
Software-defined Situation-aware Cloud Security

by

Ankur Chowdhary

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved November 2020 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
Subbarao Kambhampati

Adam Doupé
Youzhi Bao

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

The use of reactive security mechanisms in enterprise networks can, at times, provide

an asymmetric advantage to the attacker. Similarly, the use of a proactive secu-

rity mechanism like Moving Target Defense (MTD), if performed without analyzing

the effects of security countermeasures, can lead to security policy and service level

agreement violations. In this thesis, I explore the research questions 1) how to model

attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy

proactive (MTD) security countermeasures in a software-defined environment for sin-

gle and multi-stage attacks? 3) how to verify the effects of security and management

policies on the network and take corrective actions?

I propose a Software-defined Situation-aware Cloud Security framework, that,

1) analyzes the attacker-defender interactions using an Software-defined Networking

(SDN) based scalable attack graph. This research investigates Advanced Persistent

Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel

graph partitioning algorithm to generate an attack graph quickly and efficiently. 2)

models single-stage and multi-stage attacks (APTs) using the game-theoretic model

and provides SDN-based MTD countermeasures. I propose a Markov Game for mod-

eling multi-stage attacks. 3) introduces a multi-stage policy conflict checking frame-

work at the SDN network’s application plane. I present INTPOL, a new intent-driven

security policy enforcement solution. INTPOL provides a unified language and INT-

POL grammar that abstracts the network administrator from the underlying network

controller’s lexical rules. INTPOL develops a bounded formal model for network ser-

vice compliance checking, which significantly reduces the number of countermeasures

that needs to be deployed. Once the application-layer policy conflicts are resolved, I

utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies

and resolves rule-order dependencies and conflicts between security policies.

i

ACKNOWLEDGEMENTS

After completing my Master’s degree at ASU, I developed a keen interest in pur-

suing research in the field of cybersecurity. While going for a Ph.D. was a long term

commitment, I am happy that I decided to go for a doctorate degree.

Dr. Dijiang Huang was always encouraged me to pursue not only academic re-

search but also explore many other possibilities around the field of cybersecurity that

enriched my Ph.D. experience. I was able to compete in the Western Region Cy-

bersecurity Defense Competition (WRCCDC), which helped me understand what it

is like to deal with cyberattacks in a real-world scenario and helped me make my

research work practical. After a fruitful research outcome, we co-founded CyNET

LLC, a company to commercialize our research work on attack analysis and policy

conflict checking. Dr. Huang also supported my efforts in teaching and mentoring

students interested in security training and education. We co-founded the hacking

club DevilSec last year to further this goal. It has since grown in popularity and

helped many students achieve their academic and professional goals. I was able to

gain the best out of my research and engineering skills under his mentorship. I would

first and foremost like to thank him for mentoring me during my Ph.D.

I took Information Retrieval and Mining and Integration (IR) under Dr. Subbarao

Kambhampati in Spring 2015. It was one of the best course work I attended at ASU.

I was able to develop many research ideas based on knowledge gained from that class.

I would like to thank Dr. Rao for being such a great instructor, helping improve

my research work on Moving Target Defense by his valuable feedback, and most

recently supporting my applications for positions in academia. I was fortunate to

take up Software Security with Dr. Adam Doupé early in my Ph.D., which helped

me build a knowledge base in the field of software security. I was also TA for one

ii

of the classes taught by him. It was great to work with him and learn from his

teaching methodology. I am also grateful for his time in providing references for my

academic job applications. Dr. Tiffany Bao is one of the few researchers I know

who have an interest in the application of game-theoretical frameworks in the field

of cybersecurity. After reading her work, I decided to take up her class in Spring

2019, and I was able to expand my research work from the domain of MTD to

cyberdeception scenarios under her guidance. I was also able to work alongside her

in mentoring cyberdeception capstone the same year, which provided me valuable

mentorship experience. Unfortunately, with my research commitments, I was not

able to keep up with the project, but I hope I can pick up the project again in

the near future and help in advancing the research work on this project. I am also

thankful to Dr. Gail-Joon Ahn, under whom I worked as a Research Assistant and

helped in designing Science DMZ: an SDN-based secure cloud testbed. Dr. Ahn

was also generous to support our teams that took part in WRCCDC competitions

over several years. His dedication to the success of students involved in cybersecurity

programs at ASU is truly admirable.

Research collaborations are very important in Ph.D. research. I have been for-

tunate to collaborate with most of the students from our lab but also from different

research groups at ASU and other universities. I would like to thank Sandeep for

helping me in research at the start of my Ph.D. James and Yuli have provided me

valuable insights and helped me with system design and deployment, which helped in

making my research work practical. I was able to collaborate with Adel and Sowmya

on many research topics, and our joint work always progressed smoothly because of

mutual respect and understanding of each other’s thought process well. Hakim has

helped me a lot in experimental design, and his hard work allowed us to produce

high-quality results when there was a time crunch. Sailik was one of the most im-

iii

portant collaborators I had, and his expertise in theoretical modeling, optimization

algorithms, and AI helped take my MTD research to a new level. I would also like to

acknowledge Vaibhav and Sukhwa from SEFCOM, who helped me in designing and

deploying Science DMZ. More recently, I have been able to collaborate with Neha

and Garima. They are both hard-working and always up to the task. I also had

a chance to discuss research ideas with Duo and Zhen on some research projects,

which helped in enhancing my knowledge. I mentored two Capstone projects and

two honor’s thesis project during the course of my Ph.D. I am quite lucky to have so

many students show interest in my projects and glad that I was able to help them

build up a successful career in cybersecurity. My teammates at DevilSec always in-

spired me with their enthusiasm for the cybersecurity as not just an academic field

but as a lifestyle. My colleagues at Bishop Fox, CyNET LLC, Blackberry, Republic

Services, and CSC helped me in times of need, be it a technical issue, discussion along

with a research task, or business development (special thanks to Ken and Lance). My

friends in both US and India, who always helped me during tough times, have been

a backbone throughout my journey.

Lastly, I would like to thank my father for making me a disciplined person. I

always looked up to him and learned the principle of simple living and high thinking.

I thank my mother for teaching me both hard work and compassion, my sister, for her

love and support, and my extended family for their encouragement. Communication

with my family during testing times always helped me remain calm and composed.

They made me the person I am, and to them, I owe a debt that I can never repay.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 6

1.2 Organization . 7

2 MODELING MULTI-STAGE ATTACKS USING SCALABLE ATTACK

GRAPHS . 8

2.1 Attack Analysis Model . 8

2.1.1 Attack Graph Formalism . 10

2.2 Scalable Attack Graph Generation . 15

2.3 Experimental Analysis . 18

2.4 ATTACK GRAPH GENERATION RESEARCH 20

2.5 SUMMARY AND DISCUSSION . 21

3 ADVANCED PERSISTENT THREAT (APT) . 23

3.1 Models Used for APT Detection . 26

3.1.1 Semi-Supervised Models for Detection of APT Attacks 28

3.2 Existing Datasets for APT Detection Research . 29

3.3 DAPT 2020 Design and Implementation . 30

3.4 Experimental Analysis for Benchmarking APT Models and Datasets 32

3.4.1 Performance Analysis for SAE . 35

3.4.2 Performance Analysis for LSTM-SAE . 37

3.4.3 Performance Analysis for 1-SVM . 37

3.5 Summary and Discussion . 39

v

CHAPTER Page

4 SDN-BASED MOVING TARGET DEFENSE FOR SINGLE-STAGE

ATTACKS . 40

4.1 MTD Categorization . 40

4.1.1 What to Switch - Movement of Configuration Set 40

4.1.2 When to Switch? - Timing Function . 43

4.1.3 How to switch? - Movement Function . 45

4.2 SDN for Implementing MTD . 46

4.2.1 Game Theoretic Modeling . 49

4.2.2 Implementing Rate Limiting Algorithm using Dynamic Game 50

4.2.3 Experimental Analysis for Rate Limiting 54

4.3 Summary and Discussion . 57

5 SDN-BASED MOVING TARGET DEFENSE FOR MULTI-STAGE AT-

TACKS . 58

5.1 SDN-based Markov Game Modeling for Multi-Stage Attacks 58

5.1.1 Markov Game . 60

5.1.2 Scoring Metrics for Vulnerabilities and Exploits 61

5.2 Game Theoretic Modeling . 62

5.2.1 States . 63

5.2.2 Players and Action Sets . 64

5.2.3 Transitions . 65

5.2.4 Rewards . 65

5.2.5 Results . 67

5.3 MTD Against Advanced Persistent Threats . 69

5.3.1 Attack Analysis and Results . 73

vi

CHAPTER Page

5.4 Moving Target Defense Research . 74

5.5 Summary and Discussion . 75

6 INTENT-DRIVEN SECURITY POLICY MANAGEMENT FOR SOFT-

WARE DEFINED SYSTEMS . 78

6.1 SDN Preliminaries and Problem of Policy Management 79

6.1.1 Contributions . 83

6.2 INTPOL System and Model Description . 84

6.2.1 INTPOL Language. 84

6.2.2 INTPOL Grammar Description . 87

6.2.3 INTPOL Model Checking Framework . 88

6.3 Intent Handling in INTPOL . 90

6.3.1 Service Function Chaining Intent . 90

6.3.2 Network Function Intent . 92

6.3.3 Query Intent: Policy Conflict Checking . 94

6.4 INTPOL Implementation . 95

6.4.1 Intent Processing Module . 97

6.5 INTPOL Performance Evaluation . 99

6.5.1 Policy Conflict Checking for Large Network Scenario 106

6.6 Policy Configuration and Conflict Analysis Research 109

6.6.1 Intent based Policy Configuration . 109

6.6.2 Network Policy Conflict Checking . 110

6.7 Summary and Discussion . 112

7 FLOW RULE CONFLICT DETECTION AND RESOLUTION 113

7.1 Security Policy Formalism . 113

vii

CHAPTER Page

7.1.1 Network Traffic and Packet Classification 113

7.1.2 Policy Graph Composition . 114

7.1.3 Policy Conflict Analysis . 115

7.2 Object-Oriented Conflict Checking Framework . 118

7.2.1 Object Oriented Relations . 119

7.2.2 Case Study: Service Function Chaining and Rule Conflicts . . 123

7.2.3 OpenFlow Rule Conflict Detection . 125

7.2.4 OpenFlow Rule Conflict Resolution . 127

7.2.5 OOPC Framework Architecture and Data Flow 130

7.2.6 OOPC Data Flow Diagram . 132

7.3 OOPC Framework Experimental Analysis . 134

7.3.1 Policy Composition Time Comparative Analysis 135

7.3.2 Flow Rule Conflict Analysis . 136

7.3.3 Flow Rule Conflict Analysis Scalability . 137

7.3.4 Flow Rule Conflict Resolution Analysis . 139

7.4 Summary and Discussion . 140

8 CONCLUSION . 142

8.1 Significant Accomplishments . 145

8.2 Research Work Since Proposal Defense . 146

BIBLIOGRAPHY. 148

APPENDIX

A DETAILS ON APT DATASET CONSTRUCTION . 162

A.1 Environment Setup Description . 163

A.1.1 Public Services . 163

viii

APPENDIX Page

A.1.2 Private Services . 165

A.1.3 APT Attack Phases . 166

A.1.4 APT Feature Description . 167

B FORMAL ANALYSIS OF OBJECT-ORIENTED POLICY CHECK-

ING (OOPC) FRAMEWORK . 172

B.1 Inheritance . 173

B.2 Polymorphism . 174

B.3 Aggregation . 175

B.4 Composition . 177

C RESEARCH WORKS . 179

C.1 Research Publications . 180

C.2 Research Works Not Included in Thesis . 185

ix

LIST OF TABLES

Table Page

2.1 Time Based Complexity Analysis of Algorithm . 19

3.1 Comparison of Traditional and APT Attacks. 24

3.2 Analysis of Phases of APT Attack Covered by Attack Vectors of Ex-

isting Works Involving APT, Network Intrusion, and Anomaly Detec-

tion in Cybersecurity. The Table Compares Attack Phases Covered by

Datasets UNB-15 Moustafa and Slay (2015), CICIDS 2017 Sharafaldin

et al. (2018), NSL-KDD Dhanabal and Shantharajah (2015), Mawi Fontugne

et al. (2010), ISCX Shiravi et al. (2012), DARPA Cunningham et al.

(1999), HERITRIX Wang et al. (2016b), and DAPT 2020. 29

3.3 Comparison Between Attack Vectors of Each Dataset in Terms of

Different Attack Vectors That is Involved in APT Attack. The Ta-

ble Compares Existence of Every Attack Vectors by Datasets UNB-

15 Moustafa and Slay (2015), CICIDS 2018 CSE-CIC-IDS2018 (2018)

CICIDS 2017 Sharafaldin et al. (2018), NSL-KDD Dhanabal and Shan-

tharajah (2015), MAWI Fontugne et al. (2010), ISCX Shiravi et al.

(2012), DARPA Cunningham et al. (1999), HERITRIX Wang et al.

(2016b), and DAPT 2020. 30

4.1 Normal Form Representation of Attacker and Administrator Payoff’s . . 49

4.2 Number of Hosts vs ICMP Traffic at T=30s Post Attack. 54

5.1 Vulnerability Information for the Cloud Network. 62

5.2 Reward (R2, R1) for States s0 (Top) and s1 (Bottom). 64

5.3 Vulnerability Information for the APT Scenario. 72

6.1 Formal Semantics of LTL which can be used for Expressing Network

Invariants . 90

x

Table Page

6.2 INTPOL Model Checking Framework Applied to Stanford Topology Kazemian

et al. (2012). The Overhead of Generating Model using LTL-BMC is

Lower Compared to LTL Framework. 106

7.1 Motivating Scenario: Conflict Detection . 117

7.2 OOPC Components Used in Implementation . 134

7.3 Conflict Resolution Time Experiment based on Stanford dataset Kazemian

et al. (2012); Wuyangjack (2018) for Different Conflict Types. 139

A.1 APT20 Feature Description . 168

xi

LIST OF FIGURES

Figure Page

2.1 Threat Model in a SDN-managed Openstack Cloud Network 9

2.2 A Network Reachability-based Partitioned Attack Graph 13

2.3 Attack Graph Generated for the Cloud Network . 14

2.4 AG Generation Time vs Number of Nodes . 19

3.1 Different Phases of APT Attacks for Target Network. The Attacker

utilized Vendor PC to Infiltrate vulnerable Web Server, and Weak Au-

thorization and Monitoring Capabilities to Exfiltrate Personally Iden-

tifiable Information (PII) and Credit Card (CC) Information over FTP. 25

3.2 DAPT 2020 System Overview. 31

3.3 Precision-Recall (PR) Curves for Detecting Attacks Across the Various

Stages of an APT for the Different Datasets using the Stacked Auto-

encoder (SAE). 35

3.4 Precision-Recall (PR) Curves for Detecting Attacks Across the Various

Stages of an APT for the Different Datasets using encoder LSTM-SAE. 36

3.5 Precision-Recall (PR) Curves for Detecting Attacks Across the Various

Stages of an APT for the Different Datasets using 1-class Support

Vector Machine (1-SVM). 38

4.1 Moving Target Defense (MTD) Categorization . 41

4.2 An Extensive Form Dynamic Game Between Attacker and the Admin. . 50

4.3 SDN System Architecture Utilized for Implementing Rate-Limiting Al-

gorithm in an OpenFlow-enabled Network. Red Color indicates At-

tacker Device, and Green Color refers to Normal User Device. 51

4.4 An Example Snort Rule which is used for Detection of DDoS Attack. . . 51

4.5 SDN-based Traffic Rate-Limiting for OpenFlow-based Devices. 52

xii

Figure Page

4.6 TCP and UDP Flood Attack mitigation on FAT Tree Topology. 56

5.1 A Mapping of Different Phases of Multi-Stage Attack Advanced Per-

sistent Threat (APT) and Various Surfaces of a Cyber System that

MTD Seek to Move. 59

5.2 The (a) Attack Graph and (b) Markov Game Graph Corresponding to

the Threat Model in the Cloud Network. 63

5.3 Defender’s Values for States s0 (Left), s1 (Right). 68

5.4 An Advanced Persistent Threat (APT) Scenario. 70

5.5 Stage 2 of the APT Scenario Described Above. 71

5.6 Defender’s Value in Each of the State s2 as Discount Factor increases.

In this State, we Consider a Sub-system of the entire Cloud Network

in which the Defender can place Five Possible Detection Systems but

Chooses to Place Two Out of the Five for Performance Considerations. 73

6.1 SDN Control Flow for Multi-tiered Network Policy Checking Using

INTPOL Framework. 80

6.2 SDN Architecture with Details of Different Components and Commu-

nication Interfaces . 81

6.3 Intent Specification and Formal Modeling. The Users can Specify Pol-

icy and Query Intent at the Application Plane. The Bounded Model

Checking Framework accepts Query Intents to check if Intents Meets

Network Reachability and Security Policies. 85

xiii

Figure Page

6.4 INPOL Grammar Describing Different Kind of Intents Which Can Be

Specified by the User at the Application Plane. Policy Intent Captures

the Network Topology and Packet Propagation Behavior. Query Intent

Is Used for Verification of Network Invariants. 87

6.5 A Service Function Chain (SFC) Scenario With Multiple Network

Functions (NFs). Each NF can be Described Individually using Net-

work Function Intent. 91

6.6 Example Usage of LTL Based Model Checking Framework for Imple-

menting Three Separate Service Function Chains. The NAT Service

Function acts as Traffic Classifier and Routes Packets via Correspond-

ing Service Chain Based on Packet Header Match. 92

6.7 An Example of Bounded LTL Model That Utilizes Network Topol-

ogy from SDN Controller to Create a Model Specification. The Last

Line Represents Query Intent to Check If Any Packet Starting from

(src=h2) Can Eventually Reach (dst=h4). 93

6.8 INTPOL Data Flow Diagram Describing Multi-level Network Policy

Processing. The Formal Model Analyzes the Policies at Application

Plane, and Policy Conflict Checker Checks the Conflicting Flow Rules

at Control Plane. The Non-conflicting Policies Are Inserted into Switches

at Data Plane Level Using Openflow APIs. 98

6.9 A Hybrid Network Scenario with Network Components Based on Tradi-

tional Networking (BGP Routing) and Openflow Network (blue dashed

lines) the Different Domains Are Represented in by the Orange Circles. 100

xiv

Figure Page

6.10 An Encapsulated Representation of Hybrid Network Scenario as a Spe-

cial Case of Service Function Chaining (SFC).. 102

6.11 The Experimental Analysis of INTPOL in Inter-domain Hybrid Net-

work. The LTL-BMC Scales Well as the Number of Domains Increase

in the Network. 103

6.12 INTPOL Model Checking Framework Evaluation in a Single Domain

Environment. As I Increased Number of Hosts in Domain As6501,

the Binary Decision Diagram (BDD) Nodes, Data Size of the Model,

and Time of Model Checking Is Reduced for Bounded Model Checking

(LTL-BMC) Compared to Full Scale LTL. 104

6.13 A Comparison Between the Flow Rule Conflict Detection Time, and

the LTL and LTL-BMC Time. The Data-plane Level Conflict Detec-

tion Time is Significantly Larger in Absence of INTPOL Framework. . . 108

7.1 Object-oriented Relations (a) Inheritance - IP Address Inherits Prop-

erties of Classless Inter-domain Routing (CIDR) Superclass (B) Poly-

morphism - Stateless Firewall can be Specialized as Stateful Firewall,

Intrusion Prevention System (IPS), or Deep-packet Inspection (DPI)

Module. 119

7.2 OpenFlow Rule Conflict analysis. I Identified Dependencies - Inheri-

tance, Polymorphism, Aggregation, and Composition between Open-

Flow Rules by Checking Overlap in Header Space and Actions of the

Rules. 121

xv

Figure Page

7.3 Object-oriented Relations (a) Aggregation - Defines Has-a Relation

Between Network Elements - a Next Generation Firewall can have both

IPS, and VPN Functionality (B) Composition - Part-Of Relation, e.g.,

set of Functions for Network Address Translation (NAT) are part of

Firewall. A subset of Network Features such as NAT can be Part of

More than one VNFs. 122

7.4 (a) Object-oriented Fundamentals - Class, Variables, Methods for Vir-

tual Network Function (VNF) Stateless Firewall (B) Analysis of Rule-

set from Background Section from Object-oriented Relationship Aspect

(C) Policy Graph Identifies the Dependencies in the VNF Rules, this

will allow the Elimination of Redundant Rules, and scalable Conflict

Detection. 123

7.5 Openflow Rule Conflict Resolution. The Priority Assignment can be

Used for Resolving the Polymorphism (Full Overlap, Different Actions)

Conflicts. The Assignment of Priority Depends on the Network Ad-

ministrator. The Conflicts with Same Action, i.e., Inheritance, and

Aggregation by Using the Object-oriented Concept Encapsulation, i.e.,

Rule k Header rk = ri∪ rj. The Conflicts, where there is Partial Over-

lap in Header Space but the Actions are Different - Composition, the

Concept of De-composition Can Be Used to Resolve These Conflicts

(Rule k, Header hk = hi∩hj, and assign Higher Priority to Overlapping

Header Space. 128

7.6 OOPC System Architecture. The Application Plane can be Used for

Accepting Security Policies and Mission Requirements. 130

xvi

Figure Page

7.7 OOPC Data-flow Diagram. The New Security Rules or Mission Re-

quirements are First Analyzed for Possible Conflicts by OOPC Policy

Composition Module, before Inserting the Corresponding OpenFlow

Rule. 133

7.8 Number of Rules vs Composition Time - OOPC, PGA Prakash et al.

(2015), SICS Wang et al. (2016a) . 135

7.9 Number of Conflicts in OpenFlow Rules . 136

7.10 Number of Flow Rules vs Policy Conflict Detection Time - OOPC,

Brew Pisharody et al. (2017), Flowguard Hu et al. (2014) 138

xvii

Chapter 1

INTRODUCTION

Network and cloud infrastructure has become both ubiquitous and more complex in

the past few years. Multi-stage attacks, on the other hand, involve attackers compro-

mising some services hosted at the network edge and progressing towards a high-value

target located somewhere in the internal network, e.g., an SQL Server consisting of

user information or an FTP Server which stores mission-critical information. A special

category of multi-stage attacks known as Advanced Persistent Threat (APT) Alsham-

rani et al. (2019). These attacks involve stealthy attackers. The stealthy attackers

use attack vectors that evade detection tools.

Modeling Multi-stage Attacks: In this thesis, I first model the multi-stage

attacks using an attack modeling tool known as an Attack Graph (AG). The iden-

tification of information regarding vulnerability dependencies becomes increasingly

difficult as the number of services and vulnerabilities increase in the network sys-

tem. Ammann et al. (2002) proposed an AG generation approach with the scalability

of the order O(N6). MulVAL Ou et al. (2005) reduces the AG generation and analysis

complexity from O(N6) to O(N2) - O(N3), where N is the number of network hosts.

The attack modeling framework that I discuss in this research thesis utilizes a paral-

lel hypergraph partitioning algorithm Devine et al. (2006) to create a scalable attack

graph that can be used for security analysis. Next, I consider one particular class of

multi-stage attacks APT. While there are many proposed machine learning-based so-

lutions that claim the detection of APT attacks, there is no good dataset that can be

used to benchmark the ML models. Generic intrusion datasets used in APT research

have several key limitations (1) they capture attack traffic at the external endpoints,

1

limiting their usefulness (2) difference between normal and anomalous behavior are

quite distinguishable in these datasets (3) data imbalance in existing datasets do not

reflect the real-world settings. In order to address these limitations, I contributed a

dataset DAPT 2020 which consists of attacks that are part of Advanced Persistent

Threats (APT) Myneni et al. (2020). As a part of this research, I benchmarked the

DAPT 2020 dataset on semi-supervised models and show that they perform poorly

trying to detect attack traffic in the various stages of an APT.

Attack Analysis and SDN-based Moving Target Defense (MTD): Moving

Target Defense (MTD) House (2011); Schmerl et al. (2014) is a transformative ap-

proach to security of a multi-tenant cloud environment that leverages the dynamism

in computer systems to create an environment that has a changing attack surface.

In the second part of this thesis, I consider MTD as a solution to analyze the at-

tack graph generated during the attack modeling phase. Traditional networks are

composed of heterogeneous elements such as routers, firewalls, and switches. Each

of these devices has its own proprietary software and protocols. This kind of net-

work setup leaves very little scope for innovation in the network. Software-Defined

Networking (SDN) Kreutz et al. (2015) has emerged as a solution for addressing this

challenge. SDN environment generally consists of OpenFlow switches and controllers,

communicating over a secure channel. SDN provides a service-oriented architecture

to deploy modular solutions for different requirements. The SDN controller can work

as a centralized security policy enforcer. The research work Ethane Casado et al.

(2007) provides a model for user authentication and stronger binding between pack-

ets and origin. The programmable interfaces afforded by SDN can be conformed to

achieve a dynamic defensive strategy based MTD Saha and Agarwal (2012); thereby

providing a systematic solution by selecting countermeasures to prevent or mitigate

attacks in an SDN enabled data center networking environment Chung et al. (2015);

2

Jafarian et al. (2012). Thus I used an SDN-based MTD solution for the deployment

of optimal defense countermeasures for in the framework. To establish the usefulness

and generalizability of the MTD countermeasures, I discuss both single-stage attacks

- Distributed Denial of Service (DDoS) and multi-stage attacks - APTs.

Game Theory has proved to be very effective in economics, biology, and other areas

for making important decisions. I formulated a Markov Game based approach to ana-

lyze multi-stage attack-defense interactions as two-player zero-sum game Chowdhary

et al. (2018d). Sub-networks in the cloud network, determined using the system’s At-

tack Graph (AG), represent the states of a multi-stage game. In particular, I analyze

the problem of deploying a monitoring mechanism in a cloud network. The defense

strategies take into account the long-term impacts of multi-stage attacks while en-

suring that the defender picks a limited number of monitoring actions in each state

of the game. The MTD countermeasure strategy in this framework ensures that the

placement of detection mechanisms do not affect the performance asymmetrically in

the different parts of the network. I worked on extending the proposed zero-sum

game to a general-sum game, and demonstrate that for threat models where the

adversary has knowledge of defender’s strategy, the Stackelberg Equilibrium Basu

(1995) provides an optimal strategy for deployment of defensive countermeasures. I

modeled the APT attacks in both zero-sum and general-sum Markov games settings

and showcased the optimal defense strategy obtained using optimal mixed strategy

for zero-sum game Chowdhary et al. (2018c), and Strong Stackelberg Equilibrium

(SSE) strategy in case of a general-sum game Chowdhary et al. (2018d); Sengupta

et al. (2019) outperforms several other defense mechanisms based on pure strategy

and uniform random strategies.

3

Security Policy Conflict Detection and Resolution: The dynamism pro-

vided by MTD gives rise to the need for a framework to accurately and in a timely

fashion examine the complex relationships between various hosts and security vul-

nerabilities in an ever-changing cloud networking environment and ensure that any

changes made to the environment do not conflict with security policies. Countermea-

sures selected as a part of MTD strategy could be based on link and network layer

operations and reconfiguration, such as a) traffic redirection; b) traffic inspection;

c) quarantining; d) MAC/IP addresses reconfiguration; etc. The countermeasures, if

applied without proper analysis and validation in the network, can prove to be more

catastrophic than useful.

Software-defined network (SDN) consists of a three-tiered architecture Kreutz

et al. (2014) (a) application plane which is used by network administrator’s, and

the user’s for defining high-level policies, (b) the control plane, which manages un-

derlying network infrastructure and performs operations such as packet routing, and

access control using well defined OpenFlow APIs, and (c) the infrastructure plane

(data-plane) that consists of network switches and end-hosts. The security policies

of the application-tier are intertwined with the OpenFlow rules when the underlying

cloud network is managed by SDN. The dependencies between security policies can

lead to security violations and network outages caused by misconfiguration of security

policies. The results from a survey of enterprise middlebox deployments in the cloud

indicate that 1) security violations and network outages caused by misconfiguration

of security policies account for 60-70% failures in cloud enterprise middlebox deploy-

ments Sherry et al. (2012). 2) Mission requirement violations (SLA violation), i.e.,

service disruption/downtime for normal users because of forwarding loops and black-

holes in the network as discussed by Khurshid et al. (2013). Thus, there is a need for

verification of security and safety properties in a network before the deployment of a

4

countermeasure in the form of a normal network security policy. It is also important

to consider the network management policies within the scope of network policies.

The safety and security properties of networks called Network Invariants need to be

verified in a scalable fashion to ensure the smooth functioning of a network.

The realization of network policies at the data-plane level introduces a lot more

flow rules. Detection and resolution of conflicts amongst flow rules at the data-plane

level can impact the performance of network services. This problem is dramatically

amplified when expanding SDN systems into multiple SDN domains, where inter-

domain network and service policies introduce an additional level of complexity. In

the third part of this thesis, I designed a multi-tiered policy conflict management

framework. The Intent-driven policy language INTPOL allows the network adminis-

trator to express security policies at the application plane level. The policy designers

can create network management and operation policies while remaining abstracted

from the underlying SDN controller. The user-defined policies, as described above,

are analyzed early in the security policy lifecycle to detect potential conflicts using a

lightweight formal model checking framework. As a part of this policy checking model,

the framework provides early detection of network policy conflicts at the application

and control-plane. This approach will help reduce the scope of flow rule conflict check-

ing at the data-plane level. Once the application plane policies are translated into

network flow-rules, I perform a second stage flow-rule conflict detection and resolution

at the data plane. The flow-rule conflict detection and resolution mechanism utilizes

an object-oriented paradigm, referred to as Object-Oriented Policy Conflict (OOPC)

checking. OOPC achieves 20% faster detection rate compared to the existing state of

the art research work Brew Pisharody et al. (2017), and Flowguard Hu et al. (2014)

on the Stanford dataset of 60k OpenFlow rules Kazemian et al. (2013).

5

1.1 Contributions

• This research provides a scalable solution for multi-stage attacks using attack

graphs. I employ a parallel hypergraph partitioning mechanism for faster gener-

ation of large scale attack graphs Chowdhary et al. (2016); Sabur et al. (2019).

I analyzed a special class of multi-stage attacks, Advanced Persistent Threats

(APTs) and contributed a dataset DAPT 2020 Myneni et al. (2020) to bench-

mark machine learning models used for APT attack analysis.

• I utilized SDN-based moving target defense (MTD) solutions for single and

multi-stage attacks. I devised a Markov game model to analyze attack defense

scenarios in a cloud network. The defender’s MTD countermeasure obtained by

solving the Markov game optimizes the cost-incurred and security provided by

detection mechanisms in a multi-tenant cloud network. The proposed frame-

work is generalizable to both two-player zero-sum Chowdhary et al. (2018d,c)

and general-sum Markov games Sengupta et al. (2019).

• I introduce INTPOL, a new intent-based language for implementing SDN coun-

termeasures in a safe and efficient manner. INTPOL framework utilizes bounded

model checking (BMC) a the application plane, thus reducing the scope of policy

conflict checking at the data plane. My framework, OOPC performs the second

level of flow-rule conflict detection and resolution at the data-plane Chowd-

hary et al. (2019b) to address the security and performance issues induced by

conflicting security policies.

6

1.2 Organization

• Part I covers a scalable attack graph as a modeling tool for multi-stage attacks

in a large network - Chapter 2. Advanced Persistent Threats (APTs), a special

case of multi-stage attacks, and the dataset I generated for benchmarking APT

attacks have been discussed in Chapter 3.

• Part II of the thesis comprises Chapter 4, which provides a survey of existing

moving target defense mechanisms. This part emphasizes the solutions that

utilize programmable networks (SDN) for the deployment of MTD. I model the

multi-stage attacks using Markov Games in Chapter 5 and also discuss APT as

a special case, where MTD works well compared to other proactive means of

cyberdefense.

• Part III explores the effects of MTD countermeasures. I introduced an intent-

driven formal model to analyze the effect of SDN policies at the application

plane in Chapter 6, and extend the discussion on policy conflicts by considering

flow-rule conflicts at the data plane in Chapter 7. I conclude the thesis in

Chapter 8. The appendices provide details on APT dataset construction, proofs

of formal modeling used for object-oriented policy conflict checking, and the

other research works that I was not able to incorporate as part of this thesis.

7

Chapter 2

MODELING MULTI-STAGE ATTACKS USING SCALABLE ATTACK GRAPHS

In this chapter, I discuss the attack graph as a multi-stage attack modeling tool. I for-

malize the attack graph and hypergraph, introduce parallel hypergraph partitioning

as a means for generating scalable attack graphs in a large cloud network. I consider

existing research in the field of attack graph generation and their inherent limitations

and use empirical evaluation to establish the scalability of the graph generation al-

gorithm. I also discuss the use of micro-segmentation and distributed firewalls as a

means of managing the complexity of the attack graph generation process.

2.1 Attack Analysis Model

In the attack model for this work, I assume that an attacker can be located either

outside or inside of the virtual networking system. The attacker’s primary goal is to

exploit vulnerable Virtual Machines (VMs) and compromise them as zombies. The

protection model in this research focuses on virtual network-based attack detection

and reconfiguration solutions to improve the resiliency to zombie explorations. The

proposed solution can be deployed in an Infrastructure-as-a-Service (IaaS) cloud net-

working system, where the Cloud Service Provider (CSP) is benign. I also assume

that cloud service users are free to install any operating systems or applications, even

if they are known to be from adversarial sources.

Let’s consider an OpenStack Sefraoui et al. (2012) based cloud networking envi-

ronment Figure 2.1. The components in the figure are OpenStack modules responsible

for various functions. Nova is responsible for VM provisioning and management. Neu-

tron provides network control. The Firewall-as-a-Service (FaaS) has been installed

8

Figure 2.1: Threat Model in a SDN-managed Openstack Cloud Network

on top of Neutron. Neutron interacts with OpenDaylight (ODL) controller through

a REST API. Various firewall operations at layer-2 or layer-3 in this overlay network

can be deployed to VM’s ODL policies via Neutron (OpenStack network manager).

Based on the assumption that one VM of tenant 1 has a web server running

and another VM of a tenant, 2 has a database server running. If the goal of the

attack is to compromise the database server, the attacker can first compromise the

web server of tenant 1 via remote code execution or FTP based vulnerability. Once

he/she has access to the web server, he/she can use a web server as a zombie VM

and compromise the database server of tenant 2 using SQL injection or SSH CLRF

injection vulnerabilities.

9

2.1.1 Attack Graph Formalism

Attack graphs (AG) are a good tool to represent the security state of the en-

tire network. AGs have proved to be a very useful tool to detect multi-stage and

multi-hop attacks, which may not be obvious to the network administrator by plain

analysis. Some of the earlier works in this field have used model checking Sheyner and

Wing (2003); Sheyner (2004) and formal language-based methods Sheyner (2004) to

enumerate all possible attack scenarios in the cloud system. I utilized an AG based

analysis in the threat model for this research work. A node N in an AG is a combi-

nation of hosts in the environment and the possible vulnerabilities that exist on that

particular host. The attack graphs (AG) can be formally defined as follows:

Definition 2.1.1 An Attack Graph (AG) is a tuple G = {S, τ, s0, st} where S = N

is number of states possible, τ ⊆ S × S. s0 ⊆ S is set of initial states and st ⊆ S is

set of success states.

• V = NC ∪ ND ∪ NR denotes a set of vertices that includes conjunction nodes

(NC) to represent exploits, disjunction node (ND) denoting results of exploit,

and root node NR denoting the initial step of an attack scenario.

• E = Epre∪Epost denotes the set of directed edges. An edge e ∈ Epre ⊆ ND×NC

denotes that NC can be attained only if ND is satisfied. An edge e ∈ Epost ⊆

NC ×ND means that ND can be obtained if NC is satisfied.

Second, in order to perform scalable attack graph generation, I used the hyper-

graph partitioning algorithm - ParMETIS Devine et al. (2006), which converts the

vulnerability and reachability information from the network environment into parallel

sub attack graphs (SubAGs).

10

Definition 2.1.2 A hypergraph is a generalization of a normal graph H = (V,E). V

represents vertices V = {vi|1 ≤ i ≤ n} and E = {ej|1 ≤ j ≤ m} represent the

hyperedges. A hyperedge is a subset of vertices. The degree of vertex is the number of

hyperedges it is part of. The neighborhood of a vertex N(v) refers to vertices directly

incident on same edge as vertex v.

The performance analysis of existing graph partitioning algorithm shows that

hMETIS (METIS algorithm without parallelization) can compute a partition of large

hypergraph (3.5 million vertices) in 20 mins on a 32-bit, 4GB RAM machine. This

motivated the use of ParMETIS (a parallelized version of hMETIS) for creating of

large attack graphs by first partitioning attack graphs based on reachability informa-

tion, and then utilizing Spark-based data structures Resilient Distributed Datasets

(RDD) Zaharia et al. (2012) for keeping track of post-conditions across SubAGs. The

RDD information is utilized to merge SubAGs and generate a full attack graph. The

experimental results on Mininet (2015) using an ODL controller shows that it takes

over twenty minutes to generate an AG for a network of ten thousand nodes for the

current attack graph generation framework MulVAL Ou et al. (2005). Our graph

generation procedure in this framework scales well on a large network - ∼ 7s for an

attack graph with 11k vulnerabilities. This shows significant performance gain when

utilizing a hypergraph partition and merge approach, as described in Chowdhary

et al. (2016). The hypergraph partitioning can be defined as follows:

Definition 2.1.3 Hypergraph partitioning is the process of partitioning a hypergraph

into k-way (k ≥ 2) disjoint set of node blocks B1, B2, Bk such that Bi ∩ Bj =

∅ ∀i, ji 6= j. Thus, the goal is to find a k-way mincut in a hypergraph.

I utilized the SDN based ODL controller in cloud infrastructure to manage the

complexity of assessing the security state of the entire network. An MTD solution

11

for such a large network will face scalability challenges like state space explosion,

something the proposed hypergraph partitioning scheme effectively addresses.

The framework partitions the large AG into Sub Attack Graphs (SubAGs). The

partitioning scheme uses the SDN controller as a driver program. The driver program

coordinates with the sub attack graph creation modules known as SubAG Agents to

construct a full AG. This helps in fast real-time attack scenario analysis. The process

of the hypergraph partitioning based AG creation reduces the time to construct full

AG. The AG constructed helps in MTD countermeasure selection, which will be dis-

cussed in Chapter 6 in real-time. For instance, in Figure 2.2, the hosts are partitioned

into two SubAGs, each shown with a different color. Services SSH and FTP on hosts

VM1, VM2, VM3, and ISCSI, SSH, and MySQL on VM4, VM5, VM6 represent two

partitions for the AG. The key idea is to distribute a load of SubAG creation over

several processors for each tenant and then check reachability links across the tenants.

The attacker in Figure 2.2 has root access on VM1, so he is able to exploit service

MySQL based vulnerability on VM4.

The proposed algorithm merges reachability information across SubAG’s to get the

final AG. The number of processors depends upon the Cluster on which OpenStack is

deployed. For instance, the HP Blade Server Cluster with 10 CPUs has been allocated

to the task of partitioning, with 2 processors per CPU, the value of the number of

processors used in partitioning procedure is 20.

Attack graphs are also useful in identifying the critical assets in the network. For

instance, Asset Rank Sawilla and Ou (2008) based approach can be used to rank

critical assets in a network, which are more likely to be affected as a result of network

vulnerabilities. The framework prioritizes these assets for selecting countermeasures.

The attack graph-based approach is very effective in handling dynamic attacks such

as DDoS and multi-stage attacks such as Advanced Persistent Threat (APT). If a

12

Figure 2.2: A Network Reachability-based Partitioned Attack Graph

botnet server communicates with clients to target a system resource, this information

can be modeled using Attack Graph.

Most modern vulnerability scanners report only the known vulnerabilities in the

network, such as remoteCodeExecution, localBufferOverflow etc. An attacker, how-

ever, on gaining privileges on a machine can install malicious applications that can

trigger zero-day vulnerabilities. For instance, in the Figure 2.2 VM1, which is Web-

Server, maybe providing some web service to VM2. Once an attacker has gained

root access on VM1, he can downgrade a patched software, e.g., flash player, to a

vulnerable version and try to compromise VM1. These unknown security risks can

also be modeled using Attack Graphs.

The corresponding attack graph for the threat model Figure 2.1 has been shown

in Figure 2.3. As can be seen from Figure 2.1, the threat model under consideration

has four nodes, i.e., the web server running on VM1, the database server on VM4,

13

RULE 1

(execCode,

VM1)

vulExists

(Web, VM1,

Remote

CodeExec)

vulExists (FTP,

VM1, Command

Injection)

priv (VM1,

User)

vuExists

(mysql, VM4,

SQL

Injection)

vuExists

(ssh, VM4,

CLRF

Injection)

RULE 2

(execCode,

VM4)

priv (VM1, root)

priv (VM4, root)

Figure 2.3: Attack Graph Generated for the Cloud Network

and the attacker as A. An attacker could chain the exploits as follows:

• execCode(A,VM1,8080) - Remote Code exploit.

• execCode(A,VM1,21) - FTP vulnerability exploit.

• execCode(VM1,VM4,22) - CLRF inject vulnerability exploit.

• execCode(VM1,VM4,53) - SQL injecttion exploit.

The code execution on FTP or Web Server can allow an attacker to obtain a

post-condition, i.e., root level privilege on VM1. Similarly, the implicit assumption

is that VM1 and VM4 can communicate over the internal network. Moreover, VM4

has an SSH server and SQL server with vulnerabilities. Thus an attacker can exploit

14

these vulnerabilities in stage-2 of the exploit and obtain his goal, i.e., root privilege

on VM4 as shown above.

2.2 Scalable Attack Graph Generation

In this section, I discuss the implementation details for modules that comprise a

scalable attack graph generation framework. The overall architecture of AG genera-

tion involves the creation of reachability and vulnerability-based scalable attack on

each tenant. The decision on the creation of the attack graph is based on the size of

the number of nodes vulnerabilities in the network.

For example, if three processors are allocated by the admin, then each proces-

sor will take care of the creation of a Sub-Attack Graphs (SubAG), and we will

have three SubAGs. The framework uses parallelism based on PySpark pys (2016)

framework to merge the SubAG for each tenant. Resilient Distributed Datasets

(RDDs) Zaharia et al. (2012) are parallel data-structures that are used for informa-

tion exchange in distributed networks. RDDs exchanges post-conditions (result of

a successful exploit) generated by each SubAG and attack tenant AG till no new

post-conditions are left.

In Algorithm 1, procedure Generate-SubAG checks all vulnerability and reacha-

bility edges for each SubAG. The pre-conditions of the AG are the requirements for

an exploit to be successful. The post-conditions, on the other hand, mean privilege

gained on a successful exploit, e.g., root access. Since post-conditions act as triggers

or pre-condition for another vulnerability, all new post-conditions are written to the

RDD. The agents or processors can check post-conditions specific to their SubAG and

update the SubAG if necessary.

The procedure Part-Hypergraph of the algorithm 1 is responsible for creating a

hypergraph and partitioning the hypergraph-based on parallel hypergraph partition-

15

Algorithm 1 Scalable AG Generation Algorithm

1: AG← ∅
2: procedure Part-Hypergraph(G, k ≥ 2, p,H← ∅)
3: V← v1, v2,, vn
4: for i = 1→ (n) do
5: H← H ∪ {vi, N(vi)}
6: end for
7: edgecuts, parts← ParMETIS(H, k)
8: return SubAG
9: end procedure

10: procedure Generate-SubAG(SubAG) . SubAG Generation Phase
11: EN = Find Edge Nodes(SubAG);
12: for each e ∈ EN do
13: Attackers = Find_External_Nodes_with_priv(e)
14: end for
15: V ulns = Find_Vulns_Info(SubAG)
16: Reaches = Find_Reach_Info(SubAG)
17: SubAG = Create_SubAG(Attackers, V ulns,Reach)
18: while true do
19: PostConds = Find_New_PostConds(SubAG)
20: for each p ∈ PostConds do
21: Write_To_RDD(Agent, p)
22: end for
23: PostConds =Read_NewPostCond(Agent)
24: if PostConds.size() == 0 then
25: break
26: end if
27: end while
28: end procedure
29: procedure Generate-Full-AG(SubAG[]) . Attack Graph Merge Phase
30: AG← SubAG[]
31: for each ei ∈ Read From RDD do
32: if ei = {SubAGi, SubAGj} i 6= j then
33: AG← AG ∪ ei
34: end if
35: end for
36: end procedure

16

ing algorithm ParMETIS Karypis and Schloegel (2013). The algorithm takes graph

connectivity information represented by G as input, along with a number of proces-

sors p, a number of partitions required k, and an empty data structure for hypergraph

H. The vertices in the neighborhood of the vertex N(v) are part of the hyperedge.

The hypergraph H is then partitioned into regions based on the number of ten-

ants, as shown in Figure 2.2 using the partitioning algorithm. SubAG[ni] will return

partition to which node ni belongs to after partitioning. For example, in Figure 2.2,

SubAG[vm1:http:8080] will return Tenant Node 1. Each processor p is responsible

for the construction of a SubAG or cluster for a given tenant. This distribution of

load for AG construction is done using a PySpark pys (2016) based framework which

maps SubAG construction phase over the p processors. Hypergraph partitioning pro-

cess aims to find k-way min-cut in a Hypergraph, with k > 1. Consider a variable ε

such that 0 < ε < 1. The objective of partitioning algorithm is to construct a parti-

tion set π = {B1, B2, .., Bk} from the hypergraph. The cost function for partitioning

algorithm is fo(π,E) where E represents the hyperedges. In the case of my proposed

solution, the cost is the run-time for the algorithm. The weight function for the

partitioning algorithm is fw(π), which is the cumulative vulnerability score for each

partition in the design. The weight of each partition can be fetched from a weight

function by relation Wi = fw(Bi). The average vulnerability score of all partitions is

Wavg. The goal of the algorithm is to optimize fw and fo, such that Wi < (1 + ε)Wavg

Trifunovic (2006).

The partitions generated from each tenant are taken as input SubAG for Algo-

rithm 1. Since the algorithm checks the RDDs for updated information, the AG

generation process makes sure new information such as nodes leaving the system or

VMs migrating from one physical server to another are reflected in real-time.

17

Next, in Algorithm 1 procedure Generate-Full-AG, the algorithm merges the

individual SubAGs. The input for the algorithm is an array of individual SubAG’s.

The edges that are part of bipartite graph G′ between two SubAG contain edges

such that ei ∈ {SubAG[vi], SubAG[vj]} and SubAG[vi] 6= SubAG[vj]. This means

bipartite Graph G′ = SubAGi ∩ SubAGj. The proposed solution makes use of RDD

to update edges that belong to such bipartite matching. Since there will be only a

finite number of edges that will be part of such matching, the framework will be able

to do the updates in linear time.

2.3 Experimental Analysis

The experiments were run on an Intel i7 based cloud system. The host Operating

System was Ubuntu 14.04. First, I evaluated the dependency of time to generate AG

to the number of hosts and their connectivity. I conducted the test on a MulVAL file

with 1, 700, densely connected hosts. The implementation of AG clusters/partitions

generation involves the use of the PySpark based parallelization framework.

Each SubAG is generated by one processor in an Apache Spark framework. I

computed the time to construct a scalable AG for a fixed number of partitions while

increasing the number of nodes from 1, 700 to 11, 500. The time to construct scalable

AG increases as expected, going from around 9 seconds for 5, 600 nodes to about 28

seconds to generate AG for 11, 500 nodes. This drastic increase in time is because

the graph is densely connected, and the number of interconnections increased as the

number of nodes were scaled up. The time to construct an AG is still less than

half a minute, which is acceptable considering the number of reads/write operations

involved and the merging phase of the different AG partitions.

Next, I conducted an experiment to measure the time required by the various parts

of the algorithm, such as time to partition graph (PartGraph), time for the SubAG

18

0.1 0.3 0.5 0.7 0.9 1.1

·104

4

8

12

16

20

24

28
30

Number of Nodes

T
im

e
T

ak
en

[s
]

K=3
4
5
6

Figure 2.4: AG Generation Time vs Number of Nodes

generation (Generate-SubAG) and time for merging the smaller subgraphs into a large

connected AG (Generate-Full-AG). The results are shown in Table 2.1. The size of

Table 2.1: Time Based Complexity Analysis of Algorithm

Parts K AG Part SubAG Gen AG Merge Total Time
3 0.30 6.28 0.24 6.82
4 0.35 7.76 0.29 7.914
5 0.36 7.84 0.43 8.27
6 0.37 10.16 0.48 10.64
7 0.38 7.8 0.44 8.25
8 0.36 10.09 0.57 10.56
9 0.36 10.32 0.68 10.8

AG is N = 10, 000. The network is sparsely connected. The time taken by various

phases of the algorithm doesn’t include the time taken to create the input SubAG,

which is produced by MulVAL. I started by generating a graph, which is dependent on

the number of edges. The time taken to generate the graph will be fixed if the number

of nodes are also fixed. The SubAG generation takes the most amount of time, and

this time increases with the increase in the number of partitions K, from K = 3 to

K = 6, which can be attributed to the time involved in spawning separate agents for

19

each SubAG. For K = 7, the time decreases for SubAG generation, which is due to

the performance gain obtained due to parallelization. For K = 8 and K = 9, the

SubAG generation time increases again. K can thus be selected based on numerous

iterations of the algorithm. The merge time for the algorithm shows a constant

increase, which is expected except for an outlier at K = 7. The overall performance

gain in this network configuration due to the use of spark based distributed structure

is significant. Thus, the solution can serve as the best model for large, densely, or

sparsely connected networks.

2.4 ATTACK GRAPH GENERATION RESEARCH

The attack representation methods have suffered from scalability issues. The

model checking approach proposed by Amman et. al. uses counterexamples as a

means to check the security policies Ammann et al. (2005). This approach will suffer

from scalability issues, as path explosion is often an issue with model checking. Ingols

et al Ingols et al. (2006) proposed multi-prerequisite graph-based security assessment.

The attack graph scales linearly with the network size. The computational complexity,

as described in the paper, is O(E + NlgN). The balance between completeness of

attack representation and scalability of approach is a widely researched area. Attack

Graph distillation Huang et al. (2011) uses severity metrics to choose most critical

attack paths. This helps the administrator control the information presented. Their

paper utilizes a Minimum-Cost SAT solving approach to identify the most critical

attack paths for the attacker to launch multi-step attacks.

Jha et al. (2002) presents a formal analysis of attacks on a network along with

cost-benefit analysis and security measures to defend against the network attacks.

Ammann et al. (2002) utilized the assumption of monotonicity to present an attack

graph generation solution which achieves a complexity of O(N6). This was better

20

compared to earlier research, however not a scalable solution for a large network.

Logical representation of attack information such as host connectivity and network

vulnerability is a popular method used by many research works to address the state-

space explosion problem associated with Attack Graphs Ou et al. (2005). A hierar-

chical attack representation model that utilizes the network structure to group the

nodes of the attack graph has been proposed by Hong and Kim (2013). A shared

memory based optimization approach for the generation of a distributed attack graph

has been proposed by Kaynar and Sivrikaya (2015). The time required for the gener-

ation of an attack graph when then the number of hosts is 450 is 2-3 minutes. This

limits the practical application of the attack graph for real-time analytics. A parallel

attack graph decomposition approach for the fast-generation of scalable attack graph

has been proposed by Mjihil et al. (2017). The network was tested for 50 vulnerabili-

ties and does not consider the dependency between different services when generating

attack graphs, which is considered in this research.

2.5 SUMMARY AND DISCUSSION

The parallel hypergraph partitioning approach considered in this research iden-

tifies the dependency between different services, utilizes the network structure and

service dependencies to abstract the graph edges as hyper-edges, and the parallel

graph partitioning approach to partition the task of generating a large attack graph

into manageable sub attack graphs. The order of generating an attack graph with

∼10k network nodes is ∼20-30(s). This is significantly better than prior research

works in the field of scalable attack graph generation. I expanded the attack graph

generation research described in this chapter to further optimize the attack graph

generation process in my research, S3 Sabur et al. (2019). S3 utilized an SDN-based

distributed firewall (DFW) Pena and Yu (2014) for managing the service reachability

21

between different segments of a cloud network. The pre-computation of segment-

specific sub attack graphs and tracking of changes in network topology helps avoid

the cost of re-computing sub attack graphs. Additionally, the S3 framework helped

in managing the security policies for cloud hosts, services, and network segments at

a granular level, and in effect, limiting the lateral movement (one of the key phases

of APT attacks).

22

Chapter 3

ADVANCED PERSISTENT THREAT (APT)

In this chapter, I describe APT attacks in detail, identify their key characteristics.

Next, I detail models prevalent in APT detection, with emphasis on semi-supervised

machine learning models. I elaborate on limitations of both existing APT detection

models and benchmark datasets and present an APT dataset DAPT2020 Myneni et al.

(2020), which covers different APT phases, and attack vectors missing in current

research. This chapter’s empirical evaluation serves as a motivation for proactive

defense mechanisms such as Moving Target Defense (MTD) to deal with APT attacks,

discussed in the next chapter.

Advanced Persistent Threats (APT’s) are stealthy attacks mounted by a sophis-

ticated group of attackers often sponsored by large organizations or governments to

gain useful information about the target organizations. APT is a combination of

three words Ross (2011) namely,

Advanced: The APT attacks are well-funded and use advanced mode of opera-

tions, sophisticated tools, as opposed to regular information discovery tools used by

individual attackers. The advanced tools employ multiple attack vectors, and the

target organization in the case of APT is often a highly valued target.

Persistent: The group of attackers in the case of APT are highly motivated and

persistent. Once the attackers gain access to the system, they try to access connected

systems without raising security tool alarms. The attackers employ several evasive

techniques and follow slow and low approach to increase the chances of success.

Threats: The threat in case of an APT attack is a loss of data or critical informa-

tion that can disrupt an organization’s everyday operations, loss of reputation, and

23

Table 3.1: Comparison of Traditional and APT Attacks.

Traditional Attacks APT Attacks
Attacker Mostly single person Highly organized, sophisticated, deter-

mined, and well-resourced group
Target Unspecified, mostly indi-

vidual systems
Specific organizations, governmental insti-
tutions, commercial enterprises

Purpose Financial benefits,
demonstrating abilities

Competitive advantages, strategic bene-
fits

Approach Single-run, “smash and
grab”, short period

Repeated attempts, stays slow and low,
adapts to resist defenses, long term

mission-critical data. These threats are difficult to detect and require sophisticated

defense mechanisms to detect and prevent.

The APT lifecycle, according to the well-established APT models, can be split

into five core phases. (1) Reconnaisance - scanning the network for identification of

vulnerabilities, gathering information about organization and employees, which helps

the attacker in understanding the attack surface (2) Establishing Foothold - exploiting

known or unknown vulnerabilities to gain initial access on one of the network. The

attacker can also use targeted phishing campaigns to infect a device on the network

organization. (3) Lateral Movement - targeting network resources which are mission-

critical such as internal Active Directory or FTP server (4) Maintain access - using

tools and techniques to ensure that even if connection breaks, it can be established

again quickly. A sophisticated attacker can deploy backdoors on the compromised

system to establish communication with the command and control center (C&C)

when required. (5) Data Exfiltration - sending important data and files to a remote

server under attacker’s control, e.g., a remote FTP server, remote shared drive, etc.

The number of phases has been further sub-categorized by Mandiant McWhorter

(2013) (foothold establishment, and privilege escalation - phase 2). Similarly, Ussath

et al. (2016) abstract the APT life cycle into three phases.

24

The data-collection and feature selection described next consider host-level logs

(establishing foothold and privilege escalation) as one. The key reason is that host-

level records for both stages use log generation sources (audit logs in Linux, Windows

Logon events in Windows, access logs for web and database services).

Web Application
Server

Vendor
Application Server

Active Directory Server

Database
Server

Point of Sale (POS)

Attacker Controlled
FTP Server

FTP Enabled PC

Attacker

(2) Connect
using stolen
credentials

(4) Search Targets
For attack

propagation

(5) Steal token and create
fake admin account

(7) Install Malware
Steal CCs and PII

HVAC Vendor
(1) Install Malware

and steal creds

(8) Send stolen
Data over network

share

(9) Send data
Over FTP

System on Internal Network

Figure 3.1: Different Phases of APT Attacks for Target Network. The Attacker
utilized Vendor PC to Infiltrate vulnerable Web Server, and Weak Authorization and
Monitoring Capabilities to Exfiltrate Personally Identifiable Information (PII) and
Credit Card (CC) Information over FTP.

For illustrating the real-world APT attack, the example above provides details of

the Target APT attack as a use case in Figure 3.1. The initial penetration point -

step (1) for the attacker located outside the network was Heat, Ventilation, and Air

Conditioning (HVAC) vendor PC. The attacker could steal HVAC access credentials

and gained access to the Target network’s target web services - steps (2), (3). The

attacker performed internal reconnaissance to identify the target machines which

were connected to Active Directory (AD) Server, and steal their credentials - steps

(4), (5) - footlhold establishment. The attacker utilized lateral movement on

25

the internal network to target Point of Sale (POS) systems. The attacker also created

fake admin accounts on the AD server to maintain access. The attacker deployed

Kaptoxa malware on the POS systems using compromised internal machines - steps

(6), (7). The attacker was able to obtain database access using elevated privileges

on the POS system. Next, the attacker used the stolen Personally Identifiable Infor-

mation (PII) and Credit Card (CC) information from POS and database server and

sent them to a centralized system in the Target’s network using standard Windows

SMB protocol - step (8). In the last phase of the attack, the data was exfiltrated

by the attacker from a centralized repository to the attacker’s controlled FTP server

- step (9).

3.1 Models Used for APT Detection

One poring APTs attack patterns as outliers (anomalies)pular approach used for

APT detection is conside and utilizing the outlier detection methods for detecting

APT attacks. Some popular outlier detection methods, as discussed by Hodge and

Austin (2004), include unsupervised clustering. This approach utilizes the static dis-

tribution and identifies the data points outside the normal data distribution range

as anomalous. The second method involves the supervised classification of new data

based on pre-labeled data as normal or abnormal. The third category includes the

use of semi-supervised models that considers pre-classified data to model standard

data. As the new data is received, the model fine-tunes and refines the normal vs. ab-

normal data boundary. Authors also utilized machine learning methods to categorize

anomaly detection methods, particularly the use of neural networks and statistical

anomaly detection techniques. Chandola et al. (2009) considered a problem asso-

ciated with anomaly detection when discrete sequences are in consideration. They

utilized sequence-based anomaly detection and pattern-frequency-based anomaly de-

26

tection methods for addressing issues related to discovering anomalies in a discrete

domain. Use of machine learning methods for anomaly detection has been detailed

by Mehmood et al. (2013). The authors considered widely used methods such as Sup-

port Vector Machines (SVM) Noble (2006), Fuzzy Logic (FL) Klir and Yuan (1995),

Genetic Algorithm (GA), K-means approach Ding and He (2004), Artificial Neural

Networks (ANNs) Yegnanarayana (2009), and association rule matching for detection

of anomalies. The use of anomaly detection methods in APT detection research can

be quite useful. The use of machine learning methods for anomaly detection has

been detailed by Mehmood et al. (2013). The use of machine learning models for

detecting normal and abnormal behavior of the system over time to identify APT

attack patterns has been discussed by Friedberg et al. (2015). The authors used

the system logs produces by different components of the Instrumentation Control

Technology (ICT) network to identify anomalous events and event classes. However,

this approach does not scale when considering attributes with different values for the

given data. The machine learning methods used for the detection of APT attacks

can help in the identification of contextual Hayes and Capretz (2015) and collective

anomalies Zheng et al. (2015), that are characteristic of many APT attacks. The

event classes identify implications between different events and detect emerging APT

attack patterns. Cappers and van Wijk (2016) utilized a machine learning approach

for contextual analysis of network traffic alerts and splitting them into messages and

attributes. Anomaly detection for web-based log data has been considered by Qu

et al. (2018). The research work gated-recurrent unit (GRU) as a basic unit trained

using unsupervised machine learning models for detecting anomalies. The authors

compared their model with Support Vector Machines (SVM) and Long Short-Term

Memory (LSTM) Hochreiter and Schmidhuber (1997) methods. Du et al. (2017) uti-

lized LSTM approach for detecting DDoS attacks. The authors used a model trained

27

on the normal pattern of system log events to detect abnormal traffic patterns present

in the case of DDoS attacks.

3.1.1 Semi-Supervised Models for Detection of APT Attacks

Semi-supervised machine learning models consider regular traffic as a baseline,

and any deviation from the baseline is anomalous Borghesi et al. (2019). Network

traffic data depicts a class imbalance pattern, i.e., the percentage of regular traffic is

very high compared to abnormal traffic. Semi-supervised machine learning models are

robust to such instances of class imbalance. I consider three semi-supervised models

that have been used by research works on APT attack detection.

One-Class Support Vector Machines (1-SVM)

1-SVM presents a useful model in the instances of high-class imbalance, i.e., when

the percentage of regular traffic is large compared to abnormal traffic Emmott et al.

(2013); Microsoft (2019). Thus, I utilized one-class SVM trained on regular network

traffic. In this work, I used reconstruction error Machiraju and Yagel (1996) to classify

network events as anomalous.

Stacked Auto Encoder (SAE)

The attack patterns in the case of APT depict some latent activities which are difficult

to discover by traditional machine learning models. SAE, a special kind of feed-

forward neural network is used to find these compact latent space representations

of input, which can, in turn, allow reconstruction of attack patterns. A deep neural

network is used by SAE for compression, followed by reconstruction, instead of single-

layer neural networks. The loss function in SAE seeks to minimize the distance

between original input and reconstruction output. The SAE model can be trained

28

on standard data and tested on both normal and abnormal data. SAE mimics the

input data, it effectively reconstructs the normal data, but in anomalous data, the

reconstruction error is high. It allows the SAE model to detect the abnormal data by

comparing reconstruction error to a predefined threshold.

Stacked Auto Encoder with Long Short-Term Memory (LSTM-SAE)

LSTM-SAE is a popular model in time-series forecasting problems. SAE by itself

is not able to detect contextual anomalies Jiang et al. (2014). These anomalies are

significant in APT attacks since different activities such as reconnaissance, foothold

establishment, etc. are dependent on each other for attack progression. LSTM-SAE

addresses this issue using LSTM cells instead of hidden layers cells present in SAE-

based neural networks. In effect, LSTM compresses the network traffic packets in

multiple time-steps and then reconstructs them. The multi-step attacks, such as

APT, which showcase a pattern of attack activities dependent on each other over

time, can be detected using the LSTM-SAE model.

3.2 Existing Datasets for APT Detection Research

Table 3.2: Analysis of Phases of APT Attack Covered by Attack Vectors of Existing
Works Involving APT, Network Intrusion, and Anomaly Detection in Cybersecurity.
The Table Compares Attack Phases Covered by Datasets UNB-15 Moustafa and Slay
(2015), CICIDS 2017 Sharafaldin et al. (2018), NSL-KDD Dhanabal and Shanthara-
jah (2015), Mawi Fontugne et al. (2010), ISCX Shiravi et al. (2012), DARPA Cun-
ningham et al. (1999), HERITRIX Wang et al. (2016b), and DAPT 2020.

APT Phase
Dataset

UNB-15 CICIDS NSL-KDD Mawi ISCX DARPA HERITRIX DAPT 2020

Normal Traffic X X X X X X X X
Reconnaissance X X X X X X
Foothold Establishment X X X X X X X
Lateral Movement X
Data Exfiltration X

An analysis of existing datasets Table 3.2 used in APT detection research shows

29

that most datasets cover only reconnaissance and foothold establishment phases based

on analysis of network traffic features attack vectors employed in these datasets. As

part of APT research work, the dataset I proposed considers lateral movement and

data-exfiltration, critical phases of an APT attack. Thus, DAPT 2020 is comprehen-

sive enough to cover all stages of an APT attack.

Table 3.3: Comparison Between Attack Vectors of Each Dataset in Terms of Dif-
ferent Attack Vectors That is Involved in APT Attack. The Table Compares Exis-
tence of Every Attack Vectors by Datasets UNB-15 Moustafa and Slay (2015), CI-
CIDS 2018 CSE-CIC-IDS2018 (2018) CICIDS 2017 Sharafaldin et al. (2018), NSL-
KDD Dhanabal and Shantharajah (2015), MAWI Fontugne et al. (2010), ISCX Shi-
ravi et al. (2012), DARPA Cunningham et al. (1999), HERITRIX Wang et al. (2016b),
and DAPT 2020.

Attack
Dataset

UNB-15 CICIDS 2018 CICIDS 2017 NSL-KDD MAWI ISCX DARPA HERITRIX DAPT 2020

Network Scan X X X X X X X X
Web Vulnerability Scan X X X
Account bruteforce X X X X X X X
SQL injection X X X X X
Malware Download X X X
Backdoor X X X X
Command Injection X X X X X X
DoS X X X X X X X X
CSRF X X X X
Privilege escalation X X X X X

Next, I consider the attack vectors employed in the construction of datasets used

in APT research. It can be observed from Table 3.3 that existing datasets consider

only a few attack vectors, whereas, in the case of APT attacks, an attacker is likely

to employ a wide range of attack tools and techniques.

3.3 DAPT 2020 Design and Implementation

The DAPT 2020 uses VMWare ESXi physical servers used for hosting the en-

terprise cloud network. To mimic the attack pattern typical of an APT attack, I

created separate public and private networks, hosted using Docker Merkel (2014)

based virtual environment. I deployed Mutillidae OWASP (2020), DVWA (2020),

Badstore Vulnhub (2020), and Metasploitable Security (2020) on the VM public net-

30

work. The private network comprises some core business services such as DNS, Nexus

Figure 3.2: DAPT 2020 System Overview

storage service, and WordPress website. The public network can be configured with

Snort based IDS Roesch et al. (1999). Each virtual machine was also configured to

store network traffic capture and service logs (access logs, authentication logs, DNS

logs, etc.). The logs were collected at a centralized log server.

To mimic the APT attacks, a team of normal users was instructed to perform

business tasks such as creating an account on a WordPress website, accessing Nexus

storage, browsing the web APIs on the public and private network. The detailed

activity of tasks that were performed in order to mimic APT attacks has been provided

below:

• Monday: Normal traffic baseline was performed. The users browsed the public

services, used tools such as ping, dig, GET/POST request methods, performed

standard upload, download operations.

• Tuesday: An internal Red Team utilized activities such as fingerprinting, net-

work service, and vulnerability scanning. The tools such as burpsuite, web-

scarab, dirbuster, and account discovery tools were employed. The goal was

to identify vulnerabilities present on the public network, authentication and

authorization weakness on the system, etc.

31

• Wednesday: Initial foothold establishment was performed by the Red Team on

Wednesday. Team employed PHP reverse shell, sqlmap scripts, metasploitable

payloads, authentication, and authorization bypass methods to get access to

network services exposed on the public network. The team added additional

accounts to maintain persistence.

• Thursday: The goal was to perform lateral movement and target some core

services of the private network. The team scanned the internal system, identified

vulnerabilities present on the core network services such as vsftpd 2.3.4, weak

SSH authentication, CVE-2012-2122. The team obtained user and root-level

privileges on the containers with core services by using lateral movement.

• Friday: The data from core services such as MySQL, FTP was exfiltrated to a

Command and Control (C&C) center present on the remote location. The team

created Google Drives and Remote FTP server to act as C&C. Commands and

tools such as scp, wput, PyExfil, etc. were utilized to exfiltrate the data to a

remote location.

An analysis of known APT attacks such as APT41 Dragon (2020), Target APT

attack Wagner et al. (2017), and RSA Secured ID TheRegister (2020) provided in

DAPT 2020 Myneni et al. (2020) shows that attack vectors and APT phases present

in these well-known attacks are covered in the dataset that I have described in this

section.

3.4 Experimental Analysis for Benchmarking APT Models and Datasets

I compared the DAPT 2020 with well-known security datasets CICIDS 2017 Sharafaldin

et al. (2018), CICIDS 2018 CSE-CIC-IDS2018 (2018), UNB 2015 Moustafa and Slay

(2015), used by machine learning models for detection of the APT attack. I com-

32

pared the performance of anomaly detection models based on semi-supervised ma-

chine learning Stacked Autoencoder (SAE), Stacked Autoencoder with Long Short-

Term Memory (LSTM-SAE), and 1-class Support Vector Machine (1-SVM). I utilized

the Precision-Recall (PR) curve as a measurement metric. Ideally, the anomaly de-

tection algorithm should be sound and complete with respect to anomalies

• Precision identifies only anomalies. It measures the percentage or rate. If

the algorithm in empirical evaluation identifies set S(t) of anomalies for thresh-

old t, precision determines the percentage of real anomalies. The precision is

represented using the formula below. The symbol #(.) denotes the cardinality..

y = Precison =
TP

TP + FP
=

#(Anomalous Traffic)

#(Dataset)

• Recall measures how well the algorithm identifies all the anomalies. The al-

gorithm in experimental analysis identifies set S(t) of anomalies. This set is a

percentage of the full set of anomalies..

The anomaly datasets exhibit high-class imbalance. The representation of attack data

is ∼ 2% in the test-set. In such a scenario, a naive classifier will classify all data to

the majority class. Next, due to the variance in the algorithms and datasets used in

the experimental analysis, it isn’t easy to reason about 2% scale. The measurement

metrics such a Receiver Operating Characteristics (ROC) Davis and Goadrich (2006)

utilizes False Positive Rate (FPR) in comparison to True Positive Rate (TPR) used

by PR-curve. The FPR is less sensitive to changes in the number of false positives

(regular traffic misclassified as attacks). In contrast, the precision (positive predicted

value) looks at only samples of the positive class. Since the positive class in anomaly

datasets is underrepresented, the experimental analysis uses PR-curve as a better

measurement metric. An analysis of dataset CICIDS 2018 shows brute-force attacks

33

represent ∼ 22% of total attack traffic, whereas, in UNB 2015, brute force attack

represents ∼ 14% of the total traffic. If a naive classifier is utilized in such cases, it

will classify everything to the majority class (86% in the case of CICIDS 2018 and

75% for UNB 2015).

I utilized a confidence threshold p, which is exhibited by the model after normal-

izing the error across test samples between [0, 1]. The value p is the indicator of

confidence with which the model predicts input as an anomaly. I utilize a threshold

τ to plot a point on PR-curve. Suppose the test input value is p < τ in this model. I

classify it as normal traffic (anomaly otherwise). A confusion matrix is obtained by

doing this for all test inputs. The Precision and Recall for a particular τ are thus

obtained and plotted on PR-curve. The model considers the ideal classifier and No-

skill (NS) classifiers to showcase how semi-supervised algorithms perform for different

phases of the APT attack. An ideal classifier will predict the input test label with

complete confidence, i.e., p = 1 for anomalies, and p=0 for normal traffic. The result

will be y = 1 on PR-curve for such a classifier. On the other hand, an NS classifier

will output p = 1 on input data and can be plotted as a line. For the empirical

evaluation, I considered each phase of the APT attack in isolation and analyzed how

well each algorithm performs on APT attack phases. Note that some datasets in the

experiment do not have APT attack phases, lateral movement, and data exfiltration,

and hence there is no data reported for these cases. The attack vectors utilized in

each APT phase have been described in Table 3.3. The training set for each attack

phase comprised regular traffic, whereas the test set comprised both normal and at-

tack traffic. For instance, in data exfiltration, the training set consisted of regular

data traffic from Monday-Friday. In contrast, the test set consisted of standard and

attack traffic on Friday (the red team performed data exfiltration).

34

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(a) Reconnaissance Stage

0.95

1.00 (c) Lateral Movement Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(b) Foothold Establishment Stage

0.95

1.00 (d) Data Ex-filtration Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15
CICIDS 2018
CICIDS 2018(NS)
CICIDS 2017
CICIDS 2017(NS)
DAPT 2020
DAPT 2020 (NS)
UNB 2015
UNB 2015(NS)

Figure 3.3: Precision-Recall (PR) Curves for Detecting Attacks Across the Various
Stages of an APT for the Different Datasets using the Stacked Auto-encoder (SAE).

3.4.1 Performance Analysis for SAE

The results of anomaly detection performance for SAE showcase good performance

on a) reconnaisance attacks for CICIDS 2018, and foothold establishment for DAPT

2020, Figure 3.3. During the reconnaissance phase, the NS classifier has a precision

value of 0.23 for CICIDS 2018. The fraction of anomalies detected is highest with

a precision value of 0.87. There is a high value of reconnaissance traffic in CICIDS

2018, which is reflected in the PR-curve. The performance of SAE on the DAPT

2020 dataset and UNB 2015 does not differ significantly. This can be explained by

the fact that the NS classifiers’ baseline in DAPT 2020 is higher than UNB 2015. The

35

detection of reconnaissance using SAE for CICIDS 2017 is the worst of all existing

datasets, with the highest value of ∼ 0.1. (b) the datasets analyzed during foothold es-

tablishment phase consisted of SQL Injection and brute-force as major attack vectors.

In DAPT 2020 dataset, nearly 50% of traffic comprised of foothold establishment at-

tacks. The SAE outperforms other datasets for the foothold establishment on DAPT

2020. The low traffic on other datasets is hard to distinguish compared to attack

traffic, and hence detection rate for SAE is quite low (as bad as No skills classifier).

(c) The y-axis in case of lateral movement and data exfiltration show low detection

rate [0, 0.15]. The SAE shows a poor detection rate in our dataset < 0.1 for these

two phases.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(a) Reconnaissance Stage

0.95

1.00 (c) Lateral Movement Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(b) Foothold Establishment Stage

0.95

1.00 (d) Data Ex-filtration Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04
CICIDS 2018
CICIDS 2018(NS)
CICIDS 2017
CICIDS 2017(NS)
DAPT 2020
DAPT 2020 (NS)
UNB 2015
UNB 2015(NS)

Figure 3.4: Precision-Recall (PR) Curves for Detecting Attacks Across the Various
Stages of an APT for the Different Datasets using encoder LSTM-SAE.

36

3.4.2 Performance Analysis for LSTM-SAE

The LSTM-SAE shows an improvement in performance when detecting a) recon-

naisance attacks on CICIDS 2017, Figure 3.4, i.e., the performance value improves

to ∼ 0.9, compared to 0.1 for SAE model. The performance improvement indicates

that the contextual information in the case of the reconnaissance phase is identified

using the LSTM-SAE model. However, the analysis of the reconnaissance phase on

other datasets indicates that the addition of contextual information makes a distinct

representation of attack vectors difficult. The PR value obtained is close to normal

representation, and in-effect the effectiveness of anomaly detection on these datasets

for the reconnaissance phase is limited. (b) the LSTM-SAE performs poorly when

foothold establishment phase is analyzed. Even though there is a significant amount

of attack data present, the PR-value is close to the no-skills classifier for LSTM-SAE

in this APT phase. This observation is indicative of the fact that as attack timesteps

increase, the effect of contextual information is not as prominent. (c) during lateral

movement and data exfiltration phases, the LSTM-SAE performs worse than SAE.

This shows that the distribution of contextual information in these phases of attacks

is almost the same as the normal traffic.

3.4.3 Performance Analysis for 1-SVM

The classifier performs poorly (a) during the reconnaisance phase for all datasets

except CICIDS 2018. For other datasets, the performance is comparable to the No-

skills classifier. Thus, the classifier can only identify reconnaissance events in the

case of CICIDS 2018. This is due to the presence of a large portion of clearly evident

reconnaissance traffic in the case of CICIDS 2018. The percentage of attack traffic for

all other datasets, including DAPT 2020, is relatively low. Hence, the classifier cannot

37

��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��
 ���
������

���

���

���

���

���

��	

��

���

���

��

���
��

��
��

��
�

������������������������

0.95

1.00 (c) Lateral Movement Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

(b) Foothold Establishment Stage

0.95

1.00 (d) Data Ex-filtration Stage

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04
CICIDS 2018
CICIDS 2018(NS)
CICIDS 2017
CICIDS 2017(NS)
DAPT 2020
DAPT 2020 (NS)
UNB 2015
UNB 2015(NS)

Figure 3.5: Precision-Recall (PR) Curves for Detecting Attacks Across the Various
Stages of an APT for the Different Datasets using 1-class Support Vector Machine
(1-SVM).

identify reconnaissance events with high precision (b) the foothold establishment 1-

SVM determines phase for DAPT 2020. In contrast, performance on all other datasets

for this phase of the APT attack is relatively low (comparable to a No-skills classifier)

(c) the PR-value for lateral movement and data exfiltration is extremely low for 1-

SVM. This is similar to the PR-value pattern observed for SAE and LSTM-SAE.

Thus, existing anomaly detection models exhibit a low detection rate for the APT

attack’s final two phases.

38

3.5 Summary and Discussion

The data related to APT attacks are difficult to obtain because of privacy con-

cerns inherent in the data. Thus the creation of a dataset that closely mimics an APT

attack - DAPT 2020 is extremely useful. The data augmentation techniques Antoniou

et al. (2017) prevalent in existing machine learning research pose challenges. (1) It is

quite difficult to distinguish regular traffic and attack traffic in existing datasets since

APT attacks try to use tools and techniques to evade detection and blend in normal

traffic. (2) The regular intrusion detection datasets such as CICIDS 2017, 2018 that

have been used for detection of APT attacks do not have dependencies between con-

secutive attack phases like reconnaissance, foothold establishment. This limits the

usability of these datasets in APT attack detection research. Thus, the effectiveness

of data augmentation techniques in APT attacks requires further investigation. The

analysis of existing machine learning models showcases both the contextual and col-

lective effects of APT attacks. These anomalies are difficult to identify over multiple

phases of an APT attack correctly. The use of alternative models such as Generative

Adversarial Networks (GAN) Goodfellow (2016) and other models that can correlate

attack activities from different phases of APT attack can be present some exciting

results for detection of APT attacks. The lack of reliable detection of APT attacks

serves as a motivation for exploring proactive defense mechanisms such as Moving

Target Defense (MTD) when dealing with APT attacks. I describe the MTD in the

next part of this thesis and discuss the use of programmable networks (SDN/NFV)

technologies Huang et al. (2018) for implementing the MTD defense mechanism.

39

Chapter 4

SDN-BASED MOVING TARGET DEFENSE FOR SINGLE-STAGE ATTACKS

The static nature of networks is useful from the service provisioning aspect. In a

cloud network, the service providers want system configuration to remain unchanged

once an application is deployed. This static configuration makes the cloud system

a soft target for the attackers since they can spend the time to perform reconnais-

sance on the system and craft the necessary attacks based on the information gath-

ered by cloud system exploration. In this chapter, I discuss Moving Target Defense

(MTD) based proactive security defense to counter single-stage attacks. MTD helps

in continuously shifting the underlying system’s configuration, thus taking away the

asymmetric advantage that attackers have in a static network. In the next chapter, I

discuss the multi-stage and APT attacks and propose MTD solutions that can disrupt

attack propagation at various stages of a multi-host, multi-stage attack.

4.1 MTD Categorization

The categorization of MTD, as presented in Figure 4.1 is useful for a system

administrator to implement situation-aware MTD defenses. First, I will elaborate on

each category of MTD.

4.1.1 What to Switch - Movement of Configuration Set

The software system, when considered from the perspective of an attacker, can be

classified into (a) Exploration Surface (b) Attack Surface (c) Detection Surface (d)

Prevention Surface.

40

Categorization of
MTDs

What to Move?
Configuration Set

When to Move?
Timing Function

How to Move?
Movement Function

Figure 4.1: Moving Target Defense (MTD) Categorization

Exploration Surface Shifting

An attacker may try to explore the network using network scanning techniques. The

attack performs reconnaissance to understand network topology, host operating sys-

tems, network bandwidth. The knowledge obtained from the exploration surface can

help an attacker perform targeted attacks and establish a foothold in the network.

The goal of using MTD during this phase is to ensure the attacker’s reconnaissance

activities are rendered inefficient. The adversary is presented a false view of the net-

work information. Thus, subsequent steps of the attack operate on this faulty view of

the information. Some examples include Al-Shaer et al. (2012); Albanese et al. (2013)

using Random Host Mutation (RHM) for moving the target hosts to unassigned ran-

dom virtual IP addresses (vIP), Jafarian et al. (2012) utilized SDN based framework

to implement MTD on similar configuration set. Some exploration techniques utilize

the timing information to fingerprint the target software. Algin et al. (2017) modify

the schedule, guiding host transmission information, and reduce the effectiveness of

timing attacks. Similarly, Schlenker et al. (2018) responds to the attacker’s query

with incorrect information, and in-turn deceives the adversary.

41

Attack Surface Shifting

Once the attacker has sufficient knowledge of the target network, the attacker selects

exploits (e.g., metasploitable payload) Singh et al. (2020) to perform a targeted attack.

For instance, if the webserver identified during the exploration phase is an apache web

server, the attacker checks if there is a known vulnerability for the particular version

of the software and selects the available attack scripts to exploit the vulnerability.

Carter et al. (2014) utilizes an Operating System (OS) switching strategy to shift

to an alternate version of OS using a centralized control center. Chowdhary et al.

(2016), describe an MTD that leverages port hopping to thwart known attacks on a

cloud-based system. El Mir et al. (2016) utilize Virtual Machine Migration (VMM) as

a means of dealing with known vulnerabilities. The capacity constraints of physical

server hosting VM are considered while shifting the attack surface. A multi-layer

attack surface shifting has been discussed in research works multi-layer MTD, as

discussed in Sengupta et al. (2017); Zhu and Başar (2013).

Detection Surface Shifting

The detection surface refers to network monitoring tools - centralized log server Carasso

(2012), intrusion detection system (IDS) Roesch et al. (1999), which are placed strate-

gically in the network to detect an attacker. The placement of detection systems in

a static manner can lead to attackers discovering the detection mechanism and using

means to evade detection. On the other hand, over-provisioning the detection system

can lead to degradation of network performance, as noted by Sengupta et al. (2018).

The movement of detection surface in a strategic manner can ensure that attackers

can be detected with a high probability while ensuring that the network performance

is not severely impacted Venkatesan et al. (2016); Sengupta et al. (2018).

42

Prevention Surface Shifting

The prevention surface refers to the countermeasures present to mitigate the security

threat. This includes network-based Firewall Russell and Welte (2002), web appli-

cation firewall, intrusion prevention system. Movement of prevention surface also

adds a layer of reasoning on the adversaries part; for example, distinguishing between

whether their attack was undetected or the attacker’s behavior is being currently

monitored. There has been limited research in the field of MTD-based prevention

surface shifting. In some cases, authors make this assumption in Chowdhary et al.

(2017b), an MTD mechanism that modifies the bandwidth of the network in response

to malicious activity is proposed.

4.1.2 When to Switch? - Timing Function

An essential question in MTD is when and how-often the change in network or

software configuration is required. The defender needs to devise a strategy that

changes the network at a constant or variable rate. The MTD based on timing

function can be classified into (a) Constant Period Switching (b) Variable Period

Switching.

Constant Period Switching (CPS)

Research works Chowdhary et al. (2018a); Sengupta et al. (2017, 2018); Manadhata

(2013); Jajodia et al. (2018) do not discuss the time-period for MTD. These works,

however, have an implicit assumption that the period for movement is fixed. The

research works Zhu and Başar (2013); Carter et al. (2014); Algin et al. (2017) consider

that time for equilibrium MTD strategy is at the beginning of each stage. Algin et al.

(2017); Albanese et al. (2013) consider the effectiveness of MTD for different values

of timing functions, i.e., impact on MTD effectiveness when different values of a

43

constant period are considered. Debroy et al. (2016) study the historical attack data

and obtain a value cyber-attack inter-arrival (CAIA) rate as a constant period for

MTD. traceroute Padmanabhan and Simon (2003) considers data between possible

source-destination pairs to decide on a reasonable time-period for obfuscating links

or mutating routes of ICMP packets on the network.

Variable Period Switching (VPS)

The value of the time period can be obtained using system and network attack pa-

rameters. The variable period switching is a two-layer MTD strategy. In the first

layer, the MTD mechanism for shifting the timing surface is deployed, whereas, in the

second layer, the actual cyber-surface shifting is implemented. The variable period

switching strategy can be further sub-categorized into:

• On-event switching - the shifting strategy depends on an event such as attack

detection, link unavailability. Based on the event, the timing function deter-

mines the time-period to switch. Van Dijk et al. (2013) considers the boolean

variable [0/1] as a parameter to indicate who has control over the system -

attacker or defender. The belief that the real value of the variable is 0, which

means the attacker has control over the course, is used by the defender to decide

MTD’s time period. Chowdhary et al. (2017b) utilizes the network bandwidth

value as a parameter for rate-limiting the bandwidth for the attacker. Shi et al.

(2017) scan for unexpected connections on the network and decide on an MTD

based on the presence of unforeseen links on the system.

• Strategic Switching - Lei et al. (2017) utilize game-theoretic strategy based on

current configuration (c) and discrete value of time (t) to represent game state.

Each state is represented as a tuple (c,t). The optimal strategy for defense in

44

each tuple value can be identified using the game’s solution formulated in this

work. However, the state-space representation of this nature can lead to an

explosion in the number of states, thus limiting the model’s scalability. El Mir

et al. (2016) utilizes state-space modeling, which involves timing function, but

authors resort to a simple strategy for defining the timing function. The tim-

ing function considers the impact of (known) vulnerabilities in the currently

deployed configuration and, based on it, recommends a switching time.

4.1.3 How to switch? - Movement Function

The movement policy can be obtained based on intelligent game-theoretic mod-

eling. The modeling can be classified into games that consider (a) Single-stage (b)

Multi-stage interaction between the attacker and defender.

Single-stage Modeling

The goal is to identify a mixed strategy that maximizes the defender’s reward. Man-

adhata (2013) tuple of actions available to attacker and defender, and rewards, RA

and RD for the attacker and the defender to calculate Subgame Perfect Equilibrium

(SPE), which maximizes the reward for the defender. Chowdhary et al. (2018a) uti-

lize game modeling based on a real-world example and compare the effectiveness of a

reactive switching strategy to the Uniform Random Strategy (URS). A single-stage

normal form game is considered by Carter et al. (2014); Sengupta et al. (2018); Vad-

lamudi et al. (2016); Venkatesan et al. (2016); Zhu and Başar (2013). Vadlamudi

et al. (2016); Sengupta et al. (2018) identify strategy based on Strong Stackelberg

Equilibrium (SSE) for identification of optimal MTD strategy. Stackelberg Equilib-

rium (SE) as a means of thwarting DDoS attacks has been proposed by Venkatesan

et al. (2016).

45

Multi-stage Modeling

The research works consider the history of actions taken by attackers and defender

future states’ reward values based on present state and actions to create a multi-

stage game-theoretic model. Chowdhary et al. (2017b) discretizes the continuous

action space of the defender and utilizes the bandwidth values over time to ensure

that DDoS attacks mounted by the attacker are rendered ineffective. Colbaugh and

Glass (2012) map attacker-defender interactions as a repeated game, and identify

defender’s policy against self-learning attacker. Maleki et al. (2016) considers policies

over the defender’s action set comprising of single or multiple IP hops. Zhao et al.

(2017) observe attacker-defender interactions over multiple gameplays and update

their belief states in each stage to identify the optimal strategy for the defender.

4.2 SDN for Implementing MTD

SDN has emerged as a state-of-the-art network architecture for data centers and

backbone networks. Google’s B4 project Jain et al. (2013) shows the feasibility of SDN

for handling real-world network challenges such as traffic engineering and Quality of

Service (QoS). SDN allows centralized command and control of the network. The

flexible programmable network solution offered by SDN makes it an ideal candidate

for provisioning MTD solutions. For instance, in a cloud network managed by SDN,

the SDN controller can be notified by security analysis tools about an active threat

in the system. The controller can take preventive methods to deal with the situation,

such as IP address hopping, reconfiguration of routes for network traffic, or changing

the host endpoint to delay the attack propagation.

Network Mapping and Reconnaissance Protection The first step of the

Cyber Kill Chain is identifying vulnerable software and OS versions. Most scanning

46

tools use ICMP, TCP, or UDP scans to determine the potential targets’ connectivity

and reachability. The scans’ replies can also reveal the firewall configuration details,

i.e., what traffic is allowed or denied. The Time to Live (TTL) information can also

help identify several hops to the attack target Kampanakis et al. (2014). An SDN-

based solution can modify the TTL field associated with the reply for the attacker’s

scan query.

Service Version and OS Hiding The attacker needs to identify the OS or vul-

nerable service version to mount an attack. For instance, the attacker can send HTTP

GET request to Apache Web Server, and the response can help identify vulnerability

associated with a particular version of the Apache software. If the attacker gets a re-

ply 404 Not Found, he can locate some obfuscation happening at the target software.

A careful attacker can thus change the attack vector to exploit the vulnerability at

the target. An SDN-enabled solution can override the basic service version with a

bogus version of the Apache Server. Some application proxies leverage this technique

to prevent service discovery attempts by a scanning tool. Another attack method is

known as OS Fingerprinting , where the attacker tries to discover the version of the

operating system which is vulnerable. Although modern OS can generate a random

response to TCP and UDP requests, how TCP sequence numbers are generated can

help an attacker in the identification of the OS version.

Distributed Denial of Service (DDoS) is a significant security problem affecting

networks. Some recent cases include a massive DDoS attack on DNS provider Dyn

in October 2016, Mirai Botnet 2018, and an attack on the well-known security blog

krebsonsecurity.com which was of magnitude 650 Gbps. The attackers utilize so-

phisticated botnets to send a large volume of traffic to the victim, thus overwhelming

their capacity. The victim cannot reply to any new requests, therefore, causing service

disruption for legitimate users. The defense mechanisms such as Firewall, Intrusion

47

Prevention System (IPS) alone are insufficient to deal with such attacks. Next, I will

present the use of an SDN-based MTD strategy to deal with targeted attacks such

as Distributed Denial of Service (DDoS). There are multiple entities (such as routers,

firewalls, switches, etc.) to enforce the security mechanism. The cooperative sharing

of attack information between devices with data and control planes embedded in a

single machine is hard; it becomes challenging to detect and counter such attacks.

Software-defined networking (SDN) provides a clean separation between data and

control plane Kreutz et al. (2015). A controller such as OpenDaylight (ODL) is

logically centralized to take critical decisions such as routing, load-balancing, and

implementing Firewall policies Feamster et al. (2014). The data-plane takes care of

traffic forwarding, whereas devices enforce the control plane’s control decisions. I

model the attacker-defender interaction in case of a DDoS attack as a two-player

dynamic game. The attacker targets critical infrastructure by sending a huge volume

of traffic through bots distributed inside or outside the target environment. To this

end, I introduce a game-theoretic model that will help uncover the entire botnet and

rate-limit traffic from these malicious users/bots. The concept of reward and punish-

ment, which is used in game-theoretic models to enforce cooperation between firms,

has been employed in this research work. To sustain mutually desirable outcomes,

the agents/users with undesired behavior receive a penalty.

The system is defined using a dynamic two-player game. An administrator controls

network infrastructure and deploys OpenFlow rule-based countermeasures to deal

with targeted attacks like DDoS. Some countermeasures deployed as part of defense

strategy can conflict with some existing rules. Part III of this thesis is dedicated

to handling such security policy conflict scenarios. The network admin observes the

normal baseline behavior for all hosts managed by the SDN controller initially. The

attacker has an incentive for deviating from normal behavior.

48

Player 2

a12 a22

Player 1
a11 (B

2
, B
2

) (3B
4
, B
4

)

a21 (B
4
, 3B

4
) (B

5
, 4B

5
)

Table 4.1: Normal Form Representation of Attacker and Administrator Payoff’s

4.2.1 Game Theoretic Modeling

Definition 4.2.1 An N player extensive form repeated game G with perfect informa-

tion between two players can be represented as G = {N,Ai, ui} where N = {1, 2, . . . n}

denotes number of players, ai ∈ Ai is the action set available to player i. ui : ai 7→ Ri

is the payoff function that maps actions to reward value R.

Definition 4.2.2 Consider that the game has been played to t periods of time, and

define game history in an instance t as ht = {a1, a2, .., at−1} = At−1. This denotes

actions taken by a player until now. H1 = {∅}, and H =
∞∑
t=1

Ht.

A player i prefers an action at over bt if ui(a
t) ≥∗i ui(bt). The payoff profile for a

player is considered feasible in this game, i.e. convex combination of payoff profiles.

A, s =
∑

a∈A αau(a) such that
∑

a∈A αa = 1. Here s represents the strategy vector

for a player. Consider an example of two players, who take turns to decide on an

action. Assume the players P1 and P2 correspond to an attacker and administrator.

Definition 4.2.3 The strategy vector of a player i, s∗i is best response to strategy

vector of all other players s∗−i if ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i) for all si. This vector is a

Nash Equilibrium if the relation holds for all si and all i.

In the game-setting of two players, I consider both players to try to play the Nash

Equilibrium strategy against each other. The game-theoretic formulation considers

utility in terms of network bandwidth for this game. P1 has actions a1 = {Cooperate,

49

𝑃1

𝑃2 𝑃2

𝑃1 𝑃1 𝑃1 𝑃1

𝐵𝑊 =
1

2

𝐵

2
+
𝐵

2

t=1

t=2

t=0

𝐵𝑊 =
1

2

3𝐵

2
+
𝐵

2

Figure 4.2: An Extensive Form Dynamic Game Between Attacker and the Admin.

Defect} and P2 has action set a2 = {Cooperate, Defect}. As long as any player behaves

benignly, the administrator will allow normal bandwidth. If the administrator detects

an attack from some malicious node in a network, he/she will play a strategy of Rate-

Limiting the attacker’s bandwidth available. The sample payoff matrix in normal form

has been shown in Figure 4.2, where B denotes the total network bandwidth.

4.2.2 Implementing Rate Limiting Algorithm using Dynamic Game

The system setup used for implementing the game theoretic model comprised on

OpenDaylight (ODL) Medved et al. (2014) SDN controller. The SDN controller uses

northbound APIs to interact with the application plane and southbound APIs for

interfacing with data-plane elements. The SDN controller acts as network manager

and orchestrator, as can be seen in Figure 4.3. A Snort-based NIDS Roesch et al.

(1999) configured to tap network traffic in mirroring mode.

50

Northbound REST API

Southbound REST API

Snort

IDS

Topology

Manager

Network

Config

OpenFlow

Enabled Device
Open vSwitch

SDN Controller

Platform

DDoS

Prevention

Attack Graph

Generator
Attack

Countermeasure
Network Service

Orchestrator

Dataplane

Elements

Figure 4.3: SDN System Architecture Utilized for Implementing Rate-Limiting Algo-
rithm in an OpenFlow-enabled Network. Red Color indicates Attacker Device, and
Green Color refers to Normal User Device.

alert tcp $HOME_NET any -> $HOME_NET 80

(flags: S; msg:"Possible TCP DoS";

flow: stateless; threshold: type both,

track by_src, count 70, seconds 10;

sid:10001;rev:1;)

Figure 4.4: An Example Snort Rule which is used for Detection of DDoS Attack.

The network traffic is categorized as malicious or benign using the Snort IDS sig-

nature match. Northbound REST APIs present is used to pass the attack pattern

information to application layer functionality, such as DDoS prevention. I consider

three variants of DDoS attacks TCP SYN-Flood attack, UDP Flood attack, ICMP

Flood attack. The feedback received from Snort IDS is utilized to update the rate

limit option present in the OpenFlow table, based on the traffic match between source

and destination host address. The different fields of the SDN OpenFlow table are pre-

51

Figure 4.5: SDN-based Traffic Rate-Limiting for OpenFlow-based Devices.

sented in Figure 4.5. The ingress port of the traffic entering the network is identified

using match field of the OpenFlow table. For instance, if Snort alert consists of IP

address 192.168.1.2, this value is inserted as an OpenFlow rule, The Instruction field

of the flow entry is added as a field of flow rule. The rate limit of the network traffic

with a source IP address matching the IP address present in Snort alert is set to

the value decided based on the Nash-Folk theorem based game model. The value

is pushed to the OpenFlow device using the SDN controller via Southbound REST

API.

OpenFlow Rate Limiting Algorithm

The OpenFlow based rate-limiting algorithm 2 utilizes the procedure SET-RATE-

LIMIT-METER for invoking the meter with a specified meter ID in the corresponding

flow table. The meter table is an optional segment of the flow table. It will not be

populated by default. The bandwidth of the host under observation is set to normal

value if the host is behaving normally. In a DDoS attack, a malicious host is identified

using Snort IDS alert with a meter ID. The malicious host is kept under observation

52

Algorithm 2 SDN-DDoS-Rate-Limit-Algo

1: procedure Set-Rate-Limit-Meter(meterName, bandID, bandRate)
2: MeterName ← this.meterName
3: mbh ← MeterBuilder.meterBandHeader()
4: mbh.setBandID(this.bandID)
5: mbh.setBandRate(this.bandRate)
6: end procedure
7: procedure Nash-Folk-Rate-LimitB(

)
8: ui(coop, coop)← Bc {Host Pi cooperates}
9: ui(coop, def)← {Bcd > Bc} {Host Pi defects}

10: ui(def, coop)]← {Bdc < B} {Host Pi defected at tk−1}
11: ui(def, def)← {Bdd < Bdc} {Host Pi defected at tk−1 and tk }
12: for i ∈ [0,n-1] do
13: ft← FlowTablei

14: if ft.match.src ip ∈ DDoSTrigger(src ip) and
k∑
t=0

δtui(coop, coop) ≤

ui(coop, def) +
k∑
t=1

δtui(def, {coop, def}) then

15: x ← ft.Instruction()
16: x.SET-RATE-LIMIT-METER(“RLMeter”, 1, ui(det, coop))
17: else
18: x.SET-RATE-LIMIT-METER(“RLMeter”, 1, ui(det, det))
19: end if
20: end for
21: end procedure

for several units of a discrete-time interval. Based on the behavior of the host, the

network admin decides to cooperate or defect (lines 8-11). The strategy (cooperate,

cooperate) means that the dataplane host is behaving normally, and both control and

dataplane will have bandwidth value set to B
2

as shown in Figure 4.1. In case the host

behaved maliciously in a given round, the controller will receive diminished bandwidth

B
4

, and the malicious attacker will consume 3B
4

(cooperate, defect strategy) of total

bandwidth. The attacker will be allocated reduced bandwidth in the subsequent

round as a punishment mechanism, i.e., network admin plays defect as strategy. If

the attacker chooses cooperate, he is still punished for misbehavior in the previous

53

round (defect, cooperate) = {B
4

, 3B
4
}. The punishment for defecting in the current

round (defect, defect) is even worse for the attacker. As the game progresses, the

attacker finds that his strategy to keep defecting diminishes returns.

The procedure NASH-FOLK-RATE-LIMIT based on the greedy approach loops

through all flow tables in invoking meter with rate-limiting threshold if matching

source host is found in the list of malicious hosts from a Snort IDS (lines 12-20).

The administrator does not wants to punish a misbehaving node infinitely, hence the

procedure of punishment is carried out for k instances of time where value of k is de-

termined by equation
k∑
t=0

δtui(coop, coop) ≤ ui(coop, def) +
k∑
t=1

δtui(def, {coop, def})

in line 13. This linear equation ensures that the defecting host is no better than

normal behavior at the end of k periods of punishment.

4.2.3 Experimental Analysis for Rate Limiting

I used network simulator Mininet (2015) and the ODL controller on Ubuntu 16.04

OS for empirical evaluation. The first experiment uses Algorithm 2 to deal with

ICMP flood attacks. The second experiment uses the same algorithm for TCP SYN

flood and UDP flood based attacks on a fat-tree topology. The variation in topologies

for both experiments is used to check the generality of the proposed solution.

ICMP Flood DDoS Attack on Linear Topology

Attacking Hosts ICMP Traffic (Mb/s) ICMP Traffic After (Mb/s)

50 39.49 1.33
100 79.85 2.70
200 163.69 5.54
300 241.17 8.122
400 321.96 10.83
500 467.16 15.69

Table 4.2: Number of Hosts vs ICMP Traffic at T=30s Post Attack.

54

A python attack script was used for generating DDoS traffic. The script utilized

multiprocessing to spawn shell for each host and send ICMP traffic of large packet

sizes to a single host in the network. The traffic was port mirrored to a dummy port.

The IDS intercepted the attack signature for ICMP flood DDoS attack and passed

information to the ODL controller. ODL application for DDoS mitigation decreases

the traffic rate by a factor δ consecutively until the long term average for traffic is

within typical traffic burst from a provided host. In this particular experiment, I used

the value of damping factor δ = 0.8. This scheme punishes all the attacking hosts

by degrading traffic throughput gracefully, instead of blocking the traffic entirely or

rate-limiting to a fixed value, affecting the traffic from legitimate users.

The table 4.2 shows that traffic burst at target for 100 hosts is 79.85 Mbps when

there is no attack prevention mechanism to deal with DDoS attack. However, once

IDS sets the Rate Limit trigger, the traffic decreases to 2.70 Mbps, which reduces

the rate by a factor of 30. Similarly, as the number of attacking hosts increases from

100 to 500, the throughput of DDoS attack increases from 79.58 Mbps to 467.16

Mbps, which shows a linear scaling in attack traffic. The Rate Limit (RL) algorithm

quickly adapted to increased traffic and decreased the corresponding traffic limit for

500 hosts to a value of 15.69 Mbps, a decrease by a factor of 29. The experiment

shows a successful countermeasure using a game-theoretic approach of punishing the

attacker on a sufficiently large network.

TCP/UDP Flood DDoS Attack on Fat Tree Topology

Most organizations’ attacks target some DNS servers to send large bursts of TCP or

UDP packets to the target host. Since data centers follow fat-tree topology architec-

ture, I conducted an experiment to test the proposed algorithm on a fat-tree topology

using mininet, with depth = 3, and fanout = 3. The damping factor value was set

55

to δ = 0.9 for this experiment.

10 20 30 40 50 60
0

10
20
30
40
50

100

140

160

Time

A
tt

ac
ke

r’
s

B
an

d
w

id
th

(M
b
/s

)

SYN Flood Traffic(Mb/s)
UDP Flood Traffic(Mb/s)

Figure 4.6: TCP and UDP Flood Attack mitigation on FAT Tree Topology.

In this experiment, the usually allowed limit for TCP and UDP traffic set by the

SDN controller was 3.0 Mbps. TCP SYN Flood DDoS attack was conducted using

python script on a topology of 64 hosts. The traffic decay, once the rate-limiting

algorithm based attack countermeasure mechanism is triggered based on IDS alerts,

is plotted in red in Figure 4.6. Initially, DDoS traffic is 157.03 Mbps, which violates

the permissible limit. The SDN controller pushes the flow to deal with this attack,

and the traffic is reduced to 18.11 Mbps at t=10s. The traffic burst reaches a value of

3.02 Mbps at t=50s, nearly equal to the regular traffic rate allowed on this network.

Similarly, the traffic pattern for a UDP flood attack starts around ∼127.38 Mbps.

The rate limit algorithm decreases this value to ∼15.12 Mbps at t=10s. Traffic rate

is further reduced to 4.52 Mbps at t=40s. Finally, traffic burst reaches a cost of

∼3.01Mbps at t=60s, and the algorithm stops further enforcement of the rate limit

after t=60s. Thus, it can be seen from this experiment that the algorithm will take

less than one minute to mitigate TCP and UDP based DDoS attacks on a sufficiently

large network.

56

4.3 Summary and Discussion

In this chapter, I considered a dynamic game for modeling the interactions between

the attacker and defender in a network managed by the SDN controller. A greedy

algorithm was employed for calculating the optimal rate limit against a malicious

attacker as a punitive mechanism for misbehaving players in a dynamic network

game. The optimization algorithm described in this chapter is based on the Nash Folk

theorem. This allowed the SDN controller to degrade network bandwidth gracefully,

without applying a static hard limit on network traffic. The algorithm can deal with

DDoS attacks based on alerts received from the SDN controller. The framework

proposed leveraged the benefit of network optimization and programmability offered

by SDN quite well. The proposed algorithm can adapt well to varying topologies, as

demonstrated by empirical evaluation.

A high value of damping factor δ= {0.8, 0.9} was utilized in this experimental

work to put more weight on the future punishment-based payoff to the attacker.

The average bandwidth, which I used as a baseline for threshold bandwidth, was

selected by observing standard TCP, UDP traffic in a medium sized network for a

time duration of about 10-15 minutes. Both these parameters can have an impact on

the final results and the convergence time of the algorithm. The motivation behind

using a signature-based IDS was to deal with DDoS attacks whose signature can

be easily identified. Most of the anomaly detection methods that were analyzed

before the experimental setup of this work suffered from false alarms. A limitation

of the empirical evaluation is the number of host subprocess we can spawn using the

multiprocessing thread, which is currently limited to around 500. A cloud framework

based on OpenStack can be used to deal with this scalability concern. In the next

chapter, I will consider the games that explore the concept of multi-stage attacks.

57

Chapter 5

SDN-BASED MOVING TARGET DEFENSE FOR MULTI-STAGE ATTACKS

Moving Target Defense (MTD) techniques have been devised as a tactic wherein

a system’s security is enhanced by having a rapidly evolving system with a vari-

able attack surface, thereby giving defenders an inherent information advantage. An

effective countermeasure used in MTD is network address switching, which can be

accomplished in SDN with great ease. SDN-enabled devices can delay the network

attack propagation by hiding the real response and replying with a random response

to confuse the attacker. As a result, the attacker will believe that random ports are

open in the target environment. The attack cost will be increased since the attacker

will need to distinguish the real reply from the fake reply. SDN-enabled devices can

also introduce random delays in TCP handshake requests that will disrupt the at-

tacker’s reconnaissance process for the identification of TCP services. The cost-benefit

analysis of MTD adaptations against network mapping attempts has been discussed

in Kampanakis et al. (2014). In this chapter, I elaborate on SDN-based MTD for

multi-stage attacks. I mainly discuss Advanced Persistent Threat (APT), which can

be modeled using a two-player Markov Game model. I describe a domain-specific re-

ward model and propose an optimal countermeasure selection strategy for the Markov

game, which outperforms min-max pure strategy and uniform random strategies.

5.1 SDN-based Markov Game Modeling for Multi-Stage Attacks

The differences between multi-stage attacks like APTs and common cyberattacks

make it arduous to use traditional defenses and pre-specified threat models to address

APTs as a whole. In this regard, proactive defenses can prove to be effective against

58

Figure 5.1: A Mapping of Different Phases of Multi-Stage Attack Advanced Persistent
Threat (APT) and Various Surfaces of a Cyber System that MTD Seek to Move.

APTs. While MTDs, as will be discussed later in this chapter, make it difficult for

APT attackers by dynamically shuffling various system components (see Fig 5.1).

The other proactive defenses, such as cyber-deception, can prove to be effective in

gathering threat-model information. For example, Shu et. al. propose a cyber de-

ception to protect FTP services against APT attackers Shu and Yan (2018). In their

research work, a defender reroutes attack traffic to a host, which may be a honeypot.

The defender ensures that an attacker cannot notice a connection difference between

the real IP address and the honeypot trap. By observing the attacker’s behavior on

the honeypot, the defender updates the threat-model and, in turn, hardens their FTP

services. A key aspect of this work is to make the attackers continuously believe that

they are interacting with the original environment instead of a honeypot. Having

defined the notion of Attack Graphs in earlier chapters, I will now introduce the con-

cept of Markov Games, that can be used for efficiently modeling multi-stage attacks

like APT.

We will use the information obtained attack graphs such as the attacker’s state,

59

vulnerability severity, access complexity, Common Vulnerability Scoring System (CVSS)

score to define the various aspects of the Markov Game.

5.1.1 Markov Game

Definition 5.1.1 Shapley (1953) defines Markov Game for two players P1 and P2

using the tuple (S,A1, A2, τ, R, γ) where,

• S = {s1, s2, s3, . . . , sk} are finite states of the game

• A1 = {a11, a21, . . . , am1 } represents the possible finite action sets for P1

• A2 = {a12, a22, . . . , an2} are finite action sets for P2

• τ(s, a1, a2, s
′) is the probability of reaching a state s′ ∈ S for state s if P1 and

P2 take actions a1 and a2 respectively

• Ri(s, a1, a2) is the reward obtained by Pi if in state s, Pi and P−i take the actions

a1 and a2 respectively, and

• γi 7→ [0, 1) is the discount factor for player i. In the rest of the chapter, I

assume ∀i γi = γ.

The concept of the optimal policy for a player Pi in this game is defined as se-

lecting the action that optimizes the value of a being in any state s. The optimal

policy performs reasoning over the expectation of (1) underlying domain stochastic-

ity (defined by τ and similar to Markov Decision Processes) and (2) reasoning over

the other’s player P−i action space. This reasoning is generally done by finding a

min-max policy over the action spaces of both the players in each state, similar to

solution strategies in normal (i.e., matrix) or extended form games Littman (1994).

Notice that in a two-player Markov Game, each state represents a Matrix Game.

The policy in each game is based not only on maximizing the reward in this game but

60

also on the reward to go, which depends on the games that you are yet to play. Thus,

the min-max strategy seeks to maximize the max player’s value, given that the min

player selects the pure strategy that gives the minimum pay-off to the max player.

To prevent being second-guessed by the min player, the max player should play a

mixed strategy, i.e., have a probability distribution over the actions it can play. To

formalize this, let us define the Q-values for an action a1 taken by the max player P1

in-state s, given that P2 selects a2, is defined as,

Q(s, a1, a2) = R(s, a1, a2) + γ
∑
s′

τ(s, a1, a2, s
′) · V (s′) (5.1)

Let the mixed policy for state s as π(s), which is a vector of length m that represents

the probability distribution that P1 can has over the possible m actions it can take

in-state s. I can now define the value of state s for P1 using the equation,

V (s) = max
π(s)

min
a2

∑
a1

Q(s, a1, a2) · πa1 (5.2)

5.1.2 Scoring Metrics for Vulnerabilities and Exploits

Software security metrics are defined in terms of Confidentiality, Integration, and

Availability McCumber (1991). In a broad sense, an attack on a web application is

defined as a act that compromises any of these characteristics. The proposed model

identifies the vulnerability properties of the VMs (VM1, VM4) present on tenant 1 and

tenant 2 in Figure 2.1. It is possible to map vulnerabilities present in each of them to

(known) CVE. These vulnerabilities correspond to the attacker’s actions, along with

a brief description shown in Table 5.1. The use of the Common Vulnerability Scoring

System (CVSS) for rating attacks is well studied in security Houmb et al. (2010).

For (most) CVEs listed in the NVD database, I consider a six-dimensional CVSS

61

v2 vector. This vector can be decomposed into multiple components that represent

Access Complexity (AC), i.e., how difficult it is to exploit a vulnerability, and the

impact on Confidentiality, Integrity, and Availability (CIA) gained by exploiting a

vulnerability.

VM Vulnerability CVE CIA AC

VM1 (Web Server) Cross Site Scripting CVE-2017-5095 7.0 LOW

VM1 (FTP Server) Remote Code Execution CVE-2015-3306 10.0 MEDIUM

VM4 (SSH Server) CLRF Injection CVE-2016-3115 5.5 HIGH

VM4 (MySQL Server) SQL Injection CVE-2018-11309 7.5 HIGH

Table 5.1: Vulnerability Information for the Cloud Network.

The values of AC are categorical {EASY, MEDIUM, HIGH}, while CIA values are

in the range [0, 10] and are shown for each CVE in Table 5.1. The AC values can

be converted to probability values between (0, 1] to measure how difficult it is for an

attacker to exploit a vulnerability, i,e., {EASY=0.9, MEDIUM=0.6, HIGH=0.3}. I have

utilized these values as transition probabilities from one state to another when the

attacker and defender take a particular action in a state.

5.2 Game Theoretic Modeling

Using the example cloud network in previous sections, I described MTD coun-

termeasure selection using a game-theoretic framework. I will formulate a zero-sum

Markov Game to showcase a situation-aware mechanism for monitoring the cloud

network. Markov Game model described it with the following implicit assumptions

– (1) It is possible to model cyber attacks using the Markovian Model. I used at-

tack graphs to identify different parameters of the Markov Game (2) Both attacker

and the defender have a fully observable environment (3) It is not possible to fix

known vulnerabilities because of potential network downtime, fear of misconfigura-

tion that can result from change or lack of human resources (4) Attacker remains

62

RULE 1

(execCode,

VM1)

vulExists

(Web, VM1,

Remote

CodeExec)

vulExists (FTP,

VM1, Command

Injection)

priv (VM1,

User)

vuExists

(mysql, VM4,

SQL

Injection)

vuExists

(ssh, VM4,

CLRF

Injection)

RULE 2

(execCode,

VM4)

priv (VM1, root)

priv (VM4, root)

S0: (VM1,

user)

S1: (VM1,

root)

S2: (VM4,

root)

S0

S1

S2

(a) Attack Graph (b) Markov Game Graph

Figure 5.2: The (a) Attack Graph and (b) Markov Game Graph Corresponding to
the Threat Model in the Cloud Network.

undetected until he/she attempts to exploit the existing vulnerability, i.e., stealthy

attacker Venkatesan et al. (2016)

5.2.1 States

The Markov Game model considers the states of the Markov Game as an abstrac-

tion over a set of Nf ∪Nd∪Nr nodes in the Attack Graph (AG). In the example - Fig-

ure 5.2, the nodes highlighted by rectangles, serve as the states. I define three possible

states shown for the attacker, i.e., S0 = {priv(VM1, User}, S1 = {priv(VM1, root},

S2 = {priv(VM4, root}. The state space formulation of Markov Game based on

63

P1 (Defender)
no-mon mon-Web mon-FTP

no-op 0, 0 2,−2 2,−2
P2 (Atk.) exp-Web 7,−7 −5, 5 10,−10

exp-FTP 10,−10 10,−10 −7, 7

P1 (Defender)
no-mon mon-ssh mon-mysql

no-op 0, 0 3,−3 3,−3
P2 (Atk.) exp-ssh 5.5,−5.5 −5.5, 5.5 5.5,−5.5

exp-mysql 7.5,−7.5 7.5,−7.5 −7.5, 7.5

Table 5.2: Reward (R2, R1) for States s0 (Top) and s1 (Bottom).

attack graph, must satisfy two two properties:

1. Uniqueness: Highlighted privileges node, e.g., priv(VM1, User) from the at-

tack graph map to individual state in the Markov Game. This eliminates the

possibility of duplicate counting of the exploits.

2. Completeness: Each conditional node, marked in blue in Figure 5.2 (a), maps

to a state in the Markov Game. This ensures, no known vulnerability, exploit

is missed.

5.2.2 Players and Action Sets

The action set for the player P1 (defender) A1 involves selecting the appropriate

countermeasure, e.g., placing a monitoring agent (e.g., NIDS) for detecting exploits

against vulnerable services. As can be seen in Figure 5.2 (b), the action a21 = mon-Web

means defender has deployed a Snort IDS for monitoring traffic on the port hosting

web service. Table 5.2, shows possible actions for defender along the column for both

states, i.e., s0 and s1.

The action set for the player P2 (attacker) A2 has been defined along the rows

of table5.2. For instance in state s0, attacker can either exploit web service a22 =

exp-Web or FTP service, i.e., a22 = exp-FTP.

64

5.2.3 Transitions

The possible transitions in the Markov Game are shown in Figure 5.2(b). The

attacker has user access on the VM1 initially, i.e., s0 = priv (VM1, User), and the

eventual goal of the attack is to obtain root access on VM4. The multi-stage attack

mounted by the attacker needs to compromise VM1 and get elevated privileges before

compromising VM4.

The transitions s0 → s1 and s1 → s2 depends upon the actions of each player. For

instance, if defender, P1 chooses not to monitor any service in state s0, whereas, the

attacker P2 chooses to attack web service, with a high probability attacker will be able

to transition to state s1. I assume the probability of a successful attack depends upon

access complexity, i.e., if access complexity defined for vulnerability in Table 5.1 is

EASY, attack success probability will be high. Note that I described Access Complexity

(AC) can be related to transition probabilities {EASY=0.9, MEDIUM=0.6, HIGH=0.3}

Thus, a11 = no-mon , a12 = exp-Web; s0 × a11 × a12 × s2 = 0.9

5.2.4 Rewards

Since I use a zero-sum Markov Game, the reward for the defender will be negated

value of the attacker’s reward. Table 5.2 shows reward values for each action combi-

nation of both players. The reward values are obtained using (1) impact score IS of

each attack (2) the performance cost induced by the detection agents in the network.

The reward value of the attacker is max. of the parameters performance cost, Im-

pact Score (IS). Consider the second row and second column in the top table, which

corresponds to state s0. The defender chooses to monitor web service, mon-web. The

attacker tries to exploit Web Server, i.e., exp-web. The attacker incurs a negative

reward, -7, and under a zero-sum game, the defender gains a positive reward 7. Sim-

65

ilarly, if the defender chooses to monitor web server or FTP server, i.e., mon-web,

mon-ftp in-state s0, top table, cells (1,2), (1,3), he incurs penalty corresponding to

performance cost, i.e., -2. In a different combination of action sequences, consider

row 3 and column 2 of the bottom table. The defender chooses to monitor MySQL

service, while the attacker decides to exploit ssh, i.e., exp-ssh. The defender incurs

cost corresponding to exploited vulnerability on MySQL service worth -7.5. The

attacker gains the positive reward of 7.5. In effect, the payoff’s for cell (3,2) are

7.5,-7.5 for the attacker and the defender respectively. The penalty of monitoring

services closer to the goal node, i.e., mon-mysql and mon-ssh, is higher compared

to the top table since I consider services to be critical for the customers. Hence,

the performance penalty is weighted higher for them, i.e., -3 in the first row of the

bottom table, compared to -2 in the top table.

Next, I use the OpenStack cloud network, shown in Figure 2.1, to show the effec-

tiveness of the optimal Markov Game strategy against naive baseline methods that

are popular in the cybersecurity community.

Min-Max Pure Strategy (MMPS). The defender selects a pure strategy a1 given

that the attacker selects the action that gives the defender the minimum value. This

is similar to the min-max computation for fully observable, deterministic games like

chess and can be mathematically represented by replacing π(s) in equation 5.2 with

a1 to obtain,

V (s) = max
a1

min
a2

Q(s, a1, a2) (5.3)

If there exists a pure strategy min-max equilibrium for the Markov Game, i.e., a static

placement of IDS that clearly dominates any other placement in regards to security

and performance, this would have been the optimal strategy. I do not expect this

66

to happen in real-world scenarios and, thus, introduce the notion of Moving Target

Defense (MTD) that argues in favor of a mixed strategy that, as opposed to a pure

strategy, makes it harder for the attacker to second guess the defender’s move. Having

said that, MMPS is the best static placement strategy that a defender can come up

with performance constraints. In most cases, this strategy is better than strategies

used by many network administrators. Thus, MMPS acts as a reasonable baseline.

Uniform Random Strategy (URS) In URS, the defender uses a uniform probabil-

ity distribution over its actions (or pure strategies) in a state. For example, consider

state s1 shown in Table 5.2. The defender uniformly chooses the mixed strategy of

monitoring the mysql server, the ssh server, or none of them. Thus, in any round,

the defender rolls a three-sided fair dice and does whatever comes up. Many re-

searchers had claimed that selecting between what to choose when shifting attack

surfaces should be done using a pure (or uniformly) random strategy Zhuang et al.

(2014). This has been disproved later by Sengupta et al. (2017). In this work, I use

this as a baseline to reiterate that such strategies based on intuition, as opposed to

careful modeling of the problem at hand, can do more harm than good.

5.2.5 Results

I compared the results of Optimal Mixed Strategy (OMS) Chowdhary et al. (2018d)

with Uniform Random Strategy (URS) and MaxMin Pure Strategy (MMPS) as shown

in the Figure 5.3. At higher values of the discount factor (near 0.85), the high

magnitude of reward in the terminal state affects the values of other states, thereby

increasing the magnitude of gain. When the discount factor is small (near 0.5), the

rewards in the future state does not have a substantial impact on the immediate

value of a state, thereby reducing the magnitude of gain. In both states s0 and

s1, the defender’s reward is maximum using OMS strategy, e.g., for discount factor

67

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−200

−150

−100

−50

0

γ →

D
ef
en

d
er
’s

u
ti
li
ty

MMPS

URS

OMS

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−200

−150

−100

−50

0

γ →

D
ef
en

d
er
’s

u
ti
li
ty

MMPS

URS

OMS

Figure 5.3: Defender’s Values for States s0 (Left), s1 (Right).

γ = 0.9, the defender gets -40.5 in-state s0, and -46.5 s1 as shown in the Figure 5.3.

The defender gets rewards s0, s1 = (-52.0, -66.0) using URS and s0, s1 = (-60.0, -62.0)

using MMPS. Clearly, rewards for defender are better when using OMS based on

value-iteration methods I used in this research work.

68

The optimal strategy for the defender for the states s0 and s1 is as follows for the

discount factor γ = 0.8:

p i (0) : { ‘ no−mon ’ : 0 . 43 , ‘mon−web ’ : 0 . 26 , ‘mon−f tp ’ : 0 .30}

pi (1) : { ‘ no−mon ’ : 0 . 0 , ‘mon−ssh ’ : 0 . 5 , ‘mon−mysql ’ : 0 .5}

The optimal strategy on convergence for the zero-sum Markov game is to perform

FTP monitoring mon-ftp with probability 0.30 and Web monitoring mon-web with

probability 0.26, while no monitoring action no-mon has been suggested in optimal

strategy for state s0 with probability 0.43. Similarly, the optimal strategy for the

defender is to monitor both the SSH server and SQL server with equal probabilities

in-state s1. In this particular case, these results indicate that a defender can focus

on performance at places near the entry points but should prioritize security in the

states close to the goal.

5.3 MTD Against Advanced Persistent Threats

The attacker performs a multi-stage attack, targeting the services at the gateway

of the network first and then trying to penetrate into internal network services. The

goal of this attack is to exfiltrate as much information as possible while maintain-

ing persistence over a long period of time. Most attack detection tools just utilize

signature-based tools in order to identify the data at the border of the network. Ad-

ditionally, the tools are configured in an ingress filtering mode. Hence the data going

out of the network is left unexamined.

Based on the standards defined by NIST and other organizations Brewer (2014),

the attack analysis from a defender/security administrator’s perspective takes place

in five steps, namely: 1) Reconnaissance/ Intelligence Gathering 2) Threat Modeling

3) Vulnerability Scanning and Analysis 4) Exploitation 5) Post Exploitation

69

Firewall-IPFire
172.16.0.1

192.168.101.221
Snort IDS, HTTPS, Proxy, DNS, SSH

Dave: Debian
172.16.0.20

HTTP, HTTPS, SSH, FTP

George: Debian
172.16.0.21

HTTP. HTTPS, DNS, SSH

Kevin: CentOS6
172.16.0.8

HTTP. HTTPS. FTP, SSH

GRU: Windows 2012 R2
172.16.0.22

AD, DNS

Helen: Windows7
172.16.0.71

Domain Controller

Internal Network 172.16.0.0/24

Remote Attacker
192.168.101.*/24
Kali VM

Figure 5.4: An Advanced Persistent Threat (APT) Scenario.

In order to simulate an APT scenario, I created a flat network using the VM images

from the Western Region Cybersecurity Defense Competition (WRCCDC) Compe-

tition (2018). The competition consists of eight Blue Teams from different regions

who face a team of experienced hackers (Red Team) from the Industry. The goal of

Blue teams is to maintain service availability while ensuring malicious attempts by

Red Team members are logged and reported properly. In the experimental analysis,

I focused on how effectively the model can detect attacks by the Red teams.

I used the VM images from the competition and created a similar environment in

ASU’s Science DMZ Chowdhary et al. (2017a). I created a flat network with IPFire

(Next-Generation Firewall) hosted at the gateway of the network. The VM has the

capability to implement traditional Firewall filtering capability. Additionally, the VM

has an integrated VPN, Snort IDS, Web Proxy for threat detection at different levels

of the protocol stack. Now, I describe the various stages of APT (loosely based on

the NIST model) carried out by the Red Teams over an extended period of time.

70

Figure 5.5: Stage 2 of the APT Scenario Described Above.

Stage 1: Slow and Low Weak Authentication Exploit The attacker performs

social engineering on website forums frequented by employees of the company. One of

the developer’s posts a question regarding a key update function for OpenSSH func-

tionality with a specific version OpenSSH v3.3. The attacker identifies this version as

being vulnerable to authentication based attack, which can exploit a buffer-overflow

vulnerability by sending a well-defined payload to the SSH server hosted at the gate-

way of the network. In this particular case, I already knew the vulnerable OpenSSH

service. I consider this as the first step of a multi-stage attack (see Figure 5.4). This

represents a scenario of how both the players become aware of a known vulnerability

present in the system.

Stage 2: Exploiting Windows 7 VM 172.16.0.22 The attacker probes the net-

work and identifies the services and OS versions running on the hosts in the network.

In the experimental setup, the corporate access control policy allows only Windows

71

VM Vulnerability CVE CIA AC

Firewall SSH Buffer Overflow CVE-2017-6542 7.5 MEDIUM

Win 2012 Eternal Blue SMB MS17-010 9.3 HIGH
Remote Code Execu-
tion

MS15-034 10.0 HIGH

Debian Anonymous FTP Lo-
gin

CVE-1999-0497 6.4 MEDIUM

Win 7 MSRPC Service Enu-
meration

CVE-2008-4250 5.0 MEDIUM

NVT OS End of Life CVE-2008-4114 10.0 HIGH

CentOS 6 OpenSSL MITM CVE-2017-3737 6.8 MEDIUM

Table 5.3: Vulnerability Information for the APT Scenario.

systems to interact with resources such as FTP, Web Servers. Thus, the attacker

needs to obtain access to a root shell on one of the Windows machines. In order

to accomplish this, the attacker must target the MS 017 10 vulnerability present on

a Windows 2012 R2 server-GRU as shown in Figure 5.5, which hosts other services

such as Active Directory and Domain Name Server (DNS).

Stage 3: Exploiting vsftpd vulnerability and exfiltrating data The vsftpd

service running on machine Dave has a Debian operating system. The vulnerability

on the FTP server can be exploited by the attacker, and they can create a backdoor

channel to exfiltrate data from the FTP server to their command and control center

(C&C). Since most organizations have no egress filtering policies for the corporate

firewall, so data exfiltration often goes unnoticed. Additionally, the attacker can

distribute the data transfer over a period of several weeks, even if there is some

signature-based rule on IDS to prevent data exfiltration.

Stage 4: Post Exploitation The attacker can either use the meterpreter (a Kali

Linux tool) shell on Windows host to perform privilege escalation and disrupt services

if they are a rogue insider or use the windows machine as a jump point for exploiting

other machines. The rationale behind exploiting the Windows machine first is that

Windows acts as a domain controller for many other machines in the network.

72

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

−300

−200

−100

0

γ →

D
ef
en

d
er
’s

u
ti
li
ty

Uniform Random Strategy

Optimal Mixed Strategy

Figure 5.6: Defender’s Value in Each of the State s2 as Discount Factor increases.
In this State, we Consider a Sub-system of the entire Cloud Network in which the
Defender can place Five Possible Detection Systems but Chooses to Place Two Out
of the Five for Performance Considerations.

5.3.1 Attack Analysis and Results

The Blue team identified the following vulnerabilities on the network VMs as

shown in the Table 7.1. The attacker can have one or more attack goals. One goal of

the attack is to ex-filtrate files from the Debian machine (Dave). Another goal can

be to target CentOS 6 (Kevin) and disrupt the Domain Name Server (DNS) for the

private network. This will, in effect, lead to service unavailability.

I present the values a defender, i.e., the Blue Team, obtains if they use an optimal

strategy for placement of detection systems for state s2. This state had five possible

vulnerabilities and, thus, five possible IDS for detecting them (see Figure 5.6). The

model lets the defender provide a limit on the number of IDS systems they can place

in this state or sub-net (which was two). It can be seen that, in comparison to the

Uniform Random placement strategy in the sub-network represented by state s2, the

optimal strategy for the Markov Game yielded better values. Note that the Markov

73

Game formulation treats the number of IDS placed in this subnet independently,

regardless of how many IDS systems are placed in other parts of the cloud system.

This addresses a major shortcoming of previous research Venkatesan et al. (2016)

in which some pure strategies can place multiple IDS on the same subnet, thereby

affecting its performance, which, quality of service in other subnets are not impacted.

For APT scenarios, even though the Blue team needs comprehensive logging and

monitoring using IDS systems at the granularity of each subnet as well as hosts,

monitoring every packet in a cloud network is wasteful in terms of networking and

compute resources. I found that the min-max strategy proposed by Markov Game

solver in this work helps in optimizing the number of detection agents while ensuring

a high detection rate.

5.4 Moving Target Defense Research

Kampanakis et. al. Kampanakis et al. (2014) discuss SDN-based random host

and route mutation. These SDN-based MTD countermeasures increase attacker un-

certainty by misreporting information. The blind mutation of key network services

can lead to network performance hit. CHAOS Shi et al. (2017) analyzes how the de-

lay intentionally introduced by MTD impacts the packet count in an SDN-managed

network. The SDN controller utilizes host-mutation and decoy-severs to deceive an

adversary. Feedback-driven multi-stage MTD has been proposed by Zhu and Başar

(2013) for dealing with multi-stage attacks like Stuxnet Langner (2011). The au-

thors quantify the damage or cost caused by an attacker at different stages of the

network. The game between attacker-defender is modeled as a finite zero-sum matrix

game with a bounded cost function, and a mixed-strategy Saddle Point Equilibrium

(SPE). In Taylor et al. (2016), the authors provide metrics for MTD evaluation and

risk analysis. For risk metrics, they proposed statistical metrics to study the effect

74

of how the attacker can quickly conduct and succeed in adversarial attacks. The

authors assumed the system will always have a running task that can be measured.

In my previous research works, I have considered network performance impact while

implementing MTD countermeasures Sengupta et al. (2018). Predictability oriented

defense against adaptive adversaries Colbaugh and Glass (2012) combines game the-

ory and machine learning. The authors model attackers action in ML feature space

to provide defense against current and future attacks. I identified an adaptive MTD

strategy against multi-hop monotonic attacks for cloud networks, which optimizes for

performance while providing gains in security.

The categorization of the various software surfaces opens up the possibility of

considering other logical surface level distinctions and, thus, MTDs that shift these

surfaces. For example, Microsegmentation Mämmelä et al. (2016) is a method of

creating secure zones in data centers and cloud deployments to isolate workloads

from one another and secure them individually. With MTD formalism, one can test

the existing hypothesis and develop new ones for micro-segmentation. I believe that

formal modeling, in line with Chowdhary et al. (2018d), one might discover that

advanced services will be more effective when applied at a granular-level (as close to

the application as possible in a distributed manner).

5.5 Summary and Discussion

The Configuration Set: Works in MTD have concentrated mostly on the move-

ment of the exploration, the detection, and the attack surface. The movement of the

prevention surface, which comprises of security modules such as Firewalls, IPS, ,

etc. has only been investigated by a couple of works. An MTD research can con-

sider exploring Next-Generation Firewall (NGFW) architectures that combine secu-

rity modules such as firewall, content filter, anti-virus etc. to provide a multi-layered

75

defense-in-depth solution. Some current implementations of NGFW that can be lever-

aged for testing the effectiveness of these defenses are Cisco ASA Frahim et al. (2014)

and PAN Firewall Alto (2018).

The Timing Function: The timing problem has mostly been ignored in previ-

ous works on MTDs. While some works perform empirical studies to test the best

(constant) time-period for switching, they can be highly specific to the threat model

and the elements being shifted. Note that the handful of works that empirically de-

termine time-periods are by no means complete. An extensive study is required just

to come up with reasonable time periods for particular surfaces, how it affects that

attack model, and provide guidelines on efficient implementation methods. On the

other hand, a few existing approaches that do address the timing problem theoreti-

cally suffer from scalability issues. In Lei et al. (2017), the authors land up with an

increasing number of states in their Markov Game by including time as a parameter.

Inferring the defender’s strategy in such Markov Games cripples the MTD to work

beyond small networks.

The Movement Function: Several works have argued that often the defender

has performance information about their system and known attacks that can be

used to exploit their system. In such cases, game-theoretic modeling can result in

better strategies that offer higher gains in terms of both security and performance

metrics. Unfortunately, the latter works suffer from scalability issues, encouraging

practitioners to default to URS. Works that can leverage existing knowledge without

suffering from scalability issues can fill an important gap in MTD research.

General-Sum Markov Games In the case of a general-sum Markov Game,

one player can infer other players’ strategies before making a move. Thus, the min-

max strategy becomes sub-optimal in a general-sum Markov game. The equilibriums

such as Strong Stackelberg Equilibrium (SSE) dominates min-max equilibrium in

76

these games Vorobeychik and Singh (2012); Guerrero et al. (2017). We extend the

zero-sum games to general-sum games in my work Sengupta et al. (2019) and show

that SSEs are a subset of Nash Equilibrium for our Markov Game setting. The

empirical evaluation shows that SSE dominates the Uniform Random Strategy (URS)

and min-max strategy for the problem of strategic placement of monitoring systems

in a network.

Although I can select states for the Markov Game such that the number of actions

in each state is restricted to allow this computation, such abstraction of the Attack

Graph may not be practically meaningful. I hope I can investigate and address this

issue in the future.

Current research often makes strong assumptions about the threat model. This

makes results regarding the effects of such defenses questionable. In the future, I

hope to see more studies that try to figure out realistic attack scenarios such as the

simulated APT attack that has been discussed in this research.

77

Chapter 6

INTENT-DRIVEN SECURITY POLICY MANAGEMENT FOR SOFTWARE

DEFINED SYSTEMS

In a multi-domain software-defined system (SDx), different network controllers are

utilized to manage networking resources. However, these controllers operate by using

a different high-level language (intent), and the administrator needs to do cross-layer

translation from the user requirements to the underlying network controller format,

which brings increased human-in-the-loop overhead. There are two primary security

and management challenges involved in managing multi-domain controllers. The first

challenge is how to design an SDN controller language that can effectively convert hu-

man specified networking policies at the control plane into network flow-level rules at

the data-plane. The second challenge is how to reduce the complexity of network flow

rules conflict checking at the data-plane. In this chapter, I present a new intent-based

security policy enforcement solution, called INTPOL: a) INTPOL provides a unified

language using INTPOL grammar that abstracts the network administrator from the

underlying network controller’s rule format. b) INTPOL develops a networking ser-

vice mapping solution to use a bounded formal model for network service compliance

checking, significantly reducing the complexity of flow rule conflicts checking from

PSPACE to Linear Time. c) INTPOL is expendable from a single SDN domain

to multiple SDN domains by considering the network service function chaining as

inter-SDN-domain policy management.

78

6.1 SDN Preliminaries and Problem of Policy Management

Software-Defined Networking (SDN) simplifies network management by decou-

pling the control plane and data plane. The SDN architecture can be divided into

three tiers (layers), as discussed by Kreutz et al. (2015) - application plane - programs

that communicate behaviors and needed resources with SDN controller using appli-

cation programming interfaces (API). The control plane comprises of SDN controller,

which receives instructions from the application plane, analyzes the requirements,

and, based on the controller functionality, populates the data plane forwarding ta-

bles. The forwarding decisions are flow-based, i.e., defined by a set of packet field

values acting as match (filter) criteria and a set of actions (instructions). The data

plane (user plane) consists of networking devices (OpenFlow switches) that implement

the decisions enforced by the control plane.

In a Software-Defined Networking (SDN) environment, the SDN control-plane

manages a global network view. In a multi-domain SDN networking environment, as

pointed out in Sherry et al. (2012), policy misconfiguration in middleboxes (network

functions) is a common cause of failure. The safety and security properties of net-

works called Invariant need to be verified in a scalable fashion to ensure the smooth

functioning. To illustrate the described problem, I present the existing network flow

rule generation and management in Figure 6.1. The SDN control plane is the interface

between the application plane and the data-plane. It is managed by network admin-

istrators to translate human specified service requirements and networking policies to

the machine-level flow rules.

The SDN applications communicate with SDN controllers situated at the control

plane using application programming interfaces (APIs). These applications provide

an abstracted view of the network administrator to create different security policies

79

Figure 6.1: SDN Control Flow for Multi-tiered Network Policy Checking Using INT-
POL Framework.

and mission requirements. The SDN control-plane consists of an SDN controller with

varying modules like layer 2/3 (L2-L3) traffic handler and topology discovery module

to listen to any topology changes. The SDN controller also extracts information

about data-plane devices and network configuration and relays the information to

the application plane using Northbound RESTful APIs, as shown in Figure 6.2.

Existing intent-based networking approaches Jang et al. (2014); Pham and Hoang

(2016) requires the network admin to do a cross-layer translation from the application

and network requirements to the controller’s intents. Then the controller can use the

plans to generate underlying network flow rules. Current work Pisharody et al. (2017)

80

Figure 6.2: SDN Architecture with Details of Different Components and Communi-
cation Interfaces

Hu et al. (2014) mostly focuses on the flow-rule level conflict checking to ensure the

requested network resources allocation is not compromising existing flow and security

policies. No current work has proposed to do the network and system policy analysis

at the application and intent level, which leads to a significant network management

issue. As a result, network flow rules’ complexity is dramatically increased from the

application-plane to the data-plane. For example, the experimental evaluation on

the Stanford topology Kazemian et al. (2012) shows that for a 20 generated intents,

there are 413 conflicting flow rules.. Thus, the fundamental issue is if conflicts exist

at the application-plane level and are not analyzed until they are translated into flow

rules in the data-plane, this will significantly increase the policy conflict checking and

management overhead.

81

To address the described issues, this research addresses the following two ques-

tions: 1) how to design a human to SDN controller language to translate human

specified networking policies into network flow-level rules effectively and 2) how to

reduce the complexity of system policy and flow rule conflict checking? The proposed

solution in this work creates a new Intent-driven policy language INTPOL, which

allows the network administrator to express security policies at the application plane

level. The policy designers can create network management and operation policies

while remaining abstracted from the underlying SDN controller. As described above,

the user-defined policies are analyzed early in the security policy lifecycle to detect

potential conflicts using a lightweight formal model checking framework.

The security policies specified at the application plane are parsed for predicates of

INTPOL language. A bounded model representation of state changes of the packet

is created using NuSMV Cimatti et al. (2002) based framework, which captures the

state changes of the packet as it moves between network switches and hosts. The INT-

POL grammar translates the security policies into the REST API call format of the

corresponding SDN controller. The realization of network policies at the data-plane

level introduces a lot more flow rules. Detection and resolution of conflicts amongst

flow rules at the data-plane level can impact network services’ performance. This

problem can be dramatically amplified when expanding SDN systems into multiple

SDN domains, where inter-domain network and service policies introduce an addi-

tional level of complexity. With INTPOL, I will discuss how this framework provides

early detection of network policy conflicts at the application and control-plane. This

approach will help reduce the scope of flow rule conflict checking at the data-plane

level.

The key technical novelty of INTPOL lies in how to ensure consistent behavior

in the network, which has been considered a network-wide invariant verification issue

82

Khurshid et al. (2013). Existing solutions, such as Yuan et al. (2020) provide a

scalable formal solution for network policy verification using optimizations such as

model pre-computation and query containment. The issue with these research works is

that traditional models such as Linear Temporal Logic (LTL) and Computational Tree

Logic (CTL) are PSPACE complete in the worst case Baier and Katoen (2008). This

solution limits the scalability of the model. INTPOL models the problem of verifying

network policies using a Bounded Model Checking (BMC) Clarke et al. (2001) to

check for the existence of network policy violation within the bounds placed on the

network, e.g., all paths up to length K. This approach ensures sufficient coverage for

checking policy violation issues in the system and reduces the space complexity of

network policy verification from PSPACE to linear time (linear in the scale of the

number of network states).

6.1.1 Contributions

• INTPOL introduces a new intent-based language for translating network policy

requirements into a unified format, thus providing a grammar that abstracts

network administrators from the policy specification language of underlying

network controllers. The language allows easy expression of complex scenarios

such as service function chaining and hybrid networks, including traditional and

OpenFlow networks.

• The framework minimizes the overhead of policy conflict checking by early iden-

tification and correction of policy conflict issues, i.e., policy conflict handling

at the application plane instead of the data plane. This approach reduces the

overhead induced by policy conflict checking. INTPOL utilizes bounded model

checking (BMC) with bounds determined based on network diameter to provide

83

linear time network invariant checking compared to full-scale model checking

frameworks.

• The multi-level policy conflict checking reduces the scope of conflict checking

at the data plane by handling most conflicts at the application plane. The

empirical evaluation on large scale network Stanford Topology Kazemian et al.

(2012) shows that conflict overhead at the application plane is minimal ∼ 250-

800x times lower than policy conflict checking at the data plane.

6.2 INTPOL System and Model Description

In this section, I first describe the INTPOL language and its grammar; then, I

elaborate on the INTPOL scalable policy checking framework; finally, I present the

intent conflict checking at various levels of SDN infrastructure.

6.2.1 INTPOL Language

The language for expressing network orchestration and monitoring should be sim-

ple enough for network administrators to understand and use for practical purposes.

Moreover, it should have the capability to cover a broad range of network safety and

security issues. While languages such as PGA Prakash et al. (2015) provide a simple

framework for expressing network policies, the number of policies generated fails to

scale on an extensive network. To address the dual problem of simplicity and scalabil-

ity, the INTPOL framework abstracts the intent specification from intent expression,

i.e., I utilized a simple application plane that allows network administrators to express

the intents such as security policies, QoS requirements and service function chaining

(SFC). The intent requirements, as well as the network topology, are translated into

a scalable formal model. In this work, I utilize bounds based on the network’s size to

check if the network policies or network safety properties are violated. The network

84

Intent Type : { Policy Intent | Query Intent }
Policy Intent : { Network Function | SFC }

Query Intent: { Basic Reachability, Policy Conflict }

INTPOL
Intent Specification

Network Topology

Bounded Formal Model
policy/query

2a

1

3a

s1

h1 h2

s3s2

h3 h4 h5model-
success

counter-
example Intent

Datastore

assert-intent
3b

model-
update

3c

SDN Controller

network-
topology

network-intent

2b
flow-rule

4

5

h1 → h5

h2 → h3

h3 → h4

h2 ⇸ h4

Network Intents

Figure 6.3: Intent Specification and Formal Modeling. The Users can Specify Policy
and Query Intent at the Application Plane. The Bounded Model Checking Framework
accepts Query Intents to check if Intents Meets Network Reachability and Security
Policies.

policies causing conflicts are marked and returned to the user.

The end-to-end handling of network intents at the application plane is depicted

in Figure 6.3. Intent can be considered a request similar to Read/Write/Update

transactions on the database (underlying network in this research work). The network

operator specifies some intents such as traffic allowed between hosts h1 and h5 (h1

→ h5), h2 and h3 (h2 → h3), etc, as can be seen from block Network Intents in the

Figure 6.3.

The intent Policy Intent can perform network updates like inserting rule to block

traffic (Firewall) or inspecting suspicious traffic (Intrusion Prevention System). The

Query Intent, on the other hand, helps the network operator in assert safety, audit-

ing access control, and service availability in the network. Once the user specifies

a network intent (1), the intent is converted into a query represented as a formal

85

logic formula (2a). The Bounded Formal Model utilizes the network topology infor-

mation extracted from SDN controller (2b), and existing intents present in an Intent

Datastore (2c), to construct/update a bounded Linear Temporal Logic (LTL) model.

The model is evaluated for some basic safety properties such as packet reachabil-

ity, conflicts with the existing intents in an automated fashion. Suppose the intent

violates any network safety properties. In that case, a response is returned to the

user with a counter-example from the model, which shows the states in the network

that violate network properties (3a). If the intent does not violate any network safety

or reachability properties, it is stored in the Intent Datastore (3b), and the bounded

model is updated with a new intent (3c). The intent is passed to the SDN controller

(4) to create an SDN controller specific intent Pham and Hoang (2016). The SDN

controller, in turn, installs flow rules (5) for realizing the user intent at the data-plane

level. In the framework discussed in this chapter, the user has the flexibility to specify

custom intent queries to check properties for a class of network intents, e.g., “Can

all web servers in a network communicate with all database servers?”. These queries

are translated into a formal model clause and checked over the current model of the

network.

Efficient Policy Conflict Detection

Existing research works Pisharody et al. (2017); Hu et al. (2014) perform the policy

conflict checking at the data plane level. I introduce two-level conflict analysis in this

research work. The conflict checking at the application plane using a bounded model

checking approach can reduce policy conflict detection at the data plane. When an in-

tent is added at the application plane level, it is translated into the controller specific

intent command. The SDN controller, e.g., ONOS Berde et al. (2014), allows spec-

ification of HostToHost which allows communication between network hosts, Point-

86

ToPoint intent which allows traffic to pass through two switches’ ports. Consider a

host intent, e.g., add-host-intent h1 h5, based on example network in Figure 6.3. The

ONOS controller a) identifies the path between hosts, i.e., h1-s1-s2-s3-s5. b) gener-

ates Openflow rules to establish communication along the path. Additionally, the

controller marks appId in the flow rule as org.onos.intent to show that flow rule was

added using intent module. It is noteworthy that for a single host intent, there will

be five flow rules installed in the example network Figure 6.3 example. If there are

conflicts amongst intents at the application plane, it will, in turn, generate flow rules

which will conflict with each other.

6.2.2 INTPOL Grammar Description

Intent-Type :: Policy-Intent | Query-Intent

Policy-Intent :: Network-Function | Service-Function-Chain

Service-Function-Chain :: Network-Function, Network-Function[*]

Network-Function :: Firewall | IDS | Routing | Load-Balancer

Firewall :: Header, Action

Header :: Hw-Src, Hw-Dst, Src-IP, Dst-IP, Src-Port, Dst-Port,

Protocol

Action :: Forward | Drop | Modify

Query-Intent :: Check-Conflict | Check-Loop | Check-Reachablity

Figure 6.4: INPOL Grammar Describing Different Kind of Intents Which Can Be
Specified by the User at the Application Plane. Policy Intent Captures the Network
Topology and Packet Propagation Behavior. Query Intent Is Used for Verification of
Network Invariants.

Next, I will describe the INTPOL framework’s grammar - Figure 6.4, which can

be used for interpreting the user requirement at the application plane and translating

them to corresponding bounded model program to check necessary network policies.

Consider the steps for handling user intents in Figure 6.3. The steps 1-3 are showcas-

ing the application of INTPOL language. If an invariant provided as part of language

87

is violated, the network admin is notified step 3a. The next example will illustrate

the translation of policy intent and query intent into a formal model using Firewall

as a sample function. Consider the network topology described in Figure 6.3. In the

example rules, there are high-level network intents for hosts, h1 → h5, h2 → h3,

h3 → h4, and rule denying traffic between hosts h2 and h4. Each network host

is connected to the network switch using a layer 2 switch port. Similarly, network

switches are also connected with the network controller (ONOS, ODL) using a layer-2

port. The bounded formal model accepts these requirements, and network topology

information from the SDN controller, to create a model of packet propagation and

changes in the packet state as the packet traverses along different paths from source

to destination in a network. Linear Temporal Logic (LTL) Baier and Katoen (2008),

a form of model checking technique provided by NuSMV Cimatti et al. (2002), in

particular, characterizes the linear path induced by the Finite State Machine (FSM)

of the network states Baier and Katoen (2008). The next section showcases how this

proposed model utilizes the bounds based on the network policies and topology to

reduce the number of model checking states at the application plane. Then, I present

the overall complexity of handling conflicts at the data plane.

6.2.3 INTPOL Model Checking Framework

The formal models such as LTL suffer from scalability challenge. The total number

of model states can be as large as 1020 for some models Biere et al. (2003). Bounded

model checking (BMC) Clarke et al. (2001) checks the state space for a counterex-

ample using a user-specified bound k. For each value of k, BMC builds a boolean

formula that is satisfiable if a counterexample of length k exists. For a given transi-

tion system with s states, the model can be expressed using k×s variables. Once the

bounded model is created, a SAT solver like Vizel et al. (2015) is used to check the

88

boolean formula’s satisfiability. The bounded model checking formula’s completeness

is established using techniques such as completeness threshold, liveliness property,

and induction tests, as discussed by Biere et al. (2003).

Establishing Threshold for Bounded Model Checking

The bound k on model of the network M can be specified in terms of reachablity di-

ameter rdr(M), i.e., minimum number of steps required to reach all reachable states.

Another possible mechanism is recurrence diameter rdr(M) to utilize minimum num-

ber of steps for reaching all reachable states. In the example 6.7, rdr(M) = 5, i.e.,

distance from host h1 to h5, and rd(M) = 11, which indicates the number of steps for

performing breath first search over the network. I will utilize these threshold baselines

to define bounds on the model during empirical evaluation.

Formal Model for Network Verification

Network Invariant refers to the network properties desired for optimal functioning

and security of the network, such as virtual network isolation, absence of forwarding

loops in the system, and end-to-end packet reachability (absence of black holes),

etc. Network verification can be achieved by expressing network invariants based

on current topology configuration, traffic management rules, and high-level network

requirements. I used temporal logic-based network verification Baier and Katoen

(2008) to check if the underlying network meets high-level network requirements. An

LTL invariant is evaluated along the linear path. If the invariant state holds for all

the paths starting in a given state, I consider the invariant to be true.

The Table 7.2 describes the grammar used for LTL. The LTL model can explain

the network invariants, such as global reachability, whitelist policy violations for

the underlying network using the queries created using LTL model checking rules

89

Table 6.1: Formal Semantics of LTL which can be used for Expressing Network
Invariants

LTL Rule Rule Interpretation

F p (in the future p) Condition p holds in one of the future time
instants.

G p (globally p) A certain condition p holds globally in all
future time instants.

p U q (p until q) Condition p holds until a state is reached
where condition q holds.

X p (next p) Starting that condition, p is true in next
state.

(invariants). The invariants serve as Query Intent in the presented system. Next, I

discuss how service function chain intent and network function intents are represented

in the INTPOL system.

6.3 Intent Handling in INTPOL

In this subsection, I discuss how the system handles an intent submitted by the

user, as described in Figure 6.4. I describe scenarios - SFC Intent, Network Function

Intent such as Firewall (FW), which can be defined individually. The VNFs can

serve as part of SFC Intent and Query Intent, allowing users to check end-to-end

reachability and policy conflict checking with illustrative examples.

6.3.1 Service Function Chaining Intent

In this example, I consider Service Function Chain (SFC), as shown in Fig-

ure 6.5. The example describes the traffic processing between different end-point

groups (EPGs) - EPG [1-4]. The network gateway (NAT) in the example also acts

as a traffic classifier. There are three separate service chains in this example. The

HTTP traffic is classified at the Network Address Translation (NAT) gateway and

follows the corresponding service chain path, with Deep-Packet Inspection (DPI), i.e.,

90

Figure 6.5: A Service Function Chain (SFC) Scenario With Multiple Network Func-
tions (NFs). Each NF can be Described Individually using Network Function Intent.

SFC1: EPG1 → NAT → FW1 → DPI → EGP2. If the traffic is meant for video

streaming services it follows an alternate path with the Traffic Optimizer (TO), i.e.,

SFC2: EPG1→ NAT→ FW2→ TO→ EGP3. All other traffic follows SFC3: EPG1

→ NAT → FW3 → EGP4. The example illustrates the use of INTPOL grammar

described in Figure 6.6 to represent the individual service chains. For stronger secu-

rity, I consider that the network follows a white-listing approach, and the traffic is

only allowed between EPG1 as the source and EPG[2-4] as destinations. The traffic

between EPG [2-4] is blocked as a part of network policy.

The example in Figure 6.6 illustrates the implementation of complex network

service chains. Variables dst and sf in lines 1-2 are used to define packet destination

and service function, respectively. The formal model of packet propagation through

a chain of different network functions is described in lines 5-14. For instance, if the

packet service function is NAT and destination is EPG2, the packet is forwarded to

FW1, DPI, and finally, EPG2 is part of the first service function chain SFC1 - line

6-8. Similarly, lines 9-11 represent the implementation of SFC2, and lines 12, 13 are

the implementation of SFC3.

91

1 MODULE main

2 VAR dst: {EPG1, EPG2, EPG3, EPG4}

3 sf: {NAT, FW1, FW2, FW3, DPI, TO}

4 ASSIGN

5 NEXT(sf) := case

6 sf = NAT & (dst=EPG2) : FW1;

7 sf = FW1 : DPI;

8 sf = DPI : EPG2;

9 sf = NAT & (dst=EPG3) : FW2;

10 sf = FW2 : TO;

11 sf = TO : EPG3;

12 sf = NAT & (dst=EPG4) : FW3;

13 sf = FW3 : EPG4;

14 TRUE: NAT;

15 esac;

16 NEXT(dst) := dst;

17 INIT sf = NAT;

Figure 6.6: Example Usage of LTL Based Model Checking Framework for Imple-
menting Three Separate Service Function Chains. The NAT Service Function acts
as Traffic Classifier and Routes Packets via Corresponding Service Chain Based on
Packet Header Match.

6.3.2 Network Function Intent

I consider an individual network function Firewall (FW) to check how the rules

of network functions can be expressed using the INTPOL framework. Consider two

invariants I1, and I2, that can be described using LTL equations (I1), (I2) below:

I1: Traffic sent by host h1 should eventually reach host h5.

∀p ∈ Packet : G(send(h1, p) ∩ any(p))→ F (recv(h5, p)) (6.1)

I2: any traffic sent by h2 should not reach h4.

∀p ∈ Packet : G(send(h2, p) ∩ any(p))→ G(¬recv(h4, p)) (6.2)

92

The equation (I1) is used for checking reachability property between h1 and h5,

and equation (I2) contains the firewall rules between hosts h2 and h4. If there is any

network state along the patch h1-h5 which violates the network invariant, it will be

produced as a counter-example of the model. This way, the framework can verify

higher-level network intents using model checking.

1 MODULE main

2 VAR switch: {s1,s2,s3};

3 src: {h1,h2,h3,h4,h5};

4 dst: {h1,h2,h3,h4,h5};

5 ASSIGN

6 NEXT(switch):= case

7 switch = s1 & (dst !=h1 | dst !=h2):s2;

8 switch = s2 & (dst !=h3): {s1,s3};

9 switch = s3 & (dst !=h4 | dst !=h5):s2;

10 TRUE: s1;

11 esac;

12 NEXT(src):= src;

13 NEXT(dst):= dst;

14 INIT switch = s1;

15

16 check_ltlspec_bmc -k 5 "G (src=h1->F(dst=h5))"

17 check_ltlspec_bmc -k 5 "G (src=h2->G(!dst=h4))"

Figure 6.7: An Example of Bounded LTL Model That Utilizes Network Topology
from SDN Controller to Create a Model Specification. The Last Line Represents
Query Intent to Check If Any Packet Starting from (src=h2) Can Eventually Reach
(dst=h4).

Consider an example of modeling network intents from Figure 6.3 using a bounded

LTL model. Since the intents are representative of Firewall rules, a type of Policy

Intent, the model considers packet header, based on the grammar described in Fig-

ure 6.7. The variables switch, src, and dst in the VAR section - lines 2-4 represent

the scope of values for switches, source and destination address. In this example,

I have used variables to represent the values, but depending on the type of intent,

the values can take numeric range, e.g., src=192.168.1.0/24, switch =of:00000001.

93

The ASSIGN section lines 5-13 checks the next state transition of a network packet.

When the packet is located at switch s1, if the packet’s destination address is not h1

or h2, i.e., (dst!=h1 or dst!=h2) is forwarded to switch s2. Alternatively, the model

can consider the next transition of state switch for this packet to be s2. Similarly,

based on the packet header match conditions, the state transition of the packet is

determined in the program. The block INIT - line 14 is used to specify the starting

state of the packet. Next, I will illustrate how Query Intents can be used within the

model checking to identify cases of policy conflicts.

6.3.3 Query Intent: Policy Conflict Checking

In this sub-section I will illustrate the problem that can exist because of mismatch

between high-level network security and orchestration requirements (intents). In the

example Figure 6.3, high-level network intents for hosts, h2→ h3, h3→ h4 will lead

to creation of corresponding rules at switches s1, s2, s3. The combination of these

rules can cause violation of security requirements. It is possible that, h2 → h3 ∪

h3→ h4 = h2→ h4.

The problem of identifying such network anomalies can become quite involved in a

network consisting of thousands of sub-networks, hosts, and switches. Moreover, the

example above describes a case of a simple access control list (ACL) intent expressed

at the application plane. The advent of network function virtualization (NFV) Han

et al. (2015) has allowed the creation of network functions such as load balancer,

intrusion detection system (IDS), and deep-packet inspection (DPI) as part of a pro-

grammable network. Thus, identifying policy inconsistencies across different layers of

the network protocol stack and network paths becomes a challenging task. Existing

rule-conflict detection mechanisms Pisharody et al. (2017); Hu et al. (2014) focus

exclusively on OpenFlow rule conflicts at the data-plane level. Conflict detection

94

and resolution mechanism at the switch level can introduce unnecessary read-write

latency issues and interrupt the network’s normal functioning. Symbolic model check-

ing (SMC) can express the network properties at a higher level of abstraction. The

model checkers, such as NuSMV Cimatti et al. (1999), allow the granular represen-

tation of network security and end-to-end connectivity properties. Lines 16-17 from

Figure 6.7 check if the IP address from source h1 eventually reaches destination h5,

and packet from source h2 never reaches destination h4.

6.4 INTPOL Implementation

I use the administrative panel’s intent to create a formal model of network in-

frastructure and policies. The network policies are checked for the type of intent.

If the intent is a Network Intent (network function rule, or service function chain

requirement), the intent is added to the existing state transition system defined for

the formal model. Additionally, the SDN controller is queried for extracting informa-

tion on network topologies, such as connectivity between hosts and switches. Using

the transition system and the topology information, the formal model is formulated.

Alternatively, if the type of intent is Query Intent, it is used for creating the LTL

queries for checking the network invariants. For instance, if the query asks about

the possible path between two network hosts, the model makes a query to check if a

packet starting from the source address finally reaches the destination, as explained

in the previous section. As part of the modeling framework, I also used the network

topology information to place the formal model’s bounds. The value of the bound

depends on the network diameter for the presented model. If the invariant results in a

counter-example (violation of network policy), the network admin is informed about

the violation. The admin can choose to accept the violation or provide an alternative

approach that does not violate the network policy depending upon the policy’s criti-

95

Algorithm 3 Model Generation and Verification

1: procedure Network-Invariant (r)
2: add-ltl-spec (r)
3: K ← network diameter
4: add-model-bounds (K)
5: if network-invariant-violation (r) then
6: return False
7: else
8: return True
9: end if

10: end procedure
11: procedure Service-Function-Chain (SF-List)
12: for i ∈ range (SF-List[1,n]) do
13: Extract-Path (nfi, nfi−1)
14: add-src (nfi), add-dst (nfi−1)
15: add-state-transition (nfi, nfi−1)
16: end for
17: end procedure
18: procedure Network-Function (r)
19: header, action ← {match, action} ∈ r
20: add-src (header.src), add-dst (header.dst)
21: add-state-transition (header, action)
22: end procedure
23: procedure Requirement-Parser (R)
24: for r in R do
25: if r.type ∈ Service-Function-Chain then
26: SF-List ← r.extract()
27: call SFC-Create (SF-List)
28: else if r.type ∈ Network-Function then
29: call Network-Function (r)
30: else if r.type ∈ Query-Intent then
31: else if call Network-Invariant (r) == False then
32: send (rc ∈ R to admin) . Rules in violation
33: end if
34: end for
35: call RULE-CONFLICT-CHECKING (R)
36: end procedure

cality. Suppose the intent module does not identify any network property violations.

In that case, the non-conflict policies are passed to the SDN controller, which calls

96

the Intent Processing Module, where the intents are analyzed for second-level policy,

i.e., flow rule conflicts.

Algorithm 3 describes the processing of intents at the application plane and gen-

eration of a formal model. The rules are sent to REQUIREMENT-PARSER (R) function,

which parses the submitted network intents. If the type of intent is Service Function

Chain - lines 25-27, the intent is passed to SERVICE-FUNCTION-CHAIN (SF-List) pro-

cedure, where source and destination network functions are identified - lines 13-14,

and the model is updated with state-transition corresponding to the path between

network functions. Similarly, if the type of intent is individual Network Function,

the call to NETWORK-FUNCTION (r) checks the matching criteria for a rule (firewall

rule, IDS rule) and corresponding action - lines 19-20. The formal model is up-

dated with the values of the header match and related action - line 21. If the type

of intent is Query Intent, the call to NETWORK INVARIANT (r) procedure invokes the

processing of query submitted by the network admin, e.g., checking end-to-end packet

reachability, application plane conflict check - lines 4-10. If the network invariant is

satisfied, the rule is kept in the list of rules that will be further analyzed by a call to

RULE-CONFLICT-CHECKING (R) Algorithm 5. If the invariant fails, the admin is no-

tified - line 32, and affected rules (formal model states presenting counter-examples)

are removed from the set of non-conflicting rules.

6.4.1 Intent Processing Module

SDN controller’s intent framework allows the users to specify their networking and

security policies. SDN controller follows a state machine for handling such policies,

i.e., intents. When a new intent request is submitted, the intent processing state

diagram processes it and computes a flow rule installed in an OpenFlow switches.

Consider an intent that allows communication from host h1 to host h5. Intents

97

Network
Policies

SDN
Control Plane

Transition
System

Intent
Type?

Network
Invariant

Formal
Model

Query Intent Network Intent

get model bound (K)
mark and return
conflicting policy

non-conflicting policy

Install
Req

Compiling

Installing Recompiling

Failed

Installed

Withdrawing

Withdraw
Req

Withdrawn

Policy
Checking

Call Intent
module

Flow Rule
Conflict Checker

Check flow conflicts

Flow Rule
Conflict Resolution

Send flow
conflict

Flow conflict resolution Underlying
Network Topology

Intent Processing Module

Install flow
rule

Send feedback to admin

Figure 6.8: INTPOL Data Flow Diagram Describing Multi-level Network Policy Pro-
cessing. The Formal Model Analyzes the Policies at Application Plane, and Policy
Conflict Checker Checks the Conflicting Flow Rules at Control Plane. The Non-
conflicting Policies Are Inserted into Switches at Data Plane Level Using Openflow
APIs.

are sent asynchronously to Compiling stage. The Compiling stage performs various

checks on the incoming intent, and if the compilation is successful, it returns a list

of installable intents. The intents need to be validated for its feasibility, connectivity

with regards to the given network topology, network criteria, resource availability,

etc. The compilation process computes a primary shortest path and a backup path

between the two given hosts. Here the shorted path from host h1 to host h5 would

be h1-s1-s2-s3-h5, given all links have the same weights. Suppose a node specified in

user intent cannot be reached to the other node specified due to lack of connectivity

or link failure or resource unavailability, or any other reason. In that case, that intent

fails the compilation. At this stage, it is difficult to say if this failure is due to some

temporary network failure or some temporary event. Hence that intent is kept in a

98

Compiling state. If the compilation fails, the state of the intent is assigned to a Failed

state. In the event of network topology change, or link re-association, failed intents

are considered again for compilation. In the event of topology change, if the network

connectivity is regained, then compilation may succeed. The installable intents sent

from Compiling state to Installing state. If the installation fails for any reason, then it

goes to Recompiling state. Once the intents pass, the Installing state is also analyzed

for Policy Conflict, as described in the next subsection. In the event of no conflicting

policies, the state transitions to Installed Intent. These intents are installed as flow

rules in the underlying OpenFlow network.

6.5 INTPOL Performance Evaluation

This section describes the evaluation of the INTPOL framework using different

application scenarios and network setups. First, I present a case study to show how

INTPOL performs in a service function chaining (SFC) scenario, comprising inter-

domain and intra-domain policies. In particular, I used a hybrid network consisting

of both SDN-based networking and traditional networking. Second, I applied the

INTPOL approach to a large network scenario by utilizing the Stanford topology

Kazemian et al. (2012), which has many hosts, and OpenFlow switches running ACL

rules. I used policy conflict checking as an invariant to assess the INTPOL frame-

work’s scalability on an extensive scale network with an increase in the number of

intents.

I used the INTPOL framework to show that a multi-domain hybrid network sce-

nario, which consists of both SDN-based networking and traditional networking, as

shown in Figure 6.9 a particular case of SFC. Some components are software-defined,

e.g., Switch (s1-5) and (s11) are managed by ONOS-01, whereas switch (s6-10) is op-

erated by ONOS-02. Next, I expand the INTPOL framework to provide end-to-end

99

Figure 6.9: A Hybrid Network Scenario with Network Components Based on Tra-
ditional Networking (BGP Routing) and Openflow Network (blue dashed lines) the
Different Domains Are Represented in by the Orange Circles.

policy verification in a hybrid network scenario with Border Gateway Protocol (BGP)

for communication across geographically distributed networks and software-defined

networking components (OpenFlow network).

Consider a network consisting of distributed domains, as shown in Figure 6.9.

BGP based routing technology is employed to enable communication between the

network managed by ONOS-01 and ONOS-02. Moreover, the end hosts (h1-h100) in

each system are connected to the SDN networking using routers r1-r10. Hence, the

Openflow network can only see the packets coming from routers. The routers apply

100

NAT functionality to masquerades the local IP address into the public domain IP to

enable BGP communication.

In this example, I assume that each router manages one domain, e.g., AS6501

contains hosts h1-10. Internally each router has a corresponding OpenFlow switch

providing layer-2 connectivity. I tested the INTPOL performance regarding the pro-

posed BMC for the example in Figure 6.9. The model has two checking levels, at the

intra-domain (within each AS) and in the inter-domain (across AS).

Inter-Domain Communication

The overall network described in Figure 6.9 can be represented in the INTPOL frame-

work using two-level of abstraction, i.e., SFC intents and Network Function (NF) in-

tent. I consider the inter-domain network as a special case of Service Function Chain

(SFC), where routers (r1-10) can be interpreted as NAT providers. The switches (s1-

10) perform packet switching, and basic traffic filtering reduces the overall overhead of

checking network policies. The end-hosts can be represented as an abstracted group,

i.e., {h1, .., h10} ∈ AS6501, {ONOS-01, ONOS-02} ∈ AS6500, and so forth.

The intra-domain level is the autonomous system (AS) level, which has the SDN

controllers and the edge routers r1-r10. I consider this a network function NAT

within each AS. The administrator requirements are specified such that the end-hosts

(h1-h100) can reach each other, or some of them should never be communicating.

Note that there are two levels of policy checking at the SDN controller level and

the individual traditional routing domains in this scenario. On one hand, the SDN

level domain checks for the policies across the AS and handles the OpenFlow rules

between ASes. On the other hand, each AS (r1-r10) is checking the inter-domain

invariant. This allows the admin to ensure end-to-end packet reachability within a

domain and between the domains. So the evaluation goal of this scenario is to measure

101

the performance of network invariant checking.

Figure 6.10: An Encapsulated Representation of Hybrid Network Scenario as a Special
Case of Service Function Chaining (SFC).

I performed an experimental evaluation of using LTL full-scale model checking,

and LTL bounded model checking, i.e., LTL-BMC in a multi-domain scenario de-

scribed in Figure 6.10. It can be observed that performing network invariant check-

ing by abstracting the packet processing across domains to a special SFC case allows

inter-domain packet switching and routing policies to be analyzed in a fast and effi-

cient manner. Each network domain comprised ten hosts. I incremented the number

of domains from 2-10 to observe the time required for LTL and LTL-BMC model

construction and packet reachability property checking, as shown in Figure 6.11.

The value of network bound K was selected based on the diameter of the current

network, i.e., if the maximum path length between two hosts is 10, I utilized K=10.

The invariant checking using BMC for #domains=2 finished in 0.048(s), whereas LTL

required 0.108(s). I observed a similar trend as I increased the number of domains to

10. For #domains=10, BMC required 0.07(s), whereas the LTL finished in 0.016(s).

102

1 2 4 6 8 10
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Number of Domains

R
u
n
n
in

g
T

im
e

(s
)

LTL LTL-BMC

Figure 6.11: The Experimental Analysis of INTPOL in Inter-domain Hybrid Network.
The LTL-BMC Scales Well as the Number of Domains Increase in the Network.

Overall the BMC was >2x faster in terms of invariant checking compared to the LTL

framework. This shows that BMC scales well in a multi-domain scenario, and the

INTPOL framework is generalizable to incorporate multiple types of network setups.

Intra-Network Communication

The hosts h1-10 utilize the traditional routing for communicating with each other,

which makes the SDN network oblivious to the traffic managed by routers r1. Since

the network in consideration is a geographically distributed network, e.g., 192.168.1.0/24

is managed locally by r1-5. Each router is connected to a switch, e.g., r1-s1. The

switches s1-10 are connected to switch s11, which is connected to the bgp router (s11-

bgp). The BGP router is connected to ONOS-01, and similarly, 192.168.10.0/24 is

managed by r6-10, which is connected to ONOS-02. I used the SDNIP application

Lin et al. (2013) to allow ONOS to run and communicate with BGP router through

iBGP protocol and communicate with routers r1-r10 using eBGP protocol. I refer

the reader to SDNIP details in Lin et al. (2013); Jonathan Hart (2020) for details

103

Figure 6.12: INTPOL Model Checking Framework Evaluation in a Single Domain
Environment. As I Increased Number of Hosts in Domain As6501, the Binary Decision
Diagram (BDD) Nodes, Data Size of the Model, and Time of Model Checking Is
Reduced for Bounded Model Checking (LTL-BMC) Compared to Full Scale LTL.

104

about connecting inter-domains with the ONOS controller. Next, I checked the scal-

ability of INTPOL by increasing the number of hosts within one domain. I consider

switching, and access control functions within AS6501 managed as part of the routing

domain of router r1.

To evaluate the proposed INTPOL framework’s scalability within a single domain

AS6501, I experimented with measuring the BMC model’s performance compared to

the LTL model. Specifically, using NuSMV I evaluated using the NuSMV program

the number of Binary Decision Diagram (BDD) nodes, the data size, and the time of

both the LTL model and the BMC model. Figure 6.12 shows the comparison between

the LTL and the BMC model in four different scenarios, where the number of hosts

in the network initially is set to 5 and gradually increases up to 40 hosts. The time

required for checking invariant (end-to-end reachability) in the case of LTL is 12 (ms)

for five hosts, whereas, for LTL-BMC, it is 4(ms). The overall time of LTL-BMC is

less compared to LTL as the number of hosts is increased in the model- Figure 6.12(a).

This is because the network width is used as a model bound for LTL-BMC; the state

space for invariant checking is smaller. It can also be noticed that the number of

BDD nodes in the BMC model is much less than the LTL model - Figure 6.12(b).

Moreover, the data size for the LTL model is more extensive in all cases. The BMC

model reduced the data size with a reduction of 37% in the five hosts case and 60%

in the 40 hosts case - Figure 6.12(c). The main reason for the reduction is that I

simulated and accounted for all the states generated by the model in the LTL model.

In contrast, in the BMC model, I can set K=10, which means the model is simulated

with provided bound on states or steps to find the counterexample. This helps the

model scale well as the network hosts increase within a single domain.

105

6.5.1 Policy Conflict Checking for Large Network Scenario

To analyze the scalability of INTPOL on an extensive network, I used the Stanford

Topology Kazemian et al. (2012) for the experimental analysis. The topology consists

of 14 Operational Zones (OZ) routers, ten switches, and two backbone routers con-

nected to OZ’s via switches. There are 1500 ACL rules and 757k forwarding entries in

the simulated network Kazemian et al. (2012). For this case-study, I wanted to eval-

uate the performance of INTPOL in terms of policy translation scalability and how

would INTPOL behave when the network in question is large. Moreover, I wanted to

show how the proposed BMC module will behave in a large system compared to the

traditional LTL model for checking network invariant.

Table 6.2: INTPOL Model Checking Framework Applied to Stanford Topol-
ogy Kazemian et al. (2012). The Overhead of Generating Model using LTL-BMC
is Lower Compared to LTL Framework.

Intents Intent Gen. Time LTL Nodes LTL-BMC Nodes

20 3.42 9768 3170
40 4.33 13936 3354
60 5.91 18713 3532
80 8.525 19230 3492
100 11.29 13936 3849

I performed two-level of policy conflict checking to establish the benefit of check-

ing conflicts at the application plane. I utilized Stanford Topology for this pur-

pose Kazemian et al. (2012). The first level of policy conflict checking is at the

application plane, where the policies specified are converted into a formal model by

checking user requirements and network structure. The system policies are converted

into intents based on Algorithm 3. The network intents are matched for conflict,

reachability, end-to-end packet flow using network invariant. In the case of Stanford

topology, I selected the hosts and checked conflict-free policies between them. Each

106

end-to-end packet reachability requirement between two randomly chosen hosts is in-

serted into the formal model as a network intent. Rules for checking conflict between

user policies are added as a network invariant. For instance, when the number of in-

tents (# Intents) is 20, I created host to host reachability intents between randomly

selected pairs of hosts in the network.

It can be seen from Figure 6.13, runtime increases with the number of intents,

i.e., 3.42(s) for 20 intents and 11.29(s) for 100 intents. I analyzed the case of conflict

checking at the application plane using a formal LTL model and an LTL model with

bounds placed on the model (LTL-BMC). The number of nodes expanded in the

case binary decision diagram (BDD) created as a part of the LTL model is ∼9-14K

table 6.2 (column 3) when the number of intents increases from 20 to 100. The

nodes’ size expanded for a bounded model table 6.2 (column 4) is significantly less ∼

3-4K than the LTL model. This result is expected because I placed a bound on the

diameter of node expansion by using the bounded model. The overhead of conflict

checking in the unbounded model is 0.18(s) for 20 nodes, and it increases to value

0.225(s) for 100 intents. In using BMC, the conflict checking routing takes a smaller

amount of time, i.e., 0.1(s) for 20 intents and 0.20(s) for 100 nodes.

Scalability of Conflict Checking at Application Plane

It can be observed from Table 6.2 that the overhead associated with the identifica-

tion of conflicts at the application plane using the bounded model is quite limited. I

will now discuss the overhead associated with conflict checking at the data plane. I

assumed that the application plane (no formal model) is present in the system. The

intents are inserted into OpenFlow switches using the intent processing module de-

scribed in Figure 6.8. It can be observed that the number of flow rules (#Flow Rules)

generated for 20 intents is 413. This result is because, for realizing an intent, the SDN

107

controller needs to add flows along the path between two hosts. For example in case

of example network presented in Figure 6.3 if I add a host intent add-host-intent

h1 h5, I need to insert four flow rules, rule 1 (flow between h1 and s1), rule 2 (flow

between s1-s2), rule 3 (flow between s2-s3), and rule4 (flow between s3-h5). Thus in

the case of hosts selected for a scalable topology such as described in this experiment,

there can be multiple flow rules for each intent—these flow rules in-turn conflict with

each other.

Figure 6.13: A Comparison Between the Flow Rule Conflict Detection Time, and
the LTL and LTL-BMC Time. The Data-plane Level Conflict Detection Time is
Significantly Larger in Absence of INTPOL Framework.

Furthermore, it can be observed from the Figure 6.13 that conflict checking time

is 51.68(s) for 413 flow rules. This result is about 510x higher than the conflict

108

checking overhead at the application plane using BMC. As I increased the number of

intents from 20-100, the number of flow rules generated is increased to 1355. The time

required for checking conflict among flow rules is also increased to 216.01(s). This

measurement result is significantly higher than the time needed to check conflicts at

the application plane 0.260(s). Thus, if a model can identify and remove the intents’

conflicts at the application plane using the bounded formal model, the number of

flow rules generated will be significantly lesser. The overall overhead associated with

conflict detection and resolution at the application plane and data plane combined

will be significantly reduced.

6.6 Policy Configuration and Conflict Analysis Research

6.6.1 Intent based Policy Configuration

I analyzed the research works involving intent-based policy expression and man-

agement. JANUS Abhashkumar et al. (2017) builds upon the policy graph abstrac-

tion (PGA) framework proposed by Prakash et al. (2015), for representing dynamic

temporal policies and QoS policies in an intent-based language. Janus also aims to

maximize the number of configured policies by utilizing heuristic algorithms. PGA

Prakash et al. (2015) analyzes the Access Control List (ACL) rules and module them

in a graph structure to find conflicts between ACL policies. The graph structure

input is the possible communication between the network endpoints and the required

service function chain for every communication. Yet, PGA requires users to man-

ually verify the detected conflict’s correctness to ensure reachability requirement in

the network is satisfied. PGA also does not support stateful capabilities such as an

intent that specify stateful firewall service rule.

109

Han et al. (2016) presented a framework for providing an interface to add intents

by the user and translate it into network policy. The authors do not consider the

scenario of multiple controllers running in the environment, nor do they analyze the

added intents’ conflicts. Jacobs et al. (2018) discussed how AI could be utilized to

allow networks to be more intelligent. They showcased how intent-based network-

ing (IBN) can translate high-level policies without the overhead of translating them

into network flows. Most existing works lack a framework that can interpret diverse

network requirements and perform end-to-end network property verification using a

unified language.

INTPOL provides a scalable formal language that allows network operators to

specify network intents at the application plane. This abstract the network operator

from the details of policy configuration for each network controller. The policy trans-

lation and mapping provided by INTPOL takes care of translating network intents

into controller specific policies.

6.6.2 Network Policy Conflict Checking

There are several existing solutions on network policy checking and invariant ver-

ification, such as Khurshid et al. (2013); Beckett et al. (2017); Pedrosa et al. (2018);

Tian et al. (2019); Jacobs et al. (2018); Arashloo et al. (2016). One of the earlier work

for network invariant verification is Veriflow Khurshid et al. (2013). Veriflow aims to

check the network invariant in real-time with the change in the network state. Thus,

Veriflow only checks the packet reachability (as one type of invariant) between two

machines after the flow has been deployed, according to Beckett et al. (2017).

To ensure the network invariant is checked pre-deployment, Beckett et al. (2017)

have presented an approach for converting the network configuration files to logical

formulae, which is based on the different communication between the routing pro-

110

tocols. This formula is then described according to the specified constraints into a

networking invariant, which will eventually ensure the network performs it’s intended

purpose in terms of reachability, loop and black-holes free, etc.

Jinjing Tian et al. (2019) is a system that aids Alibaba’s network operators to

automatically and correctly updating ACL configurations in Alibaba’s global Wireless

Area Network (WAN). The system automatically synthesizes ACL update plans that

satisfy the required intent. However, JinJing only considered the ACL rules as one

type of network invariant; they did not consider the possibility of invariant conflicts

due to the natural differences in multiple controllers in the system.

NetSMC Yuan et al. (2020) uses an existential first-order logic and query con-

tainment to provide stateful network verification. The framework uses image pre-

computation to help provide a scalable formal model. The formal model for net-

work invariant verification suffers from the number of verification states’ scalability

challenges. This work utilized a bounded model checking approach to address the

scalability limitation inherent in existing research works. As a result, INTPOL scales

linearly in terms of the number of model states.

To address multi-domain SDN policy management, a recent study by Varadhara-

jan et al. (2018) proposed a new application that handles the policies between different

SDN domains. The paper uses a policy handle and policy token. The handle is used

to show the visited autonomous system (AS) by the flow and the packets. The eval-

uation of the paper offers an efficient network communication in terms of throughput

and delays. One key feature of that work is missing, which is to verify the policies

effectively and ensure end-to-end reachability without conflict between the policies

as I did in this research. Furthermore, the work Varadharajan et al. (2018) does not

verify the policies against network invariant, which are desired for optimal functioning

and security of the system.

111

6.7 Summary and Discussion

In this chapter, I discussed a multi-level network policy checking framework for

SDN networks. I introduced a new language, INTPOL, for unified interpretation of

network-wide security policies and mission requirements in a multi-domain cloud en-

vironment. INTPOL framework utilized bounded model checking to limit checking

conflicts at the application plane, reducing the number of generated flow rules at the

data plane. The presented solution can reduce the overhead of network policy con-

flict checking significantly. I utilized case studies to show that INTPOL is generalized

enough to handle scenarios such as Service Function Chaining (SFC), multiple net-

work functions (Firewall, IDS, DPI), and hybrid networks involving traditional BGP

routing and OpenFlow components. The framework scales well on a large enterprise-

grade network, as demonstrated by experiments performed on Stanford topology.

112

Chapter 7

FLOW RULE CONFLICT DETECTION AND RESOLUTION

In this chapter, I elaborate on an alternate model for detecting and resolving conflicts

between security policies in an SDN-managed environment, known as the Object-

Oriented Policy Conflict (OOPC) framework. OOPC analyzes the rule dependency

relationships between the rules of heterogeneous virtual network functions (VNFs)

and creates a VNF-Graph. The rules are analyzed using object-oriented dependencies

between the address space and actions of VNF rules. OOPC utilizes compact VNF-

Graph, which leads to a reduction in search complexity when analyzing new security

policies. The security policy using policy graph composition in OOPC achieves 37%

lower latency than current works in the field of end-to-end policy composition. The

proposed solution performs 20% faster security policy conflict detection on a cloud

network with 60k OpenFlow rules than prior frameworks that serve a similar purpose.

7.1 Security Policy Formalism

7.1.1 Network Traffic and Packet Classification

Definition 7.1.1 Network Traffic: The traffic in a given network is composed of

multiple packets, i.e., Γ = {p1, ..., pk}. Each packet has some network fields, i.e.,

pi = {(n1, v1), (n2, v2), .., (nnp , vnp)}. The field ni, here refers to packet header field,

e.g., source IP address, destination port, and vi refers to value assigned to that network

field, i.e., p(ni) = vi.

113

Definition 7.1.2 Packet Classification: The incoming traffic packets for a net-

work, Σi, can be classified into subset of rules Rm from the ruleset of the entire

network R, i.e., Rm ⊆ R, where Rm = {∀mi=1ri}. Furthermore, each rule ri, can be

decomposed based on packet match condition, and actions ri = {mi, ai}.

The match field can be further classified into individual headers that are part of the

packet. The packet match mi consists of physical port of incoming traffic δi, source

and destination hardware address, i.e., αsi, αdi, source and destination IP address,

βsi, βdi, source and destination port addresses, γsi, γdi, protocol δi, priority value ζi

for a given virtual network function. For instance, a stateless firewall (iptables) allows

the assignment of rule priority.

The Virtual Network Functions (VNFs), acting on network traffic ∀V NFN
i , con-

sists of rules from ruleset R, i.e., V NFi.r ⊆ R, where r represents rules of V NFi,

and V NFj.r ⊆ R, i 6= j. Next, I define notation to relate the network traffic with the

rules of VNF (entire ruleset R). In particular, I use an equivalence class relationship

ρ = {=, 6=,⊂,⊆,≤, ..}. The use of equivalence relationship on network traffic allows

the classification of network traffic, i.e., {(Γ, ρ, R)→ Γ′}.

7.1.2 Policy Graph Composition

In this research, I consider the end-to-end composition of policies in a chain of

VNFs. Let’s consider there are virtual network functions {V NF1,, V NFN}. Each

rule from a VNF has a match and an action tuple, i.e., ri = {mi, ai}. The match

refers to the matching header for the network traffic. The policy graph can be formally

defined as follows:

114

Definition 7.1.3 Policy Graph can be defined as G = {V,E}, where vertices V

refers to the rule matching network traffic on encountering the rule, i.e., rule r from

the list of VNFs acts on network traffic Γ, and transforms it into Γ′. The transfor-

mation relation can be formally represented using notation {(Γ, ρ, R = r)→ Γ′}. The

edge e ∈ E is present between two vertices. If one or more rules act on the network

traffic and either transformed the packet header or forwarded network traffic to an-

other VNF, i.e., e=(r1, r2) ⇐⇒ r1 ⊆ r2|r2 ⊆ r1, an edge is added between those

vertices. For instance, consider the traffic Γ between hosts 1.1.1.1 and 1.1.2.1 in the

policy conflict analysis example below. The packet will undergo transformation based

on the rules associated with VNFs present on the path between these two hosts. The

load balancer r4 changes the source IP address to 1.1.3.1, 2, and IDS based on rule r5

can perform traffic mirroring using action INSPECT, as can be seen in the example

rules provided in the next subsection.

7.1.3 Policy Conflict Analysis

The security policy management framework should provide some essential features

(a) rule order independence, i.e., rules can be defined in any order without introducing

conflicts (b) modular and extensible - rules from different network functions can be

reused to prevent the creation of redundant rules, and allow scaling on a large network

(c) automated conflict detection and possible resolution.

The application layer in an SDN-managed cloud network consists of APIs to ex-

press security policies and mission requirements. The application layer policies, spec-

ified using additional security and traffic optimization modules like stateless firewall,

load-balancer, and IDS, can conflict with each other. The header space of the appli-

cation layer policies may have partial or full overlap, whereas the actions may not be

the same for different security policies.

115

S t a t e l e s s L3 F i r e w a l l Rules

ID L3src L3dst L4src L4dst ACTION

r1 1 . 1 . 1 . 0 / 2 4 1 . 1 . 2 . 0 / 2 4 ∗ ∗ ALLOW

r2 1 . 1 . 1 . 0 / 2 4 1 . 1 . 2 . 0 / 2 8 ∗ ∗ DENY

r3 1 . 1 . 3 . 0 / 2 4 1 . 1 . 2 . 0 / 2 4 ∗ ∗ DENY

Load Balancer Rules

ID L3src L3dst ACTION

r4 1 . 1 . 1 . 0 / 2 4 1 . 1 . 2 . 0 / 2 4 SetIP (1 . 1 . 3 . 1 , 2)

IDS Rules

ID L3src L3dst L4src L4dst ACTION

r5 1 . 1 . 1 . 0 / 2 4 1 . 1 . 2 . 0 / 2 4 ∗ ∗ In spec t

S e c u r i t y P o l i c y

Order : Load Balancer −> L3Firewal l −> IDS

Mission Requirement

B i d i r e c t i o n a l t r a f f i c between 1 . 1 . 1 . 0 / 2 4

and 1 . 1 . 3 . 0 / 2 4 shou ld be a l l o w e d .

ID L3src L3dst L4src L4dst ACTION

r6 1 . 1 . 1 . 0 / 2 4 1 . 1 . 3 . 0 / 2 4 ∗ ∗ ALLOW

r7 1 . 1 . 3 . 0 / 2 4 1 . 1 . 1 . 0 / 2 4 ∗ ∗ ALLOW

If I examine the security rules present in the code snippet above, the policies for L3

firewall, r1, r2 conflict with each other, i.e., r2 ⊆ r1, r2(ACTION) 6= r1(ACTION).

116

Similarly, the rules for the load-balancer r4, and IDS r5 overlap with header space of

rules r1, r2. The security policy specifies the order of application of network functions.

According to the security policy above, the load balancer must be applied before the

L3 firewall and IDS.

The rule r3 prevents traffic between Src IP 1.1.3.0/24 and 1.1.2.0/24. Whereas, if

rule r4 is applied before rule r3 as per security policy, the source IP of the traffic from

1.1.1.0/24 will be modified to 1.1.3.1 or 1.1.3.2 as per r4. The firewall blocks this

traffic from the modified source IP address as per rule r3. The mission requirements,

however, specify that the traffic between 1.1.1.0/24 and 1.1.3.0/24 should be allowed.

The change introduced by ordering constraints as per the security policy violates the

mission requirement.

To preserve the end-to-end application policies, I identify the object-oriented re-

lations between different security and traffic optimization policies and resolve them

before implementing the corresponding OpenFlow rules at the control plane level.

Next, I describe how to analyze the OpenFlow rules for possible conflicts.

Definition 7.1.4 Conflict Detection: Eppstein and Muthukrishnan (2001) seeks

to find the rules ri, rj ∈ Rm, that are conflicting with each other, i.e., (ρi = ρj) ∧

(hi ∩ hj 6= ∅) ∧ (ai 6= aj). I will use the variables described earlier to illustrate and

example of policy conflicts.

Table 7.1: Motivating Scenario: Conflict Detection

Flow-ID Src-IP Dst-IP Src-Port Dst-Port Action

1 1 [0-10] 2 [0-100] {(drop)}
2 1 [0-100] [2,4] [0-100] {(set srcip 5)}
3 [5,8] [0-100] [0,8] [0-100] {(set srcip 2), (fwd)}
4 2 [0-100] [2,4] [0-100] {(fwd)}

117

Consider, Table 7.1, I used simple numeric values for source and destination addresses

for concise representation and consider other OpenFlow fields, e.g., layer 2 source and

destination addresses to be wildcarded. There are two types of violations here.

Coverage Violation: The rules 1 and 2 have overlapping header space. The

Src-IP of the rules is the same. The destination IP of rule 2 is a superset of rule 1.

The actions of both rules are different. This is a case of conflict amongst flow rules

1 and 2. Suppose the traffic source is [1-10] and destination is ‘2’. In that case, the

traffic may be dropped (assuming the whitelisting policy of OpenFlow framework),

even though the network administrator intends to send traffic between these sources

and a destination address range(s).

Transitive Violations: According to the rule with Flow-ID ‘1’ present in the

table, every packet from Src-IP 1 towards Dst-IP 2 must be dropped. However, rule

2 in the table allows modification of source IP to value 5 and rule 3 sets the source

IP of any field between [5-8] to the value 2, and rule 4 forwards traffic to Dst-IP [2,4].

Thus, using rules 2,3, and 4 the traffic between Src-IP 1 and Dst-IP 2 is allowed.

Research works, Flowguard Hu et al. (2014), and Brew Pisharody et al. (2017,

2016), focus only on Firewall as a use-case for security policy conflict detection, and

fail to identify Transitive Violations.

7.2 Object-Oriented Conflict Checking Framework

In the object-oriented paradigm (OOP), a class is defined in terms of network ele-

ments, e.g., a virtual network function (VNF) - Firewall/IDS, subnet range (192.168.1.0/24),

security configuration - firewall or network address translation (NAT) rules. More-

over, the class can be defined at the granularity of security policy rules. Next, I will

discuss the object-oriented dependency relations between network elements.

118

Figure 7.1: Object-oriented Relations (a) Inheritance - IP Address Inherits Properties
of Classless Inter-domain Routing (CIDR) Superclass (B) Polymorphism - Stateless
Firewall can be Specialized as Stateful Firewall, Intrusion Prevention System (IPS),
or Deep-packet Inspection (DPI) Module.

7.2.1 Object Oriented Relations

Class: The basic building block of object-oriented programming is class. A class

holds its data members and member functions. In this object-oriented framework,

I consider each virtual network function (VNF) as a class in the described object-

oriented policy conflict model. For instance, a VNF Stateless Firewall is defined as

a class. The class can have variables such as source IP address (srcip), source port

(sport), and member functions such as addRules(), updateRule() - Figure 7.4 (a).

Objects: are self-contained components of the class that can access class methods

and variables. In this research, I used the object term to refer to a virtual network

119

function instance. The objects allow the rules to be added, deleted, or updated.

For instance stateless firewall can have object f1 that can access member functions

f1.addRule(), as shown in Figure 7.4 (a). This function allows the object of the class

stateless firewall to add a rule. The domain of an object is a subset of object values,

i.e., dom objects ⊆ o.V alues.

Inheritance: This relation helps in identifying sub-class dependencies between net-

work elements. Subclass statements, can take form C1 ⊆ C2, which means, C1 is

a subclass of C2. A class that inherits the base class’s properties is known as sub-

class, and the base class is referred to as superclass. Consider Figure 7.1 (a), classless

inter-domain routing (CIDR) provides a basic layout of the network domain, possible

sub-networks, subnet mask and broadcast domain. The class IP Address inherits

features such as Subnet Mask from the class CIDR. Additionally, IP Address class

also adds additional features such as IPv4 Address (192.168.1.12), Hardware Address,

and Name Server (8.8.8.8). An object of class IP Address is called an instance of the

class. A specific host with the class variable values defined will act as an instance of

this class.

Polymorphism: This is one of the features in the object-oriented paradigm that

allows a single action to be performed in different ways. As shown in Figure 7.1 (b),

polymorphism in network elements allows the creation of one interface, for instance,

Firewall. This interface can be realized in different ways, depending upon the appli-

cation requirement. In the smart firewall architecture like Cisco-ASA Frahim et al.

(2014), several security features such as intrusion detection, anti-malware protection,

and VPN service are implemented together. The stateless-firewall module’s basic fea-

tures, such as network address translation (NAT), traffic filtering, can be specialized

to support features of the smart-firewall architecture. For instance Stateful Firewall,

Intrustion Prevention System (IPS), can inherit class Stateless Firewall and add new

120

Figure 7.2: OpenFlow Rule Conflict analysis. I Identified Dependencies - Inheritance,
Polymorphism, Aggregation, and Composition between OpenFlow Rules by Checking
Overlap in Header Space and Actions of the Rules.

features corresponding to characteristic of each specialized module. The class IPS

in the example above, adds the methods - setAFPackMode(), and setNFQMode() as

shown in the Figure 7.1, in addition to the basic features of Stateless Firewall.

Aggregation: A weak form of association, which enables VNFs to utilize one an-

other without having to re-implement, the functional logic in the original VNF. For

instance, Next-Generation Firewall (NGFW), as shown in Figure 7.3(a), typically

comes with features such as a virtual private network (VPN) and deep-packet in-

spection (DPI). The NGFW and VPN can, however, function as standalone VNFs

even if either is missing in security architecture. These weak associations allow the

re-utilization of desired features amongst VNFs using a has-A relationship. Consider

the Figure 7.3 (a), has-A (NGFW, VPN, encryption), means NGFW utilizes VPN for

121

Figure 7.3: Object-oriented Relations (a) Aggregation - Defines Has-a Relation Be-
tween Network Elements - a Next Generation Firewall can have both IPS, and VPN
Functionality (B) Composition - Part-Of Relation, e.g., set of Functions for Network
Address Translation (NAT) are part of Firewall. A subset of Network Features such
as NAT can be Part of More than one VNFs.

encryption purpose. Aggregation can be used for representing uncertainty over the

partial decomposition. At a more granular level, the next-generation firewall rules can

be defined using the has-A relation. For example, has-A (NGFW, rules, N), shows

that class NGFW has N number of rules. The rules can be used to ALLOW, FOR-

WARD, or DENY the network traffic between the segments. The encoding of NGFW

in terms of weights/priority assignment to individual rules can become a scalability

challenge.

Composition: This is a stronger form of association, usually represented by part-Of

relationship. The functionality of network address translation (NAT) cannot exist

122

by itself, and it requires the presence of Firewall VNF, as shown in Figure 7.3(b).

The firewall module can call setNATIP(), and setNATPort() functions in the class

network address translation (NAT) in order to allow NAT feature mapping an external

IP address/port to an internal IP address/port in addition to other features such as

port forwarding and blocking a certain type of network traffic.

7.2.2 Case Study: Service Function Chaining and Rule Conflicts

Figure 7.4: (a) Object-oriented Fundamentals - Class, Variables, Methods for Virtual
Network Function (VNF) Stateless Firewall (B) Analysis of Ruleset from Background
Section from Object-oriented Relationship Aspect (C) Policy Graph Identifies the
Dependencies in the VNF Rules, this will allow the Elimination of Redundant Rules,
and scalable Conflict Detection.

Service Function Chain (SFC) refers to an ordered set of service functions that

should be applied to the classified traffic. The order of application of abstract ser-

123

vice functions can be sequential or parallel, based on the network requirements, e.g.,

Firewall and IDS can be used in serial order for SFC. There can be policy conflicts

induced by the overlapping rules of different Virtual Network Functions (VNFs).

I define the object-oriented fundamentals in this sub-section, and illustrate the

possible relationships between different VNFs (Firewall, IDS, IPS). Consider Fig-

ure 7.4 (a), the class can be defined as Stateless Firewall. The class can have sev-

eral variables such as source and destination IP address (srcip, dstip), methods -

addRule(srcip, dstip, sport, dport, protocol, action), updateRule(srcip, dstip, ..),

getRule(). The class methods accept the variable names as arguments, but some

variables can be wildcarded as well. For instance incoming/outgoing traffic between

two hosts is allowed on all ports, I can mark sport = ’*’, dport = ’*’, in that case. The

class can be instantiated to create an object. The class objects in this framework are

identified as the specific rules, obtained on substitution of variable values, as shown in

Figure 7.4 (a) above. Similarly, consider class as a wrapper for each virtual network

function as shown in Figure 7.4 (b). The rules r1,r2,r3 are objects of class Stateless

Firewall, rule r4, r5 are object of class Load Balancer, and the rule r6 is an example

of class IDS object. As was also discussed in the previous section, rules r1 ⊂ r2,

and rules r3.header ∩ r4.header 6= ∅. Moreover, r4.header ∩ r5.header 6= ∅. The

object-oriented relations between the rules can be identified using a Policy Graph, as

shown in the Figure 7.4 (c).

• Rules r1, and r2 can be identified of type inheritance since r1 inherits methods

of r2, and actions are same for both.

• Rules r2, and r3 have non-empty header, and the actions for both rules are

different. These conflicts can be classified under polymorphism, as shown in the

Figure 7.4.

124

• Rule r4 inherits all attributes of r1, whereas the actions are different for r4

(action=DENY). Hence this conflict can be classified as a polymorphic depen-

dency.

• Rule r4 and r5 have partial overlap in the header space, and actions are the

same. Hence these rules can be classified under aggregation.

• Rule r4 and r6 have partial overlap in the header space since source IP is

different for both rules, and actions are also different. Hence this dependency

can be identified as a composition relation, as shown in the policy graph.

The creation of a policy graph will allow the elimination of duplicate rules. For

instance, if IDS is adding a new rule, the OOPC framework can proactively identify

this as a possible conflict and prevent that particular rule’s insertion.

7.2.3 OpenFlow Rule Conflict Detection

The class hierarchy described for different policies in the previous sections can be

used to illustrate the process of flow rule conflict identification. Consider the overlap

in the action fields. As shown in Figure 7.2, there are four different cases of conflicts

in the object-oriented framework, which can cover different scenarios of flow rule

conflicts.

As shown in the example above, the header fields hi ⊆ hj and actions of both

rules are the same, thus rule i is a specialization of rule j, such OpenFlow rules can

be classified under Inheritance conflict. The example showcases two rules, where

rule i inherits the header values of rule j. However, the action fields are different.

This is similar to polymorphism property in the object-oriented design. Thus such

cases of rules can be classified as polymorphic conflicts. Rules (i, j) in the example

of aggregation have overlapping header fields, i.e., hi ∩ hj 6= ∅. However, both rules

125

have similar actions. Thus a third rule, k, can replace both rules, but this does not

occur automatically in flow tables. These conflicting scenarios can be classified as

aggregation. Rules (i, j) in this conflict scenario have overlapping header fields and

conflicting actions. Thus the intersecting part of both rules, hi ∩ hj, is composed of

aggregated actions from both rules. This type of rule conflicts can be classified into

the composition category.

Algorithm 4 Flow Rule Conflict Detection Algorithm

1: procedure Rule Conflict Checking(R)
2: R← current flow rules
3: R = {match(R), A(R)}
4: C ← Conflict Set
5: for i ∈ {1,n} do
6: for j ∈ {1,n} do
7: if match(Ri) ⊆ match(Rj) OR match(Rj) ⊆ match(Ri) AND
action(Ri) == action(Rj) then

8: C.add(Inheritance)
9: else if match(Ri) ⊆ match(Rj) OR match(Rj) ⊆ match(Ri) AND
action(Ri) 6= action(Rj) then

10: C.add(Polymorphism)
11: else if match(Ri) ∩ match(Rj) 6= ∅ AND action(Ri) == action(Rj)

then
12: C.add(Aggregation)
13: else if match(Ri) ∩ match(Rj) 6= ∅ AND action(Ri) 6= action(Rj)

then
14: C.add(Composition)
15: end if
16: end for
17: end for
18: end procedure

Algorithm 4 showcases Conflict Detection based on the current policy graph rules.

The policy rules from different security components such as Firewall, IDS, DPI are

extracted using ‘Flow Conflict Analyzer APIs’, described in Figure 7.6. The lines

7-8 in the algorithm checks if one rule is a subset of another, and if actions are the

same. This helps in determining redundant rules in the conflict-resolution phase. The

126

conflict type Inheritance is the conflict category corresponding to such flow rules.

Similarly, lines 9-10 check for polymorphic conflicts, where one rule is a subset

of another, but the actions are different for both rules. Lines 11-14 are used to

check partially overlapping rules with the same or different actions - Aggregation and

Composition, as discussed in the examples - Figure 7.5, above.

7.2.4 OpenFlow Rule Conflict Resolution

The goal of the flow rule conflict resolution is to construct conflict-free rule sets for

the conflict resolver working in a small rule space. Any conflict resolution mechanism

employed in the case of OpenFlow should consider factors like overhead associated

with the resolution, the importance of a particular rule in terms of volume of traffic

processed by rule, the idle time associated with the rule, rule priority, etc. Consider

the flow rule conflict resolution mechanism using inherent features of the flow rules,

(1) pre-defined priorities, (2) encapsulation, and (3) decomposition. This process is

further explained in the algorithm 5.

• Pre-Defined Priority: In top of Figure 7.5, rule i is a subset of rule j, and

the identified conflict type is polymorphism. The OpenFlow rules (i,j), can use

predefined priority to allow traffic corresponding to a given OpenFlow rule and

reject the other rule, with lower priority. This can help in resolving Polymor-

phism rule conflicts, since there is a full overlap between the flow rules header

space (hi, hj), or one rule is a complete subset of another rule, e.g., r1 ⊆ r2

in Figure 7.5. The method utilized for priority assignment is dependent on the

administrator. For instance, assigning a high priority to a rule originating from

a load-balancer is desired from a performance point of view, whereas, if the

security is assigned higher importance, an IDS rule with polymorphism conflict

with other rules will get a higher priority.

127

𝑟𝑗 . 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← [𝑟𝑖 . 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 65535]

Conflict: Polymorphism
ℎ𝑖 ⊆ ℎ𝑗 , 𝑎𝑖 ≠ 𝑎𝑗
Resolution: Pre-defined security priority

ℎ𝑘 ← ℎ𝑖 ∪ ℎ𝑗 , 𝑎𝑘 ← 𝑎𝑗

Conflict: Inheritance or Aggregation
ℎ𝑖 ⊆ ℎ𝑗||ℎ𝑖 ∩ ℎ𝑗 ≠ ∅, 𝑎𝑖 = 𝑎𝑗
Resolution: Encapsulation

ℎ𝑘 ← ℎ𝑖 ∩ ℎ𝑗 , 𝑎𝑘 = ℎ𝑗 , 𝑟𝑘 . 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ← 𝑟𝑗 . 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦, 65535

Conflict: Composition
ℎ𝑖 ∩ ℎ𝑗 ≠ ∅, 𝑎𝑖 ≠ 𝑎𝑗
Resolution: Decomposition

ℎ𝑗 ← ℎ𝑗 ∖ ℎ𝑖 ∩ ℎ𝑗

j

i

j

i

i j

i j

k

i

j

i

j

Figure 7.5: Openflow Rule Conflict Resolution. The Priority Assignment can be
Used for Resolving the Polymorphism (Full Overlap, Different Actions) Conflicts.
The Assignment of Priority Depends on the Network Administrator. The Conflicts
with Same Action, i.e., Inheritance, and Aggregation by Using the Object-oriented
Concept Encapsulation, i.e., Rule k Header rk = ri ∪ rj. The Conflicts, where there
is Partial Overlap in Header Space but the Actions are Different - Composition, the
Concept of De-composition Can Be Used to Resolve These Conflicts (Rule k, Header
hk = hi ∩ hj, and assign Higher Priority to Overlapping Header Space.

• Encapsulation: A flow rule conflicting with a large number of rules, i.e.,

aggregation relation with a large number of conflicting rules, can be eliminated

to reduce the number of flow rule conflicts when the action space is the same

for the conflicting flow rules. The conflicts Inheritance and Aggregation, where

the header space of the rules is overlapping, and the actions are the same, can

be encapsulated into coarser rules. This helps in the elimination of redundant

rules, and reduction in the end-to-end flow processing time, as shown in Figure

7.5.

128

• Decomposition: If two OpenFlow rules’ header space overlap with each other,

but their actions are different, i.e., composition conflict, then such conflicts can

be resolved through the decomposition of two rules into three rules. After

decomposition, the priorities can be assigned separately to both rules. The de-

composition relation needs to recursively check if the decomposed rules conflict

with any other rules.

Algorithm 5 Flow Rule Conflict Resolution Algorithm

1: procedure Rule Conflict Resolution(R)
2: R← current flow rules
3: for i ∈ {1,n} do
4: for j ∈ {1,n} do
5: . Priority based Resolution
6: if {Ri, Rj} ∈ Polymorphism then
7: Ri.setPriority([Rj.priority(), 65535])
8: . Encapsulation
9: else if {Ri, Rj} ∈ (Inheritance||Aggregation) then

10: Rk.match() = Ri.match() ∪Rj.match()
11: Rk.action() = Ri.action()
12: . Decomposition
13: else if {Ri, Rj} ∈ Composition then
14: Rj.match() = {Rj.match()/ (Ri ∩Rj).match()}
15: Rk.match() = (Ri ∩Rj).match()
16: Rk.setPriority([Rj.priority(), 65535])
17: Rk.action() = Rj.action()
18: end if
19: end for
20: end for
21: end procedure

Algorithm 5 shows how OOPC framework utilize the conflict resolution mecha-

nism. The algorithm first obtains all current flow rules and start to identify what

type of OO conflict is there, if any. In lines 5-7, if two rules have polymorphism

relationship, then the conflict resolution can be achieved by assigning a higher pri-

ority to rule i (although this is an administrator choice to set it either to i or j). If

129

the OO relationship is identified as either inheritance or aggregation, and since the

header space hi ⊆ hj || hi ∩ hj 6= φ & ai == aj, then a new rule can be defined as

Rk to encapsulate the two rules in it. The new rule’s header space is assigned the

union of the two rule’s header space, and the action to either rule i or j’s, as shown

in line 8-11. Finally, if the two rules have a composition OO relationship, where

hi ∩ hj 6= φ & ai 6= aj, then the algorithm performs a decomposition of the two rules

into three rules, i,j, and k. Rule j’s header space is equal to the original j rule without

the mutual attributes with rule i, and rule k’s header space is equal to the mutual

attributes between i & j. The actions of rules i & j remain the same, whereas rule

k will have the action of rule j since it has higher priority than rule i (line 12-17).

Note that rule i remains the same.

7.2.5 OOPC Framework Architecture and Data Flow

OOPC Application Layer

Application
Load Balancer

Policy Conflict
Analyzer

Network Admin

VM2VM1

TopoChange
Event Listener

Policy-Graph-Creator

Flow Conflict
Analyzer

Firewall
Policies

Control Plane

GRE/VXLAN

VM4VM3 VM6VM5

POST: /security-policies

Network Information Base (NIB)

Mission
Policies

Figure 7.6: OOPC System Architecture. The Application Plane can be Used for
Accepting Security Policies and Mission Requirements.

130

The OOPC architecture in Figure 7.6 is primarily divided into three planes, i.e.,

application plane, responsible for user-interface, through which the user can enter

higher-level security policies and mission requirements. The control plane consists of

modules responsible for the translation of higher-level security policies into OpenFlow

rules and identifying and conflicts between OpenFlow rules and security policies.

The data plane consists of OpenFlow switches with state-tracking capability. Each

OpenFlow switch acts as a firewall module for inspecting traffic between the hosts

connected to the switch and the traffic between switch and control plane.

Policy Conflict Analyzer: checks the status of security policies across different

segments of the cloud network and identifies possible conflicts between security poli-

cies and mission requirements at the application plane. The policy conflict analyzer

utilizes the object-oriented dependency analysis to check the relationship between

the security policies and mission requirements, e.g., Firewall rules related to Load

Balancer rules using Aggregation relation.

Network Information Base (NIB): acts as a middleware between the applica-

tion plane implementing distributed firewall policy and local event listeners on each

switch. NIB notifies the local-agents on each switch about any new application secu-

rity policies and maintains synchronization between different agents. NIB has been

implemented using Zookeeper Hunt et al. (2017).

Policy-Graph-Creator: checks the dependencies between requirements of different

security policies and creates end-to-end conflict-free Policy-Graph to direct traffic be-

tween different hosts in a data-center. The control plane utilizes this Policy-Graph

to modify OpenFlow tables’ flow rules, using OpenFlow message ofp flow mod()

and creates an end-to-end traffic flow. This module checks the dependencies be-

tween different policies’ requirements, utilizing object-oriented (OO) principles such

as inheritance, composition, etc. The result of this process is Policy-Graph. The

131

control plane utilizes this Policy-Graph to modify OpenFlow tables’ flow rules, using

OpenFlow message ofp flow mod().

Traffic Statistics: The controller consists of topology change event listeners, which

listens on the events such as port status (UP/DOWN), switch status, and port in-

formation of hosts connected to switches. If there is any topology change, the event

listener utilizes a PUSH notification to notify the application plane, which updates

the visualization and traffic statistics.

Flow Conflict Analyzer: The conflict analysis module utilizes REST API to fetch

the Flow rules from OpenFlow switches using REST API. The rules are analyzed

for potential overlap in the header match and action fields, leading to the violation

of end-to-end security policies or service delivery. The conflicting rules are corrected

using the conflict resolution algorithm, which I will discuss in the subsequent sections.

7.2.6 OOPC Data Flow Diagram

The data flow diagram of OOPC - Figure 7.7 depicts how the incoming network

traffic is processed by the OOPC framework. I discuss two main components from

the architecture in this subsection, i.e., Policy-Graph-Composer, and Flow Conflict

Analyzer.

• The SDN uses Packet-In event to detect new flow in the network. If the traffic

has no matching flow rule, i.e., New-Flow=Y, the traffic is forwarded to SFC

Composer.

• The Classifier component matches traffic to check policies to be applied to

the dynamic network traffic. If there is any conflicting security policy at the

application level from other service chains, the resolution mechanism is applied

to prevent policy violations, and Policy-Graph is updated. If there is no conflict

132

New-Flow

OOPC Policy
Composition

Classifier

Apply-Flow
Rule

N
ew

-F
lo

w
=N

New-Flow=Y

Security
Policy

Update Policy
Graph

Ex
is

ts
 =

 Y
?

OOPC Flow Conflict Analyzer

Conflict
Detection

Conflict
Resolution

Add Rule to
Flow Table

Flow Rule
Conflict

C
on

fl
ic

t=
N

Conflict
Classification

Inheritance

Polymorphism

Aggregation

Composition

Conflict=Y

Flow Priority

Encapsulation

Decomposition

Network
Traffic

Packet-In

Conflict
Visualizer

Figure 7.7: OOPC Data-flow Diagram. The New Security Rules or Mission Re-
quirements are First Analyzed for Possible Conflicts by OOPC Policy Composition
Module, before Inserting the Corresponding OpenFlow Rule.

involved at the policy level, new nodes are added to Policy-Graph.

• The OOPC-Event-Listener checks the policy conflict resolution and additionally

listens for any stateful events on the traffic directed from the classifier resolution

component. If there is any Intrusion Event or data-plane security attack, the

OOPC selects the appropriate flow rule and sends it to the Conflict Detection

module.

133

• The Flow Rule Conflict Analyzer module receives a Policy-Graph update event

and converts the newly added or old-updated policy from the graph to the flow

rule as described in previous sections. The new flow rule is checked with existing

flow rules to detect and classify the type of conflict - Inheritance, Polymorphism,

etc. If there is no conflict, the flow rule generated is added to the flow table.

• The flow rule which has conflict is tagged with conflict type and sent to Conflict

Visualizer module for visualization, and Conflict Resolution module to check

the best-fit resolution/mitigation mechanism such as assigning higher-priority,

deleting rule with low traffic burst or object-oriented (OO) conflict resolution.

7.3 OOPC Framework Experimental Analysis

In this section, I provide details of the experimental setup, evaluation metrics to

show the generalizability and scalability of the OOPC framework. The framework

considers security policies from Snort IDS/IPS, stateful Linux firewall, Nginx load

balancer, NAT rules from router-based virtual network function (VNF).

Table 7.2: OOPC Components Used in Implementation

Component LOC/Version Language / Frame-
work

SDN Controller OpenDaylight
Carbon, ONOS

Java, REST APIs

Policy-Graph 500 python with Flask APIs
Flow Conflict
Analyzer

700 python, networkx

Flow-Visualizer 250 python, d3, REST APIs
Data-Plane 200 Linux container LXC-3.0
Frontend/UI 400 php-lavarel

I utilized an OpenStack based cloud network comprising of two Dell R620 servers

and two Dell R710 servers all hosted in the data center to create a system with

134

different VNFs. Each Dell server has about 128 GB of RAM and 16 core CPU.

The SDN controller Opendaylight-Carbon was provided network management and

orchestration in our framework. In addition to these components - Table 7.2, I used

the latest version of Open vSwitch (OVS 2.9.0), with a conntrack module enabled to

support the data plane connection tracking.

7.3.1 Policy Composition Time Comparative Analysis

0.2 0.4 0.6 0.8 1 1.21.3

·104

20
50

100

200

300

400

500

Number of Rules

C
om

p
os

it
io

n
T

im
es

(s
)

OOPC PGA SICS

Figure 7.8: Number of Rules vs Composition Time - OOPC, PGA Prakash et al.
(2015), SICS Wang et al. (2016a)

I performed a comparative analysis of composition time for OOPC against policy

composition time of PGA Prakash et al. (2015) and SICS framework Wang et al.

(2016a). I used rules as a generic term to define PGA nodes, SICS rules, and Open-

Flow rules and to have a standard comparison format. It can be observed that OOPC

achieves faster composition time - 20s for 10k rules and 25s for about 12k rules. SICS’s

composition time was slightly higher than the OOPC framework, i.e., 31.5s for 10k

rules and 37.5s for 12k rules. The overall performance gain for OOPC is 37% com-

pared to SICS. The composition time for PGA scales poorly with the number of rules

135

shown in Figure 7.8. PGA takes about 400s for the composition of 10k rules and

500s for 12k rules. The performance degradation in SICS can be attributed to en-

cryption overhead. In contrast, in PGA, the poor scaling is because of duplication

of service functions (SFs) across the network. The comparison of OOPC with these

frameworks shows that OOPC will scale well with the number of policy rules. The

performance of OOPC can be attributed to the fact that the OOPC framework uses

encapsulation methods over individual security functions, at a class level, based on a

coarse-grained traffic match. Hence the policy composition operation induces limited

overhead. Thus, the policy composition does not need to check each security policy

against the entire set of security policy database - a procedure of order O(N2), where

N is the number of classes. The policy search operation is reduced to depth-first

search (DFS) along with the graph when inserting a new security policy, which is a

linear-time operation.

7.3.2 Flow Rule Conflict Analysis

0.5 1.6 2.5
·104

300

600

900

1,200

1,500

1,800

2,200

2,500

48
4

84
3 1,

04
1

93
6

1,
64

3 1,
98

9

9 25 4924

12
0 33

6

Number of Flows

N
u
m

b
er

of
C

on
fl
ic

ts

IN P A C

Figure 7.9: Number of Conflicts in OpenFlow Rules

136

I performed experiment to analyze the number of conflicts - Inheritance (IN),

Polymorphism (P), Aggregation (A) and Composition (C) in the translated Open-

Flow rules. The x-axis in the Figure 7.9 denotes the number of OpenFlow rules -

5k, 16k, and 25k. As the number of OpenFlow rules increased, it can be observed

that an increase in the number of conflicts. For the dataset with 5k OpenFlow rules,

I identified 484 conflicts because of inheritance dependency, 936 polymorphism re-

lated conflicts, 9 aggregation conflicts, and 24 composition conflicts. OOPC conflict

checking algorithm identified 1041 inheritance conflicts, 1989 polymorphism conflicts,

49 aggregation conflicts, and 336 composition conflicts in 25k OpenFlow rules. The

experiment demonstrates that managing conflicts for even a few thousand rules man-

ually can be quite challenging. Hence, using automated detection and resolution

framework for flow rule conflicts is a better mechanism for resolving conflicts.

I compared the flow rule conflict detection algorithm with OpenFlow conflict

checking research works Brew Pisharody et al. (2016) and Flowguard Hu et al. (2014).

Object-oriented conflict detection can detect transitive conflicts using multi-level in-

heritance, which both works have not considered. Additionally, the OOPC framework

is generalizable to many different VNFs, whereas Brew and Flowguard only analyzed

policy conflict issues in a firewall. The experimental results show that there can be

several conflicts in flow rules that can be identified only by automated composition

and conflict analysis using an object-oriented framework.

7.3.3 Flow Rule Conflict Analysis Scalability

In this experiment, I utilized the Stanford University backbone network topol-

ogy Kazemian et al. (2012) for analyzing the conflict detection algorithm’s scalability.

The network consists of multiple layers of switches and routers, about 13k routes and

757k forwarding rules, 100 VLANs, and 900 ACL rules. The network was simulated

137

using mininet, routers, and switches were replaced with OVS, and the flow rules from

the existing system were inserted using a python script.

2 4 6

·104

10

20

30

40

Number of Rules

R
u
n
n
in

g
T

im
e

(m
s)

OOPC Brew Flowguard

Figure 7.10: Number of Flow Rules vs Policy Conflict Detection Time - OOPC,
Brew Pisharody et al. (2017), Flowguard Hu et al. (2014)

I compared the running time for detecting conflicts of the object-oriented policy

conflict detection method, with existing policy conflict detection works, Brew Pishar-

ody et al. (2017) and Flowguard Hu et al. (2014), which utilize Stanford topology

for experimental analysis. The performance of OOPC is slightly slower than Brew

for 10k rules ∼9ms, but as the size of the flow rules increases, the OOPC performs

better than both Brew and Flowguard. Flowguard only considered conflict detection

for about 40k rules, the performance of OOPC conflict checking procedure (19ms)

is significantly better than Brew (22ms) and Flowguard (39ms) for 40k rules. The

results from the Figure 7.10, shows that the running time for 50k flow rules is 25ms,

and about 28ms for 60k flow rules, which is clearly 20% performance gain over Brew

(35ms). Hence the flow rule conflict detection algorithm based on object-oriented

principles scales well on the large network. The performance gain of OOPC can be

138

Table 7.3: Conflict Resolution Time Experiment based on Stanford dataset Kazemian
et al. (2012); Wuyangjack (2018) for Different Conflict Types.

Conflict Type No. Rules Resolution
Time (sec)

Composition 7846041 290
Encapsulation 85910 3
Polymorphism 57 5

attributed to the fact that once Policy-Graph is constructed, the search for conflicts

in hierarchical structure when a new rule is added, is a trivial operation, compared

to the matching of new rule against every other rule in case of Brew, and Flowguard.

7.3.4 Flow Rule Conflict Resolution Analysis

To evaluate proposed approach in Algorithm 5 of resolving convolutions, I created

an experiment to analyze the effectiveness of the proposed method in terms of how

much time is required to resolve a conflict between a set of flow rules. For this purpose,

I used the Stanford Backbone topology dataset Kazemian et al. (2012); Wuyangjack

(2018) to generate flow rules and examine the conflict between them. I applied pro-

posed Algorithm 5 for conflict resolution and calculated the time required to resolve

a conflict that is identified as either Polymorphism, Encapsulation, or Composition.

The results of this experiment are shown in Table 7.3. OOPC based policy conflict

resolution mechanism identified over 7 million conflicts of type composition, over 85

thousand of type encapsulation, and 57 of type polymorphism conflicts. A large num-

ber of flow rules conflicts identified as Composition or Encapsulation is because in

worst case, the number of conflicts can get is up to O(n2), moreover the actions asso-

ciated with rules from different network segments lead to overlapping header space,

but different actions. OOPC can identify conflicts of polymorphism in about 5 sec-

onds, whereas Brew Pisharody et al. (2017) was able to identify the conflict for the

139

same number of flow rules in over 100 seconds. Moreover, OOPC conflict resolution

mechanism is able to identify conflicts of different types such as composition where

the header space of the flow rules overlap but the actions of the rules are different.

On the contrary Brew Pisharody et al. (2017) only identify conflicts of priority, which

is equivalent to polymorphism conflict type. In effect, OOPC identifies and corrects

broad range of policy conflicts, not present in current research work.

7.4 Summary and Discussion

In this research work I presented the design and implementation of object-oriented

policy checking (OOPC) framework, which addresses the multi-tier security policy

conflict issue, and at the same time scales well on a large cloud network. The secu-

rity policies and the mission requirements, implemented using application plane in

form of network intent or access control, can conflict with each other. The presence

of multiple controller, further complicates the issue, with varied semantics of pol-

icy specification presented by each SDN controller. Moreover, when security policies

are converted into OpenFlow rules at infrastructure level, they can have overlapping

address space and conflicting actions. Using the simplified object-oriented depen-

dencies between different policies it is easier to identify which policies conflict with

each other, and their relative importance in form of dependency weights. Once the

policies are converted into OpenFlow rules, I identified object-oriented relationships

between OpenFlow rules, to classify potential conflicts. Finally, I provided guidelines

for policy conflict resolution. I plan to extend this work to incorporate stateful poli-

cies and implement a fully functional stateful distributed firewall as a future work.

These topics have been described next.

Distributed Stateful-SDN Security is required to deal with attacks originat-

ing in SDN data-pane, as discussed by Bosshart et al. (2013). Openstate Bianchi

140

et al. (2014) extended the OpenFlow switch to define a state-transition variable and

extended finite-state-machine (XFSM) table, which is able to handle scenarios such

as port knocking and TCP SYN-ACK message verification. The design is, however,

based on centralized firewall architecture. I plan to extend the work presented in this

paper based on the recommendations defined in NIST 800-125b Chandramouli and

Chandramouli (2016) for protecting workloads within the data-center and implement

a next-generation distributed firewall (NDFW) model. Onix Koponen et al. (2010)

uses a distributed control plane design for the SDN environment. In this work, I have

used similar design principles for OOPC, like a distributed virtual switch and network

information base (NIB). P4 Bosshart et al. (2014) is a programming language that

allows protocol-independent packet processing and stateful packet inspection. I plan

to extend the current work and develop a programming platform based on distributed

firewall architecture.

Service Function Chaining introduces ordering and placement issues, e.g., het-

erogeneous throughput and resource configurations. Ghaznavi et al. (2016) considers

the optimal deployment of the service chain as a mixed-integer linear programming

problem. Second, the order in which virtual network functions are applied can intro-

duce challenges, e.g., Firewall being deployed before a load-balancer can cause service

outages. Moreover, inefficient decomposition of VNFs can incur communication costs

on the network, as highlighted by Xu et al. (2017). The OOPC framework analyzed

the rules in terms of conflicts introduced by rules from individual VNFs; however,

identifying the correct order of VNFs itself has not been considered in the current

research work. Sahhaf et al. (2015) propose an alternative strategy for minimizing

mapping between service function requirements and infrastructure capabilities using

Optimal decomposition of network service chains. This research has not considered

service function decomposition and correct ordering in the current scope.

141

Chapter 8

CONCLUSION

The management of security in an enterprise cloud network is quite a challenging

task. It is difficult to model the network infrastructure, vulnerabilities, possible at-

tack paths in a scalable fashion. In the first part of this thesis, I investigated scalable

attack representation methods using an attack graph as a tool to model network con-

nectivity and vulnerability information. While traditional attack graph generation

methods suffer from scalability challenges, in Chapter 2, I discussed how the parti-

tioning of large attack graphs, based on distributed hypergraph partitioning scheme,

and using resilient distributed datasets provide a scalable cumulative attack graph.

The attack graphs are a good modeling tool for multi-stage attacks. In particular, Ad-

vanced Persistent Threat (APTs) are an interesting category of multi-stage attacks.

The existing research uses anomaly detection schemes based on semi-supervised ma-

chine learning models to detect APT attacks. In Chapter 3, I proposed metrics to

benchmark existing semi-supervised machine learning models. I highlighted that the

datasets used to benchmark ML models for APT attack detection are themselves

limited. The existing datasets either do not cover all phases of APT attacks or have

easily identifiable attack patterns, which is not a characteristic of the APT attack.

I contributed DAPT 2020, an APT dataset, which can be used for benchmarking

existing ML models. This dataset covers all the phases of an APT attack. Moreover,

DAPT 2020 will help develop better machine learning models for the detection of

APT attacks. The limitation of machine learning models also serves as a motivation

for using proactive defense methods for dealing with cyberattacks such as APT.

142

In the second part of this thesis, I highlighted the importance of moving target

defense (MTD), a proactive mechanism for dealing with cyber-attacks. This section

explains how programmable networks such as Software-defined Networks (SDN) can

be combined with game-theoretic models to understand the attacker-defender inter-

actions and select MTD countermeasures. In Chapter 4, I provided a categorization

of factors associated with different decision models used for MTD deployment, i.e.,

Configuration Set (what), Timing Function (when), and Movement Function (how).

I considered single-stage attacks - Distributed Denial of Service (DDoS) attacks in

this chapter. The attacker defender interactions were modeled as a two-player dy-

namic game, and the optimal countermeasure was selected by calculating a Nash-

Equilibrium over repeated interactions of the two players. The QoS (rate-limit) used

in OpenFlow networks to control the traffic bandwidth was used as a reward met-

ric. The results showcase how to deploy SDN-based rate-limiting countermeasures

to deter a malicious attacker from mounting DDoS attacks against the critical net-

work applications. In Chapter 5 I expanded the model from a single-stage attack

to a multi-stage attack setting. The key motivation behind this was to use attack

graphs from Chapter 2 as a basis for formulating a two-player Markov Game. An

SDN-framework where the network controller has a complete view of the underlying

infrastructure can generate an attack graph, identify an MTD strategy, and deploy

MTD countermeasure against multi-stage attacks. This chapter also argues that a

domain-specific reward modeling that we use for modeling attacker and defender re-

wards and transition probabilities (based on CVSS metrics) provides a real-world

model for multi-stage attacks. I considered the problem of APT attacks as a special

case of multi-stage attacks, which we can model using a Markov Game framework.

The optimal mixed strategy that I calculated outperformed min-max pure and uni-

form random strategies.

143

The proactive and reactive defense mechanisms help either completely stop the at-

tack progression (best case scenario) or slow down the attacks (average-case scenario).

However, we need to ensure the deployed countermeasures are not introducing any

network performance and security issues. SDN-based security countermeasures are

implemented in the form of security policies. The third part of this thesis is dedicated

to multi-stage security policy analysis in a software-defined system such as SDN. I pro-

posed INTPOL, an intent-driven security policy enforcement framework in Chapter 6.

INTPOL provides a policy management grammar and abstracts the network admin

from different SDN controllers’ implementation details. I used a bounded formal

model based on Linear Temporal Logic (LTL) to identify issues associated with net-

work policy verification, policy conflict detection, and validation in a scalable fashion.

The empirical evaluation in this section establishes the generalizability of INTPOL

to both OpenFlow (SDN-based) and hybrid networks (a mixture of traditional and

OpenFlow network). The simulation results on a scalable network show the perfor-

mance improvement obtained by using the INTPOL framework for detecting policy

conflict issues at the application plane level. In Chapter 7, I introduced an Open-

Flow rule conflict detection and resolution framework based on an Object-oriented

paradigm (OOP). I discuss a novel concept of Virtual Network Function (VNF) graph,

which helps identify dependencies between different virtual network functions such

as Firewall, IDS, and IPS. The properties of an object-oriented framework can be

used to classify different kinds of flow-rule conflicts. I also proposed a policy conflict

resolution mechanism for each type of flow-rule conflict. The framework’s scalabil-

ity compared to the state of the art policy composition and rule conflict detection

frameworks are established using both formal proofs discussed in Appendix B, and

the simulation network of Stanford Topology a common benchmarking standard for

flow-rule conflict detection and resolution.

144

While I covered a wide array of security research topics in this thesis, some inter-

esting research questions remain unexplored. I plan to investigate cyber-deception Ja-

jodia et al. (2016), a proactive defense mechanism that combines information disclo-

sure, human elements, and social influence to project fake information as real to an

attacker to mislead the attacker Wang and Lu (2018). The current research work in

cyber deception has utilized controlled network settings to evaluate the effectiveness

of cyber deception. I plan to evaluate existing game-theoretic models - Signalling

games, Stackelberg game, Markov game, Min-max strategy games in scalable real-

world network settings, with humans in the loop. I also plan to explore the topic of

micro-segmentation, discussed by Huang et al. (2018), which can help segment large

scale network into more manageable regions and perform a fine-grained implementa-

tion of security policies. Details of some of my research works have been provided in

Appendix C. I plan to expand my research work on some of these topics soon.

8.1 Significant Accomplishments

• Presented “Autonomous Security Analysis and Penetration Testing” at DEF-

CON Red Team Village, 2020.

• Invited by popular information security podcast “Paul’s Security Weekly” to

talk about use of AI and Machine Learning in Cybersecurity, 2020

• Invited to present research talk “Deception-NET: Build Your Own Deception”

at CactusCon 2019.

• Co-founder and Vice President of hacking club DevilSec aimed at teaching of-

fensive and defensive security, 2019. The club has 250+ active members.

145

• Member of Western Region Cybersecurity Defense Competition (WRCCDC)

Black team, responsible for competition design and infrastructure setup, 2019-

2020.

• Captained ASU WRCCDC team 2015-2018. Team stood 1st in business injects

in 2017, and 3rd in incidence response in 2018.

• ASU New Venture Challenge Award for startup CyNET LLC - ASU 2017.

Awarded to startup I co-founded (CyNET LLC) with Dr. Dijiang Huang and

James Chung from among 100+ participating ventures.

• Tech Connect Defense Innovation Summit Award for CyNET LLC, Tech Con-

nect, Tampa, FL 2017.

• Computer Science Outstanding Teaching Assistant, Fulton School of Engineer-

ing, ASU 2016.

• Co-author, Textbook, Software-Defined Networking and Security: From Theory

to Practice. CRC Press, 2018

• ASU Research Computing Governance Board, Student Member, 2018-2019.

• Reviewer, IEEE ComSoC, IEEE TNSM, IEEE TDSC, ACM MTD.

8.2 Research Work Since Proposal Defense

• Ankur Chowdhary, Sabur, Abdulhakim, Dijiang Huang, Neha Vadnere, James

Kirby, Myong Kang , “INTPOL: Intent-Driven Security Policy Management for

Software Defined Systems”, 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2020 [under-review]

• Ankur Chowdhary, Sabur, Abdulhakim, Dijiang Huang, James Kirby, My-

ong Kang , “Object-Oriented Policy Conflict checking in Cloud Environment

146

(OOPC)”, IEEE Transactions on Dependable and Secure Computing (TDSC),

[under-review, 2nd round to be submitted]

• Ankur Chowdhary, Dijiang Huang, Jayasurya Sevalur Mahendran, Daniel Romo,

Yuli Deng, Abdulhakim Sabur “Autonomous Security Analysis and Penetration

Testing”, The 16th International Conference on Mobility, Sensing and Network-

ing (IEEE MSN 2020), 2020.

• Ankur Chowdhary*, Sowmya Myneni*, Abdulhakim Sabur, Sailik Sengupta,

Garima Agrawal, Dijiang Huang, Myong Kang, “DAPT 2020 - Constructing a

Benchmark Dataset for Advanced Persistent Threats”, ACM MLHat 2020.

• Sengupta, Sailik*, Ankur Chowdhary*, Abdulhakim Sabur, Dijiang Huang,

Adel Alshamrani, and Subbarao Kambhampati. “A Survey of Moving Target

Defenses for Network Security, IEEE Communications Surveys & Tutorials”,

2020.

• Sabur, Abdulhakim, Ankur Chowdhary, Dijiang Huang, Myong Kang, Anya

Kim, and Alexander Velazquez. “S3: A DFW-based Scalable Security State

Analysis Framework for Large-Scale Data Center Networks. In 22nd Interna-

tional Symposium on Research in Attacks, Intrusions and Defenses” (RAID

2019). 2019.

• Sengupta, Sailik, Ankur Chowdhary, Dijiang Huang, and Subbarao Kambham-

pati. “General Sum Markov Games for Strategic Detection of Advanced Persis-

tent Threats using Moving Target Defense in Cloud Network.” In International

Conference on Decision and Game Theory for Security, Springer, Cham, 2019.

147

BIBLIOGRAPHY

“PySpark, https://spark.apache.org/docs/0.9.0/python-programming-guide.
html”, URL https://spark.apache.org/docs/0.9.0/
python-programming-guide.html (2016).

Abhashkumar, A., J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang and W. Wu, “Sup-
porting diverse dynamic intent-based policies using janus”, in “Proceedings of the
13th International Conference on emerging Networking EXperiments and Technolo-
gies”, pp. 296–309 (2017).

Al-Shaer, E., Q. Duan and J. H. Jafarian, “Random host mutation for moving target
defense”, in “International Conference on Security and Privacy in Communication
Systems”, pp. 310–327 (Springer, 2012).

Albanese, M., A. De Benedictis, S. Jajodia and K. Sun, “A moving target defense
mechanism for manets based on identity virtualization”, in “2013 IEEE Conference
on Communications and Network Security (CNS)”, pp. 278–286 (IEEE, 2013).

Algin, R., H. O. Tan and K. Akkaya, “Mitigating selective jamming attacks in smart
meter data collection using moving target defense”, in “Proceedings of the 13th
ACM Symposium on QoS and Security for Wireless and Mobile Networks”, pp.
1–8 (ACM, 2017).

Alshamrani, A., S. Guha, S. Pisharody, A. Chowdhary and D. Huang, “Fault tolerant
controller placement in distributed sdn environments”, in “2018 IEEE International
Conference on Communications (ICC)”, pp. 1–7 (IEEE, 2018).

Alshamrani, A., S. Myneni, A. Chowdhary and D. Huang, “A survey on advanced
persistent threats: Techniques, solutions, challenges, and research opportunities”,
IEEE Communications Surveys & Tutorials 21, 2, 1851–1877 (2019).

Alto, P., “Palo alto next generation firewall”, (2018).

Ammann, P., J. Pamula, R. Ritchey and J. Street, “A host-based approach to network
attack chaining analysis”, in “Computer Security Applications Conference, 21st
Annual”, pp. 10–pp (IEEE, 2005).

Ammann, P., D. Wijesekera and S. Kaushik, “Scalable, graph-based network vulner-
ability analysis”, in “Proceedings of the 9th ACM Conference on Computer and
Communications Security”, pp. 217–224 (ACM, 2002).

Antoniou, A., A. Storkey and H. Edwards, “Data augmentation generative adversarial
networks”, arXiv preprint arXiv:1711.04340 (2017).

Arashloo, M. T., Y. Koral, M. Greenberg, J. Rexford and D. Walker, “Snap: Stateful
network-wide abstractions for packet processing”, in “Proceedings of the 2016 ACM
SIGCOMM Conference”, pp. 29–43 (2016).

Baier, C. and J.-P. Katoen, Principles of model checking (MIT press, 2008).

148

Basu, K., “Stackelberg equilibrium in oligopoly: an explanation based on managerial
incentives”, Economics Letters 49, 4, 459–464 (1995).

Beckett, R., A. Gupta, R. Mahajan and D. Walker, “A general approach to network
configuration verification”, in “Proceedings of the Conference of the ACM Special
Interest Group on Data Communication”, pp. 155–168 (2017).

Berardi, D., D. Calvanese and G. De Giacomo, “Reasoning on uml class diagrams”,
Artificial intelligence 168, 1-2, 70–118 (2005).

Berde, P., M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards an open, distributed
sdn os”, in “Proceedings of the third workshop on Hot topics in software defined
networking”, pp. 1–6 (2014).

Bianchi, G., M. Bonola, A. Capone and C. Cascone, “Openstate: programming
platform-independent stateful openflow applications inside the switch”, ACM SIG-
COMM Computer Communication Review 44, 2, 44–51 (2014).

Biere, A., A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu, “Bounded model
checking”, (2003).

Borghesi, A., A. Bartolini, M. Lombardi, M. Milano and L. Benini, “A semisupervised
autoencoder-based approach for anomaly detection in high performance computing
systems”, Engineering Applications of Artificial Intelligence 85, 634–644 (2019).

Bosshart, P., D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-
independent packet processors”, ACM SIGCOMM Computer Communication Re-
view 44, 3, 87–95 (2014).

Bosshart, P., G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica
and M. Horowitz, “Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn”, in “ACM SIGCOMM Computer Communication
Review”, vol. 43, pp. 99–110 (ACM, 2013).

Brewer, R., “Advanced persistent threats: minimising the damage”, Network security
2014, 4, 5–9 (2014).

Cappers, B. C. and J. J. van Wijk, “Understanding the context of network traffic
alerts”, in “2016 IEEE Symposium on Visualization for Cyber Security (VizSec)”,
pp. 1–8 (IEEE, 2016).

Carasso, D., Exploring splunk (CITO Research New York, USA, 2012).

Carter, K. M., J. F. Riordan and H. Okhravi, “A game theoretic approach to strategy
determination for dynamic platform defenses”, in “Proceedings of the First ACM
Workshop on Moving Target Defense”, pp. 21–30 (ACM, 2014).

149

Casado, M., M. J. Freedman, J. Pettit, J. Luo, N. McKeown and S. Shenker, “Ethane:
Taking control of the enterprise”, in “ACM SIGCOMM Computer Communication
Review”, vol. 37, pp. 1–12 (ACM, 2007).

Chandola, V., A. Banerjee and V. Kumar, “Anomaly detection: A survey”, ACM
computing surveys (CSUR) 41, 3, 1–58 (2009).

Chandramouli, R. and R. Chandramouli, “Secure virtual network configuration for
virtual machine (vm) protection”, NIST Special Publication 800, 125B (2016).

Chowdary, A., D. Huang, J. S. Mahendran, D. Romo, Y. Deng and A. Sabur, “Au-
tonomous security analysis and penetration testing”, (2020).

Chowdhary, A., Secure Mobile SDN (Arizona State University, 2015).

Chowdhary, A., A. Alshamrani and D. Huang, “Supc: Sdn enabled universal pol-
icy checking in cloud network”, in “2019 International Conference on Computing,
Networking and Communications (ICNC)”, pp. 572–576 (IEEE, 2019a).

Chowdhary, A., A. Alshamrani, D. Huang and H. Liang, “Mtd analysis and evalua-
tion framework in software defined network (mason)”, in “Proceedings of the 2018
ACM International Workshop on Security in Software Defined Networks & Network
Function Virtualization”, pp. 43–48 (ACM, 2018a).

Chowdhary, A., V. H. Dixit, N. Tiwari, S. Kyung, D. Huang and G.-J. Ahn, “Science
dmz: Sdn based secured cloud testbed”, in “IEEE Conference onNetwork Function
Virtualization and Software Defined Networks”, (2017a).

Chowdhary, A. and D. Huang, “Sdn based network function parallelism in cloud”, in
“2019 International Conference on Computing, Networking and Communications
(ICNC)”, pp. 486–490 (IEEE, 2019).

Chowdhary, A., D. Huang, G.-J. Ahn, M. Kang, A. Kim and A. Velazquez, “Sdnsoc:
Object oriented sdn framework”, in “Proceedings of the ACM International Work-
shop on Security in Software Defined Networks & Network Function Virtualiza-
tion”, pp. 7–12 (2019b).

Chowdhary, A., D. Huang, A. Alshamrani, M. Kang, A. Kim and A. Velazquez,
“Trufl: Distributed trust management framework in sdn”, in “ICC 2019-2019 IEEE
International Conference on Communications (ICC)”, pp. 1–6 (IEEE, 2019c).

Chowdhary, A., D. Huang, A. Alshamrani, A. Sabur, M. Kang, A. Kim and
A. Velazquez, “Sdfw: sdn-based stateful distributed firewall”, arXiv preprint
arXiv:1811.00634 (2018b).

Chowdhary, A., S. Pisharody, A. Alshamrani and D. Huang, “Dynamic game based
security framework in sdn-enabled cloud networking environments”, in “Proceed-
ings of the ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization”, pp. 53–58 (ACM, 2017b).

150

Chowdhary, A., S. Pisharody and D. Huang, “Sdn based scalable mtd solution in
cloud network”, in “Proceedings of the 2016 ACM Workshop on Moving Target
Defense”, pp. 27–36 (ACM, 2016).

Chowdhary, A., S. Sengupta, A. Alshamrani, D. Huang and A. Sabur, “Adaptive mtd
security using markov game modeling”, arXiv preprint arXiv:1811.00651 (2018c).

Chowdhary, A., S. Sengupta, D. Huang and S. Kambhampati, “Markov game model-
ing of moving target defense for strategic detection of threats in cloud networks”,
arXiv preprint arXiv:1812.09660 (2018d).

Chung, C.-J., T. Xing, D. Huang, D. Medhi and K. Trivedi, “SeReNe: On establishing
secure and resilient networking services for an sdn-based multi-tenant datacenter
environment”, in “Dependable Systems and Networks Workshops (DSN-W), 2015
IEEE International Conference on”, pp. 4–11 (IEEE, 2015).

Cimatti, A., E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model check-
ing”, in “International Conference on Computer Aided Verification”, pp. 359–364
(Springer, 2002).

Cimatti, A., E. Clarke, F. Giunchiglia and M. Roveri, “Nusmv: A new symbolic
model verifier”, in “International conference on computer aided verification”, pp.
495–499 (Springer, 1999).

Clarke, E., A. Biere, R. Raimi and Y. Zhu, “Bounded model checking using satisfia-
bility solving”, Formal methods in system design 19, 1, 7–34 (2001).

Colbaugh, R. and K. Glass, “Predictability-oriented defense against adaptive adver-
saries”, in “2012 IEEE International Conference on Systems, Man, and Cybernetics
(SMC)”, pp. 2721–2727 (IEEE, 2012).

Competition, W. R. C. D., “WRCCDC”, https://archive.wrccdc.org/images/
2018/ (2018).

CSE-CIC-IDS2018, “A collaborative project between the communications security
establishment (cse) and the canadian institute for cybersecurity (cic)”, URL https:
//www.unb.ca/cic/datasets/ids-2018.html (2018).

Cunningham, R. K., R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf, K. R.
Kendall, S. E. Webster, D. Wyschogrod and M. A. Zissman, “Evaluating intrusion
detection systems without attacking your friends: The 1998 darpa intrusion detec-
tion evaluation”, Tech. rep., MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB (1999).

Davis, J. and M. Goadrich, “The relationship between precision-recall and roc
curves”, in “Proceedings of the 23rd international conference on Machine learn-
ing”, pp. 233–240 (2006).

151

Debroy, S., P. Calyam, M. Nguyen, A. Stage and V. Georgiev, “Frequency-minimal
moving target defense using software-defined networking”, in “Computing, Net-
working and Communications (ICNC), 2016 International Conference on”, pp. 1–6
(IEEE, 2016).

Devine, K. D., E. G. Boman, R. T. Heaphy, R. H. Bisseling and U. V. Catalyurek,
“Parallel hypergraph partitioning for scientific computing”, in “Proceedings 20th
IEEE International Parallel & Distributed Processing Symposium”, pp. 10–pp
(IEEE, 2006).

Dhanabal, L. and S. Shantharajah, “A study on nsl-kdd dataset for intrusion detec-
tion system based on classification algorithms”, International Journal of Advanced
Research in Computer and Communication Engineering 4, 6, 446–452 (2015).

Ding, C. and X. He, “K-means clustering via principal component analysis”, in “Pro-
ceedings of the twenty-first international conference on Machine learning”, p. 29
(2004).

Dragon, D., “Double dragon: Apt41, a dual espionage and cyber crime operation”,
https://content.fireeye.com/apt-41/rpt-apt41, (Accessed on 07/29/2020)
(2020).

Du, M., F. Li, G. Zheng and V. Srikumar, “Deeplog: Anomaly detection and diagnosis
from system logs through deep learning”, in “Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security”, pp. 1285–1298 (2017).

DVWA, U., “Damn vulnerable web application”, URL http://www.dvwa.co.uk/
(2020).

El Mir, I., A. Chowdhary, D. Huang, S. Pisharody, D. S. Kim and A. Haqiq, “Soft-
ware defined stochastic model for moving target defense”, in “International Afro-
European Conference for Industrial Advancement”, pp. 188–197 (Springer, 2016).

Emmott, A. F., S. Das, T. Dietterich, A. Fern and W.-K. Wong, “Systematic con-
struction of anomaly detection benchmarks from real data”, in “Proceedings of the
ACM SIGKDD workshop on outlier detection and description”, pp. 16–21 (2013).

Eppstein, D. and S. Muthukrishnan, “Internet packet filter management and rectan-
gle geometry”, in “Proceedings of the twelfth annual ACM-SIAM symposium on
Discrete algorithms”, pp. 827–835 (Society for Industrial and Applied Mathematics,
2001).

Evans, A., R. France, K. Lano and B. Rumpe, “The uml as a formal modeling nota-
tion”, in “International Conference on the Unified Modeling Language”, pp. 336–
348 (Springer, 1998).

Feamster, N., J. Rexford and E. Zegura, “The road to sdn: an intellectual history
of programmable networks”, ACM SIGCOMM Computer Communication Review
44, 2, 87–98 (2014).

152

Fontugne, R., P. Borgnat, P. Abry and K. Fukuda, “Mawilab: combining diverse
anomaly detectors for automated anomaly labeling and performance benchmark-
ing”, in “Proceedings of the 6th International COnference”, p. 8 (ACM, 2010).

Frahim, J., O. Santos and A. Ossipov, Cisco ASA: All-in-one Next-Generation Fire-
wall, IPS, and VPN Services (Cisco Press, 2014).

Friedberg, I., F. Skopik, G. Settanni and R. Fiedler, “Combating advanced persis-
tent threats: From network event correlation to incident detection”, Computers &
Security 48, 35–57 (2015).

Ghaznavi, M., N. Shahriar, R. Ahmed and R. Boutaba, “Service function chaining
simplified”, arXiv preprint arXiv:1601.00751 (2016).

Goodfellow, I., “Nips 2016 tutorial: Generative adversarial networks”, arXiv preprint
arXiv:1701.00160 (2016).

Guerrero, D., A. A. Carsteanu, R. Huerta and J. B. Clempner, “An iterative method
for solving stackelberg security games: A markov games approach”, in “Electrical
Engineering, Computing Science and Automatic Control (CCE), 2017 14th Inter-
national Conference on”, pp. 1–6 (IEEE, 2017).

Han, B., V. Gopalakrishnan, L. Ji and S. Lee, “Network function virtualization:
Challenges and opportunities for innovations”, IEEE Communications Magazine
53, 2, 90–97 (2015).

Han, Y., J. Li, D. Hoang, J.-H. Yoo and J. W.-K. Hong, “An intent-based network
virtualization platform for sdn”, in “2016 12th International Conference on Network
and Service Management (CNSM)”, pp. 353–358 (IEEE, 2016).

Hayes, M. A. and M. A. Capretz, “Contextual anomaly detection framework for big
sensor data”, Journal of Big Data 2, 1, 2 (2015).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation
9, 8, 1735–1780 (1997).

Hodge, V. and J. Austin, “A survey of outlier detection methodologies”, Artificial
intelligence review 22, 2, 85–126 (2004).

Hong, J. B. and D. S. Kim, “Performance analysis of scalable attack representation
models”, in “IFIP International Information Security Conference”, pp. 330–343
(Springer, 2013).

Houmb, S. H., V. N. Franqueira and E. A. Engum, “Quantifying security risk level
from cvss estimates of frequency and impact”, JSS 83, 9, 1622–1634 (2010).

House, W., “Trustworthy cyberspace: Strategic plan for the federal cyber security re-
search and development program”, Report of the National Science and Technology
Council, Executive Office of the President (2011).

153

Hu, H., W. Han, G.-J. Ahn and Z. Zhao, “Flowguard: building robust firewalls for
software-defined networks”, in “Proceedings of the third workshop on Hot topics
in software defined networking”, pp. 97–102 (ACM, 2014).

Huang, D., A. Chowdhary and S. Pisharody, Software-Defined networking and secu-
rity: from theory to practice (CRC Press, 2018).

Huang, H., S. Zhang, X. Ou, A. Prakash and K. Sakallah, “Distilling critical attack
graph surface iteratively through minimum-cost sat solving”, in “Proceedings of
the 27th Annual Computer Security Applications Conference”, pp. 31–40 (ACM,
2011).

Hunt, P., M. Konar, F. P. Junqueira and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems.”, (2017).

Ingols, K., R. Lippmann and K. Piwowarski, “Practical Attack Graph Generation for
Network Defense”, in “null”, pp. 121–130 (IEEE, 2006).

Jacobs, A. S., R. J. Pfitscher, R. A. Ferreira and L. Z. Granville, “Refining network
intents for self-driving networks”, in “Proceedings of the Afternoon Workshop on
Self-Driving Networks”, pp. 15–21 (2018).

Jafarian, J. H., E. Al-Shaer and Q. Duan, “Openflow random host mutation: Trans-
parent moving target defense using software defined networking”, in “Proceedings
of the first workshop on Hot topics in software defined networks”, pp. 127–132
(ACM, 2012).

Jain, S., A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed software
defined wan”, in “ACM SIGCOMM Computer Communication Review”, vol. 43,
pp. 3–14 (ACM, 2013).

Jajodia, S., N. Park, E. Serra and V. Subrahmanian, “Share: A stackelberg honey-
based adversarial reasoning engine”, ACM Transactions on Internet Technology
(TOIT) 18, 3, 30 (2018).

Jajodia, S., V. Subrahmanian, V. Swarup and C. Wang, Cyber deception, vol. 6
(Springer, 2016).

Jang, Y., S. P. Chung, B. D. Payne and W. Lee, “Gyrus: A framework for user-intent
monitoring of text-based networked applications.”, in “NDSS”, (2014).

Jha, S., O. Sheyner and J. Wing, “Two formal analyses of attack graphs”, in “Pro-
ceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15”, pp.
49–63 (IEEE, 2002).

Jiang, Y., C. Zeng, J. Xu and T. Li, “Real time contextual collective anomaly detec-
tion over multiple data streams”, Proceedings of the ODD pp. 23–30 (2014).

Jonathan Hart, “Basic ONOS Tutorial”, https://wiki.onosproject.org/
display/ONOS/SDN-IP (Accessed: June, 5,2020).

154

Kampanakis, P., H. Perros and T. Beyene, “Sdn-based solutions for moving tar-
get defense network protection”, in “World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th International Symposium on a”, pp. 1–6
(IEEE, 2014).

Karypis, G. and K. Schloegel, “Parallel graph partitioning and sparse matrix order-
ing”, University of Minnesota, Department of Computer Science and Engineering
(2013).

Kaynar, K. and F. Sivrikaya, “Distributed attack graph generation”, IEEE Transac-
tions on Dependable and Secure Computing 13, 5, 519–532 (2015).

Kazemian, P., M. Chang, H. Zeng, G. Varghese, N. McKeown and S. Whyte, “Real
time network policy checking using header space analysis”, in “Presented as part
of the 10th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 13)”, pp. 99–111 (2013).

Kazemian, P., G. Varghese and N. McKeown, “Header space analysis: Static checking
for networks.”, in “NSDI”, vol. 12, pp. 113–126 (2012).

Khurshid, A., X. Zou, W. Zhou, M. Caesar and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time”, in “Presented as part of the 10th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 13)”, pp.
15–27 (2013).

Klir, G. and B. Yuan, Fuzzy sets and fuzzy logic, vol. 4 (Prentice hall New Jersey,
1995).

Koponen, T., M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed control
platform for large-scale production networks.”, (2010).

Kreutz, D., F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky and
S. Uhlig, “Software-defined networking: A comprehensive survey”, Proceedings of
the IEEE 103, 1, 14–76 (2015).

Kreutz, D., F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky and
S. Uhlig, “Software-defined networking: A comprehensive survey”, Proceedings of
the IEEE 103, 1, 14–76 (2014).

Langner, R., “Stuxnet: Dissecting a cyberwarfare weapon”, IEEE Security & Privacy
9, 3, 49–51 (2011).

Lei, C., D.-H. Ma and H.-Q. Zhang, “Optimal strategy selection for moving target
defense based on markov game”, IEEE Access 5, 156–169 (2017).

Lin, P., J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi, K.-
C. Wang and J. Bi, “Seamless interworking of sdn and ip”, in “Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM”, pp. 475–476 (2013).

155

Littman, M. L., “Markov games as a framework for multi-agent reinforcement learn-
ing”, in “Eleventh International Conference on Machine Learning”, (1994).

Machiraju, R. and R. Yagel, “Reconstruction error characterization and control: A
sampling theory approach”, IEEE Transactions on Visualization and Computer
Graphics 2, 4, 364–378 (1996).

Maleki, H., S. Valizadeh, W. Koch, A. Bestavros and M. van Dijk, “Markov modeling
of moving target defense games”, in “Proceedings of the 2016 ACM Workshop on
Moving Target Defense”, pp. 81–92 (ACM, 2016).

Mämmelä, O., J. Hiltunen, J. Suomalainen, K. Ahola, P. Mannersalo and
J. Vehkaperä, “Towards micro-segmentation in 5g network security”, in “Euro-
pean Conference on Networks and Communications (EuCNC 2016) Workshop on
Network Management, Quality of Service and Security for 5G Networks”, (2016).

Manadhata, P. K., “Game theoretic approaches to attack surface shifting”, in “Mov-
ing Target Defense II”, pp. 1–13 (Springer, 2013).

McCumber, J., “Information systems security: A comprehensive model”, in “Pro-
ceedings of the 14th National Computer Security Conference”, (1991).

McWhorter, D., “Apt1: exposing one of china’s cyber espionage units”, Mandiant.
com 18 (2013).

Medved, J., R. Varga, A. Tkacik and K. Gray, “Opendaylight: Towards a model-
driven sdn controller architecture”, in “2014 IEEE 15th International Symposium
on”, pp. 1–6 (IEEE, 2014).

Mehmood, Y., M. A. Shibli, U. Habiba and R. Masood, “Intrusion detection system in
cloud computing: Challenges and opportunities”, in “2013 2nd National Conference
on Information Assurance (NCIA)”, pp. 59–66 (IEEE, 2013).

Merkel, D., “Docker: lightweight linux containers for consistent development and
deployment”, Linux journal 2014, 239, 2 (2014).

Microsoft, “One-class support vector machine”, URL https://docs.
microsoft.com/en-us/azure/machine-learning/studio-module-reference/
one-class-support-vector-machine (2019).

Mininet, “Mininet virtual network”, URL http://mininet.org/ (2015).

Mjihil, O., D. Huang and A. Haqiq, “Improving attack graph scalability for the
cloud through sdn-based decomposition and parallel processing”, in “International
Symposium on Ubiquitous Networking”, pp. 193–205 (Springer, 2017).

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level con-
trol through deep reinforcement learning”, nature 518, 7540, 529–533 (2015).

156

Moustafa, N. and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set)”, in “2015 military communica-
tions and information systems conference (MilCIS)”, pp. 1–6 (IEEE, 2015).

Myneni, S., A. Chowdhary, A. Sabur, S. Sengupta, G. Agrawal, D. Huang and
M. Kang, “Dapt 2020-constructing a benchmark dataset for advanced persistent
threats”, (2020).

Noble, W. S., “What is a support vector machine?”, Nature biotechnology 24, 12,
1565–1567 (2006).

Ou, X., S. Govindavajhala and A. W. Appel, “Mulval: A logic-based network security
analyzer.”, in “USENIX security symposium”, vol. 8, pp. 113–128 (Baltimore, MD,
2005).

OWASP, “Owasp mutillidae 2 project”, URL https://wiki.owasp.org/index.php/
(2020).

Padmanabhan, V. N. and D. R. Simon, “Secure traceroute to detect faulty or mali-
cious routing”, ACM SIGCOMM Computer Communication Review 33, 1, 77–82
(2003).

Pedrosa, L., R. Iyer, A. Zaostrovnykh, J. Fietz and K. Argyraki, “Automated syn-
thesis of adversarial workloads for network functions”, in “Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication”, pp. 372–
385 (2018).

Pena, J. G. V. and W. E. Yu, “Development of a distributed firewall using software
defined networking technology”, in “2014 4th IEEE International Conference on
Information Science and Technology”, pp. 449–452 (IEEE, 2014).

Pham, M. and D. B. Hoang, “Sdn applications-the intent-based northbound inter-
face realisation for extended applications”, in “2016 IEEE NetSoft Conference and
Workshops (NetSoft)”, pp. 372–377 (IEEE, 2016).

Pisharody, S., A. Chowdhary and D. Huang, “Security policy checking in distributed
sdn based clouds”, in “2016 IEEE Conference on Communications and Network
Security (CNS)”, pp. 19–27 (IEEE, 2016).

Pisharody, S., J. Natarajan, A. Chowdhary, A. Alshalan and D. Huang, “Brew: A
security policy analysis framework for distributed sdn-based cloud environments”,
IEEE Transactions on Dependable and Secure Computing (2017).

Prakash, C., J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark, Y. Ma,
P. Sharma and Y. Zhang, “Pga: Using graphs to express and automatically recon-
cile network policies”, in “ACM SIGCOMM Computer Communication Review”,
vol. 45, pp. 29–42 (ACM, 2015).

Qu, Z., L. Su, X. Wang, S. Zheng, X. Song and X. Song, “A unsupervised learning
method of anomaly detection using gru”, in “2018 IEEE International Conference
on Big Data and Smart Computing (BigComp)”, pp. 685–688 (IEEE, 2018).

157

Roesch, M. et al., “Snort: Lightweight intrusion detection for networks.”, in “Lisa”,
vol. 99, pp. 229–238 (1999).

Ross, R. S., “Managing information security risk: Organization, mission, and infor-
mation system view”, Special Publication (NIST SP)-800-39 (2011).

Russell, R. and H. Welte, “Linux netfilter hacking howto”, Disponıvel em
http://www. netfilter. org/documentation/HOWTO//netfilter-hacking-HOWTO.
letter. ps (Junho de 2005) (2002).

Sabur, A., A. Chowdhary, D. Huang, M. Kang, A. Kim and A. Velazquez, “S3: A
dfw-based scalable security state analysis framework for large-scale data center
networks”, in “22nd International Symposium on Research in Attacks, Intrusions
and Defenses ({RAID} 2019)”, pp. 473–485 (2019).

Saha, R. and A. Agarwal, “SDN approach to large scale global data centers”, Pro-
ceedings of Open Networking Summit, Santa Clara, California, USA (2012).

Sahhaf, S., W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet and P. Demeester,
“Network service chaining with optimized network function embedding supporting
service decompositions”, Computer Networks 93, 492–505 (2015).

Sawilla, R. E. and X. Ou, “Identifying critical attack assets in dependency attack
graphs”, in “European Symposium on Research in Computer Security”, pp. 18–34
(Springer, 2008).

Schlenker, A., O. Thakoor, H. Xu, F. Fang, M. Tambe, L. Tran-Thanh, P. Vayanos
and Y. Vorobeychik, “Deceiving cyber adversaries: A game theoretic approach”, in
“Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems”, pp. 892–900 (International Foundation for Autonomous Agents
and Multiagent Systems, 2018).

Schmerl, B., J. Cámara, G. A. Moreno, D. Garlan and A. Mellinger, “Architecture-
based self-adaptation for moving target defense”, Tech. rep., Technical Report
CMU-ISR-14-109. Carnegie Mellon University (2014).

Security, O., “Metasploitable unleashed”, URL https://www.offensive-security.
com/metasploit-unleashed/requirements/ (2020).

Sefraoui, O., M. Aissaoui and M. Eleuldj, “Openstack: toward an open-source solution
for cloud computing”, International Journal of Computer Applications 55, 3, 38–42
(2012).

Sengupta, S., A. Chowdhary, D. Huang and S. Kambhampati, “Moving target defense
for the placement of intrusion detection systems in the cloud”, in “International
Conference on Decision and Game Theory for Security”, pp. 326–345 (Springer,
2018).

158

Sengupta, S., A. Chowdhary, D. Huang and S. Kambhampati, “General sum markov
games for strategic detection of advanced persistent threats using moving target
defense in cloud networks”, in “International Conference on Decision and Game
Theory for Security”, pp. 492–512 (Springer, 2019).

Sengupta, S., S. G. Vadlamudi, S. Kambhampati, A. Doupé, Z. Zhao, M. Taguinod
and G.-J. Ahn, “A game theoretic approach to strategy generation for moving
target defense in web applications”, (International Foundation for Autonomous
Agents and Multiagent Systems, 2017).

Shapley, L. S., “Stochastic games”, Proceedings of the national academy of sciences
39, 10, 1095–1100 (1953).

Sharafaldin, I., A. H. Lashkari and A. A. Ghorbani, “A detailed analysis of the
cicids2017 data set”, in “International Conference on Information Systems Security
and Privacy”, pp. 172–188 (Springer, 2018).

Sherry, J., S. Ratnasamy and J. S. At, “A survey of enterprise middlebox deploy-
ments”, (2012).

Sheyner, O. and J. Wing, “Tools for generating and analyzing attack graphs”, in
“Proceedings of Vol. 3188 Lecture Notes in Computer Science pp 344-371”, pp.
344–371 (Springer, 2003).

Sheyner, O. M., “Scenario graphs and attack graphs”, PhD Thesis, CMU (2004).

Shi, Y., H. Zhang, J. Wang, F. Xiao, J. Huang, D. Zha, H. Hu, F. Yan and B. Zhao,
“Chaos: An sdn-based moving target defense system”, Security and Communica-
tion Networks 2017 (2017).

Shiravi, A., H. Shiravi, M. Tavallaee and A. A. Ghorbani, “Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection”, com-
puters & security 31, 3, 357–374 (2012).

Shu, Z. and G. Yan, “Ensuring deception consistency for ftp services hardened against
advanced persistent threats”, in “Proceedings of the 5th ACM Workshop on Moving
Target Defense”, pp. 69–79 (ACM, 2018).

Singh, M., S. Kumar, T. Garg and N. Pandey, “Penetration testing on metasploitable
2”, International Journal of Engineering and Computer Science 9, 05, 25014–25022
(2020).

Taylor, J., K. Zaffarano, B. Koller, C. Bancroft and J. Syversen, “Automated effec-
tiveness evaluation of moving target defenses: metrics for missions and attacks”, in
“Proceedings of the 2016 ACM Workshop on Moving Target Defense”, pp. 129–134
(ACM, 2016).

TheRegister, “Rsa explains how attackers breached its systems • the regis-
ter”, https://www.theregister.com/2011/04/04/rsa_hack_howdunnit/, (Ac-
cessed on 07/29/2020) (2020).

159

Tian, B., X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu, Z. Ji, Y. Sang,
M. Zhang et al., “Safely and automatically updating in-network acl configurations
with intent language”, in “Proceedings of the ACM Special Interest Group on Data
Communication”, pp. 214–226 (2019).

Trifunovic, A., Parallel algorithms for hypergraph partitioning (University of London,
2006).

Ussath, M., D. Jaeger, F. Cheng and C. Meinel, “Advanced persistent threats: Behind
the scenes”, in “Information Science and Systems (CISS), 2016 Annual Conference
on”, pp. 181–186 (IEEE, 2016).

Vadlamudi, S. G., S. Sengupta, M. Taguinod, Z. Zhao, A. Doupé, G.-J. Ahn and
S. Kambhampati, “Moving target defense for web applications using bayesian
stackelberg games”, in “Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems”, pp. 1377–1378 (International Foundation
for Autonomous Agents and Multiagent Systems, 2016).

Van Dijk, M., A. Juels, A. Oprea and R. L. Rivest, “Flipit: The game of “stealthy
takeover””, Journal of Cryptology 26, 4, 655–713 (2013).

Varadharajan, V., K. Karmakar, U. Tupakula and M. Hitchens, “A policy-based secu-
rity architecture for software-defined networks”, IEEE Transactions on Information
Forensics and Security 14, 4, 897–912 (2018).

Venkatesan, S., M. Albanese, G. Cybenko and S. Jajodia, “A moving target defense
approach to disrupting stealthy botnets”, in “Proceedings of the 2016 ACM Work-
shop on Moving Target Defense”, pp. 37–46 (ACM, 2016).

Vizel, Y., G. Weissenbacher and S. Malik, “Boolean satisfiability solvers and their ap-
plications in model checking”, Proceedings of the IEEE 103, 11, 2021–2035 (2015).

Vorobeychik, Y. and S. Singh, “Computing stackelberg equilibria in discounted
stochastic games (corrected version)”, (2012).

Vulnhub, “Vulnhub badstore”, URL https://www.vulnhub.com/entry/
badstore-123,41/ (2020).

Wagner, R., M. Fredrikson and D. Garlan, “An advanced persistent threat exemplar”,
MONTH (2017).

Wang, C. and Z. Lu, “Cyber deception: Overview and the road ahead”, IEEE Security
& Privacy 16, 2, 80–85 (2018).

Wang, H., X. Li, Y. Zhao, Y. Yu, H. Yang and C. Qian, “Sics: Secure in-cloud service
function chaining”, arXiv preprint arXiv:1606.07079 (2016a).

Wang, Y., W.-d. Cai and P.-c. Wei, “A deep learning approach for detecting malicious
javascript code”, security and communication networks 9, 11, 1520–1534 (2016b).

160

APPENDIX

Wuyangjack, “wuyangjack/standford-backbone”, URL https://github.com/
wuyangjack/standford-backbone (2018).

Xu, Z., W. Liang, M. Huang, M. Jia, S. Guo and A. Galis, “Approximation and online
algorithms for nfv-enabled multicasting in sdns”, in “2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS)”, pp. 625–634 (IEEE,
2017).

Yegnanarayana, B., Artificial neural networks (PHI Learning Pvt. Ltd., 2009).

Yuan, Y., S.-J. Moon, S. Uppal, L. Jia and V. Sekar, “Netsmc: A custom symbolic
model checker for stateful network verification”, in “17th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 20)”, pp. 181–200
(2020).

Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing”, in “Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation”, pp. 2–2 (USENIX
Association, 2012).

Zhao, Z., F. Liu and D. Gong, “An sdn-based fingerprint hopping method to prevent
fingerprinting attacks”, Security and Communication Networks 2017 (2017).

Zheng, Y., H. Zhang and Y. Yu, “Detecting collective anomalies from multiple spatio-
temporal datasets across different domains”, in “Proceedings of the 23rd SIGSPA-
TIAL international conference on advances in geographic information systems”, pp.
1–10 (2015).

Zhu, Q. and T. Başar, “Game-theoretic approach to feedback-driven multi-stage mov-
ing target defense”, in “International Conference on Decision and Game Theory for
Security”, pp. 246–263 (Springer, 2013).

Zhuang, R., S. A. DeLoach and X. Ou, “Towards a theory of moving target defense”,
in “Proceedings of the First ACM Workshop on Moving Target Defense”, pp. 31–40
(ACM, 2014).

161

APPENDIX

APPENDIX A

DETAILS ON APT DATASET CONSTRUCTION

162

APPENDIX

A.1 Environment Setup Description

The environment consists of a public network with services comprising known vul-

nerabilities, scanned and exploited by a remote attacker. The Public VM is connected

to external network via Gateway Router (another VM). The storage and memory con-

figurations of all VMs has been specified below.

A.1.1 Public Services

The VM (Public VM, Private VM, and Log Server) was connected over the in-

ternal network (192.168.3.0/24). Each VM has multiple docker services exposed to

the physical ports of the host VM. For instance DVWA is a docker instance of Damn

Vulnerable Web Application. The application is running as a container on Public

VM. The application has a web server, database server, etc. If the IP of the docker

instance is 172.16.0.2 and service runs on port 80, i.e., 172.16.0.2:80, I mapped it to

an open port of Public VM, 172.16.0.2:80 → 192.168.3.29:9000.

The docker images were created using publicly available vulnerable services used

in academia and industry for penetration testing. I utilized the Damn Vulnerable

Web App (DVWA), Bad Store, Meta exploitable, and OWASP Mutillidae containers.

Additionally, I used TCP Dump utility and Snort IDS to capture the live traffic and

attack signatures of known attacks, e.g., SYN Flood, Illegal Access Attempt, etc.

I use filebeat agent to capture the host logs - Audit Logs, IDS Logs, Access Logs,

etc. and send them to Log Server VM over internal IP address of the Elastic Search

(192.168.3.31:9200). The details of services hosts on the public network has been

provided below:

163

APPENDIX

1. Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application

that is damn vulnerable. Its main goals are to help security professionals test

their skills and tools in a legal environment, help web developers better under-

stand the processes of securing web applications, and aid teachers/students to

teach/learn web application security in a classroom environment.

2. BadStore.net presents a typical three-tier web storefront application. This self-

contained application was built from the ground up with typical security mis-

takes to serve as a platform for demonstration, security training, evaluation,

and testing purposes.

3. OWASP Mutillidae II is a free, open-source, deliberately vulnerable web-application

providing a target for web-security enthusiasts. Mutillidae can be installed on

Linux and Windows using LAMP, WAMP, and XAMMP. It is pre-installed on

SamuraiWTF and OWASP BWA. The existing version can be updated on these

platforms.

4. Metasploitable is a VM built from the ground up with a large number of security

vulnerabilities. It is intended to be used as a target for testing exploits with

Metasploit.

5. CICFlowMeter CSE-CIC-IDS2018 (2018) is a network traffic flow generator

written in Java and offers more flexibility in choosing the features you want to

calculate, adding new ones, and having better control of the duration of the

flow timeout. It generates Bidirectional Flows (Biflow), where the first packet

determines the forward (source to destination) and backward (destination to

source) directions. Hence the 83 statistical features such as Duration, Number of

packets, Number of bytes, Length of packets, etc. are also calculated separately.

164

APPENDIX

6. Snort Roesch et al. (1999) is an open-source network intrusion prevention sys-

tem capable of performing real-time traffic analysis and packet logging on IP

networks. It can perform protocol analysis and content searching/matching

and can be used to detect various attacks and probes, such as buffer overflows,

stealth port scans, CGI attacks, SMB probes, and OS fingerprinting attempts,

and much more.

A.1.2 Private Services

Private VM has a list of services with known vulnerabilities; however, the VM

(192.168.3.30) is connected to only an internal network. This VM has a list of services

relatively harder to exploit and require more in-depth application security and ser-

vice protocol understanding by the penetration tester/ attacker. I utilized VulnHub,

a collection of Open Source vulnerable docker environments for composing docker

containers on this VM. Current set up hosts vulnerable services: WordPress website,

FTP 2.3.4, DNS. MySQL, vulnerable Web application, Nessus, and SAMBA service,

exposed to the ports of VM. A prerequisite on this machine is “Docker Compose”

apart from the docker application. I used filebeat agent to capture the host logs -

Audit Logs, Access Logs, etc. and send them to Log Server VM similar to Public VM.

The details of services hosts on the private network has been provided below:

1. Nexus Repository Manager 3 - missing access controls and Remote Code Exe-

cution vulnerabilities.

2. Mysql consists of CVE-2012-2122. Details on how to exploit the vulnerability

are present in the README file inside the vulnhub source directory.

3. WordPress 4.6 - Remote code execution vulnerability CVE-2016-10033.

4. Samba: Consists of CVE-2017-7494, can be exploited using metasploitable.

165

APPENDIX

5. FTP 2.3.4 consists of Backdoor Command Execution Vulnerabilities.

6. DNS service consists of BIND zone-transfer vulnerability. Details on how to

exploit the vulnerability are present in the README file inside the vulnhub

source directory.

7. Web-app Django < 2.0.8 consists of Open Redirect Vulnerability, CVE-2018-

14574.

A.1.3 APT Attack Phases

1. Reconnaissance

• Scan Applications - Nessus, Web Scarab, Burp Suite. Find vulnerabilities

such as XSS, XSRF, SQL Injection, etc.

• Scan Network - NMap, Portsweep, Mscan, Satan, Ipsweep, Saint. Find

systems’ fingerprints, network architecture information, etc. The firewall

should log deny the event. If multiple denies are seen against unique

destination ports from the same origin host within a small window of time,

it is safe to assume that some sort of port scanning activity is taking place.

2. Establish Foothold

• Download or Install Malware - Scanbox, Backdoor Sogu, PoisonIvy, Key-

Loggers.

• R2L - Guess Password, Ftp Write, Imap, Phf, Multihop, Warezmaster,

Warezclient, SpyXlock, Xsnoop, Snmpguess, Snmpgetattack, Httptunnel,

Sendmail, Named.

166

APPENDIX

• C&C Communication - Send the communication to an external server that

the malware has been installed. Monitor network traffic originating from

a system to an external server after a download of a file or similar network

activity.

3. Lateral Movement

• Credential Compromise - Key Loggers, Hash retrieval, LDAP, Metasploit.

• Privilege Escalation (U2R) - Buffer Overflow, Loadmodule, Rootkit, Perl,

Sqlattack, Xterm, PS.

4. Internal Reconnaissance

Same as Reconnaissance above, just from a different source in search of data.

IP range might be probed for port 1433 in the case of enumerating SQL servers.

Ports 135-139 are usually probed by attackers when in search of network shares.

5. Data Exfiltration

This phase’s data was uploaded to Google Drive, Dropbox, AWS, or any such

cloud. Need to baseline against the normal activity of a system.

6. Cover Up

Deletion of log files, modification of log files etc. Needs host based intrusion

detection agent. OUT OF SCOPE for current research.

A.1.4 APT Feature Description

As a part of APT dataset construction, I collected the following features from

the network and host logs. The details of features extracted extracted from the data

collected are present in the Table A.1.

167

APPENDIX

Table A.1: APT20 Feature Description

fl dur Flow duration

tot fw pk Total packets in the forward direction

tot bw pk Total packets in the backward direction

tot l fw pkt Total size of packet in forward direction

fw pkt l max Maximum size of packet in forward direction

fw pkt l min Minimum size of packet in forward direction

fw pkt l avg Average size of packet in forward direction

fw pkt l std Standard deviation size of packet in forward direction

Bw pkt l max Maximum size of packet in backward direction

Bw pkt l min Minimum size of packet in backward direction

Bw pkt l avg Mean size of packet in backward direction

Bw pkt l std Standard deviation size of packet in backward direction

fl byt s Flow byte rate that is number of packets transferred per second

fl pkt s Flow packets rate that is number of packets transferred per

second

fl iat avg Average time between two flows

fl iat std Standard deviation time two flows

fl iat max Maximum time between two flows

fl iat min Minimum time between two flows

fw iat tot Total time between two packets sent in the forward direction

fw iat avg Mean time between two packets sent in the forward direction

fw iat std Standard deviation time between two packets sent in the for-

ward direction

168

APPENDIX

fw iat max Maximum time between two packets sent in the forward direc-

tion

fw iat min Minimum time between two packets sent in the forward direc-

tion

bw iat tot Total time between two packets sent in the backward direction

bw iat avg Mean time between two packets sent in the backward direction

bw iat std Standard deviation time between two packets sent in the back-

ward direction

bw iat max Maximum time between two packets sent in the backward di-

rection

bw iat min Minimum time between two packets sent in the backward di-

rection

fw psh flag Number of times the PSH flag was set in packets travelling in

the forward direction (0 for UDP)

bw psh flag Number of times the PSH flag was set in packets travelling in

the backward direction (0 for UDP)

fw urg flag Number of times the URG flag was set in packets travelling in

the forward direction (0 for UDP)

bw urg flag Number of times the URG flag was set in packets travelling in

the backward direction (0 for UDP)

fw hdr len Total bytes used for headers in the forward direction

bw hdr len Total bytes used for headers in the forward direction

fw pkt s Number of forward packets per second

bw pkt s Number of backward packets per second

pkt len min Minimum length of a flow

169

APPENDIX

pkt len max Maximum length of a flow

pkt len avg Mean length of a flow

pkt len std Standard deviation length of a flow

pkt len va Minimum inter-arrival time of packet

fin cnt Number of packets with FIN

syn cnt Number of packets with SYN

rst cnt Number of packets with RST

pst cnt Number of packets with PUSH

ack cnt Number of packets with ACK

urg cnt Number of packets with URG

cwe cnt Number of packets with CWE

ece cnt Number of packets with ECE

down up ratio Download and upload ratio

pkt size avg Average size of packet

fw seg avg Average size observed in the forward direction

bw seg avg Average size observed in the backward direction

fw byt blk avg Average number of bytes bulk rate in the forward direction

fw pkt blk avg Average number of packets bulk rate in the forward direction

fw blk rate avg Average number of bulk rate in the forward direction

bw byt blk avg Average number of bytes bulk rate in the backward direction

bw pkt blk avg Average number of packets bulk rate in the backward direction

bw blk rate avg Average number of bulk rate in the backward direction

subfl fw pk The average number of packets in a sub flow in the forward

direction

170

APPENDIX

subfl fw byt The average number of bytes in a sub flow in the forward

direction

subfl bw pkt The average number of packets in a sub flow in the backward

direction

subfl bw byt The average number of bytes in a sub flow in the backward

direction

fw win byt Number of bytes sent in initial window in the forward direction

bw win byt Number of bytes sent in initial window in the backward direc-

tion

fw act pk Number of packets with at least 1 byte of TCP data payload

in the forward direction

fw seg min Minimum segment size observed in the forward direction

atv avg Mean time a flow was active before becoming idle

atv std Standard deviation time a flow was active before becoming idle

atv max Maximum time a flow was active before becoming idle

atv min Minimum time a flow was active before becoming idle

idl avg Mean time a flow was idle before becoming active

idl std Standard deviation time a flow was idle before becoming active

idl max Maximum time a flow was idle before becoming active

idl min Minimum time a flow was idle before becoming active

171

APPENDIX

APPENDIX B

FORMAL ANALYSIS OF OBJECT-ORIENTED POLICY CHECKING (OOPC)

FRAMEWORK

172

APPENDIX

In this appendix, I describe the formal relations between virtual network functions

(VNFs) and the Universal Modeling Language (UML) based design principles that I

considered for analyzing the dependencies between VNFs and their rules.

B.1 Inheritance

Theorem B.1.1 - The classes C1, C2, are related via inheritance relation. The

values in the range of objects of the classes can also be related using inheritance

relation.

Proof: The proof builds upon the formal proofs of UML Berardi et al. (2005); Evans

et al. (1998) to create a mapping between the VNF class described for network func-

tions and identify rule dependencies in a fast and efficient manner. Consider two

VNF classes C1, C2, where C1 is subset of C2. Consider the objects ’o’ and values of

the objects.

C1 ⊆ C2 − 1

dom objects ⊆ o.V alues

∀o : V alue× o ∈ dom

objects → (objects(o)).self = o − 2

I can use the relations 1 , 2 to define the semantic mapping between class inheri-

tance and object range as a proof for the theorem,

∀ C1, C2, iff C1 ⊆ C2

{C1{o : V alue | (objects(o))}} ⊆

{C2{o : V alue | (objects(o))}} − 3

Moreover, the knowledge base K of security rules, if we have pair of classes (C1, C2),

173

APPENDIX

∃D ∈ K, s.t.

Is(C1, D) ∩ Is(C2, D)

∀x¬Is(x,C1) ∪ ¬Is(x,C2) − 4

The relation 4 holds, i.e., subclasses of the same class, are mutually exclusive.

Using relations 3 and 4 if the parent classes inherit from each other, the domain

of object values (rules of VNF in case of described examples) also hold the inheritance

relationship.

Corollary B.1.1 - I can use the inheritance relation to associate the rules of virtual

network functions if the classes of VNF are associated with inheritance relation.

(hi ⊆ hj, ai = aj) ∃ Inheritance(ri, rj)

Consider headers (hi, hj) and actions (ai, aj) of the rule i and rule j respectively.

Clearly, rule i ⊆ rule j, thus I can associate both rules via inheritance relation,

as shown in the illustrative example in Figure 7.2. Rules with conflicts of this nature

can be resolve by merging both rules into one single rule, i.e., Encapsulation

B.2 Polymorphism

Theorem B.2.1 - If there are two classes such that, attributes of class C1 and C2,

such that C1 ⊆ C2, and the classes differ by at least one attribute then polymor-

phism relation exists between classes. The rules of the classes C1 and C2 can also be

associated with polymorphism relationship.

Proof: Consider that there is one attribute of class C2 different from C1.

C2.attrib \ C1.attrib ≥ 1 − 5

Consider the range of attribute values of class C1, and C2, for class, based on equation

1 ,

174

APPENDIX

C1, range(C1.attrib) ∈ range(C2.attrib)

C1{o : V alues} ∩ C2{o.V alues} 6= 0 − 6

Using equation 5 , and 6 , it can be established that domain of object values

(VNF rules), of the classes with non-equal attributes, can be related with polymor-

phism relation, provided the property holds for the classes in consideration.

Corollary B.2.1 - Rules ri is instantiated using object of class C1, and rj using

object of class C2, C1 ⊆ C2,

(hi ⊆ hj, ai 6= aj) ∃ Polymorphism(ri, rj)

Consider rules (i,j), rule i from stateless firewall, and rule j from an IPS can have

conflicting actions,

rule i: {table=0, in port=2, dl dst=00:00:00:00:00:01,actions=output:1}

rule j: {table=0, in port=2, dl dst=00:00:00:00:00:01,actions=DROP}.

Clearly, header hi, of rule i is subset of header hj of rule j, but actions {ai =

output : 1} 6={aj = DROP}. I cateogorized these conflicts using Polymorphism

relation, and utilize Pre-defined Security Priority, a policy conflict resolution mecha-

nism to assign higher priority to a rule, which is broader in scope, i.e., rule j in this

particular example.

B.3 Aggregation

Theorem B.3.1 - If the classes C1, C2 are associated using aggregation relation, the

rules of the classes can also be associated using aggregation relation.

Proof: Consider classes C1, and C2, such that C1 ∩ C2 6= 0. Formally, in this model

I can define objects of a class C1 have n subparts P of class C2, for n=1 by default.

Considering x as an attribute of class C1, and P(x) as subpart of x.

175

APPENDIX

has (C1, C2, P, n)

∀x∀i Is(x,C1)→ Is(Pi(x), C2)

1 ≤ i ≤ n;P, n optional − 7

I can define rules in the form of parameterized classes, like C(C’,n,p), as shortened

version of class C with n-subparts, Ci, where Ci is C with i parts of C’, and P (Ci|C)

is binomial probability value of i success cases in n trials. For simplicity I kept number

of class constructs to minimum. Consider the range of objects that have attribute x,

and part-of x, i.e., y = Pi(x), it can be noted that,

∀C1, C2 iff C1 ∩ C2 6= 0

∃x, y = Pi(x), s.t. {C1(x){o : V alue|(x.object(o)}}

∩ C2(y){o : V alue|(y.object(o)}} 6= 0 − 8

In this case, the attribute under consideration is action, hence using 7 , and 8 ,

if classes are associated with an aggregation relation, I can relate the rules created

using an object from those classes using aggregation relation.

Corollary B.3.1 - Rules ri is instantiated using object of class C1, and rj using

object of class C2, C1 ∩ C2 6= 0,

(hi ∩ hj 6= 0, ai = aj) ∃ Aggregation(ri, rj)

An example of aggregation in the context of the OOPC model is values of classes

C1, C2, i.e., if the header space of the rules of two classes is non-overlapping, but ac-

tions are similar. Consider rule i, and rule j from two VNFs that have similar actions,

rule i: {table=0, in port=2, ip src=192.168.1.0/24, ip dst=192.168.2.12,

actions=output:1}

rule j: {table=0, in port=2, ip src=192.168.1.10, ip dst=192.168.2.0/28,

176

APPENDIX

actions=output:1}.

Here the header hi, of rule i intersects with hj of rule j, and the actions {ai =

output : 1} = {aj = output : 1}. I can identify these rules under the conflict class

Aggregation. A policy conflict resolution mechanism that combines both rules into

one class using Encapsulation, can be used for conflict resolution in this case, i.e., rule

k = rule i ∪ rule j.

B.4 Composition

Theorem B.4.1 - If the classes C1, C2 are associated using composition relation, the

rules of the classes can also be associated using composition relation.

Proof: I can represent the relation between subparts P1, P2 of the objects of classes

C1, C2. If no relationship exists between the parts, but there is a partial overlap in

the attributes of the class, such that C1(P1)∩C2(P2) 6= 0. The rule R (C) which does

not have any part assignment can be represented using Is(x,C)→ R(x).

It follows from the relation 8 , that the domain of object values of the parts

P1, and P2 have non-empty intersection. The only difference is that range of values

associated with the action is different for these objects. Hence, it can be established

that the rules created using the object instance of these classes using composition

relation as well.

Corollary B.4.1 - Rules ri is instantiated using object of class C1, and rj using

object of class C2, C1 ∩ C2 6= 0,

(hi ∩ hj 6= 0, ai 6= aj) ∃ Composition(ri, rj)

Consider rule i, and rule j from two VNFs that have non-overlapping header

177

APPENDIX

space, hi ∩ hj 6= ∅, and ai 6= aj, as can be seen in the example below,

rule i: {table=0, in port=2, ip src=192.168.1.0/24, ip dst=192.168.2.0/28,

actions=DROP}

rule j: {table=0, in port=2, ip src=192.168.1.10, ip dst=192.168.2.0/24,

actions=output:ALL}.

I categorized these conflicts as Composition since the conflicting rules are com-

posed of overlapping rule sets. Thus, the framework needs a conflict resolution mech-

anism that decomposes these rules into non-overlapping rules. I call the conflict

resolution Decomposition.

178

APPENDIX

APPENDIX C

RESEARCH WORKS

179

APPENDIX

C.1 Research Publications

Book

• Huang, Dijiang, Ankur Chowdhary, and Sandeep Pisharody. Software-Defined

Networking and Security: From Theory to Practice. CRC Press, 2018.

Conference and Workshop Papers

• Ankur Chowdhary, Dijiang Huang, Jayasurya Sevalur Mahendran, Daniel Romo,

Yuli Deng, Abdulhakim Sabur “Autonomous Security Analysis and Penetration

Testing”, The 16th International Conference on Mobility, Sensing and Network-

ing (IEEE MSN 2020), 2020.

• Ankur Chowdhary*, Sowmya Myneni*, Abdulhakim Sabur, Sailik Sengupta,

Garima Agrawal, Dijiang Huang, Myong Kang, “Generating Benchmark Dataset

for Advanced Persistent Threat”, ACM MLHat 2020.

• Sabur, Abdulhakim, Ankur Chowdhary, Dijiang Huang, Myong Kang, Anya

Kim, and Alexander Velazquez. “S3: A DFW-based Scalable Security State

Analysis Framework for Large-Scale Data Center Networks. In 22nd Interna-

tional Symposium on Research in Attacks, Intrusions and Defenses” (RAID

2019). 2019.

• Sengupta, Sailik, Ankur Chowdhary, Dijiang Huang, and Subbarao Kambham-

pati. “General Sum Markov Games for Strategic Detection of Advanced Persis-

tent Threats using Moving Target Defense in Cloud Network.” In International

Conference on Decision and Game Theory for Security, Springer, Cham, 2019.

• Chowdhary, Ankur, Adel Alshamrani, Dijiang Huang, Myong Kang, Anya Kim,

and Alexander Velazquez. “TRUFL: Distributed Trust Management Frame-

work in SDN.” IEEE International Conference on Communications (ICC) (2019).

180

APPENDIX

• Chowdhary, Ankur, and Dijiang Huang. “SDN based Network Function Paral-

lelism in Cloud.” In 2019 International Conference on Computing, Networking

and Communications (ICNC), pp. 486-490. IEEE, 2019.

• Chowdhary, Ankur, Sailik Sengupta, Adel Alshamrani, Dijiang Huang, and Ab-

dulhakim Sabur. “Adaptive MTD Security using Markov Game Modeling.” In

2019 International Conference on Computing, Networking and Communications

(ICNC), pp. 577-581. IEEE, 2019.

• Chowdhary, Ankur, Adel Alshamrani, and Dijiang Huang. “SUPC: SDN en-

abled Universal Policy Checking in Cloud Network.” In 2019 International Con-

ference on Computing, Networking and Communications (ICNC), pp. 572-576.

IEEE, 2019.

• Alshamrani, Adel, Ankur Chowdhary, Oussama Mjihil, Sowmya Myneni, and

Dijiang Huang. “Combining Dynamic and Static Attack Information for At-

tack Tracing and Event Correlation.” In 2018 IEEE Global Communications

Conference (GLOBECOM), pp. 1-7. IEEE, 2018.

• Sengupta, Sailik, Ankur Chowdhary, Dijiang Huang, and Subbarao Kambham-

pati. “Moving Target Defense for the Placement of Intrusion Detection Systems

in the Cloud.” In International Conference on Decision and Game Theory for

Security, pp. 326-345. Springer, Cham, 2018.

• Alshamrani, Adel, Sayantan Guha, Sandeep Pisharody, Ankur Chowdhary, and

Dijiang Huang. “Fault Tolerant Controller Placement in Distributed SDN Envi-

ronments.” In 2018 IEEE International Conference on Communications (ICC),

pp. 1-7. IEEE, 2018.

• Chowdhary, Ankur, Vaibhav Hemant Dixit, Naveen Tiwari, Sukhwa Kyung,

Dijiang Huang, and Gail-Joon Ahn. “Science DMZ: SDN based Secured Cloud

181

APPENDIX

Testbed.” In 2017 IEEE Conference on Network Function Virtualization and

Software Defined Networks (NFV-SDN), pp. 1-2. IEEE, 2017.

• Alshamrani, Adel, Ankur Chowdhary, Sandeep Pisharody, Duo Lu, and Di-

jiang Huang. “A Defense System for Defeating DDoS Attacks in SDN based

Networks.” In Proceedings of the 15th ACM International Symposium on Mo-

bility Management and Wireless Access, pp. 83-92. ACM, 2017.

• Pisharody, Sandeep, Ankur Chowdhary, and Dijiang Huang. “Security Pol-

icy Checking in Distributed SDN based Clouds.” In 2016 IEEE Conference on

Communications and Network Security (CNS), pp. 19-27. IEEE, 2016.

• El Mir, Iman, Ankur Chowdhary, Dijiang Huang, Sandeep Pisharody, Dong

Seong Kim, and Abdelkrim Haqiq. “Software defined Stochastic Model for

Moving Target Defense.” In International Afro-European Conference for Indus-

trial Advancement, pp. 188-197. Springer, Cham, 2016.

• Myneni Sowmya*, Chowdhary Ankur*, Sabur Abdulhakim, Sengupta Sailik,

Agrawal Garima, Dijiang Huang, Kang Myong. “DAPT 2020-Constructing a

Benchmark Dataset for Advanced Persistent Threats.” In MLHat: The First

International Workshop on Deployable Machine Learning for Security Defense.

2020.

• Chowdhary, Ankur, Dijiang Huang, Gail-Joon Ahn, Myong Kang, Anya Kim,

and Alexander Velazquez. “SDNSOC: Object Oriented SDN Framework.” In

Proceedings of the ACM International Workshop on Security in Software De-

fined Networks & Network Function Virtualization, pp. 7-12. ACM, 2019.

• Chowdhary, Ankur, Sailik Sengupta, Dijiang Huang, and Subbarao Kambham-

pati. “Markov Game Modeling of Moving Target Defense for Strategic Detec-

tion of Threats in Cloud Networks.” In Proceedings of Workshop on Artificial

182

APPENDIX

Intelligence for Cybersecurity (AICS), AAAI (2018).

• Chowdhary, Ankur, Dijiang Huang, Adel Alshamrani, and Hongbin Liang. “MTD

Analysis and Evaluation Framework in Software Defined Network (MASON).”

In 2018 ACM International Workshop on Security in Software Defined Net-

works and Network Function Virtualization, SDN-NFVSec 2018, pp. 43-48.

Association for Computing Machinery, Inc, 2018.

• Chowdhary, Ankur, Sandeep Pisharody, Adel Alshamrani, and Dijiang Huang.

“Dynamic Game based Security Framework in SDN-enabled Cloud Networking

Environments.” In Proceedings of the ACM International Workshop on Security

in Software Defined Networks & Network Function Virtualization, pp. 53-58.

ACM, 2017.

• Chowdhary, Ankur, Sandeep Pisharody, and Dijiang Huang. “SDN based Scal-

able MTD Solution in Cloud Network.” In Proceedings of the 2016 ACM Work-

shop on Moving Target Defense, pp. 27-36. ACM, 2016.

• Lu, Duo, Zhichao Li, Dijiang Huang, Xianglong Lu, Yuli Deng, Ankur Chowdhary,

and Bing Li. “VC-Bots: A Vehicular Cloud Computing Testbed with Mobile

Robots.” In proceedings of the first international workshop on internet of vehi-

cles and vehicles of internet, pp. 31-36. ACM, 2016.

Journals and Survey Papers

• Sengupta, Sailik*, Ankur Chowdhary*, Abdulhakim Sabur, Dijiang Huang,

Adel Alshamrani, and Subbarao Kambhampati. “A Survey of Moving Target

Defenses for Network Security, IEEE Communications Surveys & Tutorials”,

2020.

• Ankur Chowdhary, Sabur, Abdulhakim, Dijiang Huang, James Kirby, My-

ong Kang , “Object-Oriented Policy Conflict checking in Cloud Environment

183

APPENDIX

(OOPC)”, IEEE Transactions on Dependable and Secure Computing (TDSC),

[under-review]

• Alshamrani, Adel, Sowmya Myneni, Ankur Chowdhary, and Dijiang Huang.

“A Survey on Advanced Persistent Threats: Techniques, Solutions, Challenges,

and Research Opportunities.” IEEE Communications Surveys & Tutorials 21,

no. 2 (2019): 1851-1877.

• Pisharody, Sandeep, Janakarajan Natarajan, Ankur Chowdhary, Abdullah Al-

shalan, and Dijiang Huang. “Brew: A Security Policy Analysis Framework for

Distributed SDN-based Cloud Environments.” IEEE Transactions on Depend-

able and Secure Computing (2017).

Pending Patents and Preprints

• Pisharody, Sandeep, Ankur Chowdhary, and Dijiang Huang, “US Patent 15795036:

Security Policy Analysis Framework for Distributed Software Defined Network-

ing (SDN) based Cloud Environments”

• Ankur Chowdhary, Dijiang Huang, Adel Alshamrani, Abdulhakim Sabur, My-

ong Kang, Anya Kim, and Alexander Velazquez. ”SDFW: sdn-based stateful

distributed firewall.” arXiv preprint arXiv:1811.00634 (2018).

184

APPENDIX

C.2 Research Works Not Included in Thesis

The topics covered in this thesis include efficient attack modeling techniques -

Scalable Attack Graph and Programmable Network-based countermeasure selection.

I have been able to work on many other topics involving artificial intelligence and

programmable network based security.

Distributed Trust Management in SDN - SDN supports different protocols, third-

party applications, and controllers. SDN can help an admin centralize command and

control of the cloud environment. A big concern is the trust between various compo-

nents in SDN itself. There can be several ways in which an attacker can violate trust.

A rogue insider can add a fake switch, additional host nodes that are not part of the

SDN environment to achieve desired communication. It can be quite hard to detect

trust violations in the SDN framework. It is important to ensure that flow rules across

the infrastructure are compliant with high Service-Level Agreements (SLAs). If the

existing public key-based trust management systems are used in SDN, scalability will

be a major concern for large multi-tenant cloud networks. TRUFL Chowdhary et al.

(2019c) provides a scalable distributed trust management framework to shield SDN-

infrastructure against rogue-insiders and loss of availability attacks.

Policy and Network Function Management in SDN - A preliminary investigation

into issues associated with network policies and unified framework to manage poli-

cies from different network functions such as Firewall, IDS, IPS has been discussed

in Chowdhary et al. (2019a) and Chowdhary et al. (2019b). Network Function

Parallelism (NFP) SFC-NFP for OpenFlow network improves SFC performance in

the cloud network by analyzing the opportunities of parallel implementation of vir-

185

APPENDIX

tual network functions Chowdhary and Huang (2019). The use of microsegmenta-

tion Mämmelä et al. (2016) and design of stateful distributed firewall managed by

SDN has been discussed in Chowdhary et al. (2018b). The research work Alsham-

rani et al. (2018) identifies the optimal placement of multiple network controllers in

a distributed SDN environment. The placement ensures fault tolerance and optimal

network performance. The distributed firewall was utilized to create scalable attack

graphs using the microsegementation approach by Sabur et al. (2019). I explored the

use of SDN for securing a mobile environment in Chowdhary (2015). Educational

institutions, like many other industries, face a lot of security threats. I established

an SDN enabled Demilitarized Zone (DMZ) - Science DMZ to serve as a testbed for

securing the ASU Internet2 environment. Science DMZ Chowdhary et al. (2017a)

allows researchers to conduct an in-depth analysis of security attacks and take nec-

essary countermeasures using SDN based command and control (C&C) center.

Artificial Intelligence-based Pentesting - Security Assessment of large networks

is a challenging task. Penetration testing (pentesting) analyzes a network’s attack

surface to find security vulnerabilities. I proposed an autonomous security analysis

and penetration testing framework (ASAP) Chowdary et al. (2020) that creates a

map of security threats and possible attack paths. ASAP utilizes Deep-Q Network

(DQN) Mnih et al. (2015) to identify optimal policy for performing pentesting and

incorporates domain-specific transition matrix and reward modeling for capturing

the importance of security vulnerabilities and difficulty inherent in exploiting them.

ASAP generates autonomous attack plans and validates them against real-world net-

works. The attack plans are generalizable to the complex enterprise network, and the

framework scales well on a large network.

186

