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ABSTRACT 

The structural and electronic properties of compositionally complex semiconductors 

have long been of both theoretical interest and engineering importance. As a new class of 

materials with an intrinsic compositional complexity, medium entropy alloys (MEAs) are 

immensely studied mainly for their excellent mechanical properties. The electronic 

properties of MEAs, however, are less well investigated. In this thesis, various properties 

such as electronic, spin, and thermal properties of two three-dimensional (3D) and two 

two-dimensional (2D) compositionally complex semiconductors are demonstrated to have 

promising various applications in photovoltaic, thermoelectric, and spin quantum bits 

(qubits). 

3D semiconducting Si-Ge-Sn and C3BN alloys is firstly introduced. Density 

functional theory (DFT) calculations and Monte Carlo simulations show that the 

Si1/3Ge1/3Sn1/3 MEA exhibits a large local distortion effect yet no chemical short-range 

order. Single vacancies in this MEA can be stabilized by bond reformations while the alloy 

retains semiconducting. DFT and molecular dynamics calculations predict that increasing 

the compositional disorder in SiyGeySnx MEAs enhances their electrical conductivity while 

weakens the thermal conductivity at room temperature, making the SiyGeySnx MEAs 

promising functional materials for thermoelectric devices. Furthermore, the nitrogen-

vacancy (NV) center analog in C3BN (NV-C3BN) is studied to explore its applications in 
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quantum computers. This analog possesses similar properties to the NV center in diamond 

such as a highly localized spin density and strong hyperfine interactions, making C3BN 

suitable for hosting spin qubits. The analog also displays two zero-phonon-line energies 

corresponding to wavelengths close to the ideal telecommunication band width, useful for 

quantum communications. 

2D semiconducting transition metal chalcogenides (TMCs) and PtPN are also 

investigated. The quaternary compositionally complex TMCs show tunable properties such 

as in-plane lattice constants, band gaps, and band alignment, using a high through-put 

workflow from DFT calculations in conjunction with the virtual crystal approximation. A 

novel 2D semiconductor PtPN of direct bandgap is also predicted, based on pentagonal 

tessellation. 

The work in the thesis offers guidance to the experimental realization of these novel 

semiconductors, which serve as valuable prototypes of other compositionally complex 

systems from other elements. 
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CHAPTER I 

INTRODUCTIONS 

1.1 The materials in need 

Semiconductors find their wide applications from quantum computing to aerospace 

engineering. A semiconductor is a material whose electrical conductivity is in between the 

conductor such as copper, and the insulator such as glass. Because of the partial filled 

electron states, the conduction and valence band are overlapped in conductors, whereas in 

semiconductors, the conduction and valence band are separated. Energy is required to 

excite the electrons to hop across the band gap and become conductive. Since the energy 

can be controlled and has many forms, such as photon and phonon, the properties of 

semiconductors can be manipulated for desired purposes. Decades of efforts have been 

made to develop the semiconductors in order to fulfill different requirements in practices. 

For example, the light emitting diodes (LED) technique has been developing to function as 

the upgraded light source of reliability, versatility, and visibility, comparing to the currently 

popular yet less efficient incandescent bulb [1]. Taking the advantage of thin film 

processing and nanoscale quantum dot fabricating, the evolution of LED materials lies in 

the direction of high color purity, high energy-efficiency, and eco-friendly [2-4]. Besides 

the photoluminescent applications, this chapter will briefly introduce the semiconductors 

applications in the fields of energy harvesting and quantum computing. 

1.1.1 Semiconductors for energy-harvesting 
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Based on the report from National Center for Atmospheric Research [5], the climate 

changing has severed resulted in the Arctic warming, temperature increased, and the loss 

of sea-ice. It is of urgency to decrease the dependency on the fossil fuel in energy 

generation in order to reduce the emission of greenhouse gases [6]. Renewable sources of 

energy such as solar, wind, and geothermal draw people’s attention for the sustainable, 

inexhaustive, and clean nature.  

Semiconducting materials are widely used as the devices for energy harvesting from 

renewable sources. By alloying, semiconductors are versatile to fit for different conditions 

for the tunable and controllable electronic properties such as carrier effective mass and 

band gap energy [7,8]. On the one hand, in energy harvesting, various semiconducting 

alloys such as PbSxSe1-x [9], Cu(In1-xGax)(S1-ySey)2 [10], and ZnxCd1-xSe [11] are purposed 

as photovoltaic (PV) materials to convert the solar energy to electric power via photon-

electron interaction [12]. For example, metal chalcogenides such as PbS and PbSe are 

proposed as the PV materials for the large open circuit voltage (VOC) of PbS and large short-

circuit photocurrent densities (JSC) of PbSe. The compositional tunable PbSxSe1-x alloys 

show the high power conversion efficiency comparing to their binary constituents of PbS 

and PbSe [9].  

On the other hand, semiconductors are also applied as thermoelectric materials for 

thermoelectric generators (TEG), utilized to collect the heat and transfer it to electric power. 

The thermoelectric performance (zT) depends on various factors such as electrical and 
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thermal conductivity, as well as the Seebeck coefficient [13,14]. The alloying and doping 

approach of semiconductors also have been conducted in order to enhance the zT. For 

example, the SnTe shows a zT of 0.6 at 700K [15], by alloying that with MnTe, the Sn1-

xMnxTe can obtain an tuned band structure, as well as the higher zT of 1.3 at 900 K, based 

on a decreased lattice thermal conductivity.  

1.1.2 Semiconductors for quantum computing 

Quantum computing is proposed with the benefits of solving a series of problems such 

as many-body molecular modelling, factorizing a large integer to break public-key 

cryptography, and discovering drugs to treat pandemic diseases [16], which are difficult or 

even impossible by the traditional computers or supercomputers. The quantum bit (qubit), 

as the analog of bit in traditional computer, appears as the fundamental unit of quantum 

computer. Various semiconductors are proposed as the potential materials for spin qubit, 

which record the distinguished states of |0⟩ and |1⟩ using the spin information (spin up 

and down). For example, a nitrogen vacancy (NV) center in diamond, consisting of a 

nitrogen atom substituting the carbon atom and a lattice vacancy at nearest neighbor, stands 

out as the promising candidate of spin qubit. Advantages of such system involve the long 

spin coherence time approaching 1s that allows the possibility of creation high entangled 

states, as well as a long distance entanglement of more than 1.3 km of two NV center 

diamonds to ensure the high fidelity in quantum-secure communication [17]. 

1.2 Outline of this thesis 
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In the following sections, we would like to discuss several semiconductors designed 

for the purposes in energy-harvesting as well as the quantum computing. The structure of 

the thesis is outlined as follow. 

Chapter 2 and 3 introduce the entropy driven design of disordered 3D alloy from 

silicon (Si), germanium (Ge) and tin (Se). The electronic properties and vacancy tolerant 

semiconducting behavior of such alloy are discussed in Chapter 2, opening the possibility 

in the application of near-infrared optoelectronics. Besides, the concentration tunable 

electronic and thermal properties of the SixGexSny alloys are discussed in Chapter 3, for the 

purpose of thermoelectric applications. In the next section of Chapter 4, we introduce the 

discover of disordered 2D transition metal chalcogenides (TMC) in quaternary systems 

from the model based on virtual crystal approximation. The selected entropy stabilized 

quaternary compositional complex TMC shows the potential in applications of electronic 

and optoelectronic devices. In Chapter 5, we design the NV center analog in C3BN, which 

shows the similar electronic and spin properties as NV center in diamond, making it 

possible for spin qubit candidate for quantum computing. In Chapter 6 and 7, we propose 

two 2D semiconductors of PtPN and PtN2 based on pentagonal tessellation. The tunable 

band gaps of both two materials are achieved via dimensional engineering to obtain PtPN 

and PtN2 nanotubes. 
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CHAPTER II 

SEMICONDUCTING SIGESN HIGH-ENTROPY ALLOY: A DENSITY 

FUNCTIONAL THEORY STUDY 

2.1 Abstract 

High-entropy alloys (HEAs), which have been intensely studied due to their excellent 

mechanical properties, generally refer to alloys with multiple equimolar or nearly 

equimolar elements. According to this definition, Si-Ge-Sn alloys with equal or 

comparable concentrations of the three Group IV elements belong to the category of HEAs. 

As a result, the equimolar elements of Si-Ge-Sn alloys likely cause their atomic structures 

to exhibit the same core effects of metallic HEAs such as lattice distortion. Here we apply 

density functional theory (DFT) calculations to show that the SiGeSn HEA indeed exhibits 

a large local distortion effect. Unlike metallic HEAs, our Monte Carlo and DFT 

calculations show that the SiGeSn HEA exhibits no chemical short-range order due to the 

similar electronegativity of the constituent elements, thereby increasing the configurational 

entropy of the SiGeSn HEA. Hybrid density functional calculations show that the SiGeSn 

HEA remains semiconducting with a band gap of 0.38 eV, promising for economical and 

compatible mid-infrared optoelectronics applications. We then study the energetics of 

neutral single Si, Ge, and Sn vacancies and (expectedly) find wide distributions of vacancy 

formation energies, similar to those found in metallic HEAs. However, we also find 

anomalously small lower bounds (e.g., 0.04 eV for a Si vacancy) in the energy distributions, 
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which arise from the bond reformation near the vacancy. Such small vacancy formation 

energies and their associated bond reformations retain the semiconducting behavior of the 

SiGeSn HEA, which may be a signature feature of a semiconducting HEA that 

differentiates from metallic HEAs. 

2.2 Introduction 

Candies of different colors and flavors displayed in candy stores are often intriguing 

to many people (see Figure 2.1). Mirroring that scenario, in the early 1980s and 1990s 

metallurgists started mixing different types of atoms—each symbolizing one flavor of 

candy—of (nearly) equal concentration to form alloys [18,19] in the hope of obtaining 

special properties to extract the best elemental features from each of the combined elements. 

This mixing process leads to optimization of the overall performance of the resulting alloy, 

called high-entropy alloy (HEA). The emerging field of HEA is a subject of study for 

materials scientists, who prefer engineering materials to be both stronger and tougher, 

which are actually two incompatible mechanical properties. This work explores whether 

knowledge advanced in the HEA field, which we will review in this section, can be used 

to design semiconducting HEAs with an emphasis on their applications toward 

optoelectronics applications. 
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Figure 2.1. Transparent tubes filled with assorted candies, symbolizing high-entropy 
alloys with multiple principal elements. 

Conventional alloy designs often start with selecting one element as the principal 

constituent and adding other elements to optimize the properties. After centuries of intense 

efforts on developing these alloys, obtaining targeted properties for traditional alloys is 

approaching its limit [20]. HEAs represent a new type of alloys that can potentially break 

the limit due to the presence of a variety of attractive properties currently absent from 

conventional alloys, making them the center of immense attention [21]. For instance, it is 

well known that an optimal engineering alloy requires a trade-off between toughness and 

strength, as these two properties favor and disfavor the movement of dislocations, 

respectively. Li et al. recently showed that novel FeMnNiCoCr HEAs can overcome this 

trade-off [22]. Other desirable properties of HEAs include antioxidant capacity [23], high 

temperature strength [24], high corrosion resistance [25,26], etc. 

Two main definitions of HEAs are commonly used in the literature. The first one, 
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proposed in 2004 by Yeh et al., is based on composition [27], which states that HEAs refer 

to the alloys containing at least five principal elements, each of which has an atomic 

concentration between 5% and 35%, rather than unnecessary constraints, i.e., equimolar or 

near-equimolar concentration. Furthermore, similar to conventional alloys, HEAs may also 

contain minor elements (i.e., atomic concentration less than 5%) in order to tune the 

properties of base systems, which further expands the number of possible HEAs [28]. The 

second definition focuses on the magnitude of the configurational entropy. Because 

configurational entropy is often dominant in the total entropy of a system in comparison 

with the other entropies, i.e., vibrational, magnetic, and electronic entropies [29], the total 

entropy is approximated by the configurational entropy to avoid expensive calculations of 

the other entropies [30]. According to Boltzmann's entropy formula, the ideal 

configurational entropy of mixing per mole ΔSmix for an ideal random N-component solid 

solution can be written as, 

  (2.1) 

where R (8.31 J/K×mol) is the gas constant, ci refers to the atomic concentration of the ith 

element, and N is the total number of elements. If N is fixed, the maximum ΔSmix is 

achieved when the atomic concentration for all the elements is the same. The second 

definition therefore implies that HEAs favor equimolar composition. Moreover, this 

definition further separates HEAs into low (DSmix < 0.69 R), medium (0.69 R < DSmix < 
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1.61 R), and high (DSmix > 1.61 R) entropy alloys [31]. Yeh recently suggested that the 

boundary entropies (0.69 R and 1.61 R) are replaced by more reasonable 1.0 R and 1.5 R, 

respectively [32]. 

HEAs generally exhibit four phases: solid solution, intermetallic compound (i.e., a 

compound with a specific stoichiometry), mixed solid solution and intermetallic compound, 

and bulk metallic glasses. HEAs with a solid solution phase are often preferred, as most 

desirable properties are associated with this phase [33]. According to the entropy-based 

definition of HEAs, the stability of a solid solution phase can be enhanced by increasing 

the number of elements to maximize the configurational entropy [34,35]. But the 

probability of at least one pair of elements forming the intermetallic phase is directly 

proportional to the number of elements, leading to the competition between the solid 

solution and intermetallic phases [36,37]. It is therefore a daunting task to design new 

HEAs, i.e., to predetermine the phase given a combination of elements and the 

concentrations that form a HEA. 

HEAs also show four core effects, which are the high configurational entropy effect, 

the sluggish diffusion effect, the lattice distortion effect, and the “cocktail” effect. These 

effects describe HEAs from the aspects of thermodynamics, kinetics, structures, and 

properties, respectively [31,38]. Based on the second law of thermodynamics, the high 

configurational entropy effect lowers the Gibbs free energy by compensating for the 

enthalpic change in the system, leading to possible formations of stable phases. Depending 
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on the competition between enthalpy and entropy, both disordered solid solution phases 

and ordered intermetallic compounds can form a HEA [39]. The high entropic effect favors 

a disordered solid solution phase. The sluggish diffusion effect kinetically lowers the rate 

of atomic diffusion, and thus reduces the overall phase transformation rate in an HEA, in 

contrast to conventional alloys. Because atoms in HEAs are usually bonded with the atoms 

of other elements, most of the atoms experience different diffusion paths and have different 

diffusion barriers [38,40]. Furthermore, forming an HEA by introducing multiple elements 

with different atomic sizes is associated with the lattice distortion effect. This originates 

from lattice strain and stress, as different elements have their own atomic radii, bonding 

energies, and structural preferences. The lattice distortion effect affects properties of an 

HEA such as hardness, electrical and thermal conductivity [30,31]. The “cocktail” effect 

of HEAs refers to the enhancement of material properties due to the presence of multiple 

principal components [32]. This effect emphasizes not only the individual elemental 

advantage but the synergetic results from the interactions among the atoms of multiple 

elements.  

Significant research efforts have been devoted to studying the mechanical properties 

of HEAs for a variety of engineering applications. Even though HEAs vary widely from 

the constituent elements and their compositions, many of them commonly show useful 

mechanical properties such as high hardness values [41-44], yielding stresses [45-47], 

fatigue resistance [48-50], and irradiation resistance [51,52].   
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In contrast to the work on the mechanical properties of HEAs, there are much fewer 

studies on their functional properties such as magnetic and semiconducting properties [53]. 

Recently, several studies have started to discover these functional properties in HEAs. For 

example, by introducing metallic elements including ferromagnetic Fe, Co, and Ni, the 

resulting HEAs display paramagnetic [54] or even superparamagnetic properties [55]. 

Generally, introducing non-magnetic elements into HEAs as additional principal 

components also impacts the magnetism of the original HEAs. The change of magnetism 

in HEAs depends on the included elements, which cause a structural change and the 

formation of a solid solution phase. Recent studies also indicate that the saturation 

magnetization at room temperature and the Curie temperature of HEAs are both tunable by 

controlling the concentrations of the principal elements [56]. As an example of the 

semiconducting properties of HEAs, recent studies found that upon successively adding 

alloying elements Ge, Pb, and Mn to the SnTe binary alloy to form HEAs, the valence 

bands and the band gaps in the HEAs are modified as a result of the cocktail effect [57]. In 

particular, the ternary Sn-Ge-Te HEA showed a drastic reduction in the band gap without 

significantly modifying the original band structure. On the contrary, the Sn-Ge-Pb-Mn-Te 

HEA not only had a widened band gap, but also more flattened valence bands in the band 

structure than those in the binary SnTe alloy [57]. 

In this work, we aim to extend the study of semiconducting properties of HEAs. We 

choose HEAs consisting of group IV elements (Si, Ge, and Sn) because of the important 
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roles played by this group of alloys in the optoelectronic devices. According to the 

definition, it is more accurate to classify the SiGeSn alloy as a medium-entropy alloy 

(MEA). Nevertheless, MEAs share many common properties with HEAs, so we call the 

SiGeSn HEA throughout the current work. Separate from the context of HEAs, this group 

of (binary or ternary) alloys have continuously attracted massive attention over the past 

several decades. For example, Ge1-xSnx alloys display tunable band gaps if the 

concentration of Ge or Sn is controlled. It is reported that an Sn content up to 8% not only 

lowers the band gap, but also changes the indirect-band-gap Ge to a direct-band-gap 

semiconducting alloy [58]. A similar effect is observed in Si-Sn alloys [59]. Inspired by 

these binary alloys, research on the SixGe1-x-ySny ternary alloys also reveals the Sn-content-

dependent band gaps as well as the transition between direct and indirect band gaps [60].  

Experimentally, it has been challenging to obtain Si-Ge-Sn alloys especially with high 

Sn content. The difficulty of alloying Si-Ge alloys with Sn can be understood from the 

three binary (Si-Ge, Si-Sn, and Ge-Sn) phase diagrams. First, the Si-Ge phase diagram 

shows that any composition of Ge is completely soluble in Si, forming Si-Ge solid solution 

alloys [61]. Due to this solubility, a number of Si-Ge alloys have been experimentally 

developed, resulting in a wide range of applications such as in near-infrared devices [62]. 

By contrast, as shown in the Si-Sn and Ge-Sn phase diagrams [63,64], the solution limit at 

room temperature is below 1%. The striking differences in the solubility of Ge and Sn in 

Si can be understood from the Hume-Rothery rules [65], which are commonly used to 
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predict whether a binary alloy prefers to exhibit a solid solution phase or an intermetallic 

compound. Because of the limited number of the experimental data, how Hume-Rothery 

rules can be applied to ternary alloys remains unclear. Nevertheless, we can apply the 

Hume-Rothery rules to gain an intuitive understanding of Si-Ge-Sn ternary alloys. 

According to Hume-Rothery, four conditions need to be satisfied to form binary alloys with 

a solid solution phase: (i) mismatch in atomic radii should not exceed 15%, i.e., size effect; 

(ii) there must be a similarity between the crystal structures of solute and solvent; (iii) if 

the solute and solvent have the same valency, complete solubility occurs, i.e., valency effect; 

(iv) the electronegativity of solute and solvent should be similar. Si and Ge satisfy all four 

of these conditions: possessing the same cubic diamond structure, similar atomic radii 

(1.153 Å for Si and 1.24 Å for Ge [66]), same valency (+4), and similar electronegativity 

(1.90 for Si and 2.01 for Ge at the Pauling scale [66]). Thus, complete solubility exists in 

Si-Ge binary alloys. For Si-Sn, condition (i) is not satisfied, due to the atomic radius of Sn 

(1.62 Å [66]) being too large. Condition (ii) is satisfied only at low temperatures, where Sn 

crystalizes as the same crystal structure called the α-Sn phase, while at higher temperatures 

a phase transitions occurs and the structure is transformed to a tetragonal structure, i.e., the 

α-Sn phase. Conditions (iii) and (iv) are both met; the electronegativity of Sn is 1.96 at the 

Pauling scale [66]. The net effect of these four conditions for Si-Sn is that Si and Sn do not 

form a solid solution phase. The same net effect applies to the Ge-Sn binary system.  

Intensive experimental developments have shown how a higher content of Sn can now 
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be included in Si-Ge-Sn alloys [67]. Several innovative methods have been developed to 

fabricate high-Sn content Si-Ge-Sn alloys, including molecular beam epitaxial (MBE) [68] 

and chemical vapor deposition method (CVD) [69]. However, the limit of Sn content in 

these Si-Ge-Sn alloys is unknown. And if such a limit exists, what is the electronic structure 

of the Si-Ge-Sn alloy? In addition, there is no answer to whether the phase transition to the 

(metallic) α-Sn phase occurs in high-Sn content Si-Ge-Sn alloys. 

 

Figure 2.2. Schematic of a Si-Ge-Sn ternary phase diagram. Red shaded areas 
correspond to the composition spaces of conventional Si-Ge-Sn alloys; blue shaded areas 

correspond to the Si-Ge-Sn high-entropy alloys (HEAs). 

The previous studies on Si-Ge-Sn alloys are constrained to a small area of the 

composition space. In other words, only three corner regions of the Si-Ge-Sn composition 

space have been exploited (see Figure 2.2). In these corner regions, Si-Ge-Sn alloys are 

Si

Ge Sn

HEAs
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referred to as conventional alloys with a dominant element such as Ge, which has a content 

higher than 70%, and the other two elements in the conventional alloy regarded as doping 

elements to tune the alloys’ properties. Indeed, a significant amount of research has been 

performed that focuses on the mechanical [70,71], optical [72], and electrical properties 

[71,73,74] of the alloys at the corners of the Si-Ge-Sn ternary phase diagram, with the Si 

content between 10% to 20% and the Sn content no more than 10%. On the contrary, little 

research has been carried out for the Si-Ge-Sn alloys in the middle region of the ternary 

phase diagram. According to the definition of HEAs mentioned above, the Si-Ge-Sn alloys 

in the middle region of the composition space should be HEAs. Interestingly, this 

terminology has never been used for Si-Ge-Sn alloys in the literature.  

Similar to studying metal alloys in the center region of the composition space, there 

are enormous opportunities and challenges to study Si-Ge-Sn alloys in this region from 

both experiment and theory points of view. On the experimental side, it is worthwhile to 

fabricate the Si-Ge-Sn HEAs, measure their electronic structures, and to see if they are 

different from the conventional Si-Ge-Sn alloys. However, the setup of the CVD method 

may need to be redesigned to accompany the near-equimolar or equimolar content of the 

three elements. Theoretically, it is a great example of using ab initio density functional 

theory (DFT) [75,76] calculations to predict properties before an Si-Ge-Sn HEA is 

successfully fabricated. From the structural perspective, Si-Ge-Sn HEAs are intrinsically 

associated with the four core effect, which affect the electronic structures, potentially 
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leading to development of structures offering electromagnetic spectrum dominance. 

Meanwhile, because of the solid solution phase assumed in the HEAs, we need to employ 

reasonable supercell models to simulate them.  

In this work, we first compute the electronic structure of the SiGeSn HEA to determine 

whether it is metallic or semiconducting. We then examine if the HEA exhibits a chemical 

short-range order (CSRO) which is a tendency for atomic clustering (e.g., one Si atom 

prefers Si/Ge neighbors over Sn atoms). CSRO has been reported in numerous HEAs and 

dominates several of their properties [77,78]. Furthermore, because point defects are 

unavoidable in any material due to thermal vibrations, we study the most basic point defect 

in the SiGeSn HEA, i.e., single vacancies. Studying single vacancies allows an 

understanding at an atomic level which can provide guidance to future studies of doping 

the SiGeSn HEAs. 

2.3 Simulation Methods 

We use the Vienna ab-initio simulation package (VASP; version 5.4.4) for all the DFT 

calculations and the Perdew-Burke-Ernzerhof (PBE) functional to describe the exchange-

correlation interactions [79]. We also use the standard Si, Ge, and Sn potential datasets 

based on the PBE functional and the projector-augmented wave (PAW) method [80,81] to 

describe the electron-nuclei interactions. Among the potentials, the 3s2 and 3p2 electrons 

of Si atoms, the 4s2 and 4p2 electrons of Ge atoms, and the 5s2 and 5p2 electrons of Sn 

atoms are regarded as valence states. We optimize the supercells using a 2 × 2 × 2 
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Monkhorst-Pack [82] k-point grid and a cut-off energy of 400 eV for the plane wave basis 

sets. The force convergence criterion is set to 0.01 eV/Å. 

We use a special quasi random structure (SQS) as a starting point to simulate the 

crystal structure of the SiGeSn HEA. The SQS method was developed nearly three decades 

ago and has been used in many applications for modeling conventional semiconducting 

alloys (e.g., Al1-xGaxAs) with small supercells that can be dealt with using standard DFT 

programs [83]. The goal of this method is to minimize the difference between the 

correlation functions in a small supercell and those in an alloy with a truly random structure. 

Recently, the SQS method has been widely used to simulate the structures of metallic HEAs 

with a solid solution phase [44]. In addition, an SQS structure also serves as an initial 

structure followed by a combination of MC and DFT simulations to examine the 

occurrence of CSRO, which has been reported to occur in typical metallic HEAs such as 

Cr-Co-Ni [77,78] and affect mechanical properties such as stacking fault and point-defect 

energies. We focus on the SiGeSn HEA with the highest Sn content (i.e., where the ratio of 

the three elements is 1:1:1).  

Based on an MC procedure, we use the mcsqs module [84] implemented in the Alloy 

Theoretical Automated Toolkit (ATAT) package [85] to generate an SQS structure for the 

SiGeSn HEA with 216 atoms (corresponding to a 3 × 3 × 3 supercell of the 8-atom unit 

cell of Si, Ge, or α-Sn). The cutoff distance for computing the correlation functions is set 

to within the second nearest-neighbor (NN) bond length, as a larger cutoff distance leads 
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to an unconverged calculation. The SQS structure is then fully relaxed and the shape of the 

supercell is slightly off perfectly cubic. Figure 2.3 shows a zoomed-in view of the 

optimized SQS structure. As clearly shown, the four NN atoms of each atom often belong 

to different elements, confirming the randomness of the atomic positions in the SQS 

structure. These results represent the SiGeSn HEA with a random solid solution phase. 

 

Figure 2.3. Zoomed-in view of the SQS structure of a SiGeSn high-entropy alloy. 
Si, Ge, and Sn atoms are represented by pink, yellow, and cyan spheres, respectively. 

 

2.4 Results and Discussion 

2.4.1 Structural and Electronic Properties of SQS SiGeSn 

We first benchmark the above settings by calculating the optimized lattice constants 

of diamond cubic Si, Ge, and α-Sn as 5.47, 5.78, and 6.65 Å, respectively, which are 

slightly higher than the corresponding experimental lattice constants of 5.43, 5.66, 6.49 Å 

respectively [86]. The difference is expected from using the PBE functional that generally 

overestimates the lattice constants [87]. We also calculate the cohesive energies of isolated 
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Si, Ge, and Sn atoms place in a vacuum box with unequal side lengths of 22.0, 23.0, and 

24.0 Å (to break the symmetry, spin-polarized calculations are invoked). For all the isolated 

atoms, we obtain a spin magnetic moment of 2μB, which match the experimental atomic 

spectra label 3P0. The cohesive energy, i.e., the energy required to break the Si-Si, Ge-Ge, 

and Sn-Sn bond into isolated atoms is calculated as 4.60, 3.73, and 3.18 eV, respectively, 

which agrees with the literature values of 4.63, 3.85, and 3.14 eV, respectively [69]. The 

cohesive energies show that the bond strengths follow the order: Si-Si > Ge-Ge > Sn-Sn 

bond. Furthermore, we calculate the PBE band gap of diamond cubic structure Si as 0.61 

eV (consistent with previously reported 0.75 eV [88]), whereas Ge and α-Sn are predicted 

to be metal and a semimetal with no gap at the PBE level of theory, consistent again with 

previous DFT calculations [88,89]. These benchmark calculations validate our DFT 

simulation parameters to be used throughout the current work.  

To further show that the SQS structure is a reasonable model to simulate the SiGeSn 

HEA, we begin with the fully optimized SQS structure and perform a combination of DFT 

and MC calculations. For the DFT calculations, we calculate static energies -- similar to 

those reported in Refs. [77,78] -- to examine whether swapping two atoms of different 

elements lowers the energy of the SQS structure. This enables us to simultaneously 

examine whether the SCO occurs in Si-Ge-Sn HEA. We consider three cases of exchanging 

the atoms: (i) Case 1, by swapping Si with Ge and Sn atoms with an equal probability, (ii) 

Case 2, by swapping Si with Ge atoms, and (iii) Case 3, by swapping Si with Sn atoms. In 
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the MC simulations, if the exchange of two atoms leads to a lower energy, the atomic 

exchange is accepted. If not, it is accepted with the probability calculated by comparing 

the Boltzmann factor (𝑒!∆#/%!& ; ΔE: energy change; kB: Boltzmann constant) at the 

temperature (T) of 300 K with a random number between 0 and 1.  

  

Figure 2.4. Energy change of a special quasi-random structure of the SiGeSn high-
entropy alloy as a function of Monte Carlo simulation steps. 

Figure 2.4 displays three curves (labeled by Si«Ge/Sn, Si«Ge, and Si«Sn, 

respectively) showing the energy changes with reference the SQS structure (set to zero) as 

the MC calculations progress. We observe that all the energy changes are positive, 

indicating that the initial SQS structure is the most stable structure. Furthermore, the energy 
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changes by swapping Si and Ge atoms (Case 2) are seen to be much smaller than those by 

swapping Si and Sn atoms Case 3). The energy changes in Case 2 are close to zero, showing 

that it is almost energy-free to exchange Si and Ge atoms. This phenomenon is consistent 

with the complete solubility of Si and Ge resulting from their same valency and relatively 

small atomic size mismatch. The Si«Ge/Sn curve (Case 1) shows that every two data 

points of low energy changes (similar to those in the Si«Ge curve) are followed by two 

data points of high energy changes (similar to those in the Si«Sn curve). This trend of 

alternating high and low energy changes is due to the fact that in the MC simulation for 

Case 1, each Si atom is first exchanged with two random Ge atoms, and then exchanged 

again with two random Sn atoms. As mentioned before, the former exchange results in little 

difference in the total energy changes, while the latter significantly increases the total 

energies by approximately 6 meV/atom.  

The combined DFT and MC calculations reveal that no CSRO is observed in the 

SiGeSn HEA, in contrast to the metallic CrCoNi HEA exhibiting CSRO [77,78]. We 

suggest that the absence of CSRO in the SiGeSn HEA is because of the similarity in the 

electronegativity of the three elements. As a result, there is no stable (with negative 

formation energies) binary or ternary intermetallic compound formed from bulk Si, Ge, or 

α-Sn. By contrast, according to the Materials Project [90], stable binary intermetallic 

compounds in the CrCoNi HEA such as CrCo3, CrNi2, and Co3Ni exist with the formation 

energies of -0.006, -0.021, and -0.022 eV/atom, respectively, which may enhance the 
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tendency of CSRO in the metallic CrCoNi HEA. It is now well accepted that CSRO 

significantly reduces the configurational entropy [91,92]. In this regard, the 

semiconducting SiGeSn HEA should have a higher configurational entropy than the 

metallic CrCoNi HEA. 

Having confirmed the SQS structure as a reasonable one for simulating the SiGeSn 

HEA, we study the electronic structure of the HEA. Figure 2.5 shows the density of states 

of the SiGeSn HEA calculated with the PBE and HSE06 [93] hybrid density functionals. 

As can be seen, the calculations based on the PBE functional predict the SiGeSn HEA to 

be metallic, whereas the calculations using the more accurate HSE06 functional show that 

the SiGeSn HEA is actually a semiconductor with a small band gap of 0.38 eV. Many 

optoelectronic applications such as nigh vision [94], thermal imaging [95], and biomedical 

sensing [96] requires band gaps in the mid-infrared region (2.5-10 μm [97] i.e., 0.12-0.50 

eV). Therefore, the SiGeSn HEA may be useful for these applications and has the 

advantage of over the commonly used mid-infrared (group III-V and II-VI) materials in 

costs [97] and in compatibility with the complementary metal-oxide-semiconductor 

(CMOS) technology [67].  
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Figure 2.5. Density of states (DOS) of the SiGeSn high-entropy alloy calculated 
with the PBE and HSE06 functionals. 

The lattice distortion effect is ubiquitous in HEAs, so it has become one of the four 

core effects of HEAs. We here quantify this effect for the SiGeSn HEA. We follow the 

same method used by Tong et al. for the FeCoNiCr and FeCoNiCrPd HEAs to provide a 

statistical description of the local distortion effect in SiGeSn [98]. We calculate the 

distribution of the deviation Δd of the NN bond lengths with reference to the average NN 

bond length davg for the optimized SQS structure. Figure 2.6 displays the distribution 

Δd/davg and its Gaussian fit. The standard deviation of the SiGeSn alloy is determined to 

be 4.46%, which is larger than those (1.04% and 3.37%, respectively) of the FeCoNiCr and 

FeCoNiCrPd HEAs. We also apply the hard sphere-model proposed by Zhang et al. to 

determine the size mismatch δ calculated using the following equation [99], 
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 𝛿 = 100 × ,∑ 𝑐'(1 − 𝑟'/(
')* ∑ 𝑐+𝑟+(

+)* ) (2.2) 

where N is the total number of elements, ci/j are the concentrations of the element in 

an HEA—ci/j is equal to 1/3 for the SiGeSn HEA, and ri/j represent the atomic radii of Si, 

Ge, and Sn atoms. δ in Eq. (2.2) is structure independent, i.e. regardless of the atomic 

arrangement in an alloy being ordered or not. The resulting δ based on Eq. (2.2) is 15.16%, 

consistent with the large standard deviation of the Δd/davg data; both metrics ( Δd/davg and 

δ) reflect the severe local lattice distortion effect.  

  

Figure 2.6. Frequencies in the deviation Δd of nearest-neighbor (NN) bond lengths 
from the average NN bond length in the optimized structure of a SiGeSn HEA. 
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2.4.2 Vacancy stability of SQS SiGeSn 

With the optimized SQS structure, we study the vacancy formation energy of a single 

vacancy and its dependence on the elements and locations of the vacancy. Unlike in metals, 

vacancies in semiconductors (e.g., the SiGeSn HEA according to our HSE06 calculations) 

can exhibit various charge states [100]. Additional terms including the valence band 

maximum and band gap of a supercell without a defect, and potential alignment between 

the charged defect and systems should be included as a correction for the energy difference 

between a supercell with charged defect and a supercell without the defect [101]. While 

the valence band maximum and band gap can be obtained from HSE06 calculations, the 

band alignment term depends on the dielectric constant of the SiGeSn HEA structure. 

Using the PBE functional to calculate this parameter is problematic, as the SiGeSn HEA is 

metallic, exhibiting an infinite dielectric constant. On the other hand, although the HSE06 

functional leads to the conclusion that the SiGeSn HEA is semiconducting (and therefore 

a finite value of dielectric constant), obtaining a converged dielectric constant requires a 

very dense grid of k points and advanced theories like density functional perturbation 

theory [102]. Due to these technical issues associated with time-intensive calculations, we 

therefore consider only the vacancies without charges in this work. We defer the study of 

charged vacancy defects, which an important issue, to the future work.   

Focusing on the neutral vacancy, the single vacancy formation energy ΔE, describing 

the energy change caused by removing one atom from the bulk and placing it in a reservoir, 



 

 26 

is defined as [103],  

 ∆𝐸 = 𝐸,-. + 𝜇 − 𝐸/01% (2.2) 

where Evac is the energy of the supercell with a single vacancy, μ is the chemical 

potential of an atom in the reservoir, and Ebulk is the energy of the supercell without a 

vacancy. Because there are no known intermetallic compounds formed among Si, Ge, and 

α-Sn, we assume the reservoir to be bulk Si, Ge, and α-Sn for the corresponding vacancies. 

By the definition shown in Eq. (2.2), we can compare the vacancy formation energies in 

the SiGeSn HEA and in bulk Si, Ge, or α-Sn on the same footing. Since the chemical 

potential is the same as the atomic energy in pure bulk, ΔE for bulk Si, Ge, or α-Sn in Eq. 

2.2 is reduced to 

 ∆𝐸 = 𝐸,-. −
2

2!*
𝐸/01% (2.3) 

Here, n = 216 is the number of atoms in a supercell that is sufficiently large to compute 

the formation energy of an isolated, neutral vacancy. For all the supercells with a single 

vacancy, we completely optimize the lattice constants and atomic coordinates with the PBE 

functional. Table 2.1 shows the calculated single vacancy formation energies of bulk Si, 

Ge, and α-Sn, which are consistent with the literature. The order of the three vacancy 

formation energies also agrees well with the order of the cohesive energies, i.e., higher 

cohesive energy indicates higher vacancy formation energy. 

Because the bonding environment of each atom in the SiGeSn HEA is different, the 

corresponding vacancy formation energy is likely to be distinct. To simulate the three types 
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(Si, Ge, and Sn) of vacancies in the SiGeSn HEA, we create a single vacancy by 

consecutively removing one of the 216 atoms and fully optimize the resulting defected 

215-atom supercell structure, followed by computing the corresponding ΔE. Figure 2.7 

shows the three ranges of ΔE in the SiGeSn HEA and the ranges are summarized in Table 

2.1. We can see from Figure 2.7 that the distribution of formation energies for each type of 

vacancy is nearly continuous. Such wide ranges of vacancy formation energies are 

expected to some extent and have also been observed in other HEAs. For example, Chen 

et al. find that the range of the vacancy formation energies of Fe in FeCoCrNi HEAs is 

from 0.72 to 2.89 eV [104]. 

Table 2.1. Vacancy formation energies (in eV) of Si, Ge, and Sn in their own bulk crystals 
and the SiGeSn HEA calculated in this work. For comparison, the experimental and 
theoretical data of the vacancy formation energies of Si, Ge, and α-Sn in the literature are 
also shown. For the vacancy formation energies of Si, Ge, or Sn in the SiGeSn HEA, we 
report a range instead of a single value due to the fact that the energy cost of removing an 
atom from the HEA depends on the location of the atom.  

      

3.83 2.08 1.33 0.04-2.58 0.20-2.37 0.39-2.55 

4.0a 
2.04-2.62b, 

2.35c 
    

aRef. [105]. Experimental work 
bRef. [106]. Theoretical work using different supercells 
cRef. [107]. Theoretical work 
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Figure 2.7. Formation energies DE of single Si, Ge, or Sn vacancies in the SiGeSn 
high-entropy alloy. 

Figure 2.8(a) displays the dependence of vacancy formation energies on the number 

of nearest-neighbor Si and Ge atoms of a vacancy; the number of nearest Sn atoms equals 

four minus the former number, so it is not used as abscissa or ordinate in the plot. As can 

be seen from Figure 2.8(a), despite a vacancy has the same number of nearest-neighbor Si 

and Ge atoms (i.e., same abscissa and ordinate) the resulting formation energies can be 

quite different. For instance, 17 different energies are found if both abscissa and ordinate 

equal two. This large degeneracy in the number of nearest-neighbor Si atoms and Ge atoms 

implies that removing an atom to create a vacancy impacts more atoms than the nearest 

neighbors. Furthermore, bond reformation (see below) is not considered in this simple 

model. Figure 2.8(b)-(d) show the same dependence for Si, Ge, and Sn vacancies, 

respectively. For the Si case (Figure 2.8(b)), we observe that the highest vacancy formation 
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energy occurs when the removed atom is surrounded by four Si atoms, which is consistent 

with what we shall see below that breaking a Si-Si bond requires the most energy in 

comparison with breaking a Si-Ge or a Si-Sn bond. We also observe that many low vacancy 

formation energies fall in the regions where the number of nearest-neighbor Si atoms is 

below two. For example, the lowest-vacancy-formation-energy structure corresponds to 

the one with a vacancy that has one nearest-neighbor Si atom, two Ge nearest-neighbor 

atoms, and one Sn nearest-neighbor atom, respectively. For the Ge case (Figure 2.8(c)), 

higher vacancy formation energies also tend to occur when the number of nearest-neighbor 

Si atoms is above or equal to two, while the lowest formation energy appears anomalously 

where there are three nearest-neighbor Si atoms in spite of the Si-Ge bond strength being 

the second strongest among the bonds formed from Si, Ge, and Sn atoms. The location of 

the highest vacancy formation energy for the Sn case (Figure 2.8(d)) is similar to that in 

the Ge case. In addition, the vacancies that have lower formation energies prefer to have 

fewer Si atoms as nearest neighbors, a common feature in all the three cases. 
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Figure 2.8. Relation between vacancy formation energies and the number of 
nearest-neighbor Si and Ge atoms near each single vacancy in the SiGeSn high-entropy 

alloy. (a) is for the entire data set and its division into the (b) Si (c) Ge, and (d) Sn 
subsets. The radius and color intensity of each circle represent the magnitude of the 
corresponding vacancy formation energy. The numbers near the circles denote the 
number of circles that share the same abscissa or ordinate. The texts “highest” and 

“lowest” label the highest and lowest vacancy formation energies, respectively. 
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Figure 2.9. Dissociation energies of Si-Si, Si-Ge, Si-Sn, Ge-Ge, Ge-Sn, and Sn-Sn 
diatomics as a function of internuclear separation. 

We also expect that the lower bounds of the three ranges of vacancy formation 

energies to be higher than the vacancy formation energy in bulk α-Sn, i.e., 1.33 eV. This 

assumption is made again based on the fact that creating a vacancy is equivalent of breaking 

chemical bonds. The broken bonds in the SiGeSn HEAs are diversified, such as Si-Ge, Si-

Sn, etc. The energies to break these mixed bonds are supposed to lie between the Si-Si and 

Sn-Sn bonds. To support our assumption, Figure 2.9 depicts the variation of dissociation 

energy with interatomic distance for Si-Si, Si-Si, Si-Ge, Si-Sn, Ge-Ge, Ge-Sn, and Sn-Sn 

diatomics. The dissociation energy is calculated as the energy difference of the total energy 
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of a diatomic molecule (placed in the same vacuum box as used for computing the energies 

of isolated atoms) from the total energies of the isolated constituent atoms. The dissociation 

energies for Si-Si, Si-Ge, Si-Sn, Ge-Ge, Ge-Sn, and Sn-Sn are 3.61, 3.35, 3.01, 3.15, 2.87, 

and 2.65 eV, respectively, which are reasonably consistent with the experimental data of 

3.31, 3.08, 2.42, 2.82, 2.38 and 1.99 eV [108-111], respectively; both theoretical and 

experimental data show that the Si-Si bond strength is the strongest while the Sn-Sn bond 

is the weakest. All the other bond strengths lie between these upper and lower bounds. The 

order of the dissociation energies is the same as that of the cohesive energies of bulk Si, 

Ge, and α-Sn.  

Surprisingly, there are 2/3 (144 out of 216) of the vacancy formation energies in the 

whole data set that are smaller than the vacancy formation energy of bulk α-Sn (1.33 eV). 

To understand this, Figure 2.10 shows the local atomic structures (before and after 

geometry optimizations) near the vacancies with the highest and lowest vacancy formation 

energies for Si, Ge, and Sn. We observe a common phenomenon: for the structures with 

the highest formation energies, the number of dangling bonds (4) remains unchanged after 

geometry relaxations, similar to the situation where an atom is removed in bulk Si, Ge, and 

α-Sn. As a result, the energies of the structures as well as the vacancy formation energies 

are high. By contrast, in the structures with the lowest formation energies, the atoms with 

dangling bonds due to removing an atom form new bonds to minimize the number of 

dangling bonds, thereby reducing the system’s energy. For example, Figure 2.10(a) 
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illustrates that a Ge atom relocates to the location of the Si vacancy reforming four-fold 

coordinated bonds with nearest-neighboring two Sn atoms, one Ge atom, and one Si atom. 

This bond reformation makes the corresponding vacancy formation energy negligibly 

small (0.04 eV). Similar bond reformations are also found near the Ge and Sn vacancies 

(see Figure 2.10(a) and (b)), leading to the corresponding lowest vacancy formation 

energies. We speculate that similar bond reformation also exists in a vacancy of metallic 

HEAs. For example, the formation energy of a single Fe vacancy in bulk Fe is 1.58 eV (this 

energy is also the lower bound of the vacancy formation energies of bulk Fe, Cr, Co and 

Ni that form the FeCrCoNi HEA), while the lowest formation energy of a single Fe vacancy 

in the FeCrCoNi HEA is 0.72 eV. The ratio of these two energies (1.58/0.72 ≃ 2.19) is 

much larger than the corresponding ratio (1.33/0.04 ≃ 33.25) in the SiGeSn HEA, 

manifesting the unique structure and energetics of the vacancies in semiconducting HEAs. 
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Figure 2.10. Local atomic structures near (a) Si, (b) Ge, and (c) Sn vacancies 
(denoted by yellow stars). The figures in the left and right columns of each panel show 

the atomic structures before and after geometry optimizations, respectively. 

We now study the effects on the electronic structure of the SiGeSn HEA due to the 

presence of single vacancies. As shown above, it is necessary to use the HSE06 functional 

to obtain the more accurate electronic structures of the SiGeSn HEA. Because performing 

the calculations at the HSE06 level of theory for all the defected supercells—each has 215 

atoms—is extremely time consuming, we compute the HSE06 electronic structures only 
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for the six supercells with the lowest and highest vacancy formation energies for the three 

types (Si, Ge, and Sn) of vacancies, using their corresponding optimized configurations 

based on the PBE functional.  

Figure 2.11 displays the density of states calculated for the vacancies with the highest 

and lowest formation energies computed with the HSE06 functional. A vacancy in a 

semiconductor usually leads to defect states in the band gap. For example, defect states 

resulted from a neutral oxygen vacancy are seen in the band gap of semiconducting SrTiO3 

[112]. We find no such defect states in the band gap of the SiGeSn HEA. Instead, we 

observe that all the lowest-formation-energy structures with single vacancies are 

semiconducting with band gaps of 0.31, 0.35, and 0.32 eV for the Si, Ge, and Sn vacancies, 

respectively, and that all the highest-formation-energy configurations are metallic. These 

band gaps are nearly identical to that (0.38 eV) of the SiGeSn HEA without a vacancy, 

implying trivial impacts of the vacancies on the band gap. The absence of the defect states 

in the lowest-formation-energy structures is because of the bond reformation as shown in 

Figure 2.10, which provides the otherwise missing orbitals to overlap with the orbitals from 

the atoms surrounding a vacancy site. Figure 2.10 shows that the vacancy sites in the 

lowest-formation-energy structures are replaced by another atom either of the different 

element (i.e., Si by Ge) or the same element (i.e., Ge by Ge and Sn by Sn), thereby the 

band gap size is almost not affected by these atomic replacements. In the highest-

formation-energy vacancy supercells, because unreconstructed dangling bonds exist, and 
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their energies are large enough to excite the electrons to the energies above the valence 

band maximum. The excited electrons then form continuous bands bridging the band gap 

and resulting in overall metallic systems. These vacancies therefore render the SiGeSn 

HEA unsuitable for optoelectronic applications. Fortunately, we expect a low probability 

of having these vacancies as their formation energies are very high. In other words, the 

SiGeSn HEA will be dominated by those low-energy vacancies that retain the 

semiconducting properties required for doping purposes. 

 

Figure 2.11. Density of states of (a) Si, (b) Ge, and (c) Sn of the SiGeSn high-
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entropy alloy with single vacancies of the highest and lowest formation energies. 

2.5 Summary 

We have studied a Si-Ge-Sn alloy in the context of HEA using DFT calculations. We 

showed that the SiGeSn HEA is a semiconductor with the band gap in the mid-infrared 

region. Comparing to metallic HEAs, the SiGeSn HEA exhibits the same, large lattice 

distortion effect and wide ranges of vacancy formation energies. Nevertheless, we also 

found two features that distinguish the SiGeSn HEA from metallic HEAs. First, the SiGeSn 

HEA has no CSRO due to the similar electronegativity of Si, Ge, and Sn, which 

consequently increases the configurational entropy. Second, single vacancy formation 

energies of  the SiGeSn HEA can be very low owing to the bond reformations near the 

vacancies. As a result, the band gap of the SiGeSn HEA is almost unaffected by the 

vacancies that have low formation energies. Overall, investigating Si-Ge-Sn alloys from 

the perspectives of HEAs will produce fundamental insight on the structure–property 

interplay of group IV alloys, and our integrated computational methods will assist the 

design of other groups of semiconducting HEAs exhibit critical electromagnetic properties 

and applications.  
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CHAPTER IV 

ELECTRICAL AND THERMAL TRANSPORT PROPERTIES OF MEDIUM-

ENTROPY SIyGEySNx ALLOYS 

3.1 Abstract 

Electrical and thermal transport properties of disordered materials have long been of 

both theoretical interest and engineering importance. As a new class of materials with an 

intrinsic compositional disorder, high/medium-entropy alloys (HEAs/MEAs) are being 

immensely studied mainly for their excellent mechanical properties. By contrast, electrical 

and thermal transport properties of HEAs/MEAs are less well studied. Here we investigate 

these two properties of silicon (Si)-germanium (Ge)-tin (Sn) MEAs, where we keep the 

same content of Si and Ge while increasing the content of Sn from 0 to 1/3 to tune the 

configurational entropy and thus the degree of compositional disorder. We predict all 

SiyGeySnx MEAs to be semiconductors with a wide range of bandgaps from near-infrared 

(0.28 eV) to visible (1.11 eV) in the light spectrum. We find that the bandgaps and effective 

carrier masses decrease with increasing Sn content. As a result, increasing the 

compositional disorder in SiyGeySnx MEAs enhances their electrical conductivity. For the 

thermal transport properties of SiyGeySnx MEAs, our molecular dynamics simulations 

show an opposite trend in the thermal conductivity of these MEAs at room temperature, 

which decreases with increasing compositional disorder, owing to enhanced Anderson 

localization and strong phonon-phonon anharmonic interactions. The enhanced electrical 
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conductivity and weakened thermal conductivity make SiyGeySnx MEAs with high Sn 

content promising functional materials for thermoelectric applications. Our work 

demonstrates that HEAs/MEAs not only represent a new class of structural alloys but also 

a novel category of functional alloys with unique electrical and thermal transport properties.  

3.2 Introduction 

The Seebeck effect refers to the presence of electronic potential between two junctions 

in a material at different temperatures. The Peltier effect, on the other hand, illustrates the 

heat generation or loss at an electrified junction of two materials under voltage. These two 

facts provide the basis of the thermoelectric (TE) effect for the energy conversion between 

electrical and thermal resources. While the TE effect is universal in all materials, in most 

of them the effect is too trivial to be utilized [113]. A TE material needs to satisfy multiple 

criteria to achieve the energy conversion between heat and electricity. The maximum 

efficiency of the conversion is measured by the TE figure of merit depending on four 

parameters, i.e., 𝑧𝑇 = 3"4
5
𝑇 , where 𝑆  is the Seebeck coefficient, 𝜎  stands for the 

electrical conductivity, 𝜅  is the thermal conductivity, and 𝑇  denotes the absolute 

temperature of the operating environment [13,14]. According to the definition of 𝑧𝑇, an 

outstanding TE material at a specified temperature requires to possess a high Seebeck 

coefficient, a high electrical conductivity and a low thermal conductivity. Because of the 

interdependency of the four parameters, it is not always feasible to increase 𝑧𝑇 by tuning 

one of the parameters without affecting the others. For example, the Seebeck coefficient 
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decreases with increasing carrier density that increases the electrical conductivity [114,115]. 

Efforts have been made to search for suitable TE materials with high 𝑧𝑇. Metals 

generally have high electrical conductivities, but they also display high thermal 

conductivities, which balance out the 𝑧𝑇 and cannot function as suitable TE materials. By 

contrast, semiconductors, whose 𝑧𝑇 are generally much higher than metals, have found 

their great potential in TE applications by virtue of tunable TE properties via alloying. For 

example, alloying cobalt triantimonide (CoSb3), with iridium (Ir) of similar 

electronegativity to Co, CoSb3-xIrx tends to show covalent bonding and high carrier 

mobility, which keeps the electrical conductivity unaffected while reducing the thermal 

conductivity. As a result, an optimized 𝑧𝑇  of 0.8 is obtained at 600 K [115]. Lead 

chalcogenides alloys, (PbTe)1-2x(PbSe)x(PbS)x, serve as another example of increasing the 

TE performance by coalloying the elements from the same group in the periodic table. The 

addition of PbTe and PbSe to PbS maintains the stable and homogeneous rock-salt structure 

and decreases the thermal conductivity of PbS by increasing the scattering strength of 

phonon resulted from the compositional disorder [116]. As a result of this alloying strategy, 

the TE performance of (PbTe)1-2x(PbSe)x(PbS)x is superior to that of individual binary PbX  

(X = S, Se, or Te) alloys.  

Although many materials have been reported to show outstanding 𝑧𝑇  at high 

temperatures such as PbTe with 𝑧𝑇 of 0.8 at 580 K [117], its 𝑧𝑇 drop drastically to 0.001 

at room temperature, making it unsuitable for room-temperature TE applications. At the 
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same time, TE materials that are able to operate near room temperature are important for 

energy-conversion applications in different fields. For instance, the industrial waste heat 

common from the recycling water is always discarded into environment via the form of 

exhaust gas or air flow. A major portion of the heat from the low-temperature recycling 

water/steam is commonly wasted because of lack of commercial conversion devices [118]. 

As another heat resource, hot springs, one clean, cost-effective, and sustainable geothermal 

resource, have a temperature of 347 K [119] can be employed. Both of these examples 

require TE materials that can be efficient in power conversion near room temperature. Only 

a handful of materials are found to still display considerable 𝑧𝑇 for TE applications at 

room temperature. For example, CsBi4Te6 consists of a Cs+ layer that separates [Bi4Te6]- 

bilayers. Owing to this complex structure, the phonons in CsBi4Te6 exhibit long and 

convoluted phonon mean free paths that significantly reduce the thermal conductivity 

[120,121]. As a result, CsBi4Te6 can reach a high 𝑧𝑇 of 0.8 and a low thermal conductivity 

of 1.25 W/(m·K) at room temperature [121]. Among the limited number of TE candidates 

at room temperature, challenges in manufacturing persist, hindering their wide industrial 

applications in TE devices. Specifically, fabricating the room-temperature TE materials 

such as CsBi4Te6 requires an intensive control of the synthesis process. Therefore, it is 

important to identify room-temperature TE materials that are amenable to modern 

manufacturing technologies.  

High/medium-entropy alloys (HEAs/MEAs; Following the convention [122,123], if 
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the number of elements is greater than or equal to five, HEAs is used; otherwise, MEAs is 

a more accurate terminology.) recently emerge as alternative candidates for TE applications. 

Different from conventional alloys that have one principal element and the other elements 

are added to tune the properties [73,124], HEAs/MEAs represent a novel category of alloys 

with multiple principal components, where all the constituent elements have equal or 

comparative concentrations [125]. HEAs/MEAs generally exhibit three different phases: 

solid solution, intermetallic compound, or the mix of these two phases [126,127]. In 

comparison with conventional alloys, the disorder atomic arrangement in HEAs/MEAs is 

associated with larger configurational entropy. Including the entropic contribution to the 

energy, HEAs/MEAs could form stable solid solutions at higher temperatures [128,129]. 

Many HEAs/MEAs exhibit excellent mechanical properties such as elevated-temperature 

strength [41,130] and high elastic modulus [131-133]. In addition to mechanical properties, 

HEAs/MEAs display outstanding functional properties in the applications from 

superconductors [134-136] to semiconductors with adjustable bandgaps [125]. 

HEAs/MEAs can be suitable TE materials mainly for two reasons. First, single-phase 

HEAs/MEAs can maintain a stable solid solution phase with high crystalline symmetry, 

across which electrons move freely. In line with the concept of ‘phonon-glass electron-

single-crystal’ [137,138], single-phase HEAs/MEAs are expected to show difficulty in 

conducting phonons but easiness in transporting electrons. Second, the thermal 

conductivity of HEAs/MEAs can be suppressed by several phonon scattering mechanisms 
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that involve point defects, lattice distortions, and compositional disorder, which are 

commonly seen in HEAs/MEAs [139,140]. Indeed, HEAs/MEAs such as AlxCoCrFeNi 

[138], PbSnTeSe [141], and BiSbTe1.5Se1.5 [139] have been synthesized and employed as 

TE materials suitable for high (>1000 K), medium (500-900 K), and low working 

temperatures (300-500 K), respectively.  

Manufacturing techniques of Group IV alloys consisting of silicon (Si), germanium 

(Ge), tin (Sn) are supported by the sophisticated semiconductor industry, it is therefore 

worthwhile exploring Si-Ge-Sn alloys for TE applications. Binary Si-Ge alloys have long 

been used as TE materials in waste heat generation and conversion for automotive 

applications [142-144]. In particular, binary Si-Ge alloys exhibit excellent TE performance 

at high temperature (> 1000 K) [145-147]. Experiments have also shown that adding Sn to 

Si-Ge alloys further lowers the thermal conductivity without significantly affecting the 

electrical conductivity [148]. Consistent with experiment, theoretical studies have found 

that the thermal conductivity of Si-Ge-Sn alloys can be reduced through controlling the Sn 

content and decreasing the bulk to thin films [149]. Comparing to Si or Ge atoms, a Sn 

atom is heavier and has a much larger radius. Heavier and larger Sn atoms in Si-Ge alloys 

increases the compositional disorder and causes a lattice distortion (see below), leading to 

strong anharmonic phonon-phonon scattering and thereby decreasing the thermal 

conductivity [150]. Si-Ge-Sn alloys exhibit a wide range of band gaps up to 1.4 eV that 

vary with composition and the bandgap types switch between direct and indirect [148,151-
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153]. According to the empirical “10kBT” (kB : the Boltzmann constant) rule proposed by 

Mahan [154,155], a TE material operating at temperature T should have a band gap of 

around 10kBT to maximize the 𝑧𝑇. Composition-dependent bandgaps in Si-Ge-Sn alloys 

therefore enable them to achieve optimal TE performance at various operating 

temperatures [149,156].  

In this work, instead of exploring the regions in the composition space representing 

conventional Si-Ge-Sn alloys that have been the subject of a number of theoretical and 

experimental studies [67,73,149,157], we focus on a special region of the composition 

space (see Figure 3.1(a)), where we keep the concentration of Si and Ge equal while 

varying the concentration of Sn from 0 to 1/3. The chemical formula of these special Si-

Ge-Sn alloys can therefore be written as SiyGeySnx, where 2y + x = 1 and x £ 1/3. In 

choosing these concentrations, we are able to obtain the trends on how the electrical and 

thermal conductivities and the TE figure of merit are modified via systematically 

increasing the configuration entropy and therefore the extent of compositional disorder. 

Figure 3.1(b) shows that the configurational entropies of SiyGeySnx MEAs calculated from 

the Boltzmann entropy formula increase from 0.71 kB at x = 0 to 1.10 kB at x = 1/3. We 

have recently studied the Si1/3Ge1/3Sn1/3 MEA, which exhibits a single phase without a 

short-range chemical order, a near-infrared bandgap and a wide range of vacancy formation 

energies [125]. Although no experiments have yet been performed to fabricate this special 

series of SiyGeySnx MEAs and it is also challenging to fabricate the Si-Ge-Sn alloys with 
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high Sn content because of large lattice mismatch [59,125,149,158,159], recent 

experimental techniques developed by Kouvetakis and coworkers to fabricate conventional 

Si-Ge-Sn alloys with high Sn content may be adjusted to synthesize these MEAs [159]. 

Before the experiment becomes available, we here predict the structural, electrical, and 

thermal transport properties of SiyGeySnx MEAs and explore their TE applications. 

3.3 Simulation Methods 

To create simulation cells for the density functional theory (DFT) [75,76] calculations 

of SiyGeySnx MEAs, we first generate a 3 × 3 × 3 supercell from an 8-atom unit cell of 

cubic Si with the diamond structure. The supercell thus consists of 216 Si atoms and we 

randomly permutate the locations of these atoms and substitute a portion of the atoms with 

Ge and Sn atoms, depending on the Sn content x. Given the fixed total number of atoms in 

the supercell, we obtain 11 structures of SiyGeySnx MEAs with different concentrations of 

Sn, namely, x = 0, 1/108, 1/54, 1/36, 1/27, 1/18, 1/12, 1/9, 1/6, 1/4, and 1/3. Figure 3.1(a) 

illustrates the structure of a SiyGeySnx MEA with the highest configurational entropy (i.e., 

x = 1/3).  

We use the Vienna Ab initio Simulation Package (VASP; version 5.4.4) for all the 

DFT calculations and the Perdew-Burke-Ernzerhof (PBE) [79] functional to describe the 

exchange-correlation interactions in geometry optimizations and energy calculations. To 

remedy the problem of bandgap underestimation due to the PBE functional [160], we apply 

the modified Becke-Johnson (mBJ) exchange potential, which has been shown to 
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significantly improve the bandgaps of many semiconductors such as aluminum phosphide 

(AlP), silicon carbide (SiC), and gallium arsenide (GaAs) [89]. We compute the electronic 

structures of SiyGeySnx using this potential based on the fully optimized structures with the 

PBE functional. The mixing parameter c in the potential is determined self-consistently. To 

describe the electron-nuclei interactions, we use the standard PBE version of Si, Ge, and 

Sn potential datasets generated via the projector augmented-wave (PAW) method [80,81] 

In these PAW potentials, the 3s2 and 3p2 electrons of Si atoms, the 4s2 and 4p2 electrons of 

Ge atoms, and the 5s2 and 5p2 electrons of Sn atoms are adopted as valence electrons. The 

plane wave cutoff energy is 400 eV. We fully optimize the 216-atom supercells using a 2 × 

2 × 2 Monkhorst-Pack k-point grid [82] and the force convergence criterion during the 

geometry optimization calculations is set to 0.01 eV/Å. 

To calculate the Seebeck coefficient and electrical conductivity of SiyGeySnx MEAs, 

we use the BoltzTraP2 package [161], which solves the linearized electron Boltzmann 

transport equation according to rigid-band approximation (rather than the constant 

relaxation time approximation as implemented in the BoltzTraP package [162]) assuming 

that the band structure is not affected by temperature and doping. The doping and 

temperature effects are taken into account in the Fermi-Dirac distribution function 

𝑓(𝜀, 𝜇, 𝑇). The inputs for our BoltzTraP2 calculations are the band energies 𝜀 obtained 

from the mBJ exchange potential and the key outputs are the Seebeck coefficient and 

electrical conductivity tensors that depend on the electron chemical potential 𝜇 from the 
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following equations [161]: 
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B 𝑑𝜀 (3.2) 

where 𝑞 is the carrier charge and 𝜎(𝜇, 𝑇) is called the transport distribution function 

according to the linearized electron Boltzmann transport equation. 𝜎(𝜇, 𝑇) describes the 

carrier transport property that depends on the group velocity, concentration, and lifetime of 

the carriers. We are not considering the anisotropy in this work, so we report the average 

Seebeck coefficient and electrical conductivity in the three dimensions. To compute the 

electrical conductivity, we use a constant relaxation time of 10 femtoseconds, which has 

been widely used in computing the electrical conductivities of many intrinsic or lightly 

doped semiconductors [162-165]. 

To obtain the thermal conductivity of SiyGeySnx MEAs, we perform classical 

equilibrium molecular dynamics (EMD) simulations using the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [166]. The many-body 

interatomic interactions are described using a modified Stillinger-Weber potential [167] 

that was fitted from DFT to reproduce properties such as the phase stability and elastic 

constants [168,169], and applied to study the thermal conductivity of Si-Ge-Sn alloys 

[150,170]. The simulation cells used in MD simulations are much larger than those used in 
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the DFT calculations, and the way we create simulation cells is similar. That is, the MD 

supercells are based on a 9 × 9 × 9 supercell of the Si unit cell and each supercell consists 

of 5832 atoms. Because of thermal fluctuations, we create three sets (using three different 

random seeds) of 5832-atom supercells for each SiyGeySnx MEA and report the average 

thermal conductivity. The thermal conductivity of SiyGeySnx MEAs at room temperature is 

calculated through EMD simulations based on the Green-Kubo method [171-173]. The 

time step for the MD simulations is 1.0 fs. In the MD simulations, we first equilibrate the 

system for 106 steps using the NVT canonical ensemble and the Nosé-Hoover thermostat 

[166,174] and then runs another 4 ´ 106 steps for collecting the heat flux data every 1.25 ´ 

104 steps in the NVE micro-canonical ensemble. The thermal conductivity 𝜅B in the 𝛼 

direction is calculated with the following equation [149]: 

 𝜅B =
C

%!&"
∫ 〈𝐽B(0)𝐽B(𝑡)〉𝑑𝑡
D
E  (3.3) 

where 𝐽B(𝑡)  is the heat current at time 𝑡 ; 𝑉  and 𝑇  denote volume and temperature, 

respectively. 

We also study the thermal conductivities of SiyGeySnx MEAs at the DFT level using 

the Phonopy and Phono3py programs [175,176]. Phonopy and Phono3py programs, post-

process the second-order and third-order force constants, respectively, to yield the phonon 

frequencies, the thermal conductivity and the phonon linewidth by solving the linearized 

phonon Boltzmann transport equation. To obtain the harmonic phonon frequencies and 

anharmonic phonon-phonon interactions, we calculate the second-order and the third-order 
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force constants using the finite-displacement method with a displacement of 0.03 Å. The 

second-order and third-order force constants are calculated using 4 × 4 × 4 and 2 × 2 × 2 

supercells, respectively. The energies and forces of these geometries are evaluated via DFT 

calculations. It is nevertheless challenging to calculate the third-order force constant for a 

disordered alloy with a low symmetry, so we create the models of two artificial MEAs, 

Si3/8Ge3/8Sn1/4 and Si1/2Ge3/8Sn1/8, which, respectively, have three/four Si atoms, three/three 

Ge atoms, and two/one Sn atoms in their unit cells. The Sn content of the artificial 

Si3/8Ge3/8Sn1/4 MEA is the same as one of the 11 selected SiyGeySnx MEAs that has x of 1/4. 

The total number of supercells to obtain the second-order and third-order force constants 

via DFT calculations is 18 and 4746, respectively. Although Si1/2Ge3/8Sn1/8 is not one of 

the 11 SiyGeySnx MEAs, its composition can be reflected by the same small unit cell with 

the Sn content smaller than 1/3. Correspondingly, the total number of supercells to obtain 

the second-order and third-order force constants via DFT calculations is 5 and 833, 

respectively. 

3.4 Results and Discussion 

3.4.1 Structural Properties 

We first investigate the structural properties of the 11 SiyGeySnx MEAs. Because the 

shapes of all the supercells slightly deviate from cubic after geometry optimizations, we 

report the average length of the three lattice vectors. Figure 3.1(d) displays the variation of 

the average lattice constant aavg of SiyGeySnx with the Sn content. We can fit the aavg data 
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to a linear equation (aavg = 5.61 + 1.04x) without introducing the bowing factor. Namely, 

the average lattice constant follows the Vegard law. This trend is in contrast to group IV 

binary alloys, which have been shown to exhibit sizable bowing factors [177,178]. 

We next compute the formation energy Ef of SiyGeySnx HEAs, defined as the energy 

change of the following reaction: 

 𝑦Si + 𝑦Ge + 𝑥Sn	 → SiFGeFSnG (3.4) 

For a better comparison, we calculate the energies of the 216-atom supercells of Si, 

Ge, and α-Sn with the diamond structure using the same number of atoms. Positive Ef from 

the ground-state calculations indicates that the product (a SiyGeySnx MEA) is less stable 

than the reactants (Si, Ge, and α-Sn). Figure 3.1(e) shows that the energy changes of all the 

reactions are endothermic and that Ef increases with the Sn concentration although the 

magnitude of increase is smaller at high Sn content.  
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Figure 3.1. (a) Composition space of Si-Ge-Sn alloys color-coded by the 
configurational entropy. The black dots denote the compositions of the 11 alloys studied 
in this work. (b) Configuration entropy of SiyGeySnx MEAs a function of the Sn content 

x. (c) Atomic structure of SiyGeySnx (x = 1/3) MEA and displacement field showing a 
large lattice distortion effect. (d) Average lattice constant and its fit to a linear equation of 

x, (e) formation energy, and (f) average atomic displacement of SiyGeySnx MEAs as a 
function of x. 

We note that the configurational entropy is absent in the formation energy calculations. 

We estimate the entropy contribution, for example, at 500 K that is an estimated 

temperature at which conventional Si-Ge-Sn alloys are grown using the CVD method [148]. 

The configurational entropy contribution -TSconf to the Gibbs free energy at this 

temperature is about -53.3 meV/atom for the equimolar Si1/3Ge1/3Sn1/3 MEA with the Ef of 

96.8 meV/atom. However, the Gibbs free energy remains positive (43.5 meV/atom) even 
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considering this part of energy contribution, implying that SiyGeySnx MEAs are out of 

thermodynamic equilibrium. As a result, fabricating SiyGeySnx MEAs is likely to require 

the same non-equilibrium growth processes used for obtaining the conventional high-Sn 

content Si-Ge-Sn alloys [73,179]. 

HEAs/MEAs generally exhibit a notable lattice distortion effect. To illustrate this 

effect, we compute the atomic displacement field for the atoms in the simulation supercell 

using the Si1/3Ge1/3Sn1/3 MEA as an example. Figure 3.1(c) depicts the atomic displacement 

field of this MEA with the atomic positions in lattice sites of bulk Si being the reference. 

Each arrow represents the direction of a displacement and the length of an arrow represents 

the magnitude of the atomic displacement. Although the atomic displacements occur in 

different directions, we observe a dominant direction parallel to the (110) plane, where the 

atoms prefer to relocate. This direction preference causes a large lattice strain along that 

direction. We calculate the average atomic displacements for each element in the 

Si1/3Ge1/3Sn1/3 MEA. As shown in Figure 3.1(f), the average atomic displacements for all 

the species increase when the Sn content is increased. This trend is caused by the fact that 

increasing the Sn content simultaneously creates space for Si and Ge atoms to adjust their 

locations. We also observe from Figure 3.1(f) that the average atomic displacement for the 

three elements is nearly the same, regardless of their different atomic radii.  

3.4.2 Electronic and Thermal transport Properties 

Having studied the structural properties of SiyGeySnx MEAs, we set out to understand 
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their electronic structures and associated electrical transport properties. Figure 3.2 displays 

the band structures of the four SiyGeySnx (x = 0, 1/12, 1/6, and 1/3) MEAs calculated using 

the mBJ exchange potential. Due to the presence of heavy Sn atoms, we account for the 

spin-orbit coupling in computing the band structures. The modified Becke-Johnson 

exchange potential that yields accurate band gaps comparable to our recent calculation 

using the HSE06 hybrid density functional [93]. For example, the mBJ band gap of 

Si1/3Ge1/3Sn1/3 is 0.28 eV, close to the HSE06 band gap of 0.38 eV [125]. As can be seen 

from Figure 3.2, the bandgap type becomes direct as the Sn content is increased to near 1/3. 

Figure 3.3(a) shows the variation of the bandgaps with the concentration of Sn, revealing 

that the bandgaps decrease with increasing Sn content and the range of the bandgaps, 0.28-

1.11 eV,  spans from visible to near-infrared in the light spectrum. Such a wide range of 

band gaps endow SiyGeySnx MEAs with potential for applications not only in TE but also 

in optoelectronics devices. 
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Figure 3.2. Band structures of SiyGeySnx MEAs with (a) x = 0, (b) x = 1/12, (c) x = 
1/6, and (d) x = 1/3. The band structures are obtained from the modified Becke-Johnson 
exchange potential using the optimized structures from DFT calculations with the PBE 

functional. Spin-orbit coupling is taken into account and the valence band maxima are set 
to zero. The coordinates of X, Y, S, Z, U, T, and R are (1/2,0,0), (0,1/2,0), (1/2,1/2,0), 

(0,0,1/2), (1/2,0,1/2), (1/2,1/2,0), and (1/2,1/2,1/2) respectively. 
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Figure 3.3. Variation of (a) bandgaps and (b) electron and hole effective masses of 
SiyGeySnx MEAs with Sn content. (c) Seebeck coefficient and (d) electrical conductivity 

of SiyGeySnx MEAs at different electron chemical potentials.  

Figure 3.3(b) shows the computed electron and hole effective masses of SiyGeySnx 

MEAs. The hole effective mass mh* in the whole range of Sn content of SiyGeySnx MEAs 

is isotropic, so only one set of data are shown. By contrast, the effective electron mass me* 

is anisotropic at low Sn content. Increasing the Sn content removes the anisotropy of me*. 
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Overall, SiyGeySnx MEAs with high-content Sn has small effective carrier masses. In 

particular, Si1/3Ge1/3Sn1/3 exhibits the lowest mh* (0.171 m0) and me* (0.077 m0) among the 

11 SiyGeySnx MEAs. The low mh* and me* of SiyGeySnx MEAs with high-content Sn are 

comparable or even smaller than the corresponding mh* and me* of Si, Ge, and GaAs [180], 

implying high carrier mobility in these MEAs given the same relaxation time and applied 

electric field. 

To evaluate the room-temperature TE figure of merit of the 11 SiyGeySnx MEAs, we 

first calculate their Seebeck coefficients and electrical conductivities at 300 K. According 

to Eq.(3.1) and (3.2), both parameters vary with the chemical potential that can be tuned 

by p/n-type doping for a semiconductor. Figure 3.3(c) depicts the calculated Seebeck 

coefficients of the MEAs as a function of the chemical potential. We observe two typical 

peaks in the plots of Seebeck coefficients for each MEA, corresponding to the maximum 

Seebeck coefficients of the cases of p-type and n-type doping, respectively. Because of the 

Fermi distribution, the Seebeck coefficients decay rapidly to zero when the chemical 

potential significantly deviates from the band energies. For all the 11 SiyGeySnx MEAs, we 

obtain their maximum Seebeck coefficients that range from 537 to 1583 µV/K. The 

maximum Seebeck coefficients of SiyGeySnx MEAs with the Sn content below 1/9 have 

higher values (> 1500 µV/K). Although the maximum Seebeck coefficient of Si1/3Ge1/3Sn1/3 

is not the largest among all the MEAs, the value of 537 µV/K appears higher than many 

other TE materials such as CuGaTe2 and MgAgSb with the maximum Seebeck coefficients 
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of 277 µV/K [181] and 400 µV/K [182] respectively, calculated with the PBE functional 

and at the same temperature.  

Figure 3.3(d) shows the electrical conductivities (divided by the constant relaxation 

time τ = 10-14 s) of the SiyGeySnx MEAs as a function of the chemical potential. We can see 

the ranges of chemical potentials, which match the band gaps of the 11 MEAs as shown in 

Figure 3.3(a), correspond to an electrical conductivity of zero. Outside these ranges, the 

electrical conductivity increases significantly. In a small potential range from -0.3 to 0.75 

eV, the electrical conductivity of Si1/3Ge1/3Sn1/3 is the highest among all the MEAs, where 

it peaks at 0.63 eV with an electrical conductivity of 6.2 × 105 S/m. For reference, the 

electrical conductivity is higher than many other proposed TE materials such as CuGaTe2 

(1.3 × 104 S/m) [181] and Mg2Si (7.1 × 104 S/m) [183] at room temperature. 

 

 

Figure 3.4. Charge density of the valence (top) and conduction (bottom) bands of 
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SiyGeySnx MEAs with (a) x = 0, (b) x = 1/12, (c) x = 1/6, and (d) x = 1/3. The isosurface 
value of SiyGeySnx MEAs is 1.0 ´ 10-4 e/Bohr3. 

The high electrical conductivity of SiyGeySnx MEAs especially the ones with high Sn 

content is somewhat surprising. According to Anderson [184], one expects electron 

localization to occur and diminish the electrical conductivity in disordered systems like 

SiyGeySnx MEAs. On the contrary, the charge densities of the top valence and bottom 

conductions bands of four SiyGeySnx MEAs (x = 0, 1/12, 1/6, and 1/3) shown in Figure 3.4 

reveal that, although there is carrier localization to some extent, both electrons and holes 

become more delocalized as the Sn content is closer to 1/3. The absence of electron/hole 

Anderson localization is possibly because Si, Ge, and Sn belong to the same group and 

have nearly the same electronegativity. As a result, the scattering between an electron and 

any of the three types of nuclei is expected to be similar. 

We now compute the thermal conductivity of SiyGeySnx MEAs and examine the 

effects of compositional disorder. Figure 3.5(a) shows the calculated thermal conductivity 

of the 11 SiyGeySnx MEAs from the EMD simulations. The thermal conductivities of 

several of these MEAs have been reported in the literature using a variety of methods such 

as the non-equilibrium MD (NEMD) method with fixed thermostat at the end points, the 

reversed NEMD Müller-Plathe method, and the EMD Green-Kubo method 

[171,172,185,186]. Our calculated thermal conductivities are consistent with the literature. 

For example, the thermal conductivity of Si0.5Ge0.5 in the present work is 1.62 W/(m·K), 
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comparable to 1.06 ± 0.16 W/(m·K) using the NEMD method with the same interatomic 

potential [187,188]. Because the thermal conductivity at the MD level of theory depends 

on simulation methods such as the Green-Kubo method, the simulation cell size, and most 

importantly, the transferability of the Si-Ge-Sn interatomic potential, we emphasize that 

the absolute values of thermal conductivities of SiyGeySnx MEAs are not as important as 

the trend shown in Figure 3.5(a) that the thermal conductivity decreases with the increasing 

Sn content. As a matter of fact, we benchmark the thermal conductivity of Si using the 

same set of simulation parameters and obtain the thermal conductivity of 56.1 W/(m·K), 

which is only about half of the experimental value of 125.5 W/(m·K) [189]. Therefore, 

although our calculated thermal conductivities await experimental confirmation, they tend 

to be underestimated in comparison with the future experimental data.   
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Figure 3.5. (a) Thermal conductivity of SiyGeySnx MEAs obtained from classical 
molecular dynamics simulations and (b) the corresponding inversed scattering strengths 

calculated from Eq. 3.6.   

Because SiyGeySnx MEAs are semiconductors with sizable bandgaps, we do not 

consider the electron contribution to the thermal conductivity and therefore focus on the 

phonon contributions to the thermal conductivities of SiyGeySnx MEAs. To understand the 

above trend of the decreased thermal conductivity of SiyGeySnx MEAs with the increasing 

compositional disorder, we adopt three different perspectives related to phonon behavior: 

the phonon version of Anderson localization, phenomenal model of phonon scattering, and 

DFT calculations of phonon scattering. We start with computing the phonon vibrational 

frequencies and their corresponding normal modes (eigenvectors). We compute the 

participation ratio (PR) for each vibrational mode n using the following equation [150,190]: 
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where 𝑒',2 is the phonon eigenvector of mode n and N is the total number of atoms. 

Figure 3.6 shows the phonon density of states (PDOS) of four SiyGeySnx (x = 0, 1/12, 1/6, 

and 1/3) MEAs and their corresponding PR plots. We can see that the PDOS of the four 

MEAs appear similar except that an additional peak occurs in the Si1/3Ge1/3Sn1/3 MEA near 

the frequency of 170 cm-1. Another phenomenon in common is that the PR values for all 

the phonon modes of each MEA are separated into two groups, one with low PR, implying 

large eigenvectors; the other with high PR, suggesting small eigenvectors. The boundary 

between the two groups of PRs is called the mobility edge. According to Allen et al. [191], 

the phonon modes below the mobility edge are classified as locons caused by the phonon 

version of Anderson localization. The mobility edge separates locons from the so-called 

propagons and diffusons that positively contribute to the thermal conductivity. We observe 

that the mobility edges of the four SiyGeySnx MEAs are located at 243, 213, 179, and 122 

cm-1, respectively. Furthermore, as the Sn content increases, the PR values of the locons 

decrease, suggesting increasingly enhanced phonon localizations, which are also 

manifested by the increasingly localized eigenvectors of the phonon modes with small PRs 

as displayed in Figure 3.7. The more and more localized phonons with the Sn content 

therefore explains the observed trend in the thermal conductivities (see Figure 3.5(a)) of 

SiyGeySnx MEAs. 
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Figure 3.6. Phonon density of states (PDOS) and partition ratio (PR) of SiyGeySnx 
MEAs with (a) x = 0, (b) x = 1/12, (c) x = 1/6, and (d) x = 1/3. 
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Figure 3.7. Phonon eigenvectors that correspond to the same low partition ratio, 
0.022, of SiyGeySnx MEAs with (a) x = 0, (b) x = 1/12, (c) x = 1/6, and (d) x = 1/3. To aid 
the visualization of the normal modes, we scale the computed eigenvectors by a factor of 

20. 

In the phenomenal model for understanding the trend in the thermal conductivity of 

SiyGeySnx MEAs, we consider phonon scattering by accounting for two effects. The first 

one is compositional disorder and the second is lattice distortion that has been shown above. 
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Taking these two factors into account, we can approximate the phonon scattering strength 

from alloy (caused by the compositional disorder) and strain effects (originated from the 

lattice distortion) as [149,192],   

 𝛤 = 𝑐'[A1 −
J+
J
B
K
+ 𝛾 Y1 − -+

-./0
Z
K
] (3.6) 

where 𝑀' is the atomic mass of the 𝑖th element and 𝑀 is the averaged atomic mass 

dependent on the concentrations 𝑐' of individual elements. Similarly, 𝑎', are the optimized 

lattice constants of Si, Ge, and α-Sn using the empirical Si-Ge-Sn interatomic 

potential. 	𝑎LMN  is the average lattice constant of a SiyGeySnx MEA. 𝛾  is an adjusting 

parameter taken as 39 based on the previous work on conventional Si-Ge-Sn alloys [192]. 

The inversed phonon scattering strength 𝛤!*  determines the phonon lifetime τ from 

phonon scattering. τ is proportional to 𝛤!*  with the proportional factor dependent on 

phonon group velocities and frequencies and lattice constants of a system. Figure 3.5(b) 

shows the variation of 𝛤!* with x in SiyGeySnx MEAs. We observe the same trend as in 

the thermal conductivity versus the Sn content, i.e., 𝛤!*  decreases as the Sn content 

increases in the MEAs. This consistent trend implies that the phonon scattering grows 

increasingly stronger as the compositional disorder increases and thus more thermal energy 

carriers are scattered rather than transported to conduct heat, leading to the decreased 

thermal conductivities found in our EMD calculations. 

Finally, we attempt to understand the trend the thermal conductivity of SiyGeySnx 

MEAs from the perspective of DFT calculations. We first use VASP and Phonopy to 
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compute the second-order force constant and construct a dynamical matrix and obtain the 

phonon spectra of two artificial Si-Ge-Sn MEAs of Si1/2Ge3/8Sn1/8, and Si3/8Ge3/8Sn1/4. We 

see from Figure 3.8(a) and (b) that phonon frequencies shown in the phonon spectra are all 

real, showing that these two MEA systems are dynamically stable. The right plot of each 

diagram in Figure 3.8 shows the accumulated thermal conductivity ∑𝜅 at 300 K and the 

derivative of the thermal conductivity d𝜅 as a function of phonon frequency. We can see 

that ∑𝜅 generally increases with phonon frequencies and becomes nearly a constant at 

high frequencies. Correspondingly, d𝜅 increases and peaks and decays to zero. From the 

saturated ∑𝜅, we determine the thermal conductivities of Si1/2Ge3/8Sn1/8 and Si3/8Ge3/8Sn1/4 

as 41.1 and 19.8 W/(m·K), respectively. We expect these DFT thermal conductivities to be 

more accurate than those from our EMD simulations. For example, our calculated DFT 

thermal conductivity of Si (122.9 W/(m·K)) for benchmark is consistent with the 

experimental value of 125.5 W/(m·K) [189] and with 129.5 W/(m·K) from previous DFT 

calculations [193]. Both ∑𝜅  and d𝜅  show that the thermal conductivities of the four 

systems originate mainly from the contributions of phonons with relatively low frequencies. 

For the integration range from 0 to 100 cm-1, the ∑𝜅 of Si1/2Ge3/8Sn1/8 and Si3/8Ge3/8Sn1/4 

reaches 83% and 92%, respectively, of their corresponding total thermal conductivities. 

Increasing the integration range up to 150 cm-1, the ∑𝜅 of Si1/2Ge3/8Sn1/8 increases to 95%, 

whereas the ∑𝜅  of Si3/8Ge3/8Sn1/4 reaches 96%, respectively, of their total thermal 

conductivities. In other words, comparing to Si1/2Ge3/8Sn1/8, Si3/8Ge3/8Sn1/4 with higher Sn 
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content exhibits a smaller thermal conductivity and the ∑𝜅 saturates much more rapidly.  

  

Figure 3.8. Phonon spectrum and linewidth, thermal conductivity derivative d𝜅, and 
cumulated thermal conductivity ∑𝜅 of two artificial MEAs (a) Si1/2Ge3/8Sn1/8, (b) 
Si3/8Ge3/8Sn1/4. To aid the visualization of phonon linewidth, we scale the computed 

values by a factor of 50. 
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The anharmonic phonon-phonon interactions play important roles in decreasing the 

thermal transport of a material. To interrogate the effects of compositional disorder on the 

anharmonic phonon-phonon interactions and consequently the thermal conductivities of 

Si1/2Ge3/8Sn1/8 and Si3/8Ge3/8Sn1/4, we focus on the phonon linewidths caused by 

anharmonic phonon-phonon interactions. Unlike the linewidth in the phenomenal model 

that considers the alloy and strain effects, the linewidth in DFT calculations here account 

for the alloy and Umklapp scattering effects [149,194]. We can derive the phonon lifetime 

𝜏O through an inverse relationship with phonon linewidth, 𝜏O = 1/(2𝛤O) . Experimentally, 

the phonon linewidth 2𝛤O can be measured via time-resolved Raman spectroscopy, where 

2𝛤O approximately equals to the full width at half maximum of the Raman spectrum peak 

[195,196]. Theoretically, anharmonic phonon-phonon interactions are described by the 

frequency (𝜔)-dependent phonon self-energy ∆(𝜔) − 𝑖𝛤(𝜔) [195]. The real part ∆(𝜔) 

gives the frequency shift due to the phonon-phonon scattering, whereas the imaginary part 

𝛤(𝜔) is associated with the probability of phonon decay that can be written as, 

 𝛤O =
*PQ
ℏ"
∑ b𝑉OO1O"b

K𝑆(𝜆, 𝜔)O1O"  (3.7) 

Here, 𝑉OO1O"  denotes a third-order tensor representing the many-body interactions 

following the direction for the energy decreasing most rapidly regarding three 

displacements from the equilibrium positions [197,198]. 𝑆(𝜆, 𝜔) written below  

 𝑆(𝜆, 𝜔) = d1 + 𝑛O1 + 𝑛O"f𝛿d𝜔O − 𝜔O1 − 𝜔O"f + (𝑛O1 − 𝑛O")[𝛿d𝜔O + 𝜔O1 −

𝜔O"f − 𝛿d𝜔O − 𝜔O1 + 𝜔O"f]  (3.8) 
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results from two types of phonon decay processes: (1) the down-conversion process where 

the initial phonon is decomposed into two phonons of lower frequencies 𝛿d𝜔O − 𝜔O1 −

𝜔O"f, and (2) the up-conversion process where the phonon at non-equilibrium state absorbs 

another phonon to form a higher-frequency phonon, 𝛿d𝜔O + 𝜔O1 − 𝜔O"f  and 𝛿d𝜔O −

𝜔O1 + 𝜔O"f [176,197,199]. 𝑛O+ in Eq. 8 represents the Bose-Einstein distribution function, 

i.e., 𝑛O+ = [exp	(ℏ𝜔O+/𝑘S𝑇) − 1]
!*.  

Figure 3.8 shows the calculated phonon linewidths of Si1/2Ge3/8Sn1/8 and 

Si3/8Ge3/8Sn1/4 overlapped with the corresponding phonon modes. We observe that large 

phonon linewidth caused by the anharmonic phonon-phonon interactions in the optical 

branches suppresses the increase of thermal conductivity. We calculate the average phonon 

linewidth in different ranges of phonon frequencies. For Si1/2Ge3/8Sn1/8, the averaged 

phonon linewidth of all the phonon modes is 0.563 cm-1, whereas the overall averaged 

phonon linewidth of Si3/8Ge3/8Sn1/4 is 0.888 cm-1, 58% higher than Si1/2Ge3/8Sn1/8. Because 

the major contribution of thermal conductivity at 300 K results from the relatively lower-

frequency phonon modes, we compute the average phonon linewidth for Si1/2Ge3/8Sn1/8 and 

Si3/8Ge3/8Sn1/4 using their phonon modes with the frequencies in the range from 0 to 150 

cm-1. This region is also where the thermal conductivity derivative increases rapidly for all 

the four systems. Once again, the averaged phonon linewidth of Si3/8Ge3/8Sn1/4 (0.150 cm-

1) is longer than that of Si1/2Ge3/8Sn1/8 (0.075 cm-1). We therefore conclude that the 

anharmonic phonon-phonon interactions cause the increase of phonon linewidth in the low-
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frequency region of Si3/8Ge3/8Sn1/4, shortening the phonon lifetime and suppressing the 

increase of thermal conductivity in the high-frequency region. 

With the calculated Seebeck coefficients, electrical conductivities, and thermal 

conductivities, we compute the figure of merit at room temperature for the 11 SiyGeySnx 

MEAs. Because the underestimated EMD thermal conductivities lead to overestimated 

figure of merit, we scale the computed figure of merit by a factor of 1/2.19 (The 

denominator comes from the ratio between the DFT and EMD thermal conductivities of 

Si). Figure 3.9 shows that, at different chemical potentials, SiyGeySnx MEAs can achieve 

figure of merit that is comparable to that of other room-temperature TE materials. 

 

 

Figure 3.9. Scaling figure of merit of SiyGeySnx MEAs at different electron chemical 
potentials. The scaling factor is 1/2.19 due to the underestimated thermal conductivity in 

the molecular dynamics simulations. 
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3.5 Summary 

We have performed DFT and classical MD calculations to investigate the electrical 

and thermal transport properties of SiyGeySnx MEAs. We found that SiyGeySnx MEAs 

exhibit a wide range of bandgaps that span from visible to near-infrared in the light 

spectrum and that SiyGeySnx MEAs with high Sn content have small electron and hole 

effective masses. Furthermore, we showed that the electron Anderson localization is not as 

distinct as phonon Anderson localization. The excellent electrical properties of SiyGeySnx 

MEAs make them promising for applications in a variety of electronic devices. Meanwhile, 

we found SiyGeySnx MEAs show low thermal conductivities, owing to the phonon 

Anderson localization and strong anharmonic phonon-phonon interactions caused by the 

lattice distortion and compositional disorder. The high electrical conductivities and low 

thermal conductivities endow SiyGeySnx MEAs with great potential for high TE 

performance at room temperature. Our prediction calls for future experimental verification 

and also for simulation models to obtain more accurate thermal transport properties for 

these MEAs. 
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CHAPTER V 

HIGH-THROUGHPUT COMPUTATIONAL CHARACTERIZATION OF TWO-

DIMENSIONAL COMPOSITIONALLY COMPLEX TRANSITION-METAL 

CHALCOGENIDE ALLOYS  

4.1 Abstract 

Many two-dimensional (2D) binary transition-metal chalcogenides (TMCs) such as 

molybdenum disulfide have been synthesized, exhibiting a wide range of structural and 

electrical properties promising for energy conversion applications such as photovoltaics, 

photocatalysts, and optoelectronics. Alloying these binary TMCs has the potential to form 

multinary TMCs also known as 2D compositionally complex TMC alloys (CCTMCAs) 

that are expected to possess a combination of remarkable properties from the constituent 

binary TMCs. While the experimental exploration of 2D CCTMCAs just begins to emerge, 

it is imperative to design a computational strategy to efficiently discover novel 2D 

CCTMCAs for various applications. However, exploring the compositional space of 2D 

CCTMCAs via density functional theory (DFT) calculations based on the supercell method 

is computationally challenging, given that there is an enormous amount of possible 

combinations of binary TMCs. Here we adopt a high-throughput workflow that performs 

DFT calculations based on models from the virtual crystal approximation (VCA) method 

(VCA-DFT). To test our high-throughput workflow, we use the Mo-W-S-Se, Mo-W-S-Te, 

and Mo-W-Se-Te 2D CCTMCAs as examples. We demonstrate the capability of this 
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workflow in predicting five key properties of 2D CCTMCAs including in-plane lattice 

constants, band gaps, effective hole and electron masses, spin-orbit coupling (SOC), and 

band alignments from 2D CCTMCAs with different compositions. We also validate the 

VCA-DFT results by computing the same properties using the unit cell model for Janus 

structures and the supercell model based on special quasi-random structures (SQS) for 

ternary and quaternary structures. We find that the VCA-DFT method generally can predict 

the abovementioned five properties at an accuracy comparable to that of DFT calculations 

using unit cells or SQS models, with some exceptions including the inaccurate prediction 

of the locations of conduction band minima of MoSTe and WSTe and thus inaccurate 

effective hole masses and band gaps. We also show that both ternary and quaternary 2D 

CCTMCAs can form type II heterostructures, important for carrier separation and 

transportation as in photovoltaics and photocatalysts. Finally, we focus on three quaternary 

2D CCTMCAs, Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe, with the maximum 

configurational entropy as examples. We study the thermodynamic stability of these 

quaternary alloys and find that they have lower Gibbs free energies than ternary 2D 

CCTMCAs. These three quaternary 2D CCTMCAs are excellent examples of room 

temperature entropy-stabilized alloys. They also show high electrical conductivity at room 

temperature, making them possible for the applications of light adsorption devices. Our 

work shows that the high-throughput workflow based on VCA-DFT calculations provides 

a tradeoff between efficiency and accuracy, opening up ample opportunities in the 
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computational design of many other 2D CCTMCAs for a variety of applications. 

4.2 Introduction 

Binary two dimensional (2D) transition metal chalcogenides (TMCs) exhibit strong 

in-plane chemical bonds and weak out-of-plane interactions, allowing for stable 

monolayers [200,201]. The properties of 2D TMCs such as MX2 have been investigated 

from both computational simulation and the experimental works [202-206]. Strain 

engineering on MX2 gives rise to tunable properties such as band gaps and effective masses. 

Moreover, monolayer MX2 have direct band gaps ranging from 1.0 to 2.0 eV [202]. They 

also display thickness-dependent electronic properties of band gap [207], which transitions 

from indirect in multiple layers and bulk MX2 to direct in monolayer MX2. Owing to these 

excellent properties, binary 2D TMCs have recently grown in prominence with their 

promising applications such as photovoltaics, photodetectors, and field-effect transistors 

[7,8,203,206].  

However, a general problem of binary 2D TMCs, is their fixed properties such as band 

gaps, which limit their applications in fields such as optoelectronics and photovoltaics 

where adjustable band gaps are needed to accommodate different wavelength ranges [208-

211]. To maximize the efficiency in light-electricity energy conversion, different 

modification processes such as alloying [7,8], mechanical straining [212], and forming 

heterostructures [213] have been applied for achieving tunable electronic properties such 

as band gaps. One of these methods is to obtain van der Waals (vdW) heterostructures by 
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stacking together two different binary monolayers [214]. Different vdW heterostructures 

have many applications such as field-effect tunneling transistors [215], photovoltaics [216], 

and other optoelectronic devices [217]. 2D TMCs based vdW heterostructures have been 

used in heterojunction photovoltaics. For example, the WS2/WSe2 vdW heterostructure, 

has been investigated via DFT calculations and experiment and shown to be a promising 

candidate for photovoltaics because of the high light adsorption efficiency and high carrier 

mobility [218,219]. In addition to vertical vdW heterostructures, lateral heterostructures 

from two or more TMCs have recently also been predicted by theoretical calculations [220-

222] and demonstrated in experiments [219,223]. 

Apart from forming heterostructures, alloying multiple materials of different elements 

together to form bulk compositionally complex alloys (CCAs) such as CoCrFeMnNi and 

AlxCoCrFeNi [224-227] has been shown to allow for a high tunability in band structures. 

In contrast to conventional alloys that are comprised of one or two principal elements and 

of much lower percentages of other elements [37,228], CCAs encompass not only 

conventional alloys but also high-entropy alloys that have more than five principal 

elements of equal or near-equal molar ratios [130,229,230]. In CCAs, the composition 

consisting of multiple elements has fundamental effects on configurational entropy, free 

energy, phase selection, and stability [229,231]. For example, the increasing of temperature 

will cause the decrease of Gibbs free energy in the system of high configurational entropy, 

thus increasing the stability of CCAs [232]. Moreover, despite the complexity in local 
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atomic structures caused by random distribution of elements in a multinary alloy [233], 

CCAs with a single solid solution phase and the atoms on the sites of a specific Bravais 

lattice (e.g., face-centered cubic or body-centered cubic) exhibit many attractive functional 

properties [228,229,234]. For example, the high electrical conductivity and low thermal 

conductivity in CCAs such as AlxCoCrFeNi and Pb-Sn-Te-Se, makes them promising for 

thermoelectric applications [138,139,141,235]. Furthermore, CCAs such as FeCoNi(AlSi)x 

are also promising candidates as soft magnetic materials due to their high saturation 

magnetization, high electrical resistivity, and high malleability [33]. The presence of 

several different exchange interactions in CCAs causes sluggish magnetic phase transitions 

and enhances the magnetocaloric effect (MCE) of these materials [236,237]. In addition, 

due to their multi-component nature, CCAs such as FeCoNiCuMn of certain 

stoichiometries have been shown to have a tunable Curie temperature TC that reaches room 

temperature [237], and the combination of tunable TC and enhanced MCE makes these 

CCAs attractive as magnetic refrigerant materials [236,237].  

More recently, research has emerged focusing on using 2D CCAs such as Mo1−xWxS2 

and (AlxGa1-x)0.5In0.5P in energy conversion applications, such as photovoltaics, 

photocatalysts, and optoelectronic devices [7,8,238]. The entropic effect benefits the design 

and fabrication of multiple-component 2D CCAs with similar concentrations of the 

constituent elements. Instead of conventional 2D materials with fixed structural and 

electronic properties, this multi-component design opens up opportunities for tunable 
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properties such as lattice constants and band gaps [239,240]. Desired phases and 

stoichiometries can be achieved through adjusting the contents of each element to enhance 

materials properties such as catalytic activity and light conversion efficiency [241]. For 

example, in order to acquire an optimal range of band gaps and thus optimized absorption 

coefficients, ternary [242,243], quaternary [244-246], and even penternary [247,248] 

CCAs have been computationally simulated and fabricated for photovoltaic applications. 

Moreover, the alloying method is able to modify the lattice constant of CCAs based on 

their constituent elements. For example, lattice strain can occur in van der Waals 

heterostructures due to lattice mismatch. The 2D CCAs from alloying with the components 

of similar crystal structures and in-plane lattice constants can bring in heterostructures and 

multijunction of the materials with small lattice mismatch, which lowers the interface strain 

in a heterostructure [249-251]. 

Quaternary 2D TMC alloys present themselves as potential CCAs due to their multi-

elemental composition and high configurational entropy induced by alloying from binary 

TMCs. Because of tunable structural and electronic properties of multinary TMCs, it is 

important to investigate the thermodynamically favorable 2D compositionally complex 

transitional metal chalcogenide alloys (CCTMCAs) for high efficiency energy conversion 

applications such as photovoltaics, photocatalysts, and optoelectronics, as well as the 

spintronic applications of random-access memory (RAM) [208,209,252-256]. For example, 

quaternary 2D CCTMCAs such as Cd1-xZnxOyS1-y are found suitable in photovoltaics 
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applications because of their high carrier mobilities and suitable range of direct band gaps 

[257-259]. In photovoltaics, the efficiency of a device is linked to effective carrier masses, 

which relate to the charger extraction and recombination dynamics and control the open-

circuit voltage [210,260,261]. The carrier mobility, as one of the key properties of 

photovoltaics, depends on both the momentum relaxation time and effective mass, where 

the momentum relaxation time is inversely linked to the effective mass in lattice scattering 

[262]. It is shown that a large effective mass results in a decreased charge carrier mobility, 

which therefore lowers the efficiency of light conversion in photovoltaics [263]. Moreover, 

quaternary 2D CCTMCAs such as Cu2Mo(SySe1-y)4 are proposed as potential 

photocatalysts [264]. In the process of electrochemical water splitting, the band gap of a 

2D CCTMCA determines the acceptable photon frequency during light adsorption, 

whereas the band alignments of conduction band minimum (CBM) and valence band 

maximum (VBM) are also considered essential in matching potentials of hydrogen/oxygen 

evolution reactions (H+/H2, H2O/O2) energy at different pH levels [254,265]. Additionally, 

2D CCTMCAs are also found as potential spintronic applications in spin-logic devices 

such as RAM for their strong SOC. These functions rely on the controlling of the 

electron/hole spins, which comes from the metal d-orbital states in the heavy metal atoms 

in 2D CCTMCAs [256,266,267]. To sum up, 2D CCTMCAs play significant roles in the 

applications of energy conversion and spintronics. In order to understand the dependency 

of various properties of 2D CCTMCAs and their effects in those applications, it is essential 
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to characterize the properties of 2D CCTMCAs such as lattice constants, band alignment, 

effective carrier masses, spin orbit splitting, and so on. 

Different methods like Korringa-Kohn-Rostoker coherent-potential-approximation 

(KKR-CPA) method and density functional theory (DFT) calculation have been used to 

study various properties such as lattice parameters, band gap, and band alignment in CCAs 

[7,213,268]. Reports using the KKR-CPA method to study bulk CCAs have confirmed a 

reduction in electron mean free path and subsequent decrease in electrical and thermal 

(from electronic contributions) conductivities with increasing principal elements [232]. 

Similarly, the KKR-CPA method has been used to study the electronic, magnetic, and 

transport properties of the Fe-intercalated bulk TaS2 TMC alloys [269]. DFT calculations, 

on the other hand, have been widely used in studying the properties of 2D CCTMCAs such 

as band gaps and phase stability. During DFT calculation, models of random alloy and 

special quasi-random structure (SQS) are proposed in order to simulate the disorder CCAs. 

For example, the DFT calculations using a random alloy model have shown tunable band 

gaps of quaternary Mo1−xWxS2ySe2(1−y) 2D CCTMCAs dependent on the composition, 

which are consistent with the experiment [7]. DFT calculations on the same 2D CCTMCAs 

have also demonstrated a spinodal decomposition from miscibility gap and the formation 

of lateral heterostructures at certain compositions of the alloy. This decomposition is also 

confirmed from experimentally observed phase segregation due to the miscibility gap [213]. 

Moreover, the combination of DFT using SQS models to study the formation enthalpies of 
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ternary TMC alloys has shown that MoSe2(1-x)Te2x, WSe2(1-x)Te2x, MoS2(1-x)Te2x, and WS2(1-

x)Te2x alloy systems are unstable at 0 K [268].The SQS approach has also been used to form 

disordered alloy models for ternary 2D CCTMCAs alloys, where using the SQS approach 

to calculate bowing parameters has shown that the in-plane lattice constant varies almost 

linearly with changes in the composition of ternary TMC alloys [268]. Comparing to the 

KKR-CPA method, DFT calculations can predict more accurate structural and electronic 

properties such as lattice constants, electronic density of states, and band gaps [270-272]. 

However, when dealing with quaternary 2D CCTMCAs with different compositions, 

supercells with a number of atoms are required, which makes the DFT calculations very 

time-consuming. Therefore, alternative methods are desired in efficiently characterizing 

structural and electronic properties. 

Virtual crystal approximation (VCA), as an alternative method to investigate the 

CCAs of different compositions, has been applied to reduce computational cost while 

achieving a comparative accuracy to supercell-DFT calculations using an averaged 

potential from mixing elemental potentials [273]. Specifically, the VCA method provides 

a convenient and efficient way to model CCAs by generalizing their multi-elemental 

composition into the weighted average of the individual alloying elements [274]. In 

comparing to regular DFT calculations of large supercells in investigating multinary CCAs, 

DFT calculation using VCA method (VCA-DFT) are performed significantly smaller unit 

cells, offering much greater simplicity and lower computational cost. Namely, calculations 
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using the VCA model is much faster than the using the SQS model. For example, 

optimizing the MoWSSe (see below) with the former model and 64 computer cores costs 

about 35 seconds whereas with the latter costs about 5600 seconds. Note that, as a result 

of this simplification, VCA neglects any short-range order and local distortions and 

therefore cannot replicate the fine details of an alloy. The VCA-DFT method as 

implemented in the Vienna Ab initio Simulation Package (VASP) has found successful 

applications in studying TMC systems such as WSe2(1-x)Te2x [275]. The VCA-DFT method 

has also been used to obtain structural properties [276,277], phase determination [278], and 

electronic properties such as band gaps and effective masses of carriers [279,280], the 

results of which are all comparable to experiments [281,282]. Therefore, utilizing the 

VCA-DFT method is helpful in characterizing the CCAs of different compositions, 

facilitating materials screening and selection for different applications. 

In this work, we propose a high-throughput workflow to investigate the properties of 

2D CCTMCAs as candidates for various energy and information technology applications 

such as light conversion and computer logic systems. We use the Mo-W-S-Se, Mo-W-S-

Te, and Mo-W-Se-Te 2D CCTMCAs as examples to illustrate the search and selection of 

2D CCTMCAs with different structural and electrical properties via VCA-DFT 

calculations. Meanwhile, we adopt the unit cell and SQS models to benchmark the accuracy 

of the results from using the VCA-DFT method. We show that the structural and electronic 

properties of 2D CCTMCAs including in-plane lattice constants, band gaps, effective 
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carrier masses, spin-orbital splitting, and band alignment are in good agreement with the 

DFT calculations based on the unit-cell (unit-cell-DFT) and SQS (SQS-DFT) models. We 

then select nine ternary and three quaternary 2D CCTMCAs to investigate the stability 

using the metrics of formation energy and Gibbs free energy. We then focus on the three 

quaternary 2D CCTMCAs, Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe,  which are 

found to be able to form type II band alignments with other quaternary 2D CCTMCAs, 

owing to their high configuration entropy. These three quaternary 2D CCTMCAs have 

negative Gibbs free energies at 300 K, serving as good examples as entropy-stabilized 

multinary 2D alloys. Additionally, Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe show 

high electrical conductivity at room temperature (300 K), making them possible to be 

utilized in energy conversion applications. Given that many multinary 2D materials are 

being successfully synthesized, our work serves as an example of placing these 2D 

materials in the context of 2D high-entropy alloys (HEAs). In doing so, one gains not only 

novel perspectives but also an extra degree to freedom (entropy) to control the stability. 

Furthermore, we show in this work that the VCA model is suitable for modeling multinary 

2D alloys with a balanced tradeoff between accuracy and efficiency, opening up a wide 

range of opportunities for studying other multinary 2D alloys. 

4.3 Simulation Methods 

We apply the VCA-DFT method in the Vienna Ab Initio Package (VASP) [283] to 

study the Mo-W-S-Se, Mo-W-S-Te, and Mo-W-Se-Te 2D CCTMCAs, MoyW1-yS2xSe2(1-x), 
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MoyW1-yS2xTe2(1-x), and MoyW1-ySe2xTe2(1-x), with x and y ranging from 0 to 1 at an 

incremental step of 0.05. The range of x and y results in three sets of 441 quaternary 2D 

CCTMCAs. Figure 4.1(a) illustrates the structure model from the VCA method, and Figure 

4.1(b) and (c) display a 4 × 4 × 1 SQS supercell obtained from the ATAT package [284]. 

We perform all the calculations using VASP, and the plane waves of kinetic energies 

smaller than 500 eV are included in the basis sets. We use the standard projector augmented 

wave (PAW) potential files [80,81] for Mo, W, S, Se, and Te. The Perdew-Burke-Ernzerhof 

(PBE) functional [79] in DFT is well known to underestimate band gaps [285,286]. If more 

advanced theories accounting for many-body effects that are missing in the PBE functional 

are used, the theoretical band gaps will generally be higher. The PBE calculated optical 

band gaps of WSSe and MoSSe agree well with the experimental band gaps [287]. We use 

a Monkhorst-Pack [82] 15 × 15 × 1 k-point grid. The in-plane lattice constants and atomic 

coordinates of all systems are fully optimized using a quasi-Newton algorithm with the 

force convergence criterion of 0.01 eV/Å. We calculate the band structures along the 

G®M®K®G special k-point path (each line segment has 40 k points), where we extract 

the band gaps and effective carrier masses. We also calculate effective electron and hole 

masses using the Sumo package [288] and report the averaged effective masses in the K-

M and K-G directions. To calculate the spin-orbit splitting magnitude, we include SOC in 

the calculations. We calculate the electrical conductivities of three quaternary 2D 

CCTMCAs using the BoltzTraP module as implemented in the Pymatgen library [162,289]. 
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Calculations using the VCA model is much faster than the using the SQS model. For 

example, optimizing the MoWSSe with the former model and 64 computer cores costs 

about 35 seconds whereas with the latter costs about 5600 seconds. 

  

Figure 4.1. Top and side views of the atomic structure of 2D CCTMCAs based on (a) the 
VCA method, and (b) and (c) the SQS method for ternary and quaternary 2D CCTMCAs, 

respectively. 
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Figure 4.2. High-throughput workflow for designing 2D CCTMCAs. 

Many previous computational studies have shown that 2D TMCs have potential in 

energy conversion and spintronic applications due to their excellent structural and 

electronic properties [208,209,252-256]. However, a systematic workflow that can be 

applied to search for materials for various applications in an efficient manner is lacking. In 

order to efficiently discover those materials from 2D TMCs, we propose a workflow (see 

Figure 4.2) that utilizes VCA-DFT to obtain essential structural and electronic properties. 

The workflow consists of firstly proposing several simple binary TMC compounds. 

Different alloying 2D CCTMCAs can thus be generated by the combination of the binary 

compounds. Then the workflow applies DFT calculations using the averaged 

pseudopotential of corresponding elements to characterize the VCA model. We compute 

five essential properties for selecting materials in various applications, which are in-plane 

lattice constant, band gap, hole and electron effective masses, spin-orbital splitting, and 

band alignment of CBM and VBM. Due to lack of Bloch bands, the effective masses 

reported here are meant to be comparable to the effective masses originated from the effect 
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band structure that can be obtained from calculations using periodic supercells. Therefore, 

at the same time, the reliability and accuracy of the calculation process is cross examined 

by benchmarking DFT calculations using unit-cell and SQS models. We use three-atom 

unit cells to model the binary MX2 and Janus MXY (X ¹ Y = S, Se, or Te) structures of 

TMCs, whereas for the complex ternary and quaternary 2D CCTMCAs, we create SQS 

supercells to simulate the disordered structures. Specifically, we validate our VCA-DFT 

calculations using six binary TMC unit cells and six Janus unit cells, as well as three ternary 

SQS supercells and three quaternary SQS supercells with special stoichiometries that are 

Mo0.5W0.5S2, Mo0.5W0.5Se2, Mo0.5W0.5Te2, Mo0.5W0.5SSe, Mo0.5W0.5STe, and 

Mo0.5W0.5SeTe. 

4.4 Results and Discussion 

4.4.1 Benchmark calculations of the VCA-DFT model 

We perform VCA-DFT calculations to obtain five essential structural and electronic 

properties including the in-plane lattice constant, band gap, hole and electron effective 

masses, spin-orbit splitting, and band alignment, in order to search for suitable 2D 

CCTMCAs in potential applications of energy conversion and spin-logic devices. First of 

all, the in-plane lattice constant of a 2D material is a fundamental parameter in describing 

the monolayer geometry. Besides, the lattice constants of 2D CCTMCAs are helpful to 

understand the composition-dependent lattice change, which is important in considering 

the lattice matching of two different 2D CCTMCAs during designing the 2D stacked 
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heterostructure, in order to avoid the misfit and change of the crystal structure. Secondly, 

it is essential to tune band gaps to fit in the range of photonic frequency of different light 

sources in light adsorption devices in photovoltaics and photocatalysts. An appropriate 

band gap range matching photonic frequency increases the efficiency of harvesting light 

energy. Thirdly, effective masses of electrons and holes are critical in predicting carrier 

optical response and transport property of semiconductors [290,291]. The effective masses 

also determines the effective density of states, which further impacts the open circuit 

voltage [263]. Fourthly, 2D Group-VI TMCs, such as MoS2, MoSe2, WS2, and WSe2, have 

been heavily investigated as potential materials in the field of spintronics and valleytronics 

due to their broken inversion symmetry [292-295]. These 2D materials contain two 

inequivalent valleys that occur at the +K and –K points at the edges of the first Brillouin 

zone, and time reversal symmetry in TMCs causes spin splitting with opposite spin signs 

at the +K and –K valleys, resulting from strong SOC in TMCs [292]. Due the broken 

inversion symmetry in TMCs, this coupling between spin and valley pseudospin causes the 

splitting of valence bands [292], and in MoS2 specifically, SOC interactions have been 

shown to split the valence bands by around 0.16 eV [293,294]. The strong SOC in TMCs 

has been shown to allow for higher spin and valley polarization lifetime along with the 

manipulation of spin through valley properties [292]. Finally, band alignment describes an 

electronic property about a material’s light conversion efficiency. In the design of thin film 

photovoltaics, the adjustment of conduction band alignment to a desired range is regarded 
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as one of the most important factors to reach a high conversion efficiency [296,297]. 

Specifically, in combining two materials for photovoltaics, a heterojunction between p-

type and n-type semiconductors needs to be utilized to provide a type II band alignment to 

provide pathways for exciton diffusion, separation, and dissociation, and carrier 

transportation [298-301]. 

Following the above high-throughput procedure, we begin with computing the five 

properties of MX2 (M = Mo, W; X  = S, Se, or Te) using unit-cell-DFT calculation as a 

benchmark to the corresponding VCA-DFT results. All 2D MX2 in this work are assumed 

to adopt the 2H phase. Table 4.1 lists these calculated properties for the six MX2. We can 

see that the VCA-DFT method leads to identical results compared to the DFT results using 

a 3-atom unit cell. We also include the results from the literature for comparison. The VCA-

DFT values for the five properties also agree well with previous studies. For example, the 

in-plane lattice constants and band gaps of MoS2 (WSe2) 3.18 Å (3.32 Å) and 1.67 eV (1.55 

eV) from our VCA-DFT calculations, are nearly identical to 3.18 Å (3.32 Å) and 1.68 eV 

(1.53 eV) in the Refs. [302,303]. We also notice that the in-plane lattice constants of the 

six binary TMCs share three values, 3.18, 3.32, and 3.55 Å, where the binary TMCs of 

same chalcogen element have the same lattice constants. This is understood by the large 

difference in the anion radii of S2- (1.70 Å), Se2- (1.84 Å), and Te2- (2.07 Å), whereas the 

cations of Mo4+ and W4+ possess similar ionic radii of 0.79 and 0.80 Å, respectively [304]. 

Moreover, the discrepancy in the covalent radii between Mo (1.54 Å) and W (1.62 Å) is 
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also smaller than that among S (1.05 Å), Se (1.20 Å), and Te (1.38 Å) [305]. For the CBM 

and VBM, the VCA-DFT results match well with other DFT calculation results at the PBE 

level. Additionally, the CBM values of MoTe2, WS2, and WSe2 are closer to the DFT 

calculation results in Ref. [306] using the PBE functional including SOC.  

Table 4.1. In-plane lattice constant a0, band gap Eg, hole and electron effective masses mh* 
and me*, spin-orbit splitting ΔESO, conduction band minimum (CBM) and valencene band 
maximum (VBM) with reference to the vacuum level of MX2 with the 2H structure. The 
first row of each property is obtained from using the VCA-DFT method, whereas the 
second row is from the literature. 

 MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2 

a0 (Å) 
3.18 3.32 3.55 3.18 3.32 3.55 

3.18a 3.32b 3.55c 3.18b 3.32b 3.55d 

Eg (eV) 
1.67 1.44 1.08 1.81 1.54 1.07 

1.68 b 1.43b 1.06b 1.81b 1.53b 1.08e 

mh* (m0) 
0.59 0.66 0.71 0.43 0.46 0.44 

0.58f 0.67f 0.70f 0.42g 0.51g 0.42h 

me* (m0) 
0.49 0.56 0.58 0.32 0.35 0.33 

0.49f 0.56f 0.57f 0.31g 0.39g 0.33h 

ΔESO 
0.15 0.19 0.22 0.43 0.47 0.48 

0.15i 0.19i 0.22i 0.43i 0.47i 0.49i 
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CBM 
-4.27 -3.89 -3.80 -3.89 -.3.56 -3.63 

-4.29j -3.89j -3.74j -4.09j -3.69j -3.61j 

VBM 
-5.94 -5.33 -4.89 -5.70 -5.11 -4.70 

-5.98j -5.31j -4.84j -5.87j -5.20j -4.72j 

aRef. [302]; bRef. [303]; cRef. [307]; dRef. [245]; eRef. [308]; fRef. [309]; gRef. [310]; hRef. 
[311]; iRef. [312]; jRef. [313] 

 

Table 4.2. In-plane lattice constant a0, band gap Eg, hole and electron effective masses mh* 
and me*, spin-orbit splitting ΔESO, conduction band minimum (CBM) and valencene band 
maximum (VBM) with reference to the vacuum level of Janus MXY with the 2H structure. 
The first row of each property is obtained from using the VCA-DFT method, whereas the 
second row is from using three-atom unit cells to simulate monolayer Janus structures.  

 MoSSe WSSe MoSTe WSTe MoSeTe WSeTe 

a0 (Å) 3.26 3.26 3.40 3.39 3.45 3.47 

3.25 3.25 3.36 3.36 3.43 3.43 

Eg (eV) 1.54 1.66 1.31 1.40 1.23 1.29 

1.56 1.69 1.03 1.24 1.27 1.35 

mh* (m0) 0.64 0.45 0.73 0.49 0.73 0.49 

0.68 0.48 5.51 3.67 0.84 0.55 

me* (m0) 0.54 0.35 0.62 0.38 0.61 0.37 

0.54 0.36 0.71 0.47 0.64 0.39 
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ΔESO 0.17 0.45 0.21 0.49 0.21 0.49 

0.17 0.44 0.19 0.42 0.20 0.46 

CBM -3.94 -3.59 -3.79 -3.49 -3.86 -3.59 

-4.07 -3.70 -4.04 -3.70 -3.84 -3.57 

VBM -5.48 -5.25 -5.10 -4.88 -5.09 -4.88 

-5.63 -5.40 -5.07 -4.94 -5.11 -4.91 

 

Many previous studies suggested that the VCA-DFT calculation is applicable to 

disordered semiconductor alloys [314,315], but this method does not consider the effects 

of lattice relaxation and assumes that the atoms are fixed at the ideal lattice sites [316]. We 

further benchmark VCA-DFT calculation by using the DFT calculation from unit cell 

models for Janus structure and SQS supercells for ternary structures (see Table 4.2 and 

Table 4.3) and quaternary systems (see Table 4.4) to ensure that the VCA-DFT results are 

consistent. Based on our results of VCA-DFT versus unit-cell-DFT and SQS-DFT 

calculations, the VCA-DFT method leads to comparable results such as lattice constants, 

band gaps, spin-orbital splitting, and band alignments with the unit-cell-DFT and SQS-

DFT results. The results from VCA-DFT calculations of binary and ternary CCTMCAs are 

also comparable to those recorded in the Computational 2D Materials Database (C2DB) 

[317]. Some exceptions happen during validating the band gap and effective hole mass in 
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the Janus MoSTe and WSTe structures, where the VCA-DFT calculations lead to the 

inconsistent conduction band as CBM, effective hole mass, and band gap compared to the 

DFT calculation using the unit cell models. Because its use of the averaged potential, the 

VCA-DFT is not always capable of predicting the local atomic environment [278,318,319], 

where a large difference in ionicity could result in low accuracy in predicting the electronic 

properties such as band alignment and band gap [319]. Moreover, when using the VCA-

DFT in ground state calculation, the prediction of formation energy of 2D CCTMCAs 

shows the discrepancy from the SQS-DFT calculated result. Therefore, it is essential to use 

the unit-cell and SQS models to benchmark the VCA-DFT results. This not only validates 

the accuracy of VCA-DFT calculations on 2D CCTMCAs but also provides an indication 

when there is deviation in VCA-DFT results. 

Table 4.3. In-plane lattice constant a0, band gap Eg, hole and electron effective masses mh* 
and me*, spin-orbit splitting ΔESO, conduction band minimum (CBM) and valencene band 
maximum (VBM) with reference to the vacuum level of ternary 2D CCTMCAs with the 
2H structure. The first row of each property is obtained from using the VCA-DFT method, 
whereas the second row is from using 48-atom SQS supercells of monolayer ternary 
structures. 

 Mo0.5W0.5S2 Mo0.5W0.5Se2 Mo0.5W0.5Te2 

a0 (Å) 3.18 3.32 3.55 

3.18 3.32 3.55 

Eg (eV) 1.74 1.50 1.09 
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1.71 1.46 1.06 

mh* (m0) 0.51 0.56 0.57 

0.49 0.51 0.55 

 me* (m0) 0.40 0.46 0.44 

0.33 0.38 0.44 

ΔESO 0.29 0.33 0.35 

0.29 0.30 0.24 

CBM -4.11 -3.73 -3.72 

-4.12 -3.76 -3.73 

VBM -5.84 -5.23 -4.81 

-5.83 -5.22 -4.79 

 

 

 

 

 

Table 4.4. In-plane lattice constant a0, band gap Eg, hole and electron effective masses mh* 
and me*, spin-orbit splitting ΔESO, conduction band minimum (CBM) and valencene band 
maximum (VBM) with reference to the vacuum level of quaternary 2D CCTMCAs with 
the 2H structure. The first row of each property is obtained from using the VCA-DFT 
method, whereas the second row is from using 48-atom SQS supercells of monolayer 
quaternary structures. 
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 Mo0.5W0.5SSe Mo0.5W0.5STe Mo0.5W0.5SeTe 

a0 (Å) 3.26 3.40 3.45 

3.25 3.35 3.43 

Eg (eV) 1.60 1.35 1.26 

1.57 1.29 1.23 

mh* (m0) 0.54 0.61 0.61 

0.52 0.53 0.55 

me* (m0) 0.44 0.49 0.48 

0.49 0.59 0.37 

ΔESO 0.31 0.35 0.36 

0.29 0.20 0.25 

CBM (eV) -5.37 -5.00 -4.99 

-5.48 -5.04 -4.93 

VBM (eV) -3.76 -3.64 -3.72 

-3.90 -3.75 -3.69 
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Figure 4.3. In-plane lattice constants of (a) MoyW1-yS2xSe2(1-x), (b) MoyW1-yS2xSe2(1-x), and 
(c) MoyW1-ySe2xTe2(1-x) 2D CCTMCAs calculated with the PBE functional. (d) 

Comparison between the in-plane lattice constants from the VCA-DFT method and from 
the estimation in Eq.4.2. 

4.4.2 Structural and electrical properties of general CCTCMAs 

Figure 4.3(a)-(c) displays the in-plane lattice constants of 2D CCTMCAs MoyW1-

yS2xSe2(1-x), MoyW1-yS2xTe2(1-x), and MoyW1-ySe2xTe2(1-x), and the range of in-plane lattice 

constants for each set of 2D CCTMCAs is summarized in Table 4.5. Consistent with the 

trend shown in Table 4.5, the in-plane lattice constants strongly depend on the content (x) 

of chalcogen, while the change in the content of transitional metal (y) almost has no effect. 
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To further investigate the relationship between the composition and the lattice constant, we 

hypothesize the following chemical reaction: 

 MoFW*!FSKGSeK(*!G) → 𝑥𝑦MoSK + (1 − 𝑥)𝑦MoSeK + 𝑥(1 − 𝑦)WSK + (1 −

𝑥)(1 − 𝑦)WSeK  (4.1) 

We the adopt Vegard's law [320] to link the 2D CCTMCAs with binary TMCs in Eq.4.1 

and summarize the relationship between lattice constants 𝑎n of quaternary 2D CCTMCAs 

(e.g., MoyW1-yS2xSe2(1-x)) and binary TMCs (e.g., MoS2, MoSe2, WS2, or WSe2). As an 

example, the lattice constant of a quaternary compound MoyW1-yS2xSe2(1-x) can be written 

as 

 𝑎n = 𝑥𝑦𝑎TUV" + (1 − 𝑥)𝑦𝑎TUVW" + 𝑥(1 − 𝑦)𝑎XV" + (1 − 𝑥)(1 − 𝑦)𝑎XVW" (4.2) 

That is, the lattice constants of quaternary 2D CCTMCAs can be approximated as the 

combination of compositionally dependent lattice constants of the binary TMCs. Figure 

4.3(d) compares a0 from VCA-DFT calculations and 𝑎n from Eq. 4.2. In the inset, we show 

the distribution of the deviation between two sets of data. The results from these two 

methods agree well with each other, with average deviations of 0.006, 0.020, and 0.010 Å 

for these three 2D CCTMCAs, respectively. 
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Figure 4.4. Band gaps of (a) MoyW1-yS2xSe2(1-x), (b) MoyW1-yS2xSe2(1-x), MoyW1-yS2xTe2(1-

x), and (c) MoyW1-ySe2xTe2(1-x) 2D CCTMCAs calculated with the PBE functional. (d) 
Comparison between the band gaps from the VCA-DFT method and from the estimation 

in  Eq. 4.3. 

Figure 4.4(a)-(c) display the band gaps of 2D CCTMCAs Mo-W-S-Se, Mo-W-S-Te, 

and Mo-W-Se-Te, which show that the band gaps range from 1.44 ~ 1.81 eV, 1.06 ~ 1.81 

eV, and 1.06 ~ 1.55 eV, for the Mo-W-S-Se, Mo-W-S-Te, and Mo-W-Se-Te 2D CCTMCAs, 

respectively. We again apply Vegard's law [320] to estimate the band gaps of 2D 

CCTMCAs by using the band gaps of binary TMCs (see Table 4.1). Similar to Eq. 4.2, we 

can write the formula for the band gap using the binary TMCs. For example, for the Mo-
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W-S-Se 2D CCTMCAs, their band gaps can be written as,  

𝐸N = 𝑥𝑦𝐸N,TUV" + (1 − 𝑥)𝑦𝐸N,TUVW" + 𝑥(1 − 𝑦)𝐸N,XV" + (1 − 𝑥)(1 − 𝑦)𝐸N,XVW" 

  (4.3) 

and the other two 2D CCTMCA systems have the similar formulas. Figure 4.4(d) 

compares the band gaps resulted from VCA-DFT calculations and from Eq.4.3. As can be 

seen, the calculated band gaps of the Mo-W-S-Se, Mo-W-S-Te, and Mo-W-Se-Te 2D 

CCTMCAs from the two methods are nearly identical, with the average deviations of 

merely 0.007, 0.039, and 0.011 eV respectively. This consistency indicates that using VCA-

DFT can lead to reliable lattice constants and band gaps of 2D CCTMCAs in an efficient 

way. 

The diverse lattice constants and band gaps of 2D CCTMCAs are essential for various 

applications such as in the design of heterostructures for light harvesting [242,321]. For 

example, the growth of heterostructures requires a lattice match between a 2D CCTMCA 

as the substrate layer and another 2D CCTMCA grown on the substrate. The matching in 

lattice constants of two monolayers of 2D CCTMCAs is beneficial for reducing the bilayer 

strain, whereas the wide band gap ranges of 2D CCMTCAs could also be helpful in 

maximizing the light conversion efficiency for many applications [268,322]. Figure 4.5 

depicts the relationship between lattice constants and band gaps of the three 2D CCTMCAs. 

We know from the plot that there are majorly two regions based on heterostructure lattice 

matching, bounded by three edges of MoS2/WS2, MoSe2/WSe2, and MoTe2/WTe2 to the 
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left, middle, and right edges. The two regions correspond to MoyW1-yS2xSe2(1-x)/MoyW1-

yS2xTe2(1-x), and MoyW1-ySe2xTe2(1-x)/MoyW1-yS2xTe2(1-x) heterostructures, respectively. The 

lattice constant and band gap distributions of three 2D CCTMCAs in Figure 4.5 therefore 

provides guidance in designing heterostructures (see below) from a pair of 2D CCTMCA 

monolayers in order to minimize the lattice mismatch as well as to maintain the desired 

band offset value. 

Table 4.5. Ranges of in-plane lattice constant a0, band gap Eg, hole and electron effective 
masses mh* and me*, spin-orbit splitting ΔESO, conduction band minimum (CBM) and 
valencene band maximum (VBM) with reference to the vacuum level of quaternary 2D 
CCTMCAs with the 2H structure.  

 MoyW1-yS2xSe2(1-x) MoyW1-yS2xTe2(1-x) MoyW1-ySe2xTe2(1-x) 

a0 (Å) 3.18 ~ 3.32 3.18 ~ 3.55 3.32 ~ 3.55 

Eg (eV) 1.44 ~ 1.81 1.06 ~ 1.81 1.06 ~ 1.55 

mh* (m0) 0.43 ~ 0.67 0.43 ~ 0.73 0.44 ~ 0.73 

me* (m0) 0.32 ~ 0.57 0.32 ~ 0.62 0.32 ~ 0.61 

ΔESO 0.15 ~ 0.47 0.15 ~ 0.49 0.19 ~ 0.49 

CBM (eV) -4.27 ~ -3.55 -4.32 ~ -3.46 -3.94 ~ -3.56 

VBM (eV) -5.94 ~ -5.10 -5.94 ~ -4.68 -5.33 ~ -4.70 
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Figure 4.5. Relation between the predicted band gaps and the lattice constants of three 
sets of 2D CCTMCAs calculated with the PBE functional. 

  

Figure 4.6. Hole effective masses of (a) MoyW1-yS2xSe2(1-x), (b) MoyW1-yS2xSe2(1-x), 
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MoyW1-yS2xTe2(1-x), and (c) MoyW1-ySe2xTe2(1-x) 2D CCTMCAs, calculated with the PBE 
functional. The corresponding electron effective masses are shown in (d), (e), and (f). 

Figure 4.6 displays the hole and electron effective masses of 2D CCTMCAs. The four 

corners of Figure 4.6(a) stand for the effective carrier masses of MoS2, MoSe2, WS2, and 

WSe2. We observe that increasing the W content (i.e., decreasing y while x is fixed) 

generally reduces the effective masses. For the Mo-W-S-Se 2D CCTMCAs, increasing the 

Se content lowers the effective masses of both electrons and holes. The relationship 

between the effective masses and two anion contents (x and 1-x value) is complicated in 

the other two 2D CCTMCAs. The lower effective carrier mass is found at the two regions 

of x close to 0 and x close to 1, where one of the chalcogens dominates in the 2D CCTMCAs. 

For example, in the Mo-W-S-Te 2D CCTMCAs, the effective carrier mass first increases 

as the content of S increases from 0 to 0.6, and then decreases as the content of S further 

increases up to 1.0. In designing heterostructures, low effective masses are beneficial to 

enhance the carrier transport and thus improve the collected photocurrent during the light 

harvesting process [263,323,324]. However, too small effective carrier masses are 

associated with a large curvature of electronic dispersion and thus sharp band edges, 

affecting the local density of states. As a result, the overall collected photocurrent will 

decrease, thus degrading the efficiency of light conversion [325]. Therefore, small effective 

carrier masses and local carrier concentration are competing with each other to maintain 

an optimal light conversion of photovoltaics and photocatalysts. The compositional 
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variation of 2D CCTMCAs results in the tunable effective mass ranges for both electrons 

and holes. The design using compositionally complex systems offers a promising method 

in adjusting the effective carrier mass for efficient light adsorption devices. 

Figure 4.7 shows the calculated spin-orbit splitting of 2D CCTMCAs. Compared to 

monolayer MoS2, which has a ΔESO of 0.15 eV [312], the 2D CCTMCAs generally can 

have higher values of ΔESO and up to more than three times of the value of MoS2. As a 

proposed candidate for spintronics devices, graphene shows a ΔESO of about 0.01 eV [326], 

which is much lower than those of the 2D CCTMCAs, suggesting that the 2D CCTMCAs 

has the potential in spintronic applications for spin-logic devices such as RAM [327]. 

Strong spin-orbit splitting and its insensitivity to anion species in 2D CCTMCAs results 

from the presence of out-of-plane mirror symmetry and absence of inversion symmetry 

[328,329]. As a consequence, the resulting electric field is generated in the plane of cations 

causing electrons to move in the same plane. The SOC interactions split the energy 

degeneracy of these electrons and the splitting magnitude depends on only the atomic 

numbers of the cation species (Mo and W, and the latter is much heavier, so is the stronger 

SOC and ΔESO). Figure 4.7 also reveals that ΔESO is more dependent on the content of 

cations than that of anions. By increasing the content of the cations, e.g., reducing y, the 

ΔESO increases rapidly from 0.15 eV to nearly 0.50 eV. By contrast, increasing x does not 

alter ΔESO as much as change y. The strong spin-orbit splittings of 2D CCTMCAs suggest 

the possibility of utilizing them for spintronic applications. This is understood from the 
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source of SOC from the interaction between electron and magnetic field induced by the 

nucleus spin. Because the magnetic field is directly related to the charge from the nucleus, 

a larger atomic number will have a stronger SOC [328,330,331].  

 

 

SFigure 4.7. Spin-orbit splitting of (a) MoyW1-yS2xSe2(1-x), (b) MoyW1-yS2xSe2(1-x), MoyW1-

yS2xTe2(1-x), and (c) MoyW1-ySe2xTe2(1-x) 2D CCTMCAs calculated with the PBE 
functional. 
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Figure 4.8. Conduction band minima of (a) MoyW1-yS2xSe2(1-x), (b) MoyW1-yS2xSe2(1-x), 
MoyW1-yS2xTe2(1-x), and (c) MoyW1-ySe2xTe2(1-x) 2D CCTMCAs. The corresponding 

valence band maxima are shown in (d), (e), and (f), calculated with the PBE functional.  
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Figure 4.9. Band alignment of ternary and quaternary 2D CCTMCAs. The red bars are 
selected to compare to the reference blue bars with ((a) or (b)) the same elements and (c) 
different elements. The stoichiometry of each 2D CCTMCA is shown above the bars and 
the number at the bottom of each bar denotes the corresponding in-plane lattice constant. 
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Figure 4.8 shows the CBM and VBM of 2D CCTMCAs with reference to the vacuum 

level. Because VCA cannot capture the effect of an out-of-plane dipole moment, the 

difference in the vacuum levels on the two chalcogen sides of a monolayer CCTMCA is 

not taken into account. The conduction band offset (CBO) and valence band offset (VBO) 

are calculated, respectively, as the differences in the CBMs and VBMs of two 2D 

CCTMCAs. From the maximum and minimum values of CBM and VBM in the three sets 

of 2D CCTMCAs, we determine the ranges for CBO as from 0.049 to 0.861 eV and VBO 

as from 0.001 to 1.265 eV. Previous studies have shown that the stacking bilayer structure 

of TMCs can achieve ranges of CBO from 0.76 ± 0.12 eV and VBO from 0.83 ± 0.07 eV 

[332-335]. Because of the wide range of band offsets, it is possible to obtain different types 

of heterostructures using one 2D CCTMCA and pairing it with another 2D CCTMCA. 

Additionally, the band gap ranges between the CBOs and VBOs correspond to the photon 

frequencies within the near-infrared region of the solar spectrum, endowing the potential 

of employing 2D CCTMCAs for the applications of high-efficiency photovoltaics 

[336,337]. Figure 4.9(a) displays 27 selected CBM and VBM of 2D CCTMCAs of ternary 

or quaternary systems that can form type II heterostructures with the selected reference 

ternary and quaternary 2D CCTMCAs. For example, the CBO and VBO of the 

Mo0.5W0.5STe/Mo0.95W0.05S0.2Se1.8 heterostructure are 0.27 and of 0.39 eV, respectively. 

At the same time, in the design of heterostructure 2D CCTMCAs, because of the 

composition-dependent wide range of CBO and VBO, versatile heterostructures are 
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achievable by stacking different composition/type of 2D CCTMCAs together. The search 

of pairing 2D CCTMCAs to form stacked heterostructures should also account for the 

relationship between lattice constants and band gaps (see Figure 4.5). Specifically, in 

designing the heterostructure, to minimize the lattice mismatch, two systems with small 

difference in lattice constants are preferred. We here investigate two sets of 2D CCTMCAs 

of Mo-W-S-Se and Mo-W-S-Te, and Mo-W-S-Te and Mo-W-Se-Te, as shown in Figure 4.5, 

where the range of lattice constants of two 2D CCTMCAs in each set overlaps with each 

other. Figure 4.9(b) and (c) shows the band alignments between some selected 2D 

CCTMCAs (in red color) that can match with the reference 2D CCTMCA (in blue color) 

in ternary and quaternary systems. From the results of both ternary and quaternary 2D 

CCTMCAs, we find many of them can form type II heterostructures with a small lattice 

mismatch from the reference material, indicating the potential of 2D CCTMCAs as 

building blocks for light harvesting heterostructures. Because the Mo-W-S-Se 2D 

CCTMCAs have a relatively small range of in-plane lattice constants (see Figure 4.3), 

Figure 4.9(b) shows that there is no ternary Mo/W-Se-Te 2D CCTMCA that satisfy both 

small lattice mismatch and type II band alignment with the reference of ternary Mo/W-S-

Se 2D CCTMCA. The ternary Mo-W-S/Se and Mo-W-S/Te 2D CCTMCAs heterostructure 

shows that the largest lattice mismatch can reach to 10% between MoyW(1-y)S2 and MoyW(1-

y)Te2 (e.g., the lattice mismatch in the Mo0.25W0.75S2/Mo0.15W0.85Te2 heterostructure is 

11.9%). The ternary Mo/W-S-Te system has a relatively large range of lattice constants, 
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making it easier to find the 2D CCTMCA monolayers from both Mo/W-S-Se and Mo/W-

Se-Te that can show the type II alignment with each other with a negligible lattice mismatch. 

For example, the lattice mismatch is nearly zero for the MoS0.5Se1.5/WS1.5Te0.5 and 

MoS0.5Te1.5/MoSe0.8Te1.2 heterostructures. In quaternary 2D CCTMCAs (see Figure 

4.9(d)) , since there is more degree of freedom of 2D CCTMCA monolayers from both 

anion and cation content variations, the lattice mismatch between Mo-W-S-Se and Mo-W-

S-Te 2D CCTMCAs drops to near 0%. There is still no Mo-W-S-Te and Mo-W-Se-Te 2D 

CCTMCA heterostructure that has a small lattice mismatch and can form a type II band 

alignment, which is consistent with Figure 4.5. Similar to ternary Mo/W-S-Te 2D 

CCTMCAs, the quaternary Mo-W-S-Te 2D CCTMCAs with a wide range of lattice 

constants can form the type II alignment of both Mo-W-S-Se and Mo-W-Se-Te 2D 

CCTMCA monolayers with almost zero lattice mismatch. The abundant choices in 

selecting 2D CCTMCA heterostructures with small lattice mismatch and suitable band 

offset range open up opportunities for a variety of heterostructure. 

4.4.3 Energetic stability of high-entropy CCTMCAs 

One concern in designing 2D CCTMCAs is their thermodynamic stability. Here we 

address this concern by focusing on the Gibbs free energy in nine ternary and three 

quaternary 2D CCTMCAs with equal x and y. The three quaternary 2D CCTMCAs are 

modelled using the SQS method. We compute the Gibbs free energy, a combination of the 

ground-state energy of mixing at 0 K and the temperature-dependent energy from 
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configurational entropy, to evaluate the stability of 2D CCTMCAs at different temperatures. 

We first compute the energy reference in the 2D CCTMCAs of quaternary 2D CCTMCAs 

such as MoyW1-yS2xSe2(1-x) by assuming the 2D CCTMCAs is made from four parent binary 

alloys of MoS2, MoSe2, WS2, and WSe2. Therefore, based on Vegard's law [320], the 

reference formation energy Eref is represented as a function of the ground state energies Ef 

of the four binary TMCs and the coefficients from the content of each element, which can 

be written as, 

 𝐸YWZ,*(𝑥, 𝑦) = 𝑥𝑦𝐸A,TUV" + (1 − 𝑥)𝑦𝐸A,TUVW" + 𝑥(1 − 𝑦)𝐸A,XV" + (1 − 𝑥)(1 −

𝑦)𝐸A,XVW"  (4.4) 

Similarly, we have reference formation energies for the other two systems written as, 

𝐸YWZ,K(𝑥, 𝑦) = 𝑥𝑦𝐸A,TUV" + (1 − 𝑥)𝑦𝐸A,TU[W" + 𝑥(1 − 𝑦)𝐸A,XV" + (1 − 𝑥)(1 −

𝑦)𝐸A,X[W"  (4.5) 

and 

𝐸YWZ,\(𝑥, 𝑦) = 𝑥𝑦𝐸A,TUVW" + (1 − 𝑥)𝑦𝐸A,TU[W" + 𝑥(1 − 𝑦)𝐸A,XV2" + (1 − 𝑥)(1 −

𝑦)𝐸A,X[W"  (4.6) 

We define the enthalpy of mixing (𝐸]^_) by subtracting the reference energy from the 

enthalpy based on the DFT calculation of the quaternary system as, 

 𝐸]^_(𝑥, 𝑦) = 𝐸A(𝑥, 𝑦) − 𝐸YWZ(𝑥, 𝑦) (4.7) 

In the calculation of energy of mixing for ternary 2D CCTMCAs such as MoSSe or MoWS2, 

we use two binary alloys of MoS2/MoSe2, or MoS2/WS2 as the reference. 
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The configurational entropy of mixing of the system can be written as [338] 

 𝑆]^_(𝑥, 𝑦) = −𝑘S𝑁[𝑥 ln 𝑥 + (1 − 𝑥) ln(1 − 𝑥) + 𝑦 ln 𝑦 + (1 − 𝑦) ln(1 − 𝑦)] (4.8) 

Based on Eq.4.8, we know that the nine ternary and three quaternary 2D CCTMCAs with 

x = y = 0.5 have the highest configurational entropy among all the 2D CCTMCAs. The 

Gibbs free energy of mixing (𝐺]^_& ) for the 2D CCTMCAs system equals the energy of 

mixing (𝐸]^_ ) subtracted by the multiplication of temperature (T) and configurational 

entropy (𝑆]^_), i.e., 

 𝐺]^_& (𝑥, 𝑦) = 𝐸]^_(𝑥, 𝑦) − 𝑇𝑆]^_(𝑥, 𝑦) (4.9) 

In order to demonstrate the stability of the ternary 2D CCTMCAs, Table 4.6 lists the 

energies of mixing and Gibbs free energies of nine 2D CCTMCAs. Based on the relative 

contents of each element, the configuration entropy for those selected ternary and Janus 

ternary 2D CCTMCAs is S = kBln2 [338]. For the nine ternary 2D CCTMCAs, the negative 

energy of mixing Emix and the Gibbs free energy of MoWS2, MoWSe2, and MoWTe2 

indicates these three ternary alloys are stable at 0 K, 300 K and 600 K. For the six Janus 

structures, on the other hand, the energy of mixing at 0 K and 300 K are all positive, 

implying the unstable structures at 0 K and 300 K. MoSSe and WSSe become stable and 

have negative Gibbs free energies at 600 K. The Gibbs free energies of the Mo/W-S-Te and 

Mo/W-Se-Te based 2D CCTMCAs at 600 K remain positive, suggesting that even at high 

temperature, these four Janus structures are still unstable and likely to suffer from 

decomposition. 
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Table 4.6. The formation energies, Gibbs free energies of mixing of nine ternary monolayer 
2D CCTMCAs with the 2H structure. 

 MoWS2 MoWSe2 MoWTe2 

𝐸]^_  (eV) -0.005 -0.004 -0.002 

𝐺]^_\EE` (eV) -0.023 -0.022 -0.020 

𝐺]^_aEE`
 (eV) -0.041 -0.040 -0.038 

 MoSSe WSSe MoSTe WSTe MoSeTe WSeTe 

𝐸]^_   (eV) 0.027 0.030 0.199 0.224 0.078 0.088 

𝐺]^_\EE` (eV) 0.009 0.012 0.181 0.206 0.060 0.070 

𝐺]^_aEE` (eV) -0.009 -0.006 0.163 0.188 0.042 0.052 

 

Table 4.7. The formation energies, Gibbs free energies of mixing (at the temperatures of 
300 K and 600 K), and nonideality of the four quaternary 2D CCTMCA monolayers with 
the 2H structure. 

 Mo0.5W0.5SSe Mo0.5W0.5STe Mo0.5W0.5SeTe 

𝐸]^_   (eV) -0.003 0.052 0.028 

𝐺]^_\EE` (eV) -0.111 -0.055 -0.079 

𝐺]^_aEE` (eV) -0.218 -0.163 -0.187 

∆μ    (eV) 0.222 0.474 0.252 
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Table 4.7 summarizes the energy of mixing and Gibbs free energy of three quaternary 

2D CCTMCAs at 0 K, 300 K, and 600 K. We can observe that the calculated formation 

energy of Mo0.5W0.5SSe is negative, indicating this quaternary 2D CCTMCA is stable at 0 

K. Indeed, monolayer Mo0.5W0.5SSe has also been experimentally synthesized [339]. By 

contrast, for the other two 2D CCTMCAs, Mo0.5W0.5STe and Mo0.5W0.5SeTe, the formation 

energies are positive, which is related to the large lattice difference among the four 

corresponding binary TMCs of each quaternary 2D CCTMCA system [268,340]. The 

difference in the atomic radii of S and Te is larger than that between the atomic radii of Se 

and Te, which also explains the higher formation energy of Mo0.5W0.5STe than 

Mo0.5W0.5SeTe.  

However, it is possible to stabilize the quaternary systems by considering the 

temperature effect in the Gibbs free energy. For each of the three quaternary 2D CCTMCAs 

we choose, the configurational entropy is 3 kBln2. Table 4.7 shows that the Gibbs free 

energies of mixing Gmix for all the three 2D CCTMCAs are negative at room temperature, 

indicating the stable structures of three quaternary system at the temperature of 300 K and 

600 K. We can see that the temperature-dependent entropy term contributes to the lowering 

of Gibbs free energy in a great deal, and both Mo0.5W0.5STe and Mo0.5W0.5SeTe, which 

show the positive energy of mixing, have negative Gibbs free energies at 300 K. Compared 

to the Janus structure 2D CCTMCAs of Mo/W-S-Te and Mo/W-Se-Te, whose Gibbs free 

energies remain positive even at 600 K, we can conclude that the entropy effect is beneficial 
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for stabilizing quaternary 2D CCTMCAs. Therefore, the method of designing multinary 

2D CCTMCA not only result in the tunable properties, but also lead to stable alloying phase 

by taking the advantage of the entropy effect. 

From Table 4.7 and the above discussion, we know that the positive formation energy 

of both Mo0.5W0.5STe and Mo0.5W0.5SeTe can be stabilized at high temperature. However, 

these two quaternary 2D CCTMCAs still show the unstable phase at low temperature, 

which could result in the phase separation. Even though the process of phase separation in 

quaternary 2D CCTCAs is complicated, we can predict the direction where the quaternary 

2D CCTMCAs will undergo a phase separation into a group from two dissimilar binary 

TMCs. We assume that a quaternary 2D CCTMCA (Mo0.5W0.5STe , for example) can be 

made up from four different binary TMCs with different cation anion pairs (MoS2, WTe2, 

MoTe2, and WS2), which can further be categorized into two groups ((MoS2-WTe2) and 

(MoTe2-WS2)). We then calculate the energy difference between these groups to predict 

the phase separation from quaternary 2D CCTMCA to binary TMCs group. As an example 

of the Mo0.5W0.5STe phase transformation, by taking two groups of binary TMCs (MoS2-

WTe2) and (MoTe2-WS2) as reference, we can predict the stable group when phase 

separation happens using the nonideality of the solution. The nonideality Δµ is calculated 

via the chemical potential difference between two groups of binary TMCs, such as MoS2-

WTe2 and MoTe2-WS2 [213],  

 ∆𝜇K = (𝜇TUV" + 𝜇X[W") − (𝜇TU[W" + 𝜇XV") (4.10) 
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Similarly, we write Δµ for the other two 2D CCTMCAs as 

 ∆𝜇* = (𝜇TUV" + 𝜇XVW") − (𝜇TUVW" + 𝜇XV") (4.11) 

and 

 ∆𝜇\ = (𝜇TUVW" + 𝜇X[W") − (𝜇TU[W" + 𝜇XV2") (4.12) 

The calculated nonideality results for the three 2D CCTMCAs are shown in Table 4.7, 

where the Δµ1 is in agreement with the previous work [213]. The positive Δµ2 of 

Mo0.5W0.5STe indicates that the latter binary group of (MoTe2-WS2) is more stable, into 

which the quaternary 2D CCTMCA would decompose. We can see from the results that for 

the three quaternary 2D CCTMCAs systems of Mo-W-S-Se, Mo-W-S-Te, and Mo-W-Se-

Te, the most stable binary TMC groups are MoSe2-WS2, MoTe2-WS2, and MoTe2-WSe2, 

respectively. Previous experimental result has shown one example of the phase separation 

in Mo-W-S-Se quaternary 2D CCTMCAs in Ref. [213] as the spinodal decomposition of 

quaternary 2D CCTMCAs Mo-W-S-Se into two ternary 2D CCTMCAs within the 

miscibility gap. 

According to the calculated Gibbs free energies, we find that the three quaternary 2D 

CCTMCAs from SQS supercell are stable at room temperature. We henceforth focus on 

these three quaternary 2D CCTMCAs in discussing their electronic properties such as band 

structure and electrical conductivity, for the purpose of applying them as the potential 

materials in energy conversion applications. Figure 4.10 displays the band structures of 

three quaternary 2D CCTMCAs calculated with the PBE functional without and with 
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considering the spin-orbit coupling (SOC). We can see that the calculations with or without 

considering SOC show the direct band gap of these three 2D CCTMCAs at K point. The 

SO splitting energies at the K point for Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe 

are 0.31, 0.35, and 0.36 eV, respectively.  

 

Figure 4.10. Band structures of three quaternary 2D CCTMCAs, Mo0.5W0.5SSe, 
Mo0.5W0.5STe, and Mo0.5W0.5SeTe. Spin-orbit coupling is not considered in the panels (a), 

(b), and (c), whereas it is accounted for in panels of (d), (e), and (f). 
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Figure 4.11. Electrical conductivity of Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe 
at 300 K as a function of the chemical potential. Electrical conductivity of MoS2 is also 

plotted as benchmark.  

4.4.4 Electrical conductivity of high-entropy CCTMCAs 

Figure 4.11 displays the electrical conductivity of Mo0.5W0.5SSe, Mo0.5W0.5STe, and 

Mo0.5W0.5SeTe at 300 K. We also compute the electrical conductivity of monolayer MoS2 

and benchmark the results with the literature [341]. The relaxation time used in these 

calculations is taken as an approximated constant value of 10.0 fs, which has been used in 

the calculations of electrical conductivity for other monolayer semiconductors such as 

SnSe, Sc2C, and TiSe2 [342-344]. We first observe that the band gaps of these three 2D 

CCTMCAs, corresponding to the regions where the conductivity equals to zero, are in 
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agreement with the VCA-DFT results (see Figure 4.5). These band gaps lie from the visible 

light range to the near-infrared region, which enable the photovoltaic effect in a wider 

region to enhance the photovoltaic conversion efficiency [345]. In Figure 4.11, the negative 

(left) side of the chemical potential illustrates the holes conductivity (p-type), and the 

positive (right) side is for the conductivity from electrons (n-type). By changing the 

chemical potential that can be realized by different methods such as doping or applied gate 

voltage [346], 2D CCTMCAs can reach a high conductivity of 1.7 × 106 S⋅m, which 

guarantees the high carrier transport within the single layer. Moreover, the three quaternary 

2D CCTMCAs exhibit higher electron conductivity comparing to pristine MoS2 monolayer. 

The high conductivity of three examples shows their potential in the energy conversion 

applications such as photovoltaics. 

4.5 Summary 

In summary, we propose a workflow using the DFT calculation from VCA models in 

search of suitable multinary 2D CCTMCAs in different applications in energy conversion 

and spintronics. We have computationally characterized five critical structural and 

electrical properties of 2D CCTMCAs and also benchmarked DFT results using unit cell 

and SQS models to validate the accuracy of calculation from VCA method. We find that 

VCA-DFT calculations lead to comparable results of lattice constants, band gap, electron 

and hole effective masses, spin orbit splitting, and band alignment with the unit-cell-DFT 

and SQS-DFT results, with some exceptions in the CBM, effective hole masses, and band 
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gaps of MoSTe and WSTe, which are caused by the inaccurate prediction of the location 

of CBM in VCA-DFT calculations. Our results show that the multinary 2D CCTMCAs 

exhibit tunable properties such as band gaps, lattice constants, effective masses, and band 

alignments. These tunable properties are helpful in designing the lattice matching type II 

heterostructures for the applications of light adsorption and conversion devices. The strong 

SOC of 2D CCTMCAs also suggests the possibility of utilizing the multinary 2D 

CCTMCAs in spintronics. In addition to the high-throughput computational 

characterization of 2D CCTMCAs workflow, we propose three quaternary 2D CCTMCAs, 

Mo0.5W0.5SSe, Mo0.5W0.5STe, and Mo0.5W0.5SeTe at room temperature, serving as excellent 

examples to illustrate the entropy-stabilized alloys from multiple component design of 2D 

CCTMCAs. In addition, they also show high electrical conductivity as promising materials 

for energy conversion applications. Although currently most research on quaternary TMC 

alloys centers on Mo/W-based alloys, 2D nanosheets of TaSe2, NbSe2, and NiTe2 (Ta: 

Tantalum, Nb: Niobium) have been obtained in experiments, indicating that alloying of 

these TMCs may be used to develop 2D CCTMCAs [347]. The high-throughput workflow 

we proposed enables the extension of the research on the 2D CCTMCAs consisting of other 

transition metal, metal, and chalcogen elements.  
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CHAPTER VI 

SPIN QUBIT BASED ON THE NITROGEN-VACANCY CENTER ANALOG IN A 

DIAMOND-LIKE COMPOUND C3BN  

5.1 Abstract 

The Nitrogen-vacancy (NV) center in diamond plays important roles in emerging 

quantum technologies. Currently available methods to fabricate the NV center often 

involve complex processes such as N implantation. By contrast, in a diamond-like 

compound C3BN, creating a boron (B) vacancy immediately leads to an NV center analog. 

We use the strongly constrained and appropriately normed (SCAN) semilocal density 

functional—this functional leads to nearly the same zero-phonon line (ZPL) energy as the 

experiment and as obtained from the more time-consuming hybrid density functional 

calculations—to explore the potential of this NV center analog as a novel spin qubit for 

applications in quantum information processing. We show that the NV center analog in 

C3BN possesses many similar properties to the NV center in diamond including a wide 

band gap, weak spin-orbit coupling, an energetically stable negatively charged state, a 

highly localized spin density, a paramagnetic triplet ground state, and strong hyperfine 

interactions, which are the properties that make the NV center in diamond stand out as a 

suitable quantum bit (qubit). We also predict that the NV center analog in C3BN to exhibit 

two ZPL energies that correspond to longer wavelengths close to the ideal 

telecommunication band for quantum communications. C3BN studied here represents only 
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one example of A3XY (A: group IV element; X/Y: group III/V elements) compounds. We 

expect many other compounds of this family to have similar NV center analogs with a wide 

range of ZPL energies and functional properties, promising to be new hosts of qubits for 

quantum technology applications. Furthermore, A3XY compounds often contain group IV 

elements such as silicon and germanium, so they are compatible with the sophisticated 

semiconductor processing techniques. Our work opens up ample opportunities towards 

scalable qubit host materials and novel quantum devices.  

5.2 Introduction 

Despite in its early infancy, quantum computers hold great potential for solving 

extremely challenging problems faced by currently available supercomputers, ranging 

from factorizing a large integer to break public-key cryptography to discovering drugs to 

treat pandemic diseases [16]. At the heart of the superpowers of quantum computers are 

the materials that constitute the quantum bits (i.e., qubits) having two energy levels that are 

analogous to the classical bits represented by 0s and 1s. To realize the full potential of 

quantum computers in the foreseeable future, advancing the development of building 

blocks is the key. Among the many proposed candidates for qubit materials such as trapped 

ions [348] and superconducting circuits [349] that work at near absolute zero, solid-state 

spin qubits based on defect centers embedded in wide-band-gap semiconductors such as 

diamond are promising that can lead to novel quantum devices capable of operating at room 

temperature [350].  
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The NV center in diamond corresponds to a peculiar defect configuration, where one 

C atom in a pair of nearest-neighboring (NN) C atoms is removed and the other replaced 

by a N atom. Although the defect can exhibit different charge states, the NV center 

commonly refers to the negatively charged state with an extra electron denoted as NV-1. 

This charged state engages the interplay of six electrons, three of which come from the 

three C dangling bonds surrounding the C vacancy, two from the N atom (the other three 

electrons of the N atom are shared with its three NN C atoms), and the rest from the donor 

in the bulk [351]. The total spin resulting from the energy distribution of the six electrons 

is one and the ground and excited states of the NV center are triplet states with sublevels 

of ms = 0, -1, or 1. The ms = ± 1 states are separable by a small microwave field causing 

the Zeeman spitting. The superposition of the ms = 0 state and one of the ms = ± 1 states 

behaves as the |0⟩ and |1⟩ levels of a qubit, respectively. The initialization and readout of 

a qubit based on the NV center are realized via optical pumping and spin-dependent 

fluorescence, respectively [352]. NV center qubits have been shown to exhibit long room-

temperature coherence times (T2) on the timescale of microseconds [353], owing to weak 

spin-orbit coupling and hyperfine interactions [354]. Furthermore, the spins in two NV 

center qubits have been demonstrated to entangle at room temperature [355], an 

encouraging step towards scalable quantum register consisting of multiple qubits. 

Despite the abovementioned potential of the NV center in diamond has shown in 

quantum technology applications, there are limitations from the perspectives of 
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manufacturing and zero-phonon line (ZPL) energy. In terms of manufacturing, fabricating 

these defect centers in a prescribed manner is challenging. Two common methods to create 

the NV center are (i) chemical vapor deposition (CVD) growing diamond and (ii) high-

energy N implantation followed by annealing processes [356]. The locations of the NV 

center resulted from both methods cannot be accurately manipulated at the atomic scale 

[352], leading to randomly distributed NV centers and degrading the quality of a quantum 

register. Furthermore, it is challenging to fabricate devices from diamond [357]. Significant 

amounts of experimental and theoretical efforts have been spent to identify defect centers 

in other wide-band-gap semiconductors such as SiC polytypes [358] and GaN [359]. In 

terms of the ZPL energy, it takes up only 3-4% of the total emission [360]. Because future 

quantum computers based on the NV center qubits will communicate through optical fiber, 

enhancing the ZPL wavelengths so that they can match the ideal telecommunication band 

wavelength is important to minimize the optical loss.  

We aim to search for defect centers for hosting spin qubits from a new group of 

functional semiconductors with a common formula A3XY, where A is a group IV element, 

X and Y are groups III and V elements, respectively. We expect A3XY to be free of the 

limitations posed by diamond and meanwhile to possess the potential as novel qubit 

materials for three reasons. First, as illustrated in Figure 5.1(a)-(c), the structure of an A3XY 

compound consists of tetrahedral molecular geometry similar to that in diamond, although 

the former geometry does not have the C3v symmetry as the latter. Each X or Y atom has 
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three nearest neighboring A atoms, so the overall structure can be regarded as embedding 

XY diatomic units in diamond. X and Y atoms have eight valence electrons, so  the average 

number of valence electrons per atom in A3XY is the same as in diamond. The special 

atomic arrangement as well as the isoelectric feature facilitate the formation of an NV 

center analog. In other words, removing one X atom and negatively charge it with an extra 

electron is akin to creating a charged Y-vacancy center in A4. Second, the mature 

semiconductor industry is well prepared for new materials that contain group IV elements 

such as silicon and germanium. A3XY compounds lie in this category, so the quantum 

devices made of A3XY are most likely compatible to the existing semiconductor techniques 

and scalable to integrate a significant number of qubits. Third, one notable difference of 

A3XY from pure bulk A4is that A3XY have mixed non-polar and polar bonds, which are 

expected to affect the ZPL wavelengths via the presence of diverse band gaps and 

functional properties.  

Synthesizing A3XY using conventional CVD method is nevertheless challenging and 

subject to the possibility of phase separation. Kouvetakis et al. overcame this challenge via 

molecular beam epitaxy based on a gas source and successfully synthesized a prototype 

A3XY compound Si3AlP. Recent theoretical studies have predicted Si3AlP to have a direct 

band gap that is potentially helpful for solar cell applications due to its direct band gap 

[361]. It was also suggested that the same experimental approaches could be applied to 

synthesize many other A3XY compounds [362]. 



 

 123 

In this work, we focus on one representative example of A3XY compounds, i.e., C3BN. 

We explore the potential of C3BN as a novel semiconductor to host spin qubits. 

Experimentally, Langenhorst and Solozhenko synthesized this compound via a shock-

compression method at high pressure and temperature [363]. Theoretically, the crystal 

structure of C3BN and structural properties such as bulk modulus were first reported in Ref. 

[364] via density functional theory (DFT) calculations. A more recent DFT study predicts 

that the hardness of C3BN is comparable to diamond [365]. As mentioned above, if C3BN 

can be successfully synthesized, removing a B atom in C3BN is equivalent of creating a 

NV center analog and the whole C3BN structure has the same number of electrons per atom 

as diamond. Because the majority atoms in are C and the properties should be similar to 

those of diamond. Here we apply DFT calculations to compute the properties that are 

deemed as required ones for a charge defect in a semiconductor to be a qubit candidate. 

These properties include the electronic structure of bulk C3BN, the defect formation energy, 

electronic structure, defect energy levels, and hyperfine tensors of the NV-center analog. 

We compute the same properties of diamond and the NV center for a throughout 

comparison. We show that the NV center analog in C3BN satisfies all the criteria for a 

defect center to become a candidate of qubit materials, endowing C3BN with a promising 

potential for hosting spin qubits.  

5.3 Simulation Methods 

We use the Vienna Ab initio Simulation Package (VASP) for all the DFT calculations 
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[366]. The potential datasets for the C: 2s22p2, B: 2s22p1, and N: 2s22p3 valence electrons 

are from the Projector augmented-wave method [80,81]. In all the VASP calculations, the 

plane waves cutoff kinetic energy is set to 400 eV. For the exchange-correlation interactions, 

we use the strongly constrained and appropriately normed (SCAN) semilocal density 

functional, which is one of the most recently developed meta-GGA functionals developed 

by Perdew and coworkers [367]. This functional not only includes electron density but also 

local kinetic energy density in the exchange-correlation approximations. SCAN is known 

to satisfy all the 17 known exact constraints for a semi-local functional. Although SCAN 

has been applied to many semiconductors to predict their band gaps [368], it has not yet 

been applied to study the defect levels of the NV center. This work therefore also serves a 

first example to test the accuracy of this functional in describing the NV center.  

To obtain the ground-state structure of C3BN, we adopt the optimized structure of 

Si3AlP reported in Ref. [361] as the starting structure for geometry optimizations. The 

simulation cell contains 12 C, 4 B, and 4 N atoms. Symmetry analysis on the optimized 

structure shows that the crystal structure of C3BNbelongs to the monoclinic Bravais lattice 

with the space group of Cc (group number: 9). In the geometry optimizations of C3BN and 

diamond, all the six lattice parameters and atomic coordinates are fully optimized until the 

force threshold of 0.01 eV is achieved. The Monkhorst-Pack k-point grids [82] for these 

two systems are 4 ´ 4 ´ 7 and 8 ´ 8 ´ 8, respectively. The optimized lattice parameters of 

C3BN are a = 5.669 Å, b = 5.670 Å, c = 3.595 Å, a  = b = 90°, g = 89.755° and the 
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optimized lattice parameters of diamond are a = b = c = 3.549 Å and a = b = g = 90°. The 

symmetry of C3BN is much lower than diamond as can be seen from the tetrahedral 

molecular geometry illustrated in Figure 5.1(c). We calculate the energies of the 36-atom 

unit cell of B and the 2-atom cell of a N2 molecule placed in the center of a vacuum box. 

These two energies will be used to calculate the defect formation energy (see below). The 

k-point grids of these two calculations are 10 ´ 10 ´ 4 and 1 ´ 1 ´ 1 (G point) , respectively. 

We compute the dielectric constant tensor also using the 20-atom and 8-atom cells for 

C3BN and diamond, respectively. The dielectric constant tensor is calculated based on the 

density functional perturbation theory (DFPT) [102]. Because the SCAN version of DFPT 

is not yet implemented in VASP, we switch to the Perdew-Burke-Ernzerhof (PBE) 

functional [79] with the optimized geometry using the SCAN functional to compute the 

dielectric-constant tensor, where local field effects are accounted for on the Hartree level. 

We calculate the band structure of C3BN and diamond using their primitive cells that have 

10 and 2 atoms, respectively. The corresponding Monkhorst-Pack k-point grids are 8 ´ 8 ´ 

6 and 12 ´ 12 ´ 12, respectively. We consider the spin-orbit coupling (SOC) [369] in the 

band structure calculations.  

To simulate the NV-center analog in C3BN, we first create a 2 ´ 2 ´ 3 supercell of  

C3BN (240 atoms) from the optimized 20-atom cell so that the three lattice vectors have 

nearly the same length, and then we remove one B atom whose crystalline coordinates are 

(0.351, 0.451, 0.499) and we add an extra electron to the supercell. For the simulations of 
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the NV center in diamond, we use a 3 ´ 3 ´ 3 supercell (216 atoms) (see Figure 5.1(a) and 

(b)) and remove one C atom positioned at (0.500, 0.333, 0.500) and substitute one of its 

NN C atoms by a N atom located at (0.583, 0.417, 0.583). For the geometry optimizations 

of these two supercells, we use a single k point (G point) and optimize only the atomic 

coordinates while keeping the lattice constants fixed. For the calculations of density of 

states, spin density, and hyperfine structure, we use a 2 ´ 2 ´ 3 k-point grid. 

5.4 Results and Discussion 

5.4.1 Structural and electronic properties of C3BN 

We start with computing the band structures of C3BN and diamond without defects. 

The band structure of diamond is used for comparison and also for benchmarking the 

accuracy of the SCAN functional in describing band gaps. Weber et al. summarized nine 

conditions that a viable semiconductor to host spin qubits [357]. Two of them can be 

evaluated from the band structure of the candidate, i.e., it must have a wide band gap and 

weak SOC. The former criterion is required to accommodate deep defect levels; the latter 

is preferred to avoid disturbing the electron spin and thereby maintaining the long 

coherence time. Note that strong SOC is not always an unfavorable characteristic for qubits. 

As a matter of fact, it becomes a desirable property in some other types of qubit host 

materials such as semiconductor nanowires [370].  
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Figure 5.1. (a) Top and (b) side views of the atomic structures of C3BN as an example of 
A3XY compounds. Here, A = C, X = B, and Y = N. A unit cell of C3BN is enclosed in the 
shaded area of (a). Optimized tetrahedral geometries of C3BN (c) without and (d) with 
the B vacancy (denoted by the dashed circle). The interatomic distances are shown for 

both tetrahedral geometries. 
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Figure 5.2. Band structures of (a) diamond and (b) C3BN calculated with the SCAN 
functional and spin-orbit coupling is taken into account. The notations of special k points 

are adopted from Ref. [371]. The valence band maxima are set to zero. 

We evaluate the feasibility of C3BN as a novel semiconductor for hosting spin qubits 

using the two criteria. Figure 5.2(a) shows the band structure of diamond with SOC taken 

into account. We can see that diamond has an indirect band gap of 4.55 eV. Although the 

SCAN band gap remains underestimating the experimental band gap of 5.50 eV [372], the 

SCAN functional improves the band gap in comparison to the PBE band gap calculated to 

be 4.14 eV. The calculated SCAN and PBE band gaps of diamond are both consistent with 

previous work [368]. Using the SOC splitting at the valence band maximum (VBM) as a 

metric of SOC strength [351], we find this is negligibly small for diamond. Figure 5.2(b) 

shows that C3BN exhibits an indirect band gap of 3.75 eV, which is smaller than that of 

diamond, with the VBM at the G point and the conduction band located between the G and 

A points. Furthermore, the top two valence bands at the G point are nearly degenerate, 
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indicating again a negligible SOC splitting and therefore trivial SOC. Although more 

advanced theory such as many-body G0W0 calculations [373] may correct the band gap of 

C3BN to even larger numbers, the SCAN band gap is already wide enough to hold deep 

defect states. Together with the weak SOC, C3BN seems promising to be another wide-

band-gap semiconductor to host spin qubits. 

Figure 5.1(c) shows the tetragonal molecular motif in the optimized structure of C3BN. 

Most of the interatomic distances are not equal and greater than the NN C-C bond length 

of 1.536 Å in diamond, revealing the low symmetry of this motif as well as of the bulk. 

The structure of the motif belongs to the C1 point group. As can be seen in Figure 5.1(d), 

creating the NV-center analog leads to enlarged interatomic distances and the point group 

remains the same.  

5.4.2 Stability of the NV center analog in C3BN 

Although not explicitly listed as one of the nine criteria by Weber et al., the stability 

of charged defects in a semiconductor is important and needs to be examined. Specifically, 

as a metric of stability, the defect formation energy provides not only the equilibrium 

concentration of a charged defect [357] but also the range of Fermi energies (within the 

limit of the band gap) [374], where a charged state can be more stable than the other 

possible charged states. We therefore evaluate the stability of charge defects (q = 0, -1, or 

-2) in C3BN by computing the defect formation energy 𝐸Z[𝐶\𝐵𝑁:𝑁𝑉6] following the 

commonly used equation [375]: 
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 𝐸Z[𝐶\𝐵𝑁:𝑁𝑉6] = 𝐸bcb[𝐶\𝐵𝑁:𝑁𝑉6] − 𝐸bcb[𝐶\𝐵𝑁: 𝑏𝑢𝑙𝑘] + 𝜇d + 𝑞(𝜀e + 𝜀CdJ/01% + ∆𝑉) 

  (6.1) 

where 𝐸bcb[𝐶\𝐵𝑁:𝑁𝑉6]  and 𝐸bcb[𝐶\𝐵𝑁: 𝑏𝑢𝑙𝑘]  are the total energies of the C3BN 

supercells without and with a charged defect, respectively. 𝜇d is the chemical potential of 

bulk B. 𝜀e is the Fermi energy with reference to the VBM 𝜀CdJ/01% of the bulk. ∆𝑉 is the 

energy correction term due to the energy alignment of the VBM [376]. For comparison, we 

also compute the formation energy of charged defect in diamond 𝐸Z[𝐶: 𝑁𝑉6] written in a 

similar equation: 

 𝐸Z[𝐶: 𝑁𝑉6] = 𝐸bcb[𝐶: 𝑁𝑉6] − 𝐸bcb[𝐶: 𝑏𝑢𝑙𝑘] − 𝜇( + 2𝜇f + 𝑞(𝜀e + 𝜀CdJ/01% + ∆𝑉)(6.2) 

where 𝐸bcb[𝐶: 𝑁𝑉6] and 𝐸bcb[𝐶: 𝑏𝑢𝑙𝑘] are the total energies of the diamond supercells 

without and with charges, respectively. 𝜇( is the chemical potential of N taken as half of 

the energy of a N2 molecule. A factor of 2 in Eq. (6.2) is because of the two missing C 

atoms to create the NV center. 𝜇f  is the chemical potential of C in bulk diamond, namely, 

𝐸bcb[𝐶: 𝑏𝑢𝑙𝑘]/216. 

The energy correction term ∆𝑉 in Eqs. (6.1) and (6.2) also depends on the dielectric-

constant tensors of C3BN and diamond. We therefore calculate the dielectric constants in 

C3BN whose eaa, ebb, and ecc components are 5.51, 5.75, and 5.52, respectively. The other 

three components are almost zero. For comparison, the computed dielectric constant of 

diamond, 5.50, is consistent with the experimental dielectric constant 5.68 [377], showing 

the accuracy of the SCAN functional. We notice that the dielectric constant components of 
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C3BN in the a and c directions are nearly the same as those in diamond, manifesting the 

high similarity between C3BN and diamond in these two directions. Figure 5.1(a) shows 

that along the positive a direction, B and N atoms appear to locate in zigzag chains, each 

of which can be denoted as (BN)(BN)(BN). Because each diatomic (B and N) unit is close 

in distance, the pattern can also be regarded as (NB)(NB)(NB) along the negative a 

direction. These two different plausible denotations imply that the polarization due to the 

BN polar bonds along the positive and negative a directions will cancel out, leading to 

almost the same dielectric constant with diamond in the a direction. Similarly, Figure 5.1(b) 

shows that along the positive or negative c direction, B and N atoms always follow the 

same (BN)(NB)(BN)(NB)(BN)(NB) pattern. As a result, the polarization in the BN bonds 

plays little role in affecting the dielectric constant in the c direction. By contrast, along the 

positive and negative b directions, the distance between the diatomic unit is so large that 

the pattern can only be regard as (BN)(BN)(BN) or (NB)(NB)(NB). The dielectric 

constants of C3BN in the b direction is therefore slightly larger than diamond due to the 

polar nature of B-N bonds. 

In computing the defect formation energy, we consider the neutral state, q = 0, and 

two charged states, q = -1 and -2. When q = -1, the state refers to the NV-center analog in 

C3BN or the NV center in diamond. We consider the q = -2 state to identify the upper bound 

of the Fermi energy where the NV-center analog or NV center remains more stable. Figure 

5.3 shows the defect formation energy of C3BN and diamond as a function of the Fermi 
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energy with reference to the VBM. Our computed defect formation energy for the neutral 

defect in diamond is 5.92 eV, which is comparable to 6.21 eV using a 511-atom supercell 

[378] and to ~6.10 eV using a 63-atom supercell [357] with the HSE06 functional [93]. 

Figure 5.3(a) also shows that the lower bound of the Fermi energy is 1.78 eV, above which  

the NV center in diamond is more stable than the other two defect states. This lower bound 

is smaller than ~2.70 and 2.78 eV in Refs. [378] and [357], respectively, possibly due to 

the different functional used in the current calculations. Our calculations cannot provide an 

upper bound for the Fermi energy in diamond because of the underestimated band gap by 

the SCAN functional. However, we consistently show that the NV center is stable in a wide 

range of Fermi energies. Figure 5.3(b) shows the formation energies of the three charge 

states of C3BN. For the neural defect, the formation energy is 6.82 eV in C3BN, higher than 

that (5.92 eV) in diamond, implying that it is relatively more energy-consuming to create 

a B vacancy in C3BN than to generate two C vacancies, one of which is further replaced 

by a N atom. More importantly, the NV-center analog is the most stable among the three 

defect states, if the Fermi energies are within the energy range of 1.52 to 3.26 eV. The lower 

bound is nearly in the middle of the band gap and comparable to that of diamond, indicating 

that the defect state is deep enough to trap an extra electron. Although the HSE06 functional 

may give a more accurate band gap of C3BN and then more accurate lower and upper 

bounds of Fermi energies, we expect our conclusion that the NV-center analog as a deep 

charged state to remain the same, according to our results using the SCAN functional.  
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Figure 5.3. Defect formation energy of (a) diamond and (b) C3BN. Only one dashed line 
is shown to represent the lower bound in diamond, where the q = -1 state is the most 

stable due to the underestimated band gap with the SCAN functional. The region where 
the q = -1 state in C3BN is the most energetically stable is enclosed by two dashed lines. 

5.4.3 Electronic properties of the NV center analog in C3BN 

Having shown the stability of the NV center analog in C3BN, we now focus on 

studying the electronic structure of this analog. Figure 5.4 shows the spin density of states 

(SDOS) and energy levels of the defect states of the NV center and its analog. For the NV 

center, its electronic structure has been well studied using different levels of theory. 

Reference [379] provides an excellent overview this topic. Interestingly, we notice that the 

SCAN functional has not yet been applied to study the NV center. We show here that using 

the SCAN functional can reproduce all the key features in the electronic structure of the 
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NV center. First of all, our calculated SDOS agrees well with the SDOS obtained from the 

PBE functional [380]. The spin-up and spin-down DOS curves are nearly symmetrical 

except in the band gap where we observe four SDOS peaks. The two spin-up DOS peaks 

are located at the energies of around -0.273 and -1.443 eV, respectively. By computing the 

integrated DOS, we find that the higher-energy DOS is occupied by two degenerate 

electrons often labeled as the ex and ey states [351]. Consistent with the smaller area 

enclosed below the peak, the lower-energy DOS is occupied by only one electron labeled 

as the a1(2) state. The two spin-down DOS peaks are located at the energies of about -0.562 

and 1.685 eV, respectively. Only the lower-energy DOS is occupied by one electron with 

the same label, a1(2). The higher-energy spin-down DOS peak has the same labels as their 

spin-up counterparts, ex and ey. This peak is capable of hosting two degenerate electrons. 

The remaining two electrons of the NV center are embedded in the valence bands. The net 

effect of the energy distribution of the six electrons is the paramagnetic state with a total 

spin moment of one Bohr magneton. As described in the Introduction section, this 

paramagnetic spin is the key factor that makes the NV center a qubit that can be 

manipulated by magnetic and optical methods. 
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Figure 5.4. Spin density of states of (a) diamond with the NV center and of (b) C3BN 
with the NV center analog. Occupied and empty energy levels are represented by line 
segments with and without overlapped upward (spin-up) and downward (spin-down) 
arrows, respectively. The upper and lower shaded areas represent the conduction and 

valence bands, respectively. 

Similar to diamond, the SDOS curves shown in Figure 5.4(b) are also almost 

symmetric except in the band gap, where we can see six instead of four peaks in diamond. 

The increased number of peaks is a result of the lowered symmetry in comparison to 

diamond. Furthermore, two of the six electrons are immersed in the valence band, so they 

are as well of no significant relevance. The other four electrons in the gap are distributed 

differently from they are in the NV center. In particular, we notice that the ex and ey 

electrons in the spin-up channel are no longer degenerate and the a1(2) electron (We use 

the same notations only for the convenience of comparison.) in the same channel now has 

a closer energy to the other two spin-up electrons. The three electrons interact to some 
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extent forming a continuous band of width about 0.53 eV. In the spin-down channel, one 

electron occupies the a1(2) energy level and the degeneracy of the empty ex and ey states is 

broken separating into two levels with an energy spacing of around 0.43 eV. The total spin 

moment of the NV center analog is the same as the NV center. This paramagnetic triplet 

state satisfies another criterion [357] to endow the NV center analog with the potential of 

hosting a new spin qubit. 

Figure 5.5 compares the spin densities of the NV center in diamond and the NV center 

analog in C3BN. As can be seen, the spin densities in both the NV center and its analog are 

highly localized in the C atoms near the vacancy, manifesting another similarity between 

the C3BN and diamond. Localized states are often described better by the HSE06 functional 

than by the PBE functional [101,381]. Our results show that the SCAN functional can also 

capture this localization very well. The localized spin densities in NV center and its analog 

form bound states [357], ensuring them to behave as an “artificial atom” that is well 

protected from the environment and subject to convenient initialization, measurement, and 

readout. 
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Figure 5.5. Spin density of (a) the NV center in diamond and (b) the NV center analog in 
C3BN. The isosurface value is set to 0.005 e/a03, where a0 is the Bohr radius. 

5.4.4 ZPL energy and hyperfine structure of the NV center analog in C3BN 

Because photoluminescence is the main optical approach to manipulate a 

paramagnetic spin qubit, three of the nine criteria summarized by Weber et al. are related 

to light-qubit interactions [357]. Over several decades of complimentary experimental and 

theoretical studies [382,383], a somewhat complete description of light-NV center 

interactions with fine details such as the non-radiative intersystem crossing is now 

available for the NV center in diamond. By contrast, the NV center analog in C3BN has not 

yet been fabricated, we therefore focus on understanding the spin-conserving radiations 



 

 138 

based on the energy diagrams shown in Figure 5.4. In particular, we predict the potential 

energy as function of configuration coordinate of the NV center analog in C3BN, following 

the Frank-Condon approximation [384,385]. From the potential energy curves, we extract 

the critical information such as the ZPL energy that could be confirmed in future 

photoluminescence measurements. Owing to the broken degeneracy of the two spin-down 

excited states ex and ey in the NV center analog in C3BN, there are two possible cases of 

spin-conserving optical transitions: case 1, transition from the spin-down a1(2) state to the 

spin-down ex state; case 2, transition from the spin-down a1(2) state to the spin-down ey 

state. We thus expect to observe two ZPL peaks for the NV center analog in C3BN. We 

predict the ZPL energies and other states using the constrained DFT [386] as implemented 

in VASP. Figure 5.6 shows the sketches of potential energy curves for the NV center in 

diamond and for the two cases of the NV center analog in C3BN. The curves for each 

system involved four states A, B, C, and D. State A is the ground state of the NV center or 

its analog; state B is the energy of placing the spin-down a1(2) electron at the spin-down ex 

and ey state without atomic relaxation; state C is the energy reduction from optimizing the 

structure of state B and this energy reduction corresponds to the Stokes shift (S). Placing 

the electron back to the a1(2) state followed by geometry optimizations leads to state D, 

whose energy is less than that of state C by an amount of the anti-Stock-shift (AS).  
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Figure 5.6. (a) Sketched potential energy curves of the NV center in diamond and of the 
NV center analog with (b) case 1 and (c) case 2 transitions.  

Table 5.1 lists the ZPL energies, A®B and C®D transition energies, and the S and 

AS energies. We notice that these data for the NV center in diamond calculated using the 

SCAN functional is in excellent agreement with the results obtained from using the more 

time-consuming HSE06 functional [381] and also with the experimental data [387]. These 

promising results indicate that it is worthwhile using the SCAN functional to study other 

emerging candidates of point defects such as divacancy in 4H-SiC [388] for hosting spin 

qubits. Figure 5.6 and Table 5.1 reveal an attractive property of the NV center analog in 

C3BN. That is, the ZPL energies in the two cases are much smaller than that of the NV 

center in diamond. These lower excitation energies, corresponding to the significantly 
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longer photon wavelengths of 1123 and 824 nm, respectively, which are closer to the ideal 

telecommunication band between 1310 nm (the “O-band”) and 1550 nm (the “C-band”) 

[389]. We therefore expect the NV analog in C3BN to be advantageous over the NV center 

in experiencing less optical loss in optical fiber that connects qubits to form a quantum 

network.  

Table 5.1. Zero-phonon line (ZPL) energy, A®B and C®D transition energies, and the 
Stokes (S) and anti-Stokes-shift (AS) of diamond and C3BN computed with the SCAN 
functional. The notations are shown in Figure 5.6. Many data for the NV center in diamond 
are available. We show here two representative references for comparison: one from using 
the HSE06 hybrid density functional, the other from experimental data. 

 ZPL A®B S C®D AS 

Diamond1 1.988 2.199 0.211 1.804 0.184 

Diamond2 1.955 2.213 0.258 1.738 0.217 

Diamond3  1.945 2.180 0.235 1.760 0.185 

C3BN4 1.104 1.303 0.199 0.912 0.192 

C3BN5 1.504 1.693 0.189 1.320 0.184 

1This work using the SCAN functional 
2Ref. [381] using the HSE06 functional 
3Ref. [387]; experimental data 
4This work, case 1 transition, using the SCAN functional 
5This work, case 2 transition, using the SCAN functional 

 

Finally, we evaluate the hyperfine structure of the NV center and its analog. The 
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hyperfine interactions between the nuclear spin and the qubit spin are the main source that 

lead to the decoherence of spin qubits [390]. The sources of hyperfine interactions in 

diamond are isotopes 13C and 14N with nuclear spins of 1/2 and 1, respectively. An extra 

source in C3BN is isotope 11B with a nuclear spin of 3/2. Due to the high chance of presence 

of 13C in the NV center [391], the hyperfine interactions have recently been employed for 

quantum error correction [392] and entanglement distillation [393]. In this context, stronger 

hyperfine interactions become a preferable property. In experiment, two of the three C 

atoms are 13C and the third one is 12C with no nuclear spin [394,395]. The two nuclear 

qubits along with the one spin qubit form a three-qubit register. We here consider an 

extreme scenario, where all the three C atoms near the vacancy are isotope 13C. We 

calculate the hyperfine tensors that include the Fermi contact and dipole-dipole coupling 

terms [396]. The gyromagnetic ratios of these three isotopes (13C, 14N, and 11B) are 10.7084 

[397], 3.077 [397], and 13.7 [398], respectively, adopted as inputs for the calculations. 

Table 5.2 reports the computed hyperfine tensors of the nine atoms near the vacancy site 

in diamond and C3BN. We can see that the three 13C atoms exhibit the strongest hyperfine 

interactions in both systems whereas the 14N atoms shows negligible hyperfine interactions. 

The hyperfine tensors of the C atoms in C3BN are comparable and some of them are even 

higher than their counterparts in diamond, suggesting that a three-qubit register in C3BN 

can also be employed for quantum error correction and entanglement distillation. Table 5.2 

also shows that the hyperfine tensors for the other C atoms in diamond and the 
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corresponding B atoms in C3BN are smaller by an order of magnitude, as these atoms are 

relatively further apart from the spin densities. We note that the hyperfine interaction 

because of 11B cannot be removed via isotope engineering (unlike C in diamond which can 

be isotopically purified to have zero-spin 12C), so we should expect small effects of 11B 

atoms on the decoherence of the spin qubit in C3BN. 

Table 5.2. Principal values (in MHz) of the total hyperfine tensors of three C, one N, and 
five C/B atoms near the vacancy in diamond and C3BN. The notations for these nine atoms 
are shown in Figure 5.5. The total hyperfine tensors are calculated using the SCAN 
functional. 

 Diamond C3BN 

 Axx Ayy Azz Axx Ayy Azz 

C1 147.959 147.696 231.746 172.525 171.442 263.850 

C2 147.959 147.696 231.747 150.745 150.240 234.171 

C3 147.959 147.696 231.747 135.154 134.460 205.614 

N -2.445 -1.939 -2.445 -1.125 -0.475 -1.204 

C4/B1 4.041 

 

2.457 

 

4.128 

 

2.398 

 

1.258 

 

3.489 

 C5/B2 -1.846 

 

-1.003 

 

-1.869 

 

-0.888 

 

0.101 

 

-1.039 

 C6/B3 15.589 

 

15.447 

 

21.106 

 

9.016 

 

8.804 

 

13.564 

 C7/B4 17.003 

 

16.908 

 

22.918 

 

5.267 

 

4.997 

 

7.855 

 C8/B5 17.003 

 

16.908 22.918 

 

11.51 

 

11.203 

 

14.88 
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5.5 Summary 

To summarize, we have shown that a negative charged (q = -1) B vacancy defect in a 

diamond-like compound C3BN forms an NV center analog that shares a number of 

common properties to the NV center in diamond. Specifically, the band structure computed 

from the SCAN functional exhibits a wide band gap of 3.75 eV and negligible SOC. The 

charged defect state is energetically stable in a wide range of Fermi energies. The ground 

state of this charged vacancy state has a total spin of 1 that can be manipulated via optical 

approaches to form a two-level system. These properties make C3BN a promising 

semiconductor to host spin qubits made of the NV center analog for quantum information 

processing. We also showed that the experimental and HSE06 ZPL energies of the NV 

center in diamond are well reproduced using the SCAN functional. We therefore suggest 

this functional used for discovering other candidates of qubit host materials. Furthermore, 

we computed the ZPL energies of the NV center and its analog and found that the ZPL 

wavelengths of the NV center are longer and closer to the ideal telecommunication band 

wavelength, indicating less optical loss if the analog is used in a quantum network with 

multiple qubits. The computed hyperfine structures of the analog and the NV center are 

comparable and sufficiently strong to form a quantum register beneficial for quantum error 

correction. Exemplified by C3BN, many other A3XY compounds and their potential of 

hosting NV center analogs will be explored is our future work.  
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CHAPTER VII 

TOWARDS OBTAINING 2D AND 3D AND 1D PTPN WITH PENTAGONAL 

PATTERN 

6.1 Abstract 

We apply an alloying strategy to single-layer PtN2 and PtP2, aiming to obtain a single-

layer Pt-P-N alloy with a relatively low formation energy with reference to its bulk 

structure. We perform structure search based on a cluster-expansion method and predict 

single-layer and bulk PtPN consisting of pentagonal networks. The formation energy of 

single-layer PtPN is significantly lower in comparison with that of single-layer PtP2. The 

predicted bulk structure of PtPN adopts a structure that is similar to the pyrite structure. 

We also find that single-layer pentagonal PtPN, unlike PtN2 and PtP2, exhibits a sizable, 

direct PBE band gap of 0.84 eV. Furthermore, the band gap of single-layer pentagonal PtPN 

calculated with the hybrid density functional theory is 1.60 eV, which is within visible light 

spectrum and promising for optoelectronics applications. In addition to predicting PtPN in 

the 2D and 3D forms, we study the flexural rigidity and electronic structure of PtPN in the 

nanotube form. We find that single-layer PtPN has similar flexural rigidity to that of single-

layer carbon and boron nitride nanosheets and that the band gaps of PtPN nanotubes depend 

on their radii. Our work shed light on obtaining an isolated 2D planar, pentagonal PtPN 

nanosheet from its 3D counterpart and on obtaining 1D nanotubes with tunable bandgaps. 

6.2 Introduction 
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Two-dimensional (2D) materials such as single-layer graphene and boron nitride hold 

great promise for a wide range of applications such as electronic devices [399,400], 

optoelectronic systems [401-403], and energy-related applications [404-406]. Hexagons 

dominate the building blocks of many 2D materials, which have issues such as the absence 

of anisotropy, a desirable feature for certain applications like photodetectors [407]. To 

introduce anisotropy, one may resort to 2D materials that adopt other shapes—in particular, 

pentagons—as their building blocks.  

Because only 15 types of pentagons can tessellate an infinite plane and pentagons 

possess intrinsic anisotropy [408], 2D materials consisting of a pattern of pentagons 

represent an important addition to the large family of 2D materials whose structures are 

dominated by patterns of other shapes especially hexagons. As two most promising 

examples, single-layer PtN2 and PtP2 [409-412] have been predicted to exhibit a unique 

planar, pentagonal structure and attractive electronic structures such as direct band gaps 

calculated at the level of hybrid density functional theory—note that the band gaps at the 

level of Perdew-Burke-Ernzerhof (PBE) functional theory are negligibly small [410,413]. 

But the stability of the bulk counterparts of these two single-layer pentagonal materials and 

their formation energies are likely to prohibit successful synthesis or exfoliation. In 

particular, bulk PtN2 with the pyrite structure is stable only at high pressures [414]. As a 

result, the formation energy of single-layer PtN2 is unphysically negative (i.e., energy is 

gained from reducing bulk to single-layer PtN2) if using the pyrite structure as the reference. 
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On the other hand, although bulk PtP2 crystallizes as the pyrite structure at ambient 

conditions [415], the theoretical formation energy of single-layer PtP2 could be too high 

(positive) to exist as an isolated nanosheet.  

In this work, we apply density functional theory (DFT) calculations and a cluster 

expansion method to search for stable single-layer (2D) and bulk (3D) Pt-P-N alloys based 

on single-layer PtN2 and PtP2 by taking the advantage of the low formation energy of 

single-layer PtN2 and stable bulk counterpart of single-layer PtP2. In addition to designing 

2D and 3D Pt-P-N alloys, we also examine the feasibility of obtaining 1D Pt-P-N nanotubes 

from bending 2D Pt-P-N nanosheets, with the goal of achieving tunable electronic 

structures.  
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Figure 6.1. Energy difference ∆E as a function of the concentration of P xP in single-layer 
and bulk PtPN with chemical formulas Pt2N4(1-x)P4x and Pt4N8(1-x)P8x, respectively. 

6.3 Simulation Methods 

We perform the DFT calculations with the Vienna Ab-initio Simulation Package 

(VASP, version 5.4.4) [283,366]. We use the PBE functional for describing the exchange-

correlation interactions [79]. We also use the standard Pt, P, and N potential datasets based 

on the PBE functional along with the projector-augmented wave (PAW) method [80,81]. 

Among the potentials, the 5d9 and 6s electrons of Pt atoms, the 3s2 and 3p3 electrons of P 

atoms, and the 2s2 and 2p3 electrons of N atoms are treated as valence electrons. We adopt 

the plane waves with the cut-off kinetic energy of 550 eV to approximate the electron wave 
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functions. We use G-centered 12 ´ 12 ´ 12, 12 ´ 12 ´ 1, and 9 ´ 1´ 1 Monkhorst-Pack [82] 

k-point grids to sample the k points in the reciprocal space for 3D, 2D, and 1D PtPN, 

respectively. A vacuum spacing of 18.0 Å is applied to the surface slabs simulating isolated 

2D and 1D PtPN. For 3D, 2D, and 1D PtPN, we optimize the atomic positions completely. 

Furthermore, for 3D PtPN, we relax all the lattice parameters; for 2D PtPN, we optimize 

the in-plane lattice constants; for 1D PtPN, we optimize the cell length along the axial 

direction. The force criterion for all of the geometry-optimization calculations is set to 0.01 

eV/Å. 

6.4 Results and Discussion 

6.4.1 Structural and electronic properties of 2D single-layer PtPN 

We first use the Alloy Theoretic Automated Toolkit (ATAT) to generate inequivalent 

structures of single-layer Pt2N4(1-x)P4x with five different concentrations x of P (x = 0, 0.25, 

0.5, 0.75, and 1) and to automate the geometry optimizations and energy calculations [284]. 

The chemical formula written in this form is because each unit cell of single-layer PtN2 

and PtP2 consists of two Pt atoms and four N/Pt atoms (each Pt atom is four-fold 

coordinated by N/P atoms; each N/P atom is three-fold coordinated by the same atoms). 

When x = 0 and 1, the systems correspond to single-layer PtN2 and PtP2, respectively. For 

x = 0.25, one P atom can replace any of the four N atoms in a unit cell, but all of the four 

structures are equivalent due to the four-fold rotational symmetry in single-layer PtN2 and 

PtP2. Therefore, only one of these four structures are optimized, and its energy is calculated. 



 

 149 

For x = 0.5, there are two different structures with and without a center of inversion 

symmetry, respectively. Similarly, for x = 0.75, there is only one inequivalent structure. We 

compute the energy change DE of the following ‘reaction’: 

 (1 − 𝑥)PtKNg + 𝑥PtKPg 	→ PtKNg(*!G)PgG (6.1) 

By this definition DE = 0, when x = 0 or 1. Figure 6.1 shows the DE results for the six 

single-layer Pt2N4(1-x)P4x structures optimized from VASP calculations. We find that the 

structure with x = 0.5 is the most stable, corresponding to the chemical formula PtPN. The 

energy difference between single-layer PtPN and PtN2 and PtP2, i.e., DE = EPtPN-(EPtN2 + 

EPtP2)/2 is determined as DE = -82 meV/atom. Figure 6.2 shows the top and side views of 

a 3 ´ 3 ´ 1 supercell of this structure. Similar to single-layer PtN2 and PtP2, single-layer 

pentagonal PtPN exhibits a completely planar structure and the optimized in-plane lattice 

constants a and b are 5.30 and 5.29 Å, respectively. 

The optimized structure of single-layer PtPN exhibits no four-fold rotational 

symmetry, so the two in-plane lattice constants are not identical. As a result, instead of 

observing a pattern of same pentagons as in single-layer PtN2 and PtP2—these pentagons 

below to the same type and the tessellation pattern from this type of pentagons is called the 

Cairo tessellation, there are two different types of pentagons in single-layer PtPN. Table 

6.1 lists the side lengths (bond lengths) and angles (bond angles) forming the two distinct 

pentagons illustrated in Figure 6.2(a). Referring to the definitions for the 15 types of 

pentagons that can monohedrally tile a plane [416], neither of the two types of pentagons 
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in single-layer PtPN belongs to any of the 15 types. Therefore, the geometry of PtPN shows 

an example that a plane can still be tiled gaplessly by a combination of different types of 

pentagons from the 15 ones, retaining the anisotropy for a 2D material. 

We next examine the dynamical stability of the predicted structure of single-layer 

PtPN. Figure 6.3 shows the computed phonon spectrum of single-layer PtPN. The real 

phonon frequencies confirm the dynamical stability of the completely planar structure of 

single-layer PtPN. 

  

Figure 6.2. (a) Top and (b) side views of a 3 ´ 3 ´ 1 supercell of single-layer PtPN. Two 
distinct pentagons denoted as P1 and P2 are enclosed in the cyan and red shaded areas. 
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Figure 6.3. Predicted phonon spectrum of single-layer PtPN. 
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Figure 6.4. Band structures of single-layer PtPN calculated (a) with the PBE and HSE06 
functionals and (b) with the PBE functional considering spin-orbit coupling (SOC). 
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Table 6.1. Bond lengths (in Å) and angles (in degrees) of the two distinct pentagons P1 and 
P2 embedded in the atomic structure of single-layer pentagonal PtPN (see Figure 6.2(a)). 

Pentagon AB BL LI IJ JA 

P1 2.09 2.12 2.09 2.20 1.60 

 ED DM MG GF FE 

P2 2.12 2.22 2.20 2.22 1.60 

Pentagon      

P1 92.47 120.80 89.54 118.88 118.32 

      

P2 90.21 120.13 87.78 121.00 120.88 

 

Figure 6.4(a) shows the band structures of single-layer PtPN calculated with the PBE 

and Heyd-Scuderia-Ernzerhof (HSE06) [93] functionals. Unlike single-layer PtN2 and PtP2, 

where the PBE band gaps are nearly zero [409-412], the PBE band gap of single-layer PtPN 

has already shown a direct band gap of 0.84 eV. The conduction band minimum (CBM) 

and valence band maximum (VBM) both locate at a k point near the M point. Using the 

HSE06 hybrid density functional theory corrects the band gap to 1.60 eV, much larger than 

the HSE06 band gaps of single-layer pentagonal PtN2 (1.11 eV) [413] and PtP2 (0.52 eV) 

[410]. The HSE06 band gap indicates that single-layer PtPN is promising for 

optoelectronics applications that can utilize the direct band gap within visible light 

ABLÐ BLIÐ LIJÐ IJAÐ JABÐ

EDMÐ DMGÐ MGFÐ GFEÐ FEDÐ
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spectrum. Considering spin-orbit coupling (SOC) leads to the band structure shown in 

Figure 6.4(b). We observe that SOC splits the bands at some k points, but the bands near 

the CBM and VBM are almost unaffected. Comparing with single-layer PtN2 and PtP2, the 

enhanced band gaps in single-layer PtPN may be correlated with the bonding 

characteristics, which can be revealed from the electron localization function (ELF) shown 

in  Figure 6.5(a). For comparison, Figure 6.5 (b) shows the ELF for single-layer PtN2, 

which is consistent with the ELF in Ref. [412]. Different from single-layer PtN2 and PtP2 

showing both ionic and covalent bonding characteristics [409-412], the bonding type in 

single-layer PtPN is dominantly ionic. The existence of a covalent bond (e.g., the N-N bond 

with shared electrons) reduces the number of electrons that can be transferred between 

dissimilar atoms (e.g., Pt and N atoms in single-layer PtN2), leading to the weakened ionic 

Pt-N bond in PtN2 in comparison with the same bond in PtPN. Ionic bond (e.g., in BN) is 

often associated with large band gaps due to the large charge transfer between cations and 

anions. 
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Figure 6.5. Electron localization function of single-layer (a) PtPN and (b) PtN2. 

6.4.2 3D Bulk counterpart of PtPN 

Having predicted the stable structure of single-layer PtPN and its attractive direct band 

gap, we aim to predict the bulk counterpart from which single-layer PtPN could be 

exfoliated. The existence of a bulk counterpart appears to be a necessary condition for all 

the 2D materials that have been successfully synthesized or exfoliated. We apply ATAT 

again to enumerate all the possible bulk structures at different concentrations of P for bulk 

Pt4N8(1-x)P8x in a 12-atom unit cell. We compute the DE for the following ‘reaction’: 

 (1 − 𝑥)PtgNP + 𝑥PtgPP 	→ PtgNg(*!G)PgG (6.2) 

Figure 6.1 display all the DE results. Similar to the single-layer cases, the most stable 

bulk compound occurs at x = 0.5, and the structure is illustrated in Figure 6.6. This bulk 

structure is nearly a cubic structure with space group Pca21 and the lattice constants are 

5.301, 5.301, and 5.305 Å, respectively. Moreover, the bulk structure resembles the pyrite 
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structure adopted by bulk PtP2 [415]. Namely, viewing along the a/b/c axis, the bulk 

structure can be regarded stacked PtPN single layers with a buckled structure. In contrast 

to PtP2, the stable bulk structure of PtN2 remains unclear. If assuming bulk PtN2 also adopts 

the pyrite structure, we encounter an incorrect conclusion that single-layer PtN2 is more 

stable than bulk PtN2 with the pyrite structure [413]. We recently proposed a new structure 

of bulk PtN2 with layered structure. We recently proposed a new structure of bulk PtN2 

with layered structure. We also compute the energy of bulk PtPN with a similar layered 

structure, but it is higher than that of bulk PtPN with the pyrite-type structure by 180 

meV/atom, confirming that the latter structure is the most stable one. 

  

Figure 6.6. A 3 ´ 3 ´ 3 supercell of the predicted bulk structure of PtPN. 

With the predicted stable structure of bulk PtPN, we calculate the formation energy of 
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single-layer PtPN, namely the energy difference between single-layer PtPN and the stable 

bulk structure. We find that the formation energy is 174 meV/atom, which is much smaller 

than that (410 meV/atom calculated with the PBE functional) [410] of single-layer 

pentagonal PtP2. The formation energy of a 2D material at this scale often implies the 2D 

material could be exfoliated if the bulk counterpart exists or synthesized if there is no bulk 

counterpart [417]. The small theoretical formation energy of single-layer PtPN suggests a 

possible route to obtain this single-layer material, i.e., alloying the stable bulk PtP2 

compound by N atoms to obtain the bulk structure of PtPN and then applying the 

mechanical exfoliation method to the ternary bulk compound to acquire single-layer sheets 

of PtPN. Alternatively, it is also worth attempting the molecular beam epitaxy method [418] 

to obtain the single-layer sheets.    

Figure 6.7 shows the PBE band structure of bulk PtPN with the pyrite-type structure. 

As can be seen, it is semiconducting with an indirect band gap of 1.21 eV. Bulk PtN2 and 

PtP2 with the pyrite structure are also found to have indirect PBE band gaps of 1.35 [413] 

and 1.06 eV [410], respectively. It seems to be expected that the band gap of bulk PtPN 

lies between those of bulk PtN2 and PtP2. This trend also holds as the HSE06 band gaps of 

bulk PtN2, PtPN, and PtP2 are 2.22 [413], 1.76, and 1.59 eV [410], respectively. For the 

three materials, one common feature is the decrease in their band gaps due to the dimension 

reduction—the PBE band gaps of single-layer PtN2 and PtP2 are so small that they should 

probably be regarded as metallic [413]. The PBE functional therefore not only 
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underestimates the band gap of single-layer PtPN, but also performs poorly in determining 

the electronic structures (metallic or semiconducting) of single-layer PtN2 and PtP2 

possibly due to their four-fold rotational symmetry, leading to the degenerate energy levels 

at the M point and at the Fermi level. By contrast, all the single-layer forms of these three 

systems have direct band gaps at the HSE06 hybrid density functional level of theory and 

the HSE06 band gap of single-layer PtPN no longer lies between those of single-layer PtN2 

and PtP2. 

  

Figure 6.7. Band structure of bulk PtPN calculated with the PBE functional. The 
fractional coordinates of the high-symmetry k-points are Γ (0, 0, 0), Z (0, 0, 1/2), T (0, 

1/2, 1/2), Y (0, 1/2, 0), S (1/2, 1/2, 0), X (1/2, 0, 0), U (1/2, 0, 1/2), R (1/2, 1/2, 1/2). 
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Figure 6.8. (a) Side and (b) top views of a PtPN nanotube. (c) Energy difference of PtPN 
nanotubes with reference to single-layer PtPN as a function of N, which determines the 

number of unit cells of single-layer PtPN that form a nanotube. 

6.4.3 Tunable band gap in 1D PtPN nanotube 

If 3D and 2D PtPN can be obtained, one naturally continues to explore the structures 

and properties of 1D PtPN, i.e., PtPN nanotubes. We create the simulation models of PtPN 

nanotubes by bending a N × 1 × 1 (N ranges from 3 to 10) supercell of single-layer PtPN 
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about the b axis into a tube (see Figure 6.8(a) and (b)). The integer N therefore determines 

the radius R of a PtPN nanotube. Because the unit cell of single-layer PtPN is nearly in a 

square shape, bending about the a axis results in nearly the same PtPN nanotubes. We first 

assess the energy change dE from 2D to 1D PtPN as a function of N. dE stands for the 

average energy change between a flat atomic layer and a nanotube due to the change in 

curvature, which represents the energy required per atom to bend the flat PtPN nanosheet 

into the PtPN nanotubes of different radii [419]. Figure 6.8(c) shows that dE decreases as 

N increases and the decrease is more significant when the N values are small. As N is close 

to infinity, the nanotubes are similar to single-layer sheets and dE therefore approaches to 

zero. 

To quantify the feasibility of obtaining PtPN nanotubes from single-layer PtPN sheets, 

we convert N to R and adopt the following model describing the relationship between dE 

and R-2 [420,421]: 

 𝛿𝐸	 = 	h
K
𝑅!K (6.3) 

where D is called the flexural rigidity also known as the bending stiffness of nanotubes. D 

is a metric of the requirement of a force couple to bend the nanosheet per unit curvature 

[422]. The flexural rigidity of single-layer PtPN nanosheet arises from the combined effects 

of the resistance from both in-plane bond angle changes and out-of-plane electron clouds 

overlapping from Pt, P, and N atoms [423]. Figure 6.9 shows the variation of dE with R-2 

for PtPN nanotubes. In our recent work, we calculated dE for armchair and zigzag C and 
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BN nanotubes obtained from bending their nanosheets [413]. We therefore plot the same 

variations for C and BN nanotubes shown in Figure 6.9. By linear fitting the dE and R-2 

data to Eq.6.3, we compute and list D for the different systems in Table 6.2. The D results 

of both C and BN nanotubes are consistent with previous work [420]. We also observe that 

the D values for PtPN, C, BN nanotubes are comparable and the flexural rigidity of the 

PtPN nanotubes lies between those of C and BN nanotubes, which have both been available 

in experiment [424], indicating that it is also feasible to obtain PtPN nanotubes. 

  

Figure 6.9. Variation of energy difference dE of PtPN nanotubes with reference to their 
corresponding 2D sheets with 1/ R-2, where R denotes the radii of the nanotubes. A and Z 

in the brackets stand for armchair and zigzag, respectively. 
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Figure 6.10. PBE band structures for PtPN nanotubes formed from N × 1 × 1 supercells 
of single-layer PtPN. 
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Figure 6.11. Dependence of PBE band gaps of PtPN nanotubes on N, which determines 
the number of unit cells of single-layer PtPN that form a nanotube. 

 

Figure 6.12. A quarter of the first Brillouin zones (represented by the cyan shaded areas) 
of N × 1 × 1 (N = 1, 3, and 4) supercells of single-layer PtPN. The red dashed lines divide 
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the first Brillouin zone (enclosed by the solid blue lines) of a unit cell of single-layer 
PtPN into N equal portions. 

Table 6.2. Predicted flexural rigidity D (in eV·Å2/atom) of C, BN, and PtPN nanotubes. A 
and Z in the brackets represent armchair and zigzag, respectively. 

C (A) C (Z) BN (A) BN (Z) PtPN 

3.96 3.85 2.54 2.67 3.31 

 

Finally, we calculate the PBE band structures of the eight PtPN nanotubes shown in 

Figure 6.10, revealing that all of these nanotubes are direct-gap semiconductors. The 

variation of the band gaps of the PtPN nanotubes with N is shown in Figure 6.11. We 

observe that as N increases, the band gaps of PtPN nanotubes with odd and even N values 

decrease and increase, respectively, and appear to converge to a constant (~0.9 eV, close to 

the PBE band gap, 0.84 eV, of single-layer PtPN) if N is beyond 10. A similar dependence 

of band gaps on N is also found in NiP2 nanotubes [425]. Furthermore, the band gaps of 

the PtPN nanotubes with odd N are wider than the nanotubes with even N. The relationship 

between the band gaps and N shows that controlling the radii of PtPN nanotubes can tune 

their band gaps.  

To understand the larger band gaps of PtPN nanotubes when N is odd, Figure 6.12 

shows the high-symmetry k points G, XN, MN, and Y in the first Brillouin zones of single-

layer PtPN represented by N ´ 1 ´ 1 (N = 1, 3, and 4) supercells. For N = 1, the X1 and M1 
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points are the same as the X and M points, respectively, as denoted in Figure 6.4. The band 

gap at the M point is smaller than that at the X point calculated with either the PBE or 

HSE06 functional. When N is larger and odd, e.g., N = 3, the first Brillouin zone shrinks 

by three times, and the wave vectors and their corresponding energy levels along the X1-

M1 direction are zone-folded to the X3-M3 direction, different from the G-Y direction that 

is common for any N ´ 1 ´ 1 supercell. By contrast, if N is even, e.g., N = 4, the energy 

levels for the wave vectors along the X1-M1 direction will overlap with the energy levels 

of the wave vectors along the G-Y direction. As a result, we can observe the band gap 

(originally at the M point) along the G-Y direction. For PtPN nanotubes, only the wave 

vectors along the G-Y direction are allowed, so the even and odd N lead to the occurrence 

and absence of the overlap along the G-Y direction, respectively. The band gaps of PtPN 

nanotubes with odd N are therefore wider than those of PtPN nanotubes with even N. 

6.5 Summary 

In summary, we predict a single-layer alloy PtPN with DFT calculations. This novel 

single-layer material consists of a pentagonal pattern and is completely planar and 

dynamically stable. We also find that single-layer PtPN exhibits direct band gaps of 0.84 

and 1.60 eV calculated with the PBE and HSE06 functionals, respectively. Given the 

generally more accurate band gaps described by a hybrid density functional, the HSE06 

band gap ensures a variety of promising optoelectronics applications of single-layer PtPN. 

We suggest that single-layer PtPN can be obtained from exfoliating bulk PtPN with a 



 

 166 

relatively low energy and the bulk pyrite-type structure can be acquired from alloying bulk 

PtP2 with N atoms. We finally show that bending single-layer PtPN into the nanotube form 

result in nanotubes that exhibit tunable band gaps dependent on the radii of the nanotubes.  
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CHAPTER VIII 

DIMENSION ENGINEERING OF SINGLE-LAYER PTN2 WITH THE CAIRO 

TESSELLATION 

7.1 Abstract 

Single-layer PtN2 exhibits an intriguing structure consisting of a tessellation pattern 

called the Cairo tessellation of type 2 pentagons, which belong to one of the existing 15 

types of convex pentagons discovered so far that can monohedrally tile a plane. Single-

layer PtN2 has also been predicted to show semiconducting behavior with direct band gaps. 

Full exploration of the structure-property relationship awaits the successful exfoliation or 

synthesis of this novel single-layer material, which depends on the structure of its bulk 

counterpart with the same stoichiometry to some extent. Bulk PtN2 with the pyrite structure 

is commonly regarded as the most stable structure in the literature. But comparing the 

energies of single-layer PtN2 and bulk PtN2 leads to a dilemma that a single-layer material 

is more stable than its bulk counterpart. To solve this dilemma, we propose stacking single-

layer PtN2 sheets infinitely to form a new bulk structure of PtN2. The resulting tetrahedral 

layered structure is energetically more stable than the pyrite structure and single-layer PtN2. 

We also find that the predicted bulk structure is metallic, in contrast to the semiconducting 

pyrite structure. In addition to predicting the 3D structure, we explore the possibility of 

rolling single-layer PtN2 sheets into nanotubes. The required energies are comparable to 

those needed to form carbon or boron nitride nanotubes from their single-layer sheets, 
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implying the feasibility of obtaining PtN2 nanotubes. We finally study the electronic 

structures of PtN2 nanotubes and find that the band gaps of PtN2 nanotubes are tunable by 

changing the number of unit cells N of single-layer PtN2 used to construct the nanotubes. 

Our work shows that dimension engineering of PtN2 not only leads to a more stable 3D 

structure but also 1D materials with novel properties. 

7.2 Introduction 

A number of two-dimensional (2D) materials have been predicted and recorded in 

various databases such as the computational 2D materials database [317] and Materialsweb 

[426]. But many of these materials, in spite of their exotic properties, exhibit no known 

bulk counterparts especially those with the same stoichiometry, making it challenging to 

obtain these 2D materials. Being such an example, single-layer platinum nitride PtN2 has 

recently been predicted in several theoretical studies [409,411,412]. The reason for the 

uniqueness of this single-layer material is twofold: First, the structure as illustrated in 

Figure 7.1(a) is completely planar with a tessellation of type 2 pentagons that are able to 

tessellate a plane; This tessellation is called the Cairo tessellation, as it appears in the streets 

of Cairo [427]. Second, it is a semiconductor with predicted high carrier mobility and 

Young's modulus [409]. The peculiar structure and properties of single-layer PtN2 call for 

its synthesis, which largely rely on the existence of stable structure of bulk PtN2. 

Even without in the above context of single-layer PtN2, bulk PtN2 on its own has 

attracted considerable attention as an example in the family of transition-metal nitrides, 
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which generally possess notable electrical, mechanical, and thermal properties [428-430].  

The pyrite structure of bulk PtN2 is commonly regarded as the most stable 

[414,429,431,432]. Figure 7.1(b) illustrates the pyrite structure, consisting of Pt atoms 

occupying the lattice sites of a face-centered cubic (FCC) lattice and each Pt atom is six-

fold coordinated with N atoms to form corner-sharing Pt-N octahedra. Two other possible 

structures including the fluorite (as shown in Figure 7.1(c)) and marcasite (as shown in 

Figure 7.1(d)) structures have also been studied [431,433,434]. In the fluorite structure, Pt 

atoms are also located at the FCC lattice sites, but each Pt atom has eight nearest 

neighboring N atoms. In the marcasite structure, the Pt and N atoms also form corner-

sharing Pt-N octahedra, but the Pt atoms occupy the sites of a body-centered tetragonal 

lattice. 

In addition to 2D materials, 1D nanotubes have sparked wide interest since the 

discovery of carbon nanotubes (CNTs) [435,436]. Their mechanical, electrical, and optical 

properties can be tuned by modifying the diameters and chirality [437], making CNTs 

promising for a wealth of applications [438], such as field emission electron source [436] 

and light-emitting diodes [439]. Successful fabrication of CNTs indicates the feasibility of 

obtaining non-carbon nanotubes based on other single-layer materials. Indeed, extensive 

experimental and theoretical research has been extended to study boron nitride BN, 

carbonitrides BxCyNz, and transition-metal dichalcogenides MX2 (M and X represent 

transition-metal and chalcogen elements, respectively) nanotubes [440-442].  
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Although many 2D materials and their structures have been predicted based on the 

bulk counterparts of these 2D materials with the same stoichiometry, we revert this process 

in this work by first showing a counter-intuitive result that single-layer PtN2 is more 

energetically stable than bulk PtN2 with the pyrite structure. We then study the interactions 

between two layers of PtN2 and suggest a layered structure with on-top stacking of single-

layer PtN2 sheets as the more stable bulk structure. Furthermore, due to the above-

mentioned excellent properties of nanotubes, we explore the structure-property 

relationships of PtN2 nanotubes. 

7.3 Simulation Methods 

All the DFT calculations are performed using the Vienna Ab initio Simulation Package 

(VASP, version 5.4.4) [283,366]. We apply the Perdew-Burke-Ernzerhof (PBE) functional 

to approximate the exchange-correlation interactions [79]. We use Grimme's DFT-D3 

method to describe the van der Waals (vdW) interactions in bilayer PtN2 and our proposed 

layered structure of bulk PtN2 [443]. We also use the optB88-vdW functional to compare 

against the accuracy of some of the DFT-D3 results [444-446]. We use the standard 

potential datasets created with the PBE functional for Pt and N generated according to the 

projector augmented wave method [80,81]. These datasets treat the 5d9 and 6s electrons of 

Pt atoms and the 2s2 and 2p3 electrons of N atoms as valence electrons. Plane waves with 

their cut-off kinetic energies below 550 eV are used to approximate the electron wave 

functions. We use a Γ-centered 12 × 12 × 1 Monkhorst-Pack [82] k-point grid for single-
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layer and bilayer PtN2, and a 12 × 12 × 12 grid for bulk PtN2 with the pyrite, fluorite, 

marcasite, and AB-stacked structures, and a 12 × 12 × 15 grid for bulk PtN2 with the 

tetragonal AA-stacked layered structure, and a 9 × 1 × 1 grid for PtN2, carbon, and boron 

nitride nanotubes, to sample the k points in the reciprocal space. A sufficiently large 

vacuum spacing (>18.0 Å) is applied to the slabs of single-layer and bilayer PtN2 and 

nanotubes to avoid the image interactions due to the periodic boundary conditions. The 

lattice constants and atomic coordinates of bulk PtN2 with different structures are 

completely optimized. For single-layer and bilayer PtN2, we optimize the in-plane lattice 

constant and the atomic positions. For the PtN2 nanotubes, we relax only the lattice constant 

along the tube direction and the atomic positions. The force threshold value for all of these 

geometry optimizations is the same, i.e., 0.01 eV/ Å. 

7.4 Results and Discussion 

7.4.1 Structural and electronic properties of 2D single-layer PtN2 

We first benchmark our calculations on single-layer PtN2 with previous theoretical 

studies. Our calculated in-plane lattice constant (4.81 Å) is consistent with the reported 

results (4.80 [409], 4.81 [411], and 4.83 [412] Å). For the electronic structure, Figure 7.2(a) 

shows the density of states (DOS) of single-layer PtN2 calculated with the PBE and HSE06 

functionals. The PBE functional seriously underestimates the band gap of single-layer PtN2. 

The PBE DOS curve shows that this functional actually leads to a conclusion that single-

layer PtN2 is metallic, agreeing with the rather small bandgaps (0.075 and 0.07 eV) reported 
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in Refs. [412] and [411], respectively. Our HSE06 DOS shows a corrected band gap of 

single-layer PtN2 as 1.11 eV, which is the same as the band gaps reported in Refs. [409] 

and [411]. Note that the work of Yang et al also considers spin-orbit coupling (SOC) and 

the PBE+SOC and HSE06+SOC band gaps (0.33 and 1.17 eV) are slightly larger than the 

PBE and HSE06 band gaps [409].  

 

Figure 7.1. Top and side views of the unit cells of (a) single-layer PtN2 and bulk PtN2 
with the (b) pyrite, (c) fluorite, and (d) marcasite structures, and of (e) AB-stacked and (f) 

AA-stacked bilayer PtN2, and of bulk PtN2 with (g) AA-stacked and (h) AB-stacked 
tetragonal layered structures. A type 2 pentagon is enclosed by the cyan shaded area 

sketched in (a). 
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Figure 7.2. Density of states of (a) single-layer PtN2, (b) bulk PtN2 with the pyrite 
structure, and (c) bulk PtN2 with the tetragonal layered structure calculated with the PBE 

and HSE06 functionals. 

We next calculate the energy difference between single-layer PtN2 and bulk PtN2 with 

the pyrite, fluorite, and marcasite structures. This energy difference (i.e., E2D-E3D, the 

formation energy of 2D materials) is a metric of the energy cost to exfoliate a single-layer 

nanosheet from its 3D counterpart and also an indicator of the feasibility of chemical 
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synthesis [417]. We find the formation energies with reference to the three bulk structures 

are all negative: -168, -1076, and -207 meV/atom. The more negative formation energy 

implies the less stable of the bulk structure used for comparison. These energy differences 

therefore show that the pyrite structure is the most stable in comparison with the fluoride 

and marcasite structures, consistent with previous theoretical studies [414,431,447]. We 

conclude that single-layer PtN2 is more stable than the pyrite structure. More important, 

the negative formation energies show that all the three bulk structures used for references 

are not the ground state of bulk PtN2. In parallel with this observation, we also perform the 

same calculations on single-layer graphene and compare its energy to the face-centered-

cubic diamond structure. We obtain a negative formation energy of -128 meV/atom using 

the PBE functional, which is expected as the bulk ground state is graphite. 

Table 7.1. Relative energy (in meV/atom) of single-layer (SL) PtN2, bulk PtN2 with the 
pyrite (B-p), fluorite (B-f), and marcasite (B-m) structures, AB and AA-stacked bilayer 
(AB-bl, and AA-bl) PtN2, and AB-stacked bulk PtN2 (b-PtN2). The energy of the tetragonal 
AA-stacked layered structure is set to zero. All the relative energies are calculated using 
both the PBE and DFT-D3 methods. 

Method SL B-p B-f B-m AB-bl AA-bl b-PtN2 

PBE 34 202 1110 241 33 25 97 

DFT-D3 199 139 1067 184 156 130 156 

 

7.4.2 3D Bulk counterpart of PtN2 
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To search for the more stable bulk structure, we begin with studying the energy change 

by stacking two sheets of single-layer PtN2 to form bilayer PtN2. We account for two types 

of stacking for bilayer PtN2. One is called the AB stacking (see Figure 7.1(e)), where the 

Pt atoms in one layer of bilayer PtN2 are located above/below the center of a pair of N 

atoms in another layer. The other one is the AA stacking (see Figure 7.1(f)), where the 

second layer is located on top of the first layer. We find that AB-stacked bilayer PtN2 is 

energetically less stable than the AA-stacked structure by 8 meV/atom, so we focus on the 

AA-stacked bilayer PtN2 and compute the binding energy Eb between the two layers 

defined as Eb = Ebilayer - 2Esingle-layer. Figure 7.3 displays the Eb of AA-stacked bilayer PtN2 

as a function of the interlayer distance. As can be seen, without using the DFT-D3 method 

to describe the vdW interactions, the Eb values resulting from the interactions between the 

two PtN2 layers are negligibly small with the maximum binding energy of -9 meV/atom. 

Taking into account the vdW interactions, the binding energy is corrected to -69 meV/atom 

(we obtain the same binding energy using the optB88-vdW functional), which is similar to 

the binding energy (-31.1 meV/atom) of AA-stacked bilayer graphene calculated using the 

DFT-D method [448], showing the weak interactions between single-layer PtN2 sheets.  
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Figure 7.3. Binding energy of AA-stacked bilayer PtN2 as a function of the interlayer 
distance computed using the PBE and DFT-D3 methods. The inset is an enlarged view of 

the two binding energy curves where interlayer distance ranges from 3 to 4 Å 

Because bilayer AA-stacked PtN2 is more stable than single-layer PtN2, we expect to 

stack an infinite number of single-layer PtN2 sheets in the AA-stacking manner to result in 

a more stable structure of bulk PtN2 as illustrated in Figure 7.1(g). A symmetry analysis of 

this infinitely AA-stacked layered structure shows that the bulk structure is tetragonal with 

the space group P4/mbm (No.127). We henceforth refer to this new bulk structure as the 

tetragonal layered (TL) structure. For the completeness of comparison, we also compute 

the energy of the bulk structure with AB-stacked layers (see Figure 7.1(h)). We find that 
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the TL structure is the most stable among the eight structures displayed in Figure 7.1. Table 

7.1 lists all the relative energies of the eight structures using the energy of the TL structure 

as the reference. The lattice constants of these two bulk structures are reported in Table 7.2. 

With the new bulk structure, the formation energies of single-layer PtN2 become physically 

positive, which are 34 and 199 meV/atom calculated with the PBE and DFT-D3 methods, 

respectively. These small formation energies manifest the weak interactions between layers 

and also indicate a feasible approach to obtain single-layer may be the mechanical 

exfoliation method as used to obtain single-layer graphene [335]. 

Since we have identified the more energetically stable structure of bulk PtN2, we now 

examine the mechanical stability of bulk PtN2 with the TL structure. We also calculate the 

same properties of bulk PtN2 with the pyrite structure for comparison, as the pyrite structure 

is the most stable among the previously reported bulk structures. Table 7.2 summarizes the 

predicted independent elastic stiffness constants for cubic and tetragonal PtN2 using a 

symmetry-general approach [449]. According to Born's criteria of mechanical stability, the 

following conditions [450]: 

 𝐶** − 𝐶*K > 0, 𝐶** + 2𝐶*K > 0, 𝐶gg > 0, (7.1) 

and 

 𝐶** > |𝐶*K|, 2𝐶*\K < 𝐶**(𝐶** + 𝐶**), 𝐶gg > 0, 𝐶aa > 0 (7.2) 

need to be satisfied for cubic and tetragonal PtN2, respectively. The computed elastic 

constants show that both the pyrite and TL structures of bulk PtN2 are mechanically stable. 
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Table 7.2. Lattice constants (in Å) and elastic stiffness constants and hardness (in GPa) of 
bulk PtN2 with the pyrite and tetragonal layered (TL) structures. Theoretical results using 
different methods are cited for comparison. For the pyrite structure, C13 = C12, C33 = C11, 
and C66 = C44 due to the cubic symmetry. 

 Method a b c BVRH GVRH H 

Pyrite 

PBE 4.85 4.85 4.85 290 187 22.5 

DFT-D3 4.82 4.82 4.82 311 195 22.3 

LDAa 4.81 4.81 4.81 351 218 23.7 

PW91b 4.88 4.88 4.88 267 181 23.7 

LAPWc 4.77 4.77 4.77 353 215 22.9 

LAPWd 4.86 4.86 4.86 275 184 23.5 

SL 
PBE 4.83 4.83 3.07 125 74 10.5 

DFT-D3 4.81 4.81 2.90 159 87 10.4 

 Method C11 C22 C13 C33 C44 C66 

Pyrite 

PBE 695 87 - - 133 - 

DFT-D3 746 93 - - 136 - 

LDAa 828 113 - - 155  

PW91b 662 69 - - 129 - 

LAPWc 824 117 - - 152 - 

LAPWd 668 78 - - 133 - 
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SL 
PBE 709 120 18 55 14 135 

DFT-D3 782 134 17 110 18 143 

aRef. [451]; NC: norm-conserving pseudopotentials 
bRef. [452]; 
cRef. [431]; PBE-LAPW: linearized augmented plane waves 
dRef. [431]; LDA-LAPW: linearized augmented plane waves 

 

Hardness is an important property of platinum nitrides for their engineering 

applications [453]. We therefore calculate the Vicker hardness HV of bulk PtN2 with the 

pyrite and TL structures using the following empirical equation [454]: 

 𝐻C = 2(𝐺Cij\ /𝐵Cij\ )E.lPl − 3 (7.3) 

where the bulk and shear moduli (𝐵Cij 	and 𝐺Cij) are calculated using the Voigt-Reuss-

Hill (VRH) approximation [455,456]:  

 𝐵Cij =
d3md3

K
 (7.4) 

and 

 𝐺Cij =
n3mn3

K
 (7.5) 

𝐵C and 𝐺C are the upper bounds of bulk and shear moduli written as, 

 𝐵C =
Kf11mKf1"mf44mgf14

o
 (7.6) 

and 

 𝐺C =
Kf11!f1"mf44!Kf14maf--m\f55

*l
 (7.7) 

respectively. 𝐵i and 𝐺i are the lower bounds of bulk and shear moduli, i.e.,  
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 𝐵i =
*

K311mK31"m344mg314
 (7.8) 

and 

 𝐺i =
*

P311!Kgmg344!P314ma3--m\355
 (7.9) 

where 𝑆'+ (i, j = 1-6) are the elastic compliant constants and matrix S is equal to the 

inverse of matrix C. Table 8.2 lists the predicted 𝐵Cij 	and 𝐺Cij, and 𝐻C obtained from 

using the PBE and DFE-D3 methods. Our calculated elastic constants agree well with those 

reported Refs. [409] and [431] computed using the PW91 and PBE functionals with the 

general gradient approximation [79]. The local-density approximations (LDA) [76,457] are 

also used in Refs. [451] and [431], but this method seems to lead to larger elastic constants. 

However, the resulting hardness (22.5 GPa) in this work is similar to those in all the 

references, in spite of the methods used. Although several elastic stiffness constants of the 

TL structure (e.g., C33 are significantly affected by the consideration of the vdW 

interactions, Table 7.2 also shows that our hardness values from the PBE and DFT-D3 

methods are similar. The much smaller Vicker hardness of the TL structure suggests that it 

is much softer than the pyrite structure. This softness appears to be a common feature for 

layered materials such as graphite in contrast to superhard diamond [458]. 
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Figure 7.4. Charge density difference between AA-stacked bilayer PtN2 and two isolated 
sheets of single-layer PtN2. Green and red isosurfaces represent charge accumulation and 

depletion, respectively. The isosurface value is 2 × 10-4 e/a03 (a0: Bohr radius). 

We now compare the electronic structures of bulk PtN2 with the pyrite and TL 

structures. Figure 7.2(b) shows the density of states of bulk PtN2 with the pyrite and TL 

structures calculated with the PBE and HSE06 functionals. For the former structure, both 

the PBE and HSE06 functionals predict that it is semiconducting, and the band gaps are 

1.35 and 2.22 eV, respectively. Our calculated PBE band gap is consistent with the 

previously reported band gap of 1.30 eV [429]. For the TL structure, the PBE and HSE06 

functionals consistently show that the structure is metallic. To gain a qualitative 

understanding of the semiconductor-to-metal transition as the number of single-layer 

sheets increases, we calculate the charge density difference between AA-stacked bilayer 

PtN2 and two isolated single-layer PtN2 sheets. Figure 7.4 shows that the electrons of Pt 
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atoms in both layers are transferred to the region between two Pt atoms, when the two 

layers interact to form bilayer PtN2. These electrons between the layers form Pt-Pt metallic 

bonds, leading to the metallic behavior of bilayer as well as bulk PtN2. In other words, the 

interlayer interactions in bilayer PtN2 or bulk PtN2 with the TL structure consist of mixed 

vdW and metallic bonding types. Note that the bond strength of these metallic bonds is 

small as reflected by the small isosurface value. We also expect the metallic bonding is 

significantly smaller than the vdW interactions, as including the vdW interactions 

drastically changes the energy difference between single-layer and bilayer PtN2 (see Table 

8.1). Extracting a sheet of single-layer PtN2 from bilayer and bulk PtN2 prohibits the 

delocalization of the electrons. As a result, the electrons are localized around Pt atoms in 

the region enclosed by the red isosurface as shown in Figure 7.4 causing single-layer PtN2 

to be semiconducting. 
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Figure 7.5. Pressure-dependent energy difference ∆E (∆E = E pyrite-ETL) between bulk 
PtN2 with the pyrite and tetragonal layered (TL) structures.  

Experiments on bulk PtN2 with the pyrite structure indicate the importance of 

stabilizing this bulk phase by external pressure[459,460]. We therefore compare the 

stability of bulk PtN2 with the pyrite and TL structures at different pressures by computing 

their energy difference ∆E (∆E = Epyrite - EvdW). Figure 7.5 shows ∆E as a function of 

pressure calculated with the PBE and DFT-D3 methods. The two curves reveal the same 

trend: ∆E changes almost linearly from positive to negative as pressure increases, showing 

that the TL structure is more stable below a critical pressure, above which the pyrite 

structure is more stable. This trend may be caused by the exponentially increased energy 
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as the interlayer distance in the TL structure decreases due to the pressure (see Figure 7.3). 

We also find that the critical pressures resulted from the PBE and DFT-D3 methods are 

similar. For the PBE method, the transition pressure is around 20 GPa; For the latter method, 

the pressure is about 15 GPa.  

7.4.3 Tunable band gap in 1D PtN2 nanotube 

Having studied the case of increasing the dimension of PtN2 from 2D to 3D, we set to 

reduce the dimension to 1D to obtain PtN2 nanotubes. Many 2D materials such as single-

layer graphene and boron nitride have their corresponding forms of nanotubes and exhibit 

novel properties [461,462]. We create simulation models of PtN2 nanotubes by wrapping 

N × 1 × 1 (3 ≤ N ≤ 10) supercells of single-layer PtN2 about the a axis as shown in Figure 

7.1(a). Due to the square symmetry of single-layer PtN2, wrapping the supercells about the 

b axis leads to the same nanotubes. The integer N therefore controls the diameters of the 

nanotubes. Figure 7.6(a) and (b) illustrates the side and top views of a model of PtN2 

nanotube. Notice that the side view actually demonstrates a curved Cairo tessellation 

pattern of type 2 pentagons.  
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Figure 7.6. (a) Side and (b) top views of a PtN2 nanotube model formed by wrapping a 5 
× 3 × 1 supercell of single-layer PtN2 about the a/b axis denoted in Figure 7.1(c) N-

dependent energy difference between PtN2 nanotubes (NTs) and single- layer PtN2. The 
energy differences for zigzag and armchair carbon nanotubes (CNTs) and boron nitride 

nanotubes (BNNTs) are also shown for comparison. 

We compute the energy cost to obtain these nanotubes using the energy of single-layer 

PtN2 as a reference. We additionally calculate the energy costs of wrapping single-layer 
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graphene and boron nitride into zigzag (N, 0) and armchair (N, N) nanotubes for 

comparison. As can be seen from Figure 7.6(c), the energy costs of all the nanotubes 

decrease with the increasing sizes of the nanotubes. This trend is expected as N increases 

towards infinity, the diameters increase along with the decreasing curvatures of the 

nanotubes until they are close to zero, corresponding to the curvature of single-layer planar 

PtN2. We observe that the energy costs of PtN2 nanotubes are much smaller than those of 

zigzag carbon and BN nanotubes with the same N values. The energy costs of CNTs and 

BNNTs are significantly dependent on the chirality, i.e., the energy costs of armchair CNTs 

and BNNTs are drastically smaller and comparable to those of armchair nanotubes. Zigzag 

and armchair CNTs and BNNTs have been successfully synthesized [424], indicating that 

it is also possible to synthesize PtN2 nanotubes. From the geometry perspective, if 

successfully synthesized, PtN2 nanotubes will be the first nanotubes with a curved Cairo 

tessellation of type 2 pentagons. 
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Figure 7.7. Band structures of PtN2 nanotubes with N ranging from 3 to 10 calculated at 
the DFT-PBE level of theory. 

Finally, we calculate the electronic structures of PtN2 nanotubes. Figure 7.7 shows the 

PBE band structures of PtN2 nanotubes with the eight N values. We notice that these band 
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structures strongly depend on the N values, similar to the dependence of the electronic 

structures of CNTs on their chiral indices [463]. The PtN2 nanotubes with odd N values are 

semiconducting with indirect PBE bandgaps of are 1.24, 0.87, 0.54, and 0.40 eV, for N = 

3, 5, 7, and 9, respectively. By contrast, the PtN2 nanotubes with even N (4, 6, 8, and 10) 

are quasi-metallic with nearly the same tiny PBE direct band gaps of 0.07, 0.06, 0.08, and 

0.08 eV, respectively. These different electronic structures of the PtN2 nanotubes with N 

being odd and even may be because of their different symmetries. Due to the intense 

computational cost, we are able to calculate the HSE06 electronic structures for only two 

PtN2 nanotubes (N = 3 and 4). We find that the HSE06 bandgaps of the PtN2 with N = 3 

and 4 are 1.96 and 0.77 eV, respectively. Note that the PBE functional once again is 

inaccurate to describe the bandgaps of PtN2 nanotubes. This deficiency is worse for the 

nanotubes with even N values. Assuming the trend of the PBE band gaps of PtN2 nanotubes 

holds for the HSE06 bandgaps, namely, the bandgaps of PtN2 nanotubes will decrease with 

increasing (odd) N values and the range of tunable bandgaps is between 1.11 eV for single-

layer PtN2 and 1.96 eV for the (N = 3) PtN2 nanotube. In contrast to narrow-gap CNTs and 

large-gap BNNTs [464,465], the wide range of tunable bandgaps are within the visible light 

spectrum, making PtN2nanotubes promising 1D materials for optoelectronics applications.  

7.5 Summary 

In summary, by increasing the dimension of single-layer PtN2, we have predicted a 

more stable structure of bulk PtN2 with tetragonal AA-stacked layered structure using DFT 
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calculations. This structure is energetically more favorable than the pyrite structure or 

single-layer PtN2, therefore resulting in a physically negative formation energy of the 

single-layer PtN2, which is otherwise positive if using the energy of the pyrite structure as 

the reference. Owing to the layered structure, our predicted bulk structure provides a 

promising source for mechanically exfoliate single-layer semiconducting PtN2, consisting 

of a pattern of type 2 pentagons. We also find that applying external pressure can lead to 

the phase transition between the pyrite and tetragonal layered structures of PtN2 and the 

transition pressures are about 20 and 15 GPa determined by the PBE and DFT-D3 methods, 

respectively. On the other hand, by reducing the dimension, we have predicted PtN2 

nanotubes with tunable band gaps (by varying their sizes) within the visible light spectrum. 

Furthermore, wrapping single-layer PtN2 into nanotubes costs a comparable or smaller 

amount of energy in comparison to wrapping single-layer graphene and boron nitride into 

CNTs and BNNTs, respectively. The predicted PtN2 nanotubes may find applications in 

optoelectronics devices.  
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CHAPTER IX 

OUTLOOK 

We have discussed the endeavors in the design and discovery of compositionally 

complex semiconductors. The works in this thesis enable the efficient searching for 

compositionally complex semiconductors with potential applications from electronic 

devices to quantum bits. Besides, taking the advantage multiscale simulation techniques 

such as density functional theory (DFT) and classic molecular dynamics (MD), research 

on understanding the properties of these semiconductors can reach a more comprehensive 

level. We note that there are still more challenges and opportunities that described below. 

For example, in Chapter 3, we used the classical Stillinger–Weber potential in MD 

simulation to predict the thermal conductivity. However, these work is limited by the 

accuracy of the potential utilized in the MD calculations. To achieve higher accuracy, state-

of-the-art machine learning algorithms such as spectral neighbor analysis approach can be 

employed to parameterize the interaction potentials. 

In Chapter 3 and 4, we showed that various structural and electronic properties such 

as lattice parameter, band gap, band alignment, and effective carrier mass are strongly 

dependent on the relative content of each component. However, by utilizing the VCA 

models, special quasi-random models, or the random alloy models, these properties are 

limited in the multinary systems yet cannot be extended into other systems of more major 

components. Various approaches based on machine learning models such as random forest, 
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kernel rigid regressions, and artificial neural network are proposed to utilize the results 

from ternary, quaternary systems to predict the properties of alloys with more major 

constituent. 

The tunable properties of compositionally complex semiconductors exhibit versatility 

in various applications, drawing attention from both computational design and 

experimental synthesis. The improvement of computational simulation in compositionally 

complex semiconductors for high efficiency and high accuracy is always in need for not 

only contributing to the theoretically understanding of materials properties, but also 

providing guidance for experimental studies. 
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Figure A1. Band structures of SiyGeySnx MEAs with x = 0, x = 1/108, x = 1/54,  x = 
1/36, x = 1/27, x = 1/18, x = 1/12, x = 1/9, x = 1/6, x = 1/4, and x = 1/3. The band 

structures are obtained from the modified Becke-Johnson exchange potential using the 
optimized structures from DFT calculations with the PBE functional. Spin-orbit coupling 
is taken into account and the valence band maxima are set to zero. The coordinates of X, 
Y, S, Z, U, T, and R are (1/2,0,0), (0,1/2,0), (1/2,1/2,0), (0,0,1/2), (1/2,0,1/2), (1/2,1/2,0), 

and (1/2,1/2,1/2) respectively. 
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Figure A2. Charge density of the valence (top) and conduction (bottom) bands of 



 

 235 

SiyGeySnx MEAs with (a) x = 0, (b) x = 1/108, (c) x = 1/54, (d) x = 1/36, (e) x = 1/27, (f) x 
= 1/18, (g) x = 1/12, (h) x = 1/9, (i) x = 1/6, (j) x = 1/4, and (k) x = 1/3. The isosurface 

value of SiyGeySnx MEAs is 1.0 ´ 10-4 e/Bohr3. 

 

 

Figure A3. Phonon density of states (PDOS) and partition ratio (PR) of SiyGeySnx MEAs 
with (a) x = 0, (b) x = 1/108, (c) x = 1/54, (d) x = 1/36, (e) x = 1/27, (f) x = 1/18, (g) x = 

1/12, (h) x = 1/9, (i) x = 1/6, (j) x = 1/4, and (k) x = 1/3. 
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Figure A4. Phonon eigenvectors that correspond to the same low partition ratio, 0.022, of 
SiyGeySnx MEAs with (a) x = 0, (b) x = 1/108, (c) x = 1/54, (d) x = 1/36, (e) x = 1/27, (f) x 

= 1/18, (g) x = 1/12, (h) x = 1/9, (i) x = 1/6, (j) x = 1/4, and (k) x = 1/3. To aid the 
visualization of the normal modes, we scale the computed eigenvectors by a factor of 20. 


