
Operational Safety Verification of AI­Enabled Cyber­Physical Systems

by

Imane Lamrani

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2020 by the
Graduate Supervisory Committee:

Sandeep Gupta, Chair
Armando Rodriguez

Ayan Banerjee
George Runger

Yi Zhang

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

One of the main challenges in testing artificial intelligence (AI) enabled cyber physical

systems (CPS) such as autonomous driving systems and internet­of­things (IoT) medical

devices is the presence of machine learning components, for which formal properties are

difficult to establish. In addition, operational components interaction circumstances, inclu­

sion of human­in­the­loop, and environmental changes result in a myriad of safety concerns

all of which may not only be comprehensibly tested before deployment but also may not

even have been detected during design and testing phase. This dissertation identifies ma­

jor challenges of safety verification of AI­enabled safety critical systems and addresses the

safety problem by proposing an operational safety verification technique which relies on

solving the following subproblems:

1. Given Input/Output operational traces collected from sensors/actuators, automati­

cally learn a hybrid automata (HA) representation of the AI­enabled CPS.

2. Given the learned HA, evaluate the operational safety of AI­enabled CPS in the field.

This dissertation presents novel approaches for learning hybrid automata model from time

series traces collected from the operation of the AI­enabled CPS in the real world for linear

and non­linear CPS. The learnedmodel allows operational safety to be stringently evaluated

by comparing the learned HAmodel against a reference specifications model of the system.

The proposed techniques are evaluated on the artificial pancreas control system.

i

To my beloved parents El Mokhtar and Hakima

ii

ACKNOWLEDGEMENTS

I was very fotunate to have Dr. Sandeep Gupta and Dr. Ayan Banerjee advise me

throughout this journey towards achieving deeper levels of knowledge and experience. I

would like to express my sincere gratitude for all their endeavors. During my internship

at the Food and Drug Administration, I was very lucky to be under the direct supervision

of Dr. Yi Zhang. I am grateful for his support, encouragement, motivation, and mentoring

that extended beyond the internship experience. This journey allowed me to meet and work

alongside my dear colleagues at the iMPACT Laboratory: Vinaya, Azemat, Javad, Koosha,

Apu, Jung, Prajwal, and Bernard. It was a great pleasure to get to know each one of you

and I wish you all the best in your career. I am grateful for the support and advice of my

beloved auntie Dr. Chadia Affane and my dear uncle Dr. Saad Biaz. They are my idols and

the main motivators to embark in this challenging experience. I want to thank my back­

bones and lovely sisters Asmae, Sanae, and Soukaina who were always there to support me

emotionally during hardships along the way. They contributed significantly to my personal

growth and pushed me to become the best version of myself. My deepest love goes to my

dear fiancee Hammed whose presence in my life makes it more beautiful. Finally, I would

like to thank myself for not giving up on my dreams and for always seeking knowledge.

You did it, Dr. Lamrani.

iii

GLOSSARY

Accident: undesired event that results in a harm.

Functional failure: faults associated with logical components of the system.

Functional safety: safe function of a device or a system focusing on electronics and related

software.

Harm: direct or indirect physical injury or damage to the health of people. Indirect injury

can be a result of damage to the environment or loss/damage of equipment or property.

Hazard: a potential source of harm.

Operational safety: assurance that the system is behaving out in the field as designed.

Physical faults: faults associated with mechanical, electrical, or electronic components.

Rectangular and Diagonal Guards: Guards are thresholds on the continuous variables

of a cyber­physical system. Guards are rectangular if they are represented as x{≤,≥}m,

where m is a real number and x is a continuous variable. They are diagonal if they are

represented as Ax+B{≤,≥}m, where A and B are real constants.

Risk: a combination of the probability of occurrence of harm and the severity (level) of that

harm.

Safety­critical sytem: a system whose malfunction or failure is catastrophic or critical.

Safety/System safety: freedom from unacceptable risk of injury or damage to humans, en­

vironment, and the system itself.

Systematic faults: faults associated with the development mistakes at the specification,

design, or implementation phase.

System safety engineering: an engineering discipline that employs knowledge from sys­

tem engineering, management principles, and systems theory to identify and eliminate haz­

ards or reduce the associated risks when the hazards cannot be eliminated.

iv

Tolerable (acceptable) Risk: a risk that the appropriate acceptance authority is willing to

accept without additional mitigation.

Under­determined CPS and internal variables: In most practical scenarios CPS con­

trollers are partially observable systems. This is because during operational deployments,

not all continuous parameter evolution used by the controllers can be monitored. This re­

sults in hidden variables. Deriving temporal evolution of system variables from far lesser

number of observed parameters thus results in an under­determined CPS problem.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Safety Engineering of AI­enabled CPS . 1

1.2 Examples of Operational Safety Violation . 3

1.3 Contributions . 4

1.3.1 List of Publications . 4

1.3.2 Author’s Contribution . 5

2 PRELIMINARIES . 7

2.1 AI­based CPS . 7

2.1.1 Example of an AI­Enabled CPS: Artificial Pancreas 8

2.1.2 Example of an AI­Enabled CPS: Advanced Driver Assist Systems 9

2.2 AI­Enabled CPS’s Input/Output Traces . 9

2.3 Hybrid Automata . 10

2.3.1 Reachability Analysis . 11

2.4 Technical Preliminaries . 14

2.4.1 Fisher Information and Cramer Rao Bound 14

2.4.2 Pearson’s Divergence (PE) Score . 15

2.4.3 DBSCAN Clustering . 15

2.4.4 RuLSIF Change­Point Detection in Time Series Data 16

2.4.5 Multivariate Non­Linear Polynomial Regression Analysis 17

2.4.6 Cross Validation Mean Absolute Error . 17

3 SAFETY VERIFICATION OF AI­ENABLED CPS . 18

vi

CHAPTER Page

3.1 Safety Aspects . 18

3.2 Safety Verification of AI­Enabled CPS . 19

3.2.1 Safety Analysis at Design Phase . 19

3.2.2 Safety Analysis at Implementation Phase . 21

3.2.3 Safety Verification at Operation Phase . 22

3.3 Arising Safety Issues . 23

4 OPERATIONAL SAFETY VERIFICATION OF AI­ENABLED CPS 26

4.1 Operational Safety Verification Overview . 26

4.2 Learning Scenarios . 27

4.3 Operational Safety Through HA Learning Overview 28

4.3.1 Ensuring Correctness of the Learned Model 28

4.4 Safety Conclusions . 30

5 LEARNING HYBRID AUTOMATA FROM I/O TRACES 33

5.1 Problem Statement . 33

5.2 HyMn: Linear Hybrid System Mining . 33

6 EXPERIMENTS . 38

6.1 HyMn Evaluation Results on Artificial Pancreas . 38

6.1.1 Linearization of AP model . 38

6.1.2 Applications of HyMn. 43

6.1.3 Limitations of HyMn . 43

7 N­HYMN: LEARNING NON­LINEAR HYBRID AUTOMATA 46

7.1 N­HyMn Algorithm . 46

7.2 N­HyMn Implementation Details . 48

7.2.1 I/O Segmentation: . 48

vii

CHAPTER Page

7.2.2 Control Modes Clustering: . 49

7.2.3 Reset Conditions Learning: . 50

7.2.4 Guard Conditions: . 51

7.2.5 Learning Flow Equations: . 52

7.2.6 N­HyMn Complexity . 52

8 N­HYMN: EXPERIMENTS . 54

8.1 Model­Agnostic Learning Scenario . 54

8.2 Model­Aware Learning Scenario . 59

9 RELATED WORK . 63

9.1 Timed Dynamical Model Mining . 63

9.2 Hybrid Model Synthesis . 64

9.3 Hybrid Model Mining . 64

9.4 Conformance Testing . 66

10 VERIFICATION AI­ENABLED CPS WITH LEARNING AGENT 67

10.1 Related Work . 69

10.2 Proposed Approach: Co­Simulation Framework. 71

11 CONCLUSIONS AND FUTURE WORK . 75

REFERENCES . 76

APPENDIX

A MEDTRONIC MINIMED 670G DESCRIPTION . 82

A.1 Medtronic Minimed 670G Control System Specifications 83

B MEDTRONIC MINIMED 670G HYBRID AUTOMATON 85

viii

LIST OF TABLES

Table Page

1.1 Proposal Contributions in Model Mining and Safety Conclusions 6

8.1 Cross Validation Mean Absolute Error (CVMAE) of Possible Reset Condi­

tions IBo fromm1 tom2 in HA3. 57

8.2 HA1 RMSE Per Day. 59

ix

LIST OF FIGURES

Figure Page

1.1 V­Model Based System Engineering and Operation. 2

2.1 AI­enabled CPS. 7

2.2 Artificial Pancreas Control System. (Photo: Medtronic) 8

2.3 Hybrid Automaton. 11

2.4 Example of Reachable Sets Computation. 12

2.5 Hybrid Automaton Model of AP. 13

3.1 AI­enabled CPS Safety Life Cycle. 19

3.2 V­Model Based System Engineering and Operation. 24

4.1 Operational Safety Verification: Proposed Approach. 27

4.2 Temperature Control System Hybrid Automata. 28

4.3 Temperature Control System Sample Execution. 29

4.4 Holistic AI­enabled CPS Overview. 31

4.5 Operational Safety Analysis Result Cases. 32

5.1 I/O Segmentation and Jump Condition Retrieval Example. 35

6.1 HyMn Mode Classification Execution Example for AP. 39

6.2 Input Traces (G, I) and Output Traces (It) for the AP System 40

6.3 Variation of the RMSE W.R.T the Increase of Number of Collected Traces . 41

6.4 Reach set of the Non­Linear Model of AP vs Reach Set of Inferred Linear

Model of AP. 42

6.5 Comparison of Insulin Delivery using Patient Inferred Parameters from

HyMn Versus Using Statistical Average Parameters. 43

6.6 HyMn Application on Co­Operative Learning Systems 44

7.1 Input Trace (CGM readings SG(t)) and Output Traces (Basal IBa and Bolus

IBo Infusion Rates) of CLAP. 49

x

Figure Page

8.1 IoT Enabled Manufacturing of Industry 4.0 Applications. 55

8.2 Pearson Divergence Score Trace of an I/O Operational Trace of CLAP. 56

8.3 Density Based Clustering of Unique Control Modes. 57

8.4 PartialHA1 with Two Control Modesm1 andm2 and Output Variables IBa

and IBo. 57

8.5 Comparison between Learned IBa (Star) andObserved IBa (Square) in Con­

trol Modem1 of HA1. 58

8.6 Comparison between Learned IBa (Star) andObserved IBa (Square) in Con­

trol Modem2 of HA1. 58

8.7 Controller Gain Parameter Variation Updated Values α for a T1DMinimed

670G Subject. 61

8.8 Learned Rate of Change of BG(t) (Dashed) and Observed dBG

dt
(t) (Solid)

in Control Modem1 andm2 of HA1. 61

10.1 Artificial Pancreas: Self Adaptive Predictive Control System. 68

10.2 SAP Co­Simulation Framework. Mathworks and SpaceEc Executing Si­

multaneously . 71

10.3 Reach Set of the Artificial Pancreas Self­Adaptive Predictive Control System. 74

A.1 Control Structure of the Medtronic Minimed 670G Insulin Pump System

(Basal Auto Mode Specifications). 84

B.1 Non­Linear Hybrid Automaton of the Artificial Pancreas Control System

(Medtronic Minimed 670G). 86

xi

Chapter 1

INTRODUCTION

1.1 Safety Engineering of AI­enabled CPS

The increasing number of recent cases of fatal accidents of safety­critical cyber­physical

systems (CPS) have renewed the discussion on the verification, validation, and certifica­

tion of these systems. The novel nature of CPS which embodies artificial intelligence (AI)

and machine learning (ML) components requires the development of novel rigorous safety

verification and validation techniques that can cope with the complex nature of the cutting­

edge CPS technology being developed. The V­Model, shown in Fig. 3.2, is widely used

in system’s safety engineering by autonomous driving, medical, and aerospace industries.

Initially, a simple high­level model is developed using predictive environment and user

models, which are often incomplete. The simple model is then modified throughout the

system’s development lifecycle to account for previously ignored or unknown physical phe­

nomena. At the operation phase, user behavior contingencies, environmental changes, and

components interaction circumstances which only manifest in­the­field of operation may

put the AI­enabled CPS’s safety in jeopardy. In other words, the AI­enabled CPS opera­

tion in the real world tends to diverge from the safety assured design of the system 1 . In

addition, the actual deployed system’s model may not conform with the system’s knowl­

edge mental model of the user/operator and operational testing agent. This discrepancy in

the system’s knowledge across system’s stakeholders is one of the highlighted operational

safety issues regarding Watchkeeper accidents (DSA (2019)), which was later one of the

potential causes of Boeing 737 Max 8 aircraft crash where operators lacked crucial infor­
1Throughout this dissertation, we refer to this problem as operational safety verification problem.

1

EnvironmentUser
Model

Code

High Level
System Model

Detailed
System Model

Implemented
System

Deployed
System

Environ
ment

Model

Deployed
System

System
Knowledge

Model

user

Operational Testing
Agent

System
Knowledge

Model
Continuous
Operational
Verification

O
p

e
ra

ti
o

n
M

o
n

it
o

ri
n

g

V-Model System Development System Operation & Maintenance

Figure 1.1: V­Model Based System Engineering and Operation.

mation about the MCAS system (Transportasi (2018)). The dissonance between ”what the

system is designed to do”, ”what the operator thinks the system is doing”, and ”what the sys­

tem is actually doing” is a crucial safety problem. In other words, some control components

of the CPS may not have been explicitly declared (intentionally or unintentionally) in the

specifications model. On the other hand, safety­critical CPS should meet government regu­

latory requirements before marketing. Due to production pressure and conflicting goals and

tradeoffs, organizations tend to migrate to a state of higher risk (Leveson (2011)) and some­

times they tend to conceal crucial information about the system’s inner workings during the

regulatory process. For example, the Volkswagen’s defeat device that allowed vehicles to

improperly meet US standards during regulatory testing (Contag et al. (2017)). These con­

cerns motivate a need for a continuous rigorous operational safety verification technique to

help monitor the system’s operation in the real world.

2

1.2 Examples of Operational Safety Violation

A case in point is three separate instances of problems caused by Maneuvering Charac­

teristics Augmentation System (MCAS) sub­component in Boeing 737 Max 8 aircraft. The

MCAS system was self­certified to be safe under certain scenarios and investigators are

still examining why the U.S. Federal Aviation Administration failed at detecting the prob­

lems during the plane’s certification. According to recent reports (Hatton and Rutkowski

(2019); Johnston and Harris (2019)), all three cases were caused by sensor failures. Two of

the three cases resulted in fatal disasters but in one case, the presence of a third co­pilot (a

rare presence) helped to override the MCAS system and recover from a potential nose dive.

In the two failure cases, the MCAS system was engaged during take­off which gives very

little time for the pilots to properly react. This clearly shows that the MCAS was potentially

used in practice under very different scenarios than it was tested for. As such, the coverage

problem for AI­enabled safety critical CPS can potentially encounter combinatorial explo­

sion due to the presence of significant number of interacting external sub­components and

the ever­changing operational context (Leveson (1986); Leveson (2011)).

Another example of safety violation is the fatal crash of the autonomous driving Uber ve­

hicle that caused death to a pedestrian. Every component of the system is claimed to be

operating properly including the software, yet the environmental context was overlooked

in the requirement and design phases of the system safety development.

The Volkswagen’s cheating device that allowed vehicles to improperly meet US standards

during emission regulatory testing is also considered an operational safety violation (Contag

et al. (2017)).

3

1.3 Contributions

1.3.1 List of Publications

This proposal consists of an overview of the following publications.

I: Imane Lamrani, Ayan Banerjee, and Sandeep K.S Gupta. ”Co­simulation of Physical

Model and Self­Adaptive Predictive Controller Using Hybrid Automata” Workshop on

Formal Co­Simulation of Cyber­Physical Systems CoSim­CPS 2018

II: Imane Lamrani, Ayan Banerjee, and Sandeep K.S Gupta. ”N­HyMn: Mining Non­

Linear Hybrid Systems from Input Output Traces of Cyber­Physical Systems.” IEEE

Industrial Cyber­Physical Systems ICPS 2018

III: Ayan Banerjee, Imane Lamrani, Prajwal Paudyal, Sandeep Gupta. ”Generation

of Movement Explanations for Testing Gesture Based Co­Operative Learning Applica­

tions.”IEEE International Conference On Artificial Intelligence Testing AITEST 2019

IV: Imane Lamrani, Ayan Banerjee, and Sandeep K.S Gupta. ”Operational Safety Ver­

ification Via Hybrid Automata Mining Using I/O Traces of AI­Enabled CPS.”Artificial

Intelligence Safety Workshop SAFEAI 2020

V: Imane Lamrani, Ayan Banerjee, and Sandeep K.S Gupta. ”Toward Operational Safety

Verification of AI­Enabled CPS (student abstract).” AAAI Conference on Artificial In­

telligence 2020

VI: Imane Lamrani, Ayan Banerjee, and Sandeep K.S Gupta. ”N­HyMn: Mining Non­

Linear Hybrid Systems from Input Output Traces of Cyber­Physical Systems.” IEEE

Transactions On Industrial Informatics IEEE­TII 20

4

1.3.2 Author’s Contribution

Publication I: The author developed a co­simulation framework for self­adaptive predictive

(SAP) control systems. As an initial step, the author proposed the framework and discussed

preliminary encouraging results for the formal verification of SAP systems.

Publication II: The author developed the proposedmodelmining technique using Input/Output

(I/O) traces collected from the operation of the hybrid system. The author implemented the

proposed technique, performed its experimental evaluation on a simple artificial pancreas

(AP) control system, and wrote the paper. The proposed technique is developed on the basis

of the assumption that an initial formal model of the simple AP exists. Encouraging design

safety conclusion results are presented in the published paper.

Publication III: The ideas and approaches introduced in this work were proposed and im­

plemented by Dr. Ayan Banerjee. This work proposes an explanation framework for ma­

chine learning (ML) based gesture recognition applications, wherein the proposed formal

model mining approaches presented in publication I and II were applied.

Publication IV and V: The author presents a novel safety verification technique based on

learning a hybrid automaton model and using it to evaluate the safety of the system during

its operation in the field.

Publication VI: This work concentrates on showing the efficacity and effectiveness of the

proposed model mining technique for non­linear complex AI­enabled systems, where an

initial formal model exists.

The author developed an advanced model mining technique for non­linear complex AI­

enabled systems when an initial formal model does/doesn’t exist. The proposed technique

learns a formal model using only I/O traces and a very limited knowledge about the system

under learning. The author implemented the proposed technique, performed its experi­

mental evaluation on Medtronic Minimed 670G, and wrote the paper. Thanks to the US

5

Food and Drug Administration (FDA) and Mayo Clinic for collaborating in this research.

Encouraging operational safety verification results are presented in the pending journal sub­

mission.

System Model Mining

Of

Initial Formal

Model Provided

Safety

Conclusions

At

Publications

Linear Hybrid Systems Yes Design Phase II

ML­Based Cooperative

Learning Applications
No Operation Phase III

Non­Linear Complex AI­

Enabled Systems
Yes Operation Phase IV and V

Non­Linear Complex AI­

Enabled Systems
Yes/No Operation Phase VI

Table 1.1: Proposal Contributions in Model Mining and Safety Conclusions

6

Chapter 2

PRELIMINARIES

2.1 AI­based CPS

As shown in Fig. 2.1, an AI­enabled CPS a system that is engineered to map percepts

into actions in order to control some physical aspect of the environment. An AI­enabled

CPS is composed of an intelligent agent that interacts with the physical environment through

sensors and actuators. The performance analyzer can be a simple reflex agent, a goal­based

agent, a model­based agent, or a utility­based agent (Russell and Norvig (2016)). Given a

set of actions, a simple reflex agent uses a basic condition­action rule to perform an action,

whereas a goal­based agent incorporates a set of goals to achieve, a model­based agent

involves a model of the internal aspects of the environment that are unperceived, and a

utility­based agent uses a utility function to choose the optimal action if many actions satisfy

the goals. The intelligent agent is considered a learning agent if it incorporates a learning

Learning
Element

Sensor

Action

R
ef

in
e

Actuator

En
vi

ro
n

m
en

t

Percept

Performance
Analysis

Environment
Model

Feedback

Actions

Intelligent Agent

Ex
p

lo
ra

to
ry

ac
ti

o
n

s

Figure 2.1: AI­enabled CPS.

7

1. 2.

1.Continuous Glucose Monitor
2.Insulin Infusion Pump
3.Control System

3.

Figure 2.2: Artificial Pancreas Control System. (Photo: Medtronic)

element that allows it to learn from historical states of the environment and to improve its

control structure.

2.1.1 Example of an AI­Enabled CPS: Artificial Pancreas

Type 1 diabetes (T1D) is a chronic metabolic disease caused by the autoimmune de­

struction of the pancreas β cells. In healthy subjects, pancreatic β cells are responsible for

the release of insulin to regulate the blood glucose (BG) variations, most commonly due

to carbohydrates intake or physical activity. This regulatory process aims to maintain BG

within the safe euglycemic range [70­180] mg/dl. The CLAP control system, shown in Fig.

2.2, is used for automated control of blood glucose level for T1D patients (Haidar (2016)).

The controller running inside the insulin pump or on a device that is wirelessly connected

to the insulin infusion pump receives glucose­meter value every 5 minutes from the con­

tinuous glucose monitoring (CGM) sensor. The controller carefully chooses the amount

of insulin infusion rate It to maintain a safe level of blood glucose, thereby avoiding oc­

currence of hypoglycemic and hyperglycemic events. These dangerous events happen as

a result of an inaccurate infusion of insulin that can induce hypoglycemia i.e. BG < 70

mg/dL, which can be potentially associated with serious threats to the subject including

8

coma and death. Conversely, prolonged hyperglycemia i.e. BG > 180 mg/dL, can lead

to critical health conditions including cardiovascular diseases. In 2016, FDA approved the

first hybrid CLAP system Medtronic Minimed 670G that monitors BG and automatically

adjusts the basal or bolus insulin delivery on the basis of the CGM readings and the user

meal input (FDA (2016)). Following the Seridan system levels of automation, AP falls in

the fifth and sixth automation levels (Sheridan and Parasuraman (2000)). An example of

model­based CLAP is described in Appendix A.

2.1.2 Example of an AI­Enabled CPS: Advanced Driver Assist Systems

Advanced driving assist systems (ADAS) are safety­critical AI­enabled CPS that are

designed to work in uncertain environments. ADAS include automatic emergency braking,

automatic parking, and auto­passing. The vehicle can be controlled through two control

outputs: the throttle (acceleration or brake) and the steering speed. The autonomous driv­

ing control system consists of several control modes, Cruisewhere the car moves forward at

a constant speed, Brake where a constant slow deceleration is applied, HardBrake where a

constant hard deceleration is applied, Speedupwhere a constant acceleration is applied, and

the lane switching modes ShiftLeft and ShiftRight in which the acceleration and steering are

controlled to switch the vehicle to its left and right lane respectively (Fan et al. (2017)). The

controller switches between these modes based on inputs from the sensors and the driver.

The Society of Automotive Engineers (SAE) derived from the Sheridan automation hier­

archy five discrete levels of automation specific to developing automated vehicles (Alves

et al. (2018)).

2.2 AI­Enabled CPS’s Input/Output Traces

I/O operational traces are time series data representing closed­loop operation of AI­

based CPS. I/O traces comprise system’s perceived variables that are collected from sensors

9

and actuators during the operation of the AI­based CPS and unperceived (internal) variables

that are collected through simulations of the environment model used by the agent. Each

trace may encompass one or more agent’s modes.

2.3 Hybrid Automata

A hybrid automaton is a formal model of a closed­loop control system (Henzinger

(2000)). A controller measures values of the continuous variables representing the plant

using a sensor and decides to switch mode if a certain condition is satisfied. This decision

is transmitted to the actuator that performs the desired change. As shown in Figure 2.3, a

linear HA is a tuple of the following components (Alur et al. (1992); Alur et al. (1995)).

­M = {m0 . . .mq} is a set of discrete states or control modes wherem0 is the initial mode.

­X is the continuous state space in which the continuous variables representing the physical

system or the controller inputs −→x = {x1, x2, . . . , xn} take their values. Hence X ⊂ Rn,

whereR is the set of real numbers.

­a finite set of Control Switches inM∗M, where (mi,mj) defines the control switch from

source modemi to target modemj .

­a Flow function that assigns to each control mode m ∈ M a set of linear differential

algebraic equations that relates the continuous state space variables −→x to its derivatives

and the controller outputs. For every discrete mode m, the equation takes the following

form: d−→x
dt

= Am
−→x + Bm

−→o + Cm, where Am is an n × n matrix, Bm is an n × p matrix,

whereas Cm is an n× 1 column vector.

­a Guard condition is a function that maps every control switch to a guard condition. A

control mode change takes place when the corresponding guard condition is satisfied.

­a Reset function that maps every control switch to a reset condition. In this paper, ẋ and
dx
dt
both mean differential of x w.r.t time t.

10

Figure 2.3: Hybrid Automaton.

2.3.1 Reachability Analysis

Reachability analysis is formal verification technique over control system models that

explores all possible trajectories of operation (a.k.a reachable states) as the result of hy­

brid automata model execution and starting from a pre­specified initial range of parameters

of environmental conditions and users’ behavior. At every time step, reachability analy­

sis calculates the set of reachable states (continuous and discrete successor sets) via the

evaluation of the differential equations for every point in the original set and within each

control mode region. Since reachability analysis is intractable, its solution is always an

over­approximation of the system’s operating envelope (Alur et al. (1995)). The final reach

set is a convex polytope enclosing all reachable sets. Figure 2.4 shows an example of evo­

lution of reachable sets starting from an initial set X0 within two control modem1 andm2

with different flow dynamics.

11

Figure 2.4: Example of Reachable Sets Computation.

Linear Hybrid Automaton of a Simple­Reflex Artificial Pancreas System

The dynamics of the AP are represented by nonlinear equations 10.1, 10.2 and 10.3, where

Ẋ represents the rate of the variation in the interstitial insulin concentration, Ġ is the rate

of change of blood glucose concentration (G) for the infused insulin concentrationX and İ

is the variation in plasma insulin concentration (I) (Bergman et al. (1979)). Note that here

only the blood glucose and insulin levels are the observed parameters from the operation

of the AP in field. The parameter X is not observed but plays a significant role in relating

blood glucose and insulin. The AP device has three control modes: 1­ basal, where the

insulin infusion rate It = 5, 2­ braking, where It = 0.5G+ 44.75, and 3­ correction bolus,

where It = 50 (Banerjee et al. (2013)).

12

Basal

ሶ𝑋=-𝑘2𝑋 𝑡 + 𝑘3 𝐼 𝑡 − 𝐼𝑏
ሶ𝐺=-𝑋 𝑡 𝐺(𝑡) + 𝑘1 𝐺𝑏 − 𝐺 𝑡
ሶ𝐼 =-𝑛𝐼 𝑡 + 𝑘4𝐼𝑡

Braking

ሶ𝑋=-𝑘2𝑋 𝑡 + 𝑘3 𝐼 𝑡 − 𝐼𝑏
ሶ𝐺=-𝑋 𝑡 𝐺(𝑡) + 𝑘1 𝐺𝑏 − 𝐺 𝑡
ሶ𝐼 =-𝑛𝐼 𝑡 + 𝑘4𝐼𝑡

Correction Bolus

ሶ𝑋=-𝑘2𝑋 𝑡 + 𝑘3 𝐼 𝑡 − 𝐼𝑏
ሶ𝐺=-𝑋 𝑡 𝐺(𝑡) + 𝑘1 𝐺𝑏 − 𝐺 𝑡
ሶ𝐼 =-𝑛𝐼 𝑡 + 𝑘4𝐼𝑡

𝐺 > 120
𝐼𝑡= 0.5 𝐺 𝑡 + 44.75

𝐺 ≤ 120
𝐼𝑡=5

𝐺 ≥ 180
𝐼𝑡= 50

𝐺 < 180
𝐼𝑡= 0.5 𝐺 𝑡 + 44.75

Figure 2.5: Hybrid Automaton Model of AP.

Figure 2.5 shows the hybrid automaton model of AP.

Ẋ = −k2X(t) + k3(I(t)− Ib), (2.1)

Ġ = −X(t)G(t) + k1(Gb −G(t)), (2.2)

İ = −nI(t) + k4It(t). (2.3)

The aim the AP control system is to maintain the prescribed level of blood glucose and

avoid occurrence of hypoglycemic/hyperglycemic events. These dangerous events happen

as a result of inaccurate infusion rates of insulin, e.g. if the glucose concentration G goes

above 180mg/dl, it can lead to hyperglycemia while low glucose level i.e. below 60mg/dl

can cause hyperglycemia. The hyperglycemia (G > 180mg/dl) and hypoglycemia (G <

60mg/dl) sets are considered the unsafe sets of the AP system. Safety of AP can be verified

through reachability analysis on the HA of AP to verify that the reach set does not intersect

with the unsafe sets (Asarin et al. (2000); Kong et al. (2015); Frehse et al. (2011)). On

the other hand, operational safety verification of the AP control system considers verifying

that the certified design model of AP (FDA (2016)) conforms with the operation results of

AP out in the field. A hybrid automaton of the model­based CLAP of Medtronic Minimed

670G is illustrated in Appendix A.

13

2.4 Technical Preliminaries

2.4.1 Fisher Information and Cramer Rao Bound

We consider the problem of deriving an unbiased estimator of a continuous variable v

from a series of observations. The estimator has design parameters expressed as a vector
−→
θ = {θ1, θ2, . . . θk}. The term unbiased indicates that the expected value of the output of

the estimator is the true value of v. Fisher information provides ameasure of the information

carried by v about an unknown design parameter θi. Given a series of observations of the

variable v and executions of the estimator, the Fisher information is given by δlnP (v|θi)
δθi

,

where P (v|θi) is the conditional probability of the observation v given the value of the

design parameter θi. Larger the value of this Fisher information, larger is the contribution

of θi in determining the value of v. Hence, an effective method to reduce the number of

design parameters that make significant contribution in the estimator for v is to order them

in decreasing order of Fisher information and only consider those design parameters that

have significantly higher Fisher information. Once, the most significant design parameters

are identified, the next logical step is to derive the minimum variance unbiased estimator

(MVUE), such that the mean value of the estimator output is the true value of v and the

variance of the output of the estimator is minimized. In general, deriving MVUE of a

system from a set of observations is an extremely difficult proposition. However, if the

underlying design model is linear, then the Cramer Rao Lower Bound (CRLB) theorem can

be used to derive the MVUE (Milanese and Belforte (1982)) . The CRLB considers a linear

estimator for v such that: −→vo = HD +w, where −→vo is a set of observations for the variable

v, H is a set of observations for the design parameters
−→
θ ,D is the matrix of coefficients for

the linear estimator, and w is the observation noise.

14

The CRLB states that the Fisher information matrix is given by:

I =
HTH

σ2
, (2.4)

where σ is the variance in the observation noise, while the MVUE is given by:

D = (HTH)−1HTv. (2.5)

This result will be used in our HyMn algorithm for two purposes: a) to derive flow equations

in modes of hybrid system using input output observations, and b) to derive non­rectangular

guards which are expressed as linear combinations of continuous state variables of the hy­

brid system.

2.4.2 Pearson’s Divergence (PE) Score

: This metric is used to compute a difference between two probability distributions

P and P ′ of samples in two consecutive windows Y(t) and Y(t + w), respectively. The

Pearson (PE) divergence is defined as:

PE(P, P ′) =
1

2

∫
p′(Y)

(
p(Y)

p′(Y)− 1

)2

dY (2.6)

where p(Y) and p′(Y) are probability density function of P and P ′, respectively.

2.4.3 DBSCAN Clustering

DBSCAN is a density based clustering technique that uses three parameters,MinPoints,

Epsilon, and a distance metric. Using the distance metric, it defines density as the number

of points present in Epsilon neighborhood of a given point. DBSCAN iterates over each

data point to classify it as core point, ≥ MinPoints points in its Epsilon neighborhood,

15

border points, not core points but inEpsilon neighborhood of core points, and noise points,

which are neither. The core points which are in Epsilon neighborhood of each other are

connected to form clusters. We used DBSCAN to cluster observed control mode changes

in the input/output data.

2.4.4 RuLSIF Change­Point Detection in Time Series Data

The goal of the change­point detection technique is to discover control mode changes ly­

ing behind time series data. Recent efforts within this line of research introduced a new strat­

egy, the relative unconstrained least­squares fitting (RulSIF), which was reported to outper­

form competitive non­parametric change­point detection approaches (Liu et al. (2013)). Let

y(t) ∈ Rm a m­dimensional time series at time t and Y (t) = [y(t)T , y(t + 1)T , ..., y(t +

c − 1)T]T be a subsequence (sample) of time series at time t with length c where T repre­

sents the transpose, and Y(t) = [Y (t), Y (t + 1), ..., Y (t + w − 1)] a set of retrospective

subsequence samples starting at time t, which forms a sliding window (SW) where w is the

window size. The RuLSIF change­point strategy considers computing the Pearson (PE)

divergence as a dissimilarity measure between two consecutive SWs Y(t) and Y(t + w).

The higher the dissimilarity value, the more the point is considered a potential control mode

change­point. RuLSIF uses the following approximator of the PE divergence.

P̂Eα = − 1

2n

w∑
j=1

ĝ(Y ′
j)

2 − 1

n

w∑
i=1

ĝ(Yi)
2 − 1

2
(2.7)

where
{
Yi

}w

j=1
and

{
Y ′
j

}w

j=1
are samples from SWs Y(t) and Y(t+ w) respectively. ĝ(Y)

is a density­ratio estimator, and is defined as:

ĝ(Y) =
n∑

l=1

θ̂lK(Y, Yl) (2.8)

16

whereK(Y, Y ′) is a kernel basis function and (θ̂1, ..., θ̂n) are parameters to be learned from

data samples through RuLSIF optimization problem (Liu et al. (2013)).

2.4.5 Multivariate Non­Linear Polynomial Regression Analysis

We consider the problem of estimating a non­linear relationship among the set of con­

tinuous variables X from time series data. Multivariate polynomial regression analysis

(Agrawal et al. (2014)) can be performed on multidimensional data to model non­linear

variables that depend on more than one variable by fitting data to high order multidi­

mensional non­linear polynomials. For example, a quadratic non linear regression poly­

nomial, which aims to capture non­linear regression relationship between one dependent

variable z and two independent (or dependent) variables x and y from time series data

xi, yi, zi; i = 1, ..., n where n represents the number of data points, has the following form:

z = a1+ a2x+ a3y+ a4x
2+ a5xy+ a6y

2. In this paper, each variable xi ∈ X with respect

to time is regressed on powers of the variables inX while fitting the data into the high order

non­linear polynomial regression model to find the best fit curve.

2.4.6 Cross Validation Mean Absolute Error

: In order to assess the accuracy of the estimated non­linear equation, we use the cross

validation mean absolute error (CVMAE). It considers leaving out one data point in a given

signal and obtaining the parameters of the multivariate polynomial. Then the error in pre­

dicting the left out data point is estimated. We do this for all the samples in the signal and

compute the mean error. The most accurate estimated non­linear relationship is the one with

the least CVMAE. Sometimes, the CVMAE error can be infinite due an increased number

of data points used in the estimation process. In this case, we use the root mean square

error (RMSE) between the output of the estimated non­linear equation run test results and

the actual output signal from the observed traces.

17

Chapter 3

SAFETY VERIFICATION OF AI­ENABLED CPS

3.1 Safety Aspects

ISO/IEC define safety of a system as freedom from unacceptable risk of injury or dam­

age to humans, environment, and the system itself. In reliability engineering, safety is

assured through the management of failures caused by physical component failures at run

time. Functional safety aims at detecting random physical (mechanical, electrical, and elec­

tronic) or functional (logical) component failure during run­time and enabling corrective

actions to avoid or reduce accident risk down to a tolerable level (Instruments (2011); Lad­

kin (2008)). For example, ISO 26262 provides standards for functional safety management

of automotive applications through a definition of standards for a safety life cycle of the

development and production of automotive applications (ISO (2011)). The challenge with

functional safety is that it becomes impractical to determine every functional potential fail­

ure scenario because of the high complexity and non­determinism of AI­enabled CPS. In

fact, any behavior of AI­enabled CPS that cannot be analyzed through system design and

training would need to be monitored (Haugh et al. (2018)). Leveson describes safety as

an emergent property from the compound behavior of the system’ components interaction

and needs to be assured throughout the life cycle of engineered systems (Leveson (2011)).

System safety engineering is an important part of the overall system safety that focuses on

optimizing safety through the application of system engineering, management principles,

and systems theory. It aims at identifying and managing hazards at every stage of the sys­

tem development life cycle (Leveson (2011); Leveson (1986)), as depicted in Figure 3.1.

18

System Safety Development

Requirements Design Implement

Risk
Assessment

Certified System Safe Operation

Operate

Hazard
Analysis

Hazard Analysis

Operational
Safety

Before the
Accident

After the
Accident

Accident
Analysis

D
e

si
gn

 C
e

rt
if

ic
at

io
n

TestingFalsification

Model Checking

Runtime
Monitoring

Hazard
Analysis

Conformance
Testing

Conformance
Testing

Conformance
Testing

Figure 3.1: AI­enabled CPS Safety Life Cycle.

3.2 Safety Verification of AI­Enabled CPS

Many techniques have been developed for safety verification of CPS. In the follow­

ing, we will discuss some of the general and commonly used safety verification techniques

during the system safety engineering lifecyle.

3.2.1 Safety Analysis at Design Phase

Risk assessment and hazard analysis is a crucial step in the development of safety­

critical CPS and is applied to identify hazards, investigate their root cause, and embody a

mitigating approach at the system’s design stage. Traditional risk and hazard analysis tech­

niques relate safety to a component reliability. For example, FMEA hazard analysis aims at

identifying hazards caused by a chain of occurring events subsequent to a single component

failure. FTA identifies leading factors of hazards as a combinations of components failures

in a top­down search manner starting from undesirable hazardous events. Unlike traditional

hazard analysis reliability­based techniques, STPA considers safety as an emergent system

property that must be built into the design of the system. STPA uses the system’s functional

control diagram to analyze the interaction between the system components. It considers

that hazardous situations are a result of inadequate control actions of the safety constraints,

which can occur because of: 1­ A required safety control action is not provided, 2­ An un­

safe control action is provided, 3­ A control action provided too late or too early, and 4­ A

control action is stopped too soon or applied too early. All these techniques are performed

19

manually by engineers and require a detailed and complete knowledge of the CPS under

scrutiny. However, the new technology being developed such as autonomous vehicles and

IoT medical devices once deployed in the real world may exhibit unknown paths to hazards

that were overlooked in the requirements and design phases due to the high complexities of

the system, uncertainties of the human­in­the­loop behavior, and the effect of unobserved

environment’s internal variables. For example, every component of the autonomous driv­

ing Uber vehicle involved in the fatal crash causing a death of a pedestrian is claimed to be

operating properly including the software, yet the environmental context was overlooked

in the requirement and design phases.

Another group of verification approaches are calledModel Checking where formal prop­

erties of the state of the system are verified via exhaustive state space analysis (Asarin et al.

(2000); Kong et al. (2015); Frehse et al. (2011)). Formal models are suitable for modeling

continuous and discrete dynamics of complex physical systems (Henzinger (2000)). One of

the main challenges to formally verifying AI­Enabled CPS is the unavailability or incom­

pleteness of the environment and user mental models. For example, dynamical variations

between different and same individual as well as the nonlinear nature of the dynamics of the

human body pose a major challenge in testing medical intelligent systems. Another chal­

lenge is the formal specification of the learning component of the AI­enabled CPS (Seshia

et al. (2016)).

When it is not possible to formally verify the CPS model against the safety requirements,

Test­based Falsification is used to check whether the model satisfies a property of inter­

est (system’s safety requirement) by searching for a behavior that violates it (Abbas et al.

(2013)). However, for AI­enabled CPS, the task of mapping a given safety property (e.g.

avoiding reward hacking) in terms of temporal logic can be very challenging (if that is even

possible) (Amodei et al. (2016)).

20

3.2.2 Safety Analysis at Implementation Phase

Testing is one of the fundamental approaches in the verification and validation of safety­

critical systems at the implementation stage, which relies on ”test oracles”. An oracle or

a test oracle is a reference for checking the actual system behavior observed during tests

(Ammann and Offutt (2016)). Testing requires that the behavior of the system is unambigu­

ous and well defined. Also, it can only prove the presence and not the absence of errors

and require the existence of complete test cases. In well­established areas such as mechan­

ical and physical systems engineering, different approaches were developed to address the

discussed drawbacks. These approaches include, but are not limited to, black­box testing,

automated test cases generation, heuristics for test case selection, and metamorphic testing

(Myers et al. (2011); Zhang et al. (2014); Chen et al. (1998)).

System engineering involve a hierarchy of system models with rising layers of complex­

ity to finally achieve a modified calibrated deployed system. For example, the effects of

transport delays and controller sampling frequency are not considered in an initial spec­

ifications model. Conformance testing is a technique that aims at verifying correctness

of a system model w.r.t the previously developed models and ensuring that the final de­

ployed system follows the behavior of the initial specifications model. This verification is

performed through a distance measure between simulated trajectories of the two models,

which can consider differences in trajectories’ timing (Henzinger et al. (2005)), trajecto­

ries’ values (Girard et al. (2008)), or both (Abbas (2015)). Woehrle et al. presented a

conformance testing method that relies on mapping the specifications of the system and

its implementation generated traces to timed automata and verifying whether each gener­

ated implementation trace is included in the traces of the specifications timed automaton.

As opposed to this conformance notion, other works define conformance testing as a close­

ness measure between an implementation and the specifications model, whose computation

21

solely relies on system traces (Abbas (2015); Araujo et al. (2018)). However, even for sim­

ple linear systems, providing guarantees about the conformance degree remains a challenge.

In addition, the conformance testing result is a pass­fail output and when a failure occurs,

safety engineers are confined to a violating pair of traces along with the different models

of the system that may have been developed using different formalisms, languages, and

tools. As such, performing a root­cause analysis using only the violating pair of traces is

an arduous and cost­ineffective task.

3.2.3 Safety Verification at Operation Phase

Runtime monitoring is a safety verification approach applied at the system’s opera­

tion phase. It initially requires safety/correctness specifications to be expressed in terms of

formal logic, which is not always viable since some of the system requirements can only be

expressed in natural language. In addition, formally expressing and monitoring specifica­

tions while considering all complexities of the system (if that is even feasible) will impose

an inevitable runtime overhead. It should also be noted that correctness specifications are

developed based on assumptions about the dynamical partially observed environment and

the human­in­the­loop behavior and these assumptions may not hold once the system is de­

ployed in the real world environment. Thus, ensuring completeness and correctness of these

specifications is a crucial and arduous task. An example of an offline runtime monitoring

method used for flight operation is exceedance analysis. It consists on monitoring whether

a set of parameters modeling hazardous event exceeds a certain threshold. The problem

with such a technique is that it lacks contextualization, making it hard and time consuming

for experts to analyze and interpret data correctly. State of the art runtime monitoring tech­

niques may cope effectively with interaction complexities of traditional embedded systems

of well­established areas, but may fall short when dealing with high and interleaving com­

plexities of innovative novel AI­enabled CPSs.

22

Interactive, dynamic, and non­linear complexities of AI­based CPS may jeopardize their

”safety­assured” operation once deployed in the real world environment. I.e. AI­based

CPS such as automonous driving vehicles and IoT medical devices are developed using an

incomplete environment model due to its high complexities and are verified for safety us­

ing assumptions about the operator’s behavior which is potentially subject to contingencies.

As a result, the system may exhibit hazardous situations under a certain context that was

never detected previously in the development or the certification phase of the CPS. Hence,

the certified AI­enabled CPS may be subject to mishaps once deployed in the real world

environment, a case example is the Boeing 737 max 8 crash (Johnston and Harris (2019)).

This requires the development of new safety verification techniques capable of coping with

the nature of new innovative technology being developed. Operational safety of AI­based

systems is performed at the operation stage and aims at detecting deviations in the system’s

components (e.g human operator, environment, and intelligent agent) and verifying whether

these deviations may jeopardize the safe operation of the system in the future. Early detec­

tion of operational deviations may be an efficient way to detect additional hazards’ leading

factors that were overlooked in the development phase and proactively prevent occurrence

of accidents. We propose an operational safety verification technique that uses the prolifer­

ation of operational time series data generated during the AI­based CPS operation in the real

world to gain a better understanding of the system’s operation and enable the refinement of

system’s safety conclusions.

3.3 Arising Safety Issues

Operational safety has achieved an enormous progress in well established areas includ­

ing aircraft and nuclear engineering. However, limited work has been performed in the

field of cutting­edge AI­based systems, such as IoT medical devices and autonomous driv­

ing vehicles.

23

EnvironmentUser
Model

Code

High Level
System Model

Detailed
System Model

Implemented
System

Deployed
System

Environ
ment

Model

Deployed
System

System
Knowledge

Model

user

Operational Testing
Agent

System
Knowledge

Model
Continuous
Operational
Verification

O
p

e
ra

ti
o

n
M

o
n

it
o

ri
n

g

V-Model System Development System Operation & Maintenance
Figure 3.2: V­Model Based System Engineering and Operation.

In this section, we will provide a landscape of arising safety issues during the development,

certification, and operation of AI­based systems.

Ensuring system’s knowledge consistency between system’s components:

One of the operational safety requirements of AI­based systems is a complete and consistent

understanding of the system components and their interaction outcomes. I.e., dissonance of

the system’s operation knowledge between the operator, designer, operational testing agent,

and legal agency is one of the potential leading factors of overlooked hazards. For example,

pilots of the Boeing 787 max 8 failed at mitigating MCAS’s failure because they were not

properly au fait with the inner workings of the component. This decision of skipping pilots’

training phase was due to production deadlines pressure in the competitive and aggressive

environment of aircraft industry. The competition pressure and goals trade­off often lead

manufacturers to migrate to a state of higher risk. This will potentially cause consumers

to lose trustworthiness in manufacturers and trust in using AI­based systems, which is not

desirable.

24

Detection of corruption scenarios:

New approaches for better and optimized control are developed at a fast pace whereas little

attention is given to safety verification approaches. This will continue to intensify the gap

between productivity and safety. For example, formally verifying neural networks (NN)

performance and their interaction with the remaining components of the AI­based CPS re­

mains a challenge for large NN controllers and formally verifying self­adaptive controllers

for complex AI­based CPS is still an ongoing research problem (Ivanov et al. (2019)). At

the certification process, manufacturers may tend to conceal the inner workings of some

components for which safety verification approaches as yet unestablished.

Monitoring learning agent’s behavior:

A learning agent has the ability to explore actions in order to optimize its objective function.

However, safe actions in some contexts may be unsafe if performed in different contexts.

The operational safety monitoring becomes crucial for safety­critical AI systems such as

robots interacting with humans. As the functionalities and complexity of the AI­based CPS

increases, it may become unfeasible to define the set of all possible safe actions for every

context and system’s state. Hence, an overlooked combination of the system’s subcompo­

nent states in a specific scenario is possible, which may pose the human­in­the­loop at risk

(Levin (2018)). Hence, we need to monitor the operation of the learning agent and ensure

that the agent does not perform unsafe exploratory actions. This safety problem has been

referred to as reward hacking and has been considered in the context of a cleaning robot

(Amodei et al. (2016)).

25

Chapter 4

OPERATIONAL SAFETY VERIFICATION OF AI­ENABLED CPS

The coverage problem for safety verification of AI­based safety critical CPS can potentially

encounter combinatorial explosion due to the presence of significant number of interacting

external sub­components and environmental conditions of use cases. In addition, a com­

plete environment’s model of complex dynamical physical systems is ultimately not avail­

able. As an example, the blood glucose system model used in the development of artificial

pancreas does not encompass all variations including human behavior, mental state, and

physical activity. The research question is whether these variations and incompleteness

of the environment’s model may guide towards misleading safety conclusions about the

system and whether its specified safety assurances will hold once the system is operating

within the real environment.

4.1 Operational Safety Verification Overview

We define operational safety as the detection of situations where the operation of the

AI­enabled CPS in the field deviates from the safety certified operation of the system. The

proposed approach as depicted in Fig. 4.1 consists on a hybrid automata (HA) mining

algorithm, which takes the following inputs: 1­ Input/Output traces collected from the op­

eration of the AI­enabled CPS and 2­ Limited information collected from the specifications

document of the system. The output of the learning algorithm is a learned hybrid automa­

ton comprising agent’s control logic along with the environmental model of the CPS. The

learned formal model is used to gain an insight into the safety of system by comparing the

specifications of the system and the learned formal properties in order to detect the pres­

ence of inconsistencies. The proposed operational safety verification technique can also be

26

2. Operation Input/Output TracesDevice

under Regulatory

Process

Documentation

1. System Specifications

Unsafe
• Inconsistencies detected.
• Additional operational traces needed.
• Important information has not been

disclosed in the specifications.

Safe AI-enabled CPS.

HA Mining

Tool

Learned

HA

and

Evaluation

Output

Non-

deterministic

oracle inputs

AI Enabled CPS

Control Mode
Classification

Input/Output
Traces

Segmentation

Flow Equations
Extraction

Guard Mining

Manufacturer

Figure 4.1: Operational Safety Verification: Proposed Approach.

utilized by certifiers or regulatory agencies to automatically investigate the safety of the sys­

tem by detecting intentional or unintentional corruption scenarios during the certification

process.

4.2 Learning Scenarios

There are two HA learning scenarios:

Model­Agnostic: In this case, a complete reference specifications model is not available.

In this learning scenario, multiple learned HA with different number of agent’s modes are

learned to find the most approximative specifications model of operation of the AI­enabled

CPS.

Model­Aware: A certified reference specifications model is available. In this case, the

number of agent’s modes is known and fixed a­priori. A model of the internal unobserved

variables of the system is simulated to generated time series data for the unperceived vari­

ables.

27

OFF

ሶ𝒙 = −𝒙

ON

ሶ𝒙 = −𝒙 + 100

𝒙 ≤ 𝟕𝟎

𝒙 ≥ 𝟖𝟎

𝒙 = 𝟕𝟓

Figure 4.2: Temperature Control System Hybrid Automata.

4.3 Operational Safety Through HA Learning Overview

4.3.1 Ensuring Correctness of the Learned Model

As shown in Figure 4.1, the learned HA model is used to analyze the safety of the

AI­enabled CPS. In order to increase the accuracy of the learned model, we must ensure

correctness of the HA learning technique through implementing the following requirements

in each of the learning steps:

I/O traces collection ­ Ensuring Data Unbias: It is crucial that the data collected for learn­

ing (training and testing) is collected from different regions of interest of the operation of

the AI­enabled CPS. For example, for medical devices, data collected from the operation

of the system during different user’s activities, mental changes, physical activity, day time,

and environmental conditions.

I/O traces partitioning ­ Avoiding False Positives: One important initial step in learning

an HA is to initially evaluate the type of data we possess. For example, the stationarity

of time series is an important factor to assess change­point detection techniques which are

more suitable for partitioning the I/O time series data. Even if it has proven that RuL­

SIF change­point detection technique reaches over 0.89% accuracy in detecting changes

28

Te
m
p
er
at
u
re

OFF ON* ON OFF

Figure 4.3: Temperature Control System Sample Execution.

for different non­stationary datasets (Aminikhanghahi and Cook (2017)), our data may still

exhibit false positive changes due to a significant change in the unobserved internal en­

vironment’s variables or the user’s behavior that may have a drastic change effect on the

controlled physical property. For example, if we consider the temperature control system

with two agent modes ON and OFF , as depicted in Figure 4.2. Figure 4.3 shows a trace

partitioning of a sample operational trace of the temperature control system. ON and ON∗

are partitioned as distinct agent’s modes whereas the ON∗ mode is an operational behavior

of the system in mode ON affected by an external environment input. Thus, the trace par­

tionning at potential mode change points is not definitive but will be refined in the agent’s

mode clustering/merging step of the HA learning technique.

Agent Mode Clustering: Figure 4.3 shows an example execution of the temperature con­

trol system in the real world. ON and ON∗ are classified as distinct agent’s modes from

the previous partitioning step. In the following, we analyze the agent’s modes clustering

for the two HA learning scenarios:

In the model­aware learning scenario, the number of control modes is known and fixed a­

29

priori. For the temperature control system, n = 2. Hence, the agent modes clustering will

lead to one of the following cases:

1­ If multiple instances ofON∗ are present in the collected traces, then modeON andON∗

will be clustered as a distinct control mode ON ′. Such operational behaviors of ON∗ will

be reflected on the learned automaton through the parameters of the learned flow equations

of mode ON ′.

2­ If only few instances of ON∗ are present in the collected traces, the ON∗ operational

subtraces will represent noise and will not have an effect on the flow equations learning.

Learning Flow Equations ­ Avoiding underfitting/overfitting: We use cross­validation

as a means to learn a model whose complexity leads to neither underfitting nor overfitting.

Guard Mining: We consider AI­enabled CPS with urgent guards (Minopoli and Frehse

(2016a)). For example, the transition from mode OFF to ON and vice­versa occurs as

soon as the guard condition (x ≤ 70) and (x ≥ 80) respectively is satisfied. If the temper­

ature value reaches the guard value 70 before the controller sampling frequency, then the

mode change will occur when the temperature is slightly below 70.

In the field of operation, novel physical phenomena that may have been overlooked in the

system’s development stage and new system’s interactions and evolution will be reflected

in the learned model. The learned HA can be used to re­evaluate the safety of system out

in the field, refine safety conclusions, and provide safety feedback to the holistic system’s

stakeholders (standard organization, legal agency, user/operator, and manufacturer) in an

iterative manner, as shown in Figure 4.4.

4.4 Safety Conclusions

The learned HA model accuracy is assessed by measuring the root mean square error

(RMSE) between the generated data using the learned model and the testing data set, as

30

INFOGRAPHIC

FORM

7

Accident

Analysis

Requirements

Safe Design

Operational Safety

Hazard

Analysis

Implement

Functional

Safety

AI-based

CPS

Manufacturer

User

Human

Interaction

Adapt To

New Input

Use Case

Assumptions

Implementation

Figure 4.4: Holistic AI­enabled CPS Overview.

defined in Equation 4.1.

Error =

√∑T
t=1(x̂t − xt)2

T
(4.1)

x̂t represents the generated output variable value using the learnedmodel at time instant t, xt

represents the operational output variable value from the testing data set, and T represents

the total number of data points. Please note that we assume that the AI­enabled CPS has

been certified for safe operation by a legal agency or that the manufacturer has already

verified and proven the safety of the system. This means that the reach set of the reference

formal model of the AI­enabled CPS does not intersect with the unsafe set, as shown in

Figure 4.5. With respect to the safety evaluation using the learned model, there can be four

distinct safety guarantee cases:

Case 1) The reach set of the learned model is an over­approximation of the specified system

and encompasses the reach set of the specified system but it does not intersect the unsafe set.

In such a case, we can guarantee that the system is operatingwithin the safety envelope. This

represents the safety guarantee 1 of our proposed operational safety verification technique.

Case 2) The reach set of the learned model is an underapproximation of the reach set of the

reference system or intersects it and learned system does not intersect the unsafe state. This

31

1- Complete Overlap or Over-approximative 2- Under-approximative or intersection 3- Mined system intersects

unsafe sets

Reach Set

Learned

Reach

Set

Man

Reach

Set

Learned

Reach

Set Learned

Reach

Set

Man Reach set MAN

Reach Set

Learned

Safety Guarantee 1:
If Learned reach set is

safe, then system is safe

Uncertain case, more
data is needed to
determine safety

Unsafe State Unsafe State Unsafe State

Reach set MAN

Reach set

learned

Unsafe State

Uncertain case,
could be due to

mining error

Overlapped area less than
error bound

Reach set MAN

Reach Set

Learned

Unsafe State
Overlapped area more than

error bound

Safety Guarantee 2:
Unsafe System

Operation

Case 1 Case 2 Case 3 Case 4

Figure 4.5: Operational Safety Analysis Result Cases.

is an uncertain scenario, because the learned model is incomplete. In this case, additional

traces are needed to accurately learn the reference model.

Case 3) The reach set of the mined system intersects unsafe set but the area of intersection

is within error bound of the learning technique. This case is also an uncertain case, because

the intersection with unsafe set can be either due to a problem with the system operation or

due to an error in the mining.

Case 4) The reach set of the mined system intersects unsafe set and area of intersection is

greater than the error bound of the mining technique. In such a scenario, we can guarantee

that the system is unsafe. This represents the safety guarantee 2 of our proposed operational

safety verification technique.

32

Chapter 5

LEARNING HYBRID AUTOMATA FROM I/O TRACES

5.1 Problem Statement

From I/O timeseries data collected from the operation of an AI­enabled CPS, automat­

ically learn a HA representation of the system. The learning technique should:

• Infer linear flow equations representing the dynamics of the system.

• Infer controller modes.

• Infer guard and reset conditions.

5.2 HyMn: Linear Hybrid System Mining

Hybrid systems are versatile in modeling the interaction between the cyber and physical

components of cyberphysical control systems (CPS) such as artificial pancreas (AP). They

are typically used for analysis of safety of the human centric control systems which have

serious consequences of failure. As such hybrid systems are parameterized and the vari­

ables often depend on the subject on which the control system is deployed. Traditionally,

control systems are initially developed using average statistical estimates of the subject spe­

cific parameters. However, such excursions may lead to suboptimal designs. Publication

I proposes HyMn, a hybrid system parameter estimation tool, where the subject specific

parameters in a hybrid system are automatically learned from input/output traces collected

from the run­time behavior of an AI­Enabled CPS.

Data Collector/Generator: Input/Output traces are collected from the operation of CPS.

In this work, we assume that the traces are noiseless. Collected I/O traces are divided into

33

two sets: traces that are used for the inference technique and traces employed to verify the

accuracy of the inferred HA.

HyMn: The HyMn algorithm takes the observed continuous states or controller inputs −→x

and the controller outputs −→o as input and extracts a hybrid system of the form of the tuple

{M,X,W,E, Inv, flow} according to HA Definition (section 2.3). Figure 4.1 shows the

main steps of the proposed HA mining technique:

1­ I/O Segmentation: The first step is to segment the input output traces considering times at

which there is a potential discrete mode change. Whenever there is a discrete transition due

to a controller mode change, the controller output changes according to the decisions of the

controller. There can be two types of controller outputs for a given mode: a) a step output,

where after a transition the controller output changes levels and stays at a given level unless

there is another transition, and b) the output is a linear function of the continuous state vari­

ables of the physical system. For both types of output, a sudden change in the slope of the

controller output indicates change in mode. The timestamps
−→
T = {t1, t2, . . . tk} at which

such jumps occur are considered to segment the controller inputs −→x and are marked to be

potentially different controller modes. As shown in Figure 5.1, modes where controller out­

put is constant is characterized by a sharp change in the differential of the outputs. HyMn

employs peak detection algorithm on the differential of the outputs and derives the modes

that have a constant level as controller output. This gives the time stamps of some of the

mode transitions as shown in Figure 5.1. The time difference between two inflection points

comprises of a controller mode.

2­ Mode Classification: The second step is to determine the total number of controller

modes and cluster the segments into equivalence classes corresponding to each controller

mode. The controller strategy or the jump condition for each mode can be computed using

the following two steps:

34

𝑑𝐼𝑡
𝑑𝑡

𝐼𝑡

𝐼𝑚

𝑡ime

Step
Output

Output as
linear
combination

Mode
transitions

Step outputs
zeroed out

Insulin infusion trace, the controller output for artificial pancreas

Figure 5.1: I/O Segmentation and Jump Condition Retrieval Example.

1­ For each segment where the output differential is zero, the controller strategy is to pro­

vide a constant level of actuation obtained from the output trace −→o .

2­ For other segments, HyMn utilizes Fisher information theory to derive the linear equa­

tion connecting the controller output to the inputs.

For each output parameter, HyMn first uses Equation 2.4 to derive controller inputs whose

linear combination gives the considered output. Then it uses Equation 2.5 to derive the

estimator for the controller output. Segments are then grouped into classes based on the

derived jump conditions. Each of this equivalent class is a composite mode and represents

a unique strategy of the controller.

3­ Flow Extraction: For each mode HyMn employs Fisher information and CRLB theorem

to derive flow equations. The output of this re­classification are unique modes of the hybrid

system, where two modes may have different jump conditions or flow equations.

4­ Guard Mining: the guard mining approach takes as input the segmented input output

traces where each segment is annotated with a controller mode. HyMn then considers ev­

35

ery possible mode transitions (m → m′) and considers the values of the continuous state

variables at the times of transitions, then develops the observationmatrixGom→m′ . Gom→m′

is an n×dmatrix, where each column corresponds to an observation of the continuous state

variables at the time of transition from m to m′, and there are d such instances when the

same mode transition is observed. In case Gom→m′ is full rank, HyMn obtains the rows

that have constant values over all observation instances and the guard is expressed as a con­

junction of equality condition Gm,m′ =
⋂
{xi = qi} on all such continuous state variables

which have constant values, where qi is the constant value in the guard observation matrix.

For non­rectangular guards, the guard observation matrix will not be full rank. In such a

case we consider each continuous variable xi and express it as a linear combination of the

other variables and a constant value, i.e., xi = A

{
x1 x2 . . . xn 1

}
, where A is the

coefficient matrix. We then use the same Fisher information­based analysis to derive the

coefficient matrix A. The output of this step expresses guards in the form of equalities.

However, we need the half planes which belong to each mode. This means for each tran­

sition m,m′ we need to find inequalities. For this purpose, for each transition observed,

we consider the values of the differentials of the guard expressions. If we have a guard

expression as Gi =
⋂
{xi = qi}, then if ẋi > 0, then the condition for xi is modified from

xi = 0 to xi ≥ 0. If the guard is expressed as Gj =
⋂
{xi =

∑
ajxjj ̸=i + ci}, then we

consider the differential of the function f = xi−
∑

ajxjj ̸=i. If from the observed I/O trace

ḟ > 0 then the corresponding conjunction is modified as xi ≥
∑

ajxjj ̸=i + ci.

In the final step, for different observations of the same mode transitions m,m′ if there

is a contradiction in any of the guard conjunction, then such conjunctions are eliminated

from all guard expressions. This means that for twom → m′ mode transition observations

let us consider that the corresponding mined guards are:

G1 =
⋂

xi ≈1 c
1
i and G2 =

⋂
xi ≈2 c

2
i , where ≈1,≈2∈ {≥,≤}. Then the following rules

must be applied:

36

­if≈1=≥ and≈2=≥, then the two terms can be replaced by the term xi ≥ min(c1i , c
2
i),

­if≈1=≤ and≈2=≤, then the two terms can be replaced by the term xi ≥ max(c1i , c
2
i),

­if≈1=≥ and≈2=≤, then the two terms can be eliminated from both the guard expres­

sions if c2i ≤ c1i ,

­if≈1=≤ and≈2=≥, then the two terms can be eliminated from both the guard expres­

sions if c1i ≤ c2i ,

Using the above­mentioned rules HyMnmines consistent guards from the observations.

Verification and HA refinement: Once the HA is generated through HyMn, its accuracy

verification is crucial to the process. We compare collected I/O traces for verification to

those generated using the inferred HA by calculating the root mean square error (RMSE)

between the two sets of traces. The matching rate δ defines the accuracy of the inferred

automaton that is evaluated according to some predefined rank α and used as a feedback

to the HyMn Algorithm. The accuracy of the inferred automaton depends on the number

and length of traces. For example, if the length of the trace is too short, then some of the

modes can be missed, since these modes are not visible in the trace. HyMn algorithm uses

the accuracy feedback to modify its inputs and refine the inferred automaton.

37

Chapter 6

EXPERIMENTS

6.1 HyMn Evaluation Results on Artificial Pancreas

6.1.1 Linearization of AP model

The AP system is nonlinear in nature (see Section 2.1.1), hence it is necessary to lin­

earize the system. To linearize the AP model we consider the difference in blood glu­

cose, insulin concentration, and the interstitial insulin concentration. We consider a small

time interval h and rewrite G(t + h) = G(t) + ∆G, X(t + h) = X(t) + ∆X , and

I(t+ h) = I(t) +∆I . We can then ignore the non­linear terms that involve multiplication

of ∆X and ∆G. This results in the following linearized equations:

∆Ẋ = −k2(X(t) + ∆X) + k3(I(t) + ∆I − Ib)),

∆Ġ = −X(t).G−∆XG(t)−∆GX(t)

+k1(Gb −G(t)−∆G),

∆İ = −k4I − k4∆I + k5hG(t)− k5hG0.

We simulate the hybrid system model of the AP for a given set of initial conditions to ob­

tain input output traces. The simulations were carried out in Simulink and model based

T1D simulator (Man et al. (2014)). From input output traces, we apply HyMn to obtain

the hybrid system model and we compare the actual and inferred tuples for accuracy. In

addition, we also evaluate the operation of the two hybrid system in terms of the results of

reachability analysis. We use the SpaceEx (Frehse et al. (2011)) tool to derive the reach set

for both the given and the inferred hybrid system and compare them to find differences.

38

𝐼𝑡 𝑚2 𝑚3 𝑚5 𝑚7 𝑚8 𝑚10
𝐼𝑡

𝑡ime

 𝑚2 𝑚3 𝑚5 𝑚7 𝑚3 𝑚10

𝐼𝑡 𝑚2 𝑚3 𝑚2 𝑚2 𝑚3 𝑚2

Step 1

Step 2

Step 3

Figure 6.1: HyMn Mode Classification Execution Example for AP.

We use the AP example and show results of executing each step of HyMn. The first

step of the HyMn algorithm is to consider the differential of the controller output It as

shown in the second part of Figure 6.1. Employing peak detection, the HyMn algorithm

initially considers that there are as many modes as the number of peaks. From Figure 6.1,

the HyMn will consider the mode setM = {m1,m2, . . .m11}, i.e., 11 distinct modes. The

HyMn mode classification algorithm then considers the absolute value of It to distinguish

between modes where It is constant or dIt
dt

= 0. As a result of this operation, HyMn finds

that m1 = m4 = m9 and m3 = m6 = m8 = m11. Hence it reduces the mode set to

M = {m1,m2,m3,m5,m7,m10}. It then considers the segments where It is not constant

as shown in Im in Figure 6.1. It employs Equation 2.4 and 2.5 to derive the linear relation

of It withG and I . The analysis results in the same equation for modes {m2,m5,m7,m10}:

It = 0.5Bg + 44.75 Since the modes have the same linear equation relating controller out­

put to the inputs, HyMn considers that m2 = m5 = m7 = m10. Hence, the total mode

set is M = {m1,m2,m3}. HyMn then considers all the mode transition times and devel­

ops the jump conditions. From the input output trace we see that Jm1→m2 = {{G; I; It},

{G; I; 0.5G+ 44.75}}, Jm2→m3 = {{G; I; It}, {G; I; 5}} ,

39

𝐼

𝐺

𝐼𝑡

𝑡ime

𝑚1𝑚2 𝑚3 𝑚1 𝑚2𝑚3𝑚2𝑚3𝑚1𝑚2 𝑚3

𝑑𝐵𝐺

𝑑𝑡

𝑑𝐵𝐼

𝑑𝑡

𝑑𝐼𝑡
𝑑𝑡

𝑡ime

Figure 6.2: Input Traces (G, I) and Output Traces (It) for the AP System

Jm3→m1 = {{G; I; It}, {G; I; 50}}, Jm3→m2 = {{G; I; It}, {G; I; 0.5G + 44.75}}, and

Jm2→m1 = {{G; I; It}, {G; I; 50}}. The next step in HyMn is to find the flow equations in

every segment using the traces of It, G, and I (Figure 6.2).

The linearization method described in Section 6.1.1 results in a constant bias that depends

on the sensed blood glucose, insulin concentration and interstitial concentration values.

Hence the bias changes over time. However, the Cramer Rao based estimation only derives

coefficients for the difference in the values of the continuous variables. Thus, it could not

accurately estimate the time varying bias. To circumvent the problem, we add the bias to the

estimated constant obtained using Cramer Rao bound each time instant. Based on Equation

2.4 and 2.5, HyMn derived the following set of equations:

∆Ẋ = 45.84∆X + 6.89−6∆I + 2.47−8 − 0.021X(t) + 0.00001(G− 10)

∆Ġ = 80.77∆X + 45.49∆G+ 1.21−5 −X(t).G+ 0.031(Gb−G)

∆İ = 45.59∆I + 3.95−8 − 0.3I + 0.0033hG− 0.0033hG0.

40

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000

R
M

SE

Number of Data points

Figure 6.3: Variation of the RMSE W.R.T the Increase of Number of Collected Traces

For every segmentwe obtained the same equation resulting in the conclusion thatm1,m2,m3

are unique modes and are not composite. The next step is to determine the guards. Let us

consider the transition fromm2 tom3. The guard observation matrix can be obtained from

the traces in Figure 6.2 as in Equation 6.1.

Gom2→m3 =

118.07 118.07 118.07 113.14

24.8 24.8 24.8 23.8

 . (6.1)

Gom1→m2 =

177.16 177.16 171.15.07

22.76 22.76 21.4

 . (6.2)

The matrix Gom2→m3 is a full rank matrix. Hence, we only consider the row that is con­

stant. However, there is no such row. Hence, we have four different expressions for the

guard corresponding to each observation in Equation 6.1. HyMn then considers the deriva­

tive ofG and I at the transition point and uses the rules discussed in Section 5.2. For all the

transition points, from Figure 6.2, we see that Ġ < 0 indicating that the guard for transiting

from m2 to m3 is G ≤ 118.07. However, İ had both positive and negative values result­

ing in a contradiction. Thus, the guard expression that uses I is eliminated from the guard

expression. The same operation results in the following guards: Gm1→m2 : G < 177.1,

Gm3→m2 : G > 118.07, and Gm2→m1 : G > 177.1.

41

Reach set of inferred linearized model of AP
Reach set of non-linear model of AP

Overlap AP inferred VS non-linear AP

𝑰

X𝑮

Figure 6.4: Reach set of the Non­Linear Model of AP vs Reach Set of Inferred Linear
Model of AP.

The invariant set computation was trivial since it only required partitioning of R using

the rectangular guards. The inferred AP hybrid system is almost similar to the given hy­

brid system of AP described in Section 2.3 (they only differ in the parameters’ values

(k1, k2, k3, k4, n) of the continuous dynamics). We also used the inferred and the given

hybrid system in reachability analysis using the SpaceEx tool. Figure 6.4 shows reach sets

for both hybrid models starting from the same initial conditions set.

Benefits of using HA learned patient­specific parameters:

We executed the AP system with two parameter configurations: a) taking statistical average

parameters obtained from a large pool of T1D subjects (Man et al. (2014)), and b) obtaining

the patient specific parameters for a given subject using the HyMN approach. We kept the

blood glucose profile the same for both the configurations. Figure 6.5 shows the plot of

the insulin concentration over time for both the configurations. The results show that using

patient specific parameters in this scenario reduces total insulin delivery by 5.29%.

42

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

Hour of the Day

In
s
u
lin

 C
o
n
c
e
n
tr

a
ti
o
n
 m

U
/h

r

Insulin Concentration for Patient Specific Parameters

Insulin Concentration for Statistical Average Parameters

Patient Specific Parameters reduce total insulin delivery by 5.29% for
the same Blood Glucose Profile.

o0
Insulin Concentration for Patient specific Parameters
Insulin Concentration for Statistical Average Parameters

Figure 6.5: Comparison of Insulin Delivery using Patient Inferred Parameters from HyMn
Versus Using Statistical Average Parameters.

This is a significant result because the aim of any controller is to achieve normal glucose

levels with minimal insulin infusion.

6.1.2 Applications of HyMn

HyMn has been applied to mine hybrid system models of gestures for ML­based coop­

erative gesture learning applications using a coalition of hand­shape recognition technology

and explainable kinematic models. The mined model is utilized to provide explanation for

recognition of continuous events, as depicted in Figure. 6.6. The technique was applied on

60 users for 20 ASL gestures and results show that the mined parameters of the kinematic

equations can represent each gesture with precision of 83%, recall of 80% and accuracy of

82% (Publication III).

6.1.3 Limitations of HyMn

When applying HyMn to traces collected from the operation of Medtronic Minimed

670G (Appendix A) through a collaborative work with Mayo clinic, it was subject to the

following limitations:

43

Figure 6.6: HyMn Application on Co­Operative Learning Systems

Non­linearities: The glucose subsystem model used in the control logic of the Medtronic

Minimed 670G is non linear in nature. Hence, we need to update HyMn to learn non­linear

differential equations.

Input/Output traces Segmentation: In HyMn, a sudden change in the slope of the con­

troller output indicates a mode change. This is not necessarily true in the case of the

Medtronic Minimed 670G due to the presence of smooth control mode changes and signal

variations due to different physiological and operating conditions. This led to the genera­

tion of many false positive and false negative control mode changes.

Complexity: The control logic implemented in Medtronic Minimed 670G is a combina­

tion of PID and an insulin feedback (IFB) algorithm (Ruiz et al. (2012)). Since industrial

control systems are moving towards employment of advanced and complex strategies of

control logic such as learning agents or adaptive control which uses feedback from the en­

vironment to update the control logic or the environmental model used by the controller

to estimate the current state of the environment (Leveson (2011); Rajkumar et al. (2010)).

44

Hence, additional and deeper safety analysis techniques must be developed as it is difficult

for current safety verification methods to keep up with the increasing pace of technological

change (Rajkumar et al. (2010); Scherer (2015); Kim and Kumar (2012); Lee et al. (2015)).

Hidden control variables: As shown in Figure A.1, the only observed signals from the op­

eration of the Medtronic 670G are the insulin infusion rate ID and the CGM reading SG.

All remaining control and system variables are hidden. Hence, HyMn should be adapted

with capabilities of learning an approximative hybrid automata model of the system using

only observed I/O traces. In case the manufacturer does not allow full access to detailed

specifications of the requirements and design of the system, HyMn should be able to learn

the most approximative HA model of the system using only I/O traces and limited knowl­

edge about the system.

Limited amount of traces: HyMn should be able to detect if additional traces or knowl­

edge is mandatory for the operational safety certification process. This allows interaction

with the manufacturer in an iterative operational safety verification of the system under reg­

ulatory process, as shown in Figure 4.1.

Safety ComparisonMetric: HyMn should implement a safety assessment metric to detect

dissonance between operational data and the safety assured design of the system.

45

Chapter 7

N­HYMN: LEARNING NON­LINEAR HYBRID AUTOMATA

7.1 N­HyMn Algorithm

N­HyMn focuses on learning a non­linear HA representations of an agent­based CPS in the

form of < X ,M,F , E ,G,R > according to Definition of hybrid automata in Section 2.3.

The input set consists of:

­ set of input variables I and set of output variables O, where X = I
⋃
O.

­ Traces, time series data of every continuous I/O trace collected from the operation of the

CPS.

­ n, the number of control modes inM of the CPS.

­ MinPts, the minimum number of instances of the same control mode transition. In

the Model­Aware scenario, n is known a­priori. In the Model­Agnostic scenario, n is not

known, and can be varied to learn multiple HA representations, thus facilitating the identi­

fication of the most accurate learned HA.

In the following, we present the outline of the algorithm:

1) Segment each trace at time stamps of potential control mode changes:

for each tr in Traces

T imestamps(tr) = RuLSIF_Change_Point_Dectection(tr)

The output of the RuLSIF_Change_Point_Dectection function is a list of timestamps

[start, ts1, ts2, ..., tsf , end], where start = 0 and end = last_value(tr) represent the

start and end time value of each trace, respetively.

2) Cluster unique control mode changes:

2.a) Collect data at each potential control mode change timestamp for all traces:

46

clustering_data =[]

for each tr in Traces

for each ts in Timestamps

clustering_data.append(y(ts))

y(ts) is am­dimensional time series sample at time ts.

2.b) Density­based clustering of unique control mode changes:

id = DBSCAN(clustering_data,MinPts, n)

The output of DBSCAN is a p × 1 vector id containing cluster indice of each data point,

where p represent the number of data points in the clustering_data matrix.

Each cluster represents a control mode change ei ∈ E .

3) Learn the reset condition of each control mode change:

3.a) For each cluster, collect data sample before and at the time occurence of the corre­

sponding mode change:

for i in id

transition_data(cluster). append([y(ts− 1), y(ts)])

3.b) For each cluster, find the reset condition:

MultiVar_Polynomial_Regression(transition_data(cluster))

The output of MultiV ar_Polynomial_Regression is a linear polynomial regression of

the reset conditionRcluster.

4) For each cluster, learn the guard condition:

4.a) For each cluster, collect input data sample one step and two steps back in time at the

time occurence of corresponding mode change:

guard_data(cluster). append([yin(ts− 1), yin(ts− 2)])

yin(ts) is a q­dimensional time series sample at time ts, where q represents the

number of input continuous variables.

4.b) For each cluster, learn the polynomial regression of the guard condition Gcluster:

47

MultiVar_Polynomial_Regression(guard_data(cluster))

5) Learn non­linear flow equations for every unique control mode:

MultiVar_Polynomial_Regression(flow_data(mode))

flow_data(mode) is data comprised between a unique control mode interval.

7.2 N­HyMn Implementation Details

7.2.1 I/O Segmentation:

Every control mode change is not always conditioned on an external input variable.

For example, the CLAP Suspend before Low control mode is conditioned on the predicted

value of blood glucose BG(t), which is an internal variable of the CLAP. In addition, if

the effect of the control mode changes that are conditioned on internal continuous variables

is smooth without any drastic change on the observed continuous variables of the CPS,

then these control modes will go undetected. Thus, it is important to perform control mode

change detection on operational I/O traces to find control mode changes that are conditioned

on internal continuous variables. On the other hand, an actuator action of an agent­based

CPS does not always imply a control mode change. For example, within the Auto Basal

Mode of the CLAP, the insulin infusion rate (actuator action) may change at every time

step. In the Model­Aware scenario, this step will allow detection of unspecified control

mode changes. In the Model­Agnostic scenario, this step is essential since a specifications

reference model is not available. We apply RuLSIF change­point detection method on the

CLAP input/output traces, as shown in Fig. 7.1, to determine time stamps at which there

is a potential control mode change­point. At every sliding time step, the initial sample data

from SW1 is removed and an initial sample from SW2 is included at the end of SW1 while

a new sample data is added at the end of SW2. The PE score between SW1 and SW2 will

start increasing when SW2 starts including samples after a meal intake and a bolus infusion

48

Meal

t

𝐒
𝐆

𝑰 𝑩
𝒂

𝑰 𝑩
𝒐

𝑤

Subsequence
Sample 𝑌(𝑡)

𝑐

Figure 7.1: Input Trace (CGM readings SG(t)) and Output Traces (Basal IBa and Bolus
IBo Infusion Rates) of CLAP.

(if we assume that a meal input and the corresponding bolus infusion start their effect on

the human body directly after occurence). The average PE score will reach its peak when

SW2 contains mostly samples from the effect time interval of the meal bolus injection on

the human body, while SW1 does not contain samples from the effect time interval. Thus,

the window size should be the estimated peak time interval of the actuation on the physical

environment. For CLAP, the insulin pump uses rapid acting insulin which starts to take

effect on the subject 10 minutes after injection with a peak time of 30 minutes. In our

experiment, the window size is 20 minutes.

7.2.2 Control Modes Clustering:

The second step is to cluster unique controlmode transitions. N­HyMn employs density­

based spatial clustering of applications with noise (Matlab R2019 DBSCAN) on time series

49

I/O traces to find clusters of unique control mode transitions. The output of this clustering is

unique control modes. In this experiment,MinPts is set to 10 which means that at least 10

instances of the same control mode transition should be available in each cluster. N­HyMn

can learn at most ((p div MinPts) − 1) HA representations with δ control modes where

δ ∈ [2, (p divMinPts)] and p represents the total number of available control mode change

instances, assuming that any CPS has at least two distinct control modes. For example, if

we have n = 50 control mode change instances andMinPts is set to 10, thus N­HyMn can

learn at most 5 clusters, where each cluster contains 10 instances.

7.2.3 Reset Conditions Learning:

For the reset condition mining, collected I/O operational traces should be classified into

two sets: a training set for learning the HA components and a testing set for verifying the

accuracy of the learned component. For each cluster of unique control mode transition,

N­HyMn derives the corresponding reset condition using the following strategy: 1­If the

output variable value after the control transition occurs remains constant for every mode

transition in the cluster, then the reset condition is a constant value of actuation. 2­ If the

controller output is varying, then the reset condition is a linear function connecting outputs

variables (e.g CLAP output traces {IBa(n), IBo(n))} with inputs (e.g CLAP input traces

{SG(n), CHO(n)}). N­HyMn find multiple reset conditions for the same control mode

transition considering every possible combination of input variables since we do not know

which input variables make a significant contribution in estimating the linear function. N­

HyMn then finds
∑θ

ϑ=1
θ!

ϑ!(θ−ϑ)!
possible reset conditions for the same control mode transi­

tion, where θ represents the total number of input variable and ϑ the number of variables

being chosen at a time. For that, N­HyMn considers the values of the input variables I at

times of mode transitions then develops a n×d observationmatrixORmi,mj
, where each col­

umn corresponds to an observation of the continuous state variables at the time of the mode

50

transition from mode mi to mode mj and there are d such instances when the same mode

transition is observed. N­HyMn applies the multivariate non­linear polynomial regression

on the observation matrix generated for each cluster to estimate the possible reset conditions

for every unique control mode transition. N­HyMn then chooses the reset condition with

the least CVMAE to be considered the most accurate reset condition. This CVMAE has to

be extremely small (≈ 0), otherwise N­HyMn delivers an error message that no accurate

reset condition can be learned for the corresponding control mode transition (a feedback

message is provided that in this case additional Tracesmay provide additional information

to the reset condition mining process).

7.2.4 Guard Conditions:

As discussed in the definition of hybrid automata in Section 2.3, there can be two types

of guard constraints: a) rectangular constraints, which are expressed as simple threshold

on input continuous state variables (e.g SG(n) > 180) and b) diagonal constraints, which

are expressed as linear combination of continuous state variables (e.g the guard condition

((sxa − sxb > 10) & (sya − syb > 10)) of the driver assist systemDuggirala et al. (2015a)).

N­HyMn considers the values of the input control variables I one step and two steps back in

time at times of mode transitions (the mode transition occurs as a result of a guard condition

that was satisfied one step back in time, but it was not satisfied two steps back in time). Then,

N­HyMn develops a n× d observation matrixOGmi,mj
, where each column corresponds to

an observation of the input control variables one step and two steps back in time at times of

mode transitions and there are d such instances when the same mode transition is observed.

For rectangular guards, the columns of the observation matrix will be linearly independent

and hence will have full rank. Thus, in caseOGmi,mj
is full rank, N­HyMn obtains the rows

that have constant values over all observation instances and the guard is expressed as a

conjunction of equality condition on all such continuous state variables which have constant

51

values. Hence the output of this stage is an expression of the form Gmi,mj
=

⋃
{xi = qi},

where qi is the constant value in the guard observation matrix. For non­rectangular guards,

the guard observation matrix will not be full rank. In such a case, N­HyMn considers each

continuous variable xi and express it as a linear combination of the other variables using

the multivariate polynomial regression method. i.e., xi = A

{
x1 x2 . . . xn 1

}
, where

A is the coefficients matrix. The output of this step expresses constraints in the form of

equalities. Thus, we consider the values of the differentials of the guard condition; that is

to say if we have a guard expression as Gmi,mj
= {x1 = q1}. We check ẋ1 for all observed

instances before the mode change, then the condition for x1 is modified to x1 ≥ q1 if

ẋ1 > 0 or to x1 ≤ q1 if ẋ1 < 0. If the guard is expressed as Gmi,mj
= {ax1 + bx2 =

c}, then we consider the differential of the function f = ax1 + bx2. Based on ḟ , the

corresponding relation operator is modified accordingly. Finally if the sign of ẋi is not

consistent among all observed instances, it confirms that no consistent guard conditions

exist for the partial learned hybrid automata. Using the above­mentioned rules, N­HyMn

mines consistent guards from the observations.

7.2.5 Learning Flow Equations:

N­HyMn applies multivariate non­linear polynomial regression analysis to estimate the

non­linear ordinary differential equations that represent the environment’s predictivemodel.

As shown in Fig. B.1, the hybrid automaton of the AP control system uses the non­linear

Bergman minimal model to estimate the predicted value of blood glucose level BG(t).

7.2.6 N­HyMn Complexity

The runtime of the I/O segmentation step in HyMn uses RuLSIF algorithm for change de­

tection (Liu et al. (2013)). The RulSIF divides each I/O trace for a variable into windows

of a given size w. It then takes two consecutive windows and performs a density difference

52

estimate. This step requiresO(w2) computation of the density function. Each sample point

needs a weight parameter and this involves solving a convex optimization problem using

gradient descent with complexity O(2B/e), where B is the upper bound on the absolute

values of the variable and e is the error tolerance (Bubeck et al. (2015)). For each window

the complexity of the density estimate based difference computation is O(w2 + 2wB/e).

This density estimate is performed for k/w windows, where k is the total number of sam­

ples in the I/O trace of a variable. Hence for n dimensions, the complexity of the RuLSIF

algoritm is O(nk
w
(O(w2 + 2wB/e))). The worst case runtime for control mode cluster­

ing and mining reset condition is O(n2). Flow extraction has a complexity of O(kdim2),

dim is the largest order of monomial used in the multivariate polynomial regression model

(Agrawal et al. (2014)). For the guard mining, for every transition we would have on an

average k/|T | segments or in the worst case k segments. The guard observation matrix

will then be of size m × k in the worst case. The guard mining has an observation matrix

of worst case size m × k, hence has a complexity of O(max(m, k)3). Hence the overall

computational complexity of the N­HyMn algorithm is: O(nk
w
(O(w2 + 2wB/e)) + n2 +

max(n, k/|T |)3 + kdim2 + k/|T |+max(m, k)min(m, k)1.4 +mk+max(m, k)3). If we

consider that k >> m, then the overall complexity of the N­HyMN reduces to O(kn2).

53

Chapter 8

N­HYMN: EXPERIMENTS

Through our collaborationwithMayoClinic, we collected data from the operation ofMedtronic

Minimed 670G for 60 Type 1 diabetic subjects over the period of three months. In this sec­

tion, we experimentally investigate the performance of N­HyMn using operational I/O time

series traces in two scenarios:

Model­Agnostic: No reference specifications model is available. In this case, the learned

HA is the most approximative specifications model of operation of the Minimed 670G.

Model­Aware: A certified reference specifications model of Medtronic Minimed 670G

presented in Appendix A. In this case, we implement the reference specifications model to

generate traces for internal input variables using operational I/O time series data and the

certified reference specifications model. Our aim is to detect discrepencies between the

learned operational model and the approved reference specifications model of Medtronic

Minimed 670G, as depicted in Fig. 8.1.

8.1 Model­Agnostic Learning Scenario

The control structure of the Medtronic Minimed 670G artificial pancreas system is com­

posed of control loops like the one shown in Fig. B.1. In general, a controller provides

control actions in the form of insulin infusion delivery rate ID(t) to control blood glucose

level in the human body and to enforce the behavior of the controlled process. The control

algorithm determines the control actions to perform while the process model is utilized to

make these control decisions. We collect input traces (CGM readings SG(t) and meal carbs

announcement CHO(t)) and output traces (basal infusion rates IBa(t) and bolus infusion

rates IBo(t)) since these are the only observed time series traces we can collect from the

54

A

IoT enabled
sensor AI/ML

Controller

Deployment A

Deployment B

Deployment C

Human Machine Cooperative
Manufacturing

Large
scale
sales

Data driven feedback

Data driven feedback

Data driven feedback

IoT Enabled Safety Assured Manufacturing

Approved
Specifications

Model

Learned
Operational

Model

Compare

Update Safety Conclusions

IoT enabled
Actuator

User
Input

Figure 8.1: IoT Enabled Manufacturing of Industry 4.0 Applications.

operation of the Medtronic Minimed 670G system in the field. We apply N­HyMn to the

collected I/O time series traces. The I/O segmentation step of N­HyMn shows that there is

a potential mode change 10 minutes to 30 minutes following a bolus injection, as shown in

Fig. 8.2. We use N­HyMn to learn six HA representations with a number of control modes

δ ∈ [2, 7].

The reset condition operation learns linear functions connecting each output variable with

input variables for every cluster of unique control mode change. The only observed op­

erational I/O traces the Medtronic Minimed 670G artificial pancreas system are {SG(n),

CHO(n), IBa(n) , and IBo(n). However, using limited preliminary knowledge about

CLAP, we assume that this control system may not only depend on the observed input

signals SG(t), CHO(t) but also on other traces that can be easily deduced from the op­

erational I/O traces. Thus, we set the eight following variable traces {SG(t), CHO(t),

SG(t − 1), ID(t − 1), ID(t − 2), ID(t − 3), ID(t − 4), dSG
dt

(n)} as input variables where

ID = IBa + IBo and ID(t) as output variable. Let’s consider the control mode transition

55

Potential Mode Change-Points

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9

Figure 8.2: Pearson Divergence Score Trace of an I/O Operational Trace of CLAP.

from m1 to m2 of HA3 with four control modes as shown in Fig. 8.3 and the output IBo

which can be linearly dependent on [1,8] input variables. For ease of explanation, we re­

strict the input variables to {SG(t), CHO(t)}. We use observed traces for the first seven

days of simulation as learning traces while the remaining nine days of simulation are used

for accuracy testing. The columns of the guard condition observation matrix OGm1,m2
rep­

resent CHO(t−2), CHO(t−1), SG(t−2), and SG(t−1) respectively. We limit the input

variables to CHO and SG for ease of explanation.

OGm1,m2
=



0 3.33 104.74 104.69

0 2.66 169.30 169.36

0 3.33 108.86 108.84

0 3.33 101.97 101.93

0 3.33 102.59 102.56

0 3.33 83.79 83.81

0 3 122.75 122.67



Table 8.1 shows the CVMAE of the learned reset condition IBo for the control mode transi­

tionm1 tom2 ofHA3 as a linear function of the output variable IBo and one input variable

56

Figure 8.3: Density Based Clustering of Unique Control Modes.

Variables SG(n) CHO(n)

SG(n) 0.1461(U/h) 8.3466−16(U/h)

CHO(n) 8.3466−16(U/h) 7.3282−16(U/h)

Table 8.1: Cross Validation Mean Absolute Error (CVMAE) of Possible Reset Conditions
IBo fromm1 tom2 in HA3.

(SG(n) or CHO(n)) or two input variables (SG(n) and CHO(n)). IBo = f(CHO) repre­

sents the most accurate reset condition equation of the control mode transition from mode

m1 to mode m2 of the hybrid automata representation HA3 with a CVMAE of 8.3466−16

Unit/hour (U/h), as shown in Table 8.1.

N­HyMn infers the following guard condition for the control mode transition m1 to m2 in

𝒎𝟏

𝑰𝑩𝒂 𝒏 = −12.52 + 8.24𝑆𝐺 𝑛 − 8.09𝑆𝐺 𝑛 − 1 − 41.39
𝑑𝑆𝐺 𝑛

𝑑𝑡
+

0.14𝐼𝐵𝑎 𝑛 − 1 − 0.025IBa n − 2 + 0.9IBa n − 3 − 0.16303IBa n − 4
𝑰𝑩𝒐 𝒏 = 0

Start

𝑪𝑯𝑶 𝒏 ≥ 𝟎. 𝟑𝟑𝒏 = 𝒏 + 𝟏

𝒎𝟐

𝑰𝑩𝒂 𝒏 = −41.15 − 3.40CHO(n) + 0.74𝑆𝐺 𝑛 + 0.87𝐼𝐵𝑎 𝑛 − 1
−0.59𝐼𝐵𝑎 𝑛 − 2 + 0.96𝐼𝐵𝑎 𝑛 − 3 − 1.85 𝐼𝐵𝑎 𝑛 − 4

𝑰𝑩𝒐 𝒏 = −3.87−12 + 3461.53 𝐶𝐻𝑂(𝑛)

Figure 8.4: Partial HA1 with Two Control Modes m1 and m2 and Output Variables IBa

and IBo.

57

Figure 8.5: Comparison between Learned IBa (Star) and Observed IBa (Square) in Control
Modem1 of HA1.

minutes

Figure 8.6: Comparison between Learned IBa (Star) and Observed IBa (Square) in Control
Modem2 of HA1.

58

HA3: Gm1,m2 = CHO(n) ≥ 2.66 . Fig. 8.4 depicts the partially learned hybrid automaton

HA1 with control modesm1 andm2, guard conditions, and control output variables IBa and

IBo. Fig. 8.5 shows a 4 hour comparison from the second day of testing traces between the

run test results of the learned equation IBa of control mode m1 in HA1 and the actual IBa

observed trace while Fig. 8.6 shows the same comparison for 252 hours of data in control

mode m2. In order to identify the most accurate HA from the 6 learned HA representa­

tions, we run the different learned HA representations in C2E2 (Duggirala et al. (2015b))

and compare their run test results to operational I/O data of the testing set. We perform

this comparison by calculating the RMSE between the output of each HA to the observed

output traces. The user defines the RMSE error bound according to their application. In

our experiment, we set the error bound to 2%. All six candidate HA representations satisfy

the RMSE error bound. The HA candidate model with two control modes HA1 represents

the most accurate observed operational model of the Medtronic Minimed 670G. The RMSE

error using HA1 for five test days is reported in Table 8.2. The mean RMSE is 7.763−5

with stdev. 2.25−6.

Test Day 1 2 3 4 5

RMSE (U/h) 0.79−4 0.75−4 0.8−4 0.75−4 0.77−4

Table 8.2: HA1 RMSE Per Day.

8.2 Model­Aware Learning Scenario

We apply N­HyMn to historical operational data collected from the usage of Medtronic

Minimed 670G insulin infusion pump. We use UVA/Padova simulator to implement the

agent’s control structure of the Medtronic Minimed 670G, presented in Appendix A, to

generate traces for internal variables using operational I/O traces collected from the usage

of Medtronic Minimed 670G insulin infusion pump and the approved operational model of

59

the Basal Auto mode of Medtronic Minimed 670G shown in Fig. A.1. N­HyMn mines a

HA model that does not match every I/O operational data result. At this point, we realized

that N­HyMn was able to match the initial I/O operational traces that use the initial static

PID+IFB model, but it fails at estimating the remaing I/O time series data. This can be a

results of an adaptation of the parameters of the PID+IFB controller that occurs periodically

after a specific time window. However, the FDA certification documents do not mention

the self­tuning component, which we later found in a patent application by the manufacturer

(Patent No.: US 8,777,924 B2 Jul. 15, 2014). As reported in the patent application, the PID

controller possesses a self­tuning model that updates the controller gain parameters using

information collected from the CGM sensor data. If a pre­selected condition is satisfied

within a predefined time window, the controller gains (KP , KI , and KD) are increased

by a factor (1+α) at the end of each time window, where α is the gain update value. The

predefined time window size and gain variation update model vary from one embodiment

to another and a very limited release of details of the inner workings of the self­tuning

component was provided which makes it extremely challenging to extract the specification

for the tuning mechanism from I/O traces. As an initial input, we provide N­HyMn with

an array of different values of α ranging from ­5 to 15 to correctly estimate I/O operational

time series data. Fig. 8.7 shows the gain variation update (α) for one T1D Minimed 670G

user over a period of 200 min that allowed N­HyMn to correctly learn the exact operational

I/O values. However, these results need further investigation and give us an insight into

our future work. Poor documentation about the control logic of the control system is one

of the compounding factors leading to fatal accidents since it prevents practitioners (e.g

Boeing 737 Max 8 pilots) from identifying the problem early and stopping the occurrence

of catastrophic accidents (e.g MCAS). For learning the glucose subsystem model of the

human model (dynamics evolution equations) used by the agent to predict blood glucose

value, we assume the availability of plasma glucose concentration BG(t), plasma insulin

60

G
ai

n
 U

p
d

at
e

 α
minutes

Figure 8.7: Controller Gain Parameter Variation Updated Values α for a T1D Minimed
670G Subject.

𝒅𝑩𝑮

𝒅𝒕

minutes

Figure 8.8: Learned Rate of Change of BG(t) (Dashed) and Observed dBG

dt
(t) (Solid) in

Control Modem1 andm2 of HA1.

concentration I(t), and interstitial insulin concentration IEFF (t), that we generated using

the UVA/Padova simulator (which uses the same glucose subsystem model). We collect

these traces from the UVA/Padova T1D simulation test results and use them to learn the

Bergmanminimal model (glucose subsystemmodel) of the simulated T1D subject Bergman

et al. (1979) . For each control mode, N­HyMn infers the following non­linear ordinary

differential equations for the two control modem1 andm2 (Equation (8.1)).

dBG

dt = 0.247X(t)− 1.367
−5

BG − 0.001BG(t)X(t)− 7.31
−8

BG(t)
2 + 0.01

dIEFF

dt = −0.015I(t)− 1.09
−8

BG(t)− 8.774
−6

BG(t)I(t) + 1.596
−11

BG(t)
2 + 1.863

−6

(8.1)

61

As shown in Fig. 8.8, the learned glucose model would underestimate glucose values for

t ≤ 420 minutes since it does not take into account the counter­regulation response to

hypoglycemia (BG < Gb) Man et al. (2014).

62

Chapter 9

RELATED WORK

Model synthesis and mining has been a topic of significant interest. The existing works on

this topic can be studied under the following five categories:

9.1 Timed Dynamical Model Mining

Works of Sethia et al. Jin et al. (2015), Fainekos et al. Hoxha et al. (2018) and oth­

ers (Prabhakar et al. (2018); Narayan et al. (2018); Nenzi et al. (2018)) have considered

mining temporal constraints for Signal temporal logics (STLs) and Metric temporal logic

(MTLs) from simulation traces of a CPS. Fainekos et al. also show a method for extracting

unsafe parameter range of MTL models of CP control systems Hoxha et al. (2018). There

are two drawbacks of the proposed solutions: a) STLs and MTLs in general can answer

questions related to temporal alignment of events. However, they cannot be used to model

non­linear temporal dynamics. b) The recent works in this domain focuses on simulation

traces of CPS. As such a significant advantage is full observability of the system. In real

life deployments the system is often under­determined. For example, although the PID con­

troller of the Minimed 670G system uses five different parameters to compute the actuation

output only one is observable Steil et al. (2011). Bortolussi et al. Nenzi et al. (2018) pro­

poses a technique to recover STL specifications using real life noisy data, but their system

still is fully observable.

63

9.2 Hybrid Model Synthesis

Several previous work have proposed algorithms and frameworks for mining or synthe­

sizing a hybrid automata. Lyde and Might presented an approach for synthesizing hybrid

automata from control code of cyber­physical systems, which is then applied in model­

checking safety verificationLyde and Might (2013). Minopoli and Frehse developed a tool

for translating a Simulink model into a formal verification model ­hybid automaton­ that is

used for reachability analysis safety verification Minopoli and Frehse (2016b). However,

our work differs in that we infer a hybrid automaton from input/output operational traces.

9.3 Hybrid Model Mining

Medhat et al. proposed a framework for mining Mealy automata from black­box sys­

tems using only execution traces. Their framework is limited to systems that 1) exhibit input

changes in the form of step functions and these changes are assumed to have an instanta­

neous effect in the output trace and 2) guards conditions are time­based, which is often not

observed in practice Medhat et al. (2015). Balakrishnan et al. presented an algorithm to

determine a maximum­likelihood hybrid system model using only continuous output of the

system Balakrishnan et al. (2004), but this work assumes that guard conditions are indepen­

dent of the continuous state variables which limits the class of hybrid automata that can be

inferred using the proposed technique. Blackmore et al. extended Balakrishnan et al. work

by including autonomous mode transitions which are conditioned on the continuous state,

but their approach assumes that the guard conditions are given Blackmore et al. (2007).

Ly et al. presented a high computational complexity multi­modal symbolic regression al­

gorithm to infer non­linear symbolic expressions that model the behavior of a dynamical

system from unlabeled time series data Ly and Lipson (2012). Unlike N­HyMn, the learning

64

algorithm infers non­linear dynamics evolution of a dynamical system with no closed­loop

control feedback and requires the number of modes to be fixed a priori. Moreover, the be­

havior of the system is defined as a strict input/output relationship, as opposed to N­HyMn

where behaviors are represented by differential equations. In addition, some of the related

approaches require a priori knowledge of number of discrete modes Santana et al. (2015)

Ly and Lipson (2012), as opposed to N­HyMn. Niggemann et al. share identical motiva­

tion for the automated learning of hybrid system’s behavioral model through HyBULTA

and application of the learned model to detect anomalies in the overall system behavior

(Niggemann et al. (2014), Niggemann and Lohweg (2015)). On the other hand, HyBUTLA

Niggemann et al. (2012) infers hybrid timed probabilistic automata while N­HyMn relaxes

this timing constraint which allows N­HyMn to infer hybrid automata models for a larger

class of hybrid systems. Summerville et al. and Soto et al. propose distinct methodologies

that synthesize linear hybrid automata from observed run­time behavior of control systems

(Summerville et al. (2017), Soto et al. (2019)). However, N­HyMn differs in the fact that

their work is limited to systems where the derivatives of the continuous state variables are

constant and guards are simple rectangular conditions over the system variables, which is

not always observed in practice. Soto et al. proposed membership­based synthesis algo­

rithm takes as input piece­wise linear (PWL) function that approximates time series data,

whereas N­HyMn uses directly time series traces as input. Thus, membership­based syn­

thesis method may not be applicable for non­linear systems, since PWL approximation

introduces a tradeoff between accuracy and tractability. CHARDA requires an exhaustive

construction of all possible models with a condition that a likelihood function is available

for a given template model. In addition, CHARDA’s segmentation and mode clustering

approach is based on a principled penalty function for model complexity. Thus, two dis­

tinct mode can be merged into a single mode if the latter is less complex. This cannot be

applicable in situations where learning the exact system model is crucial.

65

In this work, our goal is to learn the exact initial specifications model for model’s confor­

mance verification purposes Summerville et al. (2017).

9.4 Conformance Testing

N­HyMn shares similar motivation of the verification of the conformance between a

running CPS and the formal specifications of its required behavior, which is referred to

as conformance testing (Woehrle et al. (2012), Abbas (2015)). Woehrle et al. presented

a conformance testing method that relies on mapping the specifications of the system and

its implementation generated traces to timed automata and verifying whether each gener­

ated implementation trace is included in the traces of the specifications timed automaton.

However, their approach is solely limited to the class of timed automata. As opposed to

this conformance notion, other works define conformance testing as a closeness measure

between an implementation and the specifications model, whose computation solely relies

on system traces (Abbas (2015), Araujo et al. (2018)). However, even for simple linear

systems, providing guarantees about the conformance degree remains a challenge.

66

Chapter 10

VERIFICATION AI­ENABLED CPS WITH LEARNING AGENT

A­enabled CPSwith learning agents adjust their behavior in response to the changing physi­

cal system in order to achieve improved control. This significantly increases the complexity

of model checking verification and reachability analysis techniques. For formally analyz­

ing learning agents, we explore co­simulation of self­adaptive predictive (SAP) controllers

and propose a novel co­simulation platform that can be used to analyze the effectiveness

of verification and reachability analysis techniques developed for SAP controllers. SAP

control is a promising approach to regulate Cyber­Physical Systems (CPS) with changing

conditions by adjusting the control parameters. In the medical domain, self­adaptive con­

trol theory has gained increasing interest where emerging innovative medical devices adopt

it to deliver more accurate, personalized treatment to patients (Turksoy and Cinar (2014);

Hovorka et al. (2004)). For example, recent artificial pancreas (AP) control systems ad­

just insulin administration based on prediction over patients’ blood glucose levels, where

self­adaptation mechanisms optimize control parameters based on feedback from patients

to account for the ever­changing characteristics of their glycemic regulatory system (Eren­

Oruklu et al. (2008)). Simulation­based modeling tools, such as Matlab/Simulink are often

used to model and evaluate the design of medical devices with self­adaptive predictive con­

trol.

In SAP, the controller responds not only to the dynamics of the physical system but also to

the subtle changes in the dynamics over time. This introduces time variance in the models

used for analysis and design of SAP controllers. Typically models deal with time variance

of the parameters describing the physical system and a commonmethod to model is through

a system of differential equations involving the parameters.

67

Model Predictive

control algorithm

Insulin

Infusion rate

𝑰𝒕

Glucose

-meter values

𝑮

Detecting

changes

Update

Controller

configuration

Figure 10.1: Artificial Pancreas: Self Adaptive Predictive Control System.

Formal safety verification of SAP controllers lies in verifying whether a certain unsafe set

can be reached from a set of initial states. This verification is typically performed through

a hybrid analysis of the co­variation of the inputs and outputs of the controller following

a discrete control strategy and the time variation of the physical system parameters. As

such if the physical model is time invariant, the verification problem is often intractable

(Moon et al. (1998) ,Ravi and Somenzi (1995)). Techniques such as reachability analysis

for the time invariant case cannot provide exact solutions and instead approximations are

used (Chutinan and Krogh (2003)). The time variance of the physical system models in SAP

is an added complexity which further exacerbates the problem. There has been very limited

work on verification of SAP controllers assuming time variance of the physical models.

Even the simpler problem of co­simulation of SAP controllers and physical system has not

been studied in extensive detail.

Example of Self­Adaptive Predictive Control Systems: Artificial Pancreas (AP) systems

are safety critical cyber­physical systems and are used for automated control of blood glu­

cose level for Type1 diabetic patients. The aim is to maintain the prescribed level of blood

glucose, and avoid hypoglycemic and hyperglycemic events. These dangerous events hap­

68

pen as a result of an inaccurate infusion rate of insulin It, e.g. if the glucose concentration

G goes above 180mg/dl, it can lead to hyperglycemia while low glucose level i.e. below

50mg/dl can cause hypoglycemia. Self­adaptive predictive AP, shown in Figure 10.1, con­

sists of a sensor that measures patient’s glucose concentration and predictive control algo­

rithm which estimates the value of the patient’s blood glucose concentration and computes

the insulin infusion rate to maintain until the next time step. Different conditions including

meal consumption and physical activity can cause tremendous change in the parameters of

the predictive model describing blood glucose and insulin interaction. This model is non­

linear in nature and is used by the controller to predict the value of blood glucose 30 minutes

ahead in time and outputs the right amount of insulin infusion rate It for the infusion pump

to maintain until the next time step. Therefore, adjusting controller parameters in response

to disturbances or systemic changes is a promising approach to regulate AP and to achieve

improved control Hovorka et al. (2004).

10.1 Related Work

Model checking is one of the techniques used to ensure the correctness of the system

by exploring all the possible environment states and ensuring that the system behaves as

required in every state. However, the system model employed is not an accurate represen­

tation for time­invariant systems (Jacklin et al. (2004)). On the other hand, reachability

analysis over hybrid automata provides a higher level of safety verification and has been

extensively studied in the literature for time­invariant systems (Frehse (2015)). However,

exact computation of reachable sets is still considered a difficult task and becomes even

more complicated for time­varying systems Althoff et al. (2011). Therefore, union of short­

term simulations on a set of initial conditions has been proposed as an approach to compute

overapproximation of reachable sets for time­varying systems (Althoff et al. (2011)).

Iftikhar and Weyns have proposed an approach to validate behavioral properties of de­

69

centralized self­adaptive systems (Iftikhar and Weyns (2012)). This approach focuses on

checking that the implementation of the system behaves complying with the model. The

self­adaptive system is modeled with timed­automata and required properties are specified

using timed­computation tree logic. The model is then verified using Uppaal (Larsen et al.

(1997)). Another formal verification approach of adaptive real­time systems to verify tasks

schedulability has been proposed by Hatvani (2014). Hatvani uses adaptive tasks automata

to model adaptive real­time systems and introduces schedulability predicates as part of the

adaptive task automata to define the schedulibility of a task. Tasks can be described in

the model as long as their behavior can be modeled using task automata. The main con­

tribution of the authors lies in defining decidability to prevent missed task deadlines when

adjustments to the altered environmental conditions are performed.

The following are the main assumptions of the previously discussed approaches: 1­ adap­

tation scenarios have to be predefined, 2­ an environment model should be available since

it specifies the failure events that have to be tested, and 3­ proper test selection must be de­

fined since exhaustive testing of systems is not feasible. None of the discussed approaches

can be utilized to model and analyze SAP control systems since adaptation scenarios can

not be predefined for SAP systems where configuration functions are linear combination

between the parameters of the predictive model and the changing conditions of the environ­

ment. In addition, an environmental model with changing characteristics is not available

for SAP control systems. Similarly, Tan has presented a model­based framework for de­

velopping self­adaptive systems (Tan (2006)). Tan introduced a configuration language to

specify reconfiguration requirements and events triggering the reconfiguration are speci­

fied in temporal logic while the system behavior is depicted in the hybrid automata model

of the system. However, the reconfiguration mechanism is limited to a constant function

which can not be applied to predictive self­adaptive control system, where the configura­

tion function is a linear combination between the parameters of the predictive model and

70

Change
detection
and Self-

Adaptation
Mechanism

Mathworks Simulink

Blood

Glucose
level

Update
patient

predictive
model

HA
Supervisor

(Python
script)

Patient
Predictive

Model

Predictive
Control

SpaceEx- Hybrid Automata

New
reachable

states

u
n
i
o
n

Final
Reach

Set
New patient

predictive
model

Insulin infusion rate 𝑰𝒕

Figure 10.2: SAP Co­Simulation Framework. Mathworks and SpaceEc Executing Simul­
taneously

the changing conditions of the environment.

The proposed framework aims at designing and formally verifying self­adaptive predictive

(SAP) control systems using co­simulation and reachability analysis. This co­simulation

framework represents the first step towards developing a complete verification methodol­

ogy for SAP controllers. It represents a time synchronized simulation of the SAP controller

discrete decision making, physical model update method, and physical system evolution.

10.2 Proposed Approach: Co­Simulation Framework

The proposed approach depicted in Figure 10.2 is an alternative modeling technique

for devices with self­adaptive predictive control. For ease of understanding, we present

the SAP co­simulation framework for the artificial pancreas self­adaptive predictive sys­

tem presented in Figure 10.1. The following represent the main steps of the co­simulation

framework depicted in Figure 10.2:

• A patient predictive model is used to estimate the value of blood glucose 30 minutes

ahead in time and computes the insulin infusion rate to maintain until the next time

step. This model is represented by nonlinear equations 10.1, 10.2 and 10.3.

71

Ẋ represents the rate of the variation in the interstitial insulin concentration, Ġ is the

rate of change of blood glucose concentration for the infused insulin concentration

X , and İ is the variation in plasma insulin concentration (Andersen and Højbjerre

(2002)).

Ẋ = −k2X(t) + k3(I(t)− Ib), (10.1)

Ġ = −X(t)G(t) + k1(Gb −G(t)), (10.2)

İ = −k4I(t) + k5(G(t)− k6)t. (10.3)

This model contains parameters k1, ..., k6 that are likely to change and need to be

adapted for accuracy purposes. Some conditions including meal comsumption, ex­

ercise, and emotional changes can be the cause of these changes Turksoy and Cinar

(2014). We first derive an approximate linear system that matches closely with the

real AP system (Lamrani et al. (2018)).

• The change detection and self­adaptation mechanism detects changes in the behavior

of the human body using recent blood glucose measurements. These changes phys­

ically correspond to significant change in glucose levels Eren­Oruklu et al. (2008).

The change detection method compares the expected value of the model parameters

and the vector of unbiased parameter estimates computed. It then adapts the predic­

tive model accordingly by re­estimating the changing parameters of the model using

the more recent data only Lamrani et al. (2018).

• The HA supervisor is in the form of a python script and performs the following

steps:

1. Generates initial model file in SpaceEx’s XML format with initial patient pre­

dictive model settings (k1, k2, ..., kn) .

72

2. Calls SpaceEx executable file to run the command line program that takes a

model file in XML format and a configuration file that specifies the initial states,

sampling time, and other options. The sampling time can be adaptively com­

puted by the reachability analysis support functions or manually selected taking

into consideration that a discrete transition should not occur between two con­

secutive sampling times. SpaceEx analyzes the system and produces an output

file O1.txt containing the reachable states computed.

3. Once a change is detected, it generates a new patient predictive model XML

file with new parameter settings (k′
1, k

′
2, ..., k

′
n).

4. Calls SpaceEx executable file to run the command line program with the new

generated model file. SpaceEx analyzes the system and produces an output file

O2.txt containing the reachable states.

5. This process continues until termination criterion is satisfied.

• The final reach set of the self­adaptive control system is a union of all reachable states

obtainedwith all controller configurations generated at runtime. Figure 10.3 shows an

example of reach set computation for the artificial pancreas self­adaptive predictive

control system. At every iteration, a new controller configuration is generated and

the reach set is computed accordingly. The final reach set is obtained by combining

all the regions of the state space that the system has visited, as shown in Figure 10.3.

The proposed approach strives to:

• Support modeling of predictive control systems using hybrid automata, and runtime

self­adaption of hybrid automata based on new configurations from other modeling

tools such as Simulink.

73

Unsafe set Unsafe set Unsafe set

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

Union of all reach sets

Initial patient predictive model
with parameters 𝒌𝟏, …𝒌𝟔

Modified patient parameters
𝒌𝟏
𝒏, …𝒌𝟔

𝒏
Modified patient predictive model

with parameters 𝒌′𝟏, … 𝒌′𝟔

…

160

140

120

100

G G G

Unsafe set

Figure 10.3: Reach Set of the Artificial Pancreas Self­Adaptive Predictive Control System.

• Provide an alternative modeling technique for devices with self­adaptive predictive

control.

• Verify the safety of self­adaptive predictive control devices by checking whether the

sets of reachable states of the system intersects with the unsafe set.

74

Chapter 11

CONCLUSIONS AND FUTURE WORK

The operational safety verification approach we proposed is based on a data science driven

algorithm N­HyMn that infers non­linear hybrid automata representation from I/O opera­

tional traces of Industry 4.0 agent­based cyber­physical systems. The operational model

can be learned in two different scenarios: a) model­aware, where the operation of the CPS

can be compared with the specifications given by the manufacturer to ensure that the op­

eration of the system conforms with the safety assured design, facilitating the detection

of intentional or unintentional deviations from the certified specifications. and b) model­

agnostic, where in absence of a specification model, the learned hybrid automaton can be

used to evaluate potential safety threats through reachability analysis. Future research can

involve developing an approach that automates and optimizes I/O data collection since it is

crucial that the data used for model learning is collected from different regions of interest

of the operation of the AI­enabled CPS. Another important direction is the analysis of the

effect of the learning error on the learned reach set in order to correctly analyze the area of

intersection between the unsafe set and learned reach set (for the unsafe safety guarantee

case). Finally, since many security losses overlap with safety accidents, the proposed safety

verification approach can be leveraged to prevent security losses.

75

REFERENCES

Abbas, H., G. Fainekos, S. Sankaranarayanan, F. Ivančić and A. Gupta, “Probabilistic tem­
poral logic falsification of cyber­physical systems”, ACM Transactions on Embedded
Computing Systems (TECS) 12, 2s, 1–30 (2013).

Abbas, H. Y., Test­Based Falsification and Conformance Testing for Cyber­Physical Sys­
tems. (Arizona State University, 2015).

Agrawal, A., P. D. Deshpande, A. Cecen, G. P. Basavarsu, A. N. Choudhary and S. R.
Kalidindi, “Exploration of data science techniques to predict fatigue strength of steel
from composition and processing parameters”, Integrating Materials and Manufacturing
Innovation 3, 1, 8 (2014).

Althoff, M., C. Le Guernic and B. H. Krogh, “Reachable set computation for uncertain
time­varying linear systems”, in “Proceedings of the 14th international conference on
Hybrid systems: computation and control”, pp. 93–102 (2011).

Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.­H. Ho, X. Nicollin, A. Oliv­
ero, J. Sifakis and S. Yovine, “The algorithmic analysis of hybrid systems”, Theoretical
computer science 138, 1, 3–34 (1995).

Alur, R., C. Courcoubetis, T. A. Henzinger and P.­H. Ho, “Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems”, in “Hybrid systems”,
pp. 209–229 (Springer, 1992).

Alves, E. E., D. Bhatt, B. Hall, K. Driscoll, A. Murugesan and J. Rushby, “Considerations
in assuring safety of increasingly autonomous systems”, (2018).

Aminikhanghahi, S. and D. J. Cook, “A survey of methods for time series change point
detection”, Knowledge and information systems 51, 2, 339–367 (2017).

Ammann, P. and J. Offutt, Introduction to software testing (Cambridge University Press,
2016).

Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman and D. Mané, “Concrete
problems in ai safety”, arXiv preprint arXiv:1606.06565 (2016).

Andersen, K. E. and M. Højbjerre, “A bayesian approach to bergman’s minimal model”,
Insulin 50, 100, 200 (2002).

Araujo, H., G. Carvalho, M. Mohaqeqi, M. R. Mousavi and A. Sampaio, “Sound confor­
mance testing for cyber­physical systems: Theory and implementation”, Science of Com­
puter Programming 162, 35–54 (2018).

Asarin, E., O. Bournez, T. Dang and O. Maler, “Approximate reachability analysis of
piecewise­linear dynamical systems”, in “International Workshop on Hybrid Systems:
Computation and Control”, pp. 20–31 (Springer, 2000).

76

Balakrishnan, H., I. Hwang, J. S. Jang and C. J. Tomlin, “Inferencemethods for autonomous
stochastic linear hybrid systems”, in “International Workshop on Hybrid Systems: Com­
putation and Control”, pp. 64–79 (Springer, 2004).

Banerjee, A., Y. Zhang, P. Jones and S. Gupta, “Using formal methods to improve home­use
medical device safety”, Biomedical instrumentation & technology 47, s1, 43–48 (2013).

Bergman, R. N., Y. Z. Ider, C. R. Bowden and C. Cobelli, “Quantitative estimation of insulin
sensitivity.”, American Journal of Physiology­Endocrinology And Metabolism 236, 6,
E667 (1979).

Blackmore, L., S. Gil, S. Chung and B. Williams, “Model learning for switching linear
systemswith autonomousmode transitions”, in “2007 46th IEEEConference onDecision
and Control”, pp. 4648–4655 (IEEE, 2007).

Bubeck, S. et al., “Convex optimization: Algorithms and complexity”, Foundations and
Trends® in Machine Learning 8, 3­4, 231–357 (2015).

Chen, T. Y., S. C. Cheung and S. M. Yiu, “Metamorphic testing: a new approach for gen­
erating next test cases”, Tech. rep., Technical Report HKUST­CS98­01, Department of
Computer Science, Hong Kong … (1998).

Chutinan, A. and B. H. Krogh, “Computational techniques for hybrid system verification”,
IEEE transactions on automatic control 48, 1, 64–75 (2003).

Contag, M., G. Li, A. Pawlowski, F. Domke, K. Levchenko, T. Holz and S. Savage, “How
they did it: An analysis of emission defeat devices in modern automobiles”, in “2017
IEEE Symposium on Security and Privacy (SP)”, pp. 231–250 (IEEE, 2017).

DSA, “Service inquiry report into the loss of watchkeeper (wk043) unmanned air vehicle
over cardigan bay in west wales”, Defence Safety Authority, Corporate report Report
(2019).

Duggirala, P. S., S. Mitra, M. Viswanathan and M. Potok, “C2e2: A verification tool for
stateflow models”, in “International Conference on Tools and Algorithms for the Con­
struction and Analysis of Systems”, pp. 68–82 (Springer, 2015a).

Duggirala, P. S., S. Mitra, M. Viswanathan and M. Potok, “C2e2: A verification tool for
stateflow models”, in “International Conference on Tools and Algorithms for the Con­
struction and Analysis of Systems”, pp. 68–82 (Springer, 2015b).

Eren­Oruklu, M., A. Cinar, C. Colmekci and M. C. Camurdan, “Self­tuning controller for
regulation of glucose levels in patients with type 1 diabetes”, in “2008 American Control
Conference”, pp. 819–824 (IEEE, 2008).

Fan, C., B. Qi, S. Mitra and M. Viswanathan, “Dryvr: Data­driven verification and compo­
sitional reasoning for automotive systems”, in “International Conference on Computer
Aided Verification”, pp. 441–461 (Springer, 2017).

FDA, U., “Summary of safety and effectiveness data (ssed) of the medtronic minimed 670g
system. 2016”, (2016).

77

Frehse, G., “Reachability of hybrid systems in space­time”, in “2015 International Confer­
ence on Embedded Software (EMSOFT)”, pp. 41–50 (IEEE, 2015).

Frehse, G., C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang and O. Maler, “Spaceex: Scalable verification of hybrid systems”, in “Interna­
tional Conference on Computer Aided Verification”, pp. 379–395 (Springer, 2011).

Girard, A., A. A. Julius and G. J. Pappas, “Approximate simulation relations for hybrid
systems”, Discrete event dynamic systems 18, 2, 163–179 (2008).

Haidar, A., “The artificial pancreas: How closed­loop control is revolutionizing diabetes”,
IEEE Control Systems Magazine 36, 5, 28–47 (2016).

Hatton, L. and A. Rutkowski, “” lessons must be learned”­but are they?”, IEEE Software
36, 4, 91–95 (2019).

Hatvani, L., Formal verification of adaptive real­time systems by extending task automata,
Ph.D. thesis, Mälardalen University (2014).

Haugh, B. A., D. A. Sparrow and D. M. Tate, “The status of test, evaluation, verification,
and validation (tev&v) of autonomous systems”, (2018).

Henzinger, T. A., “The theory of hybrid automata”, in “Verification of digital and hybrid
systems”, pp. 265–292 (Springer, 2000).

Henzinger, T. A., R. Majumdar and V. S. Prabhu, “Quantifying similarities between timed
systems”, in “International Conference on Formal Modeling and Analysis of Timed Sys­
tems”, pp. 226–241 (Springer, 2005).

Hovorka, R., V. Canonico, L. J. Chassin, U. Haueter, M. Massi­Benedetti, M. O. Federici,
T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering et al., “Nonlinear model predictive
control of glucose concentration in subjects with type 1 diabetes”, Physiological mea­
surement 25, 4, 905 (2004).

Hoxha, B., A. Dokhanchi and G. Fainekos, “Mining parametric temporal logic properties
in model­based design for cyber­physical systems”, International Journal on Software
Tools for Technology Transfer 20, 1, 79–93 (2018).

Iftikhar, M. U. and D. Weyns, “A case study on formal verification of self­adaptive behav­
iors in a decentralized system”, arXiv preprint arXiv:1208.4635 (2012).

Instruments, M., “An introduction to functional safety and iec 61508”, Online]. Disponible
en http://www. mtl­inst. com/images/uploads/datasheets/App _Notes/AN9025. pdf
(2011).

ISO, I., “26262: Road vehicles­functional safety”, International Standard ISO/FDIS 26262
(2011).

Ivanov, R., J. Weimer, R. Alur, G. J. Pappas and I. Lee, “Verisig: verifying safety properties
of hybrid systems with neural network controllers”, in “Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control”, pp. 169–178
(2019).

78

Jacklin, S., J. Schumann, P. Gupta, M. Lowry, J. Bosworth, E. Zavala, K. Hayhurst, C. Bel­
castro and C. Belcastro, “Verification, validation, and certification challenges for adap­
tive flight­critical control system software”, in “AIAA Guidance, Navigation, and Con­
trol Conference and Exhibit”, p. 5258 (2004).

Jin, X., A. Donzé, J. V. Deshmukh and S. A. Seshia, “Mining requirements from closed­loop
control models”, IEEE Transactions on Computer­Aided Design of Integrated Circuits
and Systems 34, 11, 1704–1717 (2015).

Johnston, P. and R. Harris, “The boeing 737 max saga: Lessons for software organizations”,
Software Quality Professional 21, 3, 4–12 (2019).

Kim, K.­D. and P. R. Kumar, “Cyber–physical systems: A perspective at the centennial”,
Proceedings of the IEEE 100, Special Centennial Issue, 1287–1308 (2012).

Kong, S., S. Gao, W. Chen and E. Clarke, “dreach: δ­reachability analysis for hybrid sys­
tems”, in “International Conference on TOOLS and Algorithms for the Construction and
Analysis of Systems”, pp. 200–205 (Springer, 2015).

Ladkin, P. B., “An overview of iec 61508 on e/e/pe functional safety”, Bielefeld, Germany
(2008).

Lamrani, I., A. Banerjee and S. K. Gupta, “Hymn: Mining linear hybrid automata from
input output traces of cyber­physical systems”, in “2018 IEEE Industrial Cyber­Physical
Systems (ICPS)”, pp. 264–269 (IEEE, 2018).

Larsen, K. G., P. Pettersson and W. Yi, “Uppaal in a nutshell”, International journal on
software tools for technology transfer 1, 1­2, 134–152 (1997).

Lee, J., B. Bagheri and H.­A. Kao, “A cyber­physical systems architecture for industry
4.0­based manufacturing systems”, Manufacturing letters 3, 18–23 (2015).

Leveson, N., Engineering a safer world: Systems thinking applied to safety (MIT press,
2011).

Leveson, N. G., “Software safety: Why, what, and how”, ACM Comput. Surv. 18, 2, 125–
163, URL http://doi.acm.org/10.1145/7474.7528 (1986).

Levin, S., “Uber crash shows’ catastrophic failure’of self­driving technology, experts say”,
The Guardian 22 (2018).

Liu, S., M. Yamada, N. Collier and M. Sugiyama, “Change­point detection in time­series
data by relative density­ratio estimation”, Neural Networks 43, 72–83 (2013).

Ly, D. L. and H. Lipson, “Learning symbolic representations of hybrid dynamical systems”,
Journal of Machine Learning Research 13, Dec, 3585–3618 (2012).

Lyde, S. and M. Might, “Extracting hybrid automata from control code”, in “NASA Formal
Methods Symposium”, pp. 447–452 (Springer, 2013).

79

http://doi.acm.org/10.1145/7474.7528

Man, C. D., F.Micheletto, D. Lv, M. Breton, B. Kovatchev and C. Cobelli, “The uva/padova
type 1 diabetes simulator: new features”, Journal of diabetes science and technology 8,
1, 26–34 (2014).

Medhat, R., S. Ramesh, B. Bonakdarpour and S. Fischmeister, “A framework for min­
ing hybrid automata from input/output traces”, in “Proceedings of the 12th International
Conference on Embedded Software”, pp. 177–186 (IEEE Press, 2015).

Milanese, M. and G. Belforte, “Estimation theory and uncertainty intervals evaluation in
presence of unknown but bounded errors: Linear families of models and estimators”,
IEEE Transactions on automatic control 27, 2, 408–414 (1982).

Minopoli, S. and G. Frehse, “From simulation models to hybrid automata using urgency and
relaxation”, in “Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control”, pp. 287–296 (ACM, 2016a).

Minopoli, S. and G. Frehse, “Sl2sx translator: from simulink to spaceex models”, in “Pro­
ceedings of the 19th International Conference onHybrid Systems: Computation andCon­
trol”, pp. 93–98 (ACM, 2016b).

Moon, I.­H., J.­Y. Jang, G. D. Hachtel, F. Somenzi, J. Yuan and C. Pixley, “Approximate
reachability don’t cares for ctl model checking”, in “Proceedings of the 1998 IEEE/ACM
international conference on Computer­aided design”, pp. 351–358 (1998).

Myers, G. J., C. Sandler and T. Badgett, The art of software testing (John Wiley & Sons,
2011).

Narayan, A., G. Cutulenco, Y. Joshi and S. Fischmeister, “Mining timed regular specifica­
tions from system traces”, ACM Trans. Embed. Comput. Syst. 17, 2, 46:1–46:21, URL
http://doi.acm.org/10.1145/3147660 (2018).

Nenzi, L., S. Silvetti, E. Bartocci and L. Bortolussi, “A robust genetic algorithm for learning
temporal specifications from data”, in “International Conference on Quantitative Evalu­
ation of Systems”, pp. 323–338 (Springer, 2018).

Niggemann, O. and V. Lohweg, “On the diagnosis of cyber­physical production systems:
state­of­the­art and research agenda”, in “Proceedings of the Twenty­Ninth AAAI Con­
ference on Artificial Intelligence”, pp. 4119–4126 (AAAI Press, 2015).

Niggemann, O., B. Stein, A. Vodencarevic, A. Maier and H. K. Büning, “Learning behavior
models for hybrid timed systems.”, in “AAAI”, vol. 2, pp. 1083–1090 (2012).

Niggemann, O., S. Windmann, S. Volgmann, A. Bunte and B. Stein, “Using learned models
for the root cause analysis of cyber­physical production systems”, in “Int. Workshop
Principles of Diagnosis (DX)”, (2014).

Prabhakar, P., R. Lal and J. Kapinski, “Automatic trace generation for signal temporal
logic”, in “2018 IEEE Real­Time Systems Symposium (RTSS)”, pp. 208–217 (2018).

Rajkumar, R., I. Lee, L. Sha and J. Stankovic, “Cyber­physical systems: the next computing
revolution”, in “Design Automation Conference”, pp. 731–736 (IEEE, 2010).

80

http://doi.acm.org/10.1145/3147660

Ravi, K. and F. Somenzi, “High­density reachability analysis”, in “Proceedings of IEEE
International Conference on Computer Aided Design (ICCAD)”, pp. 154–158 (IEEE,
1995).

Ruiz, J. L., J. L. Sherr, E. Cengiz, L. Carria, A. Roy, G. Voskanyan, W. V. Tamborlane and
S. A. Weinzimer, “Effect of insulin feedback on closed­loop glucose control: a crossover
study”, Journal of diabetes science and technology 6, 5, 1123–1130 (2012).

Russell, S. J. and P. Norvig, Artificial intelligence: a modern approach (Malaysia; Pearson
Education Limited„ 2016).

Santana, P. H., S. Lane, E. Timmons, B. C. Williams and C. Forster, “Learning hybrid
models with guarded transitions.”, in “AAAI”, pp. 1847–1853 (2015).

Scherer, M. U., “Regulating artificial intelligence systems: Risks, challenges, competen­
cies, and strategies”, Harv. JL & Tech. 29, 353 (2015).

Seshia, S. A., D. Sadigh and S. S. Sastry, “Towards verified artificial intelligence”, arXiv
preprint arXiv:1606.08514 (2016).

Sheridan, T. B. and R. Parasuraman, “Human vs. automation in responding to failures: An
expected­value analysis”, in “Proceedings of the Human Factors and Ergonomics Society
Annual Meeting”, vol. 44, pp. 1–4 (Sage Publications Sage CA: Los Angeles, CA, 2000).

Soto, M. G., T. A. Henzinger, C. Schilling and L. Zeleznik, “Membership­based synthesis of
linear hybrid automata”, in “International Conference on Computer Aided Verification”,
pp. 297–314 (Springer, 2019).

Steil, G. M., C. C. Palerm, N. Kurtz, G. Voskanyan, A. Roy, S. Paz and F. R. Kandeel,
“The effect of insulin feedback on closed loop glucose control”, The Journal of Clinical
Endocrinology & Metabolism 96, 5, 1402–1408 (2011).

Summerville, A., J. Osborn and M. Mateas, “Charda: Causal hybrid automata recovery via
dynamic analysis”, arXiv preprint arXiv:1707.03336 (2017).

Tan, L., “Model­based self­adaptive embedded programs with temporal logic specifica­
tions”, in “2006 Sixth International Conference on Quality Software (QSIC’06)”, pp.
151–158 (IEEE, 2006).

Transportasi, K. N. K., “Aircraft accident investigation report”, Ministry of Transportation,
Indonesia, Report (2018).

Turksoy, K. and A. Cinar, “Adaptive control of artificial pancreas systems­a review”, Jour­
nal of healthcare engineering 5 (2014).

Woehrle, M., K. Lampka and L. Thiele, “Conformance testing for cyber­physical systems”,
ACM Transactions on Embedded Computing Systems (TECS) 11, 4, 84 (2012).

Zhang, J., J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang and H.Mei, “Search­based inference
of polynomial metamorphic relations”, in “Proceedings of the 29th ACM/IEEE interna­
tional conference on Automated software engineering”, pp. 701–712 (ACM, 2014).

81

APPENDIX A

MEDTRONIC MINIMED 670G DESCRIPTION

82

A.1 Medtronic Minimed 670G Control System Specifications

The Minimed 670 G CLAP control system is responsible for delivering throughout the
day basal insulin and large amounts of insulin (bolus) to cover meals or correct high glucose
levels. Fig. B.1 shows the hybrid automaton model of Minimed 670G consisting of four
control modes: Basal Auto, Food Correction Bolus, BG Correction Bolus, BG and Food
Correction Bolus, and Suspend Before Low. The glucose subsystem of the human body rep­
resents the predictive environmental model and is governed by the non­linear ordinary dif­
ferential equations of the Bergman minimal model Bergman et al. (1979), which describes
the evolution of the interstitial insulin concentration IEFF (t), blood glucose concentration
BG(t), and plasma insulin concentration Ip(t). The external input continuous variables of
the CLAP are meal carbs amount CHO(t) and finger stick BG reading BGF (t), which are
provided by the user. The internal input continuous variables of the CLAP are {IEFF (t),
BG(t), PID(t), IFB(t)}. ID(t) is the output contrinuous variable and also represents the
reset condition of the CLAP. In basal mode, the closed­loop insulin delivery ID(t) = IBa(t),
where IBa(t) = f1(P (t), I(t), D(t), Ip(t − 1)), as shown in Fig. A.1 (Ruiz et al. (2012)).
P (t), I(t), andD(t) denotes the proportional, integral, and derivative terms of the PID con­
troller. Ip(t− 1) represents a real­time estimate of insulin concentration one time step back
in time, where t denotes the most recent value. Initially, the control system is in basal mode
and the transition from Auto Basal to other modes is enabled when the according guard
condition from the total eight guard conditions of CLAP is satisfied, as shown in Fig. B.1.
In the bolus mode, ID(t) = IBa(t) + IBo(t), where IBo(t) = f2 (CHO(t), BW), BW refers
to the body weight of the subject, and f1 and f2 are linear functions.
Note that the availability of the specifications model of the internal variables {IEFF (t),
BG(t), PID(t), IFB(t)}, described in Fig. A.1, is necessary in the specificationsModel­
Aware learning scenario. In the specifications Model­Agnostic learning scenario, we as­
sume that the the specifications model of the internal variables {IEFF (t), BG(t), PID(t),
IFB(t)} is not available. KP , KD, and KI : PID controller gains. g1: IFB parameter for
subcutaneous insulin, g2: IFB parameter for plasma insulin, g3: IFB parameter for effective
insulin. bi is an insulin delivery coefficient, aij is a subcutaneous insulin pharmacokinetic
constant.

83

Agent Physical

SystemOutput:

Insulin

Infusion

rate

𝐼𝐷 𝑡

Input:

CGM

reading

𝑆𝐺 𝑡

Agent Process Model PID+IFB

PID Control Model

𝑷 𝒕 = 𝐾𝑃[𝑆𝐺 𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡]
𝑰 𝒕 = 𝐼 𝑛 − 1 + 𝐾𝐼[𝑆𝐺 𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡]

𝑫 𝒕 = 𝐾𝐷
𝜕𝑆𝐺(𝑡)

𝜕𝑡
𝑷𝑰𝑫 𝒕 = 𝑃 𝑡 + 𝐼 𝑡 + 𝐷(𝑡)
Insulin Subsystem Model
𝑰𝒔𝒄 𝒕 = 𝑎11𝐼𝑠𝑐 𝑡 − 1 + 𝑏1𝐼𝐷 𝑡 − 1
𝑰𝒑 𝒕 = 𝑎21𝐼𝑠𝑐 𝑡 − 1 + 𝑎22𝐼𝑝 𝑡 − 1 + 𝑏2𝐼𝐷 𝑡 − 1

𝑰𝑬𝑭𝑭 𝒕 = 𝑎31𝐼𝑠𝑐 𝑡 − 1 + 𝑎32𝐼𝑝 𝑡 − 1 + 𝑎33𝐼𝐸𝐹𝐹 𝑡 − 1 +

𝑏3𝐼𝐷 𝑡 − 1
𝑰𝑭𝑩 𝒕 = 𝑔1𝐼𝑠𝑐 𝑡 + 𝑔2𝐼𝑝 𝑡 + 𝑔3𝐼𝐸𝐹𝐹 𝑡

Environment (Physical System) Model

Glucose Subsystem Model
ሶ𝑩𝑮(𝒕) = − 𝑆𝐺 + 𝐼𝐸𝐹𝐹 𝑡 𝑆𝐺 𝑡 + 𝑆𝐺 ∗ 𝐺𝑏
ሶ𝑰𝑬𝑭𝑭 (𝒕) = −𝑝2𝐼𝐸𝐹𝐹 𝑡 + 𝑝2 ∗ 𝑆𝐼[𝐼𝑝 𝑡 − 𝐼𝑏]

Insulin Infusion
Pump (actuator)

CGM sensor

𝑰𝑫 𝒕 = (1+ 𝒈𝟏+𝒈𝟐+𝒈𝟑)∗PID(t) − IFB(t)

In
te

rn
al

 V
ar

ia
b

le
s

Figure A.1: Control Structure of the Medtronic Minimed 670G Insulin Pump System
(Basal Auto Mode Specifications).

84

APPENDIX B

MEDTRONIC MINIMED 670G HYBRID AUTOMATON

85

Guard 8:
t > t + 30minutes

Guard4: t > 𝑡𝑐 + 𝐼𝑑𝑢𝑟

Guard5:
𝐵𝐺𝐹(𝑡) > 150(mg/dL)

at 𝑡𝑐

Guard6:
t > 𝑡𝑐 + 𝐼𝑑𝑢𝑟

Guard7:
𝐵𝐺 𝑡 + 30 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

< 50(mg/dL)

Guard3: t > 𝑡𝑐 + 𝐼𝑑𝑢𝑟

Guard2: 𝐶𝐻𝑂 𝑡 > 0
at 𝑡𝑐

Guard1: 𝐶𝐻𝑂 𝑡 > 0 & 𝐵𝐺𝐹(𝑡) > 150(mg/dL)
at 𝑡𝑐

BG and Food Correction Bolus
ሶ𝐵𝐺(𝑡) = − 𝑆𝐺 + 𝐼𝐸𝐹𝐹 𝑛 𝐵𝐺 𝑡

+𝑆𝐺 ∗ 𝐺𝑏
ሶ𝐼𝐸𝐹𝐹 (𝑡) = 𝑝2 ∗ 𝑆𝐼 𝐼𝑝 𝑡 − 𝐼𝑏

−𝑝2𝐼𝐸𝐹𝐹 𝑡
𝑰𝑫 𝒕 = 𝑰𝑩𝒂 𝒕 + 𝑰𝑩𝒐 𝒕

Food Correction Bolus
ሶ𝑩𝑮(𝒕) = − 𝑆𝐺 + 𝐼𝐸𝐹𝐹 𝑡 𝐵𝐺 𝑡

+𝑆𝐺 ∗ 𝐺𝑏
ሶ𝑰𝑬𝑭𝑭 (𝒕) = 𝑝2 ∗ 𝑆𝐼 𝐼𝑝 𝑡 − 𝐼𝑏

−𝑝2𝐼𝐸𝐹𝐹 𝑡
𝑰𝑫 𝒕 = 𝑰𝑩𝒂 𝒕 + 𝑰𝑩𝒐 𝒕

BG Correction Bolus
ሶ𝑩𝑮(𝒕) = − 𝑆𝐺 + 𝐼𝐸𝐹𝐹 𝑡 𝐵𝐺 𝑡

+𝑆𝐺 ∗ 𝐺𝑏
ሶ𝑰𝑬𝑭𝑭 (𝒕) = 𝑝2 ∗ 𝑆𝐼 𝐼𝑝 𝑡 − 𝐼𝑏

−𝑝2𝐼𝐸𝐹𝐹 𝑡
𝑰𝑫 𝒕 = 𝑰𝑩𝒂 𝒕 + 𝑰𝑩𝒐 𝒕

Basal Auto
Mode

(See Fig. 5 (b))

𝑰𝑫 𝒕 = 𝑰𝑩𝒂 𝒕

Suspend
Before Low
𝑰𝑫 𝒕 = 𝟎

Figure B.1: Non­Linear Hybrid Automaton of the Artificial Pancreas Control System
(Medtronic Minimed 670G).

Variable IEFF (t) refers to interstitial insulin,BG(t): plasma glucose (Gb its basal value),
Ip(t): plasma insulin (Ib its basal value), Isc(t): subcutaneous insulin, IBa(t): closed­loop
basal insulin delivery profile, IBo(t): bolus insulin delivery profile, ID(n): total exoge­
neous insulin infusion, and Idur: duration of bolus injection. SG, SI, and p2 are model
parameters.

86

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Safety Engineering of AI-enabled CPS
	1.2 Examples of Operational Safety Violation
	1.3 Contributions
	1.3.1 List of Publications
	1.3.2 Author's Contribution

	2
	2.1 AI-based CPS
	2.1.1 Example of an AI-Enabled CPS: Artificial Pancreas
	2.1.2 Example of an AI-Enabled CPS: Advanced Driver Assist Systems

	2.2 AI-Enabled CPS's Input/Output Traces
	2.3 Hybrid Automata
	2.3.1 Reachability Analysis

	2.4 Technical Preliminaries
	2.4.1 Fisher Information and Cramer Rao Bound
	2.4.2 Pearson's Divergence (PE) Score
	2.4.3 DBSCAN Clustering
	2.4.4 RuLSIF Change-Point Detection in Time Series Data
	2.4.5 Multivariate Non-Linear Polynomial Regression Analysis
	2.4.6 Cross Validation Mean Absolute Error

	3
	3.1 Safety Aspects
	3.2 Safety Verification of AI-Enabled CPS
	3.2.1 Safety Analysis at Design Phase
	3.2.2 Safety Analysis at Implementation Phase
	3.2.3 Safety Verification at Operation Phase

	3.3 Arising Safety Issues

	4
	4.1 Operational Safety Verification Overview
	4.2 Learning Scenarios
	4.3 Operational Safety Through HA Learning Overview
	4.3.1 Ensuring Correctness of the Learned Model

	4.4 Safety Conclusions

	5
	5.1 Problem Statement
	5.2 HyMn: Linear Hybrid System Mining

	6
	6.1 HyMn Evaluation Results on Artificial Pancreas
	6.1.1 Linearization of AP model
	6.1.2 Applications of HyMn
	6.1.3 Limitations of HyMn

	7
	7.1 N-HyMn Algorithm
	7.2 N-HyMn Implementation Details
	7.2.1 I/O Segmentation:
	7.2.2 Control Modes Clustering:
	7.2.3 Reset Conditions Learning:
	7.2.4 Guard Conditions:
	7.2.5 Learning Flow Equations:
	7.2.6 N-HyMn Complexity

	8
	8.1 Model-Agnostic Learning Scenario
	8.2 Model-Aware Learning Scenario

	9
	9.1 Timed Dynamical Model Mining
	9.2 Hybrid Model Synthesis
	9.3 Hybrid Model Mining
	9.4 Conformance Testing

	10
	10.1 Related Work
	10.2 Proposed Approach: Co-Simulation Framework

	11

	REFERENCES
	A
	A.1 Medtronic Minimed 670G Control System Specifications

	B

