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ABSTRACT 

An orthotropic elasto-plastic damage material model (OEPDMM) suitable for impact 

analysis of composite materials has been developed through a joint research project 

funded by the Federal Aviation Administration (FAA) and the National Aeronautics and 

Space Administration (NASA). The developed material model has been implemented 

into LS-DYNA®, a commercial finite element program. The material model is modular 

comprising of deformation, damage and failure sub-models. The deformation sub-model 

captures the rate and/or temperature dependent elastic and inelastic behavior via a visco-

elastic-plastic formulation. The damage sub-model predicts the reduction in the elastic 

stiffness of the material. The failure sub-model predicts when there is no more load 

carrying capacity in the finite element and erosion of the element from the finite element 

model. Most of the input parameters required to drive OEPDMM are in the form of 

tabulated data. The deformation sub-model is driven by a set of tabulated stress-strain 

data for a given strain-rate and temperature combination. The damage sub-model is 

driven by tabulated damage parameter-strain data. Two failure sub-models have been 

implemented – Puck Failure Model and Generalized Tabulated Failure Model. Puck 

Failure Model requires scalar parameters as input whereas, the Generalized Tabulated 

Failure Model is driven by a set of equivalent failure strain tabulated data. The work 

presented here focuses on the enhancements made to OEPDMM with emphasis on the 

background, development, and implementation of the failure sub-models. OEPDMM is 

verified and validated using a carbon/epoxy fiber reinforced composite. Two validation 

tests are used to evaluate the failure sub-model implementation - a stacked-ply test 

carried out at room temperature under quasi-static tensile and compressive loadings, and 
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several high-speed impact tests where there is significant damage and material failure of 

the impacted panel. Results indicate that developed procedures provide the analyst with a 

reasonable and systematic approach to building predictive impact simulation models. 
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1 INTRODUCTION 

 

Over the last few decades, composites have gained wide popularity especially in the 

automotive and the aerospace industries due to their high strength to weight ratio.  In an 

aircraft, composites are used in tail structures or fuselages to reduce the weight leading to 

fuel savings. In the case of automobiles, fiber reinforced composites are increasingly 

being used since they provide multiple advantages over conventional materials – lighter 

energy absorbing components leading to better fuel efficiency and lower exhaust 

emissions. In military applications and law enforcements, woven composite fabrics are 

used in bullet “resistant” vests. In medical applications, thermoplastic and thermoset 

composites are used as components in MRI scanner, wheelchairs, surgical target tools, 

orthotic foot inset, and many other devices and products (AZO Materials, 2015). 

Composites offer several advantages such as design flexibility, resistance to corrosion, 

and lower maintenance cost. Despite these attractive features, the use of composites has 

been limited. There are several reasons – structural composites used in high-performance 

products have a short history, the behavior is complex and the tools available to 

characterize the behavior either experimentally or numerically are not as mature as those 

available for competing materials such as metals, and there exists an education gap since 

most engineers are perhaps not familiar with the knowledge to investigate and use 

structural composites. One of the primary needs of a design engineer working with 

composite materials, especially in the aerospace or automotive industry,  is the ability to 

create and execute large finite element models that yield acceptable results in a 

reasonable amount of time (Shyamsunder et al., 2020a). A designer wishes to have a 



2 

 

predictive tool which would require a smaller number of input parameters and be able to 

accurately predict the behavior of the composite under a wide variety of loading 

scenarios such as static, dynamic and impact loadings. For example, in the case of an 

aircraft engine containment design, a rotor burst or a blade-out scenario is one of several 

events that are routinely simulated. Building a model to simulate this event requires high-

quality experimental data that provides data for the material model and a detailed but 

efficient finite element model that can predict the response accurately, robustly and 

efficiently. To meet this growing need, US government agencies have embarked on 

several long-term research plans. Development of advanced computational analysis 

methods is an important aspect of the NASA Advanced Composites Project (ACP) which 

was created with the goal of reducing the development and certification timeline for new 

composite structures used in aeronautics applications (Melis et al., 2018). Developing a 

good predictive tool with all these complexities requires putting together multiple 

components. First is the need for a general constitutive model that is suitable for different 

composite types and architectures. Second is the requirement for an explicit dynamics 

finite element program which is versatile and has capabilities for modeling impact events 

with features to model contact, damage, failure, and stochastic variations. Third is the 

necessity to have a laboratory-based material characterization process to generate 

material/structural properties for the constitutive model, and a laboratory setup capable of 

conducting high energy impacts to create validation data. The advances in hardware and 

software over the past few years have helped move towards meeting these requirements. 

However, the process of building an efficient, robust, accurate and reliable predictive tool 

remains a research challenge. The first and the second components of an explicit 
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dynamics finite-element based predictive tool can be seen in Figure 1. The green block 

contains the constitutive model. The primary focus of this dissertation is on this block - 

the development of a constitutive model for static and impact loading scenarios to predict 

deformation, damage, and failure of composites. Deformation, damage, and failure are 

the basic sub-components of a predictive constitutive model. While these three terms are 

intertwined, the most vexing question is to define “failure”.  

 

 

Figure 1. Algorithm in a Typical Explicit Finite Element Analysis 

 

A review of published material on composite modeling shows that it is difficult to 

precisely define what failure is. Hinton (2011) provides one definition - “'Failure is the 

point beyond which the structure or component ceases to fulfil its function.” This 

definition is rather difficult to use from a modeling viewpoint. In the context of this 

dissertation, the term failure onset implies the instant at which there is no further increase 

in the load carrying capacity exhibited by the finite element (FE), and the term erosion 

refers to the deletion of the finite element from further FE calculations. Christensen & 
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Lonkar (2016) ask a rather provocative but fundamental question - “Is it possible to 

develop and derive a rational and general failure criterion composed only of basic and 

standard strength properties of the material and completely devoid of adjustable 

parameters and/or unjustified assumptions? Essentially this question asks if it is possible 

to pursue materials failure as a scientific investigation as opposed to a parameters 

exercise.” On top of the complexity involved in accurately simulating the deformation 

and damage response of composites, predicting the failure is a big challenge in the 

context of a structural analysis (Shyamsunder et al., 2020a).  Some of the earlier research 

work done in predicting the deformation, damage, and failure of composites are discussed 

in the next section. 

 

1.1 Background and Prior Art  

The continuum mechanics approaches to developing constitutive models for composites 

can be categorized into the following groups (Vaziri et al., 1991) – (a) nonlinear elasticity 

theories, e.g. (Petit & Waddoups, 1969), (b) damage theories coupled with elasticity, e.g. 

(Allen et al., 1987; Chen & Hwang, 2009; Wu & Yao, 2010; Xiao, 2009), (c) classical 

incremental plasticity theories, e.g. (Griffin et al., 1981; Sun & Chen, 1989; Vaziri et al., 

1991), and (d) endochronic plasticity theory, e.g. (Pindera & Herakovich, 1983). Of these 

approaches, the incremental plasticity theory has the most promising features for static 

and impact analyses. Griffin et al. (1981) use Hill’s orthotropic yield criterion and 

incremental plastic flow theory to solve for the structural response under mechanical and 

thermal loading. One of the earliest and accurate plasticity-based material models for 

composites was developed by Sun & Chen (1989) with a focus on unidirectional, carbon 
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fiber-based composites under in-plane loading conditions. Later in 1991, Vaziri et al. 

(1991) developed a rate-independent, plasticity model for fiber reinforced composites 

(FRC). The model could predict elastic and plastic response of structural systems 

modeled as a plane stress problem. Other modeling approaches have been developed for a 

well-defined class of problems such as short-fiber reinforced composites (Notta-Cuvier et 

al., 2014) or ceramic matrix composites (Rajan et al., 2014). Models can also be created 

at different length scales to understand the deformation, damage, and failure behavior of 

composites. For example, in Boutaous et al. (2006), an elastoplastic damage model is 

developed to model the behavior of laminated composites up until fracture. Damage for 

each elementary constituent is accounted for at the micro level and a complete model at 

the meso-scale is obtained by applying a homogenization method such that the model can 

be implemented in a finite element program. This approach, while attractive to 

understand the constituent behavior of composites, will require far too much 

computational effort to model impact problems aside from other limitations in the 

framework (Hoffarth et al., 2016). 

 

Researchers have defined and examined various measures of material and structural 

failures associated with composites that are easier to use and can be integrated into a 

simulation framework (Shyamsunder et al., 2020a). For example, composites fail in 

compression in a variety of ways – fiber crushing, splitting, elastic microbuckling, matrix 

failure and plastic microbuckling, buckle delamination, and shear-band formation (Jelf & 

Fleck, 1992). Knass & Gonzalez (2001) describes composite failures as involving 

fracture of the material that is brought about by fiber breakage, fiber micro-buckling, 
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fiber pullout, matrix cracking, delamination, debonding or any combination of these 

mechanisms. Even one of the simplest composite architectures – a unidirectional laminate 

composite, poses rather unique challenges. Typically, experiments are conducted at the 

lamina level to characterize the behavior of the composite. A predictive failure theory 

must first accurately predict the failure of the lamina under a uniaxial state of static stress. 

This must be followed by the ability of the failure theory to predict the failure of a 

laminate that is made up of several lamina at different orientations, first under simple 

loading conditions and then under a complex three-dimension state of stress. A study of 

six failure criteria (Sun et al., 1996) shows that at the lamina level the criteria that 

incorporate separate fiber-based failure modes and matrix based failure modes produce 

the most accurate results, and as a result the failure criteria that yields the most accurate 

predictions for multi-ply laminates varies depending on whether the laminate layup and 

loading is fiber-dominated or matrix-dominated. Camanho (2002) discusses the subject of 

failure criteria for fiber-reinforced polymer composites and summarizes that the 

confidence levels of the failure theories used need to be improved and that there is no 

consensus in the industry on the most adequate failure criterion. A similar sentiment is 

echoed by Kaddour & Hinton (2012) where they state, “The designers, wishing to use the 

models benchmarked in World-Wide Failure Exercise-II (WWFE-II), can only expect a 

few theories to give acceptable correlation (within ±50%) with test data for 75% of the 

test cases used.” 

 

World-Wide Failure Exercises (WWFE), which started in 1991, provide a fascinating 

look at the evolution of some of the most widely recognized failure theories. In WWFE-I 
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(1996-2004), 19 theoretical approaches for predicting deformation and failure in 14 test 

cases have been studied (Hinton et al., 2004). In WWFE-II (2007-2013), 12 groups 

(involving 12 failure theories) have taken part in predicting the response of 12 test cases 

(Kaddour & Hinton, 2012). WWFE-III involves 12 methods for modeling damage and 

failure of 13 test cases (Kaddour et al., 2013; Kaddour & Hinton, 2018). A list of the 

more popular failure theories is presented next. The purpose of listing these theories is 

not to present a detailed summary (those can be found in other publications), but to 

illustrate the fact that there are numerous competing models where the failure definitions 

are extremely varied. It should be noted that the first three theories have been 

implemented in commercial finite element codes, a very desirable and attractive feature. 

The rest have been implemented into in-house codes written in a variety of languages 

(FORTRAN, MathCad, Visual Basic, Matlab etc.). 

 

Tsai-Ha’s Theory (Huang et al., 2012a, 2012b): The model is based on 3D laminate 

theory and is tied to the use of commercial finite element programs (MD NASTRAN and 

ABAQUS) via user-supplied subroutines. The failure model is based on micromechanics 

of failure (MMF) and considers failure in the fiber, matrix, and the fiber-matrix interface. 

A progressive damage model is used for the matrix. Thermal stresses are also considered 

in the model.  

 

Pinho’s Theory (Pinho et al., 2012, 2013): The model is implemented in a finite element 

program. The underlying constitutive model is tailored to capture the nonlinear behavior 

of unidirectional composites. A nonlinear response is considered in shear, and in the 
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transverse and through-thickness directions. Matrix failure, fiber kinking and fiber tensile 

failure are handled separately. Fracture energy is used with each failure mode.   

 

Puck’s Theory (Deuschle & Kropline, 2012; Deuschle & Puck, 2012): The model is 

implemented in ABAQUS via a user-supplied subroutine. The failure criteria for fiber 

fracture and inter-fiber fracture of unidirectional fiber-reinforced polymer composites are 

suitably modified forms of the Coulomb-Mohr theory of fracture. More details of this 

theory are presented later in this dissertation. 

 

Huang’s Theory (Zhou & Huang, 2012a, 2012b): The model is based on 3D laminate 

theory and the Bridging Model. The Bridging Model, a micromechanical theory, is 

modified and applied to laminates. Using the constituent properties as the material data, 

the model can predict the elastic-plastic behavior of a unidirectional (UD) composite and 

compute the stresses in the constituent materials. Final failure of the laminate takes place 

when fiber failure occurs, or the resin has failed in compression. The lamina is assumed 

to fail if any of its constituents fail, and subsequently the stiffness of the resin is reduced.  

 

Carrere’s Theory (Carrere et al., 2012a, 2012b): This is a multi-scale Micromechanical-

based Hybrid Mesoscopic (MHM) progressive failure model. The model considers the 

effect of microdamage on the ply strength parameters. This involves the determination of 

microdamage in the UD ply using a damage law which is based on continuum damage 

mechanics. Nonlinear behavior is taken care of by a thermo-viscoelastic constitutive law. 

The failure criterion at the ply level depends on the effective strength which is a function 
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of the microdamage and considers fiber-fracture (FF) and inter-fiber fracture (IFF) as 

modes of failure. The model distinguishes between tension and compression failures. The 

failure in each mode is then followed by the degradation of the failed ply based on a 

damage law.  

 

Bogetti’s Theory (Bogetti et al., 2012a, 2012b): A laminate theory is used to compute the 

effective laminate stress-strain response. Nonlinear behavior as well as progressive ply 

failure are accounted for in the model. The failure theory is based on computing and 

using the maximum 3D strain. The ply strains are used in nine modes of failure that are 

connected to strain values in the principal material directions. This is the only model that 

showed all the failure envelopes to be closed in WWFE-II. 

 

Cuntze’s Theory (Cuntze, 2012a, 2012b): The model assumes that the composite at the 

ply level is transversely isotropic. The failure model is based on the author’s Failure 

Mode Concept and considers five modes of failure – two FF modes and three IFF modes. 

Furthermore, the interaction of all the modes are considered using a probabilistic based 

series spring model where the interaction exponent is obtained by curve fitting of 

experimental data. 

 

Wolfe’s Theory (Zand et al., 2012; Doudican et al., 2012): The model assumes that each 

lamina is an inelastic homogenous orthotropic material. Failure is based on a strain-

energy formulation that incorporates the effects of in-plane thermal residual stresses 

accumulated during the curing of composite laminates and considers the failure of matrix 
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and fiber separately. The failure criterion is described by the ratio of strain energy 

acquired to the strain energy at failure. The stiffness of the lamina is reduced once the 

failure criterion in the lamina is satisfied. It should be noted that the test cases which have 

been used in exercising the eight failure models listed above for WWFE-II, involve only 

static loading scenarios. 

 

As stated earlier, modeling impact problems presents its own unique challenges 

(Bhatnagar, 2016; Chen, 2016; Melis et al., 2018; Roberts et al., 2002). Some of these 

examples include impact simulations of aircraft engine containment systems involving 

aluminum target and titanium impactor (Ambur et al., 2001), and steel projectile 

impacting Kevlar dry fabric targets (Stahlecker et al., 2009). Two issues are brought to 

light in these examples. First, the challenge is to conduct these impact tests in a reliable 

manner. Some of these include (a) obtaining the velocity as well as the orientation of the 

impactor as a function of time, (b) using Digital Image Correlation (DIC) hardware and 

software to obtain the full displacement field that can then be used obtain surface strains, 

and (c) obtaining rate data (stress-strain curve) from coupon testing using equipment such 

as Split Hopkinson Bar and DIC. Second, simulating the impact event is a challenge 

where modeling issues are compounded when used with sophisticated material models 

that have numerous input parameters all of which cannot be obtained from experiments. 

Usually these parameters are obtained through numerical calibration, a tedious process 

that must then be valid for a variety of impact scenarios. 
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1.2 Current State of Material Models for Composites in LS-DYNA 

LS-DYNA® (Ansys-LST, 2020b) is an advanced multi-physics simulation software 

program which is widely used by the automotive and the aerospace industries for 

modeling impact events such as vehicle crashworthiness analysis and engine bird strike. 

Over the past few years, various constitutive/material models for composites have been 

developed and implemented in LS-DYNA® (Ansys-LST, 2020b). This section discusses 

some of the commonly used material models used for modeling composites to highlight 

the required capabilities and the difficulties in obtaining the capabilities.  

 

MAT022 also known as MAT_COMPOSITE_DAMAGE, is an orthotropic material 

model made for fiber-reinforced laminated composites (Ansys-LST, 2018; Chang & 

Chang, 1987a, 1987b). The model has two components – deformation and damage. The 

stress-strain in the material is computed using finite element method based on classical 

laminate theory. MAT022 considers failure onset in three modes - matrix cracking, fiber-

matrix and fiber breakage. If the matrix failure onset criterion is satisfied, the transverse 

properties are set to zero, and the longitudinal properties are left unaltered. The 

longitudinal properties are degraded using a Weibull distribution only if either 

fiber/matrix shearing or fiber breakage takes place. No element erosion can be modeled 

using MAT022. Another simple composite model is MAT023 or 

MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC (Ansys-LST, 2018). It 

supports orthotropic elastic materials that have temperature dependent properties. The 

moduli, Poisson’s ratios and the coefficients of thermal expansion can be defined for 
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different temperature values in the input deck. These two material models are very simple 

but perhaps, not suitable for modeling highly non-linear material behavior. 

 

MAT054 and MAT055 (Chang & Chang, 1987a, 1987b) are enhanced versions of 

MAT022. These two material models are collectively known as 

MAT_ENHANCED_COMPOSITE_DAMAGE and share the same set of input cards 

(Ansys-LST, 2018). MAT055 uses Tsai-Wu failure criterion (Tsai & Wu, 1971) for 

matrix instead of the Chang criterion. These models provide the ability to erode a badly 

distorted element if the time step falls below a specified value. The erosion of elements 

creates crashfront elements (which are the elements that share nodes with the eroded 

elements). The material strength for the crashfront elements can be reduced with a user 

input parameter. In addition, these models take the in-plane strength quantities as input to 

drive the progressive damage model as well as account for a rate sensitive composite. 

The strain rates can be smoothened using a running average technique thus helping avoid 

sudden change in rates during the simulation. Erosion (failure) in MAT054 is triggered 

when the effective strain and the transverse shear strain exceed specified values. In the 

case of solid elements, element erosion can take place due to maximum strain criteria in 

the matrix in tension, compression, or shear component. Element erosion can also take 

place due to maximum strain criteria in the tensile and compressive mode in the fiber. For 

shell elements, element erosion takes place when all the through thickness integration 

points have satisfied the aforementioned criteria. MAT054 also has parameters to keep 

the stress constant at a minimum limit after the peak stress has been reached.  
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MAT058 also known as MAT_LAMINATED_COMPOSITE_FABRIC (Ansys-LST, 

2018) is a material model suitable for woven fabrics. This is also used to model 

composites which are unidirectional laminated composites. This model is based on 

progressive failure analysis which uses Hashin’s failure criteria (Hashin, 1980) for 

unidirectional composites and a modified failure criterion for woven fabrics. MAT058 

has a smooth damage evolution law which is not the case with MAT054 and MAT055. 

MAT058 has been implemented only for thin and thick shells. Similar to some of the 

other material models, it can take the moduli as tabulated input as a function of strain 

rates. MAT058 takes the strength in-plane strength quantities as well as the 

corresponding strain as input to predict the failure onset. These strengths and the strain 

parameters can also be defined as functions of strain rate. Strain rate averaging options 

are available with this model. MAT058 also has a feature to keep the stress constant at a 

minimum limit after the peak stress (residual strength). Element layers (integration 

points) can be eroded when the effective strain reaches a specified value which can be 

defined as a function of strain rate. Elements can also be eroded if the time step falls 

below a specified value. The erosion of elements creates crashfront elements, the stiffness 

of which can be reduced by a factor which is an input to MAT058. Non-linear shear 

behavior can also be modeled using MAT058. MAT158 or 

MAT_RATE_SENSITIVE_COMPOSITE_FABRIC is the same as MAT058 except that 

MAT158 is rate sensitive via viscoelastic stress terms. This material is also suitable for 

modeling unidirectional composites and woven fabrics and has been implemented for 

shell and thick shells.  
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MAT059 also known as MAT_COMPOSITE_FAILRUE_SHELL_MODEL, 

MAT_COMPOSITE_FAILRUE_SOLID_MODEL or 

MAT_COMPOSITE_FAILRUE_SPH_MODEL (Ansys-LST, 2018) depending on the 

element type used for modeling, uses either a faceted failure surface or an ellipsoidal 

failure surface depending on the type of composite to be modeled. Similar to MAT054, 

the crash front algorithm and the minimum stress limit factor (residual strength) features 

are available with this model. It has been reported that for lower energy (5 J) impact test 

cases where the damage is matrix dominated (Rossi et al., 2020), MAT022, MAT54, 

MAT055, MAT058, MAT059 performs poorly since these models do not consider 

delamination mode of failure.  

 

MAT116 or MAT_COMPOSITE_LAYUP, MAT117 or MAT_COMPOSITE_MATRIX 

and MAT118 or MAT_COMPOSITE_DIRECT (Ansys-LST, 2018) are used for 

modeling elastic responses of composites using shell elements. These material models are 

based on standard composite lay-up theory. These models are used for the computation of 

extensional, bending and coupling stiffness components, and stresses are not computed. 

MAT116 is very efficient for large number of layers. MAT116 is not suitable for foam 

core or sandwich composites. The only difference between MAT117 and MAT118 is that 

MAT117 gives the stiffness coefficients in the material coordinate system and MAT118 

gives the stiffness coefficients in the element coordinate system.  

 

MAT161 or MAT_COMPOSITE_MSC (Ansys-LST, 2018) is used for progressive 

failure analysis of unidirectional composites and woven fabrics using solid elements. For 
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a unidirectional composite, the material model considers three fiber failure modes – fiber 

tension/shear failure, fiber compression and fiber crush failure mode. Two modes of 

matrix failure are considered- plane parallel to the ply (delamination mode) and the 

second one where the failure plane is perpendicular to the ply layer (transverse mode) 

(Matzenmiller et al., 1995; Yen, 2002). MAT162 is based on continuum damage 

mechanics approach for fiber-reinforced composites. A nonlocal averaging feature is 

available in the strain-based failure criterion. The non-local averaging technique is useful 

in the case of modeling damage and failure using non-structured mesh. MAT161 and 

MAT162 can be used for both solids and shell elements. These models are suitable for 

studying delamination behavior of composites.  

 

MAT219 also known as MAT_CODAM2 (Ansys-LST, 2018) is a continuum damage 

mechanics model which is a sub-laminate-based approach for fiber reinforced 

composites. The model assumes that there is transverse isotropy in the lamina. The non-

local averaging feature is available for this model to improve the prediction of damage 

and crack pattern. This model can be improved (Forghani, 2011) by coupling a plasticity 

model to it to predict the permanent deformation of a composite. Another improvement 

which can be made with the model is the capability to predict the delamination behavior.  

 

MAT221 or MAT_ORTHOTROPIC_SIMPLIFIED (Ansys-LST, 2018) is an orthotropic 

material model having the same elastic model as that of MAT022 for solid elements. The 

model uses nine damage variables to degrade the material properties distinguishing 
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between tension and compression. The erosion can be triggered using strain values 

specified for the material directions.  

 

MAT261 and MAT262 (Ansys-LST, 2018) are continuum damage models which uses 

Puck’s failure criterion for the prediction of failure onset for the inter-fiber mode. 

MAT261 (Pinho et al., 2006a, 2006b) and MAT262 (Maimi et al., 2007a, 2007b) uses 

linear softening and linear/bi-linear softening evolution, respectively, based on fracture 

toughness of the composite. The failure models implemented in both these two models 

are mesh independent which is a very attractive feature. The models have erosion 

criterion based on effective strain. It also has a feature where the fracture toughness can 

be defined as a function of strain rate and characteristic length of the element. The 

strength parameters are required as input to drive the models. These strength parameters 

can be defined as a function of strain rate. The in-plane shear properties are taken as input 

in the form of tabulated stress strain data as a function of strain rate. The carshfront and 

the strain rate smoothing features are also available with both these models.  

 

Apart from the material models described above, there are additional “add on” material 

models which can be used as an extension to most of the available LS-DYNA models to 

support damage, failure, and element erosion. Some of these are MAT_ADD_EROSION, 

MAT_ADD_DAMAGE_DIEM and MAT_ADD_DAMAGE_GISSMO (Ansys-LST, 

2018). Table 1 shows most of the desirable features for modeling composite materials, 

and Table 2 (Schweizerhof et al., 1998; Ansys-LST, 2020a) summarizes availability of 

the features for all the aforementioned composite material models. “Y” implies that the 
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feature is available in the material model, “N” implies that the feature is not available, 

and “S” implies that the feature is partially available and can be used for some of the 

input parameter.  

 

To overcome the drawbacks of the existing material models, an orthotropic elasto-plastic 

damage material model (OEPDMM) has been developed. This material model is 

implemented in LS-DYNA as MAT213 (Goldberg et al., 2016; Hoffarth et al., 2016), 

also known as MAT_COMPOSITE_PLASTICITY_DAMAGE. OEPDMM is a modular 

material model with three sub-models – deformation, damage, and failure. The 

deformation sub-model is based on plasticity theory and predicts the linear and the non-

linear behavior of a material. It is driven by a set of at least twelve stress-strain curves. 

Additional stress-strain curves obtained at different strain-rate and temperature 

combinations can be used as input. These stress-strain curves can be obtained either 

through experiments (Khaled et al., 2017) or virtual testing (Harrington et al., 2017). This 

provides control over the way the hardening/softening evolves as well as handles tension-

compression asymmetry both for the linear and the non-linear behavior – a feature which 

is not available with the other material models. The damage sub-model predicts the 

reduction in the stiffness of a material and is also driven by tabulated damage parameters 

(Khaled et al., 2018). With the deformation and the damage sub-models being uncoupled 

allows for incorporation of permanent deformations while still allowing for unloading 

(pre-peak regime) and stress degradation (post-peak regime). The prior implementation, 

however, has limitations in simulating a dynamic event especially involving stress- strain 

input curves at different strain-rates. Furthermore, the failure sub-models which have 
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been implemented are not mature enough. The goal of this dissertation is to enhance the 

deformation and the damage sub-model, and implement two different failure approaches 

in OEPDMM, to overcome the limitations the current implementation has. The failure 

sub-models newly implemented are Puck Failure Model (PFC) which is based on Puck 

theory (Shyamsunder et al., 2020a) and a Generalized Tabulated Failure Model (GTFC) 

(Goldberg et al., 2018b; Shyamsunder et al., 2020b). 
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Table 1. Desirable Features in Composite Material Models 

Feature Why is it desirable? 

Tabulated Input Can have any smoothly varying and/or continuous data. Not 

constrained by the form of any equation. 

Tension/Compression 

asymmetry including 

pure linear behavior 

Composites typically are stronger in tension than 

compression. Some brittle composites have linear behavior. 

Plasticity The matrix usually exhibits plastic behavior (permanent 

deformation). 

Solid element Needed for thick composites where shell element modeling 

would not be appropriate. Whenever through the thickness 

shear becomes important in the penetration process. 

Shell element Needed for thin composites where in-plane behavior is 

dominant, but loading can be out-of-plane. 

Damage model Used to model unloading and reloading. 

Failure model Tabulated makes it possible to define any failure surface 

shape. 

Rate effects Composites may exhibit rate-dependent behavior. 

Temperature effects Composite materials may behave differently at different 

temperatures.  Rapid loading can heat up the composite and 

thereby changing its properties (Taylor-Quinney effect). 

Stochastic Can study effect of variation in material properties. 

Implicit Modeling slowly loaded structures. 
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Table 2. Summary of the Features Available in LS-DYNA Composite Material Models 

M
A

T
 

T
a
b

u
la

te
d

 I
n

p
u

t 

T
en

si
o
n

/C
o
m

p
re

ss
io

n
 A

sy
m

m
et

ry
 

P
la

st
ic

it
y
 

S
o
li

d
 E

le
m

en
t 

 

S
h

el
l 

E
le

m
en

t 

D
a
m

a
g
e 

M
o
d

el
 

In
-b

u
il

t 
F

a
il

u
re

 M
o
d

el
 

R
a
te

 E
ff

ec
ts

 

T
em

p
er

a
tu

re
 E

ff
e
ct

s 

S
to

ch
a
st

ic
 

Im
p

li
ci

t 

022 N N N Y Y Y N N N N Y 

023 S N N Y Y N N N Y N Y 

054 

/55 

N N N Y Y Y Y Y N N N 

058 S N N N Y Y Y Y N N N 

059 N N N Y Y Y Y N N N Y 

116 N N N N Y N N N N N N 

117 N N N N Y N N N N N N 

118 N N N N Y N N N N N N 

158 N N N N Y Y Y Y N N N 

161 

/162 

N N N Y Y Y Y Y N N Y 

219 N N N Y Y Y Y N N N N 

221 N N N Y N Y Y N N N N 

261 

/262 

S N N Y Y Y Y S N N N 

213 Y Y Y Y Y Y Y Y Y Y N 

 



21 

 

1.3 Research Objectives 

The primary focus of this work is to develop, build, program and test new capabilities in 

OEPDMM to address the additional desirable features listed in Table 1. A summary of 

the research objectives is listed below. 

1. Enhance OEPDMM deformation and damage sub-models to simulate rate dependent 

composite behavior.  

2. Implement Puck Failure model and Generalized Tabulated Failure model. 

3. Verify the developed capabilities via single and multiple element test cases. 

4. Validate the developed capabilities using statically loaded structural test results from 

ASU, and impact test results from NASA-GRC. 

 

In Chapter 2, the background on the deformation and the damage sub-models is 

discussed. The enhancement of the deformation sub-model to take into consideration, the 

visco-elastic-plastic material behavior is presented. In addition to this, the modifications 

which are made to the damage sub-model with the consideration of visco-elastic-plastic 

formulation is also discussed. Item 1 from the list of research objectives is addressed in 

this chapter.  

 

Chapter 3 is divided into two parts. In the first part, theory and the implementation 

scheme of the Puck Failure Model is presented followed by the stress degradation 

technique that is coupled with the Puck Failure Model. In the second part, the 

development and the implementation of Generalized Tabulated Failure model is 

presented. Item 2 from the list of research objectives is addressed in this chapter.  
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In Chapter 4 verification and validation tests are presented. First, single element 

verification tests are used to demonstrate all the features implemented in OEPDMM. 

Second, validation test using quasi-statically loaded stacked-ply specimens. Finally, the 

ballistic impact tests are discussed. Details include processing of experimental data to 

meet OEPDMM requirements, the finite element model, calibration of failure parameters, 

and comparison of FE predictions with experimental data. Items 3 and 4 from the list of 

research objectives are addressed in this chapter.  

 

The dissertation document concludes with Chapter 5. The possible improvements which 

can be made to the material model are highlighted in this chapter.    
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2 DEFORMATION AND DAMAGE SUB-MODEL IN OEPDMM 

 

The deformation and the damage sub-models in OEPDMM are briefly discussed in this 

chapter. The prior formulation (Hoffarth, 2016) has been modified to support rate and 

temperature dependent data so that impact events can be modeled.  The new features 

include strain-rate smoothing, Poisson’s ratio modification, multi-level plastic multiplier 

computation techniques, and supporting Taylor-Quinney effect. 

 

2.1 Current State of the Art 

A plasticity based orthotropic material model had been developed and implemented into 

the commercial finite element code LS-DYNA® (Ansys-LST, 2020b) as 

*MAT_COMPOSITE_TABULATED_PLASTICITY_DAMAGE (CTPD) model, or 

*MAT213. OEPDMM has three sub-models that are user selectable with the primary 

sub-model for deformation that is always active and can be made to work in conjunction 

with the sub-models for damage and for failure. Prior publications contain the details of 

the deformation (Goldberg et al., 2016; Hoffarth et al., 2016, 2017, 2020; Khaled et al., 

2017) and damage sub-models (Goldberg et al., 2018a; Khaled et al., 2018).  

 

Classical plasticity theory is used in the deformation sub-model, and the initiation of 

plasticity is dictated by converting the classical Tsai-Wu failure criterion to a quadratic, 

orthotropic yield function (Tsai & Wu, 1971), 
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The yield function coefficients (
iF ’s and ijF ’s) are computed based on the current yield 

stresses. In order to track the yield stresses in the various coordinate directions for the 

given state of stress, the input to the model includes twelve sets of tabulated stress-strain 

data consisting of stress-strain curves in tension in the 1, 2 and 3 directions (where 1, 2 

and 3 are the Principal Material Directions (PMDs)), in compression in the 1, 2 and 3 

directions, tensorial shear stress-strain in the shear 1-2, 2-3 and 1-3 planes, and off-axis 

stress-strain curves in 1-2, 2-3 and 1-3 planes. If the material exhibits rate and/or 

temperature dependency, the twelve input curves can be defined for as many sets of 

different strain-rate and temperature combinations as required. These stress-strain curves 

can be obtained experimentally (Khaled et al., 2017) or by virtual testing (Harrington et 

al., 2017). The yield stresses need to be such that the yield surface is convex at any point 

of time so that a converging solution is obtained (Hoffarth, 2016). If for any reason, the 

yield surface is not convex, convexity is enforced (Hoffarth et al., 2016). The flow law 
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considered in the deformation model is non-associative and is defined in terms of the 

plastic potential function given as, 
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where ijH  are (nine) constant coefficients that depend on the average value of various 

plastic Poisson’s ratios. Experimental data are used to calculate the flow rule coefficients 

as follows. First, the unidirectional test results from the PMDs are used to calculate six of 

the coefficients. For example, Eq. 2.3 shows how the simplified plastic potential function 

along with the relationship 
p h




=
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ε
σ

, can be used to compute the plastic Poisson’s 

ratios, 
p

ij  as, 
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where, 
p

ij  are the plastic strain-rate components. Second, since Eq. 2.3 shows that the 

flow rule coefficients are not linearly independent, one of the flow rule coefficients is 

assumed – normally a value for the flow rule coefficient corresponding to the direction 

with the most plasticity is assumed, after which Eq. 2.3 is used to compute the values of 
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the remaining coefficients. The stress-strain curve in this direction is denoted as the 

master curve. Third, the final three terms, 44 55,H H and 66H , are computed by fitting the 

shear curves with the master curve in the effective stress versus effective plastic strain 

space (Hoffarth et al., 2017). 

 

Assuming strain compatibility in the true (damaged) and the effective (undamaged) stress 

spaces makes it possible to decouple damage and plasticity. This allows the deformation 

model, governed by a plasticity algorithm, to account for both elastic and inelastic 

deformations while the reduction of elastic stiffness in the principal material directions 

and principal material planes is handled by the damage model (Khaled et al., 2018). The 

relationship between the true stress space and the effective stress space is captured in the 

damage sub-model as,  
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where ( )11 22 33 12 23 13, , , , ,p p p p p p

ii iiM M      = . 
p

ij ’s are the plastic strain components. Unlike 

other formulations, the damage sub-model accounts for stiffness reduction via the use of 

both uncoupled and coupled damage parameters. This is evident from the relation 
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between the true stress ( )ij  and the effective stress ( )eff

ij  tensor components which are 

expressed using Eqs. 2.5 and 2.8. The normal (tensile and compressive) components of 

the stress are related as 

 

 

3

0
1

0
1

ii
iid

ieff

ii

ii
iid

i

if
c

if
c








+




−
= 
 
 −

  (2.5) 

with 

 
( )( )( )( )

( )( )( )( )( )

11 11 22 22

33 33 12 23 13

1 1 1 1 1

1 1 1 1 1

T T T T

T C T C

T T T T T

T C

ii ii ii iid

i

ii ii ii ii ii

c d d d d

d d d d d

= − − − − −

− − − − −
  (2.6) 

 
( )( )( )( )

( )( )( )( )( )

3 11 11 22 22

33 33 12 23 13

1 1 1 1 1

1 1 1 1 1

C C C C

T C T C

C C C C C

T C

ii ii ii iid

i

ii ii ii ii ii

c d d d d

d d d d d

+ = − − − − −

− − − − −
  (2.7) 

 

where i  = 1, 2 and 3. The shear components are given as 
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where, ij  =12, 23 and 13, and k  = 7, 8 and 9, respectively. The parameters, d

ic ,  are 

referred to as the effective damage parameters and are a measure of damage in each 

component in the principal material direction/plane (Shyamsunder et al., 2020b). As will 

be shown later, this parameter can also be used in the post-peak regime in the 

Generalized Tabulated Failure Model since it relates the true and the effective stress 

tensor components. 
kl

ijd  is referred to as the damage parameter and accounts for damage 

in the kl  direction due to loading in the ij  direction. If the ij  direction and the kl  

direction are the same, then 
kl

ijd  is referred to as uncoupled damage parameter; else, it is 

referred to as coupled damage parameter. For example, 
22

22

T

T

d  is an uncoupled damage 

parameter obtained by loading the specimen in 2-direction tension and interrogating the 

reduction in stiffness in the 2-direction tension. Similarly, 
22

22
T

C
d  is a coupled damage 

parameter obtained by loading the specimen in 2-direction compression and interrogating 

the reduction in the stiffness in 2-direction tension.  

 

The algorithm used in the prior implementation (Goldberg et al., 2016, 2018a; Hoffarth et 

al., 2016, 2017, 2020; Khaled et al., 2017, 2018) is shown in Figure 2 in the form of a 

flow-chart. The first step which is done once in a simulation is the pre-processing step. 

During this step, the input stress-strain data is converted into effective stress – effective 

plastic strain. The strain data is converted into plastic strain, and finally into effective 

plastic strain. In the subsequent step, the trial stress is corrected back depending on 

whether the state of trial stress is outside the yield surface or not. 
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Figure 2. Algorithm Used in the Prior Implementation (Hoffarth, 2016) 

 

2.2 Enhancements made to the Deformation and Damage Sub-models 

The prior implementation however has some limitations which are listed below: 

1. Noisy strain-rates can develop during an analysis which needs to be smoothed.    

2. Convergence issue in the computation of plastic multiplier, especially in a 

complex loading scenario. 

3. The Poisson’s ratios used in the analysis can be thermodynamically inadmissible 

in analysis involving stress-strain input curves specified at multiple strain-rates. 
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4. Absence of features to model visco-elastic, visco-plastic, and visco-elastic-plastic 

behavior. The visco-elastic-plastic feature is of importance in modeling a dynamic 

event for composites. 

5. No feature to predict the rise in temperature.  

6. Absence of failure sub-models to predict the failure onset and element erosion. 

 

The algorithm based on the new implementation is shown in Figure 3. The green color 

blocks highlight the enhancements made. Each of the features added other than the failure 

sub-model implementation is discussed one by one in the following sub-sections.  

 

 

Figure 3. Algorithm Used in the New Implementation 
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2.2.1 Strain-rate Smoothing 

A general three-dimensional constitutive law stiffness matrix formulation is used in the 

deformation sub-model. The stiffness matrix is given by 
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C S   (2.10) 

 

The moduli are computed internally in OEPDMM using the input stress-strain curves 

interpolated for a given strain rate and temperature at a given point of time during the 

simulation. In order to avoid numerical instability due to sudden changes in moduli 

caused by sudden large changes in the strain rate, the strain rate components are 

smoothed using an exponential averaging technique, 

 

 
1 1(1 )avg avg

n n ns s+ += −  + ε ε ε   (2.11) 
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where n  represents the previous time step. s  is a user-specified parameter with a value 

between 0 and 1. The average strain rate at the current time step, 
1

avg

n+ε   is computed as a 

function of the non-smooth strain rate at the current time step, 
1n+ε  and the averaged 

strain rate from the previous time step, avg

nε .  

 

2.2.2 Poisson’s Ratio Thermodynamic Inadmissibility 

Eq. 2.10 is used assuming that Poisson’s ratios are not rate and temperature dependent. 

The moduli, on the other hand, can be rate and temperature dependent. With the use of 

rate and/or temperature dependent stress-strain curves, it is possible that the user-input 

Poisson’s ratios are not thermodynamically inadmissible with the orthotropy energy 

criteria (Lempriere, 1968). In order to eliminate this inadmissibility, the Poisson’s ratio(s) 

is/are modified internally in OEPDMM. The following checks and corrections are done 

for each time step and at every Gauss point: 

Step 1: Input - 21 , 32 , 31 , 11E , 22E , 33E and correction factor, 0.95prfc = .  

Step 2: If 22
21

11

E

E
  , go to Step 3, else go to Step 4.  

Step 3: Set 22
21

11

prf

E
c

E
 =  and set FLAG21 = 1. 

Step 4: If 33
32

22

E

E
  , go to Step 5, else go to Step 6.  

Step 5: Set 33
32

22

prf

E
c

E
 =  and set FLAG32 = 1. 
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Step 6: If 33
31

11

E

E
  , go to Step 7, else go to Step 8.  

Step 7: Set 33
31

11

prf

E
c

E
 =  and set FLAG31 = 1. 

Step 8: Compute, 2 2 211 22 11
21 32 31

22 33 33

det 2 1
E E E

E E E
  = − − −  

Step 9: If 11
21 32 31

33

1

2

E

E
  
 

 
 

 or 11
21 32 31

33

det 2

2

E

E
  
 

 
 

 or 
det 2 1

2 2

 
 

 
, go to Step 10a, 

else continue with stiffness matrix formulation.  

Step 10a: If FLAG21 = 1 Set 
21 21prfc = , and go to Step 10b. 

Step 10b: elseif FLAG32 = 1 Set 
32 32prfc = , and go to Step 10c. 

Step 10c: elseif FLAG31 = 1 Set 
31 31prfc = , and go to Step 10d. 

Step 10d: else Set 
21 21prfc = , 

32 32prfc =  and 
31 31prfc = , and go to Step 8. 

 

The default value of 
prfc  is taken as 0.95 (5% change) and this ensures that the correction 

needed to satisfy the material relationships is as small as possible. In the next time step 

and for a given Gauss point, the original Poisson’s ratios are used and corrected if 

necessary 

 

2.2.3 Visco-elasticity and Visco-plasticity 

There are at least three different approaches to visco-plasticity (Wang et al., 1997) – 

overstress visco-plastic models of Perzyna and Duvaut-Lions, and the consistency visco-
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plastic approach. In the present work, the consistency approach is used since only with 

this approach it is possible to use the Kuhn-Tucker form of the loading-unloading 

conditions in the visco-plastic case. Accordingly, the stress is divided into equilibrium, 

,

1

e eff

n+σ and viscous, ,

1

v eff

n+σ components (Achstetter, 2019; DuBois et al., 2017) that are 

computed as,  

 

 , ,

1 1

e eff e eff avg

n n n t+  += + σ σ C ε   (2.11) 

 ( ), ,

1 1

v eff v eff avg

n n n t+  +
 = + − 
 

σ σ β C C B ε   (2.12) 

 

where  denotes Hadamard product between the matrices or vectors. These computations 

take place in the effective stress space (Khaled et al., 2018) and hence the superscript eff  

is used. 
C  is the equilibrium stiffness matrix generated using the moduli corresponding 

to the quasi-static stress-strain curves while C  is the total stiffness matrix generated 

using the moduli corresponding to the current strain rate. β  and B  are a vector and a 

matrix containing among other parameters exponential functions of decay constants 

(Achstetter, 2019), 

 

 33 55 6611 22 44

T
t t tt t t

e e e e e e
    −  −  − −  −  −  =

 
β   (2.13) 
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  (2.14) 

 

There is no known procedure to obtain ij  values as of now and must be estimated by the 

user. It should be noted that 11,22,33,12,23,13,44,55,66ij =  and that these values cannot 

be negative (Achstetter, 2019).  Larger values of   will negate the rate effect. The 

components of ,e eff

nσ  and ,v eff

nσ  are given by the following equations, 
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12,,

12,

71

i

ni eff

n dc


 =

−
  (2.18) 

23,,

23,

81

i

ni eff

n dc


 =

−
  (2.19) 

13,,

13,

91

i

ni eff

n dc


 =

−
  (2.20) 

 

where, i  can be either e  (equilibrium) or v  (viscous) and the stress components on the 

right-hand side are in the true stress space. An assumption is thus made that damage 

affects the equilibrium and viscous stresses in the same way. The conversion from the 

true stress space to the effective stress space is done separately for the equilibrium and 

the viscous components. The components of  ,v eff

nσ  are taken as zero if the material is 

assumed to be purely visco-plastic. The total trial stress is computed using the following 

equation, 

  

 , , ,

1 1 1

t eff e eff v eff

n n n+ + += +σ σ σ   (2.22) 

 

The total trial stress is corrected back to the yield surface using a radial return algorithm. 

More detail into the radial return algorithm will be discussed in Section 2.2.4. The yield 



37 

 

function which is a modified version of the quadratic Tsai-Wu failure criterion, which is 

given by Eq. 2.1 can be re-written as, 

 

 ( )  , , , ,

1 1 2 3 1 1 1( ) 1 0 0 0
T

t eff t eff t eff t eff

n n n nf F F F+ + + += − + +σ σ σ Fσ   (2.23) 

where, 
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In the new implementation, the yield function coefficients (
iF ’s and ijF ’s) are 

computed based on the current yield stresses corresponding to the quasi-static stress-

strain curves to predict the onset of plasticity (Hoffarth et al., 2016). The stress tensor in 

the effective space is updated as,  

 

 ( )
,

1

,

1 1
t eff
n

eff t eff

n n

h


+

+ +  


 = − + − 
   σ

σ σ C C C B
σ

  (2.24) 

 

where   is the plastic multiplier increment. It is taken as zero if the material is assumed 

to be purely visco-elastic. During the simulation,   is computed  as a function of the 

current yield stress obtained from interpolation using the current plastic multiplier ( ). 

The highest or the lowest rate curves are used if the current value is greater than or less 

than the given user input curves. After the stress is updated using Eq. 2.24, the 
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equilibrium and the viscous stresses need to be updated. In order to ensure that the total 

stress is equal to the sum of the equilibrium and the viscous stress, these stress tensors are 

updated as follows:  

 

If ,

1( )e eff

n tolf + σ , 

 , ,

1 1

e eff e eff

n n+ +=σ σ   (2.25) 

 ( )
,

1

, ,

1 1
t eff
n

v eff v eff

n n

h


+

+ +  


 = − + − 
   σ

σ σ C C C B
σ

  (2.26) 

else   

 
,

1

, ,

1 1
t eff
n

e eff e eff

n n

h


+

+ + 

 
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  (2.27) 

 ( )
,

1

, ,

1 1
t eff
n

v eff v eff

n n

h


+

+ + 


 = − − 
   σ

σ σ C C B
σ

  (2.28)  

 

where tol  is a numerical tolerance (default value of 610− ).  Eqs. 2.25-2.28 show that as 

long as the yield function value computed from the equilibrium stress is non-positive, the 

return to the yield surface is achieved by reducing the viscous stresses only. This ensures 

that the stress does not fall below the equilibrium stress in the effective space. Finally, 

1

eff

n+σ , ,

1

e eff

n+σ  and ,

1

v eff

n+σ are converted into the true stress space using Eqs. 2.5, 2.8, 2.15-

2.20. The updated ,

1

e eff

n+σ  and ,

1

v eff

n+σ  are used in the next time step for computation of the 

trial stress.  
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2.2.4 Plastic Multiplier Computation 

The computation of the plastic multiplier increment,   (at a given time step and stress 

Gauss point) is carried out in two stages. The first stage involves bracketing the root with 

lower bound (
1 ) and upper bound (

2 ). In the second stage, secant iteration 

technique is used to find the root. A detail discussion on the second stage including the 

algorithm used can be found in Hoffarth (2016). The techniques used in bracketing the 

root is discussed in this sub-section. 
1  is always taken as zero and hence corresponds 

to trial yield function value (
TRIALf ). 

2  corresponds to a value of yield function, f  

which is negative. 

 

Following are the steps involved in finding 
2 : 

Step 1: An initial estimate of the plastic multiplier increment ( 1

2 ) is computed based on 

the assumption that the time step is perfectly plastic (Hoffarth, 2016) as,  

 

 

( ),

1,
1 1
2

, ,

1 1

:

:

t eff eff

n nt eff

n

t eff t eff

n n

f

f h


+

+

+ +


−


 =

 

 

σ σ
σ

C
σ σ

  (2.29) 

The yield function value is computed based on this estimate ( 1

2( )f   ). If 1

2( )f   is 

negative, it implies that 1

2  is the upper bound ( 1

2 2  =  ). In this case, follow the 

secant iteration technique, otherwise go to Step 2. 
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(a) 

 
(b) 

Figure 4. Plastic Multiplier Increment Computation: (a) Bounding the Root from the Left 

Regime (b) Bounding the Root towards the Right regime 

 

Step 2: If 1

2( )f   is positive as depicted in Figure 4(a), an exhaustive search is carried 

out by discretizing the region from 0 to the 1

2 . If a negative f  cannot be found, the 

search is continued to the right of 1

2  using a geometric sequence as shown in Figure 

4(b).  Numerical experience with solving tens of problems has shown that discretizing the 

initial search region into 1000 points, using a multiplier of 1.1 for the second search 

region, and searching for a maximum of 1000 iterations more often than not yields the 
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correct 
2 if one exists. If 

2  is found, follow the secant iteration technique, otherwise 

go to Step 3. Step 3 is skipped if the technique discussed in it has been used before at the 

given time step and stress Gauss point. 

Step 3: There can be cases where finding 
2  using the non-associated flow rule is 

impossible. In such a case, the flow rule is modified to be associated (Achstetter, 2019). 

The plastic potential function which appears in the plastic work equation (Hoffarth, 2016) 

is replaced by the yield function, 

 

 , , , mod

1 1 1, ,

1 1

: : :t eff t eff t eff

p n p n nt eff t eff

n n

h f
W k + + +

+ +

 
= = =

 
σ ε σ σ

σ σ
  (2.30) 

 

where, k  is a scalar quantity to keep the equations consistent in dimensions; f  is 

dimensionless whereas h  has a dimension of stress. mod  is the plastic multiplier 

corresponding to an associated flow rule and can be assumed to be the same as   since 

the condition is to maintain plastic work compatibility via k . Eq. 2.26 can be re-arranged 

to as, 
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,

1 ,
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n t eff
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n t eff

n

h
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f

+

+

+

+




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



σ
σ

σ
σ

  (2.31) 

 

Eq. 2.30 can be re-written by replacing the expression for k  as, 
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  (2.32) 

 

Eq. 2.32 modifies the direction of the return without modifying the plastic multiplier. In 

cases where the angle between the flow direction and the yield surface makes the 

plasticity algorithm incapable of correcting the trial state of stress, this modification can 

help locate a point on the yield surface. As per  Eq. 2.32, 
,

1

t eff

n

h

+



σ
 in Eq. 2.29 is replaced 

by the term on the right hand side of Eq. 2.33 and Step 1 and/or Step 2 are/is carried out.   
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  (2.33) 

 

Step 4: In rare cases, due to the complexity of the state of stress, the plasticity algorithm 

might not be able to bound the solution even after switching to the associate flow rule. In 

this case, the state of trial stress is corrected to point towards the origin of the stress 

space. Eq. 2.24 can be re-written as, 

 

 
,

1

,

1 1
t eff
n

eff t eff

n n

h


+

+ +


= − 

 σ

σ σ K
σ

  (2.34) 
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where, ( ) = + −K C C C B .  Since, the radial return must be in the direction of the 

origin of the trial stress instead of 
,

1
t eff
n

h

+


−

 σ

K
σ

, Eq. 2.34 is further modified as 

 

  ( ), ,

1 1 1

eff t eff t eff

n n n n+ + += −σ σ σ   (2.35) 

or, ( ), 1 ,

1 1 1

eff t eff t eff

n n n n −

+ + += − σ σ K K σ   (2.36) 

 

where, n  is a quantity to ensure that the plastic multiplier (increment) has the same value 

as that of the non-associated case (Achstetter, 2019). Eq. 2.30 can be used to find the 

expression for n ,  

 

 , , , 1 ,

1 1 1 1,
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or 
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As per  Eq. 2.38, 
,

1

t eff

n

h

+



σ
in Eq. 2.29 is replaced by the term on the right hand side of Eq. 

2.39 and Step 1 and/or Step 2 are/is carried out.   
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All these techniques have been implemented to make the plasticity algorithm more robust 

since the f −  behavior is unknown and can take any arbitrary shape. If none of these 

techniques is able to bound the root, an error message is issued and the analysis is 

terminated. In such a situation, reducing the time step may fix the problem. 

 

2.2.5 Taylor-Quinney Effect 

There can be increase in temperature in a material during a high strain rate deformation 

(Farren & Taylor, 1925; Taylor & Quinney, 1934). This happens when the plastic work is 

converted into heat during plastic deformation. This is of utmost importance in case of an 

impact scenario which would involve high strain rate response (Johnston et al., 2017, 

2018; Konieczny, 2018) and a softening of the material around the point of impact. The 

rise in temperature due to plastic work is given by the following equation, 

 

 t

p

T h
c





 =    (2.40) 

 

where, 
t  is the Taylor-Quinney coefficient and pc  is the specific heat. These two 

parameters are required as input for computing the temperature increase.  
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3 FAILURE MODELING IN OEPDMM 

 

Theoretical and implementation details of two failure criteria implemented in an 

orthotropic plasticity model are presented. The well-known Puck Failure criterion and a 

recently developed Generalized Tabulated Failure criterion are discussed and show how 

to link a failure sub-model to existing deformation and damage sub-models in the context 

of explicit finite element analysis.  

 

3.1 Puck Failure Model 

Puck’s failure model is an action-plane based model for transversely isotropic UD fiber-

reinforced composite lamina (Deushle, 2010; Deuschle & Kropline, 2012; Deuschle & 

Puck, 2012; Shyamsunder et al., 2020a, 2020b). Action plane refers to the plane that 

develops forces to resist the applied force. The theory considers two modes of failure 

separately - fiber fracture (FF) and inter-fiber fracture (IFF). Three stresses- 
n  (normal 

stress), 
nt  (shear stress transverse to the fiber direction) and 

1n  (shear stress in the 

direction of the fiber) act on the section plane, and govern the IFF, where the plane that is 

inclined at an angle of   to the 3-direction represents the section plane (Figure 5). 
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Figure 5. Stresses acting on the Action Plane (Deuschle & Puck, 2012) 

 

These three stress quantities are derived from the stresses acting along the PMDs as, 

 

 2 2

22 33 23cos sin 2 sin cosn       = + +   (3.1) 

 ( )2 2

22 33 23sin cos sin cos cos sinnt         = − + + −   (3.2) 

 
1 13 12sin cosn    = +   (3.3) 

 

The orientation of the fracture plane depends on the type of loading. For example, in the 

case of a pure normal tension loading (Figure 6(a)), the plane perpendicular to the 

loading direction is the action plane shown by the gray colored plane. For almost all 

unidirectional laminae, the fracture plane is parallel to the action plane for this loading 

condition (Figure 6(b)). On the other hand, for the case of pure shear loading transverse 

to the fiber direction, the action plane (Figure 6(c)) is not parallel to the fracture plane 

(Figure 6(d)). The inclination of the fracture plane is determined numerically in a 
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material model. The failure criterion for IFF is based on stresses acting on the fracture 

plane. The fracture in the lamina is assumed to take place when the stress exposure is 

equal to unity. Since there are two modes of failure, the stress exposure is also defined 

separately for the FF and IFF denoted as 
EFFf  and 

EIFFf  , respectively. 

 

  
  

(a) (b) (c) (d) 

Figure 6. Transverse Single Tensile Stressing (a) Action Plane and the Corresponding (b) 

Fracture Plane. Pure Shear Stressing (c) Action Plane and the Corresponding (d) Fracture 

Plane (Deuschle & Kropline, 2012) 

 

In the current work, after the failure criterion (onset of failure) is satisfied at an element’s 

Gauss point, the stresses in the PMDs are gradually brought down to zero using smeared 

formulation techniques that have been used in other materials such as metals and concrete 

(Bazant & Oh, 1983). The idea is extended to laminated composites (Pinho et al., 2006b), 

and is used here with modifications. Puck theory also considers a reduction in IFF 

strength due to local micro-fractures in the 1-direction. This reduction in the IFF strength 

is taken care by additional parameters (Deuschle & Kropline, 2012). For example, 
1w  

takes care of the reduction in the IFF strength due to micro-fractures that are due to fiber 
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filaments failing before the FF criterion is satisfied. This arises from the fact that all the 

fiber filaments do not have uniform strength, and there is statistical variation in the 

strength of the filaments. The failure of these fiber filaments causes local damage and 

micro-fractures in the lamina thus reducing the resistance against IFF. Hence, the original 

EIFFf  is modified by scaling it by 
1w , where 

1w  can vary between 0 to 1. This implies 

that the new 
EIFFf  will satisfy a value of unity sooner. 

1w  is assumed to be a function of 

the stress in 1-direction and must be determined experimentally. Deuschle & Kroplin 

(2012) use an estimate of 
1w  since adequate experimental data were not available. 

Another parameter which affects the IFF strength is m p +  that takes care of the effect of 

non-fracture plane stresses on the IFF. The assumption is that due to micro-damages in 

the composite caused by flaws, fracture can occur in a plane other than the numerically 

estimated fracture plane. Hence, the stresses on the fracture plane that causes IFF can be 

lower than the computed one. To account for this effect, the strength parameters and the 

inclination parameters are modified based on m p +  based on a function which depends on 

the standardized stress exposure (ratio of the stress exposure corresponding to an action 

plane to the stress exposure corresponding to the fracture plane). The effects of 
1w  and 

m p +  have not been considered in the current failure implementation based on the 

assumption that this behavior is taken care of by the deformation and the damage sub-

models since the input to those two sub-models are obtained from experiments where the 

composite exhibits fiber micro-fractures and matrix micro-damages.  
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Similar to other failure theories (Hashin, 1980; Tsai & Wu, 1971), Puck theory also 

assumes a failure envelope in the IFF mode called the Master Fracture Body (MFB). A 

typical MFB is shown in Figure 7 that helps illustrate the use of the strength values as the 

anchoring points. The notation used for the strength parameters are shown in Table 3. 

Any strength parameter with a superscript A represents the strength in the action plane. 

 

Table 3. Strength Parameters at Lamina Level 

AtR⊥
 Tensile strength of the composite in the direction transverse to the fiber 

direction 
cR⊥

 Compressive strength of the composite in the direction transverse to the fiber 

direction 
AR⊥

 In-plane shear strength of the composite 

AR⊥⊥
 Transverse shear strength of the composite 

AR ⊥
 See Figure 7(b) 

 

 

Figure 7. Master Fracture Body (MFB) in the Action Plane-Related Stress Space 

(Deuschle & Kroplin, 2012) 

(a)

(b)
(c)
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The inclination parameters, 
,t cp ⊥ , represent the slope of the master fracture body with 

respect to 
n  axis (see Figure 7(c)). These parameters are the slope of the Master 

Fracture Body at 0n = . At 90 =  , 
, ,t c t cp p⊥ ⊥= , and 

,t cp⊥  are determined by generating 

the fracture body in the 
2 21( , )   space (Puck et al., 2002). In this case since the fracture 

plane angle is zero, the action plane stresses are the PMD stresses themselves, i.e. 

2n =  and 
1 21n = . At 0 =  , 

, ,t c t cp p⊥ ⊥⊥= . However, ,t cp⊥⊥
 cannot be obtained directly 

from experiment - cp⊥⊥
 is indirectly determined from transverse compression testing 

where the fracture angle can be measured, tp⊥⊥
 is assumed to be the same as cp⊥⊥

since 

there is no established technique to obtain this, and 
,t cp⊥  and ,t cp⊥⊥

 are related to 
,t cp ⊥  for a 

given   using Eq. 3.17.  

 

3.1.1 Stress Degradation Model 

The state of stress in an element needs special attention when the failure criterion is 

satisfied at any one of the stress Gauss points. In the current work, a Stress Degradation 

Model (SDM) is implemented as an integral part of the Puck failure model and serves 

two purposes. First, the stresses in the PMDs are gradually brought down to zero in the 

post-peak regime to avoid numerical instabilities such as elastic snapback arising from 

stress redistribution to the adjacent elements (Belyschko et al., 2014). Second, the process 

to degrade the stresses should be mesh independent (Shyamsunder et al., 2020a). An 

earlier version of the Stress Degradation Model discussed in Shyamsunder et al. (2020a) 

has been modified. In the previous implementation, at the element Gauss point under 
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consideration, once failure onset is detected, the deformation and the damage calculations 

were skipped. The value of true stress corresponding to the failure onset was stored and 

was scaled down to compute the degraded stress. Sometimes this approach resulted in 

excessively elongated elements resulting in smaller critical time step, and thereby longer 

simulation run time. In the improved implementation presented here, the computations 

related to deformation and damage are carried out even after failure onset is detected. The 

effective stress is held constant, but the true stress is gradually reduced. This approach 

provides not only post-peak numerical stability but the ability to control the residual 

strength in the finite element. In the context of this dissertation, residual strength, RSc , is 

expressed as a fraction of the peak stress that, and the element is eroded when the 

residual strength value is reached, i.e. maxf RSc = , 0 1.0RSc  . This gradual 

degradation of stress is explained in Figure 8(a) with the corresponding effective damage 

parameter ( dc )  shown in Figure 8(b). Let 0  and 0  represent the stress and strain 

values at failure onset, respectively. If the FF criterion is satisfied before the IFF 

criterion, only the stress in the 1-direction is degraded. It is assumed that the material has 

load carrying capacity in the 2-direction, 3-direction, 1-2 plane, 2-3 plane and 1-3 plane 

even after FF. The stress components other than the 1-direction stress are degraded only 

after the IFF criterion is satisfied. Conversely, if IFF is satisfied before FF, it is assumed 

that the composite has load carrying capacity in the 1-direction. Therefore, the stress is 

not degraded in the 1-direction till the FF criterion is satisfied. It should be noted that 0  

is in the true stress space, whereas the corresponding effective stress counterpart is 

denoted as ,0eff . At the onset of failure, the initial value of effective damage parameter, 
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0

dc , is computed from the damage parameter ij

kld . As can be seen in Figure 8(a), the 

effective stress is kept constant at ,0eff  since a non-negative slope of the effective stress 

is required by the plasticity algorithm. The true stress is brought down to the residual 

strength, f , using the deformation and the damage sub-models with the corresponding 

strain value of 1 . f  is computed based on the value of Post Peak Residual Damage (

PPRD ) and the corresponding effective damage parameter stays constant at PPRD  as 

shown in Figure 8(b).  PPRD  is a user input parameter for PFC. The residual strength is 

maintained constant till the element is eroded at the erosion strain value of f  that is 

computed as 

 

 0

0

2f

L
 




= +   (3.4) 

 

where,   is the fracture energy in the mode under consideration, and L  is the 

characteristic length of the finite element (taken as cube root of the volume of the 

element).   
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(a) (b) 

Figure 8. (a) Stress vs Strain Response using PFC (note max 0 = ) (b) Effective 

Damage Parameter vs Strain using PFC 

 

Eq. 3.4 is based on the assumption that the area under the stress-strain curve between 0  

and f , ignoring the residual strength, corresponds to fracture energy. The use of the 

characteristic length provides the mesh regularization feature in the failure sub-model. 

The effective damage parameter after failure onset can be expressed as 

 

 
( ) 0 1

0 0

1

1 1
f

d

d f
c

c

PPRD

 
  

 

 

  −
− +    

= −  




  (3.5) 

 

For 0  ,  dc  is computed using Eqs. 2.6, 2.7 and 2.9.  
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3.1.2 Implementation of Puck Failure Theory 

Twenty parameters are used in PFC to detect failure onset, implement the SDM 

algorithm, and carry out element erosion. Most, not all, can be readily found from 

experiments. The tensile, compressive and shear strength parameters, 

 ||, , , ,t At c c AR R R R R⊥ ⊥ ⊥
 can be obtained from experiments (Khaled et al., 2017). The 

procedure to determine the inclination parameters,  , , ,c t t cp p p p⊥ ⊥ ⊥⊥ ⊥⊥
, is discussed in 

Puck et al., 2002. The magnification factor, 
f

m
, is used in the FF criterion and 

accounts for stress magnification in the fiber due to inhomogeneity in the matrix stress 

distribution in the vicinity of the fiber (Deuschle & Kroplin, 2012). In addition, in the FF 

criterion, the fiber Poisson’s ratio, 
f ⊥
, and modulus of elasticity, 

fE  are used 

(Kodagali et al., 2017). Next, the fiber direction fracture energy, 
f , can be determined 

through experiments (Pinho et al., 2006c). However, this value has been estimated in this 

dissertation since no experimental data is available for the composite. Mode I and Mode 

II interlaminar fracture energies,  ,I II  , are determined through experiments (Khaled 

et al., 2019). In the absence of experimental data, the tension, compression and shear-

related post-peak residual damage parameters, 

 , , , ,T C T C SPPRD PPRD PPRD PPRD PPRD⊥ ⊥
, are estimated values.  

 

The algorithm used in PFC with the SDM implementation is as follows. 

Input: The strain tensor for the current time step, stress tensor from the previous time step 

(true stress space), and failure-related parameters for a specific finite element. The 
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current failure state is also required as input and is one of the following – (a) the Gauss 

point has not satisfied any of the failure criterion, or (b) the Gauss point has satisfied a 

failure criterion and is undergoing post-failure stress degradation. 

Output: Updated effective damage parameters and erosion status of the element. 

Step 1.1(a): If the current point is not in FF failure state, update the stresses using the 

effective damage parameters 
1

dc  and 
4

dc  (Eqs. 2.6 and 2.7). 

Step 1.1(b): If the current point is in FF state, update the stresses using the following 

effective damage parameters.  

 

If 
11 0   

 

11, 11, 1 0 1

1, 1 11 11 11

1, 1, 1 1, 1, 11 11, 1

1,

(1 )

0

t td

td d d d f

t t t t t

d

t T

c
c c c where c

c PPRD

 
  

 

−

−

− −

  −
  −    = +   = −  




  (3.6) 

 

else 

 

11, 11, 1 0 1

4, 1 11 11 11

4, 4, 1 4, 4, 11 11, 1

4,

(1 )

0

t td

td d d d f

t t t t t

d

t C

c
c c c where c

c PPRD

 
  

 

−

−

− −

  −
  −    = +   = −  




  (3.7) 

 

where 
ij  are the strain tensor components. The subscript t  is used to denote the current 

time step.   
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Step 1.2(a): If the current point is not in IFF failure state, update the stresses using the 

effective damage parameters, 
2

dc , 
5

dc , 
3

dc , 
6

dc , 
7

dc  , 
8

dc  and 
9

dc  (Eqs. 2.6, 2.7 and 2.9). 

Step 1.2(b): If the current point is in IFF state, update the stresses using the effective 

damage parameters as follows.  

For i -direction normal components (i=2, 3):  

 

If 0ii   

 

, , 1 0 1

, 1

, , 1 , , , 1

,

(1 )

0

ii t ii td

i t ii ii iid d d d f

i t i t i t i t ii ii t

d

i t T

c
c c c where c

c PPRD

 
  

 

−

−

− −

⊥

  −
  −    = +   = −  




  (3.8) 

else 

, , 1 0 1

3, 1

3, 3, 1 3, 3, , 1

3,

(1 )

0

ii t ii td

i t ii ii iid d d d f

i t i t i t i t ii ii t

d

i t C

c
c c c where c

c PPRD

 
  

 

−

+ −

+ + − + + −

+ ⊥

  −
  −    = +   = −  




  (3.9) 

For ij  shear component (ij=12, 23, 13, k=7, 8, 9):  

 

, , 1 0 1

, 1

, , 1 , , , 1

,

(1 )

0

ij t ij td

k t ij ij ijd d d d f

k t k t k t k t ij ij t

d

k t S

c
c c c where c

c PPRD

 
  

 

−

−

− −

  −
  −    = +   = −  




     (3.10) 
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Step 2.1(a): If the current point is not in FF state, check FF criterion. FF onset is assumed 

to take place if the stress exposure, 
EFFf , is equal to or greater than one (Deuschle & 

Kroplin, 2012): 

 

 

eq

EFFf
R


=      (3.11) 

 ( )11 22 33f

eq

f

f

E
m

E
     ⊥ ⊥

 
= − − +  

 

     (3.12) 

where 

 
||

||

, 0

, 0

t eq

c eq

R R if

R R if





 = 


= 
     (3.13) 

   

When 1EFFf   , compute the failure strain as 

 

 0

11 11 0

11

2 ff

L
 




= +      (3.14) 

 

Step 2.1(b): If the current point is in FF state, erode the element if one of the following 

criteria is satisfied: 

(i) 
11 11

f   

(ii) ( )( )0

11 11 0     
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Step 2.2(a): If the current point is not in IFF state, check IFF criterion. IFF onset is 

assumed to take place if the stress exposure, EIFFf , computed for ,fp =  is equal to or 

greater than one using Eq. 3.15 (Deuschle & Kroplin, 2012). fp is the orientation of the 

fracture plane with respect to the 3-direction. EIFFf  is computed by varying   from 90−   

to 90 .  The angle   which yields the maximum value of  EIFFf  is denoted fp .  

 

2 22

1

222

1

( ) ( )1
( ) ( ) 0

( ) ( )
( ) ( ) 0

t t
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 

 
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   
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      − + + +         
       

= 
    
 + + +              

     (3.15) 

where 

 
( )2 1

c
A

c

R
R

p

⊥
⊥⊥

⊥⊥

=
+

     (3.16) 

 

, ,,
2 2cos ( ) sin ( )

t c t ct c

A A A

p pp

R R R





 
⊥ ⊥⊥⊥

⊥ ⊥⊥ ⊥

    
= +       
    

     (3.17) 

 
2

2

2 2
cos ( ) nt

nt nl




 
=

+
     (3.18) 

 

When 1EIFFf = , compute the following failure strains: 

 

 0

0

2
, 22,33f I

ij ij

ij

for ij
L

 



= + =      (3.19) 
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 0

0

2
, 12,23,13f II

ij ij

ij

for ij
L

 



= + =      (3.20) 

 

Step 2.2(b): If the current point is in the IFF state, erode the element if at least one of the 

following criteria is satisfied: 

(i) 
, , 22,33,12,23,13f

ij t ij ij  =  

(ii) 
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Sometimes after an element is eroded, the neighboring elements undergoing stress 

degradation process may experience sudden changes in the strain field due to stress 

redistribution. This may lead to undesirable stress oscillations (stress reversals) taking 

place in a very short duration of time. Criteria (ii) and (iii) in Step 2.2(b) erode the 
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elements in which stress reversal with respect to the stress at the failure onset takes place. 

Since PFC assumes transverse isotropy, care needs to be taken which stress component (

22  or 33 ) has to be chosen to keep track of stress reversal. This is taken care by the 

criterion in (ii). Similar strategy is used for the shear components. SF  is used here to 

ensure that the elements in which the stress components are oscillating are eroded. 

Numerical experimentation has shown that a value of 0.8SF =  has worked reasonably 

well and is currently used for all the verification and validation tests presented in this 

dissertation.  

 

Although Puck failure theory has been considered one of the better models in WWFE-I 

and WWFE-II (Hinton et al., 2004; Kaddour & Hinton, 2012), there are limitations that 

should be noted. First, the theory is valid for transversely isotropic material at the lamina 

level. Second, the Master Fracture Body is not a closed envelope (Deuschle & Kroplin, 

2012). Third, the failure criteria are not functions of rate and temperature. This is 

important for unidirectional polymeric composites that exhibit rate and temperature 

sensitivities and form the impacted structural system.     

 

3.2 Generalized Tabulated Failure Model 

A failure model where an arbitrarily shaped failure surface in the stress space can be used 

to predict the failure of a composite is highly desirable. One would expect the failure 

surface of a composite to be complex such that a mathematical expression cannot be 

defined and used as is done with traditional failure criteria (Hashin, 1980; Tsai & Wu, 
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1971). In the earlier version of GTFC (Goldberg et al., 2018b), the in-plane, the out-of-

plane and the combined in-and-out-of-plane failure states were defined in terms of 

stresses. The current version of GTFC assumes that failure states are strain rather than 

stress-based so that post-peak behavior can be handled seamlessly. Failure surfaces need 

to be defined for each of these failure states in the equivalent failure strain and failure 

angle space (Shyamsunder et al., 2019). 

 

 

Figure 9. General form of In-Plane Failure Surface. 

 

Figure 9 shows the in-plane failure surface where 
FAIL

eq

IP
 is a function of the failure angle, 

IP , and can take any shape depending on the composite properties. The equivalent strain, 

eq

IP   and failure angle, IP  are computed for each time step and element Gauss point as 
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11 22 122eq

IP   = + +      (3.21) 
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IP0 90 18090− 180− 
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Note that the failure angle is expressed in terms of 22  and 12  as in unidirectional 

composites, the stress in the 1-direction, 11 , is usually of a magnitude higher than 22  

and 12 . Using  11  in the computation of the failure angle (Goldberg et al., 2018b) 

instead of using 12  may make the points on the failure surface agglomerate as 

illustrated in Figure 10 where most of the data points are concentrated at IP  values of 

180− , 0 and 180 . This is not desirable since the interpolation between unequally 

spaced points may yield inaccurate equivalent failure strain values.  

 

Figure 10. In-Plane Failure Surface where Failure Angle is Computed using  11  

 

Let the in-plane failure state 1e  be computed as 

 

 
1

FAIL

eq

IP

eq

IP

e



=      (3.23) 

FAIL

eq

IP


IP
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An out-of-plane failure surface can be constructed similar to Figure 9 with the failure 

surface expressed in terms of 
FAIL

eq

OOP
 as a function of OOP  for a given 33 . 

eq

OOP   and 

OOP  are computed for each time step and element Gauss point as 

 

 
2 2 2

33 13 232 2eq

OOP   = + +      (3.24) 

 
1 13

2 2

13 23

cosOOP




 

−
 
 =
 + 

     (3.25) 

 

Similarly, the out-of-plane failure state 2e  is computed as 

 

 
2

FAIL

eq

OOP

eq

OOP

e



=      (3.26) 

 

An element is eroded if 1e   where 

 

 
1 2

1 2

max( , ) 0

( ) ( ) 0n nn

e e if n
e

e e if n

 =
= 

+ 

     (3.27) 

 

where n  is a user defined interaction parameter that can be used to couple the in-plane 

state of stress/strain to the out-of-plane state of stress/strain. GTFC requires two sets of 

tabulated input - the equivalent failure strain and the corresponding failure angle for in-



64 

 

plane ( ),FAIL

eq

IPIP
   and the out-of-plane ( ),FAIL

eq

OOPOOP
   failure modes. In this dissertation, 

these values are based on data obtained from uniaxial testing (Khaled et al., 2017), 

though it is desirable to generate a richer set of data either via biaxial/triaxial laboratory 

tests or virtual testing that has the potential to generate rich and reliable data. A minimum 

of 21 parameters (9 stress-strain curves that are augmented with post-peak data, 9 

uncoupled damage parameter curves, set of in-plane ( ),FAIL

eq

IPIP
   values and set of out-of-

plane ( ),FAIL

eq

OOPOOP
   values, and n ) are used in GTFC to compute the post-peak response 

including element erosion.  

 

3.2.1 Stress Degradation Model 

Unlike PFC, GTFC does not require failure onset to be detected to compute the post-peak 

response. Each input stress-strain curve has pre-peak and post-peak regions that are used 

to capture the peak stress via the deformation and damage sub-models, and handle the 

post-peak behavior via the damage sub-model similar to what is done with the stress 

degradation model in PFC. Figure 11(a) shows a typical stress-strain input curve for a 

given component. The portion of the stress data between 
0  and 

1  can be artificially 

generated if experimental data does not exist or is not available. Note that , 1,..,6RS

ic i =  

for the normal tensile (1-3)/compressive (4-6) stresses in the PMDs,  , 7,8,9RS

ic i =  for 

the three principal shear components. For the deformation sub-model to carry out the 

plasticity-related computations, the input stress in the effective stress space cannot have a 

negative slope. To ensure that this condition is satisfied, an effective damage parameter 
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curve is used as input (Figure 11(b)). This damage parameter data is computed for the 

respective component by keeping the effective stress constant and equal to the peak 

effective stress. The uncoupled damage parameter is the same as the effective damage 

parameter as no coupled-damage parameters are used in the post-peak calculations.  

 

  
(a) (b) 

Figure 11. (a) Stress-Strain Input Augmented with Post-Peak Data (note max 0 = ) (b) 

Effective Damage Parameter Input for Handling Post-Peak Behavior. 

 

3.2.2 Implementation of GTFC 

The algorithm used in GTFC is as follows. 

Input: The strain tensor for the current time step, stress tensor from the previous time step 

which are in the true stress space, and failure-related parameters.  

Output: Element erosion status. 

Step 1: For a given time step, update the element Gauss point stress tensor using the 

deformation and the damage sub-models. 



0 1

TRUE STRESS
max

f



dc

0 1

1.0
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Step 2.1: Compute 
eq

IP  and IP  using Eqs. 3.21 and 3.22. Using the interpolation 

function, obtain 
FAIL

eq

IP
  corresponding to the computed IP . 

Step 2.2: Compute 1e using Eq. 3.23.  

Step 3.1: Compute 
eq

OOP  and OOP  using Eqs. 3.24 and 3.25. Using the interpolation 

function, obtain 
FAIL

eq

OOP
  corresponding to the computed OOP . 

Step 3.2: Compute 2e using Eq. 3.26.  

Step 4: Compute e using Eq. 3.27. Erode the element if 1e  . 

Like PFC, the current implementation of GTFC is also not rate and temperature 

dependent. Obtaining experimentally a rich set of failure surface data is neither easy nor 

feasible with the current state-of-the-art. The combination of experimental testing along 

the principal material directions and virtual testing for combined state of stress appears to 

be a viable option. To alleviate this problem, in this work, the in-plane and out-of-plane 

responses are computed separately and then combined via the interaction term, n .  
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4 VERIFICATION AND VALIDATION OF FAILURE MODELS 

 

Verification and validation (V&V) are an integral part of any material model 

development. The verification tests ensure that the implementation is done correctly. 

Verification testing can start with as simple as single element tests, whereas the 

validation tests are used to gage the fidelity and reliability of the developed material 

model. V&V discussed in this section are based on carbon/epoxy unidirectional 

composite, T800/F3900 (Toray Carbon Fibers America, 2020). While details of V&V  

can be found in prior publications (Hoffarth, 2016; Hoffarth et al., 2017, 2020; Khaled et 

al., 2018, 2019; Shyamsunder et al., 2020a, 2020b), in this chapter a few select cases are 

used to illustrate the process and discuss the results. 

 

Experiments have been carried out at ASU and The Ohio State University (OSU) to 

characterize T800/F3900 and obtain parameters to drive OEPDMM. Test coupons have 

been used to obtain the stress-strain curves in 1-direction tension (T1), 2-direction tension 

(T2), 3-direction tension, 1-direction compression, 2-direction compression (C2), 3-

direction compression (C3), 1-2 plane shear, 2-3 plane shear, 1-3 plane shear, 1-2 plane 

45° off-axis tension, 2-3 plane 45° off-axis compression, and 1-3 plane 45° off-axis 

compression under quasi-static room-temperature (QS-RT)conditions as ASU (Khaled et 

al., 2017, 2020). At OSU, experiments have been carried out at strain rates higher than 

the quasi-static rates to obtain the stress-strain data in 2-direction tension at 0.001/s and 

325/s, 2-direction compression at 0.001/s, 1/s and 813/s, and 3-direction compression at 

800/s (Deshpande et al., 2019). The legends in the graphs in this chapter: (a) QS-RT 
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refers to testing carried out at quasi-static (~10-4/s), room temperature conditions, (b) 

Model (QS-RT) or Model refers to the curve generated from the average values obtained 

from at least 3 different test replicates and used as input to the constitutive model, (c) Exp 

(X/s) refers to experimental data from one test coupon at strain-rate of X/s and used as 

input to the constitutive model, and (d) Experiment refers to the experimental data used 

for validation. 

 

Single element tests carried out to highlight each one of the features discussed in Chapter 

2 are presented in Section 4.1. In all the single element finite element (FE) schematics, 

the Principal Material Directions (PMDs) are marked within the cube with the fiber 

direction represented by a green line. The slashed red color arrows represent a restraint 

along the direction of the arrow. All the translational displacements are retrained at the 

pin support. The black color arrows represent a prescribed displacement. This is followed 

by V&V for the implemented failure sub-models discussed in Chapter 3. In Section 4.2, 

the V&V results from simulations run using only the QS-RT stress-strain curves (Khaled 

et al., 2017) are presented. These include single element verification tests each for both 

PFC and GTFC to illustrate the significance of the respective failure parameters. 

Validation is carried out using a stacked-ply composite panel subjected to a quasi-static 

loading and ballistic impact tests, where both PFC and GTFC are exercised. Additional 

validation test results can be found in Shyamsunder et al. (2020a). Rate-dependent 

features of OEPDMM and its integration with GTFC is presented in Section 4.3 using a 

set of ballistic impact validation tests (Deshpande et al., 2019).  
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4.1 Single Element Verification using only the Deformation Sub-model 

4.1.1 Strain-rate Smoothing 

Background: The verification of OEPDMM with the strain-rate smoothing feature is done 

with T800/F300 unidirectional composite (Toray Carbon Fibers America, 2020). The 

stress-strain curves obtained from experiments (Khaled et al., 2017) are used to drive 

OEPDMM deformation sub-model (damage and failure sub-models are de-activated).  

 

Finite Element Modeling: A single element 1-direction tension test model is considered 

where an eight-noded hexahedron element is used (Figure 12). The displacement is 

applied to induce a strain-rate of approximately 1/s. 

 

Results: The strain-rate obtained in the normal components for different values of s  are 

shown in Figure 13 where  T1, C2 and C3 represent the strain-rate in the 1-direction 

tension, 2-direction compression and 3-direction compression components, respectively.  

 

 

Figure 12. 1-Direction Tension Single Element Schematic 
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Discussions: The oscillations in the 2 and the 3-direction compression components 

decrease as the value of s  increases. Typically, a small value is used only if necessary, 

with larger values used to control noisy behavior and promote numerical stability.  

 

  

(a) (b) 

  

(c) (d) 

Figure 13. 1-Diretion Tension Test Strain-Rates in the Three Normal Components for (a) 

0s =     (b) 0.4s =  (c) 0.8s =  (d) 0.95s =  

 

4.1.2 Stress-relaxation 

Background: The verification of visco-elastic-plastic feature is demonstrated using a 

stress-relaxation example (Toray Carbon Fibers America, 2020). The QS-RT stress-strain 
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curves (Khaled et al., 2017) are used in the deformation sub-model with the damage and 

failure sub-models de-activated. In addition, 2-direction compression stress-strain 

obtained at 1300/s strain-rate is used. 

 

Finite Element Modeling: Figure 14 shows the FE model. A constant compressive strain 

rate of approximately 1300/s is induced due to the applied displacement till the strain in 

the element in the 2-direction reaches a value of ~0.04. Thereafter, the strain is held 

constant at a value of ~0.04 in compression as shown in Figure 15(a). 

 

 

Figure 14. 2-Direction Compression Single Element Schematic 

 

Results: The stress from the simulation is shown in Figure 15(b). MAT213 (1300/s) 

represents the stress-strain response obtained from simulation using OEPDMM in Figure 

15(c). The 2-direction compression strain-rate and the effective plastic strain rate with 

respect to time from the simulation are in Figure 15(d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. 2-Direction Compression Test Results: (a) Loading Strain-Time History (b) 

Computed Stress-Time History (c) Input Stress-Strain Curves and Computed Response 

(d) Computed Rate-Time History 

 

Discussions: The stress gradually reduces to the “peak stress of the QS-RT curve” and 

stays constant after the strain is held constant. This is because the effective plastic strain 

rate gradually goes to zero, and so the interpolated flow stress used for the plasticity 

computation corresponds to the input stress-strain curve with the lowest effective plastic 

strain rate (QS-RT curve in this case). It should be noted that a sudden drop in the stress 

value is avoided since the interpolation of the stresses are done using the total strain rate 
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rather than the effective plastic strain rate (Hoffarth et al., 2016). The sudden drop in the 

stress is not realistic and would have caused numerical instability. 

 

4.1.3 Taylor-Quinney Effect 

Background: The Taylor-Quinney effect verification test case is carried out using 

synthetic data as there is no experimental data available for the specific heat ( pC ) and the 

Taylor-Quinney coefficient ( t ) for T800/F3900 composite. Specific heat is taken for a 

similar composite (Achstetter, 2019) and three different values of t have been used (

0.0, 0.75, 1.0t = ). In Figure 16(a), Model (20 °C) is the data obtained from ASU QS-

RT test (Khaled et al., 2017). “Model (30 °C) and Model (40 °C) use synthetic data 

obtained by scaling down the Model (20 °C) curve after the yield point. 

 

 
(a) 

 
(b) 

Figure 16. 2-Direction Compression Test Results: (a) Stress-Strain Response (b) 

Temperature-Strain Curve 
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Results: Figure 16(a) shows the stress-strain curves obtained from simulation for different 

values of  . Figure 16(b) shows the corresponding temperature profile plotted against 

time. The reference temperature is 20˚C. Figure 17 shows the stress vs plastic strain from 

the simulation using 1.0 = .  

 

 

Figure 17. 2-Direction Compression Test Results – Stress-Plastic Strain 

 

Discussions: The rise in temperature for the case where 1.0 =  is verified using the 

analytical equation (Eq. 2.40). The plastic work done is obtained from the area under the 

stress-plastic strain curve: 
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As evident from the temperature-strain graph for the case with 1.0 = , the rise in 

temperature is about 2.30 K. 

 

4.2 PFC and GTFC Rate-Independent V&V 

General Details: This V&V for PFC and GTFC utilizing only the QS-RT stress-strain 

curves (Khaled et al., 2017) as input are shown. Experiments show that the composite 

exhibits brittle failure with little or no post-peak strength (Khaled et al., 2020). One-

element verification tests are used to explain the implementation nuances of both the 

failure sub-models. Two validation tests are used to determine the efficiency and 

accuracy of the failure theories – a stacked-ply test carried out at ASU with loading in the 

quasi-static regime, and a high-velocity impact test carried out at NASA-GRC. Three 

different mesh sizes have been used for the stacked-ply validation tests – coarse, medium, 

and fine with increasing mesh densities to study mesh dependencies and convergence 

properties. In the impact validation tests, cohesive zone elements (CZE) have been used 

for modeling the delamination behavior and the details can be found in an earlier 

publication (Khaled et al., 2019).  

 

PFC Parameters: The same input parameters used in a previous research (Shyamsunder 

et al., 2020a) are used here: 366100 (2524 ),tR psi MPa=  6500 (44.8 ),AtR psi MPa⊥ =  

|| 106000 (731 ),cR psi MPa=   25500 (176 ),cR psi MPa⊥ =  18600 (128 ),AR psi MPa⊥ =  

0.30,cp⊥ =  0.35tp⊥ = , 0.25,tp⊥⊥ =  0.30,cp⊥⊥ =  0.0168, ⊥ =  0.2,f ⊥ =  1.1,
f

m =  
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( )4400 7 10f lb in N m =  , ( )2.15 376I lb in N m = , ( )10.4 1821II lb in N m = , 

( )72.37 10 158E psi GPa=   in tension, ( )71.7 10 117E psi GPa=   in compression, and 

( )71.8 10 124fE psi GPa=  . The only new input parameters are the PPRD  parameters 

whose values are estimated. First, it is assumed that there is no residual strength in 

tension and shear based on the observations made from the uniaxial stress experiments 

conducted on T800/F3900 composite specimens that are loaded until failure (Khaled et 

al., 2017). Second, 
CPPRD  is estimated assuming the compressive strength in the 1-

direction after the failure onset is approximately equal to the compressive strength in the 

2-direction and there is a 50% residual strength in the transverse compressive direction. 

Composite panels still have some load carrying capacity after failure onset since the 

loading is in compression. In summary, unless otherwise stated, the following values are 

used in the FE models: 0.99TPPRD = , 0.255CPPRD = , 0.99,TPPRD ⊥ =  

0.5,CPPRD ⊥ =  and 0.99SPPRD = . 

 

GTFC Parameters: For all the simulations, it has been assumed that the compression 

residual strength parameters are equal to the respective peaks in the stress-strain input 

curves, 1.0, 4,5,6RS

ic i= = . The residual strength used for the tension and the shear 

components are discussed for each test case separately. The equivalent failure strain is a 

constant function of the failure angle for both the in-plane and the out-of-plane modes. In 

the absence of experimental data, it is assumed that FAIL FAIL

eq eq

IP OOP
 = . The interaction term, 
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n  is taken as 2 thereby coupling the in-plane and the out-of-plane states of stress that is 

to be expected in an impact event.  

 

Numerical Calibration of Failure-related Parameters: As stated earlier, there are 

numerous failure-related parameters that can be calibrated to achieve better predictions.  

Amongst all failure-related parameters, the following parameters are used to improve the 

finite element predictions via a few trial-and-error runs: PFC: 
||

cR , f , I ,  ,II  

,TPPRD CPPRD , TPPRD ⊥ , CPPRD ⊥ , and SPPRD . GTFC: , 1,..,9,RS

ic i =  ,FAIL FAIL

eq eq

IP OOP
  . 

 

Nomenclature: The following nomenclature is used in the numerical example graph 

legends: (a) MAT213-GTFC and MAT213-PFC imply that the simulation is run with 

GTFC and PFC, respectively, (b) the post-fixes -F, -M and -C  imply that the simulation 

is run with fine, medium and coarse mesh model, respectively, (c) the post-fix -Modified 

Strength implies that one or more failure-related values have been calibrated, (d) for all 

MAT213-PFC simulations, and (f) for all the MAT213-GTFC simulations, Model implies 

that calibrated post-peak stress-strain data is added to the experimentally obtained pre-

peak QS-RT data.  

 

4.2.1 PFC Single Element Verification Test 

Background: One single-element example (T2) is discussed to illustrate the SDM 

implementation. The test is executed with two different sets of input parameters that 
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influence the post-peak behavior (Table 4). II  shown in Set 2 column is a fictitious 

value and is used to show the significance of the parameter.  

 

Table 4. Input Parameters for Verification 

Component Set 1 Set 2 

TPPRD ⊥  0.5 0.7 

II  10.4 lb/in (1821 N/m) 40.4 lb/in (7074 N/m) 

 

Finite Element Modeling: The model involving the 8-noded hexahedral element is shown 

in Figure 18. The boundary conditions are applied in order to obtain a uniaxial state of 

stress in the 2-direction.  

 

Figure 18. 2-Direction Tension Single Element Schematic  

 



79 

 

Results: The Model curve as well as the stress-strain response of the FE models are 

shown in Figure 19 where the effective damage parameter is shown using the secondary 

axis.  

 

Discussions: The pre-peak stress-strain responses remain the same for Set 1 and Set 2. 

The difference is observed in the post-peak regime. Larger the value of II , the larger is 

the area covered under the curve in the post-peak regime. It can also be observed that, 

smaller the value of TPPRD ⊥ , the larger the residual strength.  

 

 

Figure 19. PFC Input and Results: 2-Direction Tension Test Stress and Effective Damage 

Parameter vs Strain Response. 
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4.2.2 GTFC Single Element Verification Test 

Background: This test is the same single element test used with PFC, but now executed 

with GTFC.  

 

 
(a) 

  
(b) (c) 

Figure 20. GTFC Input and Results: 2-Direction Tension Test (a) Stress and Effective 

Damage Parameter vs Strain Response (b) Equivalent Strain vs Strain (c) e , 1e and 2e  

vs Strain 
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Finite Element Modeling: Figure 20(a) shows an additional post-peak regime in the 

Model curve. The stress-strain data in the pre-peak regime is obtained from experiments 

whereas the post-peak regime contains synthetic data that is used to control the post-peak 

stress degradation behavior. The figure also shows the effective damage parameter curve 

which increases from 0.0 to a value of 0.9 (see secondary axis), and the corresponding 

effective stress which remains constant. The residual strength in all the tension and the 

shear component is 10% of the respective peaks in the stress-strain input curve. The 

values of , 0.01eq

IP FAIL =  and , 0.01eq

OOP FAIL = are calibrated values that are obtained with 

the objective to ensure that the element erodes after stress degradation. 

 

Results: The drop in the stress value at a strain of ~0.008 is because of element erosion. 

Figure 20(b) shows 
eq

IP   and 
eq

OOP  increasing with respect to the 2-direction strain with 

the same trend as 1e  and 2e shown in Figure 20(c), respectively.  

 

Discussions: The simulation stress-strain response matches the Model curve in both the 

pre-peak and the post-peak regimes. As is evident from Figure 20(c), the element is 

eroded when 1e = .  

 

4.2.3 Validation using Stacked-Ply Composite subjected to Quasi-Static Loading 

Condition 

Background: The first set of validation tests is done using stacked-ply specimens 

consisting of 8 plies with a lay-up of [0/90/45/-45]s as shown in Figure 21. Two different 
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tests are carried out – (a) specimen subjected to tension in the y-direction, and (b) 

specimen subjected to compression in the y-direction. The grey colored region represents 

the portion of the specimen containing glass fiber tabs and gripped in the test fixture 

(Holt, 2018; Shyamsunder et al., 2020a). 

 
(a) 

 
(b) 

Figure 21. Schematic Diagram (a) Tension Test (b) Compression Test (Shyamsunder et 

al., 2020a) 

 

Finite Element Modeling: The tabbed regions in the specimen are excluded from the 

finite element model so as to create a computationally efficient model.  Figure 22 shows 

the FE models with the fine mesh used for the stacked-ply tension test (SPVT) and 

stacked-ply compression test (SPVC). 8-node hexahedral elements are used. There are 

eight elements through the thickness corresponding to the eight plies in the experimental 
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specimen. Table 5 shows FE model details for the fine, medium and the coarse meshes. 

The SPVT boundary conditions are shown in Figure 23 using the highlighted nodes in the 

fine mesh model. All the nodes on the support face are restrained from displacement in 

the y-direction as shown in Figure 23(a). The center line nodes through the z-direction 

are restrained from displacement in the x-direction as shown in Figure 23(b). This is done 

to avoid strain localization on the support face. Since only the gage section is modeled, 

the displacement at the end of the gage section from the experiment is taken from the 

digital image correlation (DIC) analysis (Holt, 2018) and applied to the FE model along 

the positive y-direction on the loading face nodes as shown in Figure 23(c). The nodes on 

the loading face are also restrained in the x-direction. To avoid rigid body motion in the 

z-direction (out-of-plane), the center line nodes through the x-direction on either end are 

restrained in the z-direction direction as shown in Figure 23(d). The boundary conditions 

are similar for both SPVT and SPVC models except for the applied loading. Also, in the 

case of SPVC, all the nodes at the support face are restrained in displacements in both the 

x and the y-directions. LS-DYNA’s (Ansys-LST, 2020b) reduced integration option has 

been used with appropriate hourglass control. 
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(a) (b) 

Figure 22. FE Model Used for (a) Stacked-Ply Tension Test (SPVT) (b) Stacked-Ply 

Compression Test (SPVC). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 23. SPVT Boundary Conditions (a) y-Displacement Restraint (b) x-Displacement 

Restraint (c) x-Displacement Restraint and Applied Displacement along y-Direction (d) 

z-Displacement Restraint. 

Table 5. Number of Elements in the FE Models 

Test Number of Elements (Largest Aspect Ratio) 

Fine Medium Coarse 

SPVT 38400 (3.2) 9600 (6.4) 2400 (12.8) 

SPVC 25600 (1.6) 6400 (3.2) 1600 (6.4) 
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 Results: The load versus time graph is used to compare FE and experimental results. For 

the FE model, the nodal reactions at the support face along the loading direction are 

added to obtain the load value. The experimental values have been obtained from the test 

frame load cell. The SPVT load vs time graphs with PFC and GTFC are shown in Figure 

24(a) and (b), respectively. The energy vs time graph with the fine mesh is shown in 

Figure 25.  

 

  
(a) (b) 

Figure 24. Stacked-Ply Tension Test Load vs Time Plot with (a) PFC and (b) GTFC. 

  
(a) (b) 

Figure 25. Stacked-Ply Tension Test Energy vs Time Plot (Fine Mesh Model) with (a) 

PFC and (b) GTFC 
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The PFC SPVC fine mesh results are shown in Figure 26(a) before failure-related 

parameters are calibrated as well as after calibration (tagged as Modified Strength). The 

GTFC results are shown in Figure 26(b). No failure-related parameter calibration has 

been performed. The corresponding energy plots are shown in Figure 27(a) and (b), 

respectively. 

 

  
(a) (b) 

Figure 26. Stacked-Ply Compression Test Load vs Time Plot with (a) PFC and (b) GTFC 

  
(a) (b) 

Figure 27. Stacked-Ply Compression Test Energy vs Time (Fine Mesh Model) with (a) 

PFC and (b) GTFC 
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Discussion SPVT Models: The peak load predicted using PFC agrees well with the 

experimental results. The overall FE response is a little stiffer. The distribution of the 

longitudinal stress (y-stress) is uniform in the model. IFF first initiates in the ±45ۥ° plies, 

then in the 90° plies, after which FF initiates in the 0° plies. This is immediately followed 

by a uniform erosion of the elements throughout the entire model. The differences when 

there is complete loss of load carrying capacity (zero load value) amongst the three mesh 

sizes is probably due to the different aspect ratios used in these models. The aspect ratios 

of the element play an important role in element erosion (Eq. 3.4). Overall, the prediction 

is an improvement compared to results using the earlier implementation of PFC 

(Shyamsunder et al., 2020a). In the simulations using GTFC, the equivalent failure strain 

is assumed to be 0.8. The peak load predictions are lower than the experimental values - 

the coarse and the medium model are about 15% less and the fine model is about 20% 

less. It should be noted that after the true stress reaches the peak in each component of 

input stress-strain curves, the true stress starts to degrade. This is in contrast to PFC 

where the true stress degrades only after the failure criterion is satisfied. The difference in 

the prediction amongst the different mesh sizes (about 5%) can be attributed to the fact 

that GTFC is not mesh independent.  

 

Discussion SPVC Models: In the model using the fine mesh with PFC, the peak load 

prediction is about 20% higher than the experimental result. Subsequently, a few failure-

related parameters have been calibrated. The 1-direction compressive strength, cR  has 

been reduced slightly by about 2% to 102899 psi (709 MPa), a value that is within the 
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experimental coefficient of variation of 9.7% (Khaled et al., 2017). In addition, f  has 

been reduced to 20 lb/in (3502 N/m). The value of 
CPPRD  has been increased to 0.75 

since the previously assumed value (0.255) made the FE model too stiff. After 

calibration, the predictions agreed with the experimentally obtained value. IFF first 

initiates in the ±45ۥ° plies and 90° plies, followed by FF in the 0° plies. Like the SPVT 

case, difference in the point of time at which the model completely loses its of load 

carrying capacity compared to the experimental values can be observed. This can be 

attributed to the difference in the aspect ratios of the elements in the three models. 

Similarly, the GTFC failure-related parameters have been calibrated. The tension and 

shear residual strength components are taken as 10% of the respective peak stress, and 

the equivalent failure strains are reduced from 0.8 to 

0.016( ),0.011( ),0.008( )FAIL FAIL

eq eq

IP OOP
F M C = =  making the peak load prediction more 

accurate but mesh dependent. 

 

In all the stacked-ply simulations, the load is predominantly carried by the 00 plies. As 

can be seen from the energy plots, as required, the kinetic energy and the hourglass 

energy are negligibly small for both PFC and GTFC. It is believed that some 

improvements can be made to the models. First, only the gage section of the specimens is 

modeled. Modeling the whole specimen with the fiberglass tabs will lead to a much 

larger model but may improve the predictions made for the compression test since 

boundary effects such as stress concentrations can be avoided. This will also require the 

modeling of the interface between the tabs and the composite. In the ±450 plies in the FE 
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model, the edges of the elements are aligned along the loading direction rather than the 

along the fibers. Modeling the edges of the elements in ±450 plies along the fiber 

direction with the use of tie-break may improve the results as failure of elements is in this 

case, dependent on element orientation.     

 

4.2.4 Ballistic Impact Validation Test  

Background: A set of ballistic impact tests has been conducted at NASA-Glenn Research 

Center (Melis et al., 2018). These tests are designed to produce validation test data for the 

developed OEPDMM constitutive model. The experimental set-up which involves a 

single state gas gun is shown in Figure 28(a) (Hoffarth et al., 2017). In each of the tests, 

the target is a composite panel impacted with a 50 gm (0.122 lbm) aluminum (Al-2024) 

projectile at different velocities ranging from 119 ft/s (36.3 m/s) to 530 ft/s (161.5 m/s). 

These tests are listed in Table 6. The composite (flat) panel is made of 16 plies of 

T800/F3900 composite with a lay-up of [(0/90/45/-45)2]S. The dimensions of each panel 

are 12 in. x 12 in. x 0.122 in. (30.48 cm x 30.48 cm x 0.3099 cm). The composite panels 

are clamped by a circular frame with an inner diameter of 10 in. (25.4 cm) as shown in 

Figure 28(b) and Figure 28(c). The photograph of one of the aluminum projectiles used 

for the tests is shown in Figure 28(d). Digital image correlation (DIC) data gathered from 

high-speed cameras have been used with the ARAMIS software system (Melis et al., 

2018) to obtain both projectile information as well as the displacement of the front and 

back sides of the impacted panel. 

 



91 

 

  
(a) (b) 

  
(c) (d) 

Figure 28. Ballistic Impact Test Set-up: (a) Single State Gas Gun (b) Inside View of Test 

Chamber Showing the Front of the Composite Panel (c) Inside View of the Test Chamber 

Showing the Back of the Composite Panel (d) Projectile  
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Table 6. Ballistic Impact Tests 

Test Projectile Velocity KE 

(J) 

Contained 

(ft/s) (m/s) 

LVG1065 119 36.3 32.8 Yes 

LVG1067 154 46.9 54.4 Yes 

LVG1071 155 47.2 55.4 Yes 

LVG1072 172 52.4 68.1 Yes 

LVG1073 172 52.4 68.4 Yes 

LVG1069 177 53.9 72.2 Yes 

LVG1068 181 55.2 75.6 Yes 

LVG1070 181 55.2 75.7 Yes 

LVG1066 189 57.6 82.2 Yes 

LVG1064 236 71.9 128.1 Yes 

LVG1075 385 117.3 341.8 Yes 

LVG1074 417 127.1 403.5 No 

LVG1076 454 138.4 474.4 No 

LVG1063 530 161.5 650.3 No 
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In this sub-section, the LVG1075 test with the projectile velocity as 385 ft/s (117.3 m/s) 

is chosen for validating the improved failure sub-models. This test case has been chosen 

since this test case has the highest projectile impact velocity with the projectile contained 

and significant damage. The crack pattern is clear and is used as a qualitative metric for 

comparison with the simulation. Figure 29(a) shows that the panel is clamped and bolted, 

and Figure 29(b) shows a close-up view showing the rear side of the panel with visible 

damage. The projectile rebounded after the impact with an average velocity of 46.4 ft/s 

(14.15 m/s).  

 

  
(a) (b) 

Figure 29. (a) Back View of the Composite Panel after the Test Clamped (b) Zoomed in 

Picture of the Cracks Formed on the Back Side of the Panel (Shyamsunder et al., 2020a). 

Closer Examination Shows a Through Crack 

 

Finite Element Modeling: A detailed mesh study has been carried out to find an optimal 

mesh with a view to satisfactorily balance accuracy and computations (Achstetter et al., 

2020). For a number of impact models, the element aspect ratio, number of elements in 

the through thickness direction, hourglass control, and the element integration order have 
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been varied to gage the effect of each parameter on the maximum out-of-plane 

displacement and the time at which the maximum displacement occurred. These two 

computed values have been compared against the experimental results. Based on the 

study, the FE model shown in Figure 32 is used for this work. Table 7 shows the details 

of the FE model. 8-node hexahedral elements are used in the FE models. The panel is 

modeled using 16 elements through the thickness with a one-element layer for each ply. 

In between the plies, cohesive zone elements are used. There are 15 CZE layers modeled 

using LS-DYNA’s MAT186. The aluminum projectile is modeled using LS-DYNA’s 

MAT024. The nodes at the location of the bolts are restrained in-plane, and the nodes at 

the clamps are restrained in the out-of-plane direction. Figure 33 shows the boundary 

conditions used for the simulation. 

 

Table 7. FE Model Details 

Number of Elements Number of Nodes 

MAT213 

(plies) 

MAT186 

(between plies) 

MAT024 

(projectile) 

373184 349860 17040 775238 

 

Numerical calibration is carried out with the PFC model. The post-peak residual damage 

parameters used are: 0.64,TPPRD = 0.0,CPPRD =  0.64,TPPRD ⊥ = 0.0,CPPRD ⊥ =  and 

0.64SPPRD = . The fracture energies have also been calibrated, and the values used are: 

( )4400.0 7 10I lb in N m =    and ( )4400.0 7 10II lb in N m =  . Numerical 

calibration has also been carried out with the GTFC model. It is assumed that the in-plane 
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residual strengths in the 1-direction tension, 2-direction tension and 1-2 shear 

components are 30%. The through thickness residual strengths (3-direction tension, 2-3 

shear and the 1-3 shear components) are assumed to be 34%. The equivalent failure strain 

has been assumed to be 0.8.  

 

Results: Figure 32(a) shows the last frame from the LVG1075 simulation run with PFC 

and Figure 32(b) with GTFC. The simulations are terminated when the projectile rebound 

velocity becomes constant.  Node identified as N402688 in Figure 32(b) is used to track 

and compare the out-of-plane displacement (Figure 33(a)). Figure 33(b) shows the 

projectile velocity as a function of time. It should be noted that (a) negative velocity 

indicates projectile rebound, and (b) the average rebound velocity of the projectile 

obtained from the experiment is shown as an average value. 

 

  
(a) (b) 

Figure 30. FE Model Mesh Used for: (a) Panel (b) Projectile 
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(a) (b) 

Figure 31. Nodes which have Translational Restraints: (a) In-Plane Displacement (b) 

Out-Of-Plane Displacement 

  
(a) (b) 

Figure 32. LVG1075 Simulation Showing Impacted Panel at the Final Time Step with the 

Projectile Hidden from View (a) Using PFC (b) Using GTFC 

 

PROJECTILE
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(a) (b) 

Figure 33. (a) Out-Of-Plane Displacement at Node 402688 (b) Projectile Velocity Plotted 

Against Time. Experimental Rebound Velocity Estimated and Averaged Over a Period of 

1.5 ms 

 

Discussions: As can be seen from Figure 32(a), there is widespread surface damage 

including elements eroded around the clamped region in the FE model contrary to the 

experimental results (Figure 29). The element erosion is due to the combination of both 

FF and IFF.  The out-of-plane displacement is captured very well for the first 1 ms that 

includes both the first positive and the first negative peaks. It should be recognized that 

node 402688 in the region with considerable surface damage starting around 1 ms and 

hence both the FE computed response and the experimental values are reliable only for 

that time duration. The calibration of the six failure-related parameters yields a flakier 

panel with a different damage and crack patterns and a higher rebound velocity. Perhaps, 

regression analysis involving these parameters may yield improved results, but the 

primary objective of the validation test is to show the difficulties in modeling impact tests 

without resorting to an involved parameter calibration process. 
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The GTFC results show that the qualitatively crack pattern obtained from the FE 

simulation reasonably matches the experiment. In addition, the crack is a through crack 

similar to the experiment. The maximum out-of-plane displacement prediction agrees 

well with the experimentally obtained value though there is difference in the wavelength 

of the displacement profile. The rebound velocity it overestimated similar to the PFC 

results. It should be noted that the calibration of the input residual strength has been done 

with multiple objectives – matching crack pattern, out-of-plane displacement and 

rebound velocity, and it is very likely that decreasing the residual strengths in the tensile 

and the shear components can lead to a less stiff panel response. 

 

4.3 GTFC Rate-Dependent Validation 

4.3.1 Processing Rate Data 

Careful processing of rate-dependent stress-strain data before these are used in finite 

element analysis is necessary to ensure that the data for various rates are used 

consistently in the constitutive model. Using the Kuhn-Tucker form of the 

loading/unloading conditions (Berstad et al., 1994) as applicable to the consistency 

method, it can be shown that as soon as visco-plastic yield criterion is satisfied (the 

viscous stress that is dependent only on plastic strain rates), there is plasticity. The strain 

rates that generate the viscous stress, create purely plastic strains above the static yield 

surface. In other words, a correct, tacit assumption is that the dynamic yield surface will 

never be below the yield surface at the same temperature.  
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Processing of the input stress-strain curves is illustrated here using Figure 34 as an 

example. Figure 34(a) shows the curves for the 2-direction tension component at three 

different strain rates (Deshpande et al., 2019; Khaled et al., 2017). The corresponding 

stress-effective plastic strain curves are shown in Figure 34(b). Care must be taken to 

avoid intersecting stress-effective plastic strain curves as intersecting curves will likely 

result in either inaccurate results or numerical instability. Often, intersecting curves result 

from selecting incorrect initial yield strain value.   

 

  
(a) (b) 

Figure 34. 2-Direction Tension Data for the T800-F3900 Composite: (a) Experimental 

Stress-Strain Curves (b) Effective Stress vs Effective Plastic Strain Curves Constructed 

from Data in (a) 

 

Figure 35(a) shows the post-failure augmented stress-strain curves for 2-direction 

tension. The figure also shows the 2-direction tension effective damage parameter curve 

(see secondary axis). In the current implementation, for each of the twelve stress-strain 

components only a single effective damage parameter curve can be used. This implies 

that for a given component, the effective damage parameter curve must be compatible 
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with all the stress-strain curves. If there is no compatibility, there would be a numerical 

issue - plastic strain computed in the pre-processing step will turn out to be negative. The 

compatibility is maintained by making sure that all the stress-strain curves (3 in this case) 

have the same ultimate strain values. As can be seen in Figure 34(a), Exp (325/s) has the 

highest ultimate strain. So, the Model (QS-RT) and Exp (0.001/s) are modified to have an 

additional data point with a stress value equal to the respective peak stress and a strain 

value equal to the ultimate strain of the Exp (325/s) curve. The stress is gradually brought 

down to a residual strength of 30% of the respective peak stresses for all the 3 curves. 

The residual strength of 30% is a calibrated value obtained from the impact validation 

tests. Further explanation on the same is presented in the numerical results section. Since 

the plasticity algorithm requires a non-negative slope in the effective stress-effective 

plastic strain curve, the effective stress is kept constant as shown in Figure 35(b). 

 

  
(a) (b) 

Figure 35. 2-Direction Tension Data for T800/F3900 Composite: (a) Input Stress and 

Effective Damage Parameter vs Strain Curves (b) Effective Stress vs Effective Plastic 

Strain Curves Constructed from Data in (a) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Ef
fe

ct
iv

e
 D

am
ag

e
 P

ar
am

et
e

r

St
re

ss
 (

p
si

)

Strain

Input Stress & Effective Damage Parameter vs Strain

Model (QSRT)

Model (0.001/s)

Model (325/s)

Effective Damage
Parameter

0

20

40

60

80

100

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.002 0.004 0.006 0.008 0.01

St
re

ss
 (

M
P

a)

St
re

ss
 (

p
si

)

Strain (in/in)

Effective Stress vs Effective Plastic Strain

Model (QSRT)

Model (0.001/s)

Model (325/s)



101 

 

4.3.2 Ballistic Impact Validation Test  

The four highest speed tests discussed in the earlier section with additional stress-strain 

input at higher strain-rates are used to evaluate GTFC. The test cases are LVG1075, 

LVG1074, LVG1076 and LVG1063. These cases have been chosen since these have the 

highest impact energy and three out of the four are uncontained tests. The primary metric 

for comparison is the final projectile velocity (exit/rebound velocity). 

 

Material Data: There are two material models - OEPDMM for the composite panel and 

MAT024 for the aluminum projectile. In addition to the QS-RT curves, the following 

stress-strain curves at room temperature are used:  (a) 2-direction tension at 10-3/s and 

325/s, (b) 2-direction compression at 10-3/s, 1/s and 813/s, and (c) 3-direction 

compression at 800/s (Deshpande et al., 2019). In addition: FILT=0.0 in Eq. 2.11 since 

no numerical instabilities are detected, all the components of decay constants in the β  

vector in Eq. 2.13 and 2.14 are taken as 0.001.  

 

GTFC Data: All the compression residual strength parameters are equal to the respective 

peaks in the stress-strain input curves, 1.0, 4,5,6RS

ic i= = . The residual strength used for 

the tension and the shear components for the in-plane components is assumed to be 30% 

whereas, it is assumed that this value is 12% for the out-of-plane components (
1 0.3RSc = ,  

2 0.3RSc = , 
3 0.12RSc = , 

7 0.3RSc = , 
8 0.12RSc = , 

9 0.12RSc = ). In the absence of 

experimental data, it is assumed that the two equivalent failure strains are equal (

0.80FAIL FAIL

eq eq

IP OOP
 = = ) and are a constant function of the failure angle. The interaction 
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term, n  is taken as 2 thereby coupling the in-plane and the out-of-plane states of stress 

that is expected in an impact event. These failure parameters are obtained after 

calibration, the objective of which is to reduce the error involved in the prediction of the 

projectile exit/rebound velocity. 

 

FE Model: A number of impact models, the element aspect ratio, number of elements in 

the through thickness direction, hourglass control, and the element integration order are 

varied to gage the effect of each parameter on the maximum out-of-plane displacement 

and the time at which the maximum displacement occurred (Achstetter et al., 2019). 

These two computed values are compared against the experimental results. Based on the 

study, the following FE model parameters are selected for use in this section: (a) 8-node 

reduced integration hexahedral elements is used to model the panel and the projectile, (b) 

each ply in the panel is modeled using one element through the thickness, and (c) while 

the results are not sensitive to different hourglass control, viscous hourglass control 

(IHQ=1) led to low hourglass energy values and hence are used. The optimal mesh has a 

total of 99144 nodes, 91728 elements to model the panel, and 17040 elements to model 

the projectile. It should be noted that a coarser version of the mesh is used compared to 

the one used in Section 4.2.4 in order to reduce the simulation run time. Numerical 

experiments indicated that CZE layers do not affect the results and hence, are not used in 

the FE model.  

 

The nodes at the location of the bolts are restrained in-plane (Figure 36(a)), and the nodes 

at the clamps are restrained in the out-of-plane direction (Figure 36(b)). Eroding single 
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surface (*CONTACT_ERODING_SINGLE_SURFACE) and eroding surface-to-surface 

(*CONTACT_ERODING_SURFACE_TO_SURFACE) control controls are used. The 

numerical examples use the deformation, damage and the failure sub-models in 

OEPDMM. 

 

 
 

(a) (b) 

Figure 36. Nodes which have Translational Restraints: (a) In-Plane Displacement (b) 

Out-Of-Plane Displacement 

 

Results: The projectile exit/rebound velocity is used as the metric for the comparison of 

the experimental and the simulation results (Figure 37). The qualitative comparison of the 

crack patterns is shown in Figure 38. It must be noted that the crack patterns shown are 

captured at the last frame from each simulation corresponding to the last point in Figure 

PROJECTILE
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37. Table 8 shows the exit/rebound velocity error with respect to the experimental value. 

It also shows the normalized energy absorbed based on the kinetic energy and the 

respective error with respect to the experiment. Figure 39 shows 
1e and 

2e  contours on 

the back side of the panel from the simulations. These images are captured at the same 

point of time for each of the test cases when 
1e and 

2e  values are significantly large 

before a large through cracks are formed. 

 

 

Figure 37. Comparison of Projectile Velocity for the Impact Tests 

 

Discussions: A sensitivity analysis was carried out where the failure parameters- in-plane 

residual strength (
1 2 7

RS RS RSc c c= = ), out-of-plane residual strength (
3 8 9

RS RS RSc c c= = ) and 
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equivalent failure strain ( FAIL FAIL

eq eq

IP OOP
 = ) are taken as three parameters to be varied, and 

the exit/rebound projectile velocities are monitored (results not shown here). It was 

observed that the out-of-plane residual strength is the most significant parameters which 

affects the projectile exit/rebound velocity. This is also evident from Figure 39 where it 

can be seen that 
2e values are higher than the corresponding 

1e . This is because a 

projectile that is impacting perpendicular to the plate is likely to cause the through-

thickness failure as the dominant mode of failure. In other words, increasing the out-of-

plane residual strength makes the panel stiffer thereby decreasing the exit velocities or 

increasing the rebound velocities. The contained test (lowest projectile impact velocity) is 

chosen where an excess increase in the residual strength would cause the projectile to 

rebound with a much higher velocity. The predicted rebound velocity is very close to the 

experimentally obtained average rebound velocity with the use of appropriate failure 

parameters (parameters mentioned earlier). The projectile rebound velocity profile has a 

slight decrease in the slope with respect to time because there is a lot of rotation which is 

adding up to the out-of-plane velocity component. For the other test cases, the predictions 

made are on the conservative side – the projectile exit velocities are more than the 

respective experimentally obtained average exit velocities. This is desirable from a design 

point of view. The objective is to see whether the predictions have the same trend. 
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Table 8. Impact Validation Test Error Computation 

Test Impact 

Velocity 

(
IMPV ) 

 in ft/s 

(m/s) 

Exit/Rebound Velocity (V ) 

in ft/s (m/s) 

Normalized Energy 

Absorbed 

=
2 2

2

IMP

IMP

V V

V

−
 

E
x
p

er
im

en
t 

S
im

u
la

ti
o
n

 

E
rr

o
r
 

E
x
p

er
im

en
t 

S
im

u
la

ti
o
n

 

E
rr

o
r
 

LVG1063 530 

(161.5) 

262.9 

(80.1) 

306.0 

(91.4) 

16.6% 0.75 0.67 -8% 

LVG1076 454 

(138.4) 

114.2 

(34.8) 

187.5 

(45.7) 

64.1% 0.94 0.83 -11% 

LVG1074 417 

(127.0) 

25.4 

(7.7) 

71.8 

(11.5) 

182.4% 0.99 0.97 -2% 

LVG1075 385 

(117.0) 

-46.4  

(-14.14) 

-58.8  

(-17.9) 

26.0% 0.99 0.98 -1% 

 

As can be seen in Table 8, the error involved in the energy absorbed is close to or below 

10% for all the test cases. On the other hand, the simulations do not yield crack patterns 

that match the experiments. There are a few major factors affecting this behavior. First, 

the mesh size affects the crack pattern since in the failure sub-model, there is no mesh 

regularization technique. Second, as discussed earlier, there is no rate data available for 

the 3-direction tension component or the shear components. Figure 40 shows the 1-3 

shear strain-rate for all the different plies when the projectile makes contact with the 

panel for LVG1075 test. As can be seen, the 1-3 shear strain-rate magnitude is very high 

(in the order of 104) in some of the elements in the 0° ply.  Figure 41 shows the plastic 
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multiplier contour at the same point of time as that of the contours shown in Figure 40. 

The plastic multiplier magnitudes in some of the elements (mostly at the center) are also 

in the order of 104 which is much higher than the input (of the order of 102). Having more 

rate dependent input stress-strain curve would probably help better predict the response 

of the impact test. Fourth, the boundary conditions used for these test cases seems to have 

over constrained the panel since the crack is not distributed over the surface area of the 

panel. Further investigation is under way to see the effect of the boundary conditions 

applied to the composite panel. 
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(a) (b) 

 
  

(c) (d) 

 

  
(e) (f) 

 

  
(g) (h) 

Figure 38. Back View of the Test Composite Panel After the Experiment for (a) 

LVG1075 (c) LVG1074 (e) LVG1076 (g) LVG1063. Back View of the Last Frame of the 

Panel from the Simulation for (b) LVG1075 (d) LVG1074 (f) LVG1076 (h) LVG1063 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 39.  
1e  and 

2e  Contours on the Back Side of the Panels from the Simulations 

respectively, for (a)&(b) LVG1075 (c)&(d) LVG1074 (e)&(f) LVG1076 (g)&(h) 

LVG1063   
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(a) (b) 

  
(c) (d) 

Figure 40. Shear Strain-Rate Contour in the 1-3 Plane from the LVG1075 Simulation for 

(a) 0° Plies (b) 90° Plies (c) 45° Plies and (d) -45° Plies 

  



111 

 

  
(a) (b) 

  
(c) (d) 

Figure 41. Plastic Multiplier Contour from the LVG1075 Simulation for (a) 0° Plies (b) 

90° Plies (c) 45° Plies and (d) -45° Plies 
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5 CONCLUDING REMARKS 

 

Accomplishments: The demands for accurately modeling composite structures subjected 

to quasi-static and especially, dynamic loading in the US aerospace industry led to the 

initial funding for the development of a new constitutive model in LS-DYNA in 2012. As 

a result, in about 8 years, good progress has been made by the FAA-NASA funded 

composites team. Some of the progress is as a result of the work done in this dissertation. 

 

The following research objectives were identified at the beginning of the dissertation 

work. 

1. Enhance OEPDMM deformation and damage sub-models to simulate rate 

dependent composite behavior.  

2. Implement Puck Failure model and Generalized Tabulated Failure model. 

3. Verify the developed capabilities via single and multiple element test cases. 

4. Validate the developed capabilities using statically loaded structural test results 

from ASU, and impact test results from NASA-GRC. 

 

Via the list presented below, an inventory is taken to show that the objectives have been 

met satisfactorily: 

(1) Development of the theoretical details and implementation of visco-elastic-plastic 

formulation. This feature provides the capability to predict stress relaxation 

behavior of materials when using rate dependent input stress-strain data. 

Guidelines have been developed to ensure that experimental data are properly 
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processed for use by the algorithm. Single element verification tests have been 

carried out to demonstrate this feature. 

(2) The algorithm involved in the computation of plastic multiplier has been 

upgraded with additional associated flow rule and radial return scheme. This plays 

a major role in avoiding error termination during a simulation caused by inability 

to an acceptable plastic multiplier. Furthermore, this has helped in reducing the 

simulation time required to complete an analysis since it has made it possible to 

use a larger time step without compromising on the stability and accuracy of an 

analysis. 

(3) Other enhancements to the deformation sub-model include (i) automated 

modification of Poisson’s ratio to ensure that orthotropic material property 

requirements are met, (ii) strain rate smoothing to avoid numerical instability 

which may arise due to sudden changes in strain rates, and (iii) modeling 

temperature rise in composites due to Taylor-Quinney effect.  

(4) Two failure theories are now supported. The Puck Failure criteria has been 

adapted and implemented for use with the constitutive model.  Improvements 

have been made to the post-peak behavior to yield a more controlled solution 

(Shyamsunder et al., 2020a). The new stress degradation model (Shyamsunder et 

al., 2020b) provides more freedom to dictate the post-peak behavior. This has 

resulted in an improved prediction for the staked-ply tension and compression 

validation tests under quasi-static loading compared to earlier results 

(Shyamsunder et al., 2020a). Linking the post-peak behavior to fracture energy 

makes the strength predictions less dependent on the finite element mesh as 
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evidenced from the convergence analyses. The impact test simulation required 

calibration of the post-peak residual damage parameters to obtain a reasonable 

prediction. The out-of-plane displacement is predicted very well for the first 1 ms 

following the impact. The rebound velocity is within 10% of the experimental 

result. However, the damage and crack patterns are different. The material 

behavior appears to be flaky in comparison to the test results. 

(5) The Generalized Tabulated Failure model (GTFC) is a new failure criterion. It 

permits an arbitrary-shaped failure surface to be defined and used. In its current 

form, the failure surface is decomposed into in-plane and out-of-plane failure 

modes thereby making it suitable for modeling laminated unidirectional 

composites. The failure surfaces are used as an erosion criterion rather than for 

predicting failure onset. The post-peak behavior is predicted using the damage 

sub-model; stress components are degraded gradually to the respective residual 

strengths. The stacked-ply tension test results show the peak load to be slightly 

underpredicted, but the compressive test results are very close to the experimental 

results. Minimal calibration is done with the residual strength and equivalent 

failure strain values. Although, it has been found that GTFC is mesh size 

dependent, the strength of GTFC is demonstrated in the impact test simulation. 

The rebound velocity is within 10% of the experimental result. The crack pattern 

qualitatively matches the experimental results. The out-of-plane displacement is 

close to the first positive peak.  
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Additional four different ballistic impact test cases have been presented using GTFC with 

rate dependent input stress-strain curves. Out of these four, one of the tests is a contained 

test where the projectile does not go through the plate. A coarser mesh compared to the 

former impact test FE model has been used for this purpose to reduce the wall clock time 

of the simulation since the objective is to reduce the error in predicting the projectile 

exit/rebound velocity with respect to the experiment with a compromise on the predicted 

crack pattern. The procedure to use the stress-strain curve input available at different 

strain rates has been discussed in detail. The importance of carefully processing the rate 

dependent curves before using them as input to the material model has been highlighted. 

Sensitivity analysis showed that the out-of-plane residual strength plays the most 

significant role in the prediction of the projectile exit/rebound velocity. This has been 

used as the basis for calibration to obtain failure parameters which have been used 

uniformly for all the four test cases yielding results with reasonably good predictions. 

The error involved in the energy absorbed by the composite panel is less than 10% in all 

the four test cases, although the crack patterns could not be predicted. Further 

investigation into these test cases revealed that the rate involved in these test cases are 

extremely large compared to the rates at which the stress-strain curves have been 

specified. Analysis of the impact FE simulations show that the computed strain-rate 

values are very high (in the order of 103). These findings call for more rate dependent 

stress-strain curves to be used as input, especially in the shear components. This set of 

impact simulations are not carried out using PFC since the current implementation for 

PFC do not have the capability to incorporate rate dependent data. 
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Future Work: It is well understood that damage and failure of composite systems are 

driven by the composite architecture and the constituent materials, and that while multi-

scale modeling may make the numerical model more predictive, the enormous 

computational expense makes this approach currently untenable. What is desirable from 

an analyst’s viewpoint, is a reasonable and systematic approach that requires (a) input 

data that is largely experimental (physical and virtual) driven, (b) a small number of 

damage and failure-related parameters, and (c) an even smaller number of parameters that 

may require some tuning/calibration to yield consistent and somewhat conservative 

results. While the current implementation is a major improvement in capabilities to 

model composite structural systems, there are features that need to be developed and 

implemented.  Some of the ongoing work as well as future work to overcome the 

limitations of the current implementation are discussed in the following paragraphs. 

 

There is ample experimental evidence showing that for unidirectional carbon/epoxy 

composites the strength as well as the moduli in the in-plane shear and the transverse 

components increase with increase in strain-rate (Daniel et al., 2011). As discussed in 

Section 4.3.2, strain-rate values in the shear components are high in the impact 

simulations however, there is no shear stress-strain data available for higher rate. In such 

cases, synthetic stress-strain tabulated input at higher strain-rate can be used. These 

synthetic data can be generated using analytical expressions given in Daniel et al., 2011 

(Daniel et al., 2011) as well as by using engineering judgement. In the current 

implementation, for a given rate and temperature, linear interpolation is carried out 

amongst the input stress-strain curves to obtain the moduli and the yield stress. Using a 
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logarithmic interpolation rather than the linear interpolation will give a more realistic 

values of moduli and yield stress for a given composite material into consideration 

involving high rate/temperature event such as an impact scenario (Park et al., 2020).  

 

There is a need for both the PFC and the GTFC to be rate and temperature dependent. In 

order to make the PFC implementation rate and temperature dependent is rather 

straightforward; the strength parameters in the expression for IFF criteria (Eqs. 3.15 and 

3.16) need to be functions of strain rate and temperature. This implies that the Master 

Fracture Body will change as a function of strain rate and temperature. This can be done 

either using an analytical expression similar to the one used in Daniel et al., 2011 (Daniel 

et al., 2011) for the strength values or to provide a tabulated strength values as a function 

of strain rate and/or temperature (Park et al., 2020). Another aspect from a modeling 

point of view is the mesh objectivity. The mesh size should not affect the erosion pattern 

of elements in an FE model. Although it has been shown using the stacked-ply static tests 

that PFC is mesh independent, further investigation needs to be done using impact tests 

with different mesh sizes. As for GTFC, even if there is a way out in using rate-

dependent stress-strain curves as discussed earlier, this is not the best way since the user 

needs to modify the actual stress-strain input curve(s). The first step in making GTFC 

rate and temperature dependent is to make the damage sub-model rate and temperature 

dependent. This is required since GTFC relies on the damage sub-model for post-peak 

degradation behavior. For this purpose, the damage parameter curves - strain data set will 

be input into OEPDMM as a function of strain-rate and temperature. As for the element 

erosion criteria, this can also be input as a function of strain-rate and temperature.  
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In addition to the enhancements discussed earlier, the following features are worth 

exploring: 

(1)  The element erosion parameters can be defined as a function of the element 

characteristic length (Ansys-LST, 2018). In the case of GTFC, the erosion criteria 

(equivalent failure strain curves) can be defined as a function of the characteristic 

length of the elements so that the failure (erosion) is mesh size independent.  

(2) Support for non-local averaging algorithm that prevents the damage/failure and 

crack pattern to be dependent on the mesh orientation (Forghani, 2011). In other 

words, the crack pattern or the damaged region should be the same in structured 

mesh compared to that of a non-structured mesh. 

(3) Implementation of crashfront algorithm into OEPDMM would aid in simulating a 

crush test as evident from many of the composite material models discussed in 

Section 1.2.  

(4) Support for implicit analysis where dynamic effects play a minor role in the 

behavior of the structure. 

(5) Improving the computational throughput so as to cut down on the wall clock time. 

A second look at the overall algorithm is likely to identify computational 

bottlenecks. 

 

All the proposed improvements which can be implemented in the future as well as with 

more experimental data at higher rate and temperature will help better predict the 

behavior of composites for a variety of loading condition. As one of the pioneers in 

composite modeling, Alfred Puck mentioned in (Knops, 2008) – “What I already know 



119 

 

for a long time, is: Modern composites are black and not easy to be looked through but 

they are not at all products of black magic! We can understand them if we carefully try to 

think about their internal construction. However, thinking alone is not enough, of equal 

importance are smart experiments.” 
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