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ABSTRACT  
     

Gene circuit engineering facilitates the discovery and understanding of fundamental 

biology and has been widely used in various biological applications. In synthetic biology, gene 

circuits are often constructed by two main strategies: either monocistronic or polycistronic 

constructions. The Latter architecture can be commonly found in prokaryotes, eukaryotes, and 

viruses and has been largely applied in gene circuit engineering. In this work, the effect of 

adjacent genes and noncoding regions are systematically investigated through the construction of 

batteries of gene circuits in diverse scenarios. Data-driven analysis yields a protein expression 

metric that strongly correlates with the features of adjacent transcriptional regions (ATRs). This 

novel mathematical tool helps the guide for circuit construction and has the implication for the 

design of synthetic ATRs to tune gene expression, illustrating its potential to facilitate engineering 

complex gene networks.  

The ability to tune RNA dynamics is greatly needed for biotech applications, including 

therapeutics and diagnostics. Diverse methods have been developed to tune gene expression 

through transcriptional or translational manipulation. Control of RNA stability/degradation is often 

overlooked and can be the lightweight alternative to regulate protein yields. To further extend the 

utility of engineered ATRs to regulate gene expression, a library of RNA modules named 

degradation-tuning RNAs (dtRNAs) are designed with the ability to form specific 5’ secondary 

structures prior to RBS. These modules can modulate transcript stability while having a minimal 

interference on translation initiation. Optimization of their functional structural features enables 

gene expression level to be tuned over a wide dynamic range. These engineered dtRNAs are 

capable of regulating gene circuit dynamics as well as noncoding RNA levels and can be further 

expanded into cell-free system for gene expression control in vitro. Finally, integrating dtRNA with 

synthetic toehold sensor enables improved paper-based viral diagnostics, illustrating the potential 

of using synthetic dtRNAs for biomedical applications. 
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CHAPTER 1 

INTRODUCTION 

1.1 Synthetic biology 

 Synthetic biology is a highly interdisciplinary subject that encompasses a wide range of 

research areas, including system biology, molecular biology, genetic engineering, chemistry, 

biophysics, and mathematics. The development of biology and related life science subjects 

provide us the knowledge and understanding of the basic biological phenomena and 

mechanisms, enabling the exploration of the hidden interactions among different types of species. 

An increasing number of biological networks or systems have been discovered based on these 

interactions which offers the broader stage for scientists to design, characterize and construct 

artificial biological systems with mimic function using engineering approaches1–3. This surely 

benefits from the development of chemistry and genetic engineering to rapidly synthesize various 

biological molecules with decreased costs for carrying out synthetic biology research. With the 

merging of mathematics and biophysics, now scientists are able to build biophysical models to 

describe or explain different biological systems with predictable manners and utilize for many 

practical applications in broad areas. 

 Although the use of the term ‘synthetic biology’ was identified nearly a hundred years 

ago, it was first appeared in the title of a literature in 1980 by Barbara Hobom to describe the 

genetically engineered bacteria using DNA recombinant technology4. This novel subject has only 

been under the burgeoning development for five decades which were divided into three time 

periods by the scientists for thriving, enabling science, modules era and systems era5. The first 

era describes that synthetic biology is grounded on the development of basic molecular biology 

and genomics. It can be traced back to about 1960s where the discovery of lac operon’s 

regulation first demonstrated the existing of regulatory gene circuit in natural biological system6. 

This study presented that gene expression can be regulated by the other genes, enables the 

regulation process to be identified as a dynamic system to produce output while controlled by the 

behavior of the input protein. In the same decade in 1969, scientists discovered DNA restriction 

enzymes, illustrating the possibility to cleave and ligate the original DNA sequence to engineer 
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recombinant gene circuits7. The further advent of genetic modification technologies in 1970s and 

1980s, including molecular cloning and polymerase chain reaction (PCR), further provide 

additional enabling technologies to effectively and efficiently construct synthetic gene circuits, and 

now has become more and more widely used in molecular biology research8. During the 1990s, 

the development of automated DNA sequencing strategy and other genomic technologies 

enables high-throughput measurement of various types of small molecules including DNA, RNA 

and protein. This large-scale analysis technique allows scientist to build up libraries of database 

for each molecular component classified by their specific properties or functions. These large-

scale data banks drive the research to understand biology into a broader path through a top-down 

approach, which later on generates the field of system biology. A large variety of systems, 

thereby, were created through this approach as scientists start to combine experimental data and 

computational analysis to reverse-engineer gene regulatory networks (GRNs)9–11. Through 

research, it gradually became clear about the roles and functions of individual biological 

components that forms a well-organized synthetic system. With the better understanding of these 

components, a complementary bottom-up approach was established, that is to forward-engineer 

complex gene networks to implement particular functions using well-characterized biological 

components. This approach was later termed as the discipline for synthetic biology12. 

 The early development for synthetic biology is the starting point of modules era in which 

biologists created first generation of simple synthetic gene circuits or modules to carry out 

functions that are analogous to electrical circuits13,14. The first two engineered synthetic gene 

circuits using bottom-up approach was reported in early 2000: the genetic toggle switch and the 

repressilator15,16. By using similar sets of small biological components including inducible 

promoters, repressors (proteins that inhibit gene expression) and green fluorescence protein 

(GFP) reporter, circuits’ behaviors can be monitored with the stimulation of the inducers. The 

genetic toggle switch consists of two inducible promoters that drive the expression of mutually 

inhibitory genes, forming a bistable system that is capable of either maintaining the original 

system memory or switching to the other state presenting with the respective inducers. This 

toggle switch principle was well-studied and has been employed for varying applications. One 
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example is to engineer microbial kill switches to control bacterial population level depending on 

specific environmental inputs17. These tools harness the principle of genetic toggle switch and are 

readily to be reprogrammed with diverse environmental cues, regulatory topology and killing 

mechanisms. Another example is to build a bacterial sensing and recording system for 

environmental stimuli diagnostics in mammalian gut18. The repressilator, on the other hand, 

comprises three genes that mutually inhibit each other, forming a triple negative-feedback loop 

with their own promoter pairs which, when triggered, lead to the expression of repressor protein in 

a sequential and periodic manner. Interestingly, both cases incorporated the mathematical 

modeling to quantitatively define the systems that are fit with experimental outputs, enabling the 

prediction of systems’ outcome by digital inputs without the need to perform biological 

experiments. Following the research of genetic toggle switch and repressilator, numerous 

biological modules and simple gene circuits have been engineered with complex architectures 

and behaviors for diverse purposes. This includes building synthetic gene circuits to study the 

relationship between gene expression and transcriptional noise in both prokaryotic and eukaryotic 

cells19–21, engineering genetic oscillators with different topologies22–25, developing synthetic 

bacterial quorum sensing system which regulate circuit behaviors through cell-cell 

communication26–28,  and other fancy circuits such as genetic counter and timer29,30, band-pass 

filter31, pulse generator32, optical sensor33, edge detector34 and a variety of genetic logical 

gates35–37. The development of these simple circuits and modules paved way for forward-

engineering more complex gene networks from prokaryotes to the other highly complicated 

biological systems. 

 The transition from modules era to systems era started about ten years ago as synthetic 

biologists began to focus on engineering layered computational logic and memories, synthesizing 

scaling-up bacterial consortia and carrying out applications in medicine, biotechnology and 

environment12,38,39. For example, synthetic biosensors were engineered which harness the design 

principles of logic gate to detect chemical combinations in the environment18,40. These sensors 

contain environmental inducible promoter and corresponding transcriptional factors, when 

interacting with the chemicals such as metal ions in the environment, releasing orthogonal 
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outputs which can be individually measured by instruments. Gene regulatory networks has also 

been integrated into paper-based techniques to develop rapid and low-cost RNA-based 

technology for viral diagnostic applications41,42. Additionally, complex synthetic gene networks 

were used for various clinic conditions, including the treatment of infectious diseases and cancer 

therapies43. One difficulty for cancer treatment is to engineer tools that can successfully identify 

cancer cells from nearby normal cells. Despite, to some extent, the general chemotherapy is 

effective, it indiscriminately kills both cancer cells and normal cells, leading to irreversible tissue 

damage. Methods that can only target cancer cells through sensing with cancer specific signals 

are urgently needed. To achieve this, Nissim and colleagues developed a tunable dual-promoter 

integrator that can specifically kill cancer cells44. The two promoters in the integrator can sense 

signals such as overexpressed oncogenes that only produced by cancer cells and then drive the 

expression of chimeric proteins, which, when combined, further activate downstream killer gene 

expression to kill the cells. Normal cells does not contain enough cancerous signals, and 

therefore survive even with the presence of the integrator. Similar principle was also used in 

another study in which Xie and colleagues developed RNAi-based logic circuit system to identify 

and kill specific cancer cell lines45. The output killing gene can only be expressed while presented 

with cancer specific microRNAs to trigger cell apoptosis.  

 Although keeps making considerable achievements in current stage, additional 

challenges might still exist to obstacle the further development of synthetic biology. Using bottom-

up design approach, it is relatively convenient to characterize a functional module such as the 

genetic toggle switch or the oscillator in isolation. However, its function may change while 

integrating into more complex synthetic gene networks, leading to unexpected behavior or system 

failure. Meanwhile, re-characterize the system typically consuming time and requires iterative 

design process which hinder the construction of more complex synthetic gene networks with 

multi-dimensional logic layers. Despite gene expression process shares “Central Dogma” 

principle among species, circuits with well-characterized behaviors in bacteria might exhibit 

unwanted interactions with intracellular chassis in the other cell types from bacteria to mammalian 

cells46. Furthermore, expressing exogenous synthetic circuits also competes resource with 
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endogenous genome expression. This effect could be minor and negligible while introducing 

smaller synthetic modules. However, the cellular status might be substantially hampered as the 

increase of circuitry complexity, resulting in elusive behavior that can no longer be negligible47–49. 

Solutions to circumvent these challenges are necessary to provide comprehensive understanding 

of synthetic gene circuit with robust behaviors in diverse biological systems. 

 

1.2 RNA based regulation of gene expression 

 The rise of engineering synthetic regulatory modules has made considerable progress in 

synthetic biology during recent period. By employing certain regulatory topologies, a large variety 

of dynamics can be achieved through combining well-characterized modules to construct 

complex synthetic gene networks. In general, most engineered synthetic gene circuits relies on 

protein-based transcriptional regulation in the early development stage. These systems usually 

contain a regulatory protein and its cognate inducible promoter which drives the expression of 

downstream genes. While under expression, this regulatory protein serves as an activator or a 

repressor that can bind with its promoter DNA sequence to either enhance or inhibit the 

transcription process of the downstream gene. Two good examples are genetic toggle switch that 

contains two mutually inhibitory repressors and quorum sensing regulatory system which 

activates downstream gene expression while binding with cognate ligands15,26,50. Now the 

requirement of engineering complex gene circuits with orthogonal regulations has drawn 

scientists to focus on developing RNA-based tools for gene expression regulation. 

 Riboswitch or riboregulator is a noncoding RNA structure that typically locates at the 5’ 

untranslated region (UTR) of a mRNA molecule. This RNA structure is subject to a 

conformational change while binding with its cognate ligand molecules, such as antisense RNA51–

54, amino acids55–57 and the other molecules58,59. Some regulators such as ribozymes that do not 

require the specific binding can regulate gene expression through self-cleavage60–63. As the 

intermediate molecules during gene expression process, riboswitch holds the potential for 

regulation either at transcriptional level by folding or disrupting transcription terminator or at 

translational level through exposing or sequestering mRNA ribosome binding site (RBS).  
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One good example of riboswitch regulation at transcriptional level is the engineering of 

small transcriptional activating RNAs or STARs64. This riboswitch usually consists of a cis-

regulatory RNA that can form a transcription terminator at the 5’ end of mRNA to inhibit 

transcription process. The addition of STARs can cause the conformational change of this 

upstream riboswitch, removing its termination effect and thereafter activate downstream gene 

expression. The effect can be inverted by engineering a cis-attenuator sequence that sequesters 

the terminator riboswitch. Introduction of STARs that bind with the attenuator sequence 

completely remove its inhibition effect to release the terminator structure, resulting in gene 

expression switching from ON state to OFF state. The translational regulatory riboswitch has 

been optimized for many generations for versatility, less crosstalk and pronounced dynamic 

ranges. Biologists currently de-novo-designed a riboregulator named toehold switch that, instead 

of focusing loop-mediated interaction, introduced a linear toehold region that can be designed to 

recognize arbitrary trigger sequences, favoring the system with improved dynamic range as well 

as low component crosstalk65. Due to the property that only recognizing their cognate trans-

regulatory RNAs, STARs and toehold switch have been incorporated to design complex synthetic 

circuits with multi-input logic gates and have been applied to many biomedical applications41,42. 

The development of clustered regularly interspaced short palindromic repeats 

(CRISPR)/CRISPR-associated (Cas) systems hold the prominent capability for genome 

engineering and disease treatment66–70. As its specific property that the transcribed CRISPR RNA 

can guide its Cas protein to recognize DNA or RNA sequence through Watson-Crick base pairing 

to introduce nucleotide cleavage, CRIPSR/Cas system can also serve as a promising tool for 

gene expression regulation. Qi and colleagues first developed a CRISPR based RNA-guided 

platform for sequence-specific gene expression regulation in 201371. This CRISPR interference 

(CRISPRi) system that harnesses a catalytically dead Cas9 (dCas9) protein, when coexpressed 

with its guide RNA that directs dCas9 binding without cleavage, introduces transcriptional 

inhibition. An activation version of CRISPR system namely CRISPR activation (CRISPRa) was 

also developed shortly after the previous publication where biologists engineered dCas9 protein 

by genetically fusing to a C-terminal VP64 acidic transactivation domain, leading to enhanced 
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gene expression levels in human cells72,73. Currently, diverse systems that shares similar 

functionality to regulate gene expression have been engineered and expended to multiple 

organisms from bacteria to mammalian cells, and have been widely used for constructing 

complex synthetic gene circuits74–78.  

 

1.3 Chapters in the dissertation 

 Chapter 2, “Design of Adjacent Transcriptional Regions to Tune Gene Expression and 

Facilitate Circuit Construction,” mainly discusses the features that can affect gene expression in 

polycistronic architectures. Here, we constructed synthetic operons with a reporter gene flanked 

by different ATRs, and found that ATRs with high GC content, small size, and low folding energy 

lead to high gene expression. Based on these results, a metric of gene expression was built that 

takes into account ATRs. We used the metric to design and construct logic gates with low basal 

expression and high sensitivity and nonlinearity. Furthermore, we rationally designed synthetic 5’ 

ATRs with different GC content and sizes to tune protein expression levels over a 300-fold range 

and used these to build synthetic toggle switches with varying basal expression and degrees of 

bistability. Our comprehensive model and gene expression metric could facilitate the future 

engineering of more complex synthetic gene circuits. 

 Chapter 3, “Applications of Machine Learning Techniques in Genetic Circuit Design,” 

presents the research that using machine learning (ML) techniques to accurately construct 

mathematical models for predicting gene expressions in genetic circuit designs. Specifically, 

classification and regressions models were built using Random Forrest (RF), Support Vector 

Machines (SVM), and Artificial Neural Networks (ANN). The obtained accuracy of the regression 

model using RF and ANN yielded R2 scores of 0.97 and 0.95, respectively, compared to the best 

score of 0.63 obtained in Chapter 2. Furthermore, a classifier model was built using the green 

fluorescent protein measurements obtained from the experiments. The measured GFP values 

were predicted with 100% accuracy by both RF and ANN classifier models while identifying 

various synthetic gene circuit patterns. This work highlights importance of the relevant data 

preparation techniques to ensure high accuracy is obtained by the utilized ML models. 
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 Chapter 4, “Predictable control of RNA lifetime using engineered degradation-tuning 

RNAs,” covers the methods to control RNA stability in various systems. Here, we report a library 

of RNA modules called degradation-tuning RNAs (dtRNAs) that can increase or decrease 

transcript stability in vivo and in vitro. The dtRNAs enable modulation of transcript stability over a 

40-fold dynamic range in Escherichia coli while having a minimal influence on translation 

initiation. We harness dtRNAs in mRNAs and noncoding RNAs to tune gene circuit dynamics and 

enhance CRISPR interference in vivo. Use of stabilizing dtRNAs in cell-free transcription-

translation reactions increases gene expression in vitro. Finally, we combine dtRNAs with toehold 

switch sensors to enhance the performance of paper-based norovirus diagnostics, illustrating the 

potential of synthetic dtRNAs for biotechnological applications. 

 Chapter 5, “Conclusion and Future Direction,” summaries the research specific aims and 

proposes directions for future research. 
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CHAPTER 2 

DESIGN OF ADJACENT TRANSCRIPTIONAL REGIONS TO TUNE GENE EXPRESSION AND 

FACILITATE CIRCUIT CONSTRUCTION 

2.1 Introduction 

 Gene circuit engineering as one of the foundation technologies has helped start the 

burgeoning development of bacterial synthetic biology. Based on a large collection of well-

characterized biological components, including promoters, ribosome binding sites, transcriptional 

factors, terminators, RNA elements, and other small modules, complex gene circuits with 

designed functions can be wired using established biological principles. Toggle switch and 

repressilator are two of the earliest examples of engineered gene circuits15,16. Now synthetic 

biologists are paying increasing attention to develop innovative gene circuits for spatial pattern 

formation79,80, drug development81,82, pathogen detection41,83, in vivo delivery84, and other 

biotechnological applications, including nitrogen fixation85,86 and environmental bioremediation87.  

 Currently, circuit assembly has two main strategies: one is monocistronic construct, in 

which one promoter drives one gene expression and ensures each gene is being expressed 

independently; the other is polycistronic construct, in which one promoter transcribes multiple 

genes (operon) into a single mRNA but is translated into individual products (Figure 2.1A). 

Operon, a cluster of genes with functional associations under control of a single promoter, is a 

common type of genome organization in prokaryotic cells and is also widely found in eukaryotes 

and viruses88. This operon organization strategy, here mainly referring to the genes’ order and 

position downstream of the promoter in an operon, ensures coordinated gene expression and 

regulation and enables bacteria cells to rapidly respond to environmental changes. In synthetic 

biology, this organization (synthetic operon) facilitates rapid construction of genetic cascades and 

decreases the number of biological components (such as the promoters and terminators) 

required for complex genetic circuits, and therefore is widely used in circuit engineering89–96.  

 However, it remains unknown whether/how gene expression is affected by immediately 

adjacent genes in a polycistronic operon. Two previous reports have indicated that gene position 

and transcriptional distance can affect gene expression in a synthetic operon97,98. But little 
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research has systematically studied the effects of adjacent genes in synthetic operons on the 

circuit’s gene expression, dynamics, and functionality. This factor is more prominent for synthetic 

operons containing a cluster of genes and complex multi-layered genetic circuits. Deciphering the 

effects of adjacent transcriptional region (ATRs) on gene expression would advance our 

understanding of determinants of gene expression in synthetic circuits and accelerate circuit 

design and assembly. Such effect has been generally neglected during engineering of synthetic 

gene networks, leading to unexpected circuit performance or failure99–101. Hence, development of 

a predictive method to evaluate each gene’s expression level in a circuit would be of great 

importance to circumvent the need for trial and error in circuit design and assembly. 

 To quantify the effects of ATRs on gene expression, here we systematically analyzed the 

effect of adjacent genes and noncoding regions on GFP expression levels through construction of 

~120 synthetic gene circuits (operons) in Escherichia coli. Data-driven analysis yields a new 

protein expression metric that strongly correlates with the features of ATRs including GC content, 

size, and stability of mRNA folding near ribosomal binding sites (RBS). We demonstrated this 

metric’s utility in evaluating relative expression levels of genes by incorporating it in the design 

and construction of logic gates with lower basal expression and higher sensitivity and 

nonlinearity. Furthermore, we designed synthetic 5’ ATRs to tune protein expression levels over a 

300-fold range. Finally, by combining ATR regulation and mathematical modeling, we illustrated 

the application of synthetic ATRs in quantitatively tuning nonlinear dynamics of bistable gene 

networks. 

 

2.2 Results 

2.2.1 Protein expression is significantly influenced by its adjacent genes and position in the 

operon 

 To examine whether protein expression is affected by its neighbors in a polycistronic 

setting, we first constructed a two-gene operon (gene X and GFP), which is driven by a 

constitutive promoter (Figure 2.1B). Flowcytometry results showed that for different X, GFP 

expression varies significantly. Specifically, circuits with AraC and RhIR as X showed a 
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comparable level of GFP fluorescence with the control (without X gene), while the others (LuxI, 

TetR, and dnMyD88) showed high expression variations, ranging from 6-fold to over 120-fold 

decrease compared with control (Figure 2.1B). Membrane protein dnMyD88 shows the most 

significant influence on its neighbor GFP expression. On the other hand, RT-qPCR 

measurements of transcripts of GFP showed much smaller variations of mRNA concentrations 

between different circuits, for P1:P2 (GFP N-terminal) or P3:P4 (GFP C-terminal) primer pairs 

(Figures 2.1C and Figure 2.2A-C). So, the variation of mRNA concentrations for each construct is 

insufficient to explain the fluorescence differences, which agrees with previous studies that 

protein and mRNA copy numbers in E. coli cells are uncorrelated98,102. 

 

Figure 2.1 Protein Expression Is Significantly Influenced by Its Adjacent Genes and Position in 

Synthetic Operons (A) Illustration of the operon structure and gene expression. The three 

structural genes are transcribed as a polycistronic mRNA but translated into individual proteins. 
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P, promoter; O, operator. Yellow oval, ribosome. (B) Top: Schematic representation of synthetic 

bicistronic gene circuits with gene X and GFP. Gray arrow, constitutive promoter; orange oval, 

ribosome binding site; red hexagon, transcriptional terminator. Bottom: Flow cytometry results 

show GFP expression is influenced by its 5’ ATRs. X represents a gene name (i.e., LuxI, AraC, 

TetR, RhIR, and dnMyD88). ‘‘Control’’ is without X gene in the circuit. Rectangles with filled colors 

represent different genes. Data represent the mean ± SE of eight replicates. (C) Relative GFP 

mRNA concentrations (normalized to 16S rRNA control) for the circuits in (B) determined by RT-

qPCR. Primer pair P1:P2 was designed to amplify GFP gene from the sample cDNA. (D) Top: 

Schematic representation of synthetic bicistronic gene circuits with gene X and GFP, but with 

switched positions in the circuit. Gene position in the operon affects GFP expression. Data 

represent the mean ± SE of eight replicates. *p < 0.05, **p < 0.001, and ***p < 0.0001 by 

Student’s t test. 

 

Next, we further investigated the influence of a gene’s position on its expression. As 

shown in Figure 2.1D, higher GFP expression is observed when GFP is arranged distal to the 

promoter for the bicistronic constructs that X gene is RhII, AraC, or LacI, while there are cases 

showing a similar level of GFP fluorescence (LuxR) or higher (LuxI) when GFP is arranged right 

downstream of the promoter. Results from tricistronic constructs also indicate that GFP 

expression is varied for different positions in the circuit and adjacent genes (Figures 2.2D-G). 

Moreover, for different Xs with the same position, GFP shows substantial variations, consistent 

with results shown in Figure 2.1B. Altogether, these results demonstrate that a gene’s sequence 

and position in operons influence the expression of adjacent genes. 

 

2.2.2 Quantitative characterizations of ATR effects on synthetic operons 

 To quantify the impact of ATRs on protein expression, we designed and constructed ~80 

circuits with different neighbor protein-coding genes and varying sizes (X and Y) to cover a wide 

range of GFP gene position and neighbor features (GC content, size, and mRNA secondary 

structure). These genes are commonly used in synthetic biology, including transcriptional factors, 

quorum-sensing components, and other functional genes. To ensure experimental consistency, 

all circuits were constructed using the same constitutive promoter, RBS, terminator, and 

expression vector. 
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Figure 2.2 RT-qPCR Result for the Circuits in Figure 2.1B, and Gene Position in the Tricistronic 

Circuit Impacts GFP Expression (A) Two pairs of primers (P1:P2, and P3:P4) designed to amplify 

GFP gene from the sample cDNA. The binding sites of the four primers are also indicated. (B) 
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RT-qPCR result using primer pair P3:P4 to amplify GFP gene. The GFP mRNA concentrations 

were normalized to the 16S rRNA control. Error bar represents standard deviation of three 

biological replicates. (C) Correlation between the GFP fluorescence intensities and the relative 

GFP mRNA concentrations. Little correlation was found using primer pair P1:P2 or P3:P4. These 

results indicate there is little correlation between GFP protein fluorescence intensity and mRNA 

level for the circuits in Figure 2.1B. (D) GFP is arranged at proximal (P1) or middle (P2) or distal 

(P3) positions to the constitute promoter in the tricistronic circuit with two more genes LuxR and 

RhIR. Circuit with GFP at P1 position shows the highest GFP expression. (E) GFP is arranged at 

P1, P2, and P3 positions in the tri-cistronic circuit with genes LuxR and AraC. Circuit with GFP at 

P3 position shows the highest GFP expression. (F) GFP is arranged at P1, P2, and P3 positions 

in the tri-cistronic circuit with two copies of LuxR genes. Circuit with GFP at P1 position shows the 

highest GFP expression. (G) GFP is arranged at P1, P2, P3 positions to the constitute promoter 

in the tri-cistronic circuit with genes LuxR and LacI. Circuit with GFP at P3 position shows the 

highest GFP expression. Data represent the standard deviation of eight replicates. Gray arrow: 

constitutive promoter; Orange oval: ribosome binding site; Red hexagon: transcriptional 

terminator. Rectangles with filled colors represent different genes. 

 

First, GFP was arranged to the distal end of synthetic bicistronic and tricistronic operons, 

and the DNA sequence starting from the transcription start site after the promoter to the 

beginning of the RBS of GFP is denoted as 5’ ATRs (Figure 2.3A). Log transformation was 

applied to the original data because of its large variability ranging from 21,000 to 1,900,000 (GFP 

fluorescence, arbitrary unit) and inconstant variance. GFP expression increased with the total 5’ 

ATRs GC content, while 5’ ATR length had a negative effect on GFP expression. Sliding window 

analysis of 5’ ATR GC content suggested that the GC content of the whole 5’ ATR has the 

highest fitting efficiency (Figure 2.4A). We hypothesize that high GC content could increase total 

mRNA stability, while a long transcription process could decrease the probability of complete 

GFP transcription/translation and increase the probability of degradation. In addition, previous 

studies reported that RNA secondary structure near the RBS influences a gene’s expression, so 

local folding energy from the -70-nt to +38-nt region around GFP’s RBS (GFP’s translation 

starting site is denoted as +1) was calculated. Consistent with previous reports103–105, our analysis 

also shows that GFP expression is significantly correlated with folding energy around the RBS of 

GFP (Figure 2.3A). 
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Figure 2.3 Quantitative Characterization of Adjacent Gene Regulation in Synthetic Operons (A) 

Scenario 1: GFP is arranged distal to the promoter. Top: Schematic representation of synthetic 

polycistronic gene circuits X-GFP. X and Y represent different gene names. Bottom: GFP 

expression is significantly affected by its 5’ ATRs’ GC content, size, and local folding free energy. 

35 genetic circuits with one or two genes placed in front of GFP, which are labeled with different 

symbols in the regression results. The red lines are the linear regression results from the data. 

Error bars are the SD of eight measurements performed in three different days. (B) Scenario 2: 

GFP is placed in the middle of the three-gene operons (X-GFP-Y). GFP expression is significantly 

correlated with its 5’ and 3’ATR GC content and local folding free energy. 20 circuits with different 

X and Y gene combinations were constructed. (C) Scenario 3: GFP is placed proximal to 

promoter (GFP-X). GFP expression is significantly affected by its 3’ATR GC content and size. 24 

circuits with different 3’ATRs were constructed, and different symbols are used to indicate bi- or 

tricistronic constructs in the regression results. (D) Investigation of noncoding ATR regulation on 

GFP expression. X gene would not be expressed owing to a lack of RBS. GFP expression is 

significantly correlated with 5’ ATR GC content, size, and local folding free energy. 29 circuits with 

different X genes were constructed. (E) A comprehensive model for ATR regulation on protein 
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expression. Top: Co-transcriptional translation and degradation. After RBS is transcribed, RNase 

and ribosome competitively bind to mRNA to initiate translation or degradation. Generally, gene 

expression is influenced by overall stability and local secondary structure. Bottom: Illustration of 

the five variables in the model: ∆G5’ATR, ∆G3’ATR_100, ∆G-70~+38, and transcriptional sizes (i, j). -70 

and +38 correspond to the position of the start codon (AUG) of the gene of interest. (F) Left: 

Experimentally observed GFP expressions are plotted against the GFP values predicted by the 

coding ATR model with the five statistically significant energetic terms and fitted coefficients. If 

the model predicted values and experimentally observed values agreed perfectly (R2 = 100%), all 

the data points would fall on the dotted diagonal line of the squares. N is the total measurements 

for the 79 circuits. Dots with different colors indicate the data source from the three scenarios in 

(A–C). Right: Experimentally measured GFP fluorescence is plotted against the GFP expression 

predicted by the noncoding ATR model with the three statistically significant energetic terms 

(∆G50ATR, i, and ∆G-70~+38). 

 

Next, GFP was placed in the middle of the operon, and the sequence between the stop 

codon of GFP and the transcriptional terminator is denoted as 3’ ATR. We found that 5’ ATR GC 

content (positive impact) and local mRNA folding free energy (negative impact) have the most 

significant impacts on GFP expression, and 3’ ATR GC content has a small contribution to GFP 

variations in this case (Figure 2.3B). Finally, circuits with GFP engineered proximally to the 

promoter were also constructed and investigated to probe the relationship between GFP 

expression and its 3’ ATR. Similarly, results show that 3’ ATR GC content and size have a 

positive and negative relationship with GFP fluorescence, respectively (Figure 2.3C). Sliding 

window analysis further revealed that the GC content of the first 100 nt of 3’ ATR has the highest 

fitting efficiency, suggesting the rear 100 nt is important for GFP expression (Figure 2.4B). 

Noncoding DNA sequences make up about 12% of the bacterial genome and play 

important roles in the regulation of gene expression and metabolism106,107. To investigate whether 

noncoding sequences would similarly affect adjacent gene expression in synthetic operons, we  
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Figure 2.4 Sliding Window Analysis for Local GC Content and Model Fitting; Gene Expression 

Comparison for Circuits with and without RBSs (A) Top: Schematic representation of constructs 
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with GFP distal to the constitutive promoter. The black lines with arrows indicate 5’ ATRs with 

different lengths. Bottom: GC content of 5’ ATRs with different lengths from 400 nucleotides to the 

whole transcriptional region are calculated and then fitted to the model. The coefficients of 

determination (R2) are compared to 5’ ATRs with different lengths. Linear model results show that 

GC content with the whole 5’ ATR has the highest fitting efficiency. X represents different genes 

used in the circuit. (B) Top: Schematic representation of constructs with GFP proximal to the 

constitutive promoter. The black lines with arrows indicate 3’ ATRs with different lengths. Bottom: 

GC content of 3’ATRs with different lengths from 50 nucleotides to the whole transcriptional 

region are calculated and then fitted to the model. The coefficients of determination (R2) are 

compared to 3’ATRs with different lengths. Model fitting results show that GC content of the first 

100 nucleotides 3’ ATR has the highest fitting efficiency. (C) Top: Schematic representations of 

synthetic gene circuits with RBS or without RBS. Three fluorescent proteins GFP, enhanced 

yellow fluorescent protein (EYFP), and enhanced cyan fluorescent protein (ECFP) were chosen. 

Bottom: Results indicated that there are minimal fluorescence expressions for all the three circuits 

without RBS. Rectangle with filled color represents fluorescent genes (Fluo.). Cyan fluorescence 

was measured by plate reader (excitation: 405 nm; emission: 485 nm). Experimental data are 

replicated three times with total twelve data points, and bars represent the standard deviation of 

the mean. (D) Schematic representations of synthetic bi-cistronic gene circuits. GFP reporter was 

expressed downstream of a coding ATR (with RBS) or noncoding ATR (without RBS), 

respectively. Higher GFP expression was observed for circuits with the same genes (TetR, or 

LacI, or LuxR, or cI, or LuxI, or AraC) with RBS than those without RBS. Fluorescence was 

measured by flow cytometry. Error bar represents standard deviation of eight biological 

replicates. Gray arrow: constitutive promoter; Orange oval: ribosome binding site; Red hexagon: 

transcriptional terminator. 

 

engineered 32 synthetic circuits with 32 genes, which are placed immediately downstream of the 

promoter without RBS to greatly limit their translation (Figure 2.4C). Our results showed a strong 

relationship between GFP expression and noncoding 5’ATR GC content, size, and local mRNA 

folding energy (Figure 2.3D) Higher GFP expression was observed for circuits with the same 

genes with RBS than those without RBS (Figure 2.4D), suggesting the RBS of 5’ ATR may be 

important for mRNA stabilization and expression efficacy.  

Altogether, these results offer direct evidence that adjacent coding and noncoding DNA 

fragments affect gene expression in synthetic operons, and ATR GC content has a positive 
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correlation with GFP expression while ATR size and local free energy are both negatively 

correlated. 

 

2.2.3 Comprehensive model of ATR regulation 

Our results revealed that gene expression in operons is affected by the sequence 

features of its adjacent genes and local mRNA secondary structures. The explicit mechanism of 

these effects remains elusive. We employed the same promoter, RBS, vector, and host cell for all 

the circuits to minimize the impact of transcription on protein expression variation. And there is a 

lack of complicated post-translational modifications in E. coli, so we believe that the ATR alters 

the secondary or tertiary structures of mRNA locally and/or globally, which perturbs the GFP 

mRNA translation and degradation process (Figure 2.3E). The GC content of 5’ and 3’ ATRs has 

a positive relationship with GFP expression (Figure 2.3). After the RBS is transcribed, ribosome 

and RNase competitively bind to mRNA108,109. So we infer that a GC-rich 5’ and 3’ ATR, which is 

likely to have a more stable secondary structure110,111, could help stabilize the GFP transcript and 

decrease the risk of degradation by RNase, and thus result in higher GFP expression. On the 

other hand, the 5’ and 3’ ATR sizes are negatively correlated with GFP expression (Figure 2.3). 

Longer ATR may lead to lower mRNA stability due to the increased probability of elongation 

pausing and degradation of RNase. Moreover, the local mRNA folding energy near GFP’s RBS (-

70 to +38 nt) is believed to have an impact on the translation initiation of GFP. Overall, our 

statistics analysis revealed that 5’ ATR GC content is the most important variable in the 

regression models for the X-GFP circuit (Figure 2.3A, partial R2 =0.44) and X-GFP-Y (Figure 

2.3B, partial R2 = 0.51), whereas 3’ ATR size has a bigger role in the model of GFP-X (Figure 

2.3C, partial R2 = 0.58). This result suggests that gene expression may be more easily modulated 

by the GC content of its 5’ ATR and the size of 3’ ATR. 

To explore the possible mechanistic basis of ATR regulation and make quantitative 

predictions, we developed a comprehensive linear model integrating the three scenarios in 

Figures 2.3A-C. The biophysical model was based on previous pioneer work characterizing the 

relationship between free energy changes and protein translation initiation112–115. We next 
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developed a comprehensive model to explore the possible mechanistic basis of ATR regulation. 

The model builds on measurements of sequence-dependent energetic changes during 

polycistronic mRNA folding and translation. The energetic changes correspond to the translation 

efficiency and protein abundance (c, equation 1). 

c∝exp(-Σβx∆Gx,),x = 1,2,3,…                                                       (1) 

where ∆G is the energy term and b is the scaling coefficient112. For a given gene in an operon, 

the size of 5’ and 3’ ATRs is denoted as i nt and j nt, respectively (Figure 2.3E). The minimumfree 

energy of the local GFP mRNA secondary structure around the RBS is ∆G-70~+38. The entire 

folding energy for 5’ ATR is ∆G5’ATR. The GC content of the first 100-nt 3’ ATR has the highest 

fitting efficacy for GFP expression (Figures 2.3C and 2.4B), and it is known that GC content is 

correlated with the thermodynamic parameter ∆G116,117, so we only calculated the free energy of 

the first 100 nt of 3’ ATR (∆G3’ATR_100). Thus, the sum of the energy changes can be quantified to 

assess the abundance of a given gene expression (equation 2): 

                    - Σβx∆Gx= β0 + β1∙∆G5’ATR + β2∙∆G3’ATR_100 + β3∙i∙Gm+ β4∙j∙Gm+ β5∙∆G-70~+38               (2) 

The folding energy of ∆G5’ATR, ∆G3’ATR_100, and ∆G-70~+38 is totally sequence dependent, and Gm is 

an average energy cost for synthesizing a nucleotide, which here for simplicity we assume is a 

constant. Although all the five variables are contained in the model, some variables may be 

unnecessary for a specific gene organization in a circuit. For example, in the noncoding 

ATR cases with X-GFP organization (Figure 2.3D), the j and ∆G3’ATR_100 terms are constant 

values, owing to a lack of 3’ATRs. 

 The comprehensive model combined the three different scenarios with GFP placed at 

different positions in a polycistronic gene circuit (Figures 2.3A-C). To verify whether the five 

variables are necessary for the best prediction of the model, we performed stepwise regression to 

test the significance of each variable through adding or removing one of the variables step by 

step (the significance level for variable entry or stay is 0.05). From the sequence of generated 

models, the selected model is chosen based on the lowest Akaike information criterion. Our 

results indicated that all five variables are necessary for the coding ATR model integrating the 

three scenarios in Figures 2.3A-C, and the comprehensive model explains 63% of GFP variations 
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(Figure 2.3F, left). The noncoding ATR model with the three statistically significant variables 

∆G5’ATR, i, and ∆G-70~+38 explains 67% of GFP variations (Figure 2.3F, right). With the 

comprehensive model, we can evaluate the influence of the adjacent transcriptional sequences 

on the expression of a certain gene in the operon, which provides a guide for circuit design and 

optimization during circuit engineering. 

 

2.2.4 Protein expression metric guided logic circuit design 

To illustrate how the metric could be used to guide circuit design, synthetic AND logic 

gate was designed and tested. The gate is composed of a hybrid promoter pLux/tet, which has 

one LuxR-AHL and one TetR binding site. GFP is the output. Maximized GFP expression is 

achieved in presence of two inputs AHL and aTc (Figure 2.5A), where AHL binds with LuxR 

protein to activate pLux/tet transcription and aTc can block TetR repression to pLux/tet. LuxR and 

TetR are constitutively expressed from the same promoter. 

There are two possible ways to assemble this circuit, one is LuxR-TetR (LT) combination, 

and the other is TetR-LuxR (TL). The GC content of LuxR (30.3% GC, 781 bp) is lower than TetR 

(40.4% GC, 685 bp). So in AND-gate LT, TetR expression is lowered by its 5’-low-GC-content 

neighbor while the impact of LuxR to TetR expression in logic TL is minor because the size of 3’ 

ATR is a more significant factor than GC content. We then calculated the equation for each circuit 

design and fed it into our model; the results indicate that LuxR expression in TL decreases by 

4.4% compared with gate LT, however, TetR expression increases by 93.6% in circuit TL (Table 

2.1). Therefore, we infer that the basal GFP expression in circuit LT would be greater than in TL, 

whereas TL would harbor more dynamic responses with induction of aTc because of higher TetR 

expression. An ordinary differential equation (ODE) model was then developed to simulate GFP 

expression based on the normalized LuxR and TetR production rate changes in the LT and TL 

gates. By tuning the relative production rates of LuxR and TetR according to the comprehensive 

regression model, we can predict GFP dynamics under induction of AHL and aTc (Figures 2.5B 

and 2.6A, solid lines). It can be seen that, after normalization, experimental dose-response 

results, shown as colored circles, are consistent with ODE model predictions for all aTc 
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concentrations. Basal expression of pLux/tet in circuit LT is significantly higher than in circuit TL 

(Figures 2.5B and 2.6A, data points with error bar). Moreover, the maximum GFP fluorescence is 

also higher in circuit LT, owing to decreased LuxR expression in gate TL. In addition, the 

sensitivity to AHL (concentration for half-maximal activation of GFP, K0.5) is improved 2.4- to 64.5-

fold in circuit TL compared with LT for different concentrations of aTc. And the nonlinearity (Hill 

coefficient) is generally increased 2- to 5-fold with high concentrations of aTc induction. These 

data are in accordance with the model calculations that TetR expression is relatively increased in 

circuit TL than in LT, which suppresses the basal expression of pLux/tet and improves the 

sensitivity and nonlinearity of the promoter to AHL and aTc. 

 

Figure 2.5 Model-Guided Circuit Design for Synthetic Logic Gates (A) Two designs for pLux/tet–

AND logic gate. A constitutive promoter (gray arrow) drives LuxR (orange rectangle) and TetR 

(green rectangle) expression. pLux/tet is highly activated in the presence of both AHL and aTc. 

LT and TL represent the order of LuxR and TetR positions in the operon. LuxR can bind with AHL 

(gray oval) to activate pLux/tet promoter (blue arrow), while aTc (green hexagon) can block TetR 

inhibition to pLux/tet promoter. Lines with arrowheads indicate activation, and lines with T bars 

indicate inhibition. (B) Dose-response curves for different concentrations of AHL and aTc. The 
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solid lines are from ODE model simulations based on the calculated relative changes of LuxR and 

TetR concentrations in LT and TL from our linear comprehensive model. Data points with error 

bars are experimental results, showing good match with model predictions. The inset diagram is 

the basal expression of GFP for design of LT and TL. Color curves are inductions with different 

aTc concentrations (20 ng/mL, 100 ng/mL, and 200 ng/mL). (C) Two designs for pLux/lac–AND 

logic gate. A constitutive promoter drives LuxR and LacI expression. pLux/lac (purple arrow) is 

highly activated in the presence of both AHL (N-(b-ketocaproyl)-L-homoserine lactone) and IPTG 

(isopropyl b-D-1-thiogalactopyranoside, blue hexagon). LuxR can bind with AHL to activate 

pLux/lac promoter, while IPTG can block LacI inhibition to pLux/lac promoter. LI and IL represent 

the order of LuxR and LacI positions in the operon. (D) Dose-response curves for different 

concentrations of AHL and IPTG. The solid lines are model simulations based on the calculated 

relative changes of LuxR and LacI concentrations in LI and IL from our linear comprehensive 

model. Experimental results (data points with error bar) show good match with model predictions. 

Color curves are inductions with different IPTG concentrations (1 mM, 10 mM, and 100 mM). 

Inset diagram is the basal expression of GFP for design of LI and IL. Data represent the mean ± 

SE of three replicates. p values were calculated using Student’s t test. 

 

 To further validate the metric’s utility, another two AND-gate gene circuits (LI and IL) with 

the position of the genes switched (LuxR and LacI) were designed (Figure 2.5C). Hybrid promoter 

pLux/lac was used to indicate the relative concentrations of LuxR and LacI produced from the 

operon. LacI (53.3%, 1,153 bp) has a high GC content, which may increase LuxR expression. 

Our model calculations showed that LuxR expression increases by 74.3% and LacI increases by 

38.1% in circuit IL compared with LI. Since promoter pLux/lac has two LacI-binding sites (one is 

in the region between -35 and -10, and the other is downstream of -10 element), so the overall 

LacI inhibition efficiency is increased ~76.2% considering the importance of spacing between the 

-35 and -10 elements to RNA polymerase binding (Table 2.1). Therefore, the basal GFP 

expression of logic IL would be lowered compared with LI. The ODE model also indicates higher 

GFP expression in gate LI (Figures 2.5D and 2.6B, solid lines). Experimental results confirmed 

that the basal expression for circuit LI is ~54-fold higher than IL, and GFP expression under each 

induction is higher in gate LI, which is consistent with the ODE model results (Figures 2.5D and 

2.6B). 
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Figure 2.6 Model Simulation and Experimental Validation of GFP Dynamics for Synthetic Logic 

gates; GFP Expression Prediction Using Synthetic Fragments and Model Simulation for Different 
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Production Rates of LuxR and TetR in Circuit LT and TL (A) Dose responsive curves for different 

concentrations of AHL and aTc. The solid lines are from ODE model simulations based on the 

calculated relative changes of LuxR and TetR concentrations in LT and TL from our linear 

comprehensive model. Data points with error bar are experimental results, showing good match 

with model predictions. Color curves are inductions with different aTc concentrations (0 ng/ml, 0.2 

ng/ml, and 2 ng/ml). Data represent the mean ± s.d. of three replicates. (B) Dose responsive 

curves for different concentrations of AHL and IPTG. The solid lines are model simulations based 

on the calculated relative changes of LuxR and LacI concentrations in LI and IL from our linear 

comprehensive model. Experimental results (data point with error bar) show good match with 

model predictions. Color curves are inductions with different IPTG concentrations (0, 0.1 μM, 200 

μM and 400 μM). Data represent the mean ± s.d. of three replicates. (C) Left: Model predicted 

GFP expression under regulation of synthetic fragments with constant size but varying GC 

content from 28% to 66%. GFP predictions (mean and standard deviation) were calculated by 

XLSTAT based on the comprehensive noncoding ATR model (Figure 2.3F). Right: Model 

predicted GFP expression under regulation of synthetic fragments with constant GC content but 

varying sizes from 50 bp to 4600 bp. (D) Refined non-coding ATR model with the data in Figure 

2.7B and 2.7D. The total data points (N) is 576 (266 from Figure 2B; 190 from Figure 2.7B; and 

120 from Figure 2.7D). (E) α1 and α2 are the production rates of LuxR and TetR protein, 

respectively. Three scenarios with different values of α1 and α2 are plotted. When α1 > α2, more 

LuxR protein is produced, resulting in higher GFP expression. When α1 < α2, more TetR protein 

is produced, leading to lower GFP expression. Through tuning the relative size of α1 and α2, we 

can predict GFP dynamics under induction of AHL and aTc. 

 

Taken together, the two sets of AND logic gates are an example of applying our 

comprehensive model-based tool to evaluate each gene’s relative expression level in synthetic 

AND-gate gene circuits, and verify that ATRs’ features and local mRNA stability changes in an 

operon-based gene network affect protein expression and circuit performance, including basal 

level, sensitivity, and nonlinearity. Furthermore, the tool could serve as a much-needed 

quantitative guide for rational design and optimization of gene expression for large genetic 

circuits. 

 

2.2.5 Tuning gene expression with synthetic 5’ ATRs 

In general, the minimum free energy of RNA folding has a negative correlation with GC 
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Table 2.1 Model Evaluation for Each Gene's Expression in the AND Logic Gate 

 

content116,117. Next, we sought to use synthetic noncoding DNA fragments, with the same size but 

varying GC content or the same GC content but varying sizes, to fine-tune gene expression in 

synthetic circuits. We first synthesized six short DNA fragments (with a constant size of 200 bp) 

with varying GC content from 28% to 53%, which were inserted downstream of the LuxR gene but 

upstream of GFP in the two-gene operon (Promoter-LuxR-Synthetic fragment-GFP). According to 

our model, synthetic fragments with varying GC content could tune GFP expression (Figure 2.6C). 

Experimental results show that GFP expression is continuously increased for synthetic 

fragments with increasing GC content from 28% to 53% (Figure 2.7A). Low-GC-content 

fragments downregulated GFP expression about 25-fold. Microscopy results further confirmed 

flow cytometry data and visualized a gradual increase of fluorescence intensity with increasing 

GC content ATRs (Figure 2.7B). Using this strategy, we further synthesized 13 DNA fragments as 

5’ ATRs with varying GC content but with a constant size (200 bp) and placed downstream of the 

promoter (Figure 2.7C). Results indicate that synthetic short DNA sequences have a substantial 

impact on GFP expression: low- GC-content ATRs largely decrease expression of neighbors (up 

to 366-fold) and exhibit a gradually increasing pattern from 28% to 48%, while high GC content 
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(48%–67%) ATRs drive GFP expression to a level comparable with the control (without synthetic 

fragments). It is possible that GFP achieves its maximum expression when the upstream ATR 

mRNA piece has a relatively stable structure. 

To further verify the role of ATR regulation, we varied the size of 5’ ATR through 

shortening and adding a common sequence118. Using S44 (GC, 44%; size, 200 bp) in Figure 

2.7C as the seed sequence, we shortened it to 100 bp and 50 bp, and lengthened it from 400 bp 

(combined with two pieces of S44) to 4,600 bp (combined with 23 pieces of S44), and all ten 

fragments have the same GC content (44%, Figure 2.7D). Model analysis and flow cytometry 

results show that GFP fluorescence intensity gradually decreases with increasing 5’ ATR sizes 

(Figures 2.6C and 2.7D). We also used the data to further refine our comprehensive noncoding 

model and found three variables ∆G5’ATR, i, and ∆G-70~+38 are still required for the best fitting 

efficacy and explains 60.1% of GFP variations (Figure 2.6D). The refined model further expands 

the variables’ range (GC, 28% to 67%; size, 50 to 4,600 bp) and could provide more accurate 

predictions. Taken together, we demonstrate that synthetic noncoding 5’ ATRs with designed GC 

content and sizes can be used to accurately tune gene expression and achieve expression levels 

spanning more than 300-fold. 

 

2.2.5 Tuning gene expression with synthetic 5’ ATRs 

 Finally, we illustrated the application of synthetic ATRs to modulate the nonlinear bistable 

potential of synthetic toggle switches. As illustrated in Figure 2.8A, LacI protein could inhibit TetR 

by binding the pLac promoter, while TetR could bind pTet to block LacI expression, forming a 

mutually inhibitory network. Here, we positioned 200 bp synthetic ATRs with 28% and 67% GC 

content upstream of RBS-TetR module to tune TetR production (T_S28 and T_S67). According to 

our analysis above, low-GC content 5’ ATR can downregulate TetR expression, while high GC 

content can keep TetR at a high level. 

Flow cytometry was employed to analyze the initial states of the toggle switches with 

ATR insertions. As shown in Figure 2.8B, T_WT initially shows bimodal distribution, GFP-ON and 

GFP-OFF populations, resulting from gene expression noise in a relatively balanced system. In 
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contrast, both T_S28 and T_S67 exhibited unimodal distributions. Synthetic ATR S28 decreased 

TetR expression leading to higher LacI and GFP expression, whereas the fragment with 67% GC 

content showed a lower GFP expression than T_S28 and slightly lower than the high GFP 

population cells in T_WT (Figure 2.8B). The results indicate that the synthetic ATRs can tune the 

initial steady states of toggle switches and modulate the population from bimodal to unimodal 

distributions. 

 

Figure 2.7 Tuning Gene Expression with Synthetic 5’ ATRs (A) Synthetic 5’ ATRs (SynF) to tune 

GFP expression for circuit CP-LuxR-GFP. 200 bp ATRs were inserted between LuxR and GFP 
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genes to tune GFP expression, and the control (Ctl) was constructed without an ATR insert. Flow 

cytometry results indicate that GFP fluorescence increases with gradually increasing 5’ ATR GC 

content from 28% to 54%. (B) Microscopy results for GFP fluorescence for the constructs in (A). 

Scale bar, 5 mm. Magnification, 40x. (C) Synthetic 5’ ATRs (SynF) with different GC content to 

tune GFP expression for circuit CP-GFP. All the SynF are the same size (200 bp) and are 

inserted upstream of GFP gene (top). Flow cytometry results of GFP fluorescence for 5’ ATRs 

with GC content from 28% to 67% (bottom). (D) Circuits with different sizes of 5’ ATR (through 

shortening and adding a common sequence S44; GC, 44%; size, 200 bp) were constructed to 

tune GFP expression. Flow cytometry results show that GFP fluorescence intensity gradually 

decreases with increasing size of 5’ATR. Error bars are mean ± SD of at least ten measurements 

performed on three different days. 

 

 To achieve a quantitative understanding of the ATR’s regulation on bistability, we 

performed bifurcation analysis from the same mathematical model as the classical toggle 

switch15. We found that the production rate of TetR has a considerable effect on bistability and 

the bistable region. A small production rate, corresponding to low-GC ATR, has a small bistable 

region, whereas an increase in the production rate leads to a larger bistable region (Figure 2.8C). 

Experimentally, hysteresis of the three toggles was tested to verify the model analysis. The 

results indicate that all three toggles exhibited hysteresis, and T_WT harbors the broadest 

bistable region (Figures 2.8D-F). Moreover, consistent with model analysis, the bistable regions 

gradually decreased from T_WT to T_S67 to T_S28. Collectively, these results validate a novel 

strategy of using synthetic ATRs to tune the initial steady states and bistability of gene networks. 

Furthermore, this example demonstrates the feasibility of bridging ATR regulation with 

mathematical modeling to quantitatively understand and tune gene network dynamics. 

 

2.3 Discussion 

 Circuit engineering is the first step for synthetic biologists to achieve designed 

functionalities with synthetic gene circuits. A successful synthetic gene circuit depends on full 

characterization of the biological components and the interactions that emerge between modules 

when assembled into a complete gene network96,119–121. Development of a reliable tool to predict 
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protein expression in the circuit has wide applications in biotechnology. For example, RBS 

Calculator is a well-developed design tool to predict and control translation initiation and protein 

expression in bacteria91,112.  

 

Figure 2.8 Using Synthetic ATRs to Modulate Bistability of Toggle Switches (A) Left: Abstract 

diagramof toggle switch topology, where X and Y mutually inhibit each other. Right: Molecular 

implementation of the toggle switch. LacI inhibits TetR by binding the pLac promoter, while TetR 

binds pTet to block LacI expression, forming a mutually inhibitory network. Inducers IPTG and 

aTc (hexagon) can relieve LacI and TetR inhibition, respectively. GFP serves as the readout of 

the pTet promoter. Synthetic ATRs (SynF) were arranged right upstream of the TetR gene. (B) 

Initial steady states for the three toggles. Toggle without ATR insertion (T_WT) shows bimodal 

distribution (GFP-OFF and GFP-ON), while T_S28 (ATR with 28% GC content, 200 bp) shows 

higher GFP expression and T_S67 (ATR with 67% GC content, 200 bp) shows lower GFP 
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expression than the GFP-ON population of T_WT. (C) Bifurcation analysis for GFP (LacI) 

expression with different TetR production rates under induction of varying concentrations of aTc. 

A low production rate for TetR, corresponding to T_S28, has the smallest bistable region, while a 

high rate (corresponding to T_WT) has the broadest bistable region. Solid lines represent stable 

steady-state solutions and dotted lines are unstable steady state solutions. GFP* is the computed 

GFP abundance from the model. (D–F) Hysteresis results for toggles (D) T_S28, (E) T_S67, and 

(F) T_WT under induction of varying concentrations of aTc. Red lines indicate the initial OFF cells 

with basal GFP expression, while green lines indicate the initial ON cells with high GFP 

expression. Data represent the mean ± SD of three replicates. The gray area is the presumed 

bistable region for each circuit.  

 

 Here, we systematically investigated how adjacent transcriptional regions affect protein 

expression in synthetic operon-based gene circuits. Through placing the GFP at different 

positions (proximal, middle, and distal) to the promoter, we developed a new protein expression 

metric that takes into account the features of adjacent transcriptional regions, including GC 

content, size, and stability of mRNA folding near RBS (Figure 2.3). The metric was established 

from about 120 gene circuits, which to our knowledge represents one of the largest databases of 

operon-based synthetic gene circuits in one study so far. This metric explains 63% and 67% of 

GFP variations in the coding ATR and noncoding ATR polycistronic gene circuits, respectively. 

Moreover, our experimental results also demonstrated the metric’s predictions of gene expression 

changes and induced nonlinear dynamic responses in different genetic contexts (Figures 2.5, 2.7, 

and 2.8), suggesting the model’s utility in guiding circuit design. Most ATRs in the circuits were 

500–2,000 bp, and the maximum is 2,422 bp, which may undermine the contribution of ATR size 

to GFP variation. Moreover, because of the limitation in sample size and available gene 

resources, the collected data are not perfectly normally distributed, especially for circuits with 

GFP in the middle (X-GFP-Y), which may compromise the robustness of the model. 

 Consistent with previous results that gene position in operons can affect gene 

expression97,98, our results further demonstrate that gene position (corresponding to change of 

ATR) significantly altered gene network dynamics, including basal expression, system sensitivity, 

and nonlinearity, which has profound impacts for nonlinear dynamic systems. Such an adjacent 
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gene regulation effect has been generally neglected during construction of synthetic gene 

networks. 

 Although it is relatively well established that gene expression is influenced by the local 

context, holistic understanding of architectural rules governing polycistronic gene circuits remains 

largely unexplored. Compared with previous gene expression tuning strategies or insulation 

strategies, such as RBS Calculator, bicistronic design with translation of a short leader peptide, or 

a designed DNA sequence surrounding the start codon (mostly less than 100 bp)91,112,122–124, our 

work places more emphasis on whether and how polycistronic operon organization (X-GFP, X-

GFP-Y, and GFP-X) and different adjacent genes (size ranging from 313 to 2,362 bp, and GC 

content ranging from 30.3% to 60.4%) affect protein expression in operon-based gene circuits. 

Furthermore, we validated that the usage of designed synthetic DNA fragments with either 

different GC content (28%–67%) or size (50–4,600 bp) as 5’ ATRs tuned gene expression and 

modulated bistable regions of genetic toggle switches. The synthetic ATRs have a wide variable 

interval, therefore making them potentially applicable to a broad range of scientific and 

engineering tasks. Such a gene expression tuning strategy also avoids the production of 

unwanted peptides and hence reduces potential metabolic burden. We also observed that circuits 

having different ATRs have an impact on the time that cells reach stationary phase with similar 

optical density (Figure 2.9), suggesting that ATRs could be used as a means to ‘‘program’’ the 

metabolic load and fitness of a cell simultaneously. 

 Our results show that the context dependency of gene expression is not just limited to the 

RBS region but also includes characteristics of the whole operon. This ‘‘global’’ effect in 

polycistronic operons could be quantified by a biophysical model, which explains nearly two-thirds 

of protein expression variations across all the circuits with different configurations. The 

quantitative relationship between adjacent transcriptional regions and gene expression regulation 

in polycistronic circuits helps to evaluate each gene’s relative expression levels in a circuit and 

predict circuit outputs, which would save experimentalist’s time and resources to screen and test 

combinations of modules, and thus should greatly facilitate optimization of circuit design and 

accelerate the engineering of complex gene networks. 
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Figure 2.9 GFP Expression at 12 and 24 Hours; Cell Growth Rates for X-GFP Circuits; Fit 

Diagnostics for the Comprehensive Coding-ATR Model (A) GFP fluorescence of 28 gene circuits 

in Figure 2 was plotted at 12 and 24 hr. Similar fluorescence expression pattern was observed at 

12 and 24 hr, and fluorescence was stronger at 24 hr. For stable protein expression, only 24 hr 

data are shown in this work unless specified. (B) Ten different gene circuits with different 

fluorescence expression levels (high, medium and low) are selected to test their growth rates 

under the same condition. Top: cell growth curves. All the samples reached the stationary phase 

after ~12 hr. Bottom: time course of the fluorescence for the ten selected circuits. Fluorescence 

becomes stable before 16 hr. Although the gene expression in the circuit influenced the time of 

cells going to the exponential phase, all the samples went to stationary phase with similar optical 

density (OD) value after ~12 hours. Cells with J45014 circuit (red curve) reach steady-state OD 
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about 4 hours earlier than cells with C0161 (dark green), while both show similar GFP expression 

levels. On the other hand, cells with C0012 circuit (yellow) and cells with C0161 arrive stationary 

phase almost simultaneously, however, their GFP expression is remarkably different. These 

results suggest that the time to reach steady-state OD for each strain has little explanatory effect 

on the fluorescence differences. OD and fluorescence were measured by plate reader with 96-

well plates. Data indicates mean ± SD of three independent replicates. (C) Fit diagnostics the 

comprehensive coding-ATR model in Figure 2.3F. The Predicted value-Residual plot indicates 

that there is no apparent trend for the residuals, and the data is roughly normally distributed 

(Quantile-Residual plot and histogram), and the variables in the model explain most variation in 

the response variable from the residual-fit result (Fit-Mean and Residual). Leverage-RStudent 

plot and Cook’s D value indicate there are some outliers and high-leverage observations, which 

may influence the model. Overall, the generated model has a good fitting of the experimental 

data. (D) Outlier and leverage diagnostics for the response (GFP). High-leverage data points and 

outliers are labeled out. Of the outliers, most of them are corresponding to a specific circuit, such 

as outliers 217~224 corresponding to the tricistronic circuit (promoter-luxR-appY-GFP, has 8 data 

points). Observations with high leverage such as 505~512 are corresponding to the circuit 

promoter-GFPZif23_GCN4. Moreover, some outliers are also high-leverage observations. 

 

A central goal of synthetic biology is to develop genetic circuits to program cell behaviors 

in a predictable way. With the increasing complexity of integrated multi-layer circuits, organization 

of specific bio-components and circuitry structure design become extremely important for 

functionality50,121,125. The tool we provide here could serve as a much-needed quantitative guide 

for rational design and optimization of gene expression for large genetic circuits. 

 

2.4 Materials and experimental methods 

2.4.1 Strains, media, and culture conditions 

All cloning experiments and fluorescent measurements were performed in Escherichia 

coli DH10B (Invitrogen). Synthetic toggle switches (T_S28, T_S67 and T_WT) were tested in E. 

coli K-12 MG1655 strain with lacI-/-95. Cells were cultured in liquid or solid Luria-Bertani (LB) 

broth medium with 100 mg/ml ampicillin at 37 °C. Chemicals AHL (N-(b-etocaproyl)-L-homoserine 
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lactone), IPTG (isopropyl b-D-1-thiogalactopyranoside), and aTc (anhydrotetracycline) were 

dissolved in ddH2O and diluted into indicated working concentrations. Cultures were shaken in 5 

mL and/or 15 mL tubes at 220 rotations per minute (r.p.m). 

 

2.4.2 Plasmid construction 

Most genes are obtained from iGEM Registry (http://parts.igem.org/Main_Page). These 

genes are often used in synthetic biology projects, including transcriptional factors, quorum-

sensing components, and other functional genes. Plasmids were constructed using standard 

molecular biology techniques and all genetic circuits were assembled based on standardized 

BioBrick methods. As an example, construct Promoter-TetR-GFP is composed of five BioBrick 

standard biological parts: BBa_J23104 (constitutive promoter, CP), BBa_B0034 (ribosome 

binding site, RBS), BBa_C0040 (tetR), BBa_E0040 (green fluorescent protein, GFP) and 

BBa_B0015 (transcriptional terminator). To produce RBS-TetR module, plasmid containing TetR 

was digested by XbaI and PstI as the insert fragment while RBS vector was cut by SpeI and PstI. 

Both fragment and vector were separated on 1% TAE agarose gel electrophoresis and purified 

using PureLink gel extraction Kit (Invitrogen). Purified fragment and vector were then ligated by 

T4 DNA ligase (New England Biolabs, NEB). The ligation products were further transformed into 

E. coli DH10B and plated on LB agar plate with 100 mg/ml ampicillin for screening. Finally, 

plasmids extracted by GenElute HP MiniPrep Kit (SIGMAALDRICH) were confirmed through gel 

electrophoresis (digested by EcoRI and PstI) and DNA Sequencing (Biodesign sequencing Lab, 

ASU). Similar steps were carried out for subsequent rounds of cloning to assemble the whole 

construct. Also, 17 transcriptional factors with varying GC content and sizes used in Figure 2.3D 

were amplified from E. coli genome with designed primers. Synthetic sequences were randomly 

generated with the same length (200 bp) but various GC contents (28%-67%). Sequences with 

RBS-features (AGGAGG) were redesigned to exclude its translation potential. All synthetic 

sequences and primers were synthesized as custom DNA oligos or gBlocks gene fragments from 

Integrated DNA Technologies (IDT). To express consistently in the cell, all constructs were finally 

subcloned into pSB1A3 vector prior to the test. 
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2.4.3 Minimum free energy calculation 

All minimum free energy (MFE) of mRNAs were computed on Nucleic Acid Package 

(NUPACK) web server126. Specifically, we chose Serra and Turner parameter set as the RNA 

energy parameter and set 37°C, 1.0 M Na+ and 0 M Mg2+ to be the prediction algorithm113. 

∆G5’ATR and ∆G3’ATR_100 were calculated from sequence including ATR (with or without RBS), and 

the two scar sequences introduced during cloning process. ∆G-70-+38 is obtained from 70 nt 

upstream sequence and 38 nt downstream around ATG (+1) codon of GFP gene. 

 

2.4.4 RT-qPCR 

Total RNA was extracted from three individual cell cultures (1.5 mL exponentially growing 

cell cultures, fresh cultures) for each construct in Figure 2.1B using Trizol (Invitron). DNase I 

(NEB) was used to remove traces of genomic DNA and then the total RNA was further purified 

using purelink RNA Mini Kit (Life technologies), and the eluted total RNA was quantified using 

BioTek’s Synergy H1multi-mode Reader. cDNA was synthesized from RNA using an iScript 

cDNA synthesis kit and random primers (Bio-Rad). The reaction volume is 20 uL and ~1 ug RNA 

were used for reaction. Concentrations of cDNA are then quantified by qPCR using iTaq 

Universal SYBR Green Supermix (Bio-Rad) with the iQ5 Real-Time PCR detection system (Bio-

Rad). Prokaryotic 16S rRNA was employed as endogenous control. Primers (IDT) used for 

amplifying 16S rRNA: 5’- AATGCCACGGTGAATACGTT-3’ (rrnB, forward, starting at the 1361st 

nucleotide), and 5’- ACAAAGTGGTAAGCGCCCT-3’ (rrnB, reverse, starting at the 1475th 

nucleotide) (Limet al., 2011). Two pairs of primers were designed to amplify GFP are P1: 5’- 

CAGTGGAGAGGGTGAAGGTGA-3’ (forward, starting at the 87th nucleotide); and P2: 5’- 

CTGTACATAACCTTCGGGCAT-3’ (reverse, starting at the 283th nucleotide); P3: 5’- 

AGACACGTGCTGAAGTCAAG-3’ (forward, starting at the 320th nucleotide); and P4: 5’- 

TCTGCTAGTTGAACGCTTCCAT-3’ (reverse, starting at the 539th nucleotide). qPCR result is 

analyzed using Bio-rad CFX Manager software version 3.1. Each sample was performed with two 

replicates for both 16S rRNA and GFP cDNAs, and gene expression was normalized to 16S 

rRNA. Delta Ct values were calculated (Cttarget – Ct16S) and compared with the biological control 
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(Constitutive promoter-RBS-GFP) to calculate the relative GFP mRNA concentrations. The 

minimum information for publication of quantitative real-time PCR (MIQE) is also provided in 

Table 2.2. 

 

Table 2.2 Minimum Information for Publication of Quantitative Real-Time PCR (MIQE) 
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2.4.5 Flow cytometry measurements 

All confirmed constructs were re-transformed into DH10B strain. Single colonies were 

picked and cultured in 4 mL LB medium (100 mg/ml ampicillin) for 24 hr at 37°C for testing. Flow 

cytometry measurements were performed using Accuri C6 flow cytometer (Becton Dickinson) and 

all samples were analyzed at twelve hour and 24-hour time points, and the two time points 

showed similar GFP expression pattern (Figure 2.9A). GFP excitation: 488 nm, and emission: 

530 ± 15 nm. All data were collected in a log mode. Data files were further analyzed by MATLAB 

(MathWorks). All the fluorescence data are collected by flow cytometry unless specified, and the 

fluorescence was not normalized against cell density because we measured the fluorescence of 

single cells, instead of the population, so the fluorescence value is not directly correlated with 

population density. 20,000 individual cells were analyzed for each sample at a slow flow rate. 

 

2.4.6 Hysteresis experiment 

All synthetic toggle switch plasmids (T_S28, T_S67 and T_WT) were transformed into K-

12 MG1655 strain with lacI-/-, and cells cultured overnight in LB medium. T_WT plasmid has 

been used in previous study96. We prepared two pre-cultures with two initially different stable 

steady states, i.e., low GFP state (OFF) without inductions and high GFP state (ON) induced with 

enough aTc. The two cells were then inoculated into media containing an aTc concentration 

range so that cells with different initial conditions were grown in identical conditions. Specifically, 

for OFF-ON experiment, samples were diluted evenly into 5 ml polypropylene round-bottom tubes 
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(Falcon) and induced with different amounts of aTc. Fluorescence was then measured at 6, 8 and 

21 hr time points to monitor the fluorescence level. In our experiment, we found the intensity of 

fluorescence became stable after ~8 hr induction. For the ON-OFF experiment, cells were 

induced with 40 ng/ml aTc initially to prepare the initial ON cells and fluorescence was measured 

at 8 hr to ensure they were fully induced. The initial ON cells were then collected by low-speed 

centrifugation, washed once to remove the inducer, resuspended with LB medium, diluted, and 

transferred into fresh medium with various aTc concentrations at 1:100 ratio. Flow cytometry 

measurement was performed for each sample after 6, 10 and 18 hr culturing, respectively. Data 

shown in Figure 2.8 are 18 hr results. 

 

2.4.7 Sample preparation and microscopy 

 Single colonies were picked and grew at 37°C in liquid LB medium. After 24 hours, 1 mL 

cells were collected and spun down at 2500 g for 5 min, washed with 1x phosphate buffer 

solution (PBS), and resuspended by 200 mL 1xPBS. 10 uL of concentrated cell solution was 

placed on glass microscope slides and images were captured with a Nikon Ti-Eclipse inverted 

microscope (magnification 40x). GFP was visualized with an excitation at 472 nm and emission at 

520/35 nm using a Semrock band-pass filter. The exposure time for each sample is kept the 

same. 

 

2.4.8 Growth curve assay 

Ten different gene circuits with different fluorescence expression levels (high, medium 

and low) are selected to test their growth rates under the same condition. Single colonies 

harboring circuit plasmid were picked up and diluted into 4 mL LB medium, from which 300 mL 

were transferred into 96-well sterile plate. A negative control with only LB medium was also 

prepared. Optical density (OD600) and fluorescence (excitation: 485 nm; emission: 530 nm) were 

measured every 30 minutes by plate reader (BioTek) over 20 hours with shaking platform and 

temperature control (37°C). Three random colonies were picked up and triplicate wells were 

measured for each sample. Our results indicated that gene expression in the circuit influenced 
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the time of cells going to the exponential phase, but all the samples went to stationary phase with 

similar OD value after ~12 hr (Figure 2.9B). For stable protein expression, we chose the 24 hr 

data point in this study unless specified. 

 

2.5 Quantification and statistical analysis 

2.5.1 Statistical analysis and comprehensive model development 

 To investigate the correlation between GFP expression and sequence characteristics in 

different circuits with different genes and organizations, we performed multiple linear regression 

analysis using the classical statistical software SAS 9.4. Here, we mainly focused on five different 

independent variables including 5’- and 3’-ATR GC content (variable is computed as a 

percentage), 5’- and 3’- size (variable is computed as segment length), and ∆G-70-+38, all of 

which can be computed from the DNA sequence in each circuit. The dependent variable is GFP 

fluorescence measured by flow cytometry, which was transformed to log scale during analysis. 

Eight data points collected in three days were used for regression analysis in Figures 1 and 2, 

and twelve data points were collected in three different days for the 17 transcriptional factors 

insertion as non-coding ATRs, and all of the collected data points are imported to SAS for 

analysis. 

 All the information of the five variables is calculated from the specific DNA sequence. The 

5’ATR includes the sequence from the scar right after the promoter to the scar right before the 

RBS of GFP. And the 3’ATR includes the sequence from the scar right after the GFP to the scar 

right before the terminator. The scar sequence is generated from the molecular cloning using 

biobrick modules, and the size is 6 or 8 nucleotides. GC content and size of ATRs are calculated 

using the web server Endmemo (http://www.endmemo.com/index.php). ∆G-70-+38 were computed 

using NUPACK web tool (http://www.nupack.org). Since the ∆G are negative values, log 

transformations were performed to the absolute value of ∆G, and then set to negative value. To 

build a comprehensive model for all the scenarios in Figures 2.3A-C (GFP-X, X-GFP-Y, and X-

GFP), we introduced dummy values for some variables in some regression analyses for analytical 

convenience. For example, construct GFP-X (Figure 2.3C) has no varied 5’ ATR (only a RBS and 
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scar sequence), and its GC content value is set to 0.04 instead of 0. Similarly, ∆G5’ATR is set to -

0.05 for constructs without 5’ATR, and ∆G3’ATR_100 is set to -0.00001 for constructs without 3’ATR. 

These dummy values do not significantly influence model fitting efficiency. 

We first use scatter plot to display the relationship between GFP and each of the 

variables we are interested, without any data transformation. As shown in Figure 2.10, the data 

has a large variability ranging from 21,000 to 1900,000 (arbitrary unit), and the fit without 

transformation is weakly linear and heteroscedastic. It would be problematic to use linear data for 

regression because of the inconstant variance from the data. However, the log is a variance 

stabilizing transformation, and it clearly reduced changes in variability of the data along the x-axis 

(Figures 2.3A-D). Furthermore, transformed data conforms to a nearly normal distribution (Figure 

2.9C), more easily enabling us to perform multiple regression analysis to find a quantitative 

estimation of the relationship between GFP and the other three or five variables together. 

To explore possible mechanistic basis of ATR regulation, we developed a comprehensive 

linear model based on the sequence dependent energetic changes during the polycistronic 

mRNA folding and translation and the costs of protein biosynthesis. The biophysical model was 

based on previous pioneer work characterizing the relationship between free energy changes and 

protein translation initiation112,114,127. We calculated the free energies for 5’ ATR and the first 100 

nucleotides of 3’ ATR (∆G5’ATR and ∆G3’ATR_100) using NUPACK. Since all the energy terms are 

negative values, absolute values were first acquired for each of them and then set to negative 

values for data analysis. The constant Gm is set to 1, and for cases of non-coding ATRs, the 

coefficients for j and ∆G3’ATR_100 are set to 0, owing to a lack of 3’ ATRs.  

To find the linear comprehensive coding-ATR model having the best prediction of dependent 

variable from the independent variables, we performed stepwise regression with the five 

variables: ∆G5’ATR, ∆G3’ATR_100, 5’ ATR size, 3’ ATR size and ∆G-70-+38. Stepwise regression is an 

automated tool for model selection through adding the most significant variable or removing the 

least significant variable as needed for each step (the significance level for variable entry or stay 

is 0.05). From the sequence of generated models, the selected model is chosen based on the 

lowest Akaike information criterion. Results showed that all the five variables are statistically 
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significant for the best prediction of GFP expression in the comprehensive coding-ATR model, 

and explains 63% of GFP variations. It is necessary to note that the negative correlation between 

protein abundance (c) and the sum of energetic terms (Σβx∆Gx,) in the equation is already 

reflected in the coefficients of each term. 

 

Figure 2.10 Linear Plots with GFP and Variables in Figure 2.3A-D (A) Linear plots for the scenario 

1 in Figure 2.3. Top: Schematic representation of synthetic polycistronic gene circuits X-GFP. 
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Bottom: Scatter plots of GFP and 5’ ATR GC content, 5’ ATR size, and Free energy. Red line is 

the fitted regression result. Equation and R2 are also displayed for each fit. (B) Linear plots for the 

scenario 2 in Figure 2.3. Top: Schematic representation of synthetic polycistronic gene circuits X-

GFP-Y. Bottom: Scatter plots of GFP and 5’ ATR GC content, 3’ ATR GC content, and Free 

energy. (C) Linear plots for the scenario 3 in Figure 2.3. Top: Schematic representation of 

synthetic polycistronic gene circuits GFP-X. Bottom: Scatter plots of GFP and 3’ ATR GC content, 

3’ ATR GC content (100 nt), and Free energy. N is the number of circuits. (D) Linear plots for 

non-coding ATRs results in Figure 2.3D. Top: Schematic representation of synthetic polycistronic 

gene circuits with non-coding X genes (29 circuits in total). Bottom: Scatter plots of GFP and 5’ 

ATR GC content, 5’ ATR size, and Free energy. Red line is the fitted regression result. Equation 

and R2 are also displayed for each fit. 

 

The fitting diagnostics indicated that there is no apparent trend for the residuals, and the 

data is roughly normally distributed, and the variables in the model explain most variation in the 

response variable from the residual-fit result (Figure 2.9C). The predicted value by observed GFP 

plot (Predicted Value - logGFP) reveals a reasonably successful model for explaining the 

variation in GFP for most of the circuits (Figure 2.3F, left panel and Figure 2.9C). The predicted 

responses (logGFP value) are calculated according to the generated linear regression model, 

with the corresponding inputs from each circuit. And a plot of predicted GFP against 

experimentally observed GFP values are then generated to evaluate and visualize the model-

fitting efficacy (Figure 2.3F). If the model predicted values and observed values agreed perfectly 

(R2 = 100%), all the data points would fall on the dotted diagonal line of the squares. However, 

several outliers in the combined model are also observed and some observations with high 

leverages might also be overly influencing the fit result (Figure 2.9D). Of the outliers, most of 

them are corresponding to specific circuits, such as outliers 217~224 corresponding to the 

tricistronic circuit (promoter-luxR-appY-GFP, has 8 data points). Observations with high leverages 

such as 505~512 are corresponding to the circuit promoter-GFP-Zif23_GCN4. Moreover, some 

outliers are also high-leverage observations. Given the data sample size (N = 632), the original 

data collection, and the overall data-fitting efficacy, we here didn’t exclude the outliers or data 

with very high leverages (although that would improve the model-fitting efficacy). 
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Similar analysis was also applied to the data with non-coding ATR, and results showed 

that 5’ATR size and folding energy ∆G5’ATR, local mRNA folding energy ∆G-70-+38 are crucial for the 

best prediction of GFP expression in the comprehensive non-coding ATR model. Furthermore, 

the three variables together explain two-thirds of GFP variations in those synthetic circuits (Figure 

2.3F, right panel). The model and coefficients were also validated by another statistical software 

XLSTAT (version 2017.4). Based on the comprehensive non-coding model (Figure 2.3F), we then 

employed XLSTAT to predict GFP expression (mean and standard deviation) in circuits regulated 

with synthetic ATRs having either different GC contents or different in Figures 2.7C and 2.7D. 

Model predicted GFP (Figure 2.6C) has a similar expression trend with experimental results 

(Figures 2.7C and 2.7D).  

We also performed k-fold cross validation to further assess our model performance (k = 

10). The entire dataset was randomly partitioned into a training dataset, a validation dataset, and 

a testing dataset. The model was built based on the training dataset (50% of the original data) 

and then validated on the other 25% dataset, and finally was used to assess the performance on 

the testing dataset (25% of the original data). The selection method is stepwise, selection 

criterion is Schwarz’ Bayesian Criterion (SBC) and stop criterion is Akaike’s Information Criterion 

(AIC). We performed 10 times of the 10-fold validation and found that the coefficients for each 

variable and intercept as well as R2 are very close to the above comprehensive model. Moreover, 

the standard deviation for the square root of mean squared error (RMSE) from the 10 repeats of 

10-fold validation is very small (0.0064 for coding ATR, and 0.0128 for non-coding ATR), 

suggesting the model we built has a decent prediction accuracy and consistency. 

In summary, we have demonstrated that the coding and non-coding adjacent 

transcription regions have remarkable effects on regulating GFP expressions in synthetic operon-

based gene circuits (Figure 2.3). Furthermore, we can use a general biophysical model with 

sequence-dependent energetic changes to quantify the ATR regulation on gene expression. In 

this study, we mainly investigated five factors involved in ATR regulation: 5’ and 3’ ATRs free 

energies ∆G5’ATR and ∆G3’ATR_100, transcriptional sizes and the mRNA folding energy near the GFP 

starting codon. It is possible that there are some other unknown or uncharacterized factors 
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influencing GFP expression, such as the codon degeneracy for the coding ATRs. Furthermore, 

there may have some special local secondary or higher structures in some ATRs, which may 

impact the degradation or translation of GFP. 

 

2.5.2 Deterministic model construction and prediction for the logic gate 

In the four logic gates, GFP expression depends on the relative concentrations of 

activator (LuxR) and repressor (TetR or LacI) produced from a constitutive promoter. AHL binds 

with LuxR protein to activate pLux/tet transcription and aTc can block TetR repression to pLux/tet. 

Since the two sets of logic gates (LT/TL and LI/IL) are constructed similarly and described by the 

same deterministic equations, we here only explain the technical details for the gate LT. The 

model was built based on our previous work50. we derived the following ordinary differential 

equations for intercellular concentrations of LuxR (U), TetR (R) and GFP (G): 

                                                   
𝑑𝑈

𝐷𝑇
= (𝑘0 + 𝛼1) − 𝑑1 × 𝑈                                                      (1) 

𝑑𝑅

𝑑𝑡
= (𝑘0 + 𝛼2) − 𝑑2 × 𝑅                                                      (2) 

                                              
𝑑𝐺

𝑑𝑡
= (𝑐1 +

𝐾1 𝐶

𝐶+𝐾𝑛
) ×

1

𝐾𝑟
𝑛𝑡+(𝑅× 𝐹)𝑛𝑡(𝑅×𝐹)

− 𝑑3 × 𝐺                                    (3) 

𝑓 =
𝐴𝐻𝐿𝑛𝑖

𝐴𝐻𝐿𝑛𝑖+𝐾𝑖
𝑛𝑖                                                                 (4) 

𝐶 =
(𝑓×𝑈)2

𝐾𝑑
                                                                    (5) 

    𝐹 =
1

𝐾𝑡
𝑛𝑟+𝐴𝑇𝐶𝑛𝑡                                                                 (6) 

The first two equations describe the concentrations of LuxR and TetR, both of which are 

driven by a constitutive promoter at a constant level (k0). α1 and α2 are constants used to describe 

the relative changes of LuxR and TetR production, owing to the position changes in the And-gate 

circuit. d1 and d2 are the degradation rates for the LuxR and TetR protein, respectively. The third 

equation describes the concentration of GFP, which is determined by the relative concentrations 

of LuxR and TetR. LuxR binds to AHL molecules and forms the active LuxR monomers in the 

form of (LuxR-AHL), when the AHL concentration reaches a certain threshold (quorum-sensing 

mechanism). So the fraction of LuxR monomers (f) bound by AHL can be described by Equation 
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4, where ni is the binding cooperativity (Hill coefficient) between LuxR and AHL, and Ki 

represents the dissociation constant between LuxR and AHL. LuxR needs to form a dimer to bind 

the promoter and activate transcription, so the concentration of the functional LuxR dimer (C) that 

binds to the hybrid promoter pLux/tet and activates its transcription can be described by Equation 

5, where Kd is the is the dissociation constant for dimerization. Thus, GFP expression driven by 

LuxR and inducer AHL is represented by the first part of Equation 3. C1 is the basal mRNA 

expression without LuxR protein; K1 is the production rate; and Kn is the dissociation constant 

between C and pLux/tet promoter. TetR protein can bind and inhibit GFP transcription, and the 

inhibition can be repressed by inducer aTc. So high GFP expression is achieved in presence of 

high doses of aTc, and vice versa (Equation 6). The second part of Equation 3 describes TetR 

inhibition to GFP expression, under induction of aTc. And the third part of Equation 3 is the 

degradation of GFP. 

The three ordinary differential equations were used to model the two sets of AND-gate 

circuits: LT and TL, LI and IL. For each of the two sets, most parameters should be the same 

except a1, a2, c1, and Ki. Based on the parameter used in our previous studies50, we used the 

following parameters in our simulations: k0 = 1.0, d1 = 0.2, d2 = 0.2, d3 = 0.2, c1 = 0.002 (for TL) or 

0.08 (for LT), K1 = 1.7, Kn = 4.4, Kd = 13, Kt = 400, Kr = 3.2, ni = 1.2, nt = 2, ni = 1.2, nr = 2. For 

circuits LI and IL, c1 = 0.002 (for IL) or 0.05 (for LI), Kt = 1000, and the other parameters are the 

same. 

From our comprehensive linear model, we calculated that LT has more LuxR than TetR 

production (Table 2.1), so the basal expression c1 is set to a bigger value in LT model. Ki has little 

effect on the shape of the GFP dynamic curves, but determines the AHL concentration producing 

half conversion of LuxR monomers into LuxR-HSL complexes (half GFP activation). So the Ki 

value in the model is acquired from the experimental data. Through changing the relative 

expression of LuxR and TetR (i.e. α1 and α2), we can modulate GFP production dynamics (Figure 

2.6E). To predict the GFP responses in circuit TL with AHL and aTc inductions, we use the 

parameter α1 and α2 in LT as a control to tune the parameter α1 and α2 in TL. According to the 

linear model calculations, the production rate for LuxR in LT and TL almost doesn’t change, but 
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production rate of TetR in TL increases by ~93% (Table 2.1). For example, we set the production 

rates for LuxR and TetR in circuit LT to 1.0 (k0 + α1) and 0.6 (k0 + α2), respectively. So in the 

circuit TL, the two rates should be 1.0 (k0 + α1) and 1.15 (k0 + α2) based on calculations. For 

different doses of aTc induction, we allowed ~10% parameter variations for α1 and α2. We found 

that the model simulations have a good match with our experimental data. The parameters for α1 

and α2 in TL and LT under different doses of aTc are listed below: 

 

 

2.5.3 Bifurcation analysis for the synthetic toggle switches 

For the toggle switch model in Figure 2.8, we used the same mathematical model and 

most parameters in the Gardner et al paper15. Here we think the synthetic ATRs mainly 

influenced the TetR production rate, with low rate corresponding to T_S28 (α1 = 400, β = 2.7), 

medium rate corresponding to T_S67 (α1 = 600, β = 3.0), and high rate corresponding to T_WT 

(α1 = 1000, β = 3.245). All the other parameters are set the same as in Gardner et al paper. 

Bifurcation analyses are performed using XPP-AUTO software (www.math.pitt.edu). 
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CHAPTER 3 

APPLICATIONS OF MACHINE LEARNING TECHNIQUES IN GENETIC CIRCUIT DESIGN 

3.1 Introduction 

Gene circuit engineering is a popular methodology in synthetic biology with real-world 

applications in biomanufacturing and biosensing128–130. The main goal is to construct synthetic 

gene circuits with biological components such as genes, noncoding RNA elements, promoters, 

and other small modules. Designed synthetic circuits can in turn mimic biological behaviors and 

even implement novel functions within or outside of living cells. This bottom-up approach has 

been widely used for applications in areas such as pharmaceutical development, fuel production, 

metabolic engineering, genome engineering, and biomedical applications76,86,131,132.  

There are typically two main strategies to engineer a gene circuit: monocistronic and 

polycistronic. The former construction method ensures independent expression of each gene 

driven by its private promoters, while the latter architecture, often referring to operon, 

simultaneously transcribes each gene to the same mRNA under a single promoter but follows 

separate translation process to produce the needed proteins90,92,133. The operon-based 

construction largely exists in prokaryotes, and it can be commonly found in eukaryotes and 

viruses. Since the polycistronic architecture requires fewer biological components, it could 

facilitate circuitry construction; therefore, it is widely used in gene circuit engineering94,96,134. 

Presently, an increasing number of studies are being conducted to investigate how the 

neighboring regions of a certain gene affect its expression in the polycistronic gene circuit. The 

results obtained so far indicate that the transcriptional distance and gene’s position in the 

synthetic operon have significant impact on gene expression97,98. A recent study demonstrated 

that the features of adjacent transcriptional region (ATR) including GC content, size and local 

RNA free energy around ribosome binding site (RBS) have strong correlations with protein 

expression outcome135. The authors previously built a linear regression model that took into 

account several ATR features to predict the specific gene expression as well as the dynamics of 

complex gene circuits. However, building this type of biological model requires tremendous 

amount of data, and the resulting model had relatively low prediction accuracy135. Therefore, 
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powerful analytical models are needed to accurately predict the behavior of complex and 

synthetically engineered biological circuits. 

Machine learning (ML) methods have a tremendous potential in performing complex data 

analysis in investigation of synthetic biological systems. The transcription and translation 

processes, for instance, are more complex in eukaryotes than in prokaryotes136–138. Eukaryotic 

hosts play an important role since they are able to produce larger proteins that require post-

translational modification139. In terms of application of eukaryotes, several ML methods have 

been utilized to design regulatory regions with less possibility of unforeseen interactions, and also 

to optimize gene expression140–144. 

To date, ML methods are being utilized to discover how gene sequences map to 

biological functions; however, there is yet little work done to directly understand the involved 

biological pathways. In one such study, biologists rely on ML to engineer proteins using 

accelerated directed evolution. Random forests (RF) were found to be robust and computationally 

efficient on smaller datasets (i.e., fewer than 104 training examples), including the sample 

datasets often encountered in protein engineering research projects145–148. Deep learning draws 

much attention nowadays in multi-interdisciplinary research149. For instance, it has been 

discovered that deep learning is useful for building predictive models to understand genotypes’ 

contribution to gene expression150. 

In this study, several ML methods were utilized to further investigate the ATR influence 

on gene expression in polycistronic gene circuits. Specifically, two distinct types of experiments 

were conducted. First, a regression model was built to predict gene expression, which yielded R2 

scores of 0.97 and 0.95 using RF and ANN, respectively, compared to the best score of 0.63 

previously obtained using linear regression135. Second, the generated decision tree classifier 

models further confirmed the hypothesis regarding the influences of attributes of the neighboring 

genes on protein expression. Additionally, another classifier was created using GC content of 

each gene and GFP fluorescent outcomes to predict the synthetic gene circuit patterns. Both RF 

and ANN classifier models achieved 100% accuracy while identifying varying patterns of synthetic 

gene circuits. The models built are important tools that can help biologists to select influential 
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attribute sequences in synthetic gene circuit design with fewer trial and error experimental 

attempts. 

The rest of the paper is organized as follows. Section 2 provides a brief background on 

synthetic gene circuit design and the biological data collection methodology. Section 3 presents 

details regarding the utilized machine learning models, data reparation, and the obtained results 

for both the regression and classification models. And finally, Section 4 is the Conclusions and 

Future Directions. 

 

3.2 Synthetic gene circuit design 

Specific details of the experimental protocols needed for engineering synthetic gene 

circuits and data collection can be found elsewhere135. Briefly, a synthetic gene circuit consists of 

various biological components, such as a promoter to initiate transcription process, a terminator 

to determine the end of transcription process, a ribosome binding site for ribosome anchoring to 

start the protein translation, and finally, the genes of interest (Figure 3.1). 

In the experiments conducted in this work, the high-copy plasmid method was used to 

express all synthetic gene circuits. The cloning experiments were followed by the standard 

molecular biology techniques, and all synthetic circuits were assembled based on standardized 

biobrick cloning methods. The GFP fluorescence of each generated circuit was measured using a 

flow cytometer. A total of 20,000 individual cells were analyzed for each sample at the slow flow 

rate, and eight replicate results for each circuit were collected for further analysis. In summary, 79 

synthetic gene circuits were constructed with five different gene patterns (sequences) using two 

or three genes: X-GFP, X-Y-GFP, X-GFP-Y, GFP-X and GFP-X-Y (Figure 3.1). The resulting 

fluorescence values were collected for further machine-learning analysis. To reiterate, in synthetic 

biology, GFP is commonly used as a reporter protein for the easy measurement of its expression 

level and the circuit dynamic performance. 
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Figure 3.1 Synthetic Circuit Engineering Strategies and the Attributes Affect Polycistronic Gene 

Expression (A) Schematic showing the strategies of construction synthetic gene circuit. (Top) 

Monocistronic organization. Each gene’s expression is independently initiated by their own 

promoters. (Bottom) Polycistronic organization. Transcription process is driven by one promoter 

to produce a single mRNA. The gray arrows represent the promoters; the orange ovals represent 

the ribosome binding site (RBS); the gray Ts represent the transcriptional terminators; the color 

boxes represent different genes. (B) Schematic illustrating the attributes affect polycistronic gene 

expression. A single mRNA is generated through transcription process following by separate 

translation processes to produce their own protein products. Attributes of adjacent transcriptional 

region (ATR) including 5’ and 3’ GC content, 5’ and 3’ size and local RNA free energy around 

RBS have strong correlations with protein expression outcome. 

 

It must be noted that gene expression is influenced by overall stability and organization of 

biological components. Therefore, in some of the synthetic circuits, genes were placed in front of 

GFP, and in others, GFP were placed in the middle of the three-gene operons (e.g. X-GFP-Y) or 

proximal to promoter (e.g. GFP-X). In synthetic biology, the organization of synthetic operon 

facilitates construction of genetic cascades and decreases the number of biological components 

(such as the promoters and terminators) required for complex genetic circuits. The specific 

parameters which could significantly impact the functionality of synthetic gene circuits were GC-

content, which is the percentage of nitrogenous bases in a DNA or RNA molecule that are either 

guanine or cytosine, and ATR sizes, positions, and degrees of stability such as Rear_T_Size, 

Rear_T_dG, Front_T_Size, Rear_F300_dG, Front_GC_content, etc.135. 

 

3.3 Machine learning experiments 
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A total of 8 experiments were conducted for each of the 79 synthetic gene circuits to 

obtain GFP Fluorescence values. Hence, a total of 632 rows of data were available for the 

regression models using both two-gene and three-gene patterns. Other than the GFP values and 

the circuit patterns, 9 attributes were used as shown in Table 3.1. The classification models relied 

on the GC content of the gene parts X, Y, and G, as well as GFP fluorescence values to predict 

the patterns of the gene circuit. Therefore, only three-gene patterns (X-GFP-Y, GFP-X-Y, and X-

Y-GFP) were used for classifiers, resulting in a smaller subset of 408 rows of input. The following 

sections discuss the methods of data preparation, the conducted machine learning experiments 

including both the regression and classification models, and finally, the obtained results. 

 

Table 3.1 Synthetic Circuit Design Attributes 

 

 

 

 

 

 

 

 

3.3.1 One-hot encoding and standard scaling 

To create the training dataset, first the categorical attributes were transformed into 

numerical data using the one-hot encoding technique151. The patterns indicating the position of 

gene segments were represented as vectors of all zeroes with the exception of a single ‘1’ to 

signify the position. Unlike the simple method of using digits to represent categorical attribute 

values, the one-hot encoding method has the advantage that the distances between digitized 

values are all the same in terms of number of bits.  

ML models are sensitive to range and distribution of numerical attribute values151. 

Standard scaling was used to normalize numerical attributes, so they all have similar distribution 

Attributes  Description 

dG Local RNA structure free energy of GFP RBS 

Rear_GC_content 3' ATR DNA GC content 

Rear_100BP_GC 
First 100 base pair (BP) of 3' ATR DNA GC 
content 

Front_T_dG 5' ATR DNA free energy 

Front_T_Size 5' ATR DNA total BP 

Rear_T_dG 3' ATR DNA free energy 

Rear_T_Size 3' ATR DNA total BP 

Rear_F100_dG First 100 BP of 3' ATR DNA free energy 

Rear_F300_dG First 300 BP of 3' ATR DNA free energy 
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ranges, means, and standard deviations. For the ANN classification model, the distribution of the 

input data was normalized to the range [0,1] to further facilitate convergence. 

 

3.3.2 Log-normal distribution 

The original GFP fluorescence values collected in this study had a skewed distribution, 

but most ML techniques operate under the assumption of normal distribution of numerical data151. 

To comply with the requirement, log GFP values were used instead of the original GFP values152. 

As depicted in Figure 3.2, the log values are closer to Gaussian distribution and allow numerical 

techniques to build more accurate prediction models. The log-normal distribution is commonly 

used in all manners of numerical data analysis153,154. 

 

Figure 3.2 Untreated (left) or Log-transformed (right) GFP Distribution. X axis represents equal 

GFP value intervals and Y axis represents number of values fall in each interval. The pattern of 

GFP value with log transformation is closer to a normal distribution 

 

3.3.3 PCA analysis and random splitting 

Principal Component Analysis (PCA) was applied to better understand how the attributes 

contributed to the variance present in the dataset. For the regression model, it was shown that 

the dataset required at least 5 attributes that accounted for 95% of the total variance. To 

statistically validate the performance of the ML models, datasets in all experiments were 

randomly split into (80%, 20%) for training and testing purposes, respectively.  

 

3.3.4 The machine learning Experiments 
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Two types of models were built to investigate various aspects of gene circuit design: 

First, the regression models were built using various algorithms such as Linear Regression, 

Decision Tree Regressor, Random Forest (RF), Support Vector Machine (SVM), and Artificial 

Neural Networks (ANN); and Second the classification models included RF, SVM with linear 

kernel and polynomial kernels, Stochastic Gradient Descent (SGD), K-means Clustering, and 

ANN. Since the dataset was not large, 5-fold cross-validation was applied to evaluate the overall 

performance of the model with random shuffling. 

 A total of six ANN models were built using different hyperparameters such as choice of 

activation functions, batch normalization, and dropout regularization (Table 3.2). The obtained 

results indicated that the rectified linear activation function (ReLU) performed much better largely 

because it does not saturate for positive values151. Further, it has been shown that if all hidden 

layers use the scaled version of the exponential linear unit (SeLU), the network will self-

normalize, which solves the vanishing/exploding gradients problem. One pre-condition for using 

this activation function is that all attributes must all be normalized first155. Batch Normalization 

(BN) requires adding an operation before or after the activation function of each hidden layer, 

zero-centering and normalizing the input, and then scaling and shifting the results; therefore, it 

allows the models to learn the optimal scale and mean of each of the layer’s inputs113. Adaptive 

moment estimation (Adam) combines Momentum optimization and RMSProp together to keep 

track of an exponentially decaying average of past gradients as well as that of the past squared 

gradients156. The utilized dropout technique has proven to be highly successful as a regularization 

technique157. In the ensuing experiments, the hyperparameter p or the dropout rate was set to 

0.2. 

 

3.3.5 Results 

In the regression experiments, the following algorithms were utilized: linear regression, 

decision tree, RF, and SVM. The R2 scores (Coefficient of Determination) and Root Mean Square 

Error (RMSE) values were computed to evaluate the performance of each algorithm. Among the 

algorithms, both the decision tree regressor and RF regressor achieved the R2 score at 0.97. Using 
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5-fold cross-validation, the highest average R2 score of 0.94 was obtained. The deep learning 

models achieved the R2 score of 0.95 compared to the best score of 0.63 obtained in an earlier 

study (Figure 3.3). 

 

Table 3.2 Six ANN Models that Use Adam Optimizer 

  Activation Function Batch Normalization Regularization 

Model 1 ReLU No   

Model 2 SeLU No   

Model 3 ReLU Yes   

Model 4 SeLU Yes   

Model 5 ReLU No Dropout 

Model 6 SeLU No Dropout 

 

Among ML algorithms that allow direct examination of the mechanisms of the models, 

decision trees best provided an in-depth understanding of the design attributes (i.e., via the 

generated decision rules) and their impact on gene circuit design. Five different decision trees, 

each with different random seeds, were generated and the five top-most used features in each 

case were recorded for inspection. Further analysis of the recorded features help biologist to 

better understand the significance of the chosen attributes in order to design more accurate and 

beneficial future experiments. Interestingly, the top 5 significant gene circuit design features 

identified in this work are in complete accordance with those identified by biologists based on the 

knowledge of the subject matter, namely, Front_T_size, Front_T_dG, dG, Rear_F100_dG, and 

Rear_T_Size. 

In the second set of experiments, the following classification models were constructed to 

predict the patterns of synthetic gene circuits: RF, SVM with linear and polynomial (degree 3) 

kernels, SGD, and K-means clustering. For each classifier, the overall accuracy, confusion 

matrix, sensitivity, and specificity measures were computed to accurately assess the performance 

of the models. Both the RF and ANN models reached 100% accuracy in predicting gene circuit 
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patterns (Figure 3.4). In the experiments conducted with ANN’s, some minor performance 

fluctuations were observed during different statistical runs of the learning models. By observing 

the learning curves (not shown here due to space limitations), random fluctuations occurred 

before the final convergence. However, the overall performances of all models are very robust, 

ranging in values from 0.96 to 1.00 in accuracy for the classification models, and 0.93 to 0.95 in 

R2 score for regression models. 

 

Figure 3.3 R2 Scores and RMSE of Regression Models. For a & b, Y axis represents R2 score 

(Coefficient of Determination) of each tested algorithm. It shows among regular algorithms, 

Decision Tree and Random Forest reached much higher R2 score (>0.9) than the other two and 5 

out of 6 ANN models reached R2 score above 0.9. The second bar in a represent the mean of R2 

score of 5 folds cross-validation. For c & d, Y represent RMSE value of each tested algorithm. 

They present the coherent results where Decision Tree and Random Forest have the lowest 

value among traditional algorithms and ANN models have reached comparatively low values. 
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Figure 3.4 Performance of Various Classification Mode. Y axis represents overall prediction 

accuracy of each algorithm. The orange bars in the left figure represent the overall accuracy 

means of 5-folds cross-validation. 

 

As observed in the computed confusion matrices (Table 3.3), the RF, SVM (polynomial 

kernel, degree 3), and K-means (k=80) classifiers learned the three gene circuit patterns of 

interest G-X-Y, X-G-Y, X-Y-G with highest degrees of accuracy. To further demonstrate the 

performance of the classifier models, Table 3.4 reports the computed specificity, sensitivity, 

overall accuracy values. Again, the top performing classifiers were RF, SVM-P3, and K-Means. 

 

Table 3.3 Confusion Matrices for ML Models 

Random Forest   SVM-L   SVM-P3 

  GXY XGY XYG     GXY XGY XYG     GXY XGY XYG 

GXY 17 0 0   GXY 0 7 10   GXY 17 0 0 

XGY 0 39 0   XGY 0 31 8   XGY 0 39 0 

XYG 0 0 26   XYG 0 2 24   XYG 0 1 25 

                            

SGD   K-means_80     
  GXY XGY XYG     GXY XGY XYG           

GXY 0 11 6   GXY 15 0 2           

XGY 0 33 6   XGY 0 35 4           

XYG 0 9 17   XYG 2 0 24     

 

Table 3.4 Accuracy, Specificity and Sensitivity Scores for Each ML Model 

Algorithms Random Forest SVM-L SVM-P3 SGD K-means_80 

Accuracy 100% 67% 98% 60% 90% 

 GXY XGY XYG GXY XGY XYG GXY XGY XYG GXY XGY XYG GXY XGY XYG 

Specificity 1 1 1 0 0.79 0.92 1 0.97 1 0 0.62 0.58 0.88 1 0.8 

Sensitivity 1 1 1 0 0.77 0.57 1 1 0.96 0 0.84 0.65 0.88 0.89 0.92 
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In summary, the generated decision trees, which are not included here due to space 

limitations, all indicated that the most influential attributes for design of synthetic gene circuits are 

those which directly control the size of ATR’s as well as the position and order of the promoter in 

an operon such as Rear_T_Size, Rear_T_dG, Front_T_Size, Front_GC_Content, etc. This level 

of understanding of the model and its relationship with gene expression will facilitate future 

engineering of more complex synthetic gene circuits. 

 

3.4 Conclusions and future directions 

The results obtained in this work demonstrate the enormous potential of ML in improving 

the prediction accuracy of gene expression in complex synthetic gene circuit design compared to 

data-driven mathematical models. The key to the massive improvements of prediction is the 

ability to extract underlying connections among various attributes and the GFP fluorescence 

using ML methods instead of relying on traditional statistical techniques that create linear 

regression models. One obvious benefit of the experiments conducted in this work is that they 

show how biologists can investigate complex biological systems by focusing on mappings of 

experimental input data and the observed results. ML methods have been shown to facilitate 

gene expression prediction with high accuracy in polycistronic gene circuit.  And that in turn offers 

the potential for systematic analysis of more complex gene circuits. Another interesting find in this 

study was that the constructed classifiers were able to determine the position of each gene and 

their significance in contributing to the GFP fluorescence intensity in polycistronic expression 

circuits. This is of exceptional benefit in design of complex gene networks to achieve specific 

expression levels or circuit dynamics without enormous trail-and-error experimental attempts. 

In terms of future directions, it must be noted that due to the small size of the dataset, no 

extensive hyperparameter tunings needed to be performed simply because high accuracy models 

were successfully built. With more experimental data, there will be the opportunity to discover 

even more vital information about design of gene circuits commonly used in pharmaceutical 

industries, fuel production, metabolic engineering, genome engineering, and numerous 

biomedical applications. One of the advantages of ML methods is that the models can be 
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retrained and improved when new data becomes available. Biological experiments are time-

consuming, so as new data becomes available and consolidated with old data, the effectiveness 

and robustness of the models could be extensively enhanced.  

Although the data collected in this work were from prokaryotic experiments, similar 

methods can also be applied to other biological systems, such as eukaryotic organism, virus or 

even cell-free transcription-translation systems. Theoretically, using ML techniques to achieve 

higher prediction accuracy requires increasing number of experimental data inputs. Hence, these 

methods are tremendously adequate for investigating high-throughput biological analysis, 

including large-scale genomic sequencing or pharmaceutical drug discovery. 
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CHAPTER 4 

PREDICTABLE CONTROL OF RNA LIFETIME USING ENGINEERED DEGRADATION-TUNING 

RNAS 

4.1 Introduction 

Precise regulation of gene expression at the level of transcription or translation plays a 

pivotal role in establishing basic cell function, ensuring appropriate responses to environmental 

cues, and even robust therapeutics and diagnostics41,124,158–161. Therefore, effective strategies are 

required to enable accurate and predictable control of the production and degradation of RNA 

and protein molecules39,138,162. In bacteria, such control has largely been achieved through 

engineering of the production of RNA (transcription) or protein (translation). Modulation of the -35 

and -10 consensus elements has allowed for engineering of synthetic promoter libraries with a 

broad range of transcription efficiencies30,163,164. This mechanism-driven methodology has also 

been applied to develop tools to manipulate translation, where RNAs featuring low folding energy 

coupled with high affinity Shine Dalgarno (SD) sequences encourage efficient ribosome binding, 

thereby leading to accelerated translation rates112,165. Libraries of ribosome binding sites (RBSs) 

with varying strengths have been developed to predict and tune protein yields112,166,167. Other 

attempts have been made to control the production of gene products by developing synthetic 

transcriptional terminators168–170, riboregulators64,65,171,172, thermosensors173, ribozymes60, 

CRISPR activation and interference systems71,174–176, switchable guide RNAs177–179, engineering 

regions nearby open reading frames (ORFs)135,180–183, and through optimization of codon 

usage184,185. 

RNA molecules in prokaryotes are typically unstable, with half-lives on the minute 

timescale, which allows cells to rapidly adapt to changes in the environment186,187. This rapid 

degradation is orchestrated by an ensemble of bacterial RNases that have been extensively 

studied109,188. In E. coli, which lacks 5’ → 3’ exonucleases, the vast majority of RNA degradation 

processes combine the actions of endonucleases and 3’ → 5’ exonucleases. Specifically, the 

RNase E endonuclease or the RNase III targets the underlying RNA molecule for primary 

cleavage followed by complete degradation via 3’ → 5’ exonucleases44. Previous studies have 



  62 

discovered several naturally occurring 5’ UTRs, termed RNA stabilizers, or rationally designed 

synthetic DNA cassettes that can increase RNA half-life by forming 5’ secondary structures110,189–

191. These 5’ hairpin structures have been shown to be able to control heterologous mRNA half-

life and widely used to regulate recombinant protein expression without introducing stress to host 

cells49. However, most of the engineered 5’ stabilizing elements are designed and tested on an 

ad-hoc basis. Understanding of their functional structural features remains elusive. 

Here, we explore the structural space and report a library of modular degradation-tuning 

RNAs (dtRNAs) that can be inserted at the 5’ end of a transcript of interest to manipulate its 

stability. Based on in silico analysis, these RNA modules can form secondary structures that 

impact RNA degradation without interfering with RBS context. We systematically characterize 

dtRNA structures and find that RNA stability is strongly correlated with structural features such as 

stem length and GC content, loop size, 5’ spacing sequence and the presence of RNase 

cleavage sites. Manipulation of these features yields a library of dtRNAs capable of tuning 

expression upwards by 5-fold or downwards by 8-fold, resulting in an overall dynamic range of 

40-fold. Integrating dtRNAs with the highest stability enhancements into gene circuits enables us 

to tune the dynamics of a positive feedback loop and increase noncoding RNA levels for 

improved CRISPR interference. We further apply synthetic dtRNAs to cell-free systems and 

confirm their ability to increase gene expression in vitro. Lastly, we demonstrate the utility of 

dtRNAs by integrating them with a toehold switch sensor to implement improved paper-based 

viral diagnostics, illustrating the potential of dtRNAs for medical and biotechnological applications. 

 

4.2 Results 

4.2.1 Modulation of RNA stability by variants of the native ompA stabilizer 

To verify the effectiveness of a naturally occurring RNA stabilizer, we inserted the 5’ UTR 

sequence from the E. coli ompA transcript between the promoter and RBS region to tune 

downstream GFP expression110,135,189 (Figure 4.1A, right). The RNA sequence of the stabilizer 

forms secondary structures to stabilize the mRNA following transcription (Figure 4.1A, left). It can 

be seen in Figure 4.1b that the wild-type (WT) stabilizer does indeed increase GFP levels 
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moderately compared to a control (Ctrl) mRNA lacking the stabilizer sequence. Sequence 

analysis shows that the ompA stabilizer forms two hairpins (hairpin_1 and hairpin_2, blue 

structures in Figure 4.1A) and two single-stranded sequences between the two hairpins (ss1) and 

downstream of hairpin_2 (ss2) (Figure 4.2A). To investigate the contribution of these components 

to maintaining RNA stability, we designed and synthesized two variants of the ompA stabilizer: 

“Hp1” includes hairpin_1 and the first 7 nucleotides of ss1, and “Hp2” includes hairpin_2 and the 

first 7 nucleotides of ss2. Using a plate reader to measure GFP fluorescence after 16 hours of 

incubation, we first tested each cassette on a high-copy plasmid driven by a strong promoter but 

did not observe any significant fluorescence enhancements (Figure 4.2B). To alleviate potential 

saturation of the transcription and degradation process, each cassette was then inserted into the 

plasmid driven by a weak promoter. Interestingly, both “Hp1” and “Hp2” displayed greater GFP 

expression than the WT ompA sequence, with design “Hp1” providing about a 2-fold increase in 

GFP over the control (Figure 4.1B).
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Figure 4.1 Modulation of RNA Stability by Native ompA Stabilizer Variants (A) Schematic showing 

the stabilizer protection mechanism and the plasmid constructed for fluorescence measurements. 

Engineered stabilizer variants are inserted between a constitutive promoter and the RBS to 

regulate GFP expression. Engineered stabilizer variants can form a hairpin structure (blue) to 

block RNase access. The structure depicted by a red dashed line indicates the small hairpin 

structure design nearby the RBS of WT_I, Hp1_I and Hp2_I. For the plasmid map, the gray arrow 

represents the constitutive promoter; the blue rectangle represents the RNA stabilizer; the orange 

oval represents the RBS; the green box represents GFP gene; the gray T represents the 

transcriptional terminator. (B) Plate reader measurements shows that GFP fluorescence is 

affected by engineered stabilizer variants. The designs adopt the whole (WT) or part (Hp1 and 

Hp2) of the native ompA stabilizer and exhibit GFP fluorescence enhancement (blue). Low GFP 

expression is observed for circuits WT_I, Hp1_I and Hp2_I with small hairpin structures nearby 

the RBS region (red bars). The gray bar represents the control circuit result (Ctrl). Error bars are 

the SD of four biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001 by student’s t test. (C) 

Comparison between relative mRNA level and relative GFP fluorescence for circuit WT, Hp1 and 

Hp2. The result shows a strong correlation between these two factors (R2 = 0.8997).  

 

To explore the impact of extra secondary structures formed close to the RBS on GFP 

expression, another three stabilizer variants were designed and synthesized: “WT_I”, “Hp1_I” and 

“Hp2_I” which, compared to above designs, form eight extra base pairs with their downstream 

sequence to establish a short hairpin structure near RBS (red structure in Figure 4.1A). These 

three designs showed weaker or no fluorescence (Figure 4.1B and 4.2C), demonstrating that 

RNA secondary structure can interfere with translation when it is too close to the RBS, as 

expected from previous reports112,192. 
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Figure 4.2 Structure of Naturally Occurring ompA Stabilizer and GFP Expression Is Triggered by 

A Strong Promoter (A) Schematic showing the structure of naturally occurring ompA stabilizer 

which comprises two hairpin structures, hairpin_1 and hairpin_2. Single-stranded nucleotide 

sequence one (ss1) is located between two hairpins and single-stranded nucleotide sequence 

two (ss2) lies downstream of hairpin_2. (B-C) GFP fluorescence measurement results for circuits 

transcription under a strong promoter. (B) Design WT, Hp1 and Hp2 exhibits comparable GFP 

fluorescence. (C) Each design with small structure formation nearby RBS region shows low GFP 

fluorescence levels.  The data represents the mean ± SD of four biological replicates. n.s. (not 

significant) p > 0.05, * p < 0.05, ** p < 0.01 by student t test. 

 

To rule out the possibility that the observed increase GFP fluorescence was due to 

enhanced translation rather than increased RNA stability, RT-qPCR experiments were carried out 

for Ctrl, WT, Hp1, and Hp2 to measure their RNA levels. Figure 4.1C shows that RNA level 

variations can explain about 90% of the change of their corresponding GFP fluorescence (R2 = 

0.8997), indicating that the observed fluorescence enhancements are attributed primarily to 

increased RNA levels. These results demonstrate the viability of using artificial upstream 5’ UTR 

sequences to modulate RNA stability in our synthetic system. In addition, studying variants of 

naturally occurring RNA stabilizers helps distill two general principles for their effective design: 

use of hairpin structures and ensuring an appropriate distance between the hairpin and the RBS. 

 

4.2.2 Identifying functional structural features of synthetic dtRNA 

The general principles of dtRNA design and placement with respect to the RBS provide a 

foundation for identification of specific structural features that critically influence RNA stability. In 

silico analysis suggests stem length, stem GC content, loop size, 5’ spacing sequence, and 3’ 

insulation as primary candidate features to investigate (Figure 4.3A) 

Figure 4.3B displays quantitative characterization of the impacts of stem GC content on 

RNA stability. Theoretically, stems with high GC content are more thermodynamically stable and 

could lead to stronger enhancements of RNA stability. Fifteen dtRNAs with the same secondary 

structure (6-nt loop and 12-bp stem) but varying stem GC content were designed and tested 

(Figure 4.3B). Fluorescence measurements show that structures with low GC content (less than 
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20%) nearly abolish the GFP expression enhancements, likely due to the unwinding of unstable 

AU rich hairpins removing their potential RNA-stabilizing effects. On the other hand, as the 

fraction of GC base pairs increases, GFP fluorescence increases concomitantly until it peaks at 

66.7% GC content (8 out of 12 GC base pairs). With higher GC content, we observe diminished 

expression enhancement, presumably because RNA structures with GC-rich stem loop could act 

as transcriptional terminators, which stall RNA polymerases and cause the transcriptional 

complex to fall off and therefore lead to lower expression value193,194. This result quantifies the 

non-monotonic relationship between GC content and resulting RNA stability and also identifies 

that medium level (from 41.6% to 66.7% in our result) GC content is ideal for dtRNA structure to 

maximally enhance RNA stability. 

To investigate the impact of stem length on RNA stability, another ten dtRNAs sharing 

the same loop sequence and optimal stem GC content but varying stem length were designed 

and tested (Figure. 4.3C). Fluorescence measurements show that structures with long stem 

lengths (30 bp) nearly eliminate RNA stability enhancement, possibly because even perfectly 

paired hairpins that are over 30 bp in length are likely to be targeted by RNase III to initiate RNA 

degradation process188. GFP fluorescence reaches its highest value for stem lengths of 12 bp. 

Further reductions in stem length lead to decreased hairpin stability and increased susceptibility 

to RNases as the stem is decreased down to 3 bp. These effects thus result in the non-monotonic 

relationship between stem length and the resulting RNA stability, where hairpins with 12 bp stem 

length show the top effect of RNA stability enhancement. 

Finally, to identify the relationship between loop size and RNA stability, we designed and 

tested another set of twelve dtRNA structures containing optimal stem features but various loop 

sizes. In theory, tetraloops, which are hairpin loops of 4 nt, endow an RNA structure with strong 

thermal stability and make them highly nuclease resistant195. This effect is confirmed 

experimentally in Figure 4.3D where structures with loop sizes of around 4 nt (3 nt and 6 nt in our 

result) display the highest RNA stability enhancement. GFP fluorescence levels decrease with 

enlarging loop size, likely because large loops increase the possibility for RNase targeting and 

thereby weakening the RNA stability. Increasing loop sizes also increase the entropic cost 
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associated with hairpin formation, making the hairpin less thermodynamically stable. These 

results demonstrate a monotonically decreasing relationship between loop size and RNA stability 

and determines that a loop size of around 4 nt (3 nt to 6 nt) is ideal for RNA stability 

enhancement. 

 

Figure 4.3 Identifying Functional Structural Features of Synthetic dtRNAs (A) Schematic showing 

the workflow for the present study. (B-D), Correlations between each structural feature and the 

relative GFP expression. For all designs, 3’ insulation is achieved by insertion of ten single-

stranded nucleotides downstream of the hairpin structure to minimize interference with the 
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downstream RBS. (B) Correlation between dtRNA stem GC content (0% to 100%) and the 

relative GFP fluorescence, R2 = 0.9381; (C) Correlation between dtRNA stem length (3 bp to 30 

bp) and the relative GFP fluorescence, R2 = 0.9131; (D) Correlation between dtRNA loop size (3 

nt to 30 nt) and the relative GFP fluorescence, R2 = 0.806. The insets color-code the 

characterized structural features of dtRNA, and the green arrow represents GFP mRNA. The 

dash line represents the control fluorescence level. Error bars are the SD of six biological 

replicates. (E) Relative GFP fluorescence of synthetic dtRNA library. Orange bars represent 

designs with over 4-fold fluorescence enhancement; green bars represent designs with 2 to 4-fold 

enhancement; blue bars represent designs with 1-fold to 2-fold enhancement; gray bars 

represent designs with fluorescence lower than the control (c). Error bars are the SD of six 

biological replicates. Asterisks represent the dtRNAs used for in vitro measurement. Inset: 

Growth curve measurement results showing the OD 600 values for dR1, dR42, dR56 and control 

over 20 hours. Error bars are the SD of three biological replicates. (F) GFP fold difference among 

dtRNA structures with least and the most stable sequences, engineered stabilizer variant Hp1 

(Figure 4.1B) and the control. Over 40-fold dynamic range is achieved through optimizing 

functional structural features of the dtRNAs. 

 

Having designed the necessary structural features to enhance RNA stability, we next 

explored incorporating motifs to decrease RNA stability. We first attempted to insert the 

previously reported RNase E cleavage site (UCUUCC, 6-nt) into dtRNA structures173,196. No 

significant GFP fluorescence change was observed when cleavage sites were inserted into the 

stable hairpin (Figure 4.4A). However, GFP fluorescence was significantly reduced when 

introducing three cleavage sites into the relatively unstable large loop hairpin structure, 

demonstrating stabilizers with relatively “open” structures are easily targeted by RNases (Figure 

4.4B). We next interrogated the impact of a 5’ spacing sequence on RNA stability reduction. 

Unlike a previous report that found that as little as a 5-nt single-stranded region at the 5’ end of 

the RNA could completely abolish the stabilizer function190, we observed RNA stability 

enhancement for structure with 12-nt single-stranded sequence. Indeed, the stabilizing effect is 

completely abolished only when the 5’ single-stranded region reaches 18 nt in length (Figure 

4.4C). We then combined these two features by inserting RNase E cleavage site into the 5’ 

spacing sequence to test if RNA stability can be further decreased. As expected, GFP 

fluorescence is decreased when the cleavage site is inserted 6 nt away from the hairpin structure, 
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and the fluorescence level is even further downregulated by about 8-fold below the control when 

two RNase E cleavage sites are inserted (Figure 4.4D). 

We also investigated other features such as the presence of bulges within the stem and 

loop GC content and found that they have insignificant effects on RNA stability (Figure 4.5A and 

B). To investigate if dtRNAs can also be applied to genes with very different sequence 

composition, we select dtRNAs with varying stabilizing capabilities to regulate mRFP expression. 

Sequence comparison analysis shows only 3% coverage between GFP and mRFP gene 

suggesting mRFP reporter shares very different sequence composition with GFP. Following the 

same circuit construction, we insert each dtRNA to the upstream of mRFP to measure their effect 

on the reporter expression. Fluorescence measurement result shows that dtRNAs with top 

ranking in the library displayed higher relative mRFP fluorescence (Figure 4.5C). We further 

compare selected dtRNAs’ mRFP performance to their GFP enhancement. The result also 

exhibits high correlation (R2 = 0.8681), suggesting dtRNA performance is transferable to the other 

genes with different sequence compositions (Figure 4.5D). To further verify RNA stability 

enhancement is independent of genetic background, two dtRNA variants with top enhancement 

performance were measured with different promoters and RBSs (Figure 4.5E and F). Results 

from these studies confirm that dtRNAs can enhance RNA stability in a variety of genetic 

contexts. 
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Figure 4.4 Fluorescence Measurements on dtRNAs with RNase E Cleavage Sites Engineered 

into Different Structural Regions. (A) Thirteen synthetic dtRNAs are designed with single or 

multiple RNase E cleavage sites (UCUUCC) engineered into different structural regions of dR1. 

The regions are marked for single or multiple RNase E cleavage sites insertion (right). 

Fluorescence measurement result shows that insertion of cleavage sites have insignificant effects 

on RNA stability. (B) Fluorescence measurement for dtRNAs with multiple RNase E cleavage 

sites inserting into 18-nt loop region. The inset shows the location for RNase E cleavage sites 

insertion. (C) Characterize the effect of dtRNA 5’ spacing length on GFP expression. Five dtRNAs 

with 5’ spacing lengths from 1-nt to 18-nt are designed to measurement their effect on GFP 

expression. The inset shows the location of dtRNA 5’ spacing region (pink). (D) Fluorescence 

measurement of dtRNAs with RNase E cleavage sites engineered into 12-nt 5’ spacing region. 

The inset shows the position of RNase E cleavage site (yellow). Error bars are the SD of six 

biological replicates. 

 

To test the observed gene expression tuning can be attributed to RNA levels, RT-qPCR 

experiments were performed to measure RNA levels for selected dtRNAs with a range of GFP 

fluorescence enhancement levels. The results show a strong correlation between relative RNA 

level and relative GFP fluorescence (R2 = 0.9406), suggesting GFP fluorescence variation is 

mainly due to the change of RNA levels (Figure 4.6A). Next, we designed additional dtRNAs with 

combined parameters of each feature and calculated their predicted relative GFP to investigate if 

dtRNA stabilizing capability can be predicted based on our feature design rules (a-i, Table 4.1). 

Fluorescence comparison shows a strong correlation between the predicted and observed GFP 

(R2 = 0.5295, Figure 4.6B). We also increased the 5’ spacing length of dtRNA with the highest 

predicted stabilizing capability among the new designs (f, Table 4.1). Same to our previous result 

that the stabilizing effect is nearly abolished with long 5’ single-stranded regions (Figure 4.6C). 

These results demonstrate that dtRNA stabilizing ability can be roughly predicted based on each 

design rule. 
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Figure 4.5 Introduction of Bulge and Loop GC Content Have Insignificant Effects on GFP 

Fluorescence and Commonality Test for dtRNA Regulation (A) Relative GFP expression of 

circuits regulated by dtRNAs with or without the bulge introduced in stem region. Three-

nucleotide bulge was designed into stem region of dR1 and dR4 to be dR11 and dR26. There is 

no significant fluorescence difference among all designs indicating the introduction of bugle has 

little effect on GFP fluorescence enhancement. (B) Fluorescence measurements for designs with 
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the same stem feature but varying loop GC content. We maintained 18 nt loop size and designed 

structures with 83.3%, 50% and 17.6% loop GC content, respectively. The result indicates that 

loop GC content also has minor effect on GFP variations. (C) Relative mRFP fluorescence 

regulated by selected dtRNAs with varying stabilizing abilities. Colors of the bar represent the fold 

enhancement of each dtRNA on GFP reporter. (D) Comparison between relative mRFP 

fluorescence and relative GFP fluorescence of selected dtRNAs. The result exhibits high 

correlation (R2 = 0.8681) between the report gene expression suggesting dtRNA performance is 

transferable to the other genes with different sequence composition. (E) Commonality test for 

circuits with different promoters (Top). Two promoters are selected (Biobrick number: J23105 and 

J23109) and engineered into the circuit with identical constructions. GFP fluorescence 

measurement result shows that dtRNAs are able to enhance GFP fluorescence by different 

promoters (Bottom). (F) Commonality test for circuits with different RBSs (Top). We further 

engineered circuits with different RBSs (Biobrick number: B0031 and B0032. GFP fluorescence 

measurement results show that synthetic dtRNAs can upregulate the GFP fluorescence with 

different RBSs (Bottom). Error bars of each figure are the SD of six biological replicates. 

 

 

Figure 4.6 qPCR Measurements of Selected dtRNAs with Varying Stabilizing Efficiency and the 

Prediction of Additional Designed dtRNAs (A) qPCR measurement of relative RNA levels for 
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dtRNAs with diverse stabilizing efficiency. The result displays a strong correlation between 

relative RNA levels and relative GFP fluorescence (R2 = 0.9406). Error bars of relative mRNA 

level are the SD of three biological replicates. (B) Relative fluorescence Comparison between 

predicted relative GFP and observed relative GFP of dtRNAs constructed followed by combined 

design rules (Table 4.1). The result demonstrates that dtRNA stabilizing efficiency can be roughly 

predicted followed our designed rules (R2 = 0.5295). (C) Fluorescence measurement of dtRNA 

design f (Table 4.1) without (left) or with (right) 18 bp 5’ spacing. Error bars are the SD of six 

biological replicates. (d) Scatter plot reveals that structure MFE is not significantly correlated with 

GFP fluorescence enhancement regulated by synthetic dtRNA library (R2 = 0.000068). 

 

In all, we systematically designed and tested a library of 82 synthetic dtRNAs and 

identified the functional structural features affecting RNA stability. Each dtRNA shares a single 

hairpin structure with an insulator sequence at the 3’ end to prevent the interference between the 

stability hairpin and RBS region. Designed by tuning combinations of each features, dtRNAs 

enable quantitative control over gene expression with a wide dynamic range of 40-fold from the 

least to the most stable sequences (Figure 4.3E and F, dtRNA stability ranked 1 through 82, 

denoted dR 1-82). We also note that no significant correlation between the dtRNA minimum free 

energy (MFE) and GFP fluorescence was detected (Figure 4.6D), indicating that a combination of 

RNA sequence and structural features, rather than RNA folding alone, define transcript stability. 

 

4.2.3 Modulation of gene circuit dynamics and noncoding RNA levels 

 As an initial test of the utility of dtRNAs, we selected two dtRNAs with the top GFP 

enhancement performance (dR1 and dR6) to incorporate into a LuxR/LuxI quorum sensing (QS) 

regulatory circuit to measure their impact on downstream GFP expression. We believe using top 

performed dtRNAs can lead to the prominent results for the redesigned system. It can be seen in 

Figure 4.7A that synthetic dtRNAs are only inserted in the 5’ region upstream of the LuxR 

sequence to regulate LuxR expression (circuit C_dR1 and C_dR6). GFP fluorescence was 

measured to quantify the dose-response readout of each circuit. It can be seen in Figure 4.7B 

that as the 3OC6HSL induction increases, GFP fluorescence increases by C_dR1 and C_dR6 

become more pronounced when compared against the circuit without dtRNA regulation (C_Ctrl), 
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suggesting synthetic dtRNAs are capable of stabilizing LuxR mRNA and thereby enhancing 

downstream GFP fluorescence in synthetic gene circuit (Figure 4.7B). Such stability 

enhancement is amplified in high induction cases because of increased transcript abundance. 

 

Table 4.1 Information of Additional Constructed dtRNAs (design a-i) 

dtRNA 

Design 

index 

Stem GC 

content 

(%) 

Stem 

length 

(bp) 

Loop 

size 

(nt) 

Predicted 

factor 

stem GC 

(α) 

Predicted 

factor 

stem length 

(β) 

Predicted 

factor 

loop size 

（γ） 

Predicted 

relative 

GFP 

a 

(dR43) 
25 4 6 0.539 0.603 1 1.508 

b 

(dR80) 
25 20 6 0.539 0.496 1 1.24 

c 

(dR50) 
25 12 18 0.539 1 0.539 1.348 

d 

(dR75) 
25 20 18 0.539 0.496 0.539 0.669 

e 

(dR48) 
75 4 6 0.819 0.603 1 2.291 

f (dR28) 75 12 6 0.819 1 1 3.8 

g 

(dR46) 
75 20 6 0.819 0.496 1 1.885 

h 

(dR44) 
75 12 18 0.819 1 0.539 2.048 

i  

(dR64) 
75 20 18 0.819 0.496 0.539 1.016 

 

To explore this impact on nonlinear gene circuit dynamics, synthetic dtRNAs were 

inserted into a LuxR/LuxI QS-based positive feedback loop to tune the bistability of each 

circuit50(p),197. The constitutive promoter in circuits C_dR1 and C_dR6 was replaced with a pLux 

promoter such that LuxR gene can activate itself to form a positive feedback topology (circuit 

H_dR1 and H_dR6) (Figure 4.8A). Two weak dtRNAs (dR81 and dR82) were also inserted to 
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tune the behavior of positive feedback circuit (H_dR81 and H_dR82). We measured the 

robustness of history-dependent response (hysteresis), the hallmark of positive feedback 

topology, to determine the dynamics of each circuit15,198. A small bistable region is first observed 

for circuit H_Ctrl without dtRNA regulation (Figure 4.7C, purple lines). The bistable regions of 

circuit H_dR1 and H_dR6 regulated by dtRNA structures shifted to lower 3OC6HSL concentration 

because increased LuxR transcript stability and hence its protein abundance makes it easier for 

the system to switch to the ON state (Figure 4.7C and Figure 4.8B and C, green lines). We also 

observed enlarged bistable regions for circuits regulated by weak dtRNAs in higher drug 

concentration (H_dR81 and H_dR82, Figure 4.7C and Figure 4.8C, blue lines). To better explain 

our experimental data, we built a mathematical model for positive feedback circuit regulated by 

dtRNAs and performed two-parameter bifurcation analysis on the system. The result validates our 

data that dtRNAs with stronger stabilizing capability generate smaller bistable regions localizing in 

low drug concentration, while weaker dtRNAs regulation result in larger bistable region shifted to 

high drug concentration (Figure 4.7D). This experiment illustrates the feasibility of using synthetic 

dtRNAs to fine tune gene circuit dynamics. 

To further explore the tunability of dtRNAs on noncoding RNA levels, we built a CRISPR 

interference system to control small guide RNA (sgRNA) levels by redesigning 5’ sequence of 

sgRNA that targets a GFP promoter with dR1and dR6, and another two top-performed dtRNAs 

(dR15 and dR19). When transcribed from a weak promoter, each redesigned sgRNA can guide 

dCas9 to bind with the cognate promoter region to inhibit downstream GFP expression (Figure 

4.7E). Stable sgRNAs are more likely to interact with dCas9 for GFP inhibition and fluorescence 

measurements confirm that GFP expression regulated by the redesigned sgRNAs is significantly 

lower, yielding about 22% to 36% decrease compared to the original sgRNA (sgRNA_WT) 

regulated GFP intensity. These results demonstrate that noncoding RNA levels can also be tuned 

by synthetic dtRNAs (Figure 4.7F). 
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Figure 4.7 Using dtRNAs to Modulate Gene Circuit Dynamics and Noncoding RNA Levels in 

Synthetic Gene Circuits. (A) Schematic showing the construction of the LuxR/LuxI quorum 

sensing gene circuit where a constitutive promoter (gray arrow) triggers the expression of LuxR 

gene (purple rectangle). After being expressed, the LuxR protein dimerizes with 3OC6HSL 

(orange dots) and interacts with the pLux promoter to activate GFP gene expression (green 

rectangle). The blue rectangle represents the location of dtRNA insertion (dR1 and dR6). (B) 

Dose-response measurement results induced by various 3OC6HSL concentrations. Error bars 

are the SD of four biological replicates. (C) Hysteresis experiment results for the synthetic 

positive feedback loop. Various concentrations of 3OC6HSL are applied to induce each circuit. 

The purple lines indicate the result of initial OFF/ON experiment for the control circuit H_Ctrl; The 

green lines indicate the result for circuit H_dR1; The blue lines indicate the result of initial 
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OFF/ON experiment for circuit H_dR82. The zoomed in hysteresis result of 0 to 2 nM (dash line) 

3OC6HSL concentration can be found in Figure 4.8B. The data represents the mean ± SD of 

three biological replicates. (D) Two-parameter bifurcation analysis result. The red lines mark the 

bifurcation between the monostability and bistability. The bistable region becomes smaller when 

shifted to lower drug concentration with the increasing of dtRNA strength. Parameter α are 

estimated based on our qPCR result. (E) Schematic showing CRISPRi regulation controlled by 

dtRNAs. Selected dtRNAs (dR1, dR6, dR15 and dR19) are integrated with sgRNA which can 

guide dCas9 to repress GFP expression. (F) Steady state fluorescence measurement for each 

CRISPRi system. All redesigned sgRNAs exhibit even lower GFP level compared to the original 

sgRNA (sgRNA_WT). sgRNA_NC represents the negative control result. The data represents the 

mean ± SD of six biological replicates. ** p < 0.01, *** p < 0.001 by student’s t test. 

 

Figure 4.8 Hysteresis measurement for Engineered Positive Feedback Loop H_dR6 and H_dR82 

Regulated by dtRNA (A) Schematic showing the construction of positive feedback loop, dtRNA is 

only inserted at 5’ upstream of the LuxR gene. All genetic components are sharing the same 

colors as showed in Figure 4.7A. (B) The hysteresis result of Figure 4.7C regulated by dR1 and 

dR82 induced by 0 to 2 nM 3OC6HSL concentration. (C) Hysteresis results for synthetic positive 

feedback circuit regulated by dR6 and dR81. Various concentrations of 3OC6HSL are applied to 

induce the circuit. The purple solid and dash lines indicate the control initial on and initial off 

experiment results; The green solid and dash lines represent H_dR6 initial on and initial off 

experiment results. The blue solid and dash lines represent H_dR81 initial on and initial off 

experiment results. The top panel is the enlarged result induced by 0 to 2 nM 3OC6HSL 

concentration. The data represents the mean ± SD of three biological replicates. 
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4.2.4 In vitro regulation of gene expression by synthetic dtRNAs 

 Cell-free expression system is cell extract (or enzyme purified)-based tool that has been 

widely used in synthetic biology, metabolic engineering and in vitro diagnostics41,83,199,200. To test 

whether synthetic dtRNAs enable regulation of gene expression in cell-free expression system, 

we constructed four circuits with another set of top-performed dtRNAs (dR4, dR7, dR15 and 

dR19) to measure their impact on GFP expression in cell-free transcription-translation expression 

systems (Figure 4.9). For these experiments, triple guanines (GGG) were inserted at the 5’ end of 

the dtRNAs to ensure strong transcription via T7 RNA polymerase. 

We first performed measurements without the addition of RNase inhibitor to each 

reaction (- RNase inhibitor group). The result in Figure 4.9 (top) shows that GFP fluorescence of 

each circuit starts to increase shortly after the reaction begins, and it reaches a steady state after 

about an hour reaction (Figure 4.10A). Steady-state GFP fluorescence is much stronger for 

circuits regulated by synthetic dtRNAs, where dtRNA dR7 regulated circuit displays about a 10-

fold fluorescence enhancement. Enhancement effects can also be detected for each reaction with 

RNase inhibitor treatment (Figure 4.9B, bottom and Figure 4.10B). In both cases, dtRNA 

significantly increased GFP fluorescence compared to control due to increased mRNA stability. 

To better quantify gene expression enhancement due to RNA stability increases, we 

constructed a dynamic model to describe dtRNA regulated GFP expression enhancement in both 

scenarios (Figure 4.9B, solid lines). Since the cell free system provides abundant molecular 

machinery for transcription and translation, we chose to use a simplified model that includes only 

these two steps without nonlinear terms. We solved this simplified model analytically and fitted 

against experimental time course directly. Fitting results gave us a more quantitative view of the 

dtRNA’s efficacy and are consistent with experimental observations. Using model-fitted 

parameters, we can calculate GFP accumulation rates over time in both scenarios, where circuits 

regulated by dtRNAs display much faster GFP accumulation rates compared to the control 

(Figure 4.9C). Theoretical derivations show that the time required for GFP accumulation rate to 

reach its maximum (peak of the curve) is only dependent on mRNA and protein degradation rates 
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Given that protein degradation rates remain constant for all scenarios, the right-shifted peaks of 

dtRNAs mathematically support decreased mRNA degradation rates. 
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Figure 4.9 In vitro Regulation of Gene Expression via Synthetic dtRNAs (A) Schematic showing 

the in vitro gene expression measurements with synthetic dtRNAs (dR4, dR7, dR15 and dR19). 

(B) GFP expression measurement over time regulated by dtRNAs without (top)/with (bottom) 

RNase inhibitor treatment. Colored circles represent the observed mean GFP fluorescence of 

each design; solid lines represent model fitting results for each design. GFP fluorescence is 

measured every 50 seconds. (C) Model simulation of GFP accumulation rate regulated by 

dtRNAs without (top)/with (bottom) RNase inhibitor treatment. (D) Bar chart result shows the 

stabilizing efficacy of each dtRNA. Stabilizing efficacy is defined as the ratio between steady state 

GFP without RNase inhibitor and with RNase inhibitor treatment. The resultant values are further 

normalized against the control value. (E) Relative GFP fluorescence comparison among circuits 

regulated by the same dtRNAs in vitro and in vivo. Error bars are the SD of three biological 

replicates for in vitro measurement and six biological replicates for in vivo measurement. 

 

Figure 4.10 Details of In vitro Regulation of Gene Expression via Synthetic dtRNAs (A) GFP 

fluorescence measurement results of designs without RNase inhibitor treatment. (B) GFP 

fluorescence measurement results of designs with RNase inhibitor treatment. The gray curve 
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represents the mean fluorescence for circuit without dtRNA regulation (Ctrl). The purple, blue, 

green, and orange curves represent the mean fluorescence for circuits regulated by selected 

dtRNAs. The shallow area of each curve represents the SD of three biological replicates. GFP 

fluorescence is measured every 50 seconds. 

 

Stabilizing efficacy, defined as the ratio between steady state GFP without RNase 

inhibitor and with RNase inhibitor treatment, measures robustness of dtRNAs in vitro against 

RNase activities, which could impact dtRNAs effectiveness (compare Figure 4.9B top and 

bottom). Figure 4.9D shows that all dtRNAs display over 2-fold stabilizing efficacy compared to 

the control. dR7 dtRNA yields the strongest enhancement at 3.6-fold, illustrating stability of 

dtRNAs even in the presence of RNase. Environmental dependence of dtRNA’s stability 

enhancement potential is further quantified by comparing relative GFP intensities in live bacteria 

cells or in cell-free expression systems (Figure 4.9E). It can be seen that dtRNA’s capability is 

most pronounced in complex background, i.e. in vitro without RNase inhibitor. 

 

4.2.5 Improved viral diagnostics using hybrid dtRNA/toehold switch sensors 

The toehold switch is a programable RNA device that can interact with a user-specified 

target RNA to activate translation of a protein of interest65 and has been widely applied in areas 

including in vitro viral diagnostics41,42, gene circuit engineering83,171,201 and education202. Toehold 

switches feature a long single-stranded region known as a toehold at their 5’ end that is designed 

to initiate binding with the target RNA. However, transcripts with excessive 5’ single-stranded 

regions could be easily targeted and digested by RNases (Figure 4.4C and D). To address this 

limitation, we coupled toehold switches with dtRNAs to improve their performance in a diagnostic 

assay. These hybrid systems were constructed by inserting dtRNAs at the 5’ end of an existing 

toehold switch designed for in vitro detection of norovirus in paper-based cell-free reactions 

(Figure 4.11A). Five hybrid systems were designed using the main structure of dtRNA with best 

performance in in vitro gene expression measurement (dR19, Figure 4.9B) with different 

combinations of 5’ spacing and insulator sequences: dR19_1 (2-nt 5’ spacing, 6-nt insulator), 

dR19_2 (2-nt 5’ spacing, 10-nt insulator), dR19_3 (2-nt 5’ spacing, 18-nt insulator), dR19_4 (6-nt 
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5’ spacing, 6-nt insulator) and dR19_5 (8-nt 5’ spacing, 6-nt insulator). The β-galactosidase (lacZ) 

𝝰 peptide (lacZ𝝰) was used as the reporter as previously described42. This short peptide 

undergoes complementation with added β-galactosidase ω peptide during the in vitro translation 

reaction to generate an active enzyme and cleave a colorimetric reporter substrate. 

 

Figure 4.11 Redesigned Hybrid dtRNA/toehold Switch Sensors Improve the Performance of in 

vitro Paper-Based Viral Diagnostics (A) Schematic showing the structure of redesigned toehold 

switch sensors and their recognition of target RNAs. The synthetic dtRNA is integrated upstream 

of the sensor for stabilization. During viral RNA recognition, the target RNA with a sequence X is 
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recognized by the complementary X* region in the toehold switch. Binding through the single-

stranded toehold region enables unwinding of the sensor hairpin to expose the RBS and start 

codon AUG for translation initiation. The synthetic dtRNA maintains its stable structure and 

protects the whole sensor transcript during the reaction. (B) Norovirus diagnostics results without 

(top)/ with (bottom) RNase inhibitor treatment. Each curve represents the average OD value of 

five reaction replicates. Blue dots represent sensor dR19_5; green dots represent sensor 

dR19_4; red dots represent sensor dR19_1; gray dots represent original sensor Ori. The details 

of each diagnostic result are shown in Figure 4.13C and D, Photographs and their corresponding 

diagnostic results for each sensor after 1- or 1.5-hour reactions with/without RNase inhibitor 

treatment, respectively.  + represents the addition of synthetic norovirus RNA to the sensor. - 

represents the negative control. The dash line indicates the detection threshold for each device 

(ΔOD575 = 0.4). The data represents the mean ± SD of at least four biological replicates. 

 

To test these hybrid sensors in paper-based diagnostic systems, synthetic norovirus RNA 

was introduced to paper-based devices containing cell-free reactions and DNA templates for 

transcription of the sensors without RNase inhibitor present. We observed that sensors with 

dtRNAs (dR19_1, dR19_4 and dR19_5) exhibited faster detection speed (1.22 hours, ΔOD575 = 

0.4) without leaky expression, while the original sensor (Ori) without dtRNA only showed 

detectable signals after 1.74 hours of induction (Figure 4.11B, top and Figure 4.12A and B). 

Sensor dR19_2 and dR19_3 exhibited leaky expression and thus were not subjected to further 

experiments (Figure 4.12C). To test if the detection speed could be further improved, we 

proceeded to treat the paper-based device with RNase inhibitor for the second-round diagnostics. 

Remarkably, we found that all devices showed even faster detection speed against the group not 

treated with inhibitor, where signals of sensor dR19_1 and dR19_5 can be discerned within an 

hour (0.9 hour), indicating that the 5’ dtRNA structure can significantly improve the speed for viral 

diagnostics with RNase inhibitor treatment (Figure 4.11B, bottom). At the same time, however, 

higher expression leakage is also observed for each device, indicating the addition of RNase 

inhibitor, although it accelerates reaction speed, can also increase the likelihood of false positive 

results (Figure 4.12D). Further analysis demonstrates that non-inhibitor-treated sensor dR19_5 

displays low expression leakage but faster diagnostic speed than the original sensor Ori in the 

presence of RNase inhibitor. Thus, hybrid sensors can exceed the performance of standard 
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toehold switch assays without requiring the addition of RNase inhibitor. From photographs and 

their corresponding diagnostic results, we confirm the improvement of viral diagnostics by using 

the hybrid dtRNA/toehold switch devices (Figure 4.11C and D). The details of each reaction can 

be found in Figure 4.13. 

 

Figure 4.12 In vitro Norovirus Diagnostics 2-h Result and the Expression Leakage of Each 

Toehold Sensor (A) Expression leakage of sensors Ori, dR19_1 dR19_4 and dR19_5 without 

RNase inhibitor treatment. (B) Plate reader measurement shows 2-hour viral diagnostics result 

without RNase inhibitor treatment. “+” represents groups induced by synthetic norovirus RNA and 

“–” represents the negative control; The dash line indicates the detection threshold for each 

device (ΔOD575 = 0.4). The data represents the mean ± SD of five biological replicates. (C) Plate 

reader measurement shows device dR19_2 and dR19_3 exhibit high expression leakage. The 

data represents the mean ± SD of five biological replicates. (D) Expression leakage of sensors 

Ori, dR19_1 dR19_4 and dR19_5 with RNase inhibitor treatment. 
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Figure 4.13 Norovirus Diagnostic Results for Sensor Ori, dR19_1, dR19_4 and dR19_5. The 

shadow area for each sensor represents the SD of at least four biological replicates. 

 

4.3 Discussion 

A great many methods have been developed to meet the increasing demand for control 

of gene expression. Naturally occurring RNA stabilizers or engineered 5’ stability hairpins that 

thwart RNases activity hold potentials to directly control RNA half-life and have been broadly 

applied to regulate cellular RNA levels as well as heterologous protein yields110,189–191. In this 

study, we systematically identify the RNA structural features that influence stability, design a 

library of synthetic dtRNAs, and use them to tune gene expression levels in vivo and in vitro. We 
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demonstrate their application by using dtRNAs to increase the strength of CRISPR interference 

and to enhance the speed and stability of paper-based viral diagnostics. 

Unlike previous studies of engineering 5’ UTR sequence to manipulate translation 

process112,192, our work, similar to previous synthetic 5’ stabilizing elements190,191,203, mainly focus 

on engineering stability hairpins to tune the RNA degradation process and hence control gene 

expression. Our results suggest that 5’ UTR RNA secondary structure can be divided into three 

regions with differing effects on gene expression: the proximal module which is close to RBS, the 

intermediate module, and the distal module which localizes far from RBS. Secondary structures in 

the proximal module negatively contribute to the translation process thanks to the energy cost for 

unfolding the hairpin structure during translation initiation to ensure enough landing space for 

ribosome and RBS binding192. On the other hand, the distal module contributes more to the ability 

to block RNases from anchoring to the RNA molecules and therefore prevent the RNA molecule 

from being degraded. The intermediate module likely contributes to both processes. In this study, 

we manipulated functional features in the distal and intermediate modules to achieve a 40-fold 

dynamic range in tuning mRNA stability (Figure 4.3E). 

In fact, mRNA degradation and translation are closely intertwined processes, only 

considering one to determine the final protein yield could overestimate dtRNA’s capability. After 

being transcribed, mRNA is competitively targeted by RNases and ribosome subunits, where, in 

theory, a stable mRNA has higher chance for ribosome binding than unstable mRNA. 

Furthermore, highly translated genes can also be shielded by ribosomes that serve as the 

protector against RNases activities. This positive side-effect of enhanced RNA stability can be 

observed in our RT-qPCR results where RNA fold increase can account for over 94% but still not 

all GFP expression increases (Figure 4.6A). Therefore, stabilized RNAs could possess mildly 

higher translation rate than the unstable ones. 

Our results show that a range of gene expression levels can be achieved by altering 

functional structural features of dtRNAs, demonstrating its potential as an alternative for precise 

gene expression regulation (Figure 4.3E). Compared to engineered synthetic promoter and RBS 

libraries, it is relatively easy to construct dtRNAs following our design rules in diverse engineering 
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scenarios. Besides, similar to the previous studies, our work also confirms that gene expression 

regulation by dtRNA modules exert little effect on cell growth, indicating RNA manipulations 

renders less burden for cell economy (Figure 4.3E, inset)48,203,204. 

We also successfully apply our dtRNA modules to upregulate gene expression in cell-free 

expression systems. An RNA-based device, the toehold switch sensor, is optimized with our 

dtRNAs for rapid paper-based viral diagnostics. Higher detection sensitivity with low expression 

leakage is achieved using the redesigned sensors, making them more compatible for potential 

field diagnostics. More importantly, dtRNA robustness against RNase activities suggests that they 

can also be used to enhance expression in crude-extract-based cell lysates, which are 

substantially cheaper to produce but have higher RNase levels205,206. Previous work has shown 

that native 5’ UTR structures can be used to enhance gene expression in such cell-free 

reactions207. Overall, our work provides a purely RNA-based method to regulate gene expression 

in vivo and in vitro that can be used for a variety of different biotechnological applications. 

 

4.4 Materials and methods 

4.4.1 Strain, media and culture condition 

All molecular cloning experiments were performed in Escherichia Coli DH10B 

(Invitrogen). Synthetic circuits (Figure 4.7) were tested in E. coli K-12 MG1655 with lacI-/-. Cells 

were grown at 37 °C in liquid and solid Luria-Bertani (LB) broth medium with 100 μg/mL 

ampicillin, or 50 μg/mL kanamycin, and were shaken in 5-mL or 15-mL tubes at 220 rotations per 

minute (rpm). Chemical 3OC6HSL was dissolved in ddH2O and were further diluted to various 

working concentrations for dose-response and hysteresis measurements.  

 

4.4.2 Plasmid construction 

Most genes were obtained from iGEM Registry (http://parts.igem.org/Main_Page). 

Plasmids were constructed based on general molecular biology techniques and standardized 

Biobrick cloning methods as previously described96. For example, to assemble GFP gene 

(E0040) with a strong RBS (B0034), plasmids with GFP gene were digested with xbaI and PstI as 
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the cloning insert while plasmids containing RBS were digested with SpeI and PstI as the cloning 

vector. Digested plasmids were then separated on 1% TAE Agarose gel by gel electrophoresis. 

Gel bands with correct insert or vector size were selected and purified using the PureLink gel 

extraction Kit (Invitrogen). Gel extraction products with insert and vector were ligated by T4 DNA 

ligase (New England Biolabs, NEB) and transformed into E. coli DH10B. Transformed cells were 

plated on LB agar plates with 100 μg/mL ampicillin, or 50 μg/mL kanamycin for screening. In the 

end, plasmids extracted by GenElute HP MiniPrep Kit (SIGMA-ALDRICH) were confirmed 

through gel electrophoresis (digested by EcoRI and PstI) and Sanger DNA Sequencing 

(Biodesign Sequencing Core, ASU). Similar Biobrick cloning steps were taken for the following 

genetic components until the entire circuit has been constructed. All names and Biobrick number 

of genetic components can be found in Table 4.2. 

 

For construction of the circuits with dtRNAs or sgRNAs, each structure was analyzed and 

designed by NUPACK design package126 and their respective DNA oligos were synthesized by 

IDT. Biobrick XbaI and PstI cleavage sites were added at 5’ or 3’ end of the DNA oligos. DNA 

Oligos for the same dtRNA were diluted with ddH2O and hetero duplexed on a heat block and 

were further ligated into the plasmids with the promoter digested by XbaI and PstI. The guide 

sequence of sgRNA or redesigned sgRNAs were designed and then synthesized by IDT. The 

sequence 5’-GCTA-3’ and 5’-AAC-3’ were added on sgRNA forward and reverse primers, 

respectively. DNA oligos for the same sgRNA were diluted by ddH2O, hetero duplexed on a heat 

block and ligated to the vector digested by SapI as previously described208. The rest of the 

cloning steps remain the same as the general gene circuit construction.  

 

4.4.3 Plate reader OD and fluorescence measurements 

 All sequencing-confirmed gene circuits were transformed into E. coli DH10B. Single 

colonies were picked and cultured in 4 mL of LB medium with 100 μg/mL ampicillin. Cells were 

shaken until they were evenly distributed in the medium of which 300 μL were transferred into 96-
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well plate for OD and fluorescence measurements. Optical density (OD600) and fluorescence 

(excitation: 485 nm; emission: 530 nm) were measured every 15 minutes at 37-degree under 

 

Table 4.2 Information of iGEM Registry of Standard Biological Components and Commonly Used 

Genetic Parts  

Biobrick number 

or gene name 

Abbreviation in 

the paper 
Gene description 

BBa_J23104 CP Constitutive promoter family member 

BBa_J23116 CP Constitutive promoter family member  

BBa_J23105 CP Constitutive promoter family member 

BBa_J23109 CP Constitutive promoter family member  

BBa_R0062 pLux LuxR activated promoter in concern with HSL  

T7 promoter  T7 T7 polymerase specific promoter 

BBa_B0034 RBS Ribosome binding site 

BBa_B0031 RBS Ribosome binding site 

BBa_B0032 RBS Ribosome binding site 

BBa_B0015 T Transcriptional terminator used for engineering all the circuits  

BBa_E0040 GFP Green fluorescence protein used as the reporter 

BBa_E1010 mRFP Red fluorescence protein used as the reporter 

BBa_C0062 LuxR LuxR activator 

BBa_pSB1A3 Vector  Plasmid backbone used for circuit cloning 

BBa_pSB3k3 Vector  Plasmid backbone used for circuit cloning 

pCOLODuet Vector Plasmid backbone used for in vitro experiments 
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continuous plate shaking (Synergy H1 Hybrid Reader, BioTek) at 220 rpm over 21 hr. For all the 

experiments, at least three random colonies were picked as biological replicates. For stable protein 

expression, we chose the 16-hour data point for further analysis in the study unless specified. 

 

4.4.4 Flow cytometry measurements 

We used Accuri C6 flow cytometer to perform the flow cytometry measurements (Becton 

Dickinson). Cultured samples were collected and run through the flow cytometer. For each 

sample, 20,000 individual cells were analyzed at the slow flow rate and the fluorescence intensity 

was not normalized with the cell density because it only measured single cell data. All the results 

were then collected in log mode and further analyzed by MATLAB (MathWorks). 

 

4.4.5 RT-qPCR 

For selected gene circuits, three biological replicates were used to quantify the mRNA 

levels. Total RNA was extracted from the 2 mL of cell culture using the Quick-RNA 

Fungal/Bacterial Miniprep Kit (Zymo Research). Purified RNA was treated in column with DNaseI 

(Zymo Research) to remove the extra DNA. Total RNA was eluted by nuclease-free water and 

the concentration quantified for the following experiments. cDNA was then synthesized from each 

RNA sample using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad). For each 20-

uL reaction, about 1 μg RNA was used for reverse transcription. qPCR was performed for each 

cDNA sample using iTaq Universal SYBR Green Supermix (Bio-Rad) and the experiment 

reaction was detected using the iQ5 Real-Time PCR detection system (Bio-Rad). Specifically, 

each cDNA sample contains an extra technical replicate, the total reaction volume for each 

sample is 10 μL and prokaryotic 16S rRNA was set as the endogenous control.  We used 

previous reported primers (IDT) for both 16S rRNA and GFP amplification. The sequence of 

primers for 16S rRNA are 5’-GAATGCCACGGTGAATACGTT-3’ (rrnB, forward, starting at the 

1361st nucleotide), and 5’-CACAAAGTGGTAAGCGCCCT-3’ (rrnB, reverse, starting at the 

1475th nucleotide) and the sequence of GFP primers are 5’-CAGTGGAGAGGGTGAAGGTGA-3’ 

(forward, starting at the 87th nucleotide); and 5’-CCTGTACATAACCTTCGGGCAT-3’ (reverse, 
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starting at the 283th nucleotide). Bio-rad CFX Manager software version 3.1 was used to analyze 

the data. To investigate the fold change over mRNA levels, we averaged each Ct value of 16S 

rRNA and GFP with their biological replicates and calculated the delta Ct based on Cttarget – Ct16S. 

Fold change for each sample was further calculated according to the biological control (circuit 

without dtRNA regulation) by 2-(∆∆Ct).  

 

4.4.6 Hysteresis experiments 

We used our previously reported protocol to perform the hysteresis experiments135. In 

detail, gene circuits of the synthetic positive feedback loop were constructed in a low-copy 

plasmid and transformed into E. coli K-12 MG1655 strain with lacI-/-. Single colonies for three 

replicates were picked for each sample and cultured at 37-degree, 220 rpm overnight in LB 

medium with 50 µg/mL kanamycin. For OFF-ON experiments, overnight cultured cells (initial OFF 

cells) were diluted into fresh LB medium at a 1:100 ratio and distributed into 5-mL polypropylene 

round-bottom tubes (Falcon) with various 3OC6HSL concentrations. Fluorescence of each 

sample was measured using an Accuri C6 flow cytometer (Becton Dickinson). In our experiments, 

GFP fluorescence became stable after ~12 hours of induction. For ON-OFF experiments, cells 

were first induced by 2 nM 3OC6HSL for 12 hours to ensure the fully induction as the initial ON 

state. These ON state cells were then collected through low speed centrifugation, washed once 

and further diluted to the fresh LB medium at 1:100 ratio. Various 3OC6HSL concentrations were 

then added to each sample for culture. Flow cytometry measurements were performed at 12 and 

16 hours, respectively. We used 16-hour results as the ON-OFF dataset in Figure 4,7 and 4.8. 

 

4.4.6 Hybrid dtRNA/toehold sensor plasmid construction 

Synthetic DNAs encoding the redesigned norovirus-specific toehold sensors were 

synthesized by IDT. All cloning steps are following the general molecular biology technologies. 

Synthetic DNAs were amplified by PCR and inserted into the plasmid backbone using Gibson 

assembly209. Complete plasmids were further confirmed by Sanger sequencing (Biodesign 

Sequencing Core, ASU). Plasmids and primers were described previously42. 



  92 

4.4.7 Paper-based cell-free systems preparation 

The protocols used for the paper-based cell-free reactions have been described 

previously42. Briefly, cell-free transcription-translation systems (PURExpress, NEB) were used to 

prepare the freeze-dried samples. The volume for each component of the reaction sample is 40% 

of cell-free solution A, 30% of cell-free solution B, 2% RNase inhibitor (Roche, 03335402001, 

distributed by MilliporeSigma) if needed, 2.5% chlorophenol red-b-D-galactopyranoside (Roche, 

10884308001, distributed by MilliporeSigma, 24 mg/mL) and the remaining volume for toehold 

sensor DNA, lacZω and nuclease-free water. The final concentration for the synthetic DNA 

plasmid of each paper device is 30 ng/μL. The paper for the assays was first cut to a 2-mm 

diameter using a biopsy punch and transferred into PCR tubes. The prepared cell-free reaction 

mix (1.8 μL for each device) was then added into the PCR tubes with the paper disks and flash 

frozen in liquid nitrogen. Frozen devices were transferred to a lyophilizer to freeze-dry overnight. 

Completely dry paper devices were ready for use as viral diagnostics and can be stored at room 

temperature as previously described42,83. 

 

4.4.8 In silico design of synthetic dtRNA library based on NUPACK nucleic acid sequence 

design package 

This section describes the method for in silico design of synthetic dtRNA library through 

NUPACK design package126. The same method is also used to design new dtRNAs for in vitro 

gene expression regulation and toehold sensor optimization for paper-based viral diagnostics. 

 

4.4.8.1 Definition of dtRNA secondary structure domains  

We first specify the secondary structure domains of dtRNA library. A single hairpin is set 

to be the basic structure frame for each dtRNA. As shown in Figure 4.3, factors such as the 5’ 

spacing, stem length and the number of GC pairs, and loop size are considered for structure 

optimization. Based on these features, we define the 5’ spacing region as domain “a”; the stem 

and loop of the hairpin frame as domains “b” and “c”, respectively; the 10 nt insulator sequence 

as domain “d”; and the rest of the downstream sequences are defined as domain “e”. Previous 
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research has demonstrated that gene expression is significantly correlated with the folding energy 

from the RBS region to +38 nt of the coding sequence103,135. Accordingly, we select 64 nt as the 

downstream sequence, which contains the RBS region (e.g., strong RBS BBa_B0034 in figure 

4.3: AAAGAGGAGAA) and the first 38 nt of the GFP gene (Table 4.2, BBa_E0040). For T7 

promoter induced gene expression (Figure 4.9 and 4.11), a GGG leader sequence is inserted at 

the beginning of 5’ spacing (domain “a”) for efficient transcription. 

 

4.4.8.2 NUPACK scripts and dtRNA library sequence generation 

After completing definition of the domains of dtRNA structure, NUPACK scripts need to 

be written to generate the sequence to fit the design principles. We first determine the basic 

settings for the design: the material is chosen to be RNA; the temperature is set at 37°C and the 

trial number is set as 10 which indicates the number of independent sequences to perform for 

one-time NUPACK design (Maximum 10).  

We then define the base structure of each dtRNA in the library. In particular, we use DU+ 

notation to specify the single-stranded or base-paired nucleotides: U denotes the single-stranded 

nucleotides and D denotes the base-paired nucleotides. To define a hairpin structure with a 4 bp 

stem and 4 nt loop, for example, the algorithm format should be “D4 U4”. Accordingly, the general 

format for the dtRNA structure with a 6 nt 5’ spacing, 12 bp stem, 6 nt loop, 10 nt insulator 

sequence, and 64-nt downstream sequence is “U6 D12 U6 U10 U64”. Specifically, for designs 

with an imperfect hairpin structure such as the introduction of a bugle within the stem region, we 

use brackets to specify the structural hierarchies. For example, “D3 (U3 D3 U6 U3)” denotes the 

structure with 9 bp stem interrupted by 3 nt symmetrical bugle. To ensure each domain will not 

interfere with the others, we maintain all sequences to be single stranded except the dtRNA 

hairpin structure during design process.  

We next assign specific sequences to each domain. If the assigned sequence is not 

specified or needs the NUPACK design package to determine, we use the letter “N” to denote 

these nucleotides. Otherwise, using A, U, C and G to represent the four ribonucleotides. For 

example, a script with dtRNA = U6 D12 U6 U10, dtRNA.seq = a b c b* d (b* represents the 
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complementary sequence to b), domain a = UCUUCC, domain b = N3UCUUCCN3, domain c = 

UCUUCC and domain d = N10 represent a dtRNA with three RNase E cleavage sites UCUUCC 

inserted into 6 nt 5’ spacing (domain “a”), the middle 6 bp of the stem (domain “b” and “b*”), and 

in the 6-nt loop (domain “c”) while keeping the other nucleotides random.  

For the final output of the synthetic dtRNA library, we choose Serra and Turner, 1995 as 

the basic RNA energy parameters and use 1.0 M Na+ and 0 M Mg2+ for the design algorithm113. 

To prevent runs of nucleotides or pairs of nucleotides, the following sequences were disallowed in 

the resulting designs: AAAAA, CCCCC, GGGGG, UUUUU, KKKKKK, MMMMMM, RRRRRR, 

SSSSSS, WWWWWW, YYYYYY. 

 

4.4.8.3 Analysis and removal of unwanted designs 

NUPACK design package calculates each design with a specific normalized ensemble 

defect which indicates the average percentage of incorrectly paired nucleotides at equilibrium 

relative to the design secondary structure which is evaluated by the Boltzmann-weighted 

ensemble of (unpseudoknotted) secondary structure. The best normalized ensemble defect is 

0%, while 100% is the worst. We select the designs with the lowest normalized ensemble defect 

while removing the others to select the seed dtRNAs for each design criteria listed in Figure 4.3. 

These seed dtRNAs are further analyzed by NUPACK to make sure no interaction occurs 

between dtRNAs structure and the selected downstream sequences as shown in NUPACK 

structure prediction. Additionally, selected dtRNAs should keep a downstream sequence identical 

to their original structures. Seed dtRNAs that do not meet the specified criteria are removed from 

the designs. To prevent the introduction of transcriptional terminator sequences, insulator 

sequences with rU residues are fully removed from consideration. Based on this analysis, we 

chose AAAACCAAAA as the general insulator sequence for each dtRNA design unless otherwise 

specified.  

The same method is used to denote the feature of dtRNAs to regulate gene expression in 

vitro and hybrid toehold sensors for viral diagnostics. In short, we select the desirable hairpin from 

the dtRNA library as the basal structure and define new 5’ spacing and insulator sequence as the 
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design required (e.g., add GGG at the beginning of 5’ spacing for T7 promoter transcription 

preference). All designed dtRNAs are further analyzed and finalized as described above.  

 

4.4.8.4 Examples of the scripts for dtRNA design  

# 

# Basic Settings of dtRNA structure design 

material = rna     

temperature = 37.0     

trials = 10 

sodium = 1.0 

#  

   

# 

# Basic Sequence information 

# Rnase E cleavage site = UCUUCC 

# Common 3' end sequence (RBS to first 38 nt of GFP sequence, total 64 nt) = 

TACTAGAGAAAGAGGAGAAATACTAGATGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGTC

CC 

# Common 3' end sequence structure = U13 D3 (U2 D3 (U1 D4 (U1 D2 (U3 D4 U8 U1)) U1) U1) 

# 

 

# 

# dtRNA Structure Design 

# example of dtRNA DU+ notation design of 6 nt 5' spacing, 12 bp stem 6 nt loop with 10 nt 

insulator 

structure dtRNA= U6 D12 U6 U10 U64 

# 
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# 

# Sequence denotation of each dtRNA domain 

domain a = N6          # 5'spacing domain  

domain b = N12        # dtRNA Stem region 

domain c = N6          # dtRNA Loop region 

domain d = N10        # Insulator sequence  

domain e = 

TACTAGAGAAAGAGGAGAAATACTAGATGCGTAAAGGAGAAGAACTTTTCACTGGAGTTGTC

CC     # 64 nt Common 3' end sequence 

# 

 

# 

# Define each domain of dtRNA structure 

dtRNA.seq = a b c b* d e 

# 

 

# 

# Following sequence patterns are disallowed to prevent runs of nucleotides or pairs of 

nucleotides 

prevent = AAAAA, CCCCC, GGGGG, UUUUU, KKKKKK, MMMMMM, RRRRRR, SSSSSS, 

WWWWWW, YYYYYY     

# 

 

# 

# Output = qualified dtRNA sequence 

# 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1 Conclusions 

 This dissertation mainly focuses on synthetic biology research, specifically aiming to 

develop novel methods and tools that can benefit both research and industrial applications. In this 

section, I will summarize the major aims of each section and propose several possible works as 

the future direction. 

 The first chapter is mostly the introduction of the development of synthetic biology based 

on three divided time frames. In the early stage prior to synthetic biology emerging, scientists 

invented a variety of enabling techniques such as restriction enzymes, molecular cloning and 

PCR which serve as the foundation for using bottom-up approach to design and construct 

synthetic modules. As an increasing number of simple modules being developed, synthetic 

biologists were paying greater attention on engineering highly complex systems to achieve multi-

layered and reprogrammable functions, which also indicates the transition from modules era to 

systems era. I also highlighted some examples of major contributions in synthetic biology in each 

period and discussed about the underlying challenges that could, to some extent, hamper 

synthetic biology development.  

 Chapter two describes about my first project that is to build and understand the major 

features that could affect gene expression in synthetic polycistronic circuits. A mathematical 

calculator was generated that aims to predict gene expression with designated circuit patterns 

without the need to perform experiments. This is actually very useful as one can select circuit 

design structures with desirable functions through calculation based on varying genetic features. 

This work could benefit gene circuit engineering without iterative design and construct process. 

 One of the drawbacks of this calculator is its limited prediction power caused by the lack 

of dataset and techniques to generate highly accurate prediction machines. Chapter three, 

therefore, acts as an excellent demonstration that by using machine learning (ML) based 

techniques, the prediction power can be significantly enhanced, from 63% to about 90% via 
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analyzing exact same dataset. This ability will be further advanced if more datasets were 

provided, indicating its potential to couple with high-throughput experiment analysis. 

 Chapter four is basically the extension from chapter two, where we engineered a 5’ UTR 

module named dtRNA to control RNA stability. We also expended the usage of this tool and 

confirmed its ability to regulate gene expression in the other systems. The most interesting 

section in this project is to validate dtRNA’s function to improve viral diagnostics while coupling 

with other RNA-based tools such as toehold switches or crRNAs. This holds the promise to 

redesign the RNA tools with dtRNAs to achieve novel functions.  

 

5.2 Future works 

Based on above projects, several possible future works can be proposed: 

Aim 1: Characterize and model the role of 5’ secondary structures in fine-tuning mRNA 

stability. In the previous study, we only characterize dtRNA modules in E. coli. Though certain 

principles have been drawn, some features are still not clear and thus require further investigation 

by engineering more dtRNAs with specific features. In order to draw a clear picture of dtRNA 

design principles, another direction might be to systematically analyze dtRNA integrated with 

fluorescence aptamers to directly visualize its functionality in cell-free system. This would help 

understand how dtRNA interacts with RNA molecules and could conclude detailed design 

principles to manipulate RNA dynamics in in vitro systems. To quantitatively analyze the system, 

models can be built for better characterization of dtRNA. Machine learning based techniques 

would also support model construction if enough data were provided. 

Aim 2: Optimize sensing RNAs for detection of COVID-19. New viral diagnostic 

technologies, such as toehold switches and CRISPR-based SHERLOCK and DETECTR assays, 

are undergoing active development. Toehold switches rely on recognition of target viral 

nucleotides to unfold the switch RNA to initiate downstream reporter translation, while 

Cas12a/Cas13a based detection depend on collateral cleavage activated through crRNA-viral 

target binding. We have recently demonstrated the utility of dtRNA to improve toehold switches 

detection sensitivity by stabilizing them in vitro as well as dCas9’s repression efficiency when 
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integrated with sgRNAs. The next step could be to investigate design strategies to quantify 

interactions between RNA structures formed by dtRNA and the stability of toehold switches or 

Cas12a/13a based crRNAs. This would help to further improve current SARS-Cov-2 diagnostics 

with these tools.  

Aim 3: Use dtRNAs to enhance sample and amplified RNA stability for improved 

diagnostics. Recently we have shown that incorporating 5’ dtRNA can significantly enhance 

aptamer-based sensor activity as well as GFP protein expression in vitro. Here we propose to 

improve detection sensitivity by applying dtRNA strategies to enhance RNA preservation and by 

integrating them into isothermal amplification process, particularly NASBA to improve RNA 

stability while being produced. We believe the key is to quantitative understand the impacts of 

secondary structures on RNA’s stability and detectability. 
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