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ABSTRACT 
 

Respiratory behavior provides effective information to characterize lung 

functionality, including respiratory rate, respiratory profile, and respiratory volume. 

Current methods have limited capabilities of continuous characterization of respiratory 

behavior and are primarily targeting the measurement of respiratory rate, which has 

relatively less value in clinical application. In this dissertation, a wireless wearable sensor 

on a paper substrate is developed to continuously characterize respiratory behavior and 

deliver clinically relevant parameters, contributing to asthma control. Based on the 

anatomical analysis and experimental results, the optimum site for the wireless wearable 

sensor is on the midway of the xiphoid process and the costal margin, corresponding to 

the abdomen-apposed rib cage. At the wearing site, the linear strain change during 

respiration is measured and converted to lung volume by the wireless wearable sensor 

utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module 

transmits the temporal lung volume change to a smartphone, where a custom-

programmed app computes to show the clinically relevant parameters, such as forced 

vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) 

and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning 

algorithm, a system consisting of two wireless wearable sensors accurately extracts 

respiratory features and classifies the respiratory behavior within four postures among 

different subjects, demonstrating that the respiratory behaviors are individual- and 

posture-dependent contributing to monitoring the posture-related respiratory diseases. 

The continuous and accurate monitoring of respiratory behaviors can track the respiratory 
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disorders and diseases' progression for timely and objective approaches for control and 

management.   
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CHAPTER 1 

INTRODUCTION 

1.1.  Respiratory Mechanics 

As a physiological activity, respiration is a systematic result of the nonlinear 

motion of the chest wall and the diaphragm. When the diaphragm contracts, the 

intercostal muscles in chest wall pull the ribs upward causing the rib cage to be enlarged 

in the pump handle movement. In elevation, the thorax's anteroposterior diameter 

increases and causes the lowermost ribs to swing outward, which is called the bucket 

handle movement, as shown in Fig. 1.1.  

 

Figure 1.1. Pump Handle and Bucket Handle Movements. 

Therefore, the horizontal enlargement of the thoracic cavity from the lifting of the 

front and sides of the ribs causes the circumference of the chest wall to increase during 

inspiration. With further movement of the diaphragm, the content in the abdomen was 

pulled outward, increasing the circumference of the abdominal wall; whereas in 

expiration, the intercostal muscles and diaphragm relax and passively restore to their 
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anatomic positions determined by their anatomical elasticity, which pushes air out of the 

lung resulting in the circumferences of the chest and abdominal walls to decreases.  

1.2.  Methods for Respiratory Monitoring 

Featured by its mechanics, respiratory monitoring can be realized by attaching 

various sensors on different location on human body.    

Expiratory air is warmer, has higher humidity, and contains more CO2 than 

inspiratory air, therefore in the oral/nasal area, relative humidity change [1, 2], 

temperature variance [3], and carbon dioxide production [4] within inspiration and 

expiration are primary parameters that are measured to monitor respiratory behavior. The 

respiratory sound caused by airflow through the trachea can similarly provide 

measurement: on the neck or throat, acoustic sensors, mainly made of piezo-material, are 

capable of collecting respiratory sound to extract respiratory rate [5, 6]. On the chest, 

respiratory monitoring has more options. Thorax pressure-induced variations in air 

volume within the lungs during inspiration and expiration provoke the transthoracic 

impedance change. The impedance change measured by skin electrodes correlates to 

respiratory rate [7]. Volume variations within the lungs provide a popular way for 

respiratory monitoring, measuring the circumferences of chest and abdomen change, such 

as inductance plethysmography, fiber-optic plethysmography, and strain-gauge, and so 

on. On the wrist, a watch/sport-band form pulse oximeter based on 

photoplethysmography(PPG) technique is used to measure the respiratory behavior 

through monitoring of O2 and CO2 concentration in arterial blood [8, 9].  

All the wearable sensors are designed and developed to test the lung functionality, 

which, in turn, has a significant influence on respiratory behaviors.  
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1.3 A Protective Method for Acoustic Sensor Used in Respiratory Monitoring 

Wearable sensors, especially acoustic sensors with membranes integrated to be 

the critical sensing elements, can be subject to external mechanical shocks, like dropping 

off against the ground, during deployment and operation. If severe enough, the shock 

load can cause irreversible damage to the acoustic sensors affecting its reliability and 

functionality.  To mitigate the shock load, Chen et al. report a dual-membrane micro-

electromechanical system(MEMS) that can effectively reduce the sensing membrane's 

travel distance upon deploying low voltages [10]. It is a simple yet effective structure 

with an addition of a second membrane on top of the traditional single membrane 

structure(Fig. 1.2(a) and (b)). The bottom sensing membrane can perform stable 

oscillation within the safety zone by utilizing the applied electro-statistic force and 

membrane inherent restoration force. The dual-membrane structure photos are shown in 

Fig. 1.2(c) and (d). 

 

Figure 1.2.  Schematic and Photos of the Dual-membrane Structure.  (a) A 
conventional single movable membrane upon shock. (b) Dual-membrane structure with 
an additional top membrane and a movable bottom membrane upon shock. (c) Top view 
of the fabricated dual-membrane device. (d) Cross-section view of the fabricated dual-
membrane device. 
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To implement in-situ control of electrostatic force, a microcontroller and an 

accelerometer were used to control the timing of electrostatic force upon a shock.  When 

the accelerometer's output exceeded a threshold, the microcontroller sent a command to 

apply an electrostatic force within the peak shock amplitude period of around 500 µs. The 

force was applied between the top and bottom membranes to mitigate the shock effect 

before the bottom membrane reaches its maximum travel distance. Thus, the timing 

scheme prevented the bottom membrane from hitting the substrate. To evaluate the 

effectiveness of in-situ control, we dropped the board containing an accelerometer trigger 

and a microcontroller. The in-situ control is capably implemented electrostatic mitigation, 

as shown in Fig. 1.3. 

 

Figure 1.3. In-situ control of shock-mitigation: (a) Shock response with different 
electrostatic force, 1.723 V, 2.047 V, 2.372 V separately. (b) Shock mitigation percentage 
versus applied electrostatic force between top and bottom membranes. 
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For more details about the MEMS structure to mitigate the external shock, please 

see appendix B.  

1.4.  Burden of Respiratory Diseases 

Respiratory diseases, a significant worldwide health challenge, are responsible for 

more than 10% of all disability-adjusted life year (DALYs): a metric used in public 

health and health impact assessment that estimates the number of years of healthy life lost 

due to ill-health, disability or early death. Mortality, disability, and morbidity caused by 

respiratory diseases, which are second only to cardiovascular diseases, imposed immense 

economic costs and health burden worldwide. Among respiratory diseases, chronic 

obstructive pulmonary disease (COPD) and asthma predominantly contribute to the 

burden. An estimated 65 million people have moderate to severe COPD, of which about 3 

million die each year, making it the third leading cause of death worldwide, and the 

frequency of the disease remains increasing trajectory. About 334 million people have 

asthma, which is the most common chronic disease of childhood, affecting 14% of 

children globally. The prevalence of asthma in children keeps rising. Alternatively, sleep-

disordered breathing is a less well-quantified respiratory disorder, and more than 100 

million people are suffering from it. 

1.4.1  Need of Continuous Monitoring 

Characteristics of respiratory diseases suggest continuous monitoring of 

respiratory behaviors benefit patients. COPD and asthma, the two most common 

respiratory diseases, are characterized by airway inflammation, which causes 

breathlessness in terms of an extrinsic failure of the chest wall to obtain and maintain 

sufficient lung volume. However, symptoms of the changeability on COPD and asthma 
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have been studied and described as time-dependent, even over one day, thus it is 

challenging to generalize the characteristics of respiratory behaviors. The diagnosis of 

respiratory diseases is based on the history of patients, symptoms, and the outcome of 

attempted therapies. Therefore, the continuous monitoring of the respiratory behaviors 

offers valuable information to the pre-diagnosis by extracting the clinically relevant 

parameters to describe the progression of patients' respiratory conditions.  

1.4.2  Need of Wireless Wearable Sensor 

The current clinically approved method to characterize lung function is 

spirometry using a spirometer. A spirometer is a physiological test that measures how an 

individual inhales or exhales volumes of air as a function of time. The primary signal 

measured in spirometry may be volume or flow. Characterized by its prohibitive cost and 

large size, the affordability of continuous respiration monitoring is mostly limited. 

Additionally, some respiratory diseases are periodic;  the spirometry tests may yield 

normal results even when the individual does contain abnormal lung conditions, such as 

asthma. Besides, asthma attacks often happen in the early morning or late at night, 

making the supervision more difficult than in the daytime. If insufficient careful 

supervision is not given, especially for children, unexpected consequences can happen. 

1.5.  Summary of Chapters 

To provide continuous respiratory monitoring, characterize the respiratory 

behavior, and contribute to respiratory disease management and control, a wireless 

wearable sensor/system is proposed. The second chapter includes a wireless wearable 

sensor to characterize respiratory behaviors, extracting the FEV1/FVC ratio for caregivers 

to provide proper medical intervention to people who have asthma. In chapter 3, a system 
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consisting of two wireless wearable sensors is able to predict human postures based on 

extracted respiratory features from general respiration among the various subjects. The 

system can be used to study respiratory individuality contributing to posture-related 

respiratory diseases.   
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CHAPTER 2 

WIRELESS WEARABLE ULTRASOUND SENSOR ON A PAPER SUBSTRATE TO 

CHARACTERIZE RESPIRATORY BEHAVIOR 

2.1.  Introduction 

Asthma is a significant worldwide health problem affecting between 1-18% of the 

population in different countries [11]. Over the last 40 years, the global burden due to 

prevalence, morbidity, mortality, and economics associated with asthma has increased 

significantly. With an increase of 50% every decade, approximately 300 million people 

worldwide currently have asthma [12]. In the United States, about 25 million people are 

plagued by asthma, corresponding to approximately one out of every 12 people. Asthma 

is a severe disease affecting all age groups, particularly children. Approximately 7 

million children in the United States are diagnosed with asthma [13]. With asthma, the 

hypersensitivity of the airways causes inflammation due to the exposure to asthma 

triggers, such as common cold, stress, changes in the weather, or things in the 

environment daily. This hypersensitive state could make the airway swell even more, 

narrowing the space for air to move in and out of the lungs resulting in a severe 

obstruction and even death. If more than one typical asthma symptom is present, then the 

probability of having asthma increases, especially in adults. These symptoms, when 

described in medical terms, include forced expiratory volume delivered in the first second 

(FEV1) of a forced vital capacity (FVC) maneuver and the ratio of FEV1 to FVC [14-20]. 

A reduced FEV1 may be found with many other lung diseases; however, a reduced 

FEV1/FVC ratio indicates airway inflammation. According to population studies, the 
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FEV1/FVC ratio usually ranges > 0.75 to 0.8 for adults and > 0.9 in children. Any values 

less than these suggest airflow limitation [11, 21]. 

The characteristics of asthma stress the importance and need for continuous 

respiratory behavioral monitoring. It is characterized by chronic airway inflammation and 

is defined by the history of respiratory symptoms such as wheezing, shortness of breath, 

chest tightness, and coughing that vary over time and intensity, together with variable 

expiratory airflow limitation [11]. The diagnosis of asthma is made clinically based on 

the patient's history, symptoms, and response to therapy [22]. Diagnosis based on 

symptoms alone is not clinically approved since other health conditions can mimic 

asthma symptoms. For example, vocal cord dysfunction can cause difficulties in 

breathing, and immunodeficiency, ciliary dyskinesia, cardiomyopathy, or cystic fibrosis 

may all present with respiratory symptoms, including airway obstruction. The challenge 

of symptom-driven diagnosis escalates for infants and young children, whose small 

airways become obstructed more easily and whose response to the treatment often is 

equivocal [23]. Thus, the documented daily respiratory behavior parameter, specifically 

the FEV1/FVC ratio, helps with asthma diagnosis and control [11].  Asthma patients 

show FVC marks nearly normal [24, 25], and an out of range FEV1/FVC ratio indicates 

airway inflammation reminding people to seek medical intervention. Proper medical 

intervention and a good adherence to the prescribed medicine can effectively control 

asthma [26-33]. 

The current clinically approved method to characterize lung function is 

spirometry. Spirometry is a physiological test that measures how an individual inhales or 

exhales volumes of air as a function of time. The primary signal measured in spirometry 
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may be volume or flow. Characterized by its prohibitive cost and large size, the 

affordability of continuous respiration monitoring is mostly limited. Additionally, some 

forms of respiratory diseases are periodic; the spirometry tests may yield normal results 

even when the individual does contain abnormal lung conditions, such as is the case with 

asthma [34]. 

Many groups have explored sensors for respiratory behavior monitoring. Some of these 

sensors consist of embedded coils around the abdomen and the chest, detecting the chest 

wall circumference change to monitor respiration by inductance plethysmography [7, 35]. 

Davis et al. reported a fiber-optic strain gauge around the abdomen and chest to do 

respiratory monitoring using fiber-optical plethysmography [36]. Others utilized a 

resistive strain gauge sensor around the abdomen and chest to measure the chest wall 

circumference change to monitor respiration [37]. Wehrle et al. reported a strain sensor 

taking advantage of the Bragg grating effect to monitor respiratory movements with 

frequency components up to 10 Hz [38]. An expandable belt sensor was used with 

embedded optic fibers wrapped around the chest to monitor similar high-frequency 

oscillatory ventilation, which measures the loss of light transmitted in the fiber due to the 

alterable curvature induced by circumference change to monitor respiration [39]. A 

monitoring system based on measuring respiration signals by detecting the attenuated 

reflected ultrasound signal can also monitor the anterior-posterior motion of the chest 

wall [40]. Many other groups reported alternative respiratory monitoring sensors [41-45]. 

Friat et al. designed a paper sensor exploiting the hygroscopic feature of cellulose paper 

with digitally printed graphite electrodes. The sensor measures the respiration rate by 

detecting the moisture adsorbed on the paper, from inhaled and exhaled air, attached 



11 

inside a flexible textile procedure mask [46].  Yan et al. reported a respiration sensor 

having stretchable nitrile rubber films. The stretchable films allow the enhanced 

capability of detecting the various intensities of respiration. The electrodes on the films 

measure the current to correlate the breathing rate [25].  However, almost all prior 

sensors record the respiratory rate, which has a relatively limited clinical value [47], and 

few contribute to asthma control by providing useful vital respiratory information with 

significant clinical value, such as the FEV1/FVC ratio.  

To contribute to asthma control, this work presents a wireless wearable sensor 

that offers continuous measurement of respiratory behavior coupled with a mobile app to 

extract clinically-relevant parameters to describe the progression of the respiratory 

diseases such as asthma, resulting in properly seeking medical care before an asthma 

attack occurs. 
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2.2  Material and Method 

 
Figure 2.1.  Schematic Diagram of Wearable Sensor System.  (a) The wearable 
wireless sensor, attached on the midline of the chest, measures a local strain of chest 
circumference as a function of time, to characterize respiratory behavior. The local strain 
is measured by a modulated signal on an ultrasound carrier. The temporal data is 
processed onboard and transmitted to a smartphone where a custom-made app displays 
respiratory behavior plots and computes clinically relevant quantitative parameters. (b) 
Operating principle of the sensor. The ultrasound carrier, generated by on-chip ultrasound 
emitter, is mixed with the respiratory signal, from the local strain of the chest 
circumference. The mixed modulated signal is processed onboard and transmitted to a 
smartphone via Bluetooth. (c) The custom-made mobile app receives the data and uses 
DSP (Digital Signal Processing) filters and calculates clinically-relevant respiratory 
behavior parameters: FEV1 (Forced Expiratory Volume delivered in the 1st second) and 
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FVC (Forced Vital Capacity), and the FEV1/FVC ratio. Then, the app displays temporal 
tracing and differential plots that show the respiratory behavior in pseudo-real time. 
 
2.21  Wireless Wearable Sensor 

The wireless wearable sensor is designed to characterize respiration by analyzing the 

circumference changes in a person’s chest during respiration. The localized change of the 

chest wall's circumference effectively emulates the lung volume behavior during the 

respiration. When the diaphragm contracts, the intercostal muscles pull the ribs upwards, 

causing the rib cage to be enlarged in the pump handle movement. In elevation, the 

thorax's anteroposterior diameter increases and causes the lowermost ribs to swing 

outwards, which is called the bucket handle movement. Therefore, the horizontal 

enlargement of the thoracic cavity from the lifting of the front and sides of the ribs causes 

the chest wall's circumference to increase during inspiration. During expiration, the 

diaphragm and intercostal muscles relax. The chest and abdomen passively return to a 

position determined by their anatomical elasticity, which results in a decrease in chest 

circumference [48, 49]. The sensor is designed to measure the localized strain of chest 

wall circumference, comprising an ultrasound emitter used to emit ultrasound and an 

ultrasound receiver to receive the distance-elapsed attenuated ultrasound, as shown in 

Fig. 2.1(a). During inspiration, the ultrasound emitter and receiver move further apart, 

resulting in a more attenuated ultrasound signal, whereas the emitter and receiver move 

closer together in expiration, resulting in an increased ultrasound signal. To generate the 

ultrasound, a non-polarized pulse stimulatory signal is applied to a piezoelectric material, 

Polyvinylidene Difluoride (PVDF) film [50-53]. The PVDF film generates mechanical 

deformation upon an electric field being applied across the film, and the mechanical 
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strain follows the electrical field's frequency. In this work, we used a 1 MHz electrical 

field to generate a 1 MHz ultrasound. The ultrasound is modulated by the respiratory 

signal and received by another PVDF receiver. After demodulation and amplification, the 

respiratory signal is extracted, and the digitized respiratory signal is then wirelessly 

transmitted to a mobile phone by the onboard Bluetooth antenna, a process shown in Fig. 

2.1(b). 

 
 
Figure 2.2.  Circuit Diagram and Custom-made Mobile App Algorithm Blocks.  (a) 
Fully-assembled wireless wearable sensor: the low-profile sensor has a footprint of 40 
mm × 35 mm × 6 mm on a paper substrate, including emitter driving electronics to excite 
a piezoelectric PVDF film to emit ultrasound wave, receiver electronics to convert the 
modulated ultrasound wave to an electrical signal, and a Bluetooth module to digitize the 
electrical signal and send it to mobile app wirelessly. (b) The sensor's circuit diagram: 
wireless sensor electronics consist of two DC-to-DC converters to provide adequate 
power to corresponding electronic modules, an op-amp to amplify the modulated signal, 
and an envelope detector to extract respiratory behavior signal for wireless transmission. 
(c) The extracted respiratory behavior signal is digitized and coded by onboard micro-
controller into four kinds of strings: header, length of the packet, valid data, and 
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checksum. Then the strings are sent to a custom-designed mobile app wirelessly by 
Bluetooth. The app analyzes the transmitted data, including checking the header for 
validity, filtering the valid data, and extracting the clinically relevant parameters.   
 
2.2.2  Fabrication of the Wireless Wearable Sensor 

The wireless wearable sensor's overall schematic is illustrated in Fig. 2.2(a), and 

the photos of the sensor are in appendix C. The sensor's footprint and weight are 

40×35×6 mm3 and 6.5 g, including 2.7 g battery, respectively. The conductive electrical 

traces for the sensor was printed, by a laser printer, on a paper substrate (OL177WS, 

Online Labels, Inc.). A pea-sized amount of silver epoxy (Atom A-DUCT-1, Atom 

Adhesive Inc.) was squeezed out on the printed circuit and was spread evenly over the 

entire circuit manually. Hot air (~200 °C) was blown over the entire circuit in a lateral 

motion for 1 minute to dry out the silver epoxy and melt the toner particles. The toner 

contains carbon and iron oxide, polypropylene, fumed silica, and various minerals for 

triboelectrification. It is primarily composed of granulated plastic that can form a bond 

between the silver epoxy and the glossy paper in the circuit's shape as it melts. 

The paper substrate is made with a layer of white clay called kaolin that fills 

between the paper fibers to produce a smooth surface. The organic mixture of silver 

epoxy is incapable of adhering to the kaolin surface, allowing easy removal of excess 

epoxy using a cotton ball. These two steps were repeated until the silver epoxy on the 

circuit lines became fully conductive. The finished lines have a conductivity of 0.9 Ω/cm 

with a width of 0.3 mm. A different silver epoxy, having higher adhesion than the one 

above (Electron Microscopy Sciences, 12642-14 two-part conductive silver epoxy), was 

used to mount the electrical components on the printed circuit. A 110-µm thick PVDF 

film (3-1003702-7, TE connectivity Inc.) having electrodes sputtered by 70nm/10nm of 
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copper and nickel on both sides was attached to a rigid paper sheet using double-sided 

tape for standing support, and the copper tape was used to connect the PVDF films to the 

circuit due to its characteristic robust connection [54]. The copper tape serves as the 

electrical bridges between the two pieces of the emitter and receiver pieces as well. 

2.2.3  Electronics of the Wireless Wearable Sensor 

The schematic of electronics being used for the wireless wearable sensor is shown 

in Fig. 2.2(b). A micropower DC/DC converter (LM2704, Texas Instruments Inc.) steps 

up 3.7 V of lithium battery to 5 V or 12 V with current limits of 120 mA or 40 mA, 

respectively. A voltage-controlled oscillator (LTC6990, Analog Devices Inc.) excites the 

emitter's PVDF film to generate a 1 MHz ultrasound. Another PVDF film detects the 

ultrasound signal modulated by the respiratory signal. Connected afterward is a low 

noise, FET-input operational amplifier (OPA657 from Texas Instruments Inc.). 

Characterized by a high gain-bandwidth product (1.6 GHz) and low voltage noise JFET-

input stage, a very low-level signal can be significantly amplified by a single OPA657 

stage, offering 1600 V/V(64 dB) for a 1 MHz signal. Following amplification, an 

envelope detector (ADL 5511, ADI) extracts the respiratory signal, which is then sent to 

a Bluetooth Low Energy Nano V2 (RedBearLab) using 100 Hz sampling frequency with 

ultra-low power consumption. The BLE (Bluetooth Low Energy) device uses an onboard 

analog to digital converter (ADC) with a 12-bit resolution to digitize the analog input 

signal before transmitting it to external Bluetooth devices for analysis. 
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2.2.4  Mobile App 

The simplified diagram of the custom-designed app's algorithm is shown in Fig. 

2.2(c), and more details are in appendix E. The mobile application receives the signal and 

filters it by Butterworth low-pass filter with the cut-off of 0.5 Hz to display primarily two 

graphs: the temporal trace of the voltage corresponding to volume vs. time and the flow 

rate vs. volume plot. The second graph is used to determine the FEV1/FVC ratio, which is 

then compared to the nominal value of 0.75. The American Thoracic Society has 

identified the back-extrapolation method as the most consistent and accepted technique 

for determining the start point and has recommended its use for every calculation of 

FEV1. The extrapolated volume should not be higher than 5% of the FVC or 150 mL; 

whichever number is higher [55]. Instead of getting extrapolated volume in Spirometry, 

the extrapolated voltage was defined for the wireless wearable sensor. It is for the 

correlation between the wireless wearable sensor's output with a unit of voltage and the 

output of the spirometer test with a unit of milli-liter or liter. To determine the 

extrapolated voltage, a differential analysis of the temporal output was used to find the 

deep expiration curve section with the greatest tangential slope. The most significant 

value, the previous data point, and the following data point were used to plot a trend line. 

From the equation of the trend line, the intersection with the x-axis can be found. This x-

intercept is the new start time (t=0), and the corresponding y-axis value y0 on the voltage-

time graph is the extrapolated voltage. The point on the x-axis, which is one second 

afterward, is designated t=1, with the corresponding y-axis value designated as y1. 

Regarding the maximum voltage as the FVC and FEV1 as y1-y0 with a unit of voltage, 

then 
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𝐹𝐹𝐹𝐹𝐹𝐹1/𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦1 − 𝑦𝑦0

𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑟𝑟𝑣𝑣𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣
∗ 100% 

Once the FEV1/FVC ratio reaches below 75%, a warning message will show on the 

mobile phone screen to inform the abnormal respiratory behavior (Fig. 2.1(c)). 

2.2.5  Study Design 

We studied the wireless wearable sensor's efficacy and accuracy to monitor 

respiratory behavior based on anatomical and experimental analysis. To demonstrate the 

feasibility, we recruited volunteers to attach the wireless wearable sensor on their bodies 

to collect respiratory parameters. Randomization was not applicable, and investigators 

were not blinded. All participants provided informed consent, and the studies were 

approved by the Arizona State University Institutional Review Board (IRB). 

2.2.6  Respiratory Behavior Collecting Protocol 

Miller et al. published the standardization of spirometry in 2005, putting official 

statements of the European Respiratory Society (ETS) and American Thoracic Society 

(ATS) together [56]. Following the standardization of spirometry, first, we demonstrate 

the study procedures to volunteers. We attached the wearable wireless sensor to the 

volunteers to simultaneously collect the respiratory parameters from the spirometer and 

the sensor. The volunteers hold a breathing tube that is sealed around a mouthpiece. The 

volunteers perform three cycles of routine respiration sequence of inhaling and exhaling. 

For forced vital capacity (FVC), the volunteers inhale fully and rapidly and exhale with 

maximum effort. 
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2.2.7  Benchmark Comparison of Wireless Wearable Sensor to Spirometer 

Eight volunteers were included in this study. In a sitting position with a nose-clip, 

each volunteer completed three regular breathing cycles through the mouthpiece. On the 

fourth cycle, the volunteer took a deep breath in and exhaled thoroughly as brief a time as 

possible to maximize the airflow in the first second and keep exhaling at least 6 seconds 

to ensure a complete test result. During the procedure, volunteers were asked to keep 

their backs straight. Keeping backs straight allows the rib cage not to weigh on the 

abdomen and the abdominal wall to maximize the accuracy [57]. After proper relaxation, 

the wireless wearable sensors were placed at the designated location, and the volunteers 

repeated the procedure. Due to its compact size and wearability, the wireless wearable 

sensor has a limited effect on the spirometry test, and so both sensors were used 

simultaneously to eliminate as many variables as possible. 

2.3  Results and Discussion 

2.3.1  Positioning the Wireless Wearable Sensor 

The wireless wearable sensor was placed on four locations of the chest wall, 

including the right side of the chest wall, the upper chest wall, the upper back of the chest 

wall, and the midway between the xiphoid process and the costal margin, as shown in 

Fig. 2.3(c). The best conversion of chest wall circumference change was obtained from 

the sensor located between the xiphoid process and the costal margin, corresponding to 

the abdomen-apposed rib cage. The theoretical and experimental analyses finalized the 

location for the sensor. To verify the designed properties of wear-ability and 

effectiveness in long-term daily monitoring, we attempted to test the sensor in the two 

dynamic situations of walking and running, approximately 1.2 m/s and 2 m/s for 20 secs, 
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respectively, with results shown in Fig. 2.3(d). The respiratory rates were five and seven 

times in 20 seconds, for walking and running, respectively. The most prominent artifact 

from human body movement includes vertical up and down motion when the subject 

walks or run. Fig. 2.3(d) shows that the body's slight movement has little impact on the 

quality and the distinguishability of data. The motion artifact may impact large and heavy 

wearable sensors due to the moment of inertia, but the lightweight 6.5 g sensor showed 

little motional artifact. The emitter and the receiver are symmetrically located on either 

side of the midway of a human chest; thus, the common-mode movement cancels out 

each other. Assuming little misalignment exists between PVDF films of the emitter and 

the receiver, the collected signal maintains stable throughout the body movement, 

highlighting the wearability of the wireless wearable sensor. 

2.3.2  The Characterization of Wireless Wearable Sensor 

The wireless wearable sensor's functionality should maintain at a given curvature 

on the body where the sensor is located. As the distance changes between the emitter and 

receiver, the corresponding ultrasound pressure changes at curvatures of 0 m-1, 1.44 m-1, 

1.74 m-1 and 2.13 m-1, as shown in Fig. 2.3(a). The curvatures experiments cover the 

range of the chest wall curvatures effectively [58]. Fig. 2.3(b) shows the sensor's output 

voltage as a function of normalized pressure at the receiver, demonstrating excellent 

linearity. The theoretical supporting material is in appendix D. 
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Figure 2.3.  Ultrasound Principle, Optimum Placement, and Dynamic Test 
Verification.  (a) Normalized ultrasound pressure is a function of the distance between 
the ultrasound emitter and receiver, on the surfaces of different curvatures: the pressure 
decreases as the distance increases because the attenuation of ultrasound wave increases. 
The trend shows a consistent pattern on different curvature of flat (k=0) and largely 
curved (k of up to 2.13 m-1) (b) The output voltage of the wireless wearable sensor as a 
function of normalized pressure applied to the PVDF film: the output of sensor shows a 
very linear response to the normalized pressure that is a function of the distance between 
ultrasound emitter and receiver. (c) Experimental results of the sensor on four chest 
locations: this is to find the most appropriate location for the sensor to effectively 
characterize the respiratory behavior. #4 is chosen because the location agrees well with 



22 

anatomical analysis, and the measured pattern of the sensor shows very similar to that of 
a spirometer. (d) Dynamic characterization of the sensor when a volunteer is walking and 
running with a speed of 1.2 m/s and 2 m/s for 20 seconds, respectively.   
 

 

Figure 2.4: Respiratory Volume- and Flow Rate-Volume Results Comparison 
Between Wearable Sensor and Spirometer. (a & b) Spirometer and wireless wearable 
sensor (c & d): (a) and (c) are volume-time tracing with marked FEV1, FVC, and 
extrapolated volume, whereas (b) and (d) are flow rate vs. volume for spirometer and 
wireless wearable sensor, respectively. Clinically relevant parameters, including FEV1 
and FVC, are computed from spirometer and sensor, respectively, to be compared side by 
side. 
 
2.3.3  Temporal Output profile of spirometer vs. the wireless wearable sensor 

The respiratory behavior plots of the spirometer (Pneumotrac Spirometer, Model 

6800, Vitalograph Inc.) and wireless wearable sensor, following the standard protocol, 
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are shown in Fig. 2.4. The temporal output profile of the sensor, Fig. 2.4(c), has a strong 

correlation with that of the spirometer, Fig. 2.4(a). Both start with a general expiration 

pattern, shown by the tracings both trending upwards and exhibiting the similar 

respiration behaviors. The sensor illustrates inhalation behavior slightly earlier than the 

spirometer does. This may be due to the inherent discrepancy between direct and indirect 

measurements of lung volume. The spirometer directly measures the flow out of the lungs 

through the mouthpiece, whereas the sensor indirectly measures the lung volume via the 

circumference change of the chest wall. Several reported the chest wall's circumference 

change occurs before the start of inspiration and expiration due to the mechanics of 

respiration [48, 59]. For the fourth deep expiration, since the volunteer was purposely 

exhaling as fast as possible, the minimal time delay was observed in both temporal plots. 

The sensor's temporal output was used to obtain the volume flow rate graph shown in 

Fig. 2.4(d), which is comparable to the flow-volume tracing of the spirometer in Fig. 

2.4(b). Both start with the general respiration (small loops in the figures), and once 

volunteers perform the forced expiration, the curve rapidly mounts to a peak, known as 

the peak expiratory flow (PEF). After the PEF, the curve descends, representing the 

decreasing flow as more air is exhaled. A straight or a convex tracing from PEF to FVC 

point (the greatest intercept on the x-axis) would indicate non-pathological respiratory 

behavior. In results from both the spirometer in Fig. 2.4(b) and the sensor in Fig. 2.4(d), a 

convex tracing was observed, meaning the respiratory behavior for this specific attempt 

on the volunteer is normal [55, 56]. The FEV1/FVC ratios of 86% and 87.94% were 

achieved by spirometer and the sensor, respectively, supporting the sensor is capable of 
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measuring the normal respiratory behaviors. The measurement of sub-optimal respiratory 

behavior is in appendix F. 

 

Figure 2.5: Placement Influence Analysis in Practical Settings  (a) The wireless 
wearable sensor has been tested at different rotation angles with the increase of the distance 
between the emitter and the receiver from 0 mm to 6 mm at 1 mm distance interval in the 
horizontal direction to demonstrate continued functionality with sub-optimal sensor 
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placement. (b) At a given rotation angle, the output decreases as the distance between the 
emitter and the receiver increases. The sensitivity, the slope, decreases as the angle 
increases because the effective distance between the emitter and the receiver decreases. (c) 
Temperature sensitivity of the sensor: the sensor was tested under different temperatures, 
ranging from 24 °C to 41 °C, demonstrating rather insensitive to ambient temperature 
change. 
 
The output signal can get the best illustration from the horizontally located wireless 

wearable sensor since the chest wall's lateral expansion is more significant. However, a 

user may not place the wireless wearable sensor exactly where it is designed to be, 

resulting in finite error at the sensor output. The wearable wireless sensor was tested at 

different angles with the increase of the distance between the emitter and the receiver 

ranging from 0 mm to 6 mm with a 1 mm interval in the horizontal direction to verify the 

sensor is capable of working properly in non-ideal positions. When the rotation angle is 

zero, the horizontal movement equals the distance change between the emitter and the 

receiver, as shown in Fig. 2.5(a). The effective distance between the emitter and the 

receiver is a function of the rotation angle. As the rotation angle increases, the effective 

distance decreases, thus the sensitivity, the slope of the output vs. distance, decreases, as 

shown in Fig. 2.5(b). All the starting points have been overlapped together for easy 

comparison of the rotation angles' effect on the wireless wearable sensor. The 

experimental results show the sensitivity suffers by 5%, 8%, 3%, 2%, and 1% from the 

human-error induced rotation of 10°, 20°, 30°, 40°, and 50°, respectively. The loss of 

sensitivity impacts the critically relevant parameter, FEV1/FVC, by 8%, supporting that 

the wireless wearable sensor offers acceptable performance within a reasonable angle of 

rotation. 
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The body itself provides a rather isothermal setting, yet the operating temperature of the 

wireless wearable sensor may change as a function of external temperature. The sensor 

was tested under temperatures ranging from 24 °C to 41 °C to study the temperature 

sensitivity. The sensor outputs were recorded at the distance of 0-6 mm from 24 °C to 41 

°C, as shown in Fig. 2.5(c). While slightly varying outputs were observed, the outputs 

variation was within measurement errors, demonstrating that the temperature effect on 

our sensor is very limited. 

 

 

Figure 2.6: Longitudinal Experiments and Spirometry Test Summary  (a) The 
FEV1/FVC ratio of a volunteer wearing the wireless wearable sensor at 2-hour, 4-hour, 6-
hour, 8-hours, and 10-hours. (b) The FEV1/FVC ratio of the spirometer and the sensor: 
the mean differences between the spirometer and the sensor range from 0.00% to 4.25%, 
demonstrating the excellent correlation of the ratio between the spirometer and the sensor 
attempts. 
 
Wearable sensors that monitor physiological parameters are preferred to demonstrate 

robust performance over time. The time-elapsed FEV1/FVC ratio from the spirometer and 

the wireless wearable sensor over ten hours is shown in Fig. 2.6(a). The FEV1/FVC 
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uncertainties range from 1.86% to 3.91% over five trials, showing finite uncertainties 

over time. When the need of long-term daily monitoring of respiratory behaviors outlasts 

the accuracy requirement, the use of sensor may justify the moderate error as a 

spirometer possesses challenges on such task. Moreover, the sensor allows respiratory 

behavior monitoring at targeted time windows, such as at night or early morning, when 

asthma symptoms are more severe than at the clinic [60]. A summary of FEV1/FVC 

ratios of the spirometer and the sensor of eight volunteers are shown in Fig. 2.6(b). The 

mean differences between the spirometer and the sensor range 0.00% - 4.25%. Despite 

the low number of volunteers, the mean differences show consistency and demonstrate 

the accurate measurement capabilities of the sensor. The maximum mean error marks 

merely 4.25%, which may be sufficiently accurate to monitor the FEV1/FVC ratio 

effectively and warn care-givers to seek proper medical intervention before an asthma 

attack. 

2.4  Conclusion 

The wireless wearable sensor utilizes piezo material (PVDF film) to generate and 

receive an ultrasound to monitor respiratory behaviors by measuring the change of the 

circumference of the chest wall, which has a linear relation to the vital volume change. 

The amplitude of ultrasound is modulated by inhaling/exhaling behaviors due to the 

changing distance between the ultrasound emitter and the receiver. With the increase and 

decrease of the chest wall's circumference, causing more and less attenuation of the 

ultrasound pressure, the output of the wireless wearable sensor is similarly increasing and 

decreasing, which defines the inspiration and the expiration, respectively. This is used to 

characterize the respiratory profile to obtain the FEV1/FVC ratio to help asthma control. 
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Dynamic characterization, including walking and running while wearing the sensor, 

verifies the wearability of the sensor. Furthermore, the comparison between a spirometer 

and the sensor highlights the sufficiently accurate results of a mean difference ranging 

from 0.00 % to 4.25 %. 

Some challenges remain for the wireless wearable sensor. The sensor indirectly 

measures the volume change during respiration by measuring the circumference change 

of the chest wall; these featured movements of the human chest wall will inevitably 

induce some indirect measurement uncertainty. To precisely estimate the volume, we 

need sophisticated computation to find a proper relation to converting the circumference 

change to volume change. We believe the discrepancy can be compensated and 

minimized by advanced computation techniques in the future. In addition, the accuracy 

and utility of the sensor may be enhanced by adopting moisture absorbable layer or 

stretchable films [25, 46, 61]. 
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CHAPTER 3 

MACHINE-LEARNING ENABLED WIRELESS WEARABLE SENSORS TO STUDY 

INDIVIDUALITY OF RESPIRATORY BEHAVIORS 

3.1  Introduction 

Respiratory disorders and diseases, a significant worldwide health challenge, are 

responsible for more than 10% of all disability-adjusted life year (DALYs): a metric used 

in public health and health impact assessment that estimates the number of years of 

healthy life lost due to ill-health, disability or early death [62, 63]. Mortality, disability, 

and morbidity caused by respiratory diseases [12], which are second only to 

cardiovascular diseases [64], imposed immense economic costs and health burden 

worldwide. Among respiratory diseases, chronic obstructive pulmonary disease (COPD) 

and asthma predominantly contribute to the burden. An estimated 65 million people have 

moderate to severe COPD, of which about 3 million die each year, making it the third 

leading cause of death worldwide, and the frequency of the disease remains increasing 

trajectory [65, 66]. About 334 million people have asthma, which is the most common 

chronic disease of childhood, affecting 14% of children globally. The prevalence of 

asthma in children keeps rising [67]. Alternatively, sleep-disordered breathing is a less 

well-quantified respiratory disorder, and more than 100 million people are suffering from 

it [66]. 

Characteristics of respiratory disorders and diseases suggest continuous monitoring of 

respiratory behaviors benefit patients. COPD and asthma, the two most common 

respiratory diseases, are characterized by airway inflammation, which causes 

breathlessness in terms of an extrinsic failure of the chest wall to obtain and maintain 
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sufficient lung volume. However, symptoms of the changeability on COPD and asthma 

have been studied and described as time-dependent, even over one day [68]; thus it is 

challenging to generalize the characteristics of respiratory behaviors. The diagnosis of 

respiratory diseases is based on the history of patients, symptoms, and the outcome of 

attempted therapies. Therefore, the continuous monitoring of the respiratory behaviors 

offers valuable information to the pre-diagnosis by extracting the clinically relevant 

parameters to describe the progression of patients' respiratory conditions. 

As a physiological activity, respiration is a systematic result of the nonlinear motion of 

the chest wall and the diaphragm, corresponding to the chest respiration and abdominal 

respiration, respectively. During inspiration, the expansion of the chest wall and the 

contraction of the diaphragm pull air into the lung. With further movement of the 

diaphragm, the content in the abdomen was pulled outward, increasing the circumference 

of the abdominal wall; whereas in expiration, the chest wall and diaphragm relax and 

passively restore to their anatomic positions, which pushes air out of the lung resulting in 

the circumferences of the chest and abdominal walls to decrease. 

Several research groups have reported various respiration monitoring methods. For 

example, bands with sensors embedded or fiber-optic based strain gauges around the 

chest wall were used to detect chest wall perimeter change caused by respiration [69]. 

Inertial sensors or polyvinylidene-fluoride (PVDF) polymer-based piezoelectric 

transducers that were directly attached to the human chest to detect the pulsatile vibration 

due to the respiration [70, 71]. In other studies, strain sensors made of different materials, 

including graphene [72], carbon nanotubes [73], and carbonized silk fabric [74], were 

attached to the human chest to measure local strain realizing the respiration monitoring. 
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However, all those methods fail to monitor systematic breathing motion and are limited 

to produce respiratory rate, which has minimal clinical value [47]. Optoelectronic 

plethysmography (OEP) offers readily available clinically valid information of 

respiratory monitoring, yet requires multiple external cameras to monitor the location of 

markers on the body to evaluate the respiration [75]. Inertial measurement unit (IMU) 

and strain sensors were attached to the abdomen and chest to monitor respiratory 

behaviors simultaneously when the subjects are in a standing posture [76, 77]; however, 

the non-optimal wear-ability or/and the potential monitoring failure caused by inductance 

plethysmography (RIP) belt slippage as well as the respiratory monitoring in a single 

posture may not be realistic or helpful for continuous monitoring. Unique skin-mounted 

soft electronics were recently reported to detect the human motions toward motion 

recognition [78, 79]. Our wireless sensor is a stand-alone system, with no need for any 

specific external settings, thus allowing ubiquitous respiratory monitoring, e.g., home.  

Postures have a non-negligible influence on respiratory behaviors. The body postures 

affect the anatomical dimensions of the upper airway, which may become impaired in 

specific postures. Particularly during sleep with a lower consciousness, the collapsibility 

of upper airways has been identified as an important pathogenic factor in obstructive 

sleep apnea (OSA) [80-82]. Further, respiratory behaviors are a function of the 

differences in the anatomy of the abdominal muscles and the influence of gravity caused 

by postures change [83]. Posture-related instability of the human airway and anatomy 

structures may have serious medical implications, yet few reports exist on a wearable 

respiratory monitoring system to analyze individuals' respiratory behaviors at various 

postures, contributing meaningful, relevant clinical values.  
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This work presents a stand-alone wireless sensors system, equipped with a machine 

learning algorithm, that offers continuous measurement of respiratory behaviors. The 

system extracts and classifies key features of individuals' respiratory behaviors at 

different postures to study individual- and posture-dependent respiratory behaviors.  

3.2.  Material and Method 

3.2.1.  Wireless wearable sensor 

The localized circumference changes of the chest and abdominal walls are the 

respiration's external appearance and can effectively emulate the lung volume change 

during respiration [84-87]. We used two wireless wearable sensors: one (Sensor1) was 

placed 1 cm above the umbilicus for abdominal respiration [7], and the other one 

(Sensor2) was placed on the midway between the xiphoid process and the costal margin 

for chest respiration, as shown in Fig. 3.1A., which has been validated by our previous 

work [88].  
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Figure 3.1. System Overview (A) wireless wearable sensors attached on the midway of 
the xiphoid process and the costal margin, one on each location, corresponding to the 
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abdomen-apposed rib cage, and 1 cm above the umbilicus, respectively. The wearable 
sensors convert the local strain, by measuring the attenuation in ultrasound as a function 
of the distance between the emitter and the receiver, to lung volume. The respiratory 
behaviors signal was amplified and extracted by onboard electronics and wirelessly 
transmitted to an external machine. (B) Photo of the top view of the fabricated wireless 
wearable sensor on a flexible polyimide substrate with a footprint of 30.7×55.6×3 mm3. 
(C) Respiratory behaviors data collected from four postures of subjects were fed into a 
machine learning algorithm. Among the data, 80% were used to train the random forest 
classifier, and the remaining 20% was used to be the test dataset to predict the respiratory 
postures based on the extracted features. 
 
The wireless wearable sensor is composed of an emitter to radiate ultrasound and a 

receiver to receive the distance-elapsed attenuated ultrasound. The two parts of the 

wearable sensor move further apart during the inspiration due to the increase in the 

circumference of the chest and abdominal walls, which results in a more attenuated 

ultrasound signal. In contrast, during expiration, the two parts move closer, resulting in a 

stronger received ultrasound signal. A non-polarized pulse stimulatory signal at 50 kHz is 

applied across the PVDF film to generate ultrasound. The respiratory signal modulates 

the emitted ultrasound carrier, which is received by another PVDF receiver that converts 

the mechanical signal to an electrical signal. After demodulation and amplification, the 

respiratory signal is extracted by an envelope detector, and the onboard Bluetooth module 

(MDBT40Q) wirelessly transmits the digitized respiratory signal to an external machine 

for data analysis, e.g., a laptop, that had custom-made data collecting program (appendix 

G, the interface of tailor-made data collecting program). Fig. 3.1A illustrates a simplified 

process, while more details of electronics and schematic used in the wearable sensor 

follow in appendix H. The wearable sensor was fabricated on a flexible 0.1 mm-thick 

polyimide substrate (PCBWay), as shown in Fig. 3.1B. The wearable sensor occupied 
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55.6×30.7×3 mm3 and weighed 5.5 g, including two 1.6 g button cell batteries. Fig. 3.1C 

shows a simplified conceptual process. 

3.2.2.  Study Design 

We recruited eleven subjects to attach the wireless wearable sensors on the midway 

between the xiphoid process and the costal margin, corresponding to the abdomen-

apposed rib cage, and 1 cm above the umbilicus to collect respiratory behaviors within 

four postures. All participants provided informed consent, and this study was approved 

by the Arizona State University (ASU) Institutional Review Board (IRB). 

Eligibility, inclusion, and exclusion criteria for subject recruitment: convenience sample 

from healthy adults (18 years or older) who responded to the recruitment flyer. Subjects 

who smoke or have a family history of respiratory diseases were excluded from the study. 

In total, eleven subjects were included in the study.  

For each subject, the signals coming from the two wireless wearable sensors were 

organized into a series of segmented, Gaussian-filtered data with a moving window size 

of 100 data points, with the sliding scale of 20 data points. This data transformation was 

separately performed for the raw data stream received from two wearable sensors on the 

chest and abdomen and repeated for the four postures. From each data segment, summary 

features, i.e., mean and variance, filtered data themselves, the first and second differential 

of the data, and the wavelet coefficients were extracted. 

Characterized by its ability to reduce overfitting problems and rank the importance of 

classification variables naturally, the random forest classifier has been widely used in 

machine-learning applications. It is an algorithm for classification based on the bagging 

algorithm and uses an ensemble learning technique. We used the random forest classifier 
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in the sci-kit-learn package (Python 3.6) and determined 200 decision trees in the 

finalized random forest classifier. To build a prediction classifier for the subject posture, 

the feature sets, subject posture information, and other relevant information were entered 

into a random forest classifier. In general, the training/test set was split into an 80/20 

ratio, using 80% of data for training and 20% for testing. The classifier produced 

multinomial probability models for the four postures. The posture assigned with the 

highest probability was selected as the predicted value and compared against the actual 

posture. The proportion of the correct classification was calculated for each run to assess 

the random forest classifier's performance. 

We constructed three separate prediction classifiers: the generic, individual, and the 

weighted-adaptive classifiers. For the generic classifier, the entirety of the feature sets 

from a small number of subjects at a time was used to construct the classifier and used to 

predict the outcome of the subject not included in the classifier building step. The 

predicted values were compared against the actual subject postures. The generic 

classifier's performance was assessed across all 120 possible combinations that arise from 

choosing three subjects out of ten (excluding one subject for test purpose). The individual 

classifier was applied separately for each subject, using only the feature sets and/or 

sensors relevant to the particular subject. This created multiple prediction classifiers for 

each subject. The overall classification performance was assessed by computing the 

average performance across the individual prediction outcomes. We also considered a 

weighted-adaptive classifier that is a weighted probability of the generic and individual 

classifiers' multinomial probabilities to explore how to keep accuracy and improve 

applicability. We used the randomly resampled data from the same individual to 
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construct the equal number of predictive multinomial distributions from random forest 

classifier to compute weighted probabilities of finding the final predicted accuracy. 

3.2.3.  Respiratory Behaviors Collecting Protocol 

Eleven subjects were included in this study. To better illustrate the respiratory behaviors, 

subjects were tested in quiet breathing [89]. Each subject wearing two wireless wearable 

sensors attached to selected locations performed quiet breathing on the following four 

postures: standing, lying on the back, lying on the left, and lying on the right.  
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Figure 3.2. Machine Learning Algorithm Process Flow. Respiratory signals collected 
from subjects using two wireless wearable sensors were fed into the Gaussian filters with 
respiratory rate-dependent windows size. After filtering, respiration signals were sliced 
by a 100 data points wide window. The slicing window shifts with a step of 20 data 
points resulting in 300 slices for a given posture and 1200 slices in total for four postures 
per individual. Upon the preparation of the data sets, 80% of them were used to train the 
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random forest classifier, and 20% were used to test the classifier.  Features extraction 
were performed in the following order: filtered respiration signal (Sensor1 or/and 
Sensor2), fist order differential (Sensor1 or/and Sensor2), second-order differential 
(Sensor1 or/and Sensor2), mean values with variances (Sensor1 or/and Sensor2). 
Resulting features of training data sets (80% of data) were used to train the random forest 
classifiers, followed by accuracy testing using the well-built random forest classifier on 
the remaining test data sets (20% of data), resulting in the final prediction of respiratory 
behaviors posture. 
 
3.2.4.  Three Cases to Monitor Respiratory Behaviors 

For a given posture, we collected 10 minutes of respiratory behaviors wirelessly using 

two wearable sensors with a sampling frequency of 10 Hz. A healthy adult has a 

respiratory rate within the range of 12 to 18 respiratory cycles per minute [90], 

corresponding to 30 to 50 data points per respiratory cycle at a sampling frequency of 10 

Hz. This repetitive nature becomes very attractive to train machine learning algorithms. 

We evaluated the efficacy of using one or/and two wearable sensors in postures 

classification by using machine learning algorithms. Three cases: the abdominal 

respiration only (Sensor1), the chest respiration only (Sensor2), and both the abdominal 

and chest respiration (Sensor1 & Sensor2). Fig. 3.2 shows the process flow of the 

collected data. It started with the Gaussian window filtering data with respiratory rate-

dependent window size (more details of the Gaussian filter window size are in appendix 

I). This was followed by the data slicing using a window size of 100 data points, 

approximately covering two respiratory periods. With a sliding scale of 20 data points, 

we obtained 300 slices at one given posture and 1200 slices in total for four postures per 

subject. The processed data were used to extract multiple features, including mean and 

variance, filtered data themselves, the first and second differential of the data, and the 

wavelet decompositions. 80% of features were chronologically selected for training the 
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random forest classifier, and the remaining 20% were used as test data for evaluating the 

trained classifier. 

3.3.  Results and Discussion 
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Figure 3.3. Wearable System Verification in Practical Settings. (A) Temporal data 
collected from the abdominal (Sensor1) and the chest (Sensor2) walls of subject A in 
standing posture, who is a primarily abdominal breather, and (B) those from subject B, 
who is a primary chest breather. (C) data from subject B (chest breather) at a different 
posture (lying on the back). The amplitude change of Sensor1 is more significant than 
that of Sensor 2, suggesting subject B shows primarily abdominal respiration when lying 
on the back. (D) The relative humidity levels test of the wireless wearable sensor. With 
the relative, peak to peak amplitudes of the respiratory behaviors decrease when humidity 
increases from 10% to 50%, as expected due to the attenuation of ultrasound in the air as 
a function of humidity. (E) The comparison of the normalized respiratory behaviors 
collected by Sensor1, Sensor2, and Spirometer. 
 
3.3.1.  Wireless Acquisition of Respiratory Signals Using the Wireless Sensor System 

Subject A, abdominal breather, wearing the wireless sensor in standing posture, 

performed the quiet breathing. Sensor1 (abdominal respiration) produces lager amplitude 

change than Sensor2 (chest respiration) does for subject A (Fig. 3.3A): the abdominal 

respiration contributes more than the chest respiration. Subject B, chest breather, showed 

the opposite (Fig. 3.3B): a smaller amplitude change from Sensor1 than that from 

Sensor2, translating subject B has a primarily chest respiration. On the other hand, 

respiratory behaviors may change as a function of postures. During quiet breathing, Fig. 

3.3C shows subject B is an abdominal breather when supine and a chest breather when 

upright [91]. 

3.3.2.  Verification of the Wireless Wearable Sensor in a Practical Setting 

In our previous work[88], the wireless wearable sensor was tested on the surface of 

different curvatures, at different rotation angles, under different temperatures, and 

characterized by dynamic tests including walking and running with a speed of 1.2 and 2 

m/s for 20 seconds. Besides, the wireless wearable sensor was tested as a function of 

relative humidity levels, in the range of 10%-50%, covering the human comfort zone of 
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relative humidity levels in daily life, which is lower than 60% and higher than 25% (Fig. 

3.3D) [92].  The amplitude of the sensor decreases as the humidity increases, as expected, 

as the ultrasound's attenuation increases in the air [93]. The amplitude of sensors changes 

as a function of humidity, yet the inhale/exhale cycle, e.g., average 15 times a minute, 

occurs significantly faster than the humidity change of daily life. Thus, the wirelessly 

collected data may be treated insensitively to humidity change at the time of acquisition. 

The temporal outputs of Sensor1 and Sensor2 were collected simultaneously along with a 

spirometer (Pneumotrac Spirometer, Model 6800, Vitalograph Inc.), as shown in Fig. 

3.3E, suggesting that the temporal data of the wireless sensor may be a great source in 

recognizing the features of respiratory behaviors. 
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Figure 3.4. Analysis of Optimum Machine-Learning Parameters. (A) Training time 
optimization. The accuracy of two sensors combined mark higher than those of Sensor1 
or Sensor2 alone. The accuracies saturate at 5-6 mins of training, showing the efficacy of 
repetitive breathing data. (B) Selection of the width of the slicing window. The 
accuracies mark high at >60 data points per window. (C) The importance order of the 
extracted features used in the random forest classifiers. The wavelet decomposition 
dominates over other features, which has a good agreement with the non-stationary, 
transient, and non-linear characteristics of the respiratory behaviors. 
 
3.3.3.  Optimization of Training Time and Window Size 

The posture prediction accuracies of Sensor1, Sensor2, and two combined were evaluated 

as a function of training time (Fig. 3.4A), demonstrating a stable and accurate trained 

random forest classifier after 6 minutes, approximately 4800 data points. Fig. 3.4B 
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illustrates the accuracies as a function of window sizes. The accuracies are rather 

independent of window sizes within 60 to 100 data points per window. We chose 100 

data points per window to meet the tradeoff between the accuracies and a large number of 

data slices for training. The random forest classifier trained by the two sensors combined 

offers higher accuracy than that of Sensor1 or Sensor2 alone, regardless of the training 

time and window size, highly suggesting the data from two sensors monitor the 

respiratory behaviors more entirely and more accurately.   

3.3.4.  Wavelet Decomposition Analysis 

Fig. 3.4C shows the importance ranking of extracted respiratory features Sensor1 and 

Sensor2. The wavelet decomposition predominantly contributes to the final prediction in 

a random forest classifier. Feature importance rankings of abdominal respiration only 

(Sensor1) and chest respiration only (Sensor2) are in appendix J. Featured by the 

strengths of the capability of analyzing transient, non-stationary signals, like respiratory 

signals [94] as well as time-frequency analysis [95], the wavelet decomposition shows 

strong relevance in both time and frequency domains for extracting more details of 

respiratory features for classifier training. 
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Figure 3.5. Three Random Forest Classifiers Results Summary and Statistical 
Analysis. (A)  Comparison between the generic classifier and the individual classifier. 
Generic classifier, a classifier combing all the features of respiratory behaviors of all the 
subjects together, marks poor capability to distinguish the differences of the respiratory 
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behaviors within different postures for all three cases: Sensor1, Sensor2, and Sensor1 & 
Sensor2; whereas the individual classifier, a classifier custom-tailored for an individual, 
shows significantly higher prediction accuracy in recognizing the respiratory features 
within different postures. (B) The simplified illustration of the weighted-adaptive 
classifier. The weighted-adaptive classifier is comprised of 80% of the individual 
classifier and 20% generic classifier, taking advantage of both broad applicability and 
high accuracy. (C) The accuracies of generic, individual, and weighted-adaptive 
classifiers on all eleven subjects. All eleven subjects show the lowest accuracy on the 
generic classifier and considerably high accuracies on individual and weight-adaptive 
classifiers. (D) The significance analysis of the generic, individual, and weight-adapted 
classifiers: the accuracies of predicting the postures of subjects based on collected 
respiratory data. The individual and weighted-adaptive classifiers show significantly 
higher accuracies over the generic classifier(****P<0.0001) and mark almost equivalent 
accuracies (P=0.908) between the two classifiers. 
 
3.3.5.  Three Random Forest Classifiers 

We developed and evaluated three random forest classifiers, including generic, 

individual, and weighted-adaptive classifiers, to study the individuality of the respiratory 

behaviors of eleven subjects.  

The generic classifier offers a one-fits-all classifier to extract the common characteristics 

of subjects. We built the generic classifier of three, five, seven, and nine subjects, and the 

prediction accuracies decrease as the number of subjects included in the classifier 

increases. Thus, the generic classifier of three subjects is chosen for the comparison 

throughout this work. More details are shown in appendix K. The generic classifier 

executed all possible 120 combinations, 𝐹𝐹103 = 120 (three out of ten subjects (excluding 

one subject for testing purpose)). The generic classifier's accuracy is low, < 40% (Fig. 

3.5A), as expected, because of highly significant individuality in respiratory behaviors. 

Furthermore, the chest and abdominal respiration are systematic, yet are different on 

extracted respiratory features due to the nonlinear motion of the chest and abdominal 
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walls. These suggest the generic classifier may not be suitable to capture the various 

respiratory behaviors within four postures of subjects.  

The individual classifier uses 80% data for training and 20% data for testing from 

each individual.  The individual classifier marks significantly higher accuracies than 

those of the generic classifier, 83.56±2.15%, 63.35±2.46%, and 99.53±0.04%, 

respectively, on abdominal respiration only (Sensor1), chest respiration only (Sensor2), 

and from both abdominal and chest respiration (Sensor1&Sensor2) shown in Fig. 3.5A. 

In particular, Sensor1 & Sensor2, the individual classifier using both chest and abdominal 

respiratory data, yields higher accuracy than Sensor1 or Sensor2 alone by 19.1% and 

57.1%, respectively, supporting using both sensors can trace and translate the systematic 

respiratory behaviors more accurately.  

The individual classifier of Sensor1 and Sensor2 marks very high accuracy to 

predict posture-dependent individual-dependent respiratory behaviors. A limitation 

exists, however, on the individual model: narrow applicability. To address the limitations 

of a single classifier, multiple classifiers are lumped together to aggregate the predictions 

of individual classifiers [96-99]. We introduce a weighted-adaptive classifier, a weighted 

probability of 20% probability from the generic classifier and 80% probability from the 

individual classifier at a given posture (Details of weight selection follows in appendix 

L). The maximum probability among four weighted probabilities, corresponding to four 

postures, determines the final classification decision (Fig. 3.5B). A two-tailed t-test 

performed the evaluation of weighted-adaptive classifier with a null hypothesis of the 

prediction accuracy of the weighted-adaptive classifier equal to those of individual 

classifier. P=0.908 in Fig. 3.5D indicates strong evidence to accept the null hypothesis.  
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The weighted-adaptive and individual classifiers show significantly high 

prediction accuracies over that of the generic classifier, verified by P<0.0001 in Fig. 

3.5D. For an individual, the individual classifier performs optimally to describe the 

individuality of respiratory behaviors. Alternatively, the weighted-adaptive classifier may 

be attractive, as being featured by the competitive prediction accuracy and better 

applicability. A summary of eleven subjects' prediction accuracy using the respiratory 

features from both the chest and abdominal respiration of three origins is shown in Fig. 

3.5C. Despite the small number of subjects, the prediction accuracies show consistency 

across all eleven subjects and demonstrate the accurate tracing capabilities of the two 

wireless wearable sensors monitoring the systematic respiratory behaviors in order to 

contribute to respiratory disease management. 

3.4.  Conclusion 

We report a wireless wearable sensors system enhanced by a machine-learning 

algorithm, capable of monitoring the individuality of the respiratory behaviors via 

postures classification method. Eleven subjects were included in this study; the number 

of subjects is relatively small but similar to the sample size of other studies, for examples, 

respiration mechanism, and respiration-related disease explorations, which have drawn 

significant clinically-meaningful results [57, 82, 83, 100-103], exploring respiration 

monitoring by wearable sensors recruited only one subject and tested with a single 

posture [2, 72, 74, 104, 105].  

Several future works may improve our current study. Due to the small number of 

and rather homogeneous nature of the study subjects, the applicability and 

generalizability of the study findings to a broader population are unknown at this point. 
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Diversifying the subjects pool, i.e., by including the elderly and the youth, and healthy 

and unhealthy subjects will enhance the wireless wearable sensor's applicability and 

performance with a machine learning algorithm.  

Secondly, the generic classifier we explored showed low accuracy for predicting 

the posture of the subjects. We surmise that it may be due to the individuality of highly 

individual-dependent respiratory behaviors that were not included in the feature set used 

to train the classifier, such as demographics. Hence incorporation of the inherent 

individuality helps us to develop a more accurate generic model.  

For an individual, the individual classifier is the ideal option due to its most 

substantial ability to detect different respiratory behaviors. The apparent weakness of the 

individual classifier is the generalizability. The prediction classifier constructed from one 

subject's data does not produce usable guidance for the next subject. 

The alternative weighted-adaptive classifier, taking advantage of broad 

applicability and higher accuracy, addresses the weak applicability of the individual 

classifier, opening the potential of the applicability to a large group of people to 

accurately study respiratory behaviors contributing to the diagnosis and control of 

respiratory diseases. The weighted-adaptive classifier is still dependent on the individual 

classifier (80% weight); thus, it inherits a similar generalizability weakness. 

However, the loss of the generalizability may not be a significant limiting factor 

in some applications. A predictive model's broad applicability is crucial only when one 

requires a one-size-fits-all classifier that can be used for all people without any 

modifications. Such an application may have greater appeal in field devices that require 

quick but fairly good accuracy as a first-line diagnostic tool where the person’s past 
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medical history is entirely unknown, e.g., in emergencies. On the other hand, in the 

ubiquitous mobile health era, a subject’s respiratory data, recorded by our wearable 

sensors, could be utilized to construct the custom-tailored individual model. This 

approach may be more in line with precision medicine. 

Some challenges remain for future work. The wireless wearable system has two 

sensors monitoring and translating the chest and abdominal respiration within quiet 

breathing. Within daily dynamic breath (respiratory behaviors during activities), 

additional electronics are necessary on the sensors to be references removing artifacts 

induced by human activities. Correspondingly, we need a more robust and sophisticated 

machine-learning algorithm to monitor respiratory behaviors and accurately extract 

unique features of respiratory behaviors within various human activities in daily life.  
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MEMS devices have infiltrated many applications, including the emerging field of drug 

delivery [106], sensors and actuators in the automotive industry [107], such as 

accelerometers to deploy airbags [108], gyroscopes for stability control of mobile 

electronics [109], and many others [110, 111]. MEMS devices contribute the core 

components of these high-tech products used daily. Consequently, the reliability of MEMS 

devices becomes a critical factor that must be reconciled. 

Characterized by their highly miniaturized size and the facile fabrication process, 

MEMS devices are widely used in multi-physics environments, exposing them to 

mechanical, thermal, chemical, and other disturbances. Among them, one of the most 

critical issues affecting the reliability of MEMS devices is the external mechanical shock. 

An external mechanical shock can be defined as a sudden force over a short period applied 

on the MEMS device relative to the natural frequency of the structure. It can cause 

cracking, chipping and fracture due to the highly induced loads on the structure [112], 

which is a key factor to be considered in the design stage of MEMS devices [113]. MEMS 

structures are subjected to external mechanical shocks during fabrication, deployment, or 

operation [114]. In certain situations, a MEMS device can be subjected to an extreme 

shock-load magnitude of greater than 2×104 g (g is the acceleration of gravity, 9.81 m/s2). 

If severe enough, it can cause irreversible damage to devices [115]. Without a proper 

mitigation mechanism, the overall system functionality can be affected by severe 

deformation of the microstructure [113]. Furthermore, exposure of MEMS structures to 

dynamic loads due to mechanical shock can also cause mechanical and electrical failures, 

[112] such as the stiction of micro-beams [116] and short circuit of capacitors [115] 

respectively. In hard disk drives, an unexpected drop may result in damaging of the MEMS 
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actuator, affecting the bandwidth of servo tracking and fine positioning of magnetic head 

[117]. Other well-developed portable devices contain MEMS structures, which re-

emphasize the requirement for reliability against shock [118]. 

Investigation into the protection of MEMS devices from external shock has led to 

multiple findings. Srikar et al. explored a theoretical analysis of the reliability of MEMS 

under shock, evaluating shocks in the form of elastic waves, vibration, and quasi-static 

oscillation in terms of the overall shock duration [114]. Younis et al. reported an efficient 

computational model of the dynamic response MEMS structures demonstrate under shock 

[119]. Development of a general method for modeling the reliability of MEMS devices 

established a reference for the predicted maximum acceleration of vibration and maximum 

shock based on the frequency and pulse length [120]. Yang et al. also dynamically analyzed 

the drop-shock of MEMS/Package system [121].  

While many theoretical and experimental studies of MEMS shock response have been 

explored, only a small number of prior studies have attempted to mitigate the impact of 

shock. Wilner et al. reported hard shock stops as a mitigation method; however, these 

physical structures tended to generate secondary impacts and cause undesirable device 

oscillations [122]. Yoon et al. suggested nonlinear springs and soft coatings in order to 

improve shock mitigation [123]. Weber et al. presented adaptive control to reduce 

vibration-induced bias errors in inertial sensors [124]. These attempts require sophisticated 

structures and algorithms to implement and are less effective and sensitive upon 

implementation than structures without shock mitigating features.  

To overcome some of these challenges, we present a novel, dual-membrane MEMS 

structure that can effectively mitigate shock using electrostatic stimuli in conjunction with 
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inherent restoration force. Comparing a conventional MEMS configuration, i.e. a structure 

with a movable membrane and a fixed substrate (Fig. B.1(a)), with a shock mitigating dual 

membrane structure (Fig. B.1(b)) allows us to perform a side-by-side analysis of the shock 

responses of these structures. The dual-membrane structure effectively prevents the 

movable bottom membrane from traveling beyond the allowed distance by simply adding 

a second thin-film membrane on top of it. This structure effectively reduces the bottom 

membrane travel distance by 41.5%, upon deploying merely 0.565 V onto the additional 

membrane under ex-situ control and 56% by applying 1.72 V under is-situ dynamic control. 

Therefore, this shock mitigating technique can be applied throughout the field of MEMS 

to drastically decrease shock impact on micro-speakers, capacitive actuators, harsh 

environmental sensors, and other transducers. 

   

Figure B.1. (a) A conventional single movable membrane upon shock. (b) Dual-
membrane structure with an additional top membrane and a movable bottom membrane 
upon shock. (c) Top view of fabricated dual-membrane device. (d) Cross-section view of 
fabricated dual-membrane device. 
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The fabrication process to develop the dual-membrane structure supports CMOS-

compatible technology. The first step required a 400-nm-thick silicon nitride layer to be 

deposited by plasma-enhanced chemical vapor deposition (PECVD) for isolation. To make 

a silicon substrate contact, a 3 µm silicon nitride layer was removed by fluorine-based 

reactive-ion etching (RIE) (CF4: 50sccm, O2: 5sccm, pressure: 50 mTorr, power:150 W). 

It was followed by a 4-µm-thick silicon dioxide deposition by PECVD for the first 

sacrificial layer. The bottom membrane composes of three layers: a 200-nm-thick silicon 

nitride layer for isolation from the substrate, a 1-µm-thick highly-doped polysilicon, and 

another 400-nm-thick silicon nitride for the isolation between membranes. We defined the 

bottom membrane, as well as air-venting holes, using fluorine-based RIE 

(Si3N4/Polysilicon: CF4: 50/30 sccm, O2: 5/10 sccm, pressure: 50/175 mTorr, power/RF 

power: 150/50 W). Then, a 4-µm-thick second sacrificial layer of silicon dioxide, followed 

by the top membrane, were deposited. The top membrane consists of two layers: 200-nm-

thick PECVD silicon nitride and 1-µm-thick low pressure chemical vapor deposition 

(LPCVD) highly-doped polysilicon. To form the air-venting holes, Fluorine-based RIE 

was used to etch the top membrane (Polysilicon/Si3N4). Thin-film layers of Cr/Au (20/200 

nm), form electrical contacts to the top membrane, bottom membrane, and substrate, which 

are then connected to external readout using wire bond. The dual membranes are free to 

move once the two sacrificial layers were etched by a 10% hydrofluoric acid solution. Fig. 

B.1(c) and B.1(d) exhibit the top and the cross-section views of a dual membrane structure, 

respectively.  
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Figure B.2. Experiment Setup: (a) Schematic of drop setup; a pin holds the drop platform 
and releases it to drop the test board to the hard floor. The adjustable travel distance is set 
to be 22 cm, corresponding ~ 100 g. (b) Micro-controller board and test board. (c) 
Simplified schematic of the readout circuit. (d) Temporal profiles of accelerometer, 
electrode voltage, and output of readout with 100 g shock load.   
 

A custom-made drop test apparatus (Fig. B.2(a)) was constructed to evaluate the shock-

mitigated MEMS structures. Four vertical steel pillars support a wooden drop platform 

with dimensions of 0.6 x 14 x 31 cm at a given height, i.e. 15 cm or 22 cm, from the hard 

floor. A stopper (small cylindrical wooden pin) pins the platform and when removed, will 

cause the test board on the platform to drop perpendicular to the floor. Rubber bands were 

incorporated at the end of the platform, to enhance the rapid drop of the MEMS structures 

and consequently reduced the friction between the platform and test board. When the test 

board drops at a given height and hits the floor, the shock load corresponding to the inertia 



71 

applies to the MEMS structures on board. The fabricated device was mounted in a dual 

inline package (Spectrum Semiconductor Materials, Inc., HYB02415), and a readout 

circuit was assembled on custom-made test board as shown in Fig. B.2(b). USB-6210 DAQ 

from National Instrument collects the resulting data at output of the readout using a 

sampling frequency of 50 kHz, and MATLAB processes the data using signal analysis with 

Butterworth digital filter. This filter spans from 500 Hz to 1500 Hz in order to isolate the 

shock response signal.  

Fig. B.2(c) shows the simplified schematic of readout, including a high pass filter with 

a gain of 21 dB in order to remove low frequency noise. Two variable capacitors model 

the MEMS structures, followed by a trans-impedance amplifier, including the precision 

operational amplifier, ALD1702 (Advanced Linear Devices Inc. R1 = 1 MΩ, R2 = 1 kΩ, 

R3 = 11 kΩ, and C = 1 mF). The readout circuit, a commercial accelerometer 

(MMA1200KEG, Freescale Inc.), and DUT were all assembled on the test board.  

A control was established that the output of the MEMS structures was recorded upon a 

given shock without applying electrostatic force between the top and bottom membranes. 

The silicon substrate was biased at -2 V, while maintaining zero voltage difference between 

the top and bottom membranes. The test board dropped at 22 cm and hit a hard surface, 

delivering approximately 100 g to the MEMS structures, as measured by the on-board 

accelerometer. To evaluate the effectiveness of the shock mitigation, we collected outputs 

of MEMS structures upon a shock at different values of electrostatic force, i.e. DC voltage, 

applied between the top and bottom membranes. 

To implement an in-situ control of electrostatic force, a microcontroller and an 

accelerometer were used to control the timing of electrostatic force upon a shock. When 
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the output of accelerometer exceeded a threshold of 1.16 V, the micro-controller sent a 

command to apply an electrostatic force within the peak shock amplitude period around 

500 µsec (200 µsec Fig. B.2(d)). The force was applied between the top and bottom 

membranes in order to mitigate the shock effect before the bottom membrane reaches its 

maximum travel distance. Thus, the timing scheme prevented the bottom membrane from 

hitting the substrate. To evaluate the effectiveness of in-situ control, we dropped the board 

containing an accelerometer trigger and a microcontroller. The in-situ control not only 

capably implemented electrostatically mitigation, but also had no influence on the 

identification of shock response of microstructure in presence of shock impact. Once the 

microstructure experienced the shock impact, we easily distinguished the shock response 

in time domain. 

To emulate more realistic settings, such as dropping a cell phone with ambient noise, 

we repeated the above protocol with presence of an acoustic stimulus. We placed a 

loudspeaker at a distance of 1.6 cm above the DUT to impose an acoustic excitation of 98 

dB sound pressure level (SPL) (calibrated by a SPL Meter, CM-130 by Galaxy Audio 

Company) and performed the drop protocol. The MEMS device along with its readout 

circuit dropped from the same conditions, and LabVIEW Signal Express visualized the 

temporal profiles of the accelerometer, the voltage of the top membrane, and readout 

circuit. 

We investigated the responses of MEMS devices under a combination of shock load 

and electrostatic actuation. MEMS devices typically employ capacitive changes, 

corresponding to the movement of movable membrane. The performance of shock-

mitigated MEMS structures is primarily evaluated by the output voltage of readout circuit, 
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which is proportional to the travel distance of the movable bottom membrane [113]. In 

theoretical models, the shock is assumed to be a half-sine profile, similar to the shape of 

an actual shock pulse [112, 114]. Furthermore, the duration of shock load varies from 0.1 

to 1 millisecond, which mostly span the duration of the shock pulse for a hard-floor drop 

test [112].  

 

Figure B.3. Ex-situ control of shock-mitigation. (a) Shock response without mitigation. 
(b) Shock response with mitigation reduced the membrane travel distance by 41.5 % 
using 0.565 V. (c) Shock response without mitigation in presence of 5 kHz acoustic 
signal. (d) Shock response with mitigation reduced the membrane travel distance by 34.6 
% using 0.565 V in presence of 5 kHz acoustic signal. Output of dual-membrane 
structure. Shock load 100g and filtered out acoustic stimulus, 5 kHz. (e) without any 
electrostatic force and (f) with 0.565 V between the top and bottom membranes, 
respectively. (g) Shock response amplitude as a function of electrostatic force, 0.565 V, 
1.023 V, 1.517 V. 
 

MEMS devices responses to shock load can be analyzed either in the time history of 

the system (time domain approach) or through the shock response spectrum (frequency 
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domain approach) [112]. Fig. B.3(a) and 3(b) depict the temporal profiles of the output of 

circuit upon external shock of approximately 100 g, (a) without and (b) with electrostatic 

force between top and bottom membranes. The movable bottom membrane travels towards 

the substrate due to inertia. By deploying merely 0.565 V between top and bottom 

membranes, the peak-to-peak amplitude decreases from 169.15 mV to 98.85 mV, resulting 

in 41.5% reduction. This mitigation method remains effective as well when the 

microstructure is exposed to both an external shock and an acoustic wave. Fig. B.3(c) and 

B.3(d) show the microstructure movement generated amplitude of 231.7 mV (c) without 

any electrostatic force and (d) the amplitude decreases to 151.47 mV, which corresponds 

to a 34.6% reduction by applying 0.565 V between top and bottom membranes. Higher 

applied potentials between the top and bottom membrane are also tested under shock, and 

the resulting peak amplitudes are plotted as a function of applied voltage as shown in Fig. 

B.3(g). As the electrostatic potential increases, the amplitude of the device decreases. 

The electrostatic force between the top and bottom membranes works together with the 

inherent restoration force of bottom membrane. Electrostatic force is inversely proportional 

to the effective gap distance and proportional to the effective area of membranes. Inherent 

restoration force, strongly correlated to the spring constant, is proportional to the thickness 

of the membranes. However, in practice, the spring constant of thin film is largely 

dominated by the stress developed inside the thin film. We believe the thin film stress may 

be responsible for the discrepancies between theoretical estimation and experimental 

results. 

The effectiveness of shock-mitigation can be better illustrated by referring to shock 

response in frequency domain. Obvious distinction of acoustic wave signal from shock 
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response signal make the data analysis easier. By using a digital filter to filter out the 5kHz 

acoustic wave signal, the amplitude of shock is decreased from 205.79 mV (Fig. B.3(e) no 

electrostatic force) to 121.14 mV ( Fig. B.3(f) 0.565 V between the two membranes) by 

41% reduction, which has a good agreement with the results shown in Fig. B.3(a) and 

B.3(b). It is concluded that our dual-membrane MEMS structure has capacity to mitigate 

external shock load effectively under the influence from acoustic wave stimulus, which 

meets the modeling purpose to be a microphone in cell phone.  

 

Figure B.4. In-situ control of shock-mitigation: (a) Shock response with different 
electrostatic force, 1.723 V, 2.047 V, 2.372 V separately. (b) Shock mitigation percentage 
versus applied electrostatic force between top and bottom membranes. 
 

Similar to the ex-situ control, the peak shock amplitude decreases, and the mitigation 

becomes more effective as the electrostatic force increases. The reduction of shock 
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response with the increasing electrostatic force between top and bottom membranes is 

shown in Fig. B.4. 

We present a shock mitigating technique, using a dual-membrane microstructure, which 

effectively attenuates the effects of external disturbances such as mechanical shock on a 

MEMS device. An in-situ shock mitigation configuration consists of an accelerometer 

and shock mitigating controller; the accelerometer senses the shock and triggers the dual 

membrane structure to apply the electrostatic force to reduce the shock impact. To 

replicate real life settings, the shock-mitigation method triggers naturally based on 

conditions measured from the accelerometer and during acoustic excitation on the device. 

The shock-mitigated method comprises of a simple structure, uses CMOS-compatible 

materials and manufacturing process, and delivers a highly effective shock mitigation 

through low voltage electrostatic actuation. This dual membrane MEMS structure 

improves upon current MEMS devices by providing a shock mitigating profile necessary 

to maintain the device’s functionality. 
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APPENDIX C 

PHOTO OF THE WIRELESS WEARABLE SENSOR 
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Figure A.1. Photos of the wireless wearable sensor. (a) the wireless wearable sensor on a 

paper substrate with electronics mounted on. (b) the fully-assembled wireless wearable 

sensor with the copper-tape bridges connecting and providing power supply to the 

emitter. BLE Nano2 was mounted on the receiver side to transmit the collected signal to 

external instrument, such as mobile phone via Bluetooth. 
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APPENDIX D 

ULTRASOUND PRESSURE ATTENUATION WITH INCREASE OF TRAVELLING 

DISTANCE 
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In general, overall ultrasound attenuation is characterized by the following exponential 

decrease of the pressure amplitude p with the travelling distance z: 

P1=P0*e-αz  

where p0 is the pressure at z=0. The quantify α (expressed in cm-1) is the pressure 

frequency-dependent attenuation coefficient. 

 

  

Two PVDF films mounted on the wireless wearable sensor. 

 One is for emitting ultrasound and the ultrasound pressure is P0 at zero travelling 

distance. The ultrasound pressure reaches another PVDF film used to receive attenuated 

ultrasound, P1, at a distance of d. The corresponding voltage output Vout is corelated to P1 

as a function of d that changes as a function of respiration.  

The output voltage generated by the PVDF film is given by: 

 
Vout = g33 × P1 × t 
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where g33 ( 𝑉𝑉/𝑚𝑚
𝑁𝑁/𝑚𝑚2) is the piezo stress constant stands for the electric field induced in “3” 

direction by a stress of 1 Pascal is applied along the “3” axis (thickness mode) and the 

typical value of PVDF film has -330×10-3 𝑉𝑉/𝑚𝑚
𝑁𝑁/𝑚𝑚2. t is the thickness of the PVDF film, 110 

µm. 
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APPENDIX E 

ALGORITHM OF CUSTOM-MADE MOBILE APP 
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Packet format:  

  

Android Application Signal Processing Algorithm 

1: Init: data ← data from sensor      //save bitstream data 
sent in 16 binary system. 

2: Init: package_len ← length of effective data;  data_mv ← save valid data;  data_time ← save 
sample time 

  size ← record the number of packets;  length ← the number of packets processed currently 

3: while length<size do 

4: Check: Check the head of packet must be ‘0xeb’ 

5:  Through Butterworth filter:  

7:   Init: az bz ← read filter coefficients from ‘butter_coe.text’ //Coefficients 
file created in MATLAB  

data_first ← save the filtered data 

8:  Deal: data_first(t)=bz0*data_mv(t) + bz1*data_mv(t-1) + ... + bzorder*data_mv(t-order) – 
az1*data_first(t-1) –   az2*data_first(t-2) - ... -azorder*data_first(t-order)   //order ← filter 
order 

9:  Init: deal_dis ← save transition data;  data_second ← save second processed data 
(represents slope) 

10:   Second Deal:  

deal_dis(t) ← ln(|1-(data_first(t).^2)/(Amplitude_Level^2)|)/(-a); 

11:         data_second(t) ← (deal_dis(t-1) - deal_dis(t))/(data_time(t)-data_time(t-1)) 

12:  Calculate FEV1 and FEV1/FVC: 

13:     Init: max_Data ← maximum of filtered data with t>0.5s;  max_Time ← the time of 
max_Data;   

   min_Time ← the time of trough value before maximum data;  

   delta_Time ← x-intercept of maximum slope plus one;  time_Plus ← truly effective 
intersection 
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14:  Deal: for t in [data_second.size()-pakage_len/2, data_second.size()] do 

15:             if (max_data<data_second(t)) max_data ← data_second(t) 

16:    max_time ← t 

17:         end of for 

19:         for t<max_Time do 

20:              if(data_first(t)>data_first.get(t-1)) 

21:                t--; 

22:         end of for 

23:         min_time ← t 

24:         for t in [min_Time, max_Time] do 

25:            Find the maximum slope point. 

26:         end of for 

27:         delta_Time ← 1+ x-intercept of maximum slope 

   Time_Plus ← closest valid point to delta_Time 

28:   FEV1 ← time_Plus 

29:     FEV1/FVC ← FEV1/max_Data 

30: end of while 

31: Show: display waveform. 
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APPENDIX F 

SPIROMETER VS. THE WIRELESS WEARABLE SENSOR: EXPERIMENTAL 

RESULTS OF A SUB-OPTIMAL RESPIRATION 
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Figure D.1. Respiratory behavior of spirometer (a) Volume-time tracing, (b) Flow rate vs. 

volume and that of the wireless wearable sensor (c) Voltage-time tracing, (d) Differential 

voltage vs. maximum achieved voltage, respectively. 

In results from both the spirometer in Fig.S-3(b) and the wireless wearable sensor in 

Fig.S-3(d), a concave tracing was observed representing the respiratory behavior of the 

specific test on the volunteer is sub-optimal. For the results displayed in the figures, the 
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FEV1/FVC ratios of 71% and 72.5% were achieved by spirometer and the sensor during 

the attempt, respectively, which confirms the sub-optimal respiratory performance of this 

volunteer was detected by both spirometer and the sensor. When the FEV1/FVC ratio is 

smaller than the pre-set value in the custom-made app (75%), an alerting message will 

display on the screen of the mobile phone. 
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APPENDIX G 

CUSTOM-MADE SOFTWARE FOR DATA COLLECTION 
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Figure E.1. The interface of custom-made software installed in a laptop for data 
collection. “Connect” button for connecting the wireless wearable sensors to a laptop via 
Bluetooth, “Save-File” for saving the temporal respiratory signals displayed as .csv files 
“Disconnect” button for disconnecting the wireless wearable sensors. 
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APPENDIX H 

SCHEMATIC OF WIRELESS WEARABLE SENSOR 
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 Figure 
Figure F.1. The circuit diaphragm of the wireless wearable sensor. (a) The circuit of 
ultrasound emitter. A DC/DC converter steps up 3.7 V of lithium battery to 5V, providing 
adequate power to a voltage-controlled oscillator for generating a 50 kHz ultrasound via 
PVDF film. (b) The circuit of the ultrasound receiver. A DC/DC converter boosts the 3.7 
V of lithium battery to 5V to power corresponding modules, an op-amp to amplify the 
received modulated signal, and an envelope detector to extract the respiratory behaviors 
for wireless transmission via an onboard antenna in BLE module.  
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APPENDIX I 

GAUSSIAN WEIGHTED MOVING AVERAGE SMOOTHING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 

Gaussian smoothing is a traditional linear smoothing. It can accentuate the features after 
convolution with studied signals that have similar center-peaked features[125]. 
Respiratory behaviors, including respiratory rates, are individual-dependent and 
characterized by center-peaked profiles. For eleven subjects in this study, experimental 
respiratory rates are variable within a range of 0.19 to 0.34 Hz. In order to make the 
inspiration and expiration, corresponding to the decrease and increase in the output 
signals more prominent, we applied the gaussian-weighted moving average smoothing 
window (MATLAB) based on each respiratory rate per subject. The window size is 
calculated as follows: 

window size = �fs ×
1

fsubject
� 

fs: sampling frequency of the respiratory signal, 10 Hz 

fsubject: respiratory rate of each subject 

⌈ ⌉: ceiling function, a function that maps the result to the least integer greater than or 
equal to the result 
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APPENDIX J 

RESPIRATORY FEATURES USED IN RANDOM FOREST CLASSIFIERS 
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Random forest classifiers classify the postures based on the respiratory features, 

including filtered respiratory data themselves, the first and second differential of the data, 

mean and variance, and the wavelet coefficients. 

 

Figure H.1. Feature importance rankings of Sensor1 (abdominal respiration) and Sensor2 
(chest respiration).  

(a) Five respiratory features were extracted and fed in random forest classifiers. The 
wavelet decomposition consistently contributes primarily in final prediction accuracies, 
as the same in (b). Mean and variance can present the respiratory profiles in the temporal 
domain, first and second differentials correlate to the mobility of respiratory muscles, the 
higher mobility associates with more significant inspiratory and expiratory ability, 
providing a parameter of healthy lung function. 

The contribution of wavelet decomposition in final prediction accuracies is prominent 

and consistent in Sensor1(Abdominal respiration, Figure S4a), Sensor2 (Chest 

respiration, Figure S4b), and Sensor1&Sensor2(Abdominal and Chest respiration, Figure 

4C). Despite the wavelet decomposition, random forest classifiers also used first and 

second differentials, which are chest wall mobility-related features. Chest wall mobility 

was correlated with respiratory muscle strength and lung function. Higher chest wall 

mobility was associated with more significant maximum inspiratory and expiratory 

pressures, forced vital capacity, and inspiratory capacity[126], which can be determined 

from the collected respiratory data using the first and the second differentials. The first 

and second differentials represent the speed and the acceleration of contraction and 
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expansion of the chest and abdominal walls, providing a reference for strength and lung 

function. Filtered respiratory signals and corresponding mean and variance can present 

more details of respiratory profiles in the temporal domain.  
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APPENDIX K 

GENERIC CLASSIFIER WITH MORE SUBJECTS 
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Figure I.1. Generic classifier with increasing subjects. With the number of subjects 
included more in a generic classifier extracting respiratory features from abdominal and 
chest respiration, the prediction accuracies become worse, 36.12±1.28%, 1.04±0.68%, 
1.38±0.81%, respectively. The prediction accuracies of the generic classifier with five, 
and seven subjects are even lower than the random probability 25%, showing the generic 
model has poor ability to extract the features of respiratory behaviors.  
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APPENDIX L 

WEIGHTED-ADAPTIVE CLASSIFIER WEIGHT DISTRIBUTION 
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Figure J.1. Weights of generic and individual classifiers in weighted-adaptive classifier. 
With the increase of weight of generic classifier, starting from 0.2 to 0.9, in 
weighted-adaptive classifier, the prediction accuracy decreases. When the 
weight of generic classifier equals to 0.2, the prediction accuracy mark 
highest accuracy, the corresponding weight of individual classifier is 0.8. 
Therefore, experimentally weighted-adaptive classifier is a weighted 
probability of 0.8 probability from the individual classifier and 0.2 
probability from the generic classifier.  

 

 

 

 

 

 

 

 

 

 

 


