

an answer close to her private data because the individual expects her private answer

to be the dominating one. Note that in this example, the only prior information the

platform needs is ∂g(ε)
∂ε
.

2.4 Proof of Theorem 1

Recall that the relaxed optimization problem (2.10)-(2.11) assumes each data

subject knows θ. Under a nonnegative payment mechanism R, the expected payment

to individual i is

E[Ri(Xi,X−i)]

=
∑
x∈XN

Ri(xi,x−i)PX(x; (θ, ε))

=
∑
xi∈X

PXi(xi; (θ, εi))
∑

x−i∈XN−1

Ri(xi,x−i)PX−i(x−i; (θ, ε−i)).

Define

R̄i(xi, (ε−i, θ)) =
∑

x−i∈XN−1

Ri(xi,x−i)PX−i(x−i; (θ, ε−i)),
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which is the expected payment data subject i receives when reporting xi. Then we

have

E[Ri(Xi,X−i)] =
∑
xi∈X

PX(xi; (θ, εi))R̄i(xi, (ε−i, θ)).

Let R̂i(xi, θ) denote a genie-aided payment mechanism which knows the parameter

θ, and pays individual i based on θ and xi. If the genie-aided mechanism pays

individual i an amount of R̄i(xi, ε−i, θ) when individual i reports xi, then R̂i(xi, θ)

and Ri(X) have the same expected payment to individual i. Therefore, any payment

mechanism based on the reported data x can be mimicked by a genie-aided payment

mechanism with the same expected payment.

Now if the optimal privacy budget of individual i is εi (εi ≥ ε†i ) then the following

equation has to hold

∂

∂ε
E[Ri(Xi,X−i)]− g′i(εi) (2.23)

=
∑
xi∈X

∂PX(xi; (θ, εi))

∂ε
R̄i(xi, (ε−i, θ))− g′i(εi) (2.24)

=0. (2.25)

Since R(X) can be mimicked by a genie-aided payment mechanism and (2.25) is a

necessary condition for εi to be the optimal privacy budget, the solution to problem

(2.7) is lower bounded by the solution to the following minimum payment problem:

min
R̂

∑
x∈X

R̂i(x, θ)PX(x; (θ, εi))

subject to:
∑
x∈X

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε
− g′i(εi) = 0.

Note that ∑
x∈X

R̂i(x, θ)PX(x; (θ, εi))

=
∑
x∈X

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε

PX(x; (θ, εi))
∂PX(x;(θ,εi))

∂ε

.
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Now recall the definition of A(ε, θ), we have

∑
x∈X :

∂PX (x;(θ,εi))

∂ε
>0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε

PX(x; (θ, εi))
∂PX(x;(θ,εi))

∂ε

≥
∑

x∈X :
∂PX (x;(θ,εi))

∂ε
>0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε
A(εi, θ). (2.26)

Note that A(εi, θ) > 0 and R̂i(x, θ) ≥ 0 according to their definitions, so

∑
x∈X :

∂PX (x;(θ,εi))

∂ε
≤0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε
A(εi, θ) ≤ 0.

On the other hand,

∑
x∈X :

∂PX (x;(θ,εi))

∂ε
≤0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε

PX(x; (θ, εi))
∂PX(x;(θ,εi))

∂ε

≥ 0,

which implies

∑
x∈X :

∂PX (x;(θ,εi))

∂ε
≤0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε

PX(x; (θ, εi))
∂PX(x;(θ,εi))

∂ε

≥
∑

x∈X :
∂PX (x;(θ,εi))

∂ε
≤0

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε
A(εi, θ). (2.27)

Combining inequalities (2.26) and (2.27), we have

∑
x∈X

R̂i(x, θ)PX(x; (θ, εi))

≥
∑
x∈X

R̂i(x, θ)
∂PX(x; (θ, εi))

∂ε
A(εi, θ)

=g′i(εi)A(εi, θ),

where the last equality holds due to condition (2.25), which immediately leads to the

lower bound.
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2.5 Proof of Theorem 2

Suppose individual i believes that Θ̃i is the estimation of the platform, the pay-

ment of individual i expects is

E[Ri(Xi,X−i)|εi] =

∫
θ̂

W
i,ε

(t)
i ,θ̂

PXi
(
x∗
i,ε

(t)
i ,θ̂

; (θ̂, εi)
)
fΘ̃i

(θ̂) dθ̂,

and the expected payoff is

E[Ri(Xi,X−i)|εi]− gi(εi)

=

∫
θ̂

(
W
i,ε

(t)
i ,θ̂

PXi
(
x∗
i,ε

(t)
i ,θ̂

; (θ̂, εi)
)
− gi(εi)

)
fΘ̃i

(θ̂) dθ̂.

Note that under the assumption of the theorem,

W
i,ε

(t)
i ,θ̂

PXi
(
x∗
i,ε

(t)
i ,θ̂

; (θ̂, εi)
)
− gi(εi)

is strictly concave in εi, and furthermore

W
i,ε

(t)
i ,θ̂

PXi
(
x∗
i,ε

(t)
i ,θ̂

; (θ̂, εi)
)
− gi(εi)

∣∣∣
εi=ε

(t)
i

= 0

according to the definition of W
i,ε

(t)
i ,θ̂

. Therefore,

ε
(t)
i = arg max

εi
W
i,ε

(t)
i ,θ̂

PXi
(
x∗
i,ε

(t)
i ,θ̂

; (θ̂, εi)
)
− gi(εi)

which holds for any θ̂. Hence,

ε
(t)
i = arg max

εi
E[Ri(Xi,X−i)|εi]− gi(εi),

which implies ε(t) is a Nash equilibrium. It is easy to check that (2.21) matches the

lower bound when θ̃ = θ.

2.6 Experiments on Amazon Mechanical Turk

In this section, we present experimental results using Amazon Mechanical Turk

(MTurk). Because of the logistical and legal matters involved in collecting sensitive
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personal data, we conducted an alternative experiment to evaluate the effectiveness

of WINTALL as well. From the perspective of users, this chapter studies the trade

off between privacy and payment. A similar trade off exists in crowd-sourcing where

the quality of a task increases as a worker invests more time and effort to finish

the task. So we can draw a close equivalence between these problems as shown in

Table 2.1. Our results show that WINTALL-type incentive mechanisms can help

platform obtain better answers with less payment compared with the traditional flat-

rate-payment mechanism that pay a flat-fee to each worker who participates.

Private-data Collection Crowd-Sourcing

Privacy-level in reported data Job quality

Privacy-Loss Time and Effort

Table 2.1: The Equivalence of Private-Data Collection and Crowd-Sourcing

Our tasks were to translate paragraphs written in English to Chinese. This cor-

responds the scenario that the ground true has a large alphabet set and θ is also

unknown. We acknowledge that to calculate the “optimally” payment under WIN-

TALL, the data collector needs to know θ and the cost functions of data subjects, both

of which may not be available. Our experiment was designed to show the significant

gain of WINTALL even without knowing these pieces of information.

The key intuition behind WINTALL is only to pay users who provide the “best”

answer, where the quality of an answer is evaluated by comparing with answers sub-

mitted by other users. In this experiment, we will therefore compare all translations

submitted by workers and then offer significant bonus to user(s) who provided the

best translation. In particular, we launched 9 different translation tasks on MTurk.

Each task is to translate a paragraph of 90-120 words chosen from some articles
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about IT from Economist.com to Chinese. For each task, we tested the following

three different payment mechanisms, where payment amounts were chosen according

to typical payments at MTurk, which is 10 to 100 cents.

• Flat: The first payment mechanism pays each worker 30 cents after finishing a task.

• WINTALL-20: The second payment mechanism pays each worker 20 cents after

finishing each task and additional 20 cents if the translation is considered to be

good.

• WINTALL-40: The third mechanism pays each worker 20 cents after finishing each

task and additional 40 cents if the translation is considered to be good.

Note that each payment mechanism includes a base payment so that workers would

not view the tasks as scams. We can think each task offer 20 cents as participation

fee so the first mechanism pays 10 cents for each completed task, the second pays

20 cents only to high-quality translations and the third one pays 40 cents only to

high-quality translations. Here are two key observations:

• Comparing Flat and WINTALL-20, WINTALL-20 results in more high-quality

translations with less total payment.

• Comparing WINTALL-20 and WINTALL-40, WINTALL-40 results in more high-

quality translations.

Both observations are consistent with our theoretical results. More details about the

experiment are presented below.

Experiment Setup

For each translation task and each payment mechanism, we set up 20 hits, which

means at most 20 workers are invited to finish each translation task under a specific
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payment mechanism, we have 3 × 9 × 20 = 540 data samples. Here is one of the

translation task:

“Will that be enough? European privacy activists are derisive about the new ar-

rangement. They do not believe that an American government agency which operates

in secret can be trusted to obey any rules. What is the point in Europeans having

judicial redress when they will not know if their data has been spied on? It is likely

that the new deal will be tested in the European Court of Justice. But if the European

Commission tells the court that American privacy protection is now adequate, it will

be a lot harder for judges to rule otherwise. The transatlantic data flows, and those

whose jobs, profits and deals depend on them, look a lot safer.”

After the experimental results have been collected, they were evaluated by the first

author who is a native Chinese. We rejected some answers not written in Chinese or

with extremely poor quality (these are only a few of them).

To evaluate the quality of each translation, we graded each translation from 0 to

5. Each paragraph consists of 4 to 6 sentences. We gave one point if one sentence

is correctly translated. Sometimes, one point was given to half of a sentence if the

paragraph consists of less than 5 sentences, or one point was given to two sentences

if the paragraph consists of more than 5 sentences.

Figures 2.1 and 2.2 show the average scores and average payments of the nine

different tasks under different payment mechanisms. As we can see from Figure 2.1,

for 7 of 9 tasks, WINTALL-20 yielded higher average scores than Flat, 25.4% increase

on average, and for all 9 tasks, WINTALL-40 resulted in higher mean scores than

Flat, 47.3% increase on average. Comparing WINTALL-20 and WINTALL-40, for

7 of the 9 tasks, WINTALL-40 resulted in higher mean scores, 17.7% increase on

average. Figure 2.2 shows that for all tasks both WINTALL-20 and WINTALL-40

resulted in lower average payments than Flat. When comparing WINTALL-20 and
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Figure 2.1: Mean Scores of Different Tasks with Different Payment Mechanisms

WINTALL-40, WINTALL-40 paid more in 8 of 9 tasks.

Figure 2.3 shows the distribution of scores across the 9 tasks under different pay-

ment mechanisms. We can clearly see that the distribution shifts towards higher

scores when the bonus payment increases. The number of good answers (score 4 or

5) increases from 16 for Flat to 28 for WINTALL-20 and 37 for WINTALL-40, re-

spectively. The number of very good answers (score 5) increases from 7 (Flat) to 9

(WINTALL-20) and 12 (WINTALL-40), respectively. Figure 2.4 shows that average

scores across all tasks under different payment mechanisms. Comparing to Flat, the

average score increases by 19.4% and 37.5%, respectively, while the average payment

reduces by 30% and 24.4%, respectively. The results of this experiment confirmed

the novelty of our proposed payment mechanism.
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Figure 2.2: Mean Payment of Different Tasks with Different Payment Mechanisms
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Figure 2.3: Score Distributions under Different Payment Mechanisms
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Figure 2.4: Mean Score and Mean Payment under Different Payment Mechanisms

2.7 Summary

In this chapter, we studied incentive mechanisms for private discrete distribution

estimation. We first derived a lower bound on the minimum payment required for

guaranteeing quality level, and then proposed WINTALL — a novel incentive mech-

anism. The expected payment of WINTALL matches the lower bound when the

underlying parameter θ can be estimated by the platform accurately. We present its

application to private discrete distribution estimation, where WINTALL rewards indi-

viduals whose reported answers match the most popular one. We also presented real-

world experiments on Amazon Mechanical Turk to validate the novelty of WINTALL-

inspired mechanisms.
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Chapter 3

AN OPTIMAL STOPPING APPROACH FOR ITERATIVE TRAINING IN

FEDERATED LEARNING

The chapter considers an important sub-problem in federated learning: when

should the parameter server stop the current round (iteration), updates the machine

learning model and starts the next round.

Federated learning Training process is run on distributed device so that a device

does not need to expose personal data on the device to servers or other devices. The

updates for the model (e.g. the gradients of SGD) will be transmitted to a parameter

server which will aggregate the updates to update the machine learning model. The

updated model will then be broadcast to the devices for the next iteration of training.

So when the parameter server should stop the current iteration, updates the machine

learning model and starts the next iteration becomes an important problem to be

figured out.

Such a decision is based on the number of updates received, the expected waiting

time to receive the next update,and how the loss function decreases as the number of

updates increases.

3.1 Optimal stopping problem formulation in federated learning

In this section, we introduce how we formulate the problem as an optimal stopping

problem and propose an optimal solution for this problem .

We consider a system with a single parameter server and M client devices such as

mobile phones, where each client owns a local dataset. The system is used to train

a learning model using the local datasets in an iterative fashion. Each iteration is
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called a “round”. At the beginning of each round, the parameter server broadcasts

the latest parameters (such as the parameters of the neural network) to the clients.

After receiving the parameters, each client trains the model using its local dataset,

e.g. calculate the gradients using SGD, and then transmits the updates (e.g. the

gradients) to the parameter server, which aggregates the updates to obtain a new

model. This finishes one round, and the next round starts when the parameter server

broadcasts the new parameters to the clients. We further assume following idealized

data processing and communication models.

Data Processing Model: We assume each client finishes the data processing and

computing the update with some probability p at each time slot. In other words, we

assume the processing time of each dataset is geometrically distributed.

Communication Model: We assume the client mobile devices share a single chan-

nel when communicating with the parameter server (this assumption can be easily

extended to multichannel OFDM systems). At the beginning of a time slot, one of

the clients who have finished their computing tasks but have not transmitted the data

to the parameter server will be selected uniformly at random to upload the update

to the server, and the transmission succeeds with probability µ at the end of the

time slot. At some stopping time (the choice of the stopping time is the focus of this

paper), the parameter server stops accepting new updates and updates the global

model using all uploaded information. The parameter server then broadcasts a new

global model to all clients to start a new round.

This iterative training process is shown in Figure 3.1, where τ denotes length of

a time slot.

We assume the amount of time it takes for the parameter server to broadcast the

updated parameters is t0, which remains a constant for all rounds and includes both

the time it takes to aggregate all the updates it receives and the time it takes to
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Figure 3.1: Iterative Training Process

transmit the new parameter to all clients.

We define αn is the number of clients who have not finished processing their

local datasets, βn is the number of clients who have finished computing but have not

transmitted the updates to the parameter server, and kn = M−αn−βn is the number

of clients who have updated the parameters based on local datasets and also uploaded

the updates to the parameter server. The iterative training process can be modeled

as a discrete-time Markov chain (DTMC) whose state at time slot n is denoted by

Xn = [Kn,βn]. Denote by xn = [kn, βn] is a realization of Xn.

Let R(k) denote the reward that the parameter server obtains after receiving the

kth update. The reward R can be decrement of the loss function. We make the

following assumptions in this paper:

(1) R is positive, increasing with k and bounded.
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(2) ∆R(k) = R(k + 1)−R(k) is decreasing in k, i.e. the reward of receiving a new

update is diminishing as the parameter receives more and more updates.

We first focus on a single round with a given reward function. Let N denote the

number of time slots in this ground, which is a random variable as the parameter

server can decide to terminate this round and start the next round anytime. We

consider the following stopping problem:

J∗ = sup
π∈S

E[R(KN)]

E[Nτ + t0]
(3.1)

where π is a stopping policy, S is the set of all stopping policy, N is stopping time,

t0 is a constant as defined above.

The problem above is difficult to solve. Instead, we introduce the following prob-

lem and then show that resolving this new problem can lead to the solution of the

original problem:

Vλ = sup
π∈S

E [R(KN)− λ(Nτ + t0)] (3.2)

where λ is a positive constant.

For simplicity, we include the time slot in the system state (Xn, n) = (Kn,βn, n).

The transition probabilities of the Markov chain are as follows, for given state (k, β, n)

and any 0 ≤ i ≤M − k − β :

If β > 0, then

Pr [(Xn+1, n+ 1) = (k, β + i, n+ 1)|(Xn, n) = (k, β, n)]

=(1− µ)

(
M − k − β

i

)
pi(1− p)M−k−β−i,

Pr [(Xn+1, n+ 1) = (k + 1, β − 1 + i, n+ 1)|(Xn, n) = (k, β, n)]

=µ

(
M − k − β

i

)
pi(1− p)M−k−β−i;
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If β = 0, then

Pr ((Xn+1, n+ 1) = (k, i, n+ 1)|(Xn, n) = (k, 0, n))

=

(
M − k − β

i

)
pi(1− p)M−k−β−i.

If β > 0, then:

Pr [(k, β + i, n+ 1)|(k, β, n)] = (1− µ)

(
M − k − β

i

)
pi(1− p)M−k−β−i,

Pr [(k + 1, β − 1 + i, n+ 1)|(k, β, n)] = µ

(
M − k − β

i

)
pi(1− p)M−k−β−i;

If β = 0, then:

Pr ((k, i, n+ 1)|(k, 0, n)) =

(
M − k − β

i

)
pi(1− p)M−k−β−i.

We define V (·) to be the value function so that V (k, β, n) is the value of state

(xn, n) = (k, β, n), and

V (k, β, n) = sup
π,KN≤M−k

E [R(k +KN)− λ((N + n)τ + t0)] .

We can easily verify that Vλ = V (0, 0, 0).

The following theorem establishes the relationship between the original problem

and the modified problem. The proof can be found in the appendix.

Theorem 3. If there exists λ such that

Vλ = supπ∈S E(R(KN)− λ(Nτ + t0)) = 0, then

J∗ = sup
π∈S

E[R(KN)]

E[λ(Nτ + t0)]
= λ.

Furthermore, if Vλ = supπ∈S E(R(KN) − λ(Nτ + t0)) = 0 is attained by some policy

π∗ ∈ S, then the policy π∗ is also optimal for maximizing E [R(KN)] /E [Nτ + t0] .

34



Motivated by the result above, we can find the optimal parallel training policy by

the following steps.

• First initialize λ, and find optimal πλ for Problem (3.2) as well as Vλ.

• Repeatedly update λ, and find a new optimal policy πλ and optimal value Vλ

for Problem (3.2) until finding a λ∗ such that optimal value Vλ∗ = 0. The final

policy π∗ is the optimal policy.

In next section, we present a low complexity algorithm for Problem (3.2).

3.2 Low-Complexity Algorithm for Solving the Modified Optimal Stopping

problem

In this section, we focus on fixed M and given any λ. We will show that optimal

policy is a threshold policy. For any state (xn, n) = (k, β, n), the actions are to either

terminate the current round or to continue to the next time slot. The reward of

stopping at that stage is R(k) − λ(n · τ + t0). If β = 0, then to continue means to

let unfinished clients continue to compute, but no update will be transmitted since

β = 0. Otherwise, βn ≥ 1, to continue means a randomly selected client from the

β clients will transmit its result to the server while (M − k − β) unfinished clients

continue to process their datasets. The Bellman equation in these two cases can be

written as

If β > 0:

V (k, β, n) = max{R(k)− λ(nτ + t0),

µ

(
M−k−β∑
i=0

W (i)V (k + 1, β − 1 + i, n+ 1)

)

+(1− µ)

(
M−k−β∑
i=0

W (i)V (k, β + i, n+ 1)

)}
; (3.3)
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If β = 0:

V (k, 0, n) = max{R(k)− λ(nτ + t0),

M−k−β∑
i=0

W (i)V (k, i, n+ 1)

}
, (3.4)

where W (i) =
(
M−k−β

i

)
pi(1− p)M−k−β−i.

Theorem 4. The following threshold policy is optimal for Problem (3.2): For any

state (k, β, n), policy π∗ first check β.

• If β > 0: if k < k∗, continue; if k ≥ k∗, stop;

• If β = 0: if k < k∗0, continue; if k ≥ k∗0, stop.

In the algorithm above, k∗ = min{k∗1,M}, k∗1 = inf{k : ∆R(k) ≤ λτ
µ
}, and k∗0 ≤ k∗.

Note that k∗ has a closed-form but k∗0 does not. We next discuss how to calculate

k∗0 numerically based on the following lemma. The proof can be found in the appendix.

Lemma 1. Given any λ > 0, and any state (k, β, n) such that k ≤ k∗, k + β ≥ k∗

and n ≥ k, we have

V (k, β, n) = R(k∗)− λ(nτ + t0)− (k − k∗)λτ
µ
.

From the proof of Theorem 4 we can omit n in state(k, β, n) and just need to

calculate a two-dimensional value table of (k, β) with a fixed n. We can calculate

this value using dynamic programming and setting a fixed n which is larger than M.

This is a value table with size of M ×M . Value of states with different n can be

calculated directly from Lemma 3: For any state (k, β, n) with n ≥ k, V (k, β, n+1) =

V (k, β, n)− λτ . (Proof can be found in appendix.)
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Furthermore, the value for states with k ≥ k∗and n ≥ k, and it has been shown

that the value for states with k ≤ k∗, k + β ≥ k∗ and n ≥ k, so that we need to

calculate a value table with size k∗ × k∗ instead of size M ×M , which are value of

states with k + β < k∗. So we only need to use dynamic programming to calculate

k∗0 as well as Vλ (V (0, 0, 0)).

We start from state (k∗ − 1, 0, n), where n is a fixed number larger than M. The

Bellman equation is as follows:

V (k∗ − 1, β = 0, n) = max{R(k∗ − 1)− λ(nτ + t0),

M−k∗+1∑
i=0

G(i) · V (k∗ − 1, i, n)− λτ} (3.5)

where G(i) =
(
M−k∗+1

i

)
pi(1− p)M−k∗+1−i.

Since V (k∗−1, i ≥ 1, n) are known, and V (k∗−1, i ≥ 1, n) = R(k∗)−λ(nτ+t0)−λτ/µ

according to Lemma 1, so we can calculate this Bellman equation and get V (k∗−1, i ≥

1, n).

Similarly we calculate the values of state (k∗ − 2, 1, n) and (k∗ − 2, 0, n). The

optimal rule for state (k∗ − 2, 1, n) is to continue according to Lemma 3, so

V (k∗ − 2, 1, n) = µ

(
M−k∗+1∑
i=0

G(i)V (k∗ − 1, i, n+ 1)

)

+ (1− µ)

(
M−k∗+1∑
i=0

G(i)V (k∗ − 2, 1 + i, n)

)
− λτ,

(3.6)

where G(i) =
(
M−k∗+1

i

)
pi(1−p)M−k∗+1−i. All values on the right hand side are known,

so V (k∗ − 2, 1, n) is done.
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For (k∗ − 2, 0, n), we have the following Bellman equation:

V (k∗ − 2, β = 0, n) = max{R(k∗ − 2)− λ(nτ + t0),

M−k∗+2∑
i=0

H(i) · V (k∗ − 2, i, n)− λτ

}
, (3.7)

where H(i) =
(
M−k∗+2

i

)
pi(1 − p)M−k

∗+2−i. Since we just get V (k∗ − 2, 1, n), and

V (k∗ − 2, i ≥ 2, n) are known by Lemma 1, after solving this bellman equation, we

can get V (k∗ − 2, β = 0, n).

Next we continue calculate V (k∗ − 3, 2, n) ,V (k∗ − 3, 1, n), V (k∗ − 3, 0, n); and

then V (k∗ − 4, 3, n) ,V (k∗ − 4, 2, n), V (k∗ − 4, 1, n),V (k∗ − 4, 0, n) · · · , V (0, β =

k∗ − 1, n), V (0, β = k∗ − 2, n), ..., V (0, β = 0, n). Now we have got this k∗ × k∗ value

table.

According to Lemma 3, we can get Vλ = V (0, 0, 0) = V (0, 0, n) + nλτ . According

to Lemma 6, we can calculate

k∗0 = min {M, inf{k : V (k, 0, n) = R(k)− λ(nτ + t0)}} ,

which determines the optimal stopping rule according to Theorem 4.

The algorithm is summarized below for given λ > 0.

Then we show a lower bound for J∗ and an upper bound for k∗.

Corollary 1. J∗ is lower bounded by

R(1)

( 1
µ

+ 1
p
)τ + t0

.

Proof. By definition of J∗, we choose a policy π which is to stop when k = 1. so

J∗ ≥ R(1)
Eπ(Nτ+t0)

. If M = 1, then Eπ(N) = 1
µ

+ 1
p
, so for any M ≥ 1, Eπ(N) ≤ 1

µ
+ 1

p
,

then J∗ ≥ R(1)
Eπ(Nτ+t0)

≥ R(1)

( 1
µ

+ 1
p

)τ+t0
.
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Algorithm 1: Solution algorithm for problem 3.2

Given parameters: M ,t0,τ ,λ, µ, p and reward function R(k);

Calculate k∗, where k∗ = min{M,k∗1}, k∗1 = inf{k : ∆R(k) ≤ λτ
µ
}

Set n = k∗1 + 1;

Get V (k, β, n) = R(k)− λ(nτ + t0) directly by lemma 2, where

k ≥ k∗, 0 ≤ β ≤M − k∗;

Get V (k, β, n) = R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/µ by lemma 5, where

k < k∗, k∗ − k ≤ β ≤M − k ;

Calculate V (k∗ − 1, β = 0, n) by solving bellman equation;

Calculate V (k∗ − 2, β = 1, n), V (k∗ − 2, β = 0, n);

V (k∗ − 3, β = 2, n), V (k∗ − 3, β = 1, n),

V (k∗ − 3, β = 0, n);

...

V (0, β = k∗ − 1, n), V (0, β = k∗ − 2, n),

..., V (0, β = 0, n) sequentially;

Return optimal value Vλ = V (0, 0, 0) = V (0, 0, n) + λn;

Calculate k∗0 = inf{k : V (k, 0, n) = R(k)− λ(nτ + t0)},

Return optimal policy πλ by theorem 2.

If β > 0: If k < k∗, continue; else, stop

else: If k < k∗0: continue; else, stop.
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Corollary 2. J∗ is upper bounded by maxk
R(k)
kτ+t0

, where k is an integer and 0 ≤ k ≤

M .

Proof. An obvious upper bound for J∗ is J ′ = supπ∈S
E[R(KN )]
E[N ·τ+t0]

, where p and µ are both

set to 1, so J∗ is upper bounded by maxk
R(k)
kτ+t0

, where k is integer and 0 ≤ k ≤M .

3.3 The solution of the Original Problem

In the previous section, we have shown how to find optimal πλ for problem 3.2 as

well as Vλ for a given λ > 0.

Next we focus on finding the optimal λ so that we can solve the original problem.

Corollary 1 shows a lower bound on J∗ , we can use this to initialize the λ. The

following lemma demonstrates some important properties of Vλ.

Lemma 2. Vλ is decreasing and convex in λ.

Proof. The idea of proof comes from Ferguson (2012). Assume λ1 < λ2, then

Vλ2 = Eπλ2 [R(KN)− λ2(Nτ + t0)]

< Eπλ2 [R(KN)− λ1(Nτ + t0)]

≤ Eπλ1 [R(KN)− λ1(Nτ + t0)]

= Vλ1 ,

so Vλ is decreasing with λ.

To prove convexity, given λ1 and λ2, let 0 < θ < 1, λ = θλ1 + (1− θ)λ2, so

Vλ = Eπλ [R(KN)− (θλ1 + (1− θ)λ2)(Nτ + t0)]

= θEπλ [R(KN)− λ1(Nτ + t0)]

+ (1− θ)Eπλ [R(KN)− λ2(Nτ + t0)]

≤ θVλ1 + (1− θ)Vλ2 .
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Since we initialize λ using the lower bound in Corollary 1, we can get a upper

bound on k∗ for all possible λ when R(k) = c− a
k

for some constants a and c.

Corollary 3. Given R(k) = c− a
k+1

, we have k∗ <
√

a
c−a/2(1 + µ

p
+ µt0

τ
).

Proof. It is directly from the definition of k∗ and Corollary 1. Since k∗ = inf{k :

∆R(k) ≤ λτ
µ
}, we have

a

k∗(k∗ + 1)
> λτ/µ >

c− a/2
( 1
µ

+ 1
p
)τ + t0

τ/µ.

Therefore,

k∗ <

√
a

c− a/2
(1 +

µ

p
+
µt0
τ

).

Corollary 3 obtains an upper bound on k∗, which depends on parameters a, c, µ,

p, t0, and τ , but independent of M. Therefore, the complexity of the algorithm for

(3.2) is O(M(k∗)2) = O(M).

Next we show details for solving problem 3.1. In this algorithm, σ is the predefined

accuracy level.

3.4 Evaluation

Data and Model: We consider the experiment of training a CNN model with

distributed MNIST data. The dataset is divided into 100 groups, each representing

a local dataset (or a client). Each client trains the CNN model with its own data

and uploads its newly trained parameters sequentially to a parameter server if the

channel is ON.

Reward function: We first plot the reward function R(k) which is defined to

be the decrement of the loss function (the cross-entropy loss) when the number of
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Algorithm 2: Solution for problem 1

Given parameters: M ,t0,τ , µ, p ; Reward function R(k);

Step 1: Calculate lower bound λlower and upper bound λupper by corollary 1

and corollary 2.

Step 2: λ = (λupper + λlower)/2

while |Vλ| > σ = 0.001 do

if Vλ > 0 then

λlower ← λ, λ← (λupper + λlower)/2

else

λupper ← λ, λ← (λupper + λlower)/2

end

end

Step 4: return λ, which is equal to J∗

updates increases from k − 1 to k. The loss function for k = 1, · · · , 40, ... is shown in

Fig. 3.2, from which we can see that R(k) = c− a
k+1

fits the reward function well. So

in our experiments, we assume R(k) = c− a
k+1

for some a > 0 and c > 0.

We evaluated the proposed algorithms using the MNIST dataset. In our ex-

periment, we chose M = 100, t0 = 3, 000ms which includes broadcasting time and

aggregating time, τ = 10ms, and defined the reward function to be R(k) = 0.04− 0.018
k+1

.

3.4.1 Geometric Distribution Case

About parameters transmissions µ and success probability of data processing p in

the model, we further chose success probability of transmissions µ to be 5
8
. The size

of the parameters of our CNN is about 80k-100k. Based on the transmission rate

of current 4G systems, which is about 50k per 10ms, we assume the average time

for finishing uploading the parameters is around 16ms, which leads to our choice of
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Figure 3.2: Simulation Result about Reward Function(Loss Function) with 100 User

µ. The success probability of data processing p is set to be 1/500. We estimate the

average training time on cell phone is 5000ms. Since the duration of each time slot

is 10ms, the transmission probability is set to be 1/500.

We compared the loss function under the proposed algorithm based on optimal

stopping time and other algorithms based on fixed number of updates in each round.

In particular, we considered two other algorithms: the first algorithm require updates

from all M devices and the second algorithm, used by Google, requires 10% updates

from the M device. We remark that the 10% rule is selected by comparing different

fractions and found the best one for each application McMahan et al. (2016). So it

can be viewed as a policy uses the “optimal” number of updates at each iteration.

For the optimal stopping time algorithm, we first obtain lower bound λlower =

0.01203 and upper bound λupper = 0.01234. We then found the optimal λ∗ = 0.01209,
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Figure 3.3: Experiment Result Using Optimal Stopping Rule with 100 Users

from which, we obtained that k∗=10 and k∗0 = 8 for the optimal stopping rule.

The testing loss as a function time is shown in Figure 3.3. Each data point in

lines represents the test loss after one round of training. The length interval between

two data points in each line of our figure shows average running time in one round

for each stopping rule. For example, the average simulated running time of a round

with the optimal stopping rule (k∗ = 10, k∗0 = 8) is 3.45s, as well as 3.55s for k = 10

and 28.76s for k = 100. We can see that the optimal stopping rule reduce the loss by

at least 170% throughout the training process. Figure 3.4 compares just the optimal

stopping rule and the 10% rule. We again can see from this figure that even comparing

to the “optimal” fixed k, the optimal stopping rule still reduces the loss function by

7% throughout.
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Figure 3.4: Experiment Result Using Optimal Stopping Rule with 100 Users

3.4.2 Heavy-Tailed Case

In real life, Heavy-tailed Distributions are more general. In this subsection of

evaluation, instead of assuming that transmission and computation process follows

geometry distribution, we assume transmission and computation process are i.i.d

and follow Pareto distribution. Now we introduce how we choose parameters of

Pareto distribution. In last subsection, we assume average time for finishing uploading

the parameters is around 16ms, which is 1.6 time slot. This leads to our choice of

k,m, which is k = 1.454,m = 0.5. Also We estimate average training time on cell

phone is 5000ms, which is 500 time slots, so we choose k,m for computing process is

k = 2,m = 250.

All other models and data are the same as them in last subsection. Now we

will show how well our algorithm works if real transmission and computation process
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does not follow geometric distribution but heavy-tailed(Pareto distribution). Just

as in last geometric case, We also compared the loss function under the proposed

algorithm based on optimal stopping time and other algorithms based on fixed number

of updates in each round. The 10% rule is also selected as our bench mark.

Since all data and models are same, k∗=10 and k∗0 = 8 is still our optimal stopping

rule in this scenario.

The testing loss as a function time is shown in Figure 3.5. The average simulated

running time of a round with the optimal stopping rule (k∗ = 10, k∗0 = 8) is 5.7s,

as well as 5.71s for k = 10 and 46.56s for k = 100. We can see that the optimal

stopping rule still reduces the loss by at least 130% throughout the training process

even transition and computation process follow heavy-tailed distribution. Figure 3.6

compares just the optimal stopping rule and the 10% rule. We again can see from

this figure that even comparing to the “optimal” fixed k, the optimal stopping rule

still reduces the loss function by 4.5% throughout.

This evaluation result shows that our optimal rule given by our algorithm works

very well even the computing and transmission process does not follow geometric

distribution which is assumed in our model. If computing and transmission process

follow some heavy tailed distribution, our algorithm can still provide a very promising

stopping rule on problem when to optimally stop a round in federated learning.

In the following sections, we introduce the proof of Theorem 3, theorem 4 and

Lemma 1.

3.5 Proof of Theorem 3

Proof. Given some λ, if supπ∈S E(R(KN)−λ(Nτ + t0)) = 0, then E(R(KN)−λ(Nτ +

t0)) ≤ 0 for all π, so ER(KN)/E(Nτ+t0) ≤ λ under all π, then supπ∈S ER(KN)/E(Nτ+

t0) ≤ λ.
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Figure 3.5: Experiment Result Using Optimal Stopping Rule with 100 Users in

Heavy-tailed Case

If Vλ = supπ∈S E(R(KN)−λ(Nτ + t0)) = 0 and is attained at some policy π∗ ∈ S,

then for any positive ε, Eπ∗(R(KN)−λ(Nτ + t0)) ≥ −ε, then Eπ∗(R(KN)/Eπ∗(Nτ +

t0) ≥ λ − ε/Eπ∗(Nτ + t0) ≥ λ − ε/t0, since ε is positive and arbitrary small, so

supπ∈S ER(KN)/E(Nτ + t0) ≥ λ.

So we have J∗ = supπ∈S ER(KN)/E(Nτ + t0) = λ.

Moreover, if Vλ = Eπ∗(R(KN) − λ(Nτ + t0)) = 0, then Eπ∗ R(K∗N)/Eπ∗(N∗τ +

t0) = λ = supπ∈S ER(KN)/E(Nτ + t0), so π∗ is an optimal policy for maximizing

ER(KN)/E(Nτ + t0).
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Figure 3.6: Experiment Result Using Optimal Stopping Rule with 100 Users in

Heavy-tailed Case

3.6 Proof of Theorem 4

Before the proof of theorem 4, we first introduce some lemmas. Remark that for

any possible state (k, β, n), n ≥ k always holds, so we only need to consider states

with n ≥ k.

Lemma 3. For any state (k, β, n) with n ≥ k, V (k, β, n+ 1) = V (k, β, n)− λτ .

Proof. The proof directly comes from the definition of V (k, β, n),

V (k, β, n+ 1) = sup
π

E [R(k +KN)− λ((N + n+ 1)τ + t0)]

= sup
π

E [R(k +KN)− λ((N + n)τ + t0)]− λτ

= V (k, β, n)− λτ
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By the principle of optimality, an optimal policy is to compare V (k, β, n) with

R(k)− λ(nτ + t0), which is the reward of stopping at state (k, β, n). If V (k, β, n) =

R(k)−λ(nτ + t0), then stop; if V (k, β, n) > R(k)−λ(nτ + t0), then continue. Lemma

1 shows that the optimal actions are same for any two states (k, β, n) and (k, β, n′)

with n, n′ ≥ k. Because if V (k, β, n) = R(k) − λ(nτ + t0) for some n ≥ k, which

means to stop is optimal, then V (k, β, n′) = R(k) − λ(n′τ + t0) for any n′ ≥ k, so

to stop is also optimal for any state V (k, β, n′); if V (k, β, n) > R(k)− λ(nτ + t0) for

some n ≥ k, which means to continue is optimal, then V (k, β, n′) > R(k)−λ(n′τ+t0)

for any n′ ≥ k, so continue is optimal for any state V (k, β, n′).

Lemma 4. For all states with k ≥ k∗ and n ≥ k, optimal action rule is to stop, and

V (k, β, n) = R(k)− λ(nτ + t0).

Proof. If k∗ = M , then to stop is naturally.

Now we consider k∗ < M . The idea of proof is from the conclusion in Ferguson (2012)

that one-stage-look-ahead rule (1-sla rule) is optimal for monotone problem if problem

is in finite horizon or problem is in infinite horizon, but can be approximated well by

finite horizon problem in the sense that V J
0 → V ∞0 as J →∞, where V J

0 denotes the

optimal return for the problem truncated at terminal stage J, and V ∞0 denotes the

optimal return for the original infinite horizon problem.

Now we first give the definition of monotone problem. Let Zn = R(Kn)− λ(nτ + t0),

and let An denote events {Zn ≥ E(Zn+1|(Xn, n))}, An+1 denote events {Zn+1 ≥

E(Zn+2|(Xn+1, n + 1))}. The set An is the set of all states (k, β, n) on which the

1-sla calls for stopping at some fixed n. If An ⊆ An+1 ⊆ An+2..., then this problem

is monotone. An ⊆ An+1 ⊆ An+2 ⊆ ... means that if the 1-sla calls for stopping at

stage n, then it will call for stopping at all future stages no matter what the future
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observations turn out to be.

Then we show problem 3.2 is monotone when k ≥ k∗.

It is obvious that for any state (k, 0, n) with k ≥ k∗, R(k) − λ(nτ + t0) > R(k) −

λ((n + 1)τ + t0) = E(Zn+1|(Xn, n) = (k, β, n)), which means 1-sla rule will always

calls for stop for any state (k, 0, n) with k ≥ k∗.

For any state (k, β > 0, n) with k ≥ k∗, it can be seen that

R(k)− λ(nτ + t0)− µ[R(k + 1)− λ((n+ 1)τ + t0)]

− (1− µ)[R(k)− λ((n+ 1)τ + t0)]

=λτ − µ∆R(k) ≥ 0, (3.8)

which means

R(k)− λ(nτ + t0)

≥ µ[R(k + 1)− λ((n+ 1)τ + t0)]

+ (1− µ)[R(k)− λ((n+ 1)τ + t0)]

= E(Zn+1|(Xn, n) = (k, β, n))

always holds for all states with k ≥ k∗, which means 1-sla rule will always calls for

stop for any state (k, β > 0, n) with k ≥ k∗.

So our problem is monotone for any state with k ≥ k∗.

Since Our problem is in infinite horizon, and can be approximated well by finite

horizon, that is because V J
λ → Vλ as J →∞ in our problem, and V J

λ denotes optimal

value of problem 3.2 truncated at terminal stage J, so 1-sla rule is optimal when

k ≥ k∗. Since one stage ahead rule tells to stop for all states with k ≥ k∗ , so to stop

at all states with k ≥ k∗ are optimal.

Lemma 5. For all states with k < k∗, n ≥ k and β ≥ 1, optimal rules are to continue.
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Proof. For any state (k, β, n) with k < k∗ and β ≥ 1, the reward to stop is R(k) −

λ(nτ + t0), the expected reward to continue one more stage and then stop is µ[R(k+

1)− λ((n+ 1)τ + t0)] + (1− µ)[R(K)− λ((n+ 1)τ + t0)].

We have

R(k)− λ((n)τ + t0)− µ[R(K + 1)− λ((n+ 1)τ + t0)]

− (1− µ)[R(K)− λ((n+ 1)τ + t0)]

=λτ − µ∆R(k),

By the definition of k∗, for all k < k∗ and β ≥ 1, λτ − µ∆R(k) < 0. So for all states

with k < k∗ and β ≥ 1, to continue is always better than to stop.

Then we deal with states with k < k∗ and β = 0, and we have following lemma:

Lemma 6. For all states with k < k∗, β = 0 and n ≥ k, if optimal rule for state

(k, 0, n) is to continue, then optimal rule for (k − 1, 0, n) is also to continue.

Proof. Assume optimal rule for (k, 0, n) is to continue, then

V (k, 0, n) = sup
π

E[R(k +KN)− λ((n+N)τ + t0)]

> R(k)− λ(nτ + t0),

where KN ≤M − k. And we move the right hand part to the left, then

sup
π:KN≤M−k

E[R(k +KN)−R(k)− λ(Nτ)] > 0

The left hand size supπ E[R(k + KN) − R(k) − λ(Nτ)] can be thought as optimal

value of a new stopping problem starting from state (k, 0, 0), with reward of getting

KN + k clients’ parameters at stage N to be R(k+KN)−R(k)−λNτ (if choosing to

51



stop) and the number of unfinished clients in this problem is M −k, so KN ≤M −k,

. Since R(k +KN)−R(k) ≤ R(k − 1 +KN)−R(k − 1), by assumption about R(k),

we have

sup
π:KN≤M−k

E(R(k − 1 +KN)−R(k − 1)− λ(Nτ) > 0

The left hand size also can be thought as the optimal value of a stopping problem

starting from state(k − 1, 0, n), but with reward of getting KN + k − 1 clients’ pa-

rameters to be R(k − 1 + KN) − R(k − 1) − λNτ and KN ≤ M − k, the number of

unfinished clients in this problem is M−k, we use V ′(k−1, 0, n) to denote this value.

Now we consider a similar stopping problem also starting from state(k − 1, 0, n) and

same reward R(k − 1 + KN) − R(k − 1) − λNτ , what is different is now the the

number of unfinished clients at this new problem increases 1 to M − k + 1, so now

KN ≤ M − k + 1. Let V ′′(k − 1, 0, n) denotes optimal value of this new problem. It

is obvious that 0 < V ′(k − 1, 0, n)) ≤ V ′′(k − 1, 0, n)), since larger numbers of clients

will decrease the possibility of state with β = 0 and so leads to larger optimal value.

So

V ′′(k − 1, 0, n) = sup
π:KN≤M−k+1

E(R(k − 1 +KN))

−R(k − 1)− λ(Nτ)

> 0

Then

sup
π:KN≤M−k+1

E[R(k − 1 +KN)− λ((n+N)τ + t0)]

> R(k − 1)− λ(nτ + t0)

The left hand side is the value of state (k− 1, 0, n) in our problem, right hand side is

the reward of stopping at this state, So optimal rule for state (k − 1, 0, n) is also to

continue.
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By proof of lemma 3, 4, 5 and 6, we can directly get theorem 4.

3.7 Proof of Lemma 1

Proof. If k = k∗, then β = 0 and by lemma 4, optimal rule is to stop now, and

V (k∗, 0, n) = R(k∗)− λ · (nτ + t0).

If k < k∗, then by k+ β ≥ k∗, we have β > 0, and by lemma 3, optimal action for all

states with k < k∗ and β > 0 is to continue, So we write down the bellman equation

for any state (k, β, n) with k < k∗, k + β ≥ k∗ and n ≥ k:

V (k, β, n) = µ[

M−k−β∑
i=0

L(i) · V (k + 1, β − 1 + i, n+ 1)]

+ (1− µ)[

M−k−β∑
i=0

L(i) · V (k, β + i, n+ 1)] (3.9)

= µ[

M−k−β∑
i=0

L(i) · V (k + 1, β − 1 + i, n)]

+ (1− µ)[

M−k−β∑
i=0

L(i) · V (k, β + i, n)]− λτ, (3.10)

where L(i) =
(
M−k−β

i

)
pi(1− p)M−k−β−i. Last equation comes from lemma 3.

We first start from β = M − k, then bellman equation becomes:

V (k, β, n) = V (k,M − k, n)

= µV (k + 1,M − k − 1, n)

+ (1− µ)V (k,M − k, n)− λτ, (3.11)

so

V (k,M − k, n) = V (k + 1,M − k − 1, n)− λτ/µ, (3.12)
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Also we have

V (k + 1,M − k − 1, n) = V (k + 2,M − k − 2, n)− λτ/µ,

...

so

V (k,M − k, n)

= V (k + 1,M − k − 1, n)− λτ/µ (3.13)

= V (k + 2,M − k − 2, n)− λτ/µ− λτ/µ

...

= V (k + k∗ − k,M − k∗, n)− (k∗ − k)λτ/µ

= R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/µ (3.14)

.

We continue check β = M − k − 1, β = M − k − 2, β = M − k − 3,..., , until

β = k∗ − k. We first consider state (k, β, n) with β = M − k − 1, and the bellman

equation now is:

V (k,M − k − 1, n)

=µ[pV (k + 1,M − k − 1, n)

+ (1− p)V (k + 1,M − k − 2, n)]

+ (1− µ)[pV (k,M − k, n)

+ (1− p)V (k,M − k − 1), n]− λτ (3.15)

If we Move last part in the right hand side to left and by equation V (k,M − k, n) =
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V (k + 1,M − k − 1, n)− λτ/µ , we have

(p+ µ− µp)V (k,M − k − 1, n)

=pV (k,M − k, n) + µ(1− p)V (k + 1,M − k − 2), n]− (1− p)λτ (3.16)

=p[R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/µ]

+ µ(1− p)V (k + 1,M − k − 2), n]− (1− p)λτ. (3.17)

so it’s easy to check that

V (k,M − k − 1, n) = R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/µ (3.18)

satisfies the bellman equation, because if it holds, then

V (k,M − k − 1, n) = V (k,M − k, n) and V (k,M − k − 1, n) = V (k + 1,M − k −

2, n)− λτ/µ, then it is obvious that bellman equation holds.

Now we show if V (k, β′, n) = R(k∗)−λ(nτ + t0)− (k∗−k)λτ/µ for all states with

k + β′ ≥ M −m, where m ≤ M − k∗ − 1 , then V (k, β, n) = R(k∗) − λ(nτ + t0) −

(k∗ − k)λτ/µ with β = M − k −m− 1, then by induction, we can get our result.

We first write down the bellman equation:

V (k, β, n)

=µ[

M−k−β∑
i=0

(
M − k − β

i

)
pi(1− p)M−k−β−i · V (k + 1, β − 1 + i, n)]

+ (1− µ)[

M−k−β∑
i=0

(
M − k − β

i

)
pi(1− p)M−k−β−i · V (k, β + i, n)]

− λτ,

Since for any i ≥ 1, k + β + i = M −m− 1 + i ≥M −m, so V (k + 1, β − 1 + i, n) =

R(k∗)−λ(nτ+t0)−(k∗−k−1)λτ/µ, V (k, β+i, n) = R(k∗)−λ(nτ+t0)−(k∗−k)λτ/µ,
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So

(1− (1− µ)(1− p)M−k−β)V (k, β, n)

=µ(1− p)M−k−βV (k + 1, β − 1, n)

+ (1− (1− p)M−k−β)[R(k∗)− λ(nτ + t0)− (k∗ − k)λτ/µ]

− (1− p)M−k−βλτ,

and we will see V (k, β, n) = R(k∗)−λ(nτ+t0)−(k∗−k)λτ/µ satisfies the bellman

equation. So by induction, our proof is done. And condition k+β ≥ k∗ is to guarantee

that when k = k∗, β ≥ 0.

3.8 Summary

In this chapter, we studied the problem of when to optimally stop a round in

federated learning. We formulate the problem as an optimal stopping problem and

develop a low complexity algorithm to solve the stopping rule. Our experiments on

real data set shows the significant improvements compared with policies that collect

a fixed number of updates in each iteration.
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Chapter 4

CONCLUSION

This dissertation focused on two realated but different field in machine learning,

(1) how to collect private data, (2) how to run learning on distributed data (without

collecting private data).In the first half of this dissertation (Chapter 2), we studied

incentive mechanisms for private discrete distribution estimation. We first derived a

lower bound on the minimum payment required for guaranteeing quality level, and

then proposed WINTALL — a novel incentive mechanism. The expected payment

of WINTALL matches the lower bound when the underlying parameter θ can be

estimated by the platform accurately. We present its application to private discrete

distribution estimation, where WINTALL rewards individuals whose reported answers

match the most popular one. We also presented real-world experiments on Amazon

Mechanical Turk to validate the novelty of WINTALL-inspired mechanisms.

Chapter 3 studied the problem about how to optimally stop one round in Federated

Learning. We consider a system with a single parameter server (PS) and M client

devices for training a predictive learning model with distributed data sets on the

client devices. The clients communicate with the parameter server using a common

wireless channel so each time, only one device can transmit. The training is an

iterative process consisting of multiple rounds. At beginning of each round, each

client trains the model, broadcast by the parameter server at the beginning of the

round, with its own data. After finishing training, the device transmits the update

to the parameter server when the wireless channel is available. The server aggregates

updates to obtain a new model and broadcasts it to all clients to start a new round.

We formulate the problem that server decides when to stop/restart a new round as
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an optimal stopping problem. Then we develop a low complexity algorithm to solve

the modified problem, which also works for the original problem. Experiments on a

real data set shows significant improvements compared with policies collecting a fixed

number of updates in each iteration.
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