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ABSTRACT

Polyurea is a highly versatile material used in coatings and armor systems to

protect against extreme conditions such as ballistic impact, cavitation erosion, and blast

loading. However, the relationships between microstructurally–dependent deformation

mechanisms and the mechanical properties of polyurea are not yet fully understood,

especially under extreme conditions. In this work, multi–scale coarse–grained models

are developed to probe molecular dynamics across the wide range of time and length

scales that these fundamental deformation mechanisms operate. In the first of these

models, a high–resolution coarse–grained model of polyurea is developed, where similar

to united–atom models, hydrogen atoms are modeled implicitly. This model was

trained using a modified iterative Boltzmann inversion method that dramatically

reduces the number of iterations required. Coarse–grained simulations using this model

demonstrate that multiblock systems evolve to form a more interconnected hard phase,

compared to the more interrupted hard phase composed of distinct ribbon–shaped

domains found in diblock systems. Next, a reactive coarse–grained model is developed

to simulate the influence of the difference in time scales for step–growth polymerization

and phase segregation in polyurea. Analysis of the simulated cured polyurea systems

reveals that more rapid reaction rates produce a smaller diameter ligaments in the

gyroidal hard phase as well as increased covalent bonding connecting the hard domain

ligaments as evidenced by a larger fraction of bridging segments and larger mean

radius of gyration of the copolymer chains. The effect that these processing–induced

structural variations have on the mechanical properties of the polymer was tested by

simulating uniaxial compression, which revealed that the higher degree of hard domain

connectivity leads to a 20% increase in the flow stress. A hierarchical multiresolution

framework is proposed to fully link coarse–grained molecular simulations across a
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broader range of time scales, in which a family of coarse–grained models are developed.

The models are connected using an incremental reverse–mapping scheme allowing for

long time scale dynamics simulated at a highly coarsened resolution to be passed all

the way to an atomistic representation.

ii



ACKNOWLEDGMENTS

Firstly, I would like to appreciate the help that my advisor, Dr. Jay Oswald,

provided to me during my Ph.D. study. His patience and hard–working encouraged

me to pursue my doctorate study over the last four years. Whenever I felt lost and

confused, the guidance from him always leads me to the details of programming,

experimental design, etc. It is my honor to be his student and I believe his critical

thinking and enthusiasm in research will definitely benefit the future of my career.

Then, I would like to express my appreciation to my dissertation committee

members, Dr. Christopher Muhich, Dr. Hanqing Jiang, Dr. Pedro Peralta, and Dr.

Yang Jiao, for attending my dissertation defense, providing advice for my work from

various background and discussing the future direction of this field. Also, many thanks

to my colleagues in Dr. Oswald’s lab, Dr. Yiyang Li, Jianlan Ye, Jing Hu, Pawan

Veeresh, and Omid Eghlidos, for their help and discussion.

Finally, thanks to my family. Your love, support, and encouragement are the

strength making me where I am right now. Thank you for always being there.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction to Polyurea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Systematic Coarse–Grained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 COARSE–GRAINED MOLECULAR MODELING OF THE MI-

CROPHASE STRUCTURE OF POLYUREA ELASTOMER . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Model Polyurea System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Iterative Boltzmann Inversion Procedure . . . . . . . . . . . . . . . . . . 16

2.2.3 Convergence and Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Construction of Model Systems and Computational Perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 IBI Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Microstructure of Polyurea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 COARSE–GRAINED MOLECULAR SIMULATION OF THE ROLE

OF CURING RATES ON THE STRUCTURE AND STRENGTH OF

POLYUREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



CHAPTER Page

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Coarse–Grained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Simulation of Processing–Induced Microstructure . . . . . . . . . . 53

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Calibration of Force Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Influence of Bonding Rate on Microstructural Evolution . . . . 61

3.3.3 Mechanical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 MULTIRESOLUTION COARSE–GRAINED MODELING FOR

STRUCTURE–PROPERTY RELATIONSHIP OF POLYUREA . . . . . . . 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Multiresolution Coarse–Grained Modeling . . . . . . . . . . . . . . . . . 82

4.2.2 Hierarchical Reverse Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Multiresolution Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.4 Characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Mean Squared Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.3 Relaxation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

v



LIST OF TABLES

Table Page

2.1. Implementation Details of Sampling Structural Distributions, Where Bin

Size Is the Interval of the Sampling Histogram, Range Is the Min--Max

Value of Sampling, and Count Is the Total Number of Corresponding

Interaction Types in the Coarse--Grained Model. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Definition of Super-Atom Types and Corresponding Descriptions in Terms

of COMPASS Force Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Mean, Maximum, and Minimum Representation Errors among All RDF

Types Using Different Scaling Factors at Final Iteration. . . . . . . . . . . . . . . . . . 28

2.4. Harmonic Bond, Angle and Improper Coefficients for the CG Model of

Polyurea in the Format Consistent with the Harmonic Bond and Angle

Styles in LAMMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5. Final Representation and Sampling Errors (n = 18) of RDF, Bond, Angle,

Dihedral and Improper Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1. Definition of Super-Atom Types and Corresponding Super--Atom Masses. . 48

3.2. Description of Model Polyurea Systems Constructed by Different Methods.

Frequency Represents the Attempted Bonding Frequency to Artificially

Control the Chemical Reaction Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3. Harmonic Bond Coefficients for the CG Model of Polyurea in the Format

Consistent with the Harmonic Bond and Angle Styles in LAMMPS. . . . . . . 63

3.4. Fitting Parameters of the Chemical Conversion History for Each Set of

Curing Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



Table Page

3.5. Characterization of Polyurea Systems Constructed by Curing Simulations

and Sampling Molecular Weight Distributions of Curing Simulations: (1)

Hard Domain Thickness (w) and Inter--Domain Spacing (d) Extracted from

RDFs. (2) Weight--Average Molecular Weight (Mw), Polydispersity Index

(PDI) and Number--Average Radius of Gyration (
〈
Rg

〉
). (3) Fraction of

Bridges in Each Configuration Presented as Percentage. The Fraction of

Loops Is 100%−bridge%. Uncertainties Represent the Standard Deviations

over All Systems of Each Curing Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6. Fitting Parameters of End--To--End Distributions. . . . . . . . . . . . . . . . . . . . . . . . 72

4.1. Summary of Effective Potentials Implemented in Each Coarse--Grained

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2. Summary of Polyurea Model Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3. Harmonic Bond and Angle Coefficients for the CG1 Model of Polyurea

in the Format Consistent with the Harmonic Bond and Angle Styles in

LAMMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4. Summary of Static Properties from Multiresolution Coarse--Grained Model

Systems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5. Fitting Parameters of Soft--Segment End--To--End Correlation in Different

Model Systems and Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6. Fitting Parameters of Vogel--Tammann--Fulcher Equation. . . . . . . . . . . . . . . . 99

vii



LIST OF FIGURES

Figure Page

2.1. Molecular Models of Polyurea: (a) Structural Formula, (B) Coarse--Grained

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Angle Distribution of the n1−C4−O3 Angle Type Computed from Different

Mapping Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Target RDFs of the Various Oxygen Atom Types Sampled from Atomistic

Simulations of the Model Polyurea System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Smoothing and Updating Pair Potential of c2-c4 from IBI Step 0 to 1. . . . . . 22

2.5. Computed RDFs (Shifted along Y-Axis for Clarity) of o2−O2, o1−O3, and

c1 − C1 Pair Types with Shaded Regions Indicating the 90% Confidence

Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6. History of Representation Errors of RDF during IBI with Different Scaling

Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7. History of Representation and Sampling Error of RDF in IBI Optimization. 29

2.8. Radial Distribution Functions and Potentials for (a) Pair Types c1 − C1

and (B) n1 −O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9. Bond Stretch, Bond Angle and Improper Angle Distributions and Corre-

sponding Potentials of Typical Interactions. (a) Bond Type c4 −O3. (B)

Angle Type c5 − C1 − C5. (C) Improper Angle Type n1 − C4 −N1 −O3. . . 32

2.10. Dihedral Angle Distributions and Corresponding Potentials for (a) Dihedral

Angle Types c1 − C2 −O1 − C2 and (B) c5 −N1 − C4 −N1. . . . . . . . . . . . . . . 32

2.11. RDFs of n1 − O3 Pair Type Sampled from All--Atom Model and CG

Models Developed Using Various Fixed Scaling Factors and Adaptive

Scaling Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



Figure Page

2.12. Morphologies of CG Systems. (a) Multiblock System after Equilibration.

(B) Hard Domains in Equilibrated Multiblock System. (C) Diblock System

after Equilibration. (D) Hard Domains in Equilibrated Diblock System.

For Visualization Purpose, Super--Atoms in Hard Segment Are Represented

by Red Spheres and Super--Atoms in Soft Segment Are Green Spheres in

(a) and (C). Different Colors Are Assigned for Different Hard Domains in

(B) and (D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13. Pair Correlation Function of Super-Atoms in Hard Domains. . . . . . . . . . . . . . 36

2.14. Comparison of Soft--Soft and Hard--Soft RDFs Sampled from the Coarse-

Grained and Atomistic Phase Segregated Systems. . . . . . . . . . . . . . . . . . . . . . . . 37

2.15. Comparison of Hard--Hard RDFs Sampled from the Coarse-Grained and

Atomistic Phase Segregated Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.16. Distribution of End--To--End Distances of Soft Segments Connected to

Hard Domains in the Multiblock System. The Raw Histogram Data (Blue

Circles) Is Fit to P (Re) = A1E
(re−µ1)/(2σ

2
1) +A2E

(re−µ2)/(2σ
2
2) (Solid

Blue Line), Where the First and Second Terms Give the Distributions

of Loop--Like (Dashed Red Line) and Bridge--Like (Dotted Green Line)

Segments, Respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.17. Fraction of o3 Super--Atoms in Urea and Ester Groups with Free, Mon-

odentate, or Bidentate Hydrogen Bonding Compared with Experimental

Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Chemical Formulation and Coarse--Grained Mapping Scheme. . . . . . . . . . . . . 46

3.2. Atomic Weights Used to Calculate CG2 Bead Coordinates. . . . . . . . . . . . . . . . 48

ix



Figure Page

3.3. Chemical Formulation of Atomistic Systems for Sampling Target Structural

Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4. The RDFs of Pairwise Interactions between (a) A--A and A+--A+ (B)

U--U and U−--U− at the Final Iteration of IBI Optimization. The Shaded

Transparent Regions Indicate 90% Confidence Intervals of the Distributions. 60

3.5. The Target and CG RDFs of All Pairwise Interactions at the Final Iteration

of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6. The Target and CG ADFs of All Bond Angle Interactions at the Final

Iteration of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7. The Target and CG BDFs of All Bond Length Interactions at the Final

Iteration of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8. History of Chemical Conversion of Bonding Simulations within S1 to S4.

Data Points Are Ensemble Averaged over Each Bonding Case. Fits to the

Data Are Shown with Dashed Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9. Hard--Domain Thickness (w), Inter--Domain Spacing (d) and Weight--

Average Molecular Weight (Mw) versus Time during Polymerization. . . . . . . 66

3.10. Snapshot of S4 during Polymerization at Selected Timestamps. Light

Brown and Dark Brown Beads Represent Super--Atoms in Hard and Soft

Segments, Respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



Figure Page

3.11. (A) Microphase Separation in Polymerized Polyurea Systems: Green and

Red Beads Represent Super--Atoms in Soft and Hard Domains, Respec-

tively. (B) Interconnected Structures in Hard Domains: Each Hard Domain

Is Assigned a Unique Color. (C) RDFs of Super--Atoms in Hard Segments.

(D) Mass Fractions of the Largest Hard Domain over Total Hard Segments

in Different Bonding Frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.12. Distributions of Soft Segment End--To--End Distance: (a) Bonding Config-

urations and (B) Sampled Configurations. Fits to the Data Are Represented

as Dashed Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.13. End--To--End Distance Distribution of Hard Segments within All Bonding

Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.15. True Stress--True Strain Behavior of the Model Systems under Uniaxial

Compressive Stress Loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.16. Fraction of Bridges versus Flow Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.17. Mean Radius of Gyration versus Flow Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.18. Flow Stresses at Selected True Strain from Uniaxial Compression on S1

and S4 Cases versus True Strain Rate Shown in Log--Log Scale. . . . . . . . . . . 77

3.19. Distributions of Soft Segment End--To--End Distance at εxx = 0.9: (a)

Bonding Configurations and (B) Sampled Configurations. Fits to the Data

Are Represented as Dashed Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1. Coarse--Grained Mapping Scheme of the Intermediate CG Model. . . . . . . . . 83

4.2. Multiresolution Coarse--Graining and Hierarchical Backmapping Workflow

of Polyurea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



Figure Page

4.3. The Target and CG1 RDFs of All Pairwise Interactions at the Final Iteration

of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4. The Target and CG1 ADFs of All Bond Bending Interactions at the Final

Iteration of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5. The Target and CG1 BDFs of All Bond Stretching Interactions at the Final

Iteration of IBI Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6. Energy Histories of Equilibrating CG Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7. RDFs of Hard Super--Atoms within CG Models. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8. VMD Plot of Multiresolution CG Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.9. MSD of Multiresolution Models during NVT Simulations. . . . . . . . . . . . . . . . . 96

4.10. End--To--End Correlation of Soft Segments in Atomistic Systems. . . . . . . . . 98

4.11. End--To--End Correlation of Soft Segments in CG Systems. . . . . . . . . . . . . . . 100

4.12. Average Magnitude of Slip Vectors from Atomistic Relaxation. . . . . . . . . . . . 102

4.13. Average Magnitude of Slip Vectors in Hard, Soft and Core--Shell Domain

from Multiresolution Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xii



Chapter 1

INTRODUCTION

1.1 Introduction to Polyurea

Polymers are macromolecules comprised of repeating units (or monomers) which are

connected in linearly, branched, or networked configurations during polymerization [1].

The macroscopic properties of polymers arise from the complex and collective many–

body dynamics governed by inter– and intra–chain interactions. The mechanical

behavior of polymers can vary from a hard glass to a soft elastomeric rubber to a

viscous liquid, depending on the temperature and deformation mode [2]. The critical

temperatures at which the mechanical behaviors of polymer exhibit these transitions

are referred as the glass transition temperature (Tg) and the melting temperature (Tm).

Glass transition is a reversible process in which an amorphous material transitions

from a hard and glassy state to a viscous rubber [3]. Polymers that contain only a

single type of repeat unit are known as homopolymers, while polymers containing two

or more types of repeat units are known as copolymers [4].

Polyurea is a block copolymer produced from the stepwise polymerization of an

isocyanate component and a diamine resin to form long molecular chains composed of

alternating segments joined by urea linkages. The different interactions among these

alternating segments and linkages, e.g., hydrogen bonding between urea groups, lead

to microphase separation in microstructure forming a binary nanostructure with two

distinct phases. A hard, glassy domain consists of molecular segments containing

aromatic and urea groups, hereafter referred to as hard segments, and is characterized
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by higher modulus and glass transition temperature. The glassy phase is embedded

within a soft, rubbery phase comprised of disordered aliphatic segments, hereafter

referred to as soft segments, that exhibits low stiffness and a lower Tg. The hard

domains act as physical cross links to the molecular network, engendering polyurea

with excellent mechanical properties, such as excellent strength, toughness, and highly

dissipative and resilient large strain behavior [5–7], making it attractive for a wide

range of applications, such as as protective coatings [8], foam padding [9], and as a

component in composite armor systems [10].

The microstructure as well as mechanical properties of polyurea are highly depen-

dent on many factors such as the molecular weight of the oligomeric diamines used in

synthesis [11], thermal history [12], composition of soft and hard segments [13, 14]

and the chemistry of reactant in material synthesis [15]. According to atomic force

microscopy (AFM) as shown by Castagna et al. [11], the hard domains in polyurea

network synthesized from Versalink® P–1000 oligomeric diamines, i.e., PTMO with

molecular weight 1000 g/mol, (PU1000) form a continuous hard structure. This

percolated miscrostructure forms long–range connectivity among hard segments [16].

However, in the polyurea reacted with PTMO molecular weight of 650 g/mol (PU650),

the continuity of hard domain structure is disrupted, while the phase–segregated

morphology with ribbon–like hard domains was still remained. Additionally, the

degree of microphase separation between hard and soft segments decreases with

shorter soft–segment length, until in PU250 that no detectable microphase separation

was observed in AFM images. To further study the phase segregation in polyurea,

Castagna et al. [11] employed small–angle X–ray scattering (SAXS) to study the degree

of segmental segregation in terms of molecular weight of PTMO. This method is based

on comparison of the quantitative experimental scattering variance with the hypo-
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thetical electron density variance of completely demixed hard and soft segments with

sharp interfaces [17, 18]. The mean inter–domain spacing is about 7 nm for PU1000

and PU650 calculated from the SAXS absolute intensity versus scattering vector (q).

However, the microstructural features of polyurea are temperature–dependent [12].

According to a series of temperature–dependent experiments, even though the phase–

segregated morphology was preserved after annealing at elevated temperatures, the

inter–domain spacing showed a significant change at high temperature suggesting

a temperature–dependent microstructural reorganization. It can be observed that

the inter–domain spacing decreases with higher annealing temperature which can be

observed in the SAXS intensity for polyurea after different annealing temperatures.

And this is consistent with the AFM tapping mode phase image shown in [12] which

demonstrated that the hard domains are coarsened after annealing from high tem-

perature. The effect of geometry within isocyanates on the morphology of polyurea

was investigated by polyurea synthesized by 2,6–TDI, 2,4–TDI and MDI isocyanates

and P1000 amines [15, 19]. All of the polyureas represent segregated hard domains

with mean thickness of approximately 10 nm, while symmetric isocyanates 2,6–TDI

strengthen the microphase separation by bidentate hydrogen bonding leading to ap-

parent long–range connectivity in hard domains due to more efficient packing between

hard segments [20].

The mechanical behaviors, especially viscoelasticity and strength, of segmented

block copolymer such as polyurea and polyurethane in terms of deformation are

also temperature–, pressure– and rate–(or frequency–)dependent [21–25]. Since the

application of polyurea is usually under extreme conditions with high pressure and

strain rate, wave–based methods are typical experimental measurement to investigate

the stress behaviors under these situations. Yi et al. [23] demonstrated that the
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mechanical response of polyurea transforms from rubbery–regime behavior at low

strain rate (10−3–100 s−1) to either leathery or glassy–regime at high strain rate

(∼ 103 s−1) by uniaxial compression testing and split Hopkinson pressure bar (SHPB).

And they extended the SHPB testing to strain rate up to ∼ 104 s−1 and reported

the strain–stress relationship under uniaxial compression, the glass transition from

which agrees well with Dynamic Mechanical Analysis (DMA) result [22]. Roland

et al. [21] carried out an improved drop weight test instrument to test the strain–

stress behavior under intermediate strain rate to fill the gap between quasi–static

test and SHPB experiment. After that, they measured the local segmental relaxation

times of polyurea in terms of temperature and pressure by dielectric spectroscopy,

the result from which suggests that the relaxation times of soft segments can be

represented by temperature times the power of specific volume [24]. Pathak et al.

carried out strain–stress measurements accompanied with SAXS on polyurea samples

stretched over strain rates from 0.15 to 830 s−1 to study the structural evolution

of polyurea during deformation. According to the SAXS measurements after large

deformation, slow–rate deformation breaks the morphology and causes permanent

residual strain, whereas the miscrostructure completely recovers high strain rate [26].

By performing tensile deformation with strain rate of 0.005 s−1, Rinaldi et al. also

observed the breakdown of microphase structure [27] when strain is larger than 0.4,

while reversible structural change appears with smaller strain. Impact–based method

is also a typical way to investigate the strength of polyurea under high pressure and

strain rate [7, 28–33]. The shear stress of polyurea is highly sensitive to pressure

as shown by pressure–shear plate experiment [31, 32]. Pressure–shear plate impact

(PSPI) is a typical experimental technique to study shear resistance of material under

high pressure. Jiao and Clifton enhanced PSPI with symmetric configuration and
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directly measured the shear resistance of 500 MPa under pressure of 9 GPa [31]. After

that, they extended the configuration to pressure of 18 GPa obtaining 1 GPa shear

strength and developed a quasilinear viscoelastic constitutive model for polyurea

calibrated by experimental results [32].

1.2 Systematic Coarse–Grained Model

It is a significant challenge to characterize the properties of elastomers under the

extreme conditions, e.g., high pressure and fast deformation, characteristic of these

aforementioned applications. Furthermore, to develop optimized materials for specific

operating conditions, e.g., protective coatings are typically subjected to repeated

loads, whereas armor is typically subjected to a single extreme loading event, it is

especially important to develop an understanding of how chemical composition and

processing affects the microstructure, and ultimately, the properties of elastomers. In

extreme conditions, particularly under high strain rate loading, molecular dynamics

(MD) simulations can provide direct insight to how deformation mechanisms are

influenced by the material composition and structure, e.g., molecular weight (Mw),

degree of hydrogen bonding, and microphase separation, and ultimately, how these

factors influence the overall material response. However, MD simulations are restricted

by their high computational cost to relatively short time and small length scales,

which severely limits their applicability in modeling how the molecular structure

evolves during slow processes, such as material processing and curing. The time scales

accessible in atomistic modeling is typically limited to a few hundred nanoseconds,

whereas curing processes occur over hours or even days. To model curing and other

slow rate processes, coarse-graining approaches are required [34, 35], in which groups of
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atoms are lumped together into super–atoms, allowing molecular simulations to probe

much longer time scales while still retaining key molecular details and mechanisms.

Over the past decade, several researchers have investigated relationships linking

microstructure and mechanical properties in polyurea and similar elastomers using

coarse–grained simulations. Using a simple bead–spring model, Arman et al. [36]

demonstrated that in polyurea–like elastomers, energy dissipation under shock loading

increases with the degree of hard domain connectivity. Cui et al. [37, 38] revealed

the importance of intermolecular attraction between hard segments to microphase

separation through manipulating LJ energy parameters. Agrawal et al. [39, 40] utilized

systematic coarse–graining to predict the stress–relaxation in polyurea as a function

of the molecular weight. Liu and Oswald [41] studied the soft and hard domain

structure of polyurea using a systematically coarse–grained united–atom model, in-

cluding quantifying the extent of hydrogen bonding and the topology of the soft

segment connectivity. These chain conformations have been shown to significantly

affect the deformation and plasticity of phase–segregated copolymer [42]. For exam-

ple, the relative fraction of soft segment loops and bridges, i.e., aliphatic segments

that are covalently bonded to the same or different hard domains, respectively, was

demonstrated by Zhu et al. [43] to play an important role in strain hardening during

deformation of thermoplastic polyurethanes. However, due the relatively small size of

molecular systems and simplification of hard domains into stacking lamella, the effect

of molecular conformation was hardly considered. Polymer coils with larger spatial

dimension linking across more than two hard domains are supposed to have different

bridge entanglements with the one of several single soft segments. Therefore, a more

powerful coarse–grained model is needed to incorporate the complicated hard–domain

structures and molecular spatial effect on mechanical properties on polyurea.
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Coarse–grained models at different resolutions are needed to resolve the vastly

different length and time scales associated with elastomeric copolymer phase segre-

gation [36, 37, 39, 40], macroscopic properties [44, 45], deformation modes [43], and

failure mechanisms [6]. Since atomistic simulations are too computationally costly

to probe the long timescales associated with polymer relaxation phenomena [46, 47],

molecular simulations exploring microphase morphology and mechanical properties in

polyurea have mostly utilized coarse–grained models in which much of the atomistic

detail is absent, e.g., within the glassy hard segments of polyurea, one or more aro-

matic rings are replaced by a single super–atom that interacts with other super–atoms

through spherically symmetric potentials [36, 37, 39, 40]. At this coarse level of detail,

the local structure within the segregated domains is crudely represented. In polyurea,

attractions between chemical groups, e.g., hydrogen bonding and possibly π–π stacking

of aromatic rings, leads to a phase segregation into a high–Tg, hard domain dispersed

within a low–Tg, soft domain. Recent work by Li et al. [48] has demonstrated that

long range connectivity of the hard domains and the degree to which the network

of hydrogen bonds within the hard domains is tightly ordered [49] are correlated to

stiffness, strength, and high energy dissipation during large deformation. Wu et al. [50]

systematically investigated how interconnected hydrogen bond networks can slow

dynamics at the molecular level to enhance dynamic stiffening, and thus energy dissi-

pation, in polyurethanes under extreme strain rates caused by micro-ballistic impacts.

Simulations of polyurethanes reported by Zhu et al. [43] have revealed how molecular

level mechanisms are dependent on the topology of chains at the interface between soft

and hard domains and are responsible for yield, toughening, and the Mullins effect.

However, the polyurethanes considered in his work have crystalline hard domains,

allowing for realistic atomistic configurations to be created by the interphase Monte
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Carlo method. Therefore, in order to consider the effects of molecular structure on

material properties more generally, e.g., for elastomers with a non–crystalline glassy

phase, there is a need for coarse–grained models that can accelerate modeling of phase

morphology and represent key interactions, such as hydrogen bonding, with sufficient

fidelity.

The iterative Boltzmann inversion (IBI) method is a structure–matching approach

that develops coarse–grained potentials between super–atoms to reproduce target

structural distribution functions sampled from atomistic simulations [51, 52]. In recent

years, considerable progress has been made in developing IBI approaches for modeling

polymeric materials at different levels of resolution. For phase–segregating polymers,

e.g., block copolymers and immiscible polymer blends, the coarse–grained potentials

are strongly interdependent [53]. Sun and Faller [54] have shown that interactions

of CG sites show different sensitivities in terms of interactive distances and types

within phase–segregated systems, which means the iterative method is more difficult

to get global optimal solutions compared to the iteration in homopolymeric systems.

Errors in sampling the structural distributions can introduce noise in the potential

training, leading to spurious oscillations in the resulting coarse–grained potentials.

Sampling noise can be mitigated by fitting the optimized potentials to functional

forms [55, 56], however, as the number of different coarse–grained sites and number of

types of interactions increases, identifying the different functional forms can become a

significant challenge. Furthermore, for copolymers such as polyurea, sampling errors

may arise due to differences in how the target or coarse–grained systems segregate

into different phases. In particular, due to the slow dynamics of the fully atomistic

target systems, the structural distributions are likely to be sampled from metastable,

non-equilibrium states.
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Chapter 2

COARSE–GRAINED MOLECULAR MODELING OF THE MICROPHASE

STRUCTURE OF POLYUREA ELASTOMER

2.1 Introduction

Elastomers, such as polyureas and polyurethanes, are a highly versatile class of

copolymers used in coatings, armors, and composites for their high toughness, low

density, and capability to absorb and dissipate energy from ballistic impacts and blast

loading [5, 10]. The versatility of these elastomers arises from the ability to alter their

microstructure by modifying the chemical structure [19, 20, 57], concentration [13],

and molecular weight [11] of their constituent units, and by changing processing

conditions [12, 14, 58]. With this enormous design space from which elastomers can be

tailored for improved performance, computational tools, such as molecular dynamics

simulations, are attractive in accelerating the materials design process. However,

the wide range of length and time scales over which the molecular mechanisms that

govern material structure and properties operate poses a formidable challenge for

molecular-scale simulation [34]. As a result, there has been a significant effort to

develop coarse–grained (CG) models, in which groups of atoms are lumped into single

interaction sites, which are less computationally demanding due to the reduced number

of degrees of freedom, simplified interaction potentials, and increased stable simulation

time step [34, 35].

In this section, we present a coarse–grained model of polyurea at a resolution similar

to united atom models, where the detailed structure of the hard phase can be resolved

9



and thus the influence of fine scale features, e.g., hydrogen bonds networks and ring

stacking configurations, on mechanical properties can be investigated. To address the

previously described challenges, we introduce new techniques extending the robustness

and applicability of the IBI method for complex polymer systems, i.e., systems

featuring phase segregation as well as requiring a large number of chemically distinct,

coarse–grained sites. In particular, we propose a new adaptive scaling technique that

accounts for distance–dependent sensitivity of the radial density functions (RDFs) to

the pairwise potential functions and compare the performance of the traditional IBI

method in optimizing coarse–grained potentials with our new approach. With our

resulting calibrated model, we performed equilibrium molecular dynamics simulations

on two large–scale polyurea systems featuring diblock and multi-block molecular chains

and describe the resulting phase segregated morphologies, hard domain structure, and

connectivity of soft chain segments across hard domains. Ultimately, by combining

coarse–grained models at multiple resolutions, we envision that simulations can span

the wide range of relevant time and spatial scales needed to resolve key molecular

mechanisms and thus reveal the complex relationships between elastomer chemistry,

processing, and mechanical behavior.

2.2 Methodology

2.2.1 Model Polyurea System

The coarse–grained model was developed to match local structural distributions

sampled from atomistic simulations of short, oligomeric polyurea chains. This model

polyurea system is an idealization of a common commercial variant of polyurea that is
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Figure 2.1: Molecular models of polyurea: (a) structural formula, (b)
coarse–grained model.

synthesized from reaction of diphenylmethane diisocyanate and a poly(tetramethylene

oxide) diaminobenzoate. The resulting chemical structure, shown in Figure 2.1a, is

a copolymer made up of alternating hard segments, each containing four aromatic

moieties and two urea linkages, and soft segments composed of poly(tetramethylene

oxide). The chemical structure of the polyurea chains is expressed as (HSm)N , where

H is a hard segment, Sm represents m repeated tetramethylene oxide units making up

a soft segment, and N denotes the number of times the HSm block is repeated. In this

work, m = 14 is chosen to be consistent with polyureas synthesized with Versalink®

P–1000 oligomeric diamine.

To sample the target local structural distributions, eighteen atomistic systems,

each containing twenty short oligomeric polyurea chains (S7HS7), were generated by a

random–walk process within a periodic simulation domain. Here, the hard segment is

placed in the center of the oligomeric chains to avoid unwanted end effects. Using the

procedure developed by Agrawal et al. [39], the atomistic systems were first annealed

above the melting temperature of the hard domains [26] in the isothermal–isobaric

(NPT) ensemble over a duration of 8 ns with T = 500 K and p = 1 atm. Following

annealing, the temperature was ramped down to T = 300 K over a duration of
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pair angle bond dihedral improper

range 1− 10 Å 0− 180° 0− 3 Å −180°− 180° −90°− 90°

bin size 0.05 Å 1° 0.01 Å 1° 1°

count 45 17 12 19 5

Table 2.1: Implementation details of sampling structural distributions, where bin

size is the interval of the sampling histogram, range is the min–max value of

sampling, and count is the total number of corresponding interaction types in the

coarse–grained model.

8 ns, and then the systems were further equilibrated for 16 ns at T = 300 K and

p = 1 atm, at which point the average density of the eighteen configurations was

1.073 g/cm3, with a standard deviation of 0.003 g/cm3. Following equilibration, a 1 ns

duration canonical (NVT) ensemble simulation was performed to sample the atomistic

trajectories. The atomistic coordinates are mapped to coarse–grained sites, from

which radial density, bond length, bond angle, dihedral angle, and improper angle

distributions are computed. In the RDFs, the first– and second–bonded neighbors of

each super–atom are excluded. More details of how the various structural distributions

were computed are given in Table 2.1.

All molecular dynamics simulations were carried out using the large–scale

atomic/molecular massively parallel simulator (LAMMPS) package [59]. In the

atomistic simulations, bonded and non–bonded interactions are modeled using the

COMPASS (Condensed–phase Optimized Molecular Potentials for Atomistic Simula-

tion Studies) force field [60, 61], which has been used to model the microstructure

and mechanical properties of polyurea [62]. Long–range Coulombic interactions are

computed using the particle–particle/particle–mesh (PPPM) method in the LAMMPS
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Figure 2.2: Angle distribution of the n1 − c4 − o3 angle type computed from different

mapping schemes.

kspace package. The cutoff distance for short range Coulombic and pairwise interac-

tions was set at 9.5 Å and the time step for integrating the atomistic trajectories was

1 fs.

Similar to the conventional united–atom model, we employ a coarse–grained

mapping scheme, in which all heavy atoms, i.e., excluding hydrogen atoms, are

represented by interaction sites from which the total potential energy of the system is

defined. We considered two mapping schemes: one in which each interaction site is

coincident with a heavy atom (mapping scheme 1) and one where the interaction sites

are located at the center of mass of the heavy atoms and their bonded hydrogen atoms

(mapping scheme 2). To inform our selection between the two mapping schemes, we

compared the distributions of bond angles computed from both schemes. As shown in

Figure 2.2, using the center of mass definition results in doubly peaked bond angle

distributions, which is usually accompanied by correlations between the bond length

and bond angle distributions. It is necessary that the distributions of bond lengths

and bond angles are independent so that the potential can be decomposed into a sum
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of bond and angle energies [56, 63], and so we selected mapping scheme 1, using the

locations of only the heavy atoms to sample the coordinates of the super–atoms.

Although our idealized polyurea model is composed of only four different elements,

it is modeled using eleven distinct atom types. The different atom types reflect the

chemical functional groups to which atoms belong, e.g., oxygen atoms within ester,

ether, and carbonyl groups are assigned as three different types. Figure 2.3 shows the

RDFs computed from all combinations of various oxygen atom types indicating that

the distributions are generally quite different from each other, and thus in the CG

model, we assign distinct CG super–atom types based on the corresponding atom type

in the atomistic model. Furthermore, the Coulombic interactions arising from partial

charges are absent in the coarse–grained model, but instead are represented implicitly

as part of the coarse–grained pair potentials. Thus, distinct CG super–atom types

are also needed to represent the variation of partial charges across different chemical

groups. As a result, the CG model of polyurea utilizes nine separate super–atom

types, each described in Table 3.1. The mapping of the CG types within the polyurea

chain is given in Figure 2.1b.

Coarse–grained systems were constructed to sample the structural distributions by

coarse–graining the eighteen atomistic systems so that the super–atom coordinates

of the CG systems initially coincide with their corresponding atoms in the atomistic

systems. The systems were then equilibrated over a span of 3 ps at constant tempera-

ture, T = 300 K, in the NVT ensemble, after which point the distribution functions

no longer significantly evolve in time. Following equilibration, the NVT simulations

are continued for 20 ps to sample the radial, bond length, bond angle, and torsion

angle distributions. Without the lighter hydrogen atoms, the simulation time step for
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simulations of the model polyurea system.

Super–atom
type Description Equiv. COMPASS

type

c1 carbon, sp3, generic c4

c2 carbon, sp3, bond to oxygen c4o

c3 carbon, sp2, carbonyl, one polar subst c3’

c4 carbon, sp2, carbonyl, two polar subst c3”

c5 carbon, sp2, aromatic c3a

o1 oxygen, sp3, in ethers o2e

o2 oxygen, sp3, in esters o2s

o3 oxygen, sp2, in carbonyl o1=

n1 nitrogen, sp3, in amides with H n3mh

Table 2.2: Definition of super-atom types and corresponding descriptions in terms of

COMPASS force field.
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the CG systems can be increased to 2 fs with negligible effect on stability and energy

drift.

2.2.2 Iterative Boltzmann Inversion Procedure

To start the IBI optimization of the CG potentials, initial estimates of the potential

energy functions for the nonbonded pair distances r bond lengths l, bond angles θ,

dihedral angles φ, and improper angles χ are based on the potentials of mean force,

which is computed from the Boltzmann inversions of the corresponding distribution

functions:

V0(l) = −kBT ln

(
P ∗(l)

l2

)
(2.1)

V0(θ) = −kBT ln

(
P ∗(θ)

sin(θ)

)
(2.2)

V0(φ) = −kBT ln (P ∗(φ)) (2.3)

V0(χ) = −kBT ln (P ∗(χ)) (2.4)

V0(r) = −kBT ln (g∗(r)) , (2.5)

where kB is the Boltzmann constant, T is the simulation temperature, P ∗(�) is the

target probability distribution functions of coarse–grained variables � ∈ {l, θ, r, φ, χ},

and g∗(r) are the target RDFs. The bond length and bond angle distributions are

normalized by the Jacobian of the transformation between spherical and Cartesian

coordinates. The number of different potentials for our polyurea model is quite large,

from the 9 different atom types, we compute 45 different pair potentials, 12 bond

potentials, 17 angle potentials, 19 dihedral potentials, and 5 improper potentials.

Using initial potentials defined above, structural distributions are sampled from

coarse–simulations from a subset of the available pool of coarse–grained systems. In
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this work, three of the eighteen available systems were sampled in the initial iteration.

The effective potentials are then corrected to better match the target distributions in

an iterative fashion using the iterative Boltzmann inversion update:

Vi+1(�) = Vi(�) + αkBT ln

(
Pi(�)

P ∗(�)

)
, (2.6)

where Pi(�) are the distributions, including RDFs, sampled from coarse–grained MD

simulations using potentials Vi(�) at iteration i. Since the resulting distribution

functions can be highly sensitive to small changes in the potentials, the update is

typically scaled by a factor α < 1 used to dampen and stabilize the iterative procedure.

As the sampled coarse–grained distributions approach the target distributions, the

second term on the right hand side of Eq. (4.1) vanishes, resulting in a stationary

point in the iteration. More details of the IBI procedure can be found in Algorithm S1.

The target bond length, bond angle, and improper angle distributions are well–

represented as normal distributions, and thus their interaction energies can be modeled

as quadratic potentials:

V (l) = Kb(l − l0)2, (2.7)

V (θ) = Ka(θ − θ0)2, (2.8)

V (χ) = Ki(χ− χ0)
2, (2.9)

where l0, θ0, and χ0 are the equilibrium bond length, bond angle, and improper angle,

respectively, and Kb, Ka, and Ki are the corresponding stiffness coefficients. We note

that the typical factor of 1/2 is omitted from the potential forms following the conven-

tion of the corresponding bond, angle, and dihedral styles in LAMMPS. The optimized

potentials computed by Eq. (4.1) are fitted to Eqs. (3.2-2.9) to obtain the equilibrium

locations and stiffness coefficients of each harmonic potential. Further details on the
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Algorithm S1 Iterative Boltzmann inversion
1: procedure IBI(V0(�), P0(�), P ∗(�))
2: i = 0
3: while ei > critical value do
4: Update harmonic potential:

Vi+1(l)← Vi(l) + ∆V (l)

5: Update harmonic potential:

Vi+1(θ)← Vi(θ) + ∆V (θ)

6: Update tabulated potential:

Vi+1(r)← Vi(r) + ∆V (r)

7: Update tabulated potential:

Vi+1(φ)← Vi(φ) + ∆V (φ)

8: Update harmonic potential:

Vi+1(χ)← Vi(χ) + ∆V (χ)

9: Pressure correction Vi+1(r) = +∆Vpc
10: Run LAMMPS with Vi+1(�)
11: Compute Pi+1(�)
12: Compute ei+1 = ||Pi+1(�)− P ∗(�)||2
13: i← i+ 1
14: end while
15: end procedure
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Algorithm S2 Update harmonic potential
1: procedure HARMONIC(V i, P ∗, P i)
2: Compute ∆Vk = kBT ln

(
P i
k

P ∗
k

)
3: V i+1

k ← V i
k + ∆Vk

4: x0, K ← min
x0,K

∑
k

[
V i+1
k −K(xk − x0)2

]2
dx

5: return x0 and K
6: end procedure

procedures to update the harmonic potentials (bond, angle, and improper) are given

in Algorithm S2.

Tabulated functions are used to represent the more general forms of the pair

distance and dihedral potential energy functions. In the CG simulations, pairwise

interactions are truncated at a cutoff distance of 10 Å and shifted so that the pairwise

energy is zero at the cutoff distance. Since the pairwise and dihedral energies are

computed in a tabulated form, smoothing is needed to minimize noise arising from

sampling errors. To avoid introducing errors when smoothing high curvature regions

in the potentials, we first decompose the potential correction into functional and

tabulated components:

∆V (r) = ∆V̂ + ∆Ṽ (2.10)

where ∆V̂ is obtained by fitting the potential correction with a functional form of

the potentials and ∆Ṽ is the residual. For pairwise interactions a 9–6 Lennard–Jones

potential is chosen as the functional form, whereas the dihedral term of the Class II

force field [61] is chosen for the torsion interactions. The residual term ∆Ṽ is then

smoothed using a Savitzky–Golay filter using a window length of 9 and polynomial

order of 2. The procedure to update pair and dihedral potentials is summarized in

Algorithm S3.

At each iteration in the IBI process, a linear correction term is added to the pairwise
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Algorithm S3 Update tabulated potential
1: procedure TABULAR(Vi, P ∗, P i)
2: Compute scaling factor α(r)
3: Compute ∆V
4: if update V (r) then
5:

[σ, ε] = arg min
σ,ε

(
∆V (r)− ε

[
2
(σ
r

)9
− 3

(σ
r

)6])2

6: else if update V (φ) then
7:

[Kn, φn] = arg min
Kn,φn

(
∆V (φ)−

3∑
n=1

Kn[1− cos(nφ− φn)]

)2

8: end if
9: ∆Ṽ = ∆V −∆V̂
10: ∆Ṽ ← savgol_filter(∆Ṽ )
11: Vi+1 ← Vi + ∆V̂ + ∆Ṽ
12: Compute force fi+1 = −dVi+1

dr

13: return tabulated Vi+1 and fi+1

14: end procedure

potentials to ensure that the resulting pressure in the CG simulations matches the

pressure (p = 1 atm) in the target atomistic simulations:

∆Vpc (r) = AkBT

(
1− r

rc

)
, (2.11)

where rc is the pairwise cut–off distance. Following Wang et al [64], the coefficient A

can be calculated from the equation:

−
[

2πNρ

3rc

∫ rc

0

r3g(r)dr

]
A ≈ ∆PV, (2.12)

where ∆P is the difference between the coarse–grained and atomistic pressures, N

the number of super–atoms, and V the volume of system.

Proper selection of the scaling factor α in Eq. (4.1) is critical for the robustness

and convergence of the IBI method, particularly in a complicated system like polyurea

where the relationship between the potentials and distributions of different super–atom
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types can be strongly interdependent. Traditionally, α is selected in a trial–and–error

process to maximize the rate at which the IBI method converges. However, the optimal

scaling factor α is not consistent across all different potentials, and with 98 different

potential functions in this CG model of polyurea, a trial–and–error approach is not

feasible. Furthermore, we hypothesize that the sensitivity of the RDFs to changes

in the corresponding pair potentials is distance dependent. Therefore we developed

an adaptive approach that heuristically determines an optimal, distance–dependent

scaling factor for the pairwise potential updates. The adaptive scaling functions are

updated by the ratio of the target change in the RDFs to the actual change in the

RDFs from the previous step:

αi(r) = αi−1(r)
g∗(r)− gi−1(r)
gi(r)− gi−1(r)

(2.13)

The scaling factor is updated pointwise for each tabulated distance value. The update

is applied conditionally to ensure that the scaling function remains bounded, e.g., very

small target changes in the RDF are screened out as these are highly susceptible to

sampling noise. The adaptive scaling function is applied for the pairwise potential

updates only. For all other potentials, we use a constant scaling factor α = 0.2.

In summary, the initial estimates for the coarse–grained potentials V0 were obtained

by Boltzmann inversion of the target structural distributions. Initial distributions P0

of the coarse–grained systems were sampled from the model running with the initial

potentials V0. The iterative Boltzmann inversion algorithm starts with above initial

values (V0, P0 and P ∗), as shown in Algorithm S1. The potentials were then iteratively

updated in steps 4 through 8 in Algorithm S1. In potential optimization, pair potentials

and dihedral angle potentials are updated by tabulated potential algorithm as shown

in Algorithm S3, while harmonic potentials like bond potentials, angle potentials

and improper angle potentials are updated via Algorithm S2. Updating potentials is
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Figure 2.4: Smoothing and updating pair potential of c2-c4 from IBI step 0 to 1.

followed by pressure correction to match the coarse–grained pressure to the target

atomistic model (1 atm). Next, the coarse–grained distributions are resampled. If the

representation error, calculated from the coarse–grained distributions at the current

iteration, does not satisfy the convergence criterion, the procedure repeats at step

4 for a new iteration. More specifically, with the input target distribution P ∗, the

coarse–grained distribution at step i, and the corresponding potential at step i, the

distance–based scaling factor α is computed and used to correct the coarse–grained

potentials (∆V ) using the ratio of the target and current coarse–grained distributions.

The potential correction is then split into analytical (∆V̂ ) and perturbation (∆Ṽ )

parts. The coefficients of the analytical part of the correction are obtained through

least squares fitting as shown in Algorithm S3. The perturbation part of the correction

is smoothed out by the low–pass filter. Figure 2.4 shows a typical interaction with and

without smoothing process from iterative step 0 to step 1. Finally, the summation of

the two parts of the potential correction is added to the original potential. Updating

harmonic potentials follows a similar procedure, except there is no need to compute

adaptive scaling factor and smooth out noise. The coefficients from curve fitting are

directly used in the LAMMPS simulations.
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2.2.3 Convergence and Error Estimation

To establish the convergence criterion used to terminate the IBI process, we

consider two types of error based on the sampled RDFs. The representation error is a

measure of the difference between the RDFs sampled from the current iteration of

the coarse–grained potentials and those sampled from the atomistic simulations. The

representation error of an RDF at iteration i is defined as:

ε(i)r =
‖gi(r)− g∗(r)‖2
‖g∗(r)‖2

, (2.14)

where ‖g(r)‖2 =
(∫

g(r)2dr
) 1

2 denotes the L2 norm of g(r). The sampling error

accounts for the uncertainty of the distributions incurred by sampling from a finite

number of systems and combines the uncertainty in sampling both the coarse–grained

and target distributions. The sampling error is defined as:

ε(i)s =

√
(‖wi(r)‖2)

2 + (‖w∗(r)‖2)
2

‖g∗(r)‖2
, (2.15)

where w(i)(r) and w∗(r) are the widths of the pointwise confidence bands of the

coarse-grained distribution functions at iteration i and the target all-atom distribution

functions, respectively, computed as:

w(r) = t∗
σ (r)√
n
, (2.16)

where t∗ is the critical value for the t-distribution corresponding to a 90% confidence

interval, σ(r) are the pointwise standard deviations of the distribution functions, and

n is the number of systems from which the distributions were sampled and averaged.

The target pair distributions with the largest, median, and smallest sampling errors

are o2 − o2, o1 − o3, and c1 − c1, respectively, which are shown in Figure 2.5. The
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Figure 2.5: Computed RDFs (shifted along y-axis for clarity) of o2 − o2, o1 − o3, and

c1 − c1 pair types with shaded regions indicating the 90% confidence intervals.

uncertainty in the o2 − o2 pair distribution is large due to the relative scarcity of o2

super–atoms in the polyurea chain.

The key premise in the optimization procedure is that is not meaningful to reduce

the representation error beyond the level of sampling error. Therefore, for the initial

iterations, only a few coarse–grained systems, e.g., n = 3, are needed to sample

the structural distribution functions. At each iteration, after sampling the coarse–

grained distributions, the mean representation errors of the distributions are compared

with the corresponding mean sampling errors. If the representation errors are larger

than the sampling errors, the potentials are corrected according to Eq. (4.1), and

smoothed using the previously described methods. If at the end of an iteration, the

sampling errors become comparable to or larger than the representation errors, then

the number of coarse–grained systems is increased to reduce the sampling error in

the subsequent iterations. Once the number of coarse–grained systems matches the

number of atomistic systems sampled to determined the target distribution functions,
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increasing the number of coarse–grained systems becomes less effective at reducing the

sampling errors, since at this point, the sampling error is dominated by the number of

atomistic systems. Therefore, once the representation error is reduced to less than

the sampling error of the atomistic systems, the iteration stops. To further reduce

the representation error, more atomistic systems would be required to first reduce

the sampling error. However, as the sampling error decreases by the square root

of the number of systems, it becomes increasingly computationally prohibitive to

further reduce the sampling error. In this work, only the errors of the RDFs were

used to control the IBI optimization algorithm as the other distribution functions

converge rapidly to their target distributions and thus the accuracy of the RDFs was

the limiting factor.

2.2.4 Construction of Model Systems and Computational Performance

To study the morphology of polyurea, we constructed two large model polyurea

systems, one composed of 960 (S7HS7)8 chains (multiblock system), and the other

containing 7,680 S7HS7 chains (diblock system) [36]. The number of super–atoms in

these CG systems is approximately 831k, corresponding to 1.87M atoms. The model

systems were constructed in a randomly mixed configuration at 1/64th scale, replicated

4x along the three spatial dimensions, and then equilibrated to obtain representative

microstructures. First, a 20 ns NVT simulation was performed at T = 800 K to break

the periodic symmetry and reduce the effect of the initial configuration. After that,

the temperature was decreased to T = 500 K over a span of 10 ns, and run at constant

temperature for a further 10 ns. Lastly, the systems the temperature was ramped to

T = 300 K over 5 ns followed by a final 5 ns equilibration at 300 K.
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To examine the efficiency of the coarse–grained model, smaller atomistic and CG

polyurea systems with 15 multiblock chains of (S7HS7)8 were constructed. The number

of atoms or super–atoms in the atomistic and coarse-grained systems were 29,160

and 12,990, respectively. We performed benchmark simulations using these systems

that consisted of a 1 ps NVE run on a single processor using both the atomistic and

coarse–grained model at their maximum stable time steps. The maximum stable time

step is defined as the largest time step in which the drift in total energy is bounded

such that ∆e/ke < 1%, where ∆e is total energy drift and ke is average kinetic

energy over the simulation run. Due to the elimination of hydrogen atoms and their

accompanying high frequency vibrational modes, the maximum stable time step of

the model can be increased to 3 fs over the 1 fs of the atomistic simulations. The

atomistic simulation runs at a rate of 0.32 ns/day, whereas the coarse–grained model

can simulate 5.2 ns/day, giving an effective speedup factor of nearly 16x.

2.3 Results and Discussion

2.3.1 IBI Optimization

We first compare the rate at which the root mean square (RMS) of the repre-

sentation errors of the CG model is minimized using various fixed scaling factors

and by using the adaptive scaling function described in the previous section. The

representation errors for the different scaling approaches are plotted at each IBI step in

Figure 2.6. When using a fixed scaling factor of α = 0.05 or α = 0.2, the representation

error is reduced to below the sampling error in 18 iterations, however, if the scaling

factor is further increased to α = 0.5, the corrections to the potential become too
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large and the errors begin to oscillate at a level above the sampling error. In contrast,

by using adaptively-determined scaling functions, initialized at α(r) = 0.05, the errors

are rapidly minimized and reach the sampling error threshold in 4 iterations. If the

IBI process is rerun, with the adaptive scaling functions initialized to those from the

final iteration of the prior optimization, the representation error is reduced to below

the sampling error threshold in only 3 iterations, suggesting that the optimal scaling

functions are stable over the iterations. Table 2.3 compares the RMS, minimum,

and maximum representation errors across all of RDF types at the final iteration for

different constant scaling factors and adaptive scaling functions. We note that despite

satisfying the RMS error threshold, the maximum errors in the RDFs are substantially

larger than those produced using the adaptive or optimized scaling functions.

By using the RMS to combine the individual RDF errors into a threshold criterion,

we do not account for the numbers of super–atoms involved in each interaction type,

e.g., o2 − o2 interactions are far more scarce than c1 − c1 interactions, but their errors

are counted equally. However, some relatively rare interactions are important, e.g.,

n1− o3 interactions reflect hydrogen bonding, and so weighting the errors proportional

to the number of super–atoms that correspond to the RDF pair types may miss

important contributions. Future work is thus needed to establish relative importance

factors for each interaction type that can be used to compute more pertinent error

metrics.

Next, we focus on the performance of the IBI method using the adaptively-

determined scaling functions. The mean representation and sampling errors of the

RDFs at each IBI iteration are shown in Figure 2.7, where step 0 indicates the

sampling and representation errors arising from coarse–grained simulations using the
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Figure 2.6: History of representation errors of RDF during IBI with different scaling

factors.

adaptive optimized α = 0.05 α = 0.2 α = 0.5

RMS 4.0% 4.5% 5.1% 4.9% 8.8%

min 0.95% 2.0% 1.1% 0.74% 0.45%

max 9.6% 9.6% 24% 23% 32%

Table 2.3: Mean, maximum, and minimum representation errors among all RDF

types using different scaling factors at final iteration.

initial estimates of the potentials. At iterations 2 and 4, the RMS representation

error dropped below the sampling error and so the number of coarse–grained systems

sampled was increased. At iteration 5, the RMS representation error was less than

the sampling error computed using all 18 systems and thus the iteration was halted.

To further reduce the representation error beyond this point would require sampling a

greater number of atomistic systems. At the final iteration, the RMS sampling errors

of the RDFs of the atomistic and coarse–grained systems were similar with s̄∗e = 4.5%

and s̄(i)e = 4.1%, respectively. Like the representation errors, the individual sampling
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Figure 2.7: History of representation and sampling error of RDF in IBI optimization.

errors are normalized by the L2 norm of the corresponding RDFs. The representation

and sampling errors at the final iteration of the pair, bond, angle, dihedral, and

improper distributions are summarized in Table 2.5. The larger representation errors

in the angle and bond distributions are a result of limiting the functional forms to

quadratic potentials. The resulting optimized potential parameters for the harmonic

bonds, bond angles, and improper angles are presented in Table 4.3. LAMMPS input

scripts and the full tabulated potentials are available on GitHub [65].

In Figure 2.8 and 2.10, a few representative RDFs (c1 − c1 and n1 − o3) and

dihedral angle distributions (c1 − c2 − o1 − c2 and c5 − n1 − c4 − n1) are shown to

illustrate the accuracy at which the IBI–based training algorithm reproduces the

target distribution functions using tabulated potentials. Here, the c1 − c1 pairwise

interaction and c1 − c2 − o1 − c2 dihedral torsion are highlighted as they are among

the most common, whereas the n1 − o3 interaction is shown as it is of key importance

to represent hydrogen bonding between sp2-hybridized oxygen atoms and nitrogen
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bond type l0 (Å) K (kcal/mol/Å2)
c1 − c1 1.5387 303.55
c1 − c2 1.5343 306.56
c2 − o1 1.4254 384.81
c2 − o2 1.4309 389.64
o2 − c3 1.3667 347.75
c3 − o3 1.2153 822.65
c3 − c5 1.4850 331.52
c5 − c5 1.4047 479.98
c5 − n1 1.3976 323.95
c4 − n1 1.3718 446.38
c4 − o3 1.2190 834.66
c1 − c5 1.5106 323.04

improper type χ0 (deg) K (kcal/mol/rad2)
o2 − c3 − c5 − o3 180.00 35.445
c3 − c5 − c5 − c5 180.00 17.779
c5 − c5 − c5 − n1 180.00 17.853
n1 − c4 − n1 − o3 180.00 51.380
c1 − c5 − c5 − c5 180.00 9.6385
angle type θ0 (deg) K (kcal/mol/rad2)
c1 − c1 − c1 113.47 52.038
c1 − c1 − c2 114.03 50.225
c1 − c2 − o1 109.56 50.088
c2 − o1 − c2 111.70 45.427
c1 − c2 − o2 109.90 54.008
c2 − o2 − c3 113.28 51.453
c5 − c3 − o3 126.15 72.288
o2 − c3 − o3 118.10 95.793
o2 − c3 − c5 108.97 81.421
c5 − c5 − c5 118.34 57.995
c3 − c5 − c5 118.11 78.247
c5 − c5 − n1 122.22 74.247
c5 − n1 − c4 121.18 46.886
n1 − c4 − n1 125.60 98.174
n1 − c4 − o3 121.14 93.161
c1 − c5 − c5 121.86 51.177
c5 − c1 − c5 110.75 51.432

Table 2.4: Harmonic bond, angle and improper coefficients for the CG model of

polyurea in the format consistent with the harmonic bond and angle styles in

LAMMPS.
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RDF bond angle dihedral improper

ε̄s 6.1% 2.3% 1.9% 5.8% 1.3%

ε̄r 4.0% 7.5% 7.6% 6.3% 1.5%

Table 2.5: Final representation and sampling errors (n = 18) of RDF, bond, angle,

dihedral and improper distributions.

Figure 2.8: Radial distribution functions and potentials for (a) pair types c1 − c1 and

(b) n1 − o3.

bound hydrogen atoms within the urea groups. The depth of potential well in the

n1 − o3 pair potential (Figure 2.8b) describes the strength of hydrogen bonding in the

coarse–grained model. The bond stretch, bond angle and improper angle distributions

follow a nearly Gaussian shape and thus are well represented by harmonic potentials.

They are omitted here for brevity, but representative distributions and the resulting

potentials are presented in Figure 2.9.

Another key benefit of the adaptively determined scaling functions is that the

resulting coarse–grained potentials are able to more accurately represent strong

interactions. In particular, the sharp peak in the o3−n1 RDF is better represented by

the coarse–grained potentials trained with adaptive scaling functions than from those
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Figure 2.9: Bond stretch, bond angle and improper angle distributions and

corresponding potentials of typical interactions. (a) Bond type c4 − o3. (b) Angle

type c5 − c1 − c5. (c) Improper angle type n1 − c4 − n1 − o3.
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Figure 2.10: Dihedral angle distributions and corresponding potentials for (a)

dihedral angle types c1 − c2 − o1 − c2 and (b) c5 − n1 − c4 − n1.
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Figure 2.11: RDFs of n1 − o3 pair type sampled from all–atom model and CG

models developed using various fixed scaling factors and adaptive scaling function.

developed using constant scaling factors as can be seen in Figure 2.11. The adaptively

determined scaling function for the o3 − n1 pair type shows that the distributions

are less sensitive to the corresponding o3 − n1 pair potential than expected from a

Boltzmann distribution, as indicated by values of α(r) > 1 in the neighborhood of the

peak. As discussed previously, the o3− n1 pair interactions are particularly important

as they implicitly account for hydrogen bonding, and thus the ability to account for

distance-dependent variations in sensitivity of the RDFs to the pair potentials is a

potentially substantial improvement to the IBI method.

2.3.2 Microstructure of Polyurea

The morphologies of the equilibrated diblock and multiblock systems are shown

in Figure 2.12. In both systems, the hard segments self-organize from an initially

randomly mixed state into ribbon–shaped hard domains surrounded by a matrix

composed of soft segments. To quantify the microphase structure, we calculated the
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RDFs of the super–atoms in the hard domains, shown in Figure 2.13. Similar to a

two point correlation function, the RDFs of the hard segment super–atoms provide

a reasonable estimate of the characteristic microstructural length scales of the hard

domains [66]. The local minimum within the RDF of the hard segment super–atoms

corresponds to the characteristic thickness of the ribbon–shaped hard domains, and

is located at r = 2.85 nm and r = 2.95 nm in the multiblock and diblock systems,

respectively. The local maximum of the RDFs identifies the mean–interdomain spacing

of the hard domains [67], which is located at r = 5.05 nm and r = 5.25 nm in the

multiblock and diblock systems, respectively. The computed interdomain spacings

are slightly smaller than the reported 7 nm interdomain spacing measured by x-ray

scattering in polyurea [11, 12, 27].

In general, force fields derived by structure matching methods such as IBI are

state–dependent [68]. Since the dynamics of the atomistic system are much far too

slow for the simulations to produce a phase–segregated morphology on time scales

accessible to MD simulations, the target distributions were sampled in a mixed,

nonequilibrium state. Therefore, it is reasonable to question whether or not the

force fields are representative of the atomistic system in the phase–segregated state.

To assess how well the force fields are transferable to the phase–segregated state,

we performed a reverse mapping, i.e., by adding the hydrogen atoms back to the

phase–segregated multiblock system, and briefly relaxed the system using a 1 ns NVT

simulation at 300 K. Following this, the atomic trajectories were sampled, from which

RDFs were calculated and compared to RDFs calculated from the coarse–grained

system, shown in Figure 2.14 and 2.15. The difference between reverse-mapped and

coarse-grained RDFs was then calculated using Eq. (3.8). Red, yellow, and green plot

backgrounds represent hard–hard, hard–soft and soft–soft pair types, respectively.
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(a) (b)

(c) (d)

26.3 nm

Figure 2.12: Morphologies of CG systems. (a) Multiblock system after equilibration.

(b) Hard domains in equilibrated multiblock system. (c) Diblock system after

equilibration. (d) Hard domains in equilibrated diblock system. For visualization

purpose, super–atoms in hard segment are represented by red spheres and

super–atoms in soft segment are green spheres in (a) and (c). Different colors are

assigned for different hard domains in (b) and (d).

The representation errors of the coarse–grained models are given as εr in each plot.

The structure of the soft domains was well reproduced with a mean error of 5.4%,

whereas there was significantly more error in the hard domains with a mean error of

26%. The RDFs between atoms in the soft and hard domains had a mean error of

12%. Generally, the errors in the hard domain RDFs were caused by a nearly uniform

shift in the CG distributions, suggesting that the density of the hard phase in the CG

models is somewhat overpredicted.
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Figure 2.13: Pair correlation function of super-atoms in hard domains.

As the long range connectivity of the hard phase has been associated with large

energy dissipation under large deformation, we analyzed the hard domain connectivity

by segmenting the hard segments into domains by a distance–dependent criterion, in

which two hard segments are considered to be within the same hard domain if their

centers of mass are separated by less than 4.5 Å. This distance was chosen to be slightly

more than the location of the peak in the n1 − o3 RDF, which represents hydrogen

bonding in the CG model. The resulting segmented hard domains of the multiblock

and diblock systems are shown in Figure 2.12b and 2.12d, respectively. Ignoring the

small percentage (< 0.5%) of isolated hard segments dissolved within the soft domains,

there are 34 unique hard domains within the multiblock system and 28 hard domains

within the diblock system. Despite having a greater number of hard domains than

the diblock system, more than half of the hard segments in the multiblock system are

contained within a single hard domain. In contrast, the connectivity of the hard phase

in the diblock system is more interrupted, with the largest hard domain containing

less than 23% of the hard segments. The interconnected or percolated [69] structure of
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Figure 2.14: Comparison of soft–soft and hard–soft RDFs sampled from the

coarse-grained and atomistic phase segregated systems.
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Figure 2.15: Comparison of hard–hard RDFs sampled from the coarse-grained and

atomistic phase segregated systems.
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the hard domain, particularly within the multiblock system has also been observed in

AFM measurements of polyurea [20, 70] and analyzed in computational studies [49].

In the multiblock system, the hard domains are interconnected by the covalently

bonded soft segments. The nature of the topology of the soft segments varies between

a loop connecting two soft segments within the same hard domain and a bridge

connecting soft segments within different hard domains. The degree of this connectivity

in polyurea was studied previously by Arman et al. [36], using a simple bead–spring

model of polyurea that produced rod–shaped domains. However, given the high degree

of long range hard segment connectivity the distinction between bridge and loop soft

segments is blurred. However, we observe that distribution of soft segment end–to–end

distances, shown in Figure 2.16, closely follows the sum of two normal distributions:

the first centered at r = 0.99 nm and the second centered at r = 2.96 nm. This

observation suggests that there are two populations of soft segments, of which we

hypothesize the former is composed of loop-like segments and the latter is composed of

bridge-like segments. Integration of the normal distributions implies that 18% of the

soft segments form loops, whereas 82% form bridges. Although this differs significantly

from the composition of loop and bridge segments predicted in the polyurethane

systems studied by Zhu et al. [43], we note that the interdomain spacing of their model

polyurethane was significantly larger and thus with the much closer hard domain

spacing considered here, a higher percentage of bridging segments is expected.

We also investigated whether there is π− π stacking or any other discernible struc-

ture of the aromatic rings within the hard domain. The local p2 order parameter [71]

was computed for each ring using the equation

p2 (i) =

〈
3 cos2 θij − 1

2

〉
j

, (2.17)

where θij is the angle between the normal directions of rings i and j, and the average is
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Figure 2.16: Distribution of end–to–end distances of soft segments connected to hard

domains in the multiblock system. The raw histogram data (blue circles) is fit to

P (re) = A1e
(re−µ1)/(2σ2

1) + A2e
(re−µ2)/(2σ2

2) (solid blue line), where the first and second

terms give the distributions of loop–like (dashed red line) and bridge–like (dotted

green line) segments, respectively.

taken over all rings j such that the distance between the centers of mass of rings i and

j is less than 3 nm. The resulting distributions of the ring p2 order parameters for the

diblock and multiblock systems were identical and closely follow a normal distribution

with a zero mean and a standard deviation of σp2 = 0.04. This indicates that the

aromatic rings are completely unstructured within the amorphous hard domains,

which is consistent with the lack of any observable crystalline peaks in the wide angle

x-ray scattering measurements of polyurea [48].

As described previously, hydrogen bonding in our coarse–grained model is repre-

sented through the n1 − o3 super–atom interactions. We characterized the hydrogen

bond network in the multiblock system by computing the average number of hydrogen

bond interactions on each hard segment. In the analysis, hydrogen bonds were detected

between n1 and o3 super–atoms when their separation distance was within 3.8 Å, which
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Figure 2.17: Fraction of o3 super–atoms in urea and ester groups with free,

monodentate, or bidentate hydrogen bonding compared with experimental data.

is just beyond the first peak in the n1 − o3 RDF. The average number of hydrogen

bonds per hard segment is 5.4. Most hydrogen bonds are formed from the carbonyl o3

super–atoms in the urea group, compared to a smaller set of hydrogen bonds formed

from the carbonyl o3 super–atoms in the ester group. Figure 2.17 shows the degree to

which the o3 super–atoms participate in hydrogen bonding, where free, monodentate,

and bidentate indicate zero, one or two hydrogen bonds per o3 super–atom. More than

65% of urea o3 super–atoms have at least one hydrogen bond, compared to 25% of

ester o3 atoms. The overall percentage of hydrogen bonded carbonyl atoms predicted

by the model is 45%, which is within the range of values (45-50%) reported by Li et

al. [48] from Fourier transform infrared spectroscopy (FTIR) measurements. However,

the model predicts a smaller ratio of bidentate to monodentate o3 super–atoms than

reported by Li et al.
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2.4 Summary

In this study, we have developed a systematically coarse–grained model of polyurea

at the same resolution of united atom models. To address the high complexity of the

model (98 different potential functions were trained simultaneously) we developed a

technique to heuristically determine optimal scaling factors for each of the pairwise

interactions as a function of the pair distance. This approach greatly improves not

only the rate at which the algorithm converges, but also the resulting accuracy by

which the model reproduces the target distribution functions.

Beyond reproducing the target structural distributions, further work is needed

to fully understand the limits to which the current model is applicable. First, while

the dynamics of the resulting coarse–grained model are clearly accelerated compared

with the underlying atomistic model from which they were derived, work is ongoing

to carefully verify that the relaxation time constants of the model are accelerated

consistently [72]. However, this a significant challenge, as there is a wide range of

timescales associated with the multiple relaxation mechanisms in polyurea. Secondly,

the morphology predicted from the CG model developed in this work shows far more

long range connectivity than from prior CG models developed for polyurea [36, 37, 39].

However, none of these prior models have the resolution needed to resolve structure

within the hard domains, e.g., hydrogen bonding or ring structures. One possible

future direction is to examine how the degree of coarse–graining affects the resulting

coarse–grained morphology. Thirdly, we observe some degree of transferability error

when applying coarse–grained potentials derived at a mixed state to a phase segregated

state. Another future direction would be to resample target distributions in the phase

segregated state from which the CG model could be retrained.
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Despite these outstanding issues, the model develop here gives new insight to

the morphology of polyurea, including evidence of long range connectivity of the

hard domains, and predicted length scales that are surprisingly consistent with

those determined by x-ray scattering experiments despite extremely short time scales

accessible to MD simulations. Analysis of the end–to–end lengths of the soft segments

suggests that soft segments belong to two different populations: most soft segments

bridging across different branches of the hard phase, whereas a smaller percentage of

soft segments form loop structures. Consistent with x-ray scattering measurements,

the model predicts an amorphous hard phase with no apparent ordering of ring

structures. Lastly, the model provides insight to the nature of the interconnected

network of hydrogen bonds within the hard phase. In conclusion, this study lays the

groundwork to combine molecular modeling at multiple scales, i.e., fully atomistic

and several different degrees of coarse–graining, to explore the relationships between

polymer structure, molecular relaxation mechanisms, and macroscopic behavior.
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Chapter 3

COARSE–GRAINED MOLECULAR SIMULATION OF THE ROLE OF CURING

RATES ON THE STRUCTURE AND STRENGTH OF POLYUREA

3.1 Introduction

Thus far, research work reported using molecular dynamics simulations of polyurea

has not considered how the step–growth polymerization process affects molecular

structure, but instead have focused on modeling post polymerized molecules to study

the role of hard segment composition [73], molecular weight of the soft segment [37, 38]

and overall molecular weight [36, 39] on structure and bulk properties. However,

the step–growth polymerization process generates a polydisperse molecular weight

distribution, which has been shown to strongly influence the microphase structure

of block copolymers [74–76]. Furthermore, as the polyurea molecules grow during

polymerization, their dynamics should rapidly decrease due to increased entanglements.

Thus in this work, we aim to simulate step–growth polymerization in conjuction with

phase segregation to develop new insight as to how processing parameters can affect

the structure and properties of polyurea.

To generate molecular systems close to real polymer network, researchers started

modeling the curing process of polymers via reactive molecular dynamics and coarse–

graining [77–80], which is traditionally constructed with a mixture of prepolymers

randomly placed in a simulation cell and allowance of covalent bond formation when

reactive monomers satisfy a bonding criterion. Such curing modeling simultaneously

allows molecular relaxation and bonding formation, which takes the effect of molec-
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ular diffusion into topological construction. Many algorithms have been published

in literature for generation of polymeric materials. Abbott et al. [81] proposed a

polymerization algorithm with distance–based bonding criteria and a 21–step high

pressure/temperature relaxation process to accelerate relaxation in glassy polymers.

Gissinger et al. [82] proposed an algorithm capable of modeling multi–step reactions

for more complicated polymerization scenarios which was implemented and distributed

within the USER–REACTION package as part of the open–source LAMMPS molecu-

lar dynamics code [59, 83]. Therefore, by mimicking the process of polymerization and

controlling the polymerizing conditions, studies have been established to investigate

the effect of conversion rate [84], crosslinking density [85], and prepolymer length [86]

on the resulting structure and mechanical properties in various polymeric materials.

In this section, we describe a systematic coarse–grained model developed for simu-

lating the effect of curing process on high strain rate mechanical properties of polyurea.

The step–growth polymerization of polyurea was simulated via a distance–based bond-

ing criterion with differing reaction speeds. After characterizing the morphological and

topological behaviors of the polymerized model systems, we performed simulations in

which the simulation cells were compressed under uniaxial stress and analyzed the

structural evolution and stress response of the systems in order to infer relationships

linking processing conditions, molecular structure, and mechanical properties.
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Figure 3.1: Chemical formulation and coarse–grained mapping scheme.

3.2 Methodology

3.2.1 Coarse–Grained Model

A coarse–grained model for simulating step–growth polymerization in polyurea was

developed using the iterative Boltzmann inversion method (IBI) [52]. Our methodology

is based upon previous works by Agrawal et al. [40] and Liu et al. [79], and thus we

briefly summarize the procedure and key differences here. Our polyurea model is based

on the pre–reaction compositions for polyurea synthesis, which are idealizations of

Isonate 143L modified MDI (polycarbodiimide-modified diphenylmethone isocynate)

and Versalink® P–1000 oligomeric diamine. The reaction formulation, chemical

structures, and coarse–grained mappings of the chemical units of the prepolymers and

polyurea are shown in Figure 3.1. The coarse–grained polyurea chain is defined by

5 unique types of super–atoms, wherein the soft segment is represented by a series

of S super–atoms, and the hard segment is made up of A, B, C, and U super–atom

types, in which the A and B super–atoms represent ring structures, the U super–atom
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represents the urea linkages, and the C super–atom type represents the ester linkage

that connects to the soft segment. Two new super–atom types, U− and A+, are

introduced to represent the prepolymers’ isocyanate and phenyl amine end groups,

respectively. The resulting model therefore has 7 unique types of super–atoms of

which 2 are reactive. After that, We are choosing the mapping scheme of coarse–

grained model attempting to reduce the correlation of bond and angle interactions

and also trying to satisfy the momentum consistency in phase space [87], but these

two conditions are difficult to be satified at the same time. Therefore, the mass–center

is defined as the geometrical center of each super–atom to reduce the bond–angle

correlation and the masses of most of the super-atoms are equal to the summation of

their constituent atomic masses, whereas the masses of–CH2– group in super–atom B

and the –NH2 group in super–atom A+ are excluded. The mass and coarse–graining

weight of each super–atom type is summerized in Table 3.1 and Figure . Note that

the mapping scheme and super–atom masses of coarse–grained model are chosen with

high priority of preserving the time step of coarse–grained simulation and reducing

the correlation between bond and angle interactions, which may not completely

satisfy the momentum consistency condition. With this mapping definition, the

coarse–grained isonate, diamine, and polyurea molecules are represented as U−BBU−,

A+CSnCA+ and A+CSn(BUACSnCAUB)NBU− in which n denotes the number of

repeated tetramethylene oxide of soft segments and N represents the number of times

the BUACSnCAUB blocks are repeated in a chain.
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Super–atom type Molecular Weight (g/mol)

A 76

B 83

C 72

S 72

U 58

A+ 92

U− 42

Table 3.1: Definition of super-atom types and corresponding super–atom masses.
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wU- = [0, 1, 0]

wA = [0.5, 0, 0, 0.5, 0, 0]

wA+ = [0.5, 0, 0, 0.5, 0, 0, 0]

wB = [0.5, 0, 0, 0.5, 0, 0, 0]

wC = [0, 0, 1, 0, 0]

wS = [0.2, 0.2, 0.2, 0.2, 0.2]

Figure 3.2: Atomic weights used to calculate CG2 bead coordinates.

The target structural information from which the coarse–grained model is calibrated

includes the bond length, bond angle, and radial distribution (RDF) functions calcu-

lated by mapping all–atom simulation trajectories to coarse–grained coordinates. The

atomistic simulations are performed using the Condensed–phase Optimized Molecular

Potentials for Atomistic Simulations Studies (COMPASS) force fields [60, 61], where

long–range Coulombic interactions are calculated using the particle–particle/particle–

mesh (PPPM) method in the LAMMPS kspace package [83]. Both the cut–off distances

of Lennard–Jones interactions and short–range Coulombic term are set to be 9.5 Å.

The atomistic systems are constructed by randomly placing twenty oligomeric polyurea

chains within a periodic simulation box. The chemical structure of the oligomeric
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chains is shown in Figure 3.3 and reflects the composition of the reaction between

a pair of diamine and diisocyanate prepolymer molecules. To both quantify and

minimize sampling errors, ten atomistic systems were constructed over which the

target distributions are averaged. Each system contains 20 short polyurea chains

and these chains are randomly distributed in a 36.3×36.3×36.3 Å cubic box. The

equilibrium procedure of atomistic systems started with an elevated temperature

T = 500 K, above the melting temperature of the hard domains, and p = 1 atm

within 8 ns isothermal–isobaric ensemble (NPT). After that, the temperature was

ramped down to T = 300 K over a duration of 8 ns and the equilibration was further

performed for 16 ns. The atomic trajectories were then sampled in 1 ns canonical

ensemble (NVT) for computing target local structures. The first–bonded neighbors

are excluded in the calculation of RDFs.

The coarse–grained force fields are determined using the IBI method, in which

the bond stretching energy Vstr(l), angle bending energy Vbend(θ) and non–bonded

pair energy Vnonb(r) potentials are optimized so that the bond length, bond angle,

and pair distribution functions of the coarse–grained model match those of the target

distributions.

Vtot = Vstr (l) + Vbend (θ) + Vnonb (r) , (3.1)

where l is bond length, θ is bending angle and r is the distance between non–bonded

super–atoms. The interaction energies of the bond stretching are approximately as

quadratic functions:

Vstr(l) = Kb(l − l0)2, (3.2)

where l0 is the equilibrium bond length, and Kb is the corresponding stiffness co-

efficients. The equilibrium bond lengths and stiffness coefficients are different for

each unique combination of bond interaction types and calibrated by IBI algorithms
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described in following paragraphs. The angle bending and non–bonded pair potentials

do not lend themselves to simple functions and thus are implemented by linear inter-

polation of tabulated energy and force values at specific interaction angles/distances.

The aforementioned tabular and parametric effective potentials are updated

through IBI algorithm as:

Vi+1 = Vi + αkBT ln

(
Pi
P ∗

)
, (3.3)

where Pi are the distributions, including RDFs, bond and angle distributions, sampled

from coarse–grained MD simulations using potentials Vi at iteration i, P ∗ are the

corresponding target structural distributions computed from atomistic systems, kB and

T are Boltzmann coefficient and temperature. Constant parameter α = 0.2 is a scaling

factor to dampen the potential update and improve the stability of optimization.

The initial estimates of effective potentials to start IBI procedure are computed from

Boltzmann inversion:

V 0
str(l) = −kBT ln

(
P ∗ (l)

l2

)
, (3.4)

V 0
bend(θ) = −kBT ln

(
P ∗ (θ)

sin (θ)

)
, (3.5)

V 0
nonb(r) = −kBT ln (g∗ (r)) , (3.6)

where P ∗(l), P ∗(θ) and g∗(r) are the target bond, angle and RDF distributions

sampled from atomistic simulations. As the coarse–grained distributions approaching

target values, the potential corrections become closer to zero values, which leads to a

group of effective potentials that is able to make coarse–grained model represent target

structural information in atomistic scale. During the optimizing process, since angle

bending and pairwise potentials are computed in a tabulated form, a Savitzky–Golay

filter using a window length of 5 and polynomial order of 1 was adopted to smooth out
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the noise in energy from sampling structural distributions. The harmonic potentials

for bond stretching interactions are estimated as quadratic functions, of which the

parameters including equilibrium bond length and stiffness are calibrated by curve

fitting. The potential values are traversed as numerical data in IBI process and

therefore the updated parameters are the best ones that most effectively minimize

the difference between parameterized functions and updated data from IBI in each

step. The optimized harmonic parameters for running coarse–grained simulations

are attached in 4.3. Additionally, a linear correction term is added to the pairwise

potentials at each iteration to ensure that the coarse–grained distributions are sampled

under the same pressure (p = 1 atm) in the target atomistic simulations:

∆Vpc (r) = AkBT

(
1− r

rc

)
, (3.7)

where rc is the pairwise cut–off distance. The coefficient A can be calculated based

on thermodynamic consistency, as shown by Wang et al [64]. Finally, a statistical

convergence criterion was adopted to terminate the IBI optimization by introducing

two types of error: representation error and sampling error [41]. The representation

error measuring the difference between the coarse–grained RDFs sampled from current

IBI iteration and target RDFs sampled from atomistic simulations represents the

effectiveness of IBI optimization. The total representation error at iterative step i is

calculated as normalized root mean–square error of RDFs:

εir =
‖gi(r)− g∗(r)‖2
‖g∗(r)‖2

, (3.8)

where gi(r) represents the coarse–grained RDFs at iterative step i, ‖ ·‖2 denotes the L2

norm and g∗(r) is the target RDFs sampled from atomistic simulations. The sampling

error accounting for the uncertainty of sampling structural distributions from a finite
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number of coarse–grained and atomistic systems is defined as:

εis =

√
(‖wi(r)‖2)

2 + (‖w∗(r)‖2)
2

‖g∗(r)‖2
, (3.9)

where wi(r) and w∗(r) are the widths of the pointwise 90% confidence bands of the

coarse-grained distribution functions and the target all-atom distribution functions,

respectively, which are computed as:

w(r) = t∗
σ(r)√
n
, (3.10)

where t∗ is the critical value for the 90% confidence interval of t–distribution, σ(r) is

the pointwise standard deviation of RDFs, n is the total number of sampling systems.

The convergence criterion stops the iteration once the representation error is less than

sampling error meaning that at this point the IBI training is overfitting and the IBI

optimizer is learning the sampling noise.
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Figure 3.3: Chemical formulation of atomistic systems for sampling target structural

distributions.

Eighteen coarse–grained systems for sampling structural distributions were con-

structed with twenty single–block polyurea chains randomly placed in an unit cell.

The super–atoms in initial systems were firstly moved to reasonable positions by

performing NVE/limit over a span of 25 ps at T = 500 K. Then, the equilibration

were started with 25 ps NVT ensemble at T = 500 K followed by ramping down the

temperature to 300 K over the same time duration. After that, the equilibrium was

finalized with running 25 ps NVT simulation at T = 300 K. Following the equilibration,
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the NVT simulations are continued for 50 ps to sample the radial, bond length and

bond angle distributions for IBI optimization. At this coarse–graining degree, the

time step of running coarse–grained simulations for equilibrium and sampling local

structures is 10 fs.

3.2.2 Simulation of Processing–Induced Microstructure

To model the curing process of polyurea, five initial prepolymer systems were

generated by randomly placing a mixture of coarse–grained diamine and diisonate

molecules (A+CS13CA+ and U−BBU−, respectively) into periodic simulation cells. The

simulation cells were cubic with an edge length of 20.4 nm, corresponding to a density

of 1.083 g/cm3. Each of these initial prepolymer system contains 3800 diamine and

4000 isonate molecules, which reflects the stoichiometry generally used for processing

our target variant of polyurea. The systems were briefly equilibrated over a period

of 10 ps at 300 K, in which the first 5 ps is performed using a displacement–limiting

integrator combined with a Berendsen thermostat and the last 5 ps is performed in

the NVT ensemble.

Following equilibration, step-growth polymerization was simulated over a period of

200 ns using the fix bond/react command in LAMMPS. At selected time steps during

the bonding simulations, pairs of A+ and U− super–atoms that are within a distance of

5.5 Å can form a new covalent bond with a probability of 0.5. The super–atom types of

newly bonded pairs of A+ and U− beads are then transformed to A and U, respectively.

In addition to a creation of a new bond, new angle interactions are generated along

the sequence of C–A–U and A–U–B beads along the chain. These changes to the

bond topology are specified using pre–reacted and post–reacted molecular templates
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which are provided as following. A thermostat was performed on the locally dynamic

group to relax high–energy interactions after attempts of topology change. And the

whole process of chemical reaction was undergoing in canonical ensemble (NVT) at

T = 300 K and initialized with randomly mixed configurations. All the simulations

were performed with a time step of 10 fs and the cut–off distance of non–bonded

pairwise interactions was 15 Å. The bonding simulations were performed at four

different bonding rates to determine the effectiveness that the reaction rate has on the

resulting molecular structure of polyurea. The reaction rate was controlled by varying

the time interval for attempting reactions, which ranged from 1 to 1000 ps, resulting in

the generation of four sets of cured systems: S1, S2, S3 and S4. Although these time

intervals lead to artificially rapid curing rates, the variation over four decades provides

insight as to how the relative timescales of the reaction and molecular diffusion during

phase segregation can lead to different molecular structure in the cured state.

Followings are the map templates, including a map file, a pre–reacted template

and a post–reacted template, for performing the chemical reaction using our coarse–

grained model. The map file contains a bonding atom ID pair and a surrounding

atom ID pair in pre–reacted template and the one–to–one atom pairs in pre–reacted

and post–reacted templates. The pre–reacted and post–reacted templates show a unit

molecular segment that is representative of bonding topology change. In summary, the

templates describe that the atom ID 1 (type 4) and atom ID 5 (type 5) in pre–reacted

template are the bonding candidates for topology change. And after reaction, the

atom ID 1 and atom ID 5 transform from type 4 and type 5 to type 1 and type 7,

respectively, and these two atoms are covalently bonded by this operation.

map.txt
# this is a map file
2 edgeIDs
7 equivalences
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BondingIDs
1
5
EdgeIDs
4
7
Equivalences

1 1
2 2
3 3
4 4
5 5
6 6
7 7

mol_mixture.txt
# Mixture molecule file for reaction simulation of CG2 polyurea

7 atoms
5 bonds
3 angles

Coords
1 2.359 7.663 5.392
2 4.841 10.098 3.414
3 5.453 10.129 -1.452
4 3.460 10.163 -5.993
5 1.330 4.322 3.041
6 3.812 6.757 1.063
7 6.543 10.586 -0.289

Types
1 4
2 3
3 6
4 6
5 5
6 2
7 2

Bonds
1 1 1 2
2 2 2 3
3 3 3 4
4 8 5 6
5 7 6 7

Angles
1 1 1 2 3
2 2 2 3 4
3 8 5 6 7
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mol_pu1000.txt
# Polyurea molecule file for reaction simulation of CG2 polyurea

7 atoms
6 bonds
5 angles

Coords
1 2.497 8.111 5.707
2 4.979 10.546 3.729
3 5.591 10.577 -1.137
4 3.598 10.612 -5.678
5 20.078 25.803 -9.224
6 16.326 25.282 -9.645
7 11.905 23.315 -8.906

Types
1 1
2 3
3 6
4 6
5 7
6 2
7 2

Bonds
1 4 1 2
2 2 2 3
3 3 3 4
4 5 1 5
5 6 5 6
6 7 6 7

Angles
1 4 1 2 3
2 2 2 3 4
3 5 2 1 5
4 6 1 5 6
5 7 5 6 7

To separate the effects of polymerization rate, polydispersity and molecular weight

on the resulting polymer structure and properties, we constructed polyurea systems

with equivalent molecular weight distributions of the polymerized systems by sampling

the molecular–length distributions with the fastest (S1) and slowest (S4) curing rates.

Each reconstructed system contains A+CS13(BUACS13CAUB)NBU− molecules in
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which the parameter N of each molecule is sampled from the chain length distributions

of the corresponding cured systems. The super–atoms in these sampled systems are

randomly placed in a simulation box and then equilibrium simulations were performed

in the NPT ensemble at p = 1 atm and T = 300 K for 200 ns during which time, a

phase segregated morphology develops. The resulting box lengths of sampled model

systems are less than 5% different with the sizes of corresponding cured systems. We

found that the radii of gyration in the equilibrated systems were highly correlated

with their initial configurations, i.e., after 200 ns of equilibrium, the average radius of

gyration changes by less than 10% from the initial configuration. In addition, the bead–

spring generator for generating model systems creates an atomic coordinate based on

its neighbors, e.g., the random positional vector from super–atom j to super–atom k,

rjk, is based on the location of atom i, in which i, j and k are three covalently bonded

super–atoms and the position of super–atom k is under determined. The length of rjk

is the initial equilibrium bond length of bond type between super–atoms j and k. The

direction of rjk is determined by a constraint that angle θijk is bounded by θ̂ijk ± ε,

where θ̂ijk is the initial equilibrium angle of the angle type comprised of super–atoms i,

j and k and ε is tolerance. We found that the initial conformation of generated chains

can be qualitatively controlled by the magnitude of angle tolerance by the means that

larger tolerance generates model systems with smaller mean gyration radii. Therefore,

we adjusted the hyperparameters ε of the bead–spring generator to make the radius

of gyration placed in a specific range as a second group of sampled systems. For each

sampled configuration, three different model systems were generated by randomly

sampling from the chain–length distribution of the corresponding cured systems. In

total, we have generated four more sets of model systems with progressively increasing

radius of gyration but similar molecular weight distribution compared with S1 and S4.
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The sampled systems with intermediate radii of gyration are named as S1A and S4A,

and high radii of gyration are named as S1B and S4B. Table 3.2 summarizes the eight

sets of systems generated by different methods.

To assess whether any processing–induced microstructural differences affect the

mechanical response of the model polyurea systems, simulations were performed in

which the systems were compressed at a constant engineering strain rate under uniaxial

stress conditions. Prior to deformation, the systems were equilibrated in the isothermal–

isobaric (NPT) ensemble at a constant pressure of 1 atm and temperature T = 300 K.

Following this equilibration, the systems were compressed to 40% of their original

length along the x–axis at a constant engineering strain rate of 6× 108 s−1. During

the deformation, the lateral normal stresses was maintained as σyy = σzz = 1 atm by

coupling the lateral lengths of the simulation box to a Nosé–Hoover barostat. The

time constants of the thermostat and barostat were both set to 0.5 ps. Stress histories

were computed using the time and ensemble averged virial stresses [88], where a 10 ps

window was used for temporal averaging.

It is worth noting that we are deforming the polyurea box in a really high strain

rate without considering the speed up of coarse–graining. However, the dynamic

properties of polymers in coarse–grained simulation evolve faster in a wide range of

time scales which depends on the degree of coarse–graining. The dynamic scaling

function determined by the ratio of mean square displacements from coarse–grained

to atomistic simulations reveals the coarse–grained dynamics at this coarse–grained

degree is 102 ∼ 103 times faster than atomistic scale [40]. In addition, we are taking

consideration of the effect of curing conditions on the microstructure of polyurea

network that may contribute to stress response under deformation. The effect of stress
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Figure 3.4: The RDFs of pairwise interactions between (a) A–A and A+–A+ (b) U–U

and U−–U− at the final iteration of IBI optimization. The shaded transparent regions

indicate 90% confidence intervals of the distributions.

response is supposed to be reflected even though the deformation rate can only be

satisfied in a time scale of molecular dynamics.

3.3 Results and Discussion

3.3.1 Calibration of Force Fields

The calibration of coarse–grained force fields were performed by above mentioned

IBI algorithm. The optimizing process was terminated after 33 iterations, by which

point, the coarse–grained RDFs reproduced the sampled target distributions with

a representation error of 4.6%. All the target and resulted distribution functions

including RDFs, bond length and bond angle distributions are shown in Figures 3.5,

3.6 and 3.7 and the trained coarse–grained harmonic bond coefficients are shown in
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Talbe 4.3. Figure 3.4 displays the resulted RDFs of A–A, A+–A+, U–U and U−–U−

pairs which function as the key interactions of bonding simulations. It can be seen

that the RDFs of the A–A and U–U pairs substantially differ from the RDFs of their

corresponding reactive super-atoms, i.e., A+–A+ and U−–U−. More specifically, the

larger peaks in the RDFs of the A–A and U–U pairs suggest stronger attractions

between A–A and U–U pairs than A+–A+ or U−–U− pairs, especially among the

U–U super–atom pairs. This reflects the stronger underlying interactions among urea

functional groups compared to among cyanate functional groups. The RDF of U–U

pairs has a large peak located at r = 4.55 Å representing the interactions of bidentate

hydrogen bonding between urea groups within the hard segments. The predicted

urea–urea distance from coarse–grained model is consistent with wide angle x–ray

diffraction measurements of polyurea [89] that show a 4.57 Å spacing between urea

groups.

3.3.2 Influence of Bonding Rate on Microstructural Evolution

The coarse–grained bonding simulations were performed by the resulting trained

force fields for a duration of 200 ns, by which time, the chemical conversion of reactive

sites in all bonding cases was higher than 99% and the chemical conversion rates are

close to zero. The chemical conversion is defined as the fraction of A+ super–atoms

converted to type A super–atoms. Chemical conversion histories of the reactive

coarse–grained systems running with various bonding rates are shown in Figure 3.8.
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Figure 3.5: The target and CG RDFs of all pairwise interactions at the final

iteration of IBI optimization.
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Figure 3.6: The target and CG ADFs of all bond angle interactions at the final

iteration of IBI optimization.

bond type l0 (Å) K (kcal/mol/Å2)

S − S 3.6363 83.29

C − S 4.8124 1.126

A− C 4.8223 1.535

A− U 3.6335 84.47

B − U 3.7828 58.23

B −B 3.7999 65.91

C − A+ 4.8640 13.91

B − U− 3.8954 108.7

Table 3.3: Harmonic bond coefficients for the CG model of polyurea in the format

consistent with the harmonic bond and angle styles in LAMMPS.
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Figure 3.7: The target and CG BDFs of all bond length interactions at the final

iteration of IBI optimization.
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Set f (ns−1) τ1 (ns) A1 τ2 (ns) A1

S1 1000 1.442 0.126 0.011 0.874

S2 100 2.135 0.128 0.064 0.871

S3 10 6.583 0.162 0.561 0.837

S4 1 32.64 0.275 6.924 0.717

Table 3.4: Fitting parameters of the chemical conversion history for each set of

curing simulations.

The conversion time histories are well represented by a biexponential function as

α(t) = A1 exp(t/τ1) + A2 exp(t/τ2) (3.11)

suggesting that the curing process has two characteristic time scales. The fitting

coefficients of the biexponential functions are listed in Table 3.4. The shorter of

the two time scales τ2 is inversely proportional to bonding frequency and accounts

for 70–90% of the reaction. The longer of the two time scales τ1 is near inversely

proportional to the square root of bonding frequency within the ranges of time scales

that are modeled, but the relationship appears to asymptotically reach a constant

value at faster reaction rates. This is physically justified, as it should take a finite

amount of time for reactive sites to diffuse close enough to react with each other.

To investigate the phase segregation behavior and polymerization degree during

polymerization, we report the mean hard–domain thickness (w), inter–domain spacing

(d) and weight–average molecular weight (Mw) in terms of simulation time within

different bonding frequencies, which are shown in Figure 3.9. The hard–domain

thickness and inter–domain spacing are characterized as the locations of the first local

minimum and subsequent maximum in the RDF of the hard super–atom types [66],

i.e., excluding super–atom type S in the coarse–grained model. As illustrated in
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Figure 3.9: Hard–domain thickness (w), inter–domain spacing (d) and
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Figure 3.10: Snapshot of S4 during polymerization at selected timestamps. light

brown and dark brown beads represent super–atoms in hard and soft segments,

respectively.
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Figure 3.10, hard segments rapidly segregate into clusters within the first 2 ns of

the simulations. For systems with faster curing rates, i.e., sets S1, S2 and S3, the

hard–domain thicknesses steadily increase to a value of approximately 3 nm, which

corresponds to the length of the hard segments. The mean inter–domain spacing shows

a similar behavior with the hard domain spacing steadily increasing to approximately

5 nm, with the final spacing slightly increasing with slower bonding frequencies.

However, the behavior observed for the slowest bonding frequency configuration S4

was markedly different, with the nearly instantaneous appearance of larger hard

domain widths and spacings that steadily decreased over the curing simulations. The

weight–average molecular weight of the systems in S4 remained less than 1.43 kg/mol

during the first 2 ns of the curing simulations compared to 7.83 kg/mol for the systems

in S3. At this molecular weight, most of the polyurea chains are diblocks, which

were shown to form a coarser phase segregated structure by Arman et al. [36]. To

further characterize the phase–segregated morphology, we calculated the RDFs of

super–atoms within hard segments at the final state of the simulations, which is

shown in Figure 3.11c. The hard–phase RDFs slightly differ within different bonding

conditions revealed by locations of valley and peak values at approximately 3 nm

and 5 nm, respectively. Therefore, the thickness of ribbon–shape hard domains and

inter–domain spacing are extracted from hard super–atom RDFs which are shown in

Table 3.5. Accordingly, the hard domain thickness decreases as increased reaction

speed, and the inter–domain spacing decreases in the same fashion, suggesting that

faster curing speed leads to relatively tighter hard phase.

At the end of the bonding simulations, the hard segments are clustered together

to form interconnected ribbon–shaped hard domains surrounded by a soft matrix.

Figure 3.11a shows the final morphologies of the different systems, clearly showing
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Interconnected structures in hard domains: each hard domain is assigned a unique

color. (c) RDFs of super–atoms in hard segments. (d) Mass fractions of the largest

hard domain over total hard segments in different bonding frequencies.

that the initially mixed hard/soft super–atoms transform into a phase–segregated

morphology for all of the bonding rates considered. We clustered the hard segments

into separate hard domains by defining hard segments belonging to the same hard

domain if the minimum U–U pair distance between any two hard segments is less than

4.55 Å which corresponds to the location of the first peak in the RDF of U–U pairs

which accounts for the hydrogen–bonding interaction. The resulting hard domains,

shown in Figure 3.11b, are inter–connected and form a long–range connectivity, consist

with experimental observations [11, 14]. Consistently across all modeled bonding

frequencies, the largest identified hard domain contained the majority of the hard

segments, i.e., more than 60% as shown in Figure 3.11d, indicating that the cured

systems tend to form continuous hard domain structure.
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Figure 3.12: Distributions of soft segment end–to–end distance: (a) bonding

configurations and (b) sampled configurations. Fits to the data are represented as

dashed lines.

The mass–average molecular weight, polydispersity index and radius of gyration

of cured polyurea systems are shown in Table 3.5. The polydispersity index is

calculated as ratio of mass–average to number–average molecular weight. Higher

curing frequencies lead to both increased mass–average molecular weight and increased

polydispersity. The number–average radius of gyration is an evidence of larger

dimension occupied by molecules from faster cured polyurea systems. The relatively

longer chains occupying larger spatial dimension are making up many more hard

domains and under higher constraints from hard segments trapped in hard domains

in polyurea network, which is able to improve the strength of polymeric materials.

The difference in radius of gyration among different bonding rates is correlated

with the diffusion effect of prepolymers. As the bonding speed increases, the chain

conformation is closer to the one of post-bonded polyurea chains polymerized without
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any prepolymer diffusion, where the isonate and diamine molecules are randomly

distributed in unit cells. However, as the bonding speed slows down, prepolymer

molecules diffuse into fuzzy hard clusters which means the bonding sites essentially

interact with local neighbors and, therefore, chains hardly propagate to long–range

distance.

Soft segments connect hard domains via different topologies: loop or bridge, which

has been shown to affect inelastic deformation mechanisms in polyurea and segmented

polyurethanes [36, 43]. However, the fraction of bridge–type or loop–type soft segments

in our model systems is difficult to distinguish due to the nearly continuous structure

of the hard domains. Therefore, we calculated the distribution of soft segment end–to–

end distances (re) which is then fitted to a mixture of two normal distributions which

describes the populations of loop and bridge soft segments [41]. The distributions

of the soft segment end–to–end distances are shown in Figure 3.12a. The mean

end–to–end distance of the loop–type soft segments is approximately 1.5 nm and the

mean end–to–end distance is about 3.4 nm within bridge–type segments. The fraction

of bridge/loop–type soft segments are estimated as the areas under the two respective

normal distributions and the corresponding fractions are shown in Table 3.5. At higher

curing frequencies, the fraction of bridging soft segments increase. By contrast, the

distribution of hard–segment end–to–end distance shows a left skewed bell shape with

a single peak located at approximately 2.2 nm for all bonding rates, suggesting that

hard–segment conformation is rarely affected by bonding rate. The distributions of

end–to–end distance within hard segments are shown in Figure 3.13.

The characterization of microphase separation and molecular conformation of

resampled systems mimicking the chain–length distributions within S1 and S4 bonding

configurations are represented via the same way of commonly cured systems as a
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Figure 3.13: End–to–end distance distribution of hard segments within all bonding

configurations.

f = 1 ns−1 f = 10 ns−1 f = 100 ns−1 f = 1000 ns−1

A1 0.357 0.355 0.252 0.231

std1 0.691 0.773 0.702 0.689

µ1 1.50 1.50 1.50 1.50

A2 0.663 0.675 0.768 0.786

std2 0.769 0.779 0.806 0.802

µ2 3.38 3.36 3.39 3.41

Table 3.6: Fitting parameters of end–to–end distributions.
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comparison. Resulting molecular characterization and phase–related measurement

are shown in Table 3.5 under system label S1A, S1B, S4A and S4B. The mass–average

molecular weights of sampled systems reveal the correctness of reconstruction process,

by which the sampled polyurea systems successfully reproduce the average molecular

weight as well as the polydispersity indexes of corresponding polymerized polyurea

systems, i.e., S1 and S4. However, it is worth noting that the radius of gyration

is much higher than the one of corresponding cured systems, which is correlated

with the initial coordinates of super–atoms. The phase–segregation morphology is

also analyzed by RDFs of hard–segment super–atoms, shown in Figure ??. Even

though the average molecular weights of sampled systems are really close to the

situation in corresponding curing case, the difference in Mw between S∗A and S∗B

does not differ the morphology from each other. The mean hard–domain thickness

and inter–domain spacing of sampling configurations are all approximately 2.9 nm

and 5.2 nm, respectively. As shown by end–to–end distribution of soft segments in

Figure 3.12b and fraction of bridges in Table 3.5, the soft–segment conformation is

mostly made up of bridge–type connection. The segmental conformation is highly

correlated with chain conformation measured as radius of gyration: as the molecules

spread within large spatial dimension rather than curl up in a finite entity, it is more

possible for the chains to link various hard domains rather than repeatly connect one

or two hard domains. Both radius of gyration and soft–segment behavior are revealing

that the hard domains in reconstructed polyurea network are highly inter–connected

by soft segments.
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Figure 3.15: True stress–true strain behavior of the model systems under uniaxial

compressive stress loading.
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Figure 3.16: Fraction of bridges
versus flow stress.
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3.3.3 Mechanical Behavior

During the uniaxial compression of the cured and sampled model systems, the

six independent components of atomic virial stresses were calculated. Under the

uniaxial stress conditions, the shear stresses oscillate about zero and the normal

stresses in the transverse directions, i.e., σyy and σzz, oscillate about 1 atm. The

compressive stress response in the loading direction, i.e., σxx, is shown in Figure 3.15

for all the sets of model systems. The stress behavior can be broken down into three

strain regimes, which qualitatively agree well with experimental observations [26, 33].

At low strains (0 < εxx < 0.04), stresses behave as linear elastic regime until a

yielding point appears at about true strain εxx = 0.04 with a yielding stress of around

σxx = 4 MPa. At intermediate strains (0.04 < εxx < 0.3), the response softens, and at

strains larger than 0.3, the responses deviate within different bonding configurations

at large strains: the ultimate compressive strength at true strain εxx = 0.9 increases

as faster reaction speed in bonding simulations. In addition, the strengths of sampled

configurations are much higher than the one of model polyurea polymerized from small

prepolymers, even though the molecular weights and polydispersity of the sampled

polyurea network are similar to the corresponding polymerization results. With

similar results of microphase separation and polymerization degree in polymerized

and sampled systems, the difference in stress response is potentially induced from

chain and segmental conformation, represented as substantial difference in radius of

gyration and fraction of bridge/loop.

Figure 3.16 and Figure 3.17 display the flow stress measured at true strain of

εxx = 0.4 and 0.9 as a function of fraction of bridges and radius of gyration, respectively.

From figure 3.16, clearly positive trend between amount of bridges and stress response
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is observed especially under large strain, suggesting a nonlinear relationship between

strength and fraction of bridge. With small amount of bridge–type soft segments

(< 70%), flow stress at εxx = 0.4 are not substantially affected by bridge fraction,

whereas the flow stress slightly increase with larger amount of bridges at εxx = 0.9.

With large amount of bridge–type soft segments, the flow stress increases faster with

increasing bridge amount representing the similar behavior as shown in [43] by tensile

testing and the behavior of bridge–type soft segments supporting hard domains are

more obvious at large deformation due to fully stretching state of soft segments at

large strain. Additionally, figure 3.17 represents the flow stress of model polyurea

is also highly correlated with the radius of gyration: high radius of gyration leads

to higher flow stress. Because larger dimension of molecular chains provides higher

probability to be involved in inter–domain interactions between hard domains in

polyurea or crystalline phases in semicrystalline polymers. And these chains linking

many hard domains are under more constraints from intermolecular and inter–domain

entanglements in phase–segregated copolymers, which reinforces the behaviors of

bridge–type soft segments during deformation as shown in [43], i.e., a polyurea chain

connecting many hard domains by some amount of bridge–type soft segments tends

to make more contribution to strength than a chain connecting two hard domains by

same amount of bridges.

To represent the rate–dependent behavior of polyurea by current coarse–grained

model, the flow stresses of S1 and S4 at true strain of εxx = 0.4 and 0.9 as a function of

several strain rates are in shown Figure 3.18 on a logarithmic scale. The experimental

values from [22] measured by compression test with strain rates up to 104 s−1 are

also shown in the figure. For polymerized polyurea networks from curing simulations,

the stress values show qualitatively similar rate–dependent behaviors within strain
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Figure 3.18: Flow stresses at selected true strain from uniaxial compression on S1

and S4 cases versus true strain rate shown in log–log scale.

rates ranging from 106 to 109 s−1. The stresses at strain of 0.9 behave slightly higher

linear rate–dependency in log–log scale than the stresses at strain of 0.4 as shown

by higher stress value increase between 108 and 109 s−1 than the one between 107

and 108 s−1. The rate–dependent stress behavior of current model polyurea network

agrees well with experimental result. However, it is evident that the relative lower

stress magnitudes from coarse–grained simulations are not obviously inferred from

low strain–rate experiments due to the fast diffusion and smooth energy surface of

coarse–grained model.

Figure 3.19 shows the distributions of soft–segment end–to–end distance after

uniaxial compression within all configurations. For bonding cases in Figure 3.19a,

the locations of peak values representing loop–type soft segments stay as the same

as the one before deformation. However, comparing with the initial distributions,

the locations of the second peak increase by 34% and the bell shapes are broaden

by deformation, which suggests the bridge–type soft segments are stretched in the
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Figure 3.19: Distributions of soft segment end–to–end distance at εxx = 0.9: (a)

bonding configurations and (b) sampled configurations. Fits to the data are

represented as dashed lines.

transverse plane. The stretched segments constrain the movement of the hard domains

in the transverse plane contributing to the material strength. As shown in Figure 3.19b,

sampled systems behave differently with polymerized polyurea systems, both types of

soft segments as characterized by loop and bridge–type segments are under strongly

tensile loading and the average end–to–end distance substantially moves to larger

values. According to the change of soft–segment end–to–end distributions, polymerized

systems and sampled systems of coarse–grained polyurea in this work are showing

substantially different mechanical mechanisms under uniaxial compressive deformation.

For polymerized polyurea, the conformation of loop–type soft segments has not been

changed by deformation, whereas the bridge–type soft segments are obviously stretched.

For sampled polyurea, both loop–type and bridge–type soft segments behave with

tensile phenomenon. The difference of conformational change within polymerized
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and sampled systems indicates that, in addition to segmental topology, chain or

segmental conformation plays a greatly important role in deformation mechanisms

under compressive loading especially in co-continuous structures, which is hardly

observed in lamellar stack model of self–assembled copolymers [43].

3.4 Summary

In this section, we developed a reactive coarse–grained model for polyurea elas-

tomers, the force fields of which were calibrated through matching structural features

sampled from atomistic partially–polymerized polyurea systems. With the coarse–

grained model, we are able to perform polymerization simulations to generate polyurea

systems close to real polyurea network with a consideration of prepolymer diffusion

and study the effect of polymerization on microstructures and mechanical properties.

The polymerization conditions were varied by different chemical reaction speeds over

four decades of time scales which leads to polyurea systems with various morphologies,

polymerization degrees, segmental and chain conformations. Additional polyurea

systems were generated by sampling the molecular weight distributions of polymerized

polyurea and random walk equilibrium instead of polymerzation simulations.

As a result, the microphase separation of polyurea was quantitatively studied via

RDFs of super–atoms within hard segments indicating that slower reaction speed

provides hard domains with larger domain thickness and inter–domain spacing. And

faster reaction leads to higher polymerization degree, i.e., larger mass–average molec-

ular weight, and higher degree of polydispersity in molecular weight. For chain

conformation, the chains that polymerized at a faster rate tended to have a larger

radius of gyration, and therefore, on average, form bridges across a larger number of
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hard domains. During uniaxial compression, the strain–stress curve of coarse–grained

model shows power–law relationship within strain rates over three decades under

compression. And with probabilistic characterization of segmental behaviors, the com-

pressive strength of polyurea network is substantially affected by segmental topologies,

i.e., relative fraction of bridge–type and loop–type soft segments. Higher fraction of

bridge–type soft segments leads to higher compressive strength especially at large

deformation when bridges are fully stretched between hard domains. In addition,

compressive strength also shows positive dependence on chain conformation as revealed

by radius of gyration and flow stress at different strains. The behavior of end–to–end

distance within hard segments during deformation indicates the compressive strength

is mainly contributed by deformation of hard domains which shows highly correlation

with chain and segmental conformations.

The coarse–grained model is able to perform wide range of chain conformations

compared with segmental length. The result in our work indicates that the compressive

strength is highly dependent on spatial arrangement of polyurea chains in addition

to topology of soft segments. The positive dependence of compressive strength on

radius of gyration suggests that a polyurea chain comprised of similar amount of

bridge connections may have different effects on deformation mechanism, i.e., a chain

connecting many hard domains attempt to make more contribution to strength than

connecting same two hard domains in a back and forth regime. However, the co–

continuous structure of hard domains and the way of generating polyurea networks

in this work place much difficulty to quantatively control the fraction of bridges or

chain conformation. Even though, the current study provides essential insights of

deformation mechanism affected by both segmental and chain behaviors in polyurea

networks.
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Chapter 4

MULTIRESOLUTION COARSE–GRAINED MODELING FOR

STRUCTURE–PROPERTY RELATIONSHIP OF POLYUREA

4.1 Introduction

The dynamic properties of polymer depend on a wide range of temporal and

spatial scales, thus modeling the dynamics of polymer at atomistic scale is inherently

challenging [35]. Since the classical atomistic simulation is overwhelmed to probe the

diffusive and segmental dynamics in entangled polymer, coarse–grained molecular

models, which reduce the computational cost by pruning the degrees of freedom,

have been developed to unearth the relationship between microscopic structures and

macroscopic properties in mesoscale. Due to the simplified geometric information, the

effectiveness of coarse–graining process is essentially dependent on capturing critical

target properties derived from atomistic scale. Therefore, researchers have been

focusing on the procedure of developing coarse–grained models, including training

effective force fields [90, 91], choosing appropriate mapping scheme [92–94] and scaling

the dynamics accelerated by smoothed free energy [95, 96], to retain as much atomistic

characteristics as possible.

On the other hand, the insight at atomistic scale is also required in many cases. For

instance, to investigate a strain–stress relationship that is comparative to experimental

measurement, we usually have to scale the computational result to make the accelerated

dynamics match experimental values. However, the heterogeneous microstructure of

polyurea or other block copolymers poses difficulties to linearly handle the dynamic
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relationship between atomistic and coarse–grained scales. In addition, the mechanical

behaviors of polyurea, such as viscoelastisity and shear strength, are highly dependent

on the hydrogen bonding which is usually omitted in low–resolution models. Therefore,

it would be beneficial to transform the CG representation back to atomistic scale.

In this section, we proposed a hierarchical backmapping framework starting from

the reactive coarse–grained model to the atomistic scale, which is able to retain the

microstructural features, including phase–segregated morphology and crosslinking,

constructed from polymerization simulations. We firstly developed an intermediate

coarse–grained model for polyurea to fill the gap between the high–resolution united–

atom–like model in Chapter 2 and the bead–spring polymerization model as described

in Chapter 3. Then three cycles of fragments insertion and energy minimization

can be performed to effectively and efficiently transform a model system constructed

via polymerization simulation into a full–scale system. Taking advantage of the

multiresolution coarse–grained models developed in this work, we are also able to

investigate the segmental dynamics and relaxation times in different time scales and

study the dependence of coarse–graining degree and temperatures.

4.2 Model and Methodology

4.2.1 Multiresolution Coarse–Grained Modeling

The coarse–grained models at various resolutions are denoted as CG0, CG1 and

CG2 with increasing degree of coarse–graining, among which CG0 is the united–atom–

like model as described in Chapter 2, CG2 is the bead–spring model as described in

Chapter 3 and CG1 is an intermediate model bridging the former two coarse–graning
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Figure 4.1: Coarse–grained mapping scheme of the intermediate CG model.

scales. The mapping scheme of the intermediate coarse–grained model introduced in

this work is shown in Figure 4.1. The number of degree of freedom within CG0, CG1

and CG2 was reduced by an approximate factor of two from a high–resolution model

to the next low–resolution one.

The effective force field of each coarse–grained model was calibrated by the iterative

Boltzmann inversion (IBI) method:

Vi+1 = Vi + αkBT ln

(
Pi
P ∗

)
, (4.1)

where Pi are the structural distributions sampled from coarse–grained MD simula-

tions using potentials Vi at iteration i, P ∗ are the corresponding target structural

distributions computed from atomistic systems using the corresponding CG sites, kB

and T are Boltzmann coefficient and temperature. Parameter α is a scaling factor to

dampen the potential update and improve the stability of optimization. The initial

guess of effective potentials to start the IBI algorithm are estimated by Boltzmann

83



inversion:

V0(l) = −kBT ln

(
P ∗(l)

l2

)
(4.2)

V0(θ) = −kBT ln

(
P ∗(θ)

sin(θ)

)
(4.3)

V0(φ) = −kBT ln (P ∗(φ)) (4.4)

V0(χ) = −kBT ln (P ∗(χ)) (4.5)

V0(r) = −kBT ln (g∗(r)) , (4.6)

where P ∗(l), P ∗(θ), P ∗(φ), P ∗(χ) and g∗(r) are the target bond, angle, dihedral angle,

improper angle and RDF distributions sampled from atomistic simulations. As the

divergence between target distributions and coarse–grained distributions approaches

a negligible value, the coarse–grained force field becomes representative of local

structures in the atomistic scale. The evaluation of optimization performance is

described in [41].

The coarse–grained models are implemented by the most representative effective

potentials for describing the structural features in corresponding resolution. As the

resolution decreases, dihedral and improper angles are not able to represent the

segment stiffness which is usually implicitly performed in bond angle potentials.

More specifically, the bond stretching, angle bending and non–bonded pair potentials

are implemented in all coarse–grained models, while dihedral and improper angle

potentials are omitted in CG1 and CG2 models. The bond potentials in all coarse–

grained models and angle potentials in CG0 and CG1 are performed by harmonic

functions, whereas the rest effective potentials, including non–bonded pair potentials,

dihedral angles in CG0, and angle potentials in CG2, are represented as numerical

tables. The implementation of effective potentials in each coarse–grained model are

summarized in Table 4.1.
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CGλ bond angle dihedral improper pair

CG0 harmonic harmonic table table table

CG1 harmonic harmonic – – table

CG2 harmonic table – – table

Table 4.1: Summary of effective potentials implemented in each coarse–grained

model.

To sample the target structural distributions according to corresponding CG sites

of each coarse–grained model, fifteen atomistic systems were generated and the atoms

of each are randomly placed in a periodic simulation cell. Each simulation cell contains

twenty single–block oligomeric polyurea molecules. To equilibrate the simulation cells,

the atomistic systems were first relaxed in the isothermal–isobaric (NPT) ensemble

over a duration of 8 ns with T = 500 K and p = 1 atm. Following the equilibrium

at elevated temperature, the temperature decreases to T = 300 K over a duration

of 8 ns, and then the systems were further equilibrated for 16 ns at T = 300 K and

p = 1 atm. Following above equilibration, a 1 ns duration canonical (NVT) ensemble

simulation was performed to sample the atomistic trajectories. Then, the atomistic

coordinates are mapped to corresponding CG sites, from which RDF, bond length,

bond angle, dihedral angle, and improper angle distributions are computed. The

first– and second–bonded neighbors of each super–atom are excluded for CG0 and

CG1 while only the first–bonded neighbors are omitted for CG2 while computing

the target RDFs. The timestep of running atomistic simulations was 1 fs. In this

work, the molecular dynamics simulations are performed using the Condensed–phase

Optimized Molecular Potentials for Atomistic Simulations Studies (COMPASS) force

fields [60, 61], where long–range Coulombic interactions are calculated using the
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particle–particle/particle–mesh (PPPM) method in the LAMMPS kspace package [83].

The cut–off distances of Lennard–Jones interactions and short–range Coulombic term

are set to be 9.5 Å.

4.2.2 Hierarchical Reverse Mapping
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Figure 4.2: Multiresolution coarse–graining and hierarchical backmapping workflow

of polyurea.

To construct atomistic molecular systems with microstructural morphology and

molecular conformation that are close to real polyurea network, we incrementally

transformed the coarse–grained models back to atomistic scale in a top–down regime

retaining the microstructural features calibrated in long time scale: CG2 → CG1 →

CG0 → atomistic. Figure 4.2 shows a schematic configuration of the workflow.

We firstly generated a prepolymer system with isocyanate and amine molecules in

CG2 scale and performed a polymerization simulation to develop a polydisperse and

phase–segregated polyurea network. To validate the workflow, we firstly picked one
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CGλ timestep (fs) number of super–atom types

AA 1 11

CG0 2 9

CG1 4 7

CG2 5 5 (7)

Table 4.2: Summary of polyurea model systems.

of the model systems constructed with the fastest bonding speed in Chapter 3 and

characterized the system via some typical static properties. Then, to compensate the

computational effort required by high–resolution models, the second model system for

the rest simulations and analysis in this chapter was initialized with 1/4 composition

of the one in Chapter 3 and polymerized by the same bonding condition. The

CG2 polyurea model systems constructed by polymerization simulations were then

transformed back to the intermediate model CG1 followed by a short–time equilibrium.

After the equilibrium, the CG1 systems were mapped back to the CG0 scale. Finally,

following an equilibrium and backmapping operation from CG0 to atomistic scale,

the polyurea model systems in full scale were generated. After each backmapping,

a two–stage equilibrium of 0.5 ps NVT/limit at T = 300 K followed by 10 ps NPT

ensemble at T = 300 K and p = 1 atm is performed to relax the local potential energy.

With the equilibrium, the total potential energy goes down and reaches a plateau when

the relaxation is done. Table 4.2 shows a summary of timesteps and number of super–

atom types within multiresolution models. The CG2 system for analyzing dynamics

was generated with 20k super-atoms and the atomistic system was constructed with

231k atoms and box length is approximately 134 Å after backmapping.
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4.2.3 Multiresolution Simulations

Once we have the multiresolution coarse–grained model systems generated by

the step–wise backmapping procedure, we performed several molecular dynamics

simulations to evaluate the dynamics of polyurea. We firstly performed equilibrium

simulations through constant volume and temperature T = 300 K, by which to

characterize the acceleration of coarse–grained diffusion comparing with the one of

atomistic model. Then, an extra set of simulations are relaxation process after a step–

wise strain deformation. The step–wise strain deformation was performed by NPT

ensemble, in which the model systems were stretched to λ = 1.5 along x–axis in 10 ps

with a constant engineering strain rate. The deformation was followed by a relaxation

scheme, in which the two ends of the simulation box along the loading direction were

fixed. Both the tensile deformation and relaxation simulations were established as

uniaxial stress state, in which the lateral pressures, i.e., σyy and σzz, were maintained as

p = 1 atm by using anisotropic barostat in NPT ensemble. For different coarse–grained

and atomistic models, the relaxation simulations were performed at T = 300 K. And

two extra simulations were set up on the atomistic model with elevated temperatures

of T = 345 and 380 K. The damping parameters for temperature and pressure during

relaxation were 100×∆t and 1000×∆t, respectively, for different models.

4.2.4 Characterization

In this chapter, we probe the dynamics of multiresolution models by calculating

mean squared displacement (MSD), correlation of soft–segment end–to–end vector

and slip vector under various conditions. To characterize the diffusion in different

88



models, we calculated the MSD during equilibrium simulations by:

MSD(t) = 〈|x (t)− x (0) |2〉, (4.7)

where x(t) is the center of mass of each segment at time t.

For the relaxation simulation, the correlation of end–to–end vector of soft segments

was monitored to characterize the segmental dynamics during relaxation:

Cee (t) = 〈re (t) · re (0)〉, (4.8)

where re(t) is the end–to–end unit vector of soft segments at time t.

We assume the resulting correlation functions of relaxation can be represented by

exponential decay. Therefore, we characterize the time scales via fitting the correlation

functions by exponential functions:

f(t) = A exp

[
−
(
t

τ

)]
, (4.9)

where A is amplitude, τ is the relaxation time. Since the conformational relaxation

can be broken into several relaxation processes and time scales, a correlation function

can be represented by a biexponential function as:

F (t) =
k=2∑
i

Ai exp

[
−
(
t

τi

)]
, (4.10)

where Ai and τi are the corresponding parameters tending to describe each relaxation

process.

In addition to segmental dynamics, we probe the local dynamics using slip vector

(si) to represent the maximum relative displacement of (super–)atom i with respect

to its neighbor j [36]:

si = max (xij −Xij) , (4.11)
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where xij and Xij are the distance vector between super–atom i and j at current and

reference configurations, respectively. The slip vector is originally a measurement

to evaluate the relative sliding in crystal lattice structure [97–99]. In this work, we

apply the slip vector with distance–based neighbor list to estimate the local dynamics

which is a key metric of local relaxation. To compute the slip vector, we consistently

collect the neighbors for each (super–)atom within a cut–off distance of 5.0 Å which

is approximately the leading zero distance of RDFs sampled from CG2 systems.

4.3 Results and Discussion

4.3.1 Model Validation

The force fields of the intermediate coarse–grained model, i.e., CG1, were calibrated

by 10 steps of IBI optimization, at which iteration the representation error satisfied

the statistics–based convergence criterion as mentioned in Chapter 2 and Chapter 3.

The potential coefficients for bond stretching and bond bending interactions are shown

in Table 4.3. The target (atomistic) and resulting (coarse–grained) structural distri-

butions corresponding to CG1 mapping scheme at the final iteration of optimization

are shown in Figure 4.3, Figure 4.4 and Figure 4.5. For RDFs, the representation

error measuring the difference between coarse–grained and atomistic distributions is

less than 6% at the final step of iteration. However, since the bond stretching and

bond bending potentials are implemented by harmonic functions while some target

distributions do not follow a perfectly bell–shape distribution, minor deviation appears

in some of the structural distributions between target and coarse–grained model.
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bond type l0 (Å) K (kcal/mol/Å2)

F −G 2.613 11.38

D −G 3.611 5.377

A−D 3.139 118.1

A−B 3.055 105.4

B − C 1.371 394.8

A− E 1.859 290.5

E − E 2.528 57.28

angle type θ0 (deg) K (kcal/mol/rad2)

G− F −G 142.0 3.567

F −G− F 163.0 2.136

D −G− F 148.9 1.167

A−D −G 131.2 3.303

B − A−D 137.1 119.3

A−B − C 131.8 8.071

B − C −B 117.2 113.4

B − A− E 120.1 145.1

A− E − E 148.9 5.115

A−D − A 45.81 653.0

A−B − A 46.26 563.9

A− E − A 83.34 186.5

Table 4.3: Harmonic bond and angle coefficients for the CG1 model of polyurea in

the format consistent with the harmonic bond and angle styles in LAMMPS.
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Figure 4.3: The target and CG1 RDFs of all pairwise interactions at the final

iteration of IBI optimization.
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Figure 4.4: The target and CG1 ADFs of all bond bending interactions at the final

iteration of IBI optimization.
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iteration of IBI optimization.
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The polymerization simulation performed by CG2 model was running for 200 ns,

by when the chemical conversion is 100%. The polymerized polyurea CG2 system

is composed by approximately 80k super–atoms in a cubic cell with a box length

of 20.4 nm. By backmapping this CG2 system through the regime described in

Section 4.2.2, we obtained an atomistic polyurea system and the intermediate CG

model systems with statistically equivalent network. Figure 4.6 shows the total

energy, i.e., kinetic energy and potential energy, histories during the equilibrium

after backmapping operations corresponding to multiresolution coarse–grained models.

Every step of backmapping generates locally high energy regions, however, the energies

rapidly decrease several decades in 1 ps and reach plateau values within an equilibrium

of 15 ps, suggesting the capacity of the hierarchical reverse–mapping scheme introduced

in this chapter.

Figure 4.8 shows a snapshot of model systems corresponding to different resolutions.

The color schemes of super–atoms in different models are designed to be similar coloring
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CGλ 〈Rg〉 (nm) 〈Ree〉 (nm) 〈Rs
e〉 (nm) fbridge (%)

CG2 6.49 14.4 2.68 78.94

CG1 6.63 14.7 2.99 80.91

CG0 6.53 14.4 3.09 79.07

AA 6.53 14.5 3.05 80.71

Table 4.4: Summary of static properties from multiresolution coarse–grained model

systems.

CG2 CG0 AACG1

20.4 nm

Figure 4.8: VMD plot of multiresolution CG models.

styles. The morphology of various model systems are consistently representing the

microphase separation of hard domains embedded in soft domains. And according

to the RDFs of hard–type super–atoms displayed in Figure 4.7, the hard–domain

thickness and inter–domain spacing in CG2 are approximately 3.0 nm and 5.2 nm

which are both slightly smaller than the other CG model systems with 3.1 nm and

5.5 nm. The deviation of the characteristic lengths of hard domains between CG2

with other models is due to the replacement of the functional A+ and U− by A and U

super–atoms, respectively, when transforming CG2 to CG1 for convenience.

To validate that the multiresolution model systems are containing equivalent

network characteristics, some static properties of each model system are calculated,

shown in Table 4.4. The chain conformation characterized by radius of gyration, mean

end–to–end distance, mean end–to–end distance of soft segments and corresponding
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fraction of bridge–type soft segments is consistent within coarse–grained systems at

different resolutions. Slight discrepancy can also be seen between CG2 with other

models due to the simplification of super–atom types. However, this discrepancy

does not lead to significant variation in fraction of bridge–type soft segments among

different models.

4.3.2 Mean Squared Displacement

During the NVT equilibrium simulations using the multiresolution models, we

calculated the mean squared displacement (MSD) of the center of mass within each

segment based on Equation (4.7) to probe the segmental diffusion of each model

system. Figure 4.9 shows the MSD of each model ensemble–averaged over the whole

system or hard and soft segments separately. In Figure 4.9a, the diffusion of each

coarse–grained model is consistently faster than the one of atomistic model and the

diffusive rate increases with increasing coarse–graining degree. However, the increment
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Figure 4.9: MSD of multiresolution models during NVT simulations.
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between each pair of coarse–grained models is not homogeneous. In the first 2 ns, the

MSD of CG1 is close to that of CG2 and after which the slope of CG1 MSD decreases

with time. According to [44], this heterogeneous behavior within multiresolution

models suggests the critical degree of coarse–graining. In addition, the initial slope of

MSD does not follow the one derived from Rouse model, i.e., ∼ t1 [100], suggesting

that the segments are under constraint and not moving to segmental dimension.

And Figure 4.9b shows the MSD averaged over hard and soft segments, respectively,

representing the difference of segmental mobility between hard and soft phases. It is

clearly to see the MSD of each model system is dominated by the behavior of soft

segments and the MSD of center of mass of hard segments mostly linearly increase in

log–log space within the time scale of multiresolution simulations. In atomistic model,

the MSD of soft segments and hard segments overlap in the first 1 ns of simulation

indicating the glassy behavior of soft phase in short time scale, after which the soft

segments display higher mobility compared with hard segments suggesting rubbery

behavior. And this gap between the MSD of hard and soft segments is more significant

in CG0 and CG1, but being broken in CG2, in which model the hard segments become

even more mobile than soft segments after 10 ns.

4.3.3 Relaxation Process

In order to evaluate the temperature–dependence of segmental dynamics and

the relationship with coarse–graining degree, we simulate the relaxation process by

atomistic and coarse–grained models and monitor various metrics, including correlation

of end–to–end vectors among soft segments and slip vector, in different time ranges.

The correlations of soft–segment end–to–end vectors are calculated by Equation (4.8)
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Figure 4.10: End–to–end correlation of soft segments in atomistic systems.

and illustrated in Figure 4.10 and Figure 4.11. The data points are fitted by a

bi–exponential function as shown by Equation (4.10) and the fitting parameters

representing the two characteristic time scales of segmental dynamics are displayed in

Table 4.5.

The correlations of soft end–to–end vectors obtained by atomistic simulations

within 100 ns in terms of different temperatures are shown in Figure 4.10. The empty

circles are data points queried from simulations with a time interval of 10 ps and the

dashed curves are the best fitting on each group of data points by Equation (4.10).

The correlation of re of soft segments rapidly decays in the first 10 ns followed

by a relatively slower relaxation process. At different temperatures, the long–term

relaxation times are shortened by higher temperature of simulations suggesting that

higher kinetic energy accelerates the segmental dynamics of soft segments. The long–

term characteristic time at 300 K is approximately 2.58 times of the characteristic

time at 380 K. This long–term relaxation time is on the same order of the one that

was previously observed in the dielectric spectrum of PTMO–based polyurea [101] and
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T (K) τ1 (ns) A1 τ2 (ns) A2

300 9824.5 0.981 9.78 0.0117

345 5998.0 0.968 12.39 0.0174

380 3806.4 0.947 13.01 0.0340

CGλ τ1 (ns) A1 τ2 (ns) A2

CG0 13763.7 0.955 17.59 0.0303

CG1 8113.9 0.894 9.89 0.0578

CG2 2938.5 0.636 84.69 0.2160

Table 4.5: Fitting parameters of soft–segment end–to–end correlation in different

model systems and temperatures.

has been attributed to the α relaxation process representing the segmental motion

in soft phase. In contrast to the long–term relaxation, the temperature dependence

of short–term relaxation behaves in a way opposing to long–term relaxation, i.e.,

higher temperature provides longer characteristic time scales. However during our

simulations, the relaxation process is dominated by the slow process of relaxation.

A (ns) T0 (K) B (K)

1.66×106 812.8 2630.3

Table 4.6: Fitting parameters of Vogel–Tammann–Fulcher equation.

The temperature dependence of the characteristic time was fitted by Vogel–

Tammann–Fulcher (VTF) equation which is a widely used function to describe the

temperature–dependent characteristic time of dynamics in glass–forming liquid [102–
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Figure 4.11: End–to–end correlation of soft segments in CG systems.

104]:

τ = τ0 exp

(
B

T − T0

)
, (4.12)

where τ0, B and T0 (Vogel temperature) are fitting parameters which are shown in

Table 4.6. It is worth noting that the long–term relaxation times at the order of

∼ 10−6 s agree well with the α relaxation in soft domain as shown in [101]. However,

the segmental motion of the soft segments is also constrained by the mobility of hard

domains suggesting that the relaxation time obtained from this calculation is also

partially attributed to the hard phase. This intermediate phase chemically belong

to soft segments while its relaxation dynamics distinctly differ from soft domains

as previously observed from dielectric spectroscopy [11, 13, 105] and DMA [106] on

polyurea systems.

To bridge the dynamic time scales in different coarse–grained models, the relaxation

simulations were also performed by CG systems with different coarse–graining degrees.

The relaxation simulations by different coarse–grained models were performed for

simulation time ranging from 100 ns to 500 ns. Even though much longer simulation
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time, such as up to ∼ µs, for coarse–grained models, especially for CG1 and CG2,

is able to be achieved readily, the dynamics in above models can be easily differed

and, therefore, current simulation time is long enough to study the relationship

between different models. As shown in Figure 4.11, the relaxations in different coarse–

grained models can also be represented by bi–exponential functions suggesting two

characteristic times. The soft segments in the CG2 model move significantly faster

than the other models. By contrast, compared to the atomistic model, CG0 and CG1

decay with similar speed in long–term time range, whereas the short–term relaxation

is faster in terms of higher degree of coarse–graining.

According to [11, 13, 105], two relaxation processes of soft segments were observed

in PTMO–based polyurea by dielectric spectroscopy which are referred as α and α′

relaxations. The α′ relaxation with relatively low relaxation frequency is associated

with the local dynamics of the soft region attached to hard domains and, therefore,

under constraint from hard domains. And the α relaxation represents the relatively

high–frequency relaxation process without direct limitation from hard phase. The

thickness of this intermediate region surrounding glassy hard domain was estimated as

0.4 to 0.5 nm [105]. In this work, we define the marginally soft region constrained by

hard domain as core–shell region and characterize this region as soft atoms within N

nearest neighbors to hard segments, where N = 5 for the characterization in atomistic

model.
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Figure 4.12: Average magnitude of slip vectors from atomistic relaxation.

Figure 4.12 shows the magnitude of slip vectors 〈si〉 = 〈|si|〉 averaged over the

total system, soft domain, hard domain and core–shell domain, respectively, during

atomistic relaxation simulations at various temperatures. Since the trending change of

the slip vector after 10 ns during relaxation simulation can be extrapolated, we only

show the first 10 ns here. For all three temperature conditions, the three phases are

displaying distinct behaviors regarding relative slipping. The atoms in soft domains

slip with highest speed, whereas the atoms in hard domain move significantly slower

in the first 2 ns of relaxation simulation. And the total average slip among all

atoms is dominated by soft atoms due to large population of atoms in soft domains.

As expected, the mobility of atoms in core–shell layer stands in the intermediate

level between hard and soft atoms. And after that, the soft atoms continue moving

further from their original locations with fairly amount of speed. By contrast, the

increments of relative sliding distance within hard atoms and core–shell atoms are

consistently negligible. The speed of local slipping of three phases starts with large

values and gradually decrease. Within the time range of relaxation simulation, soft

atoms maintains the highest speed among all phase definitions. At the beginning of

simulation, the atoms in the core–shell layer slide faster than the atoms in the hard

phase, whereas the slipping speed of core–shell region decreases to the slowest case

after approximately 2 ns. And with increased temperatures, the average magnitudes
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of slip vectors of all sub–domains increase with faster speed indicating higher mobility,

i.e., faster local dynamics, due to higher kinetic energy. It is worth noting that the

magnitude of slip vector magnitude almost equally increases as increased temperature

from 300 to 345 K and from 345 to 380 K, while the increment between 345 and 380 K

is larger than the one between 300 and 345 K.
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Figure 4.13: Average magnitude of slip vectors in hard, soft and core–shell domain

from multiresolution simulations.

The slip vector is also calculated for coarse–grained models, which is shown in

Figure 4.13. The atoms in core–shell layer are defined as 4, 3 and 2 nearest neighbors

to hard segments for CG0, CG1 and CG2, respectively, to follow the layer dimension

as seen by experimental measurements in [105]. It is clear to observe that the slipping

magnitudes among coarse–grained models are significantly higher than the one of

atomistic model. However, the increment between coarse–grained models does not

follow the degree of coarse–graining. For CG0 and CG1, the behaviors of relative

slipping within each sub–domain is qualitatively similar to atomistic model. However,

in CG2 model, the average slipping of super–atoms in soft domains is greatly less than

the one of hard domains suggesting higher mobility of hard super–atoms.
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4.4 Summary

In this chapter, we firstly developed an intermediate coarse–grained model to

bridge the scales between the united–atom–like model and the reactive model of

polyurea described in Chapter 2 and Chapter 3. With the coarse–grained models in

various resolutions, we are able to investigate the dynamic characteristics of polyurea

in different time scales. In addition, an incremental reverse–mapping framework has

been proposed to reconstruct the morphology and crosslinking of amorphous polymeric

system established from polymerization simulations in atomistic resolution.

The MSD of the center of mass of segment reveals the acceleration of coarse–graining

dynamics compared with atomistic model and the difference of dynamic behaviors

between hard and soft phases. The relaxation times at different temperatures derived

from correlation of soft–segment end–to–end vectors agree well with experimental

result. And slip vector was calculated to investigate the local dynamics in relaxation

simulations, which indicates the existence of the intermediate layer in soft phase but

under constraint from hard phase. Contrast to the obviously faster dynamics of soft

domains than the one of hard domains in atomistic, CG0 and CG1, both MSD and

slip vector indicate coincident dynamic behaviors of soft and hard domains in CG2.
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Chapter 5

SUMMARY AND CONCLUSION

In this work, we have developed multi–scale coarse–grained (CG) molecular models

of polyurea to investigate the connection between its heterogeneous microstructure and

its mechanical properties under extreme conditions. The coarse–grained models are

calibrated systematically via a structure–matching method called iterative Boltzmann

inversion (IBI) to reproduce the target structural distributions sampled from atomistic

molecular dynamics (MD) simulations. To accomplish these goals, we have introduced

several improvements to the coarse–graining methodology to deal with the chemical

complexity of polyurea compared to the relatively simple polymer systems the IBI

method has previously been applied to. Taking advantage of the multiresolution

coarse–grained models, we are able to study structure–property relationships across

a wider range of time and length scales, than is possible with conventional MD

simulations. And we also proposed a top–down backmapping workflow to efficiently

and effectively reconstruct the specific morphology and crosslinking developed by

long–term coarse–grained simulations at atomistic resolution.

Firstly, we have developed a high–resolution coarse–grained model of polyurea with

the same coarse–graining degree of united atom models. Due to the high complexity

of chemical formulation and high resolution of this model, we developed an adaptive

scaling function based on pair distance to determine the optimal potential correction

in IBI and simultaneously handle the heterogeneous interactions among 98 pontential

functions. After comparing with the conventional approach, i.e., using a constant

scaling parameter, the adaptive scaling function accelerates the speed of optimization
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convergence by 3 times and effectively improves the accuracy of reproducing each

individual distribution function. Additionally, we proposed a statistical convergence

criterion to provide a more robust understanding of the degree to which the CG

models represent the target structure.

The high–resolution model developed here accelerates the computational speed

by nearly sixteenfold on a single processor, allowing simulations of polyurea to

be performed at representative length scales and at time scales exceeding 50 ns.

The enlarged model system and prolonged equilibrium time resconstruct the phase–

segregated morphology with characteristic lengths, i.e., hard domain thickness and

inter–domain spacing, that are consistent with those observed by x–ray scattering

experiments. And the hard domains represent interconnected or percolated structure

due to long–range connectivity among hard segments, which has also been observed

by AFM measurements of polyurea. However, this long–range connectivity among

hard segments displays significant interruption in a diblock polyurea system compared

with a multiblock system. The distribution of end–to–end lengths of the soft segments

suggests that the population of the end–to–end lengths follows a sum of two normal

distributions representing the existence of loop–like and bridge–like soft segments.

Characterization by p2 order parameters among benzene rings indicates the absence

of ordered hard–domain which is consistent with the amorphous hard phase in x–ray

scattering measurements. Lastly, this coarse–grained model is able to quantitively

provides insight to the hydrogen bonds within the hard phase regarding functional

monomers.

In addition to the united–atom–like model, we have also developed a reactive coarse–

grained model for polyurea elastomers, the force field of which was trained by matching

the structural distributions sampled from atomistic partially–polymerized polyurea
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systems. The coarse–grained polymerization simulations were performed by distance–

based bonding criterion and topological change, by which we are able to construct

polyurea networks with a consideration of prepolymer diffusion. To investigate the

effect of polymerization rate on the microstructure of polyurea, the polymerization

simulations were varied by different chemical reaction speeds leading to various

morphologies, polymerization degrees, segmental and chain conformations. In addition,

extra polyurea systems were generated by sampling the molecular weight distributions

of polymerized polyurea and random walk equilibrium instead of polymerzation

simulations. After that, to link the bonding–rate–induced structural difference with

mechanical properties, we performed uniaxial compression on the different sets of

model systems and probed the strain–stress relationship.

As a result, the microphase separation of polyurea was characterized by hard

domain thickness and inter–domain spacing, indicating that slower reaction speed

provides hard domains with larger domain thickness and inter–domain spacing. And

faster reaction leads to higher polymerization degree, i.e., larger mass–average molec-

ular weight, and higher degree of polydispersity in molecular weight. For chain

conformation, the chains that polymerized at a faster rate tended to have a larger

radius of gyration, and therefore, on average, form bridges across a larger number

of hard domains. And with probabilistic characterization of segmental behaviors,

the compressive strength of polyurea network is substantially affected by segmental

connection between hard domains, i.e., relative fraction of bridge–type and loop–type

soft segments. Higher fraction of bridge–type soft segments leads to higher compressive

strength especially at large deformation when bridges are fully stretched between hard

domains. In addition, compressive strength also shows positive dependence on chain

conformation as revealed by radius of gyration and flow stress at different strains.
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The positive dependence suggests that a polyurea chain comprised of similar amount

of bridge connections may provide different effects on deformation mechanism, i.e., a

chain connecting many hard domains attempt to make more contribution to strength

than connecting same two hard domains in a back and forth regime.

Finally, we proposed a hierarchical backmapping workflow to transform the mi-

crostructure of polyurea from polymerization simulation to atomistic scale by intro-

ducing an intermediate coarse–grained model. The backmapping scheme is able to

effectively and efficiently reconstruct the phase–segregated morphology and chain char-

acteristics of polyurea in atomistic representation. In addition, with the multiresolution

coarse–grained models, we are able to investigate the effect of coarse–graining degree

on dynamics of molecular modeling. The acceleration of diffusion by coarse–graining

was characterized by mean squared displacement of the center of mass of segment

representing the heterogeneous behavior within the hard–soft phases of polyurea.

The calculation of slip vector within each sub–phase suggests that the existence of a

intermediate phase in soft domains but under constraint from hard domains.
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