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 ABSTRACT 

 

Wearable technology has brought in a rapid shift in the areas of healthcare and 

lifestyle management. The recent development and usage of wearable devices like smart 

watches has created significant impact in areas like fitness management, exercise tracking, 

sleep quality assessment and early diagnosis of diseases like asthma, sleep apnea etc. This 

thesis is dedicated to the development of wearable systems and algorithms to fulfill unmet 

needs in the area of cardiorespiratory monitoring.  

First, a pneumotach based flow sensing technique has been developed and 

integrated into a face mask for respiratory profile tracking. Algorithms have been 

developed to convert the pressure profile into respiratory flow rate profile. Gyroscope-

based correction is used to remove motion artifacts that arise from daily activities. By using 

Principal Component Analysis, the follow-up work established a unique respiratory 

signature for each subject based on the flow profile and lung parameters computed using 

the wearable mask system.  

Next, wristwatch devices to track transcutaneous gases like oxygen (TcO2) and 

carbon dioxide (TcCO2), and oximetry (SpO2) have been developed. Two chemical sensing 

approaches have been explored. In the first approach, miniaturized low-cost commercial 

sensors have been integrated into the wristwatch for transcutaneous gas sensing. In the 

second approach, CMOS camera-based colorimetric sensors are integrated into the 

wristwatch, where a part of camera frame is used for photoplethysmography while the 

remaining part tracks the optical signal from colorimetric sensors. 
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Finally, the wireless connectivity using Bluetooth Low Energy (BLE) in wearable 

systems has been explored and a data transmission protocol between wearables and host 

for reliable transfer has been developed. To improve the transmission reliability, the host 

is designed to use queue-based re-request routine to notify the wearable device of the 

missing packets that should be re-transmitted. This approach avoids the issue of host 

dependent packet losses and ensures that all the necessary information is received. 

The works in this thesis have provided technical solutions to address challenges in 

wearable technologies, ranging from chemical sensing, flow sensing, data analysis, to 

wireless data transmission. These works have demonstrated transformation of traditional 

bench-top medical equipment into non-invasive, unobtrusive, ergonomic & stand-alone 

healthcare devices. 
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1 INTRODUCTION 

Wearables are a part of our daily life in the current era, from tracking physical 

activities to measuring physiological parameters. The health information collected by 

wearable devices helps people with managing exercise plans, monitoring health conditions, 

and diagnosing diseases at an early stage, which are essential to lead a better life. The most 

commonly used wearable devices are “Smart Watches”, such as Apple Watch, Fitbit 

wristband, Galaxy Watch Active etc. 

Generally, wearable devices are considered as a sub-section or part of “Internet of 

Things” [1]. Wearable devices are defined as the electronic devices that are worn on or 

close to human skin, where they monitor, analyze and transmit relevant data. These devices 

generally work in conjunction with smart phones or tablets, which help in collecting, 

analyzing and reporting data. Besides wristwatch, wearables can be built in other forms, 

like Eyeglasses as Google Glass, Sensor Integrated T-Shirts as Smart Shirts, Respiratory 

& Heart Monitors as Chest Straps etc. [2]. 

Wearables provide a pathway to transform expensive and bulky medical equipment 

in clinical setting to inexpensive and ergonomic devices that can be used by people in their 

daily lives. The significance of achieving this transformation includes [3, 4]: 

1) Early diagnosis of critical diseases; 

2) Easy outreach to patient in case of need or emergency; 

3) Improved quality of life based on the feedback introduced from analyzing the 

measurement data; 

4) Monitoring the progress of the treatment or intervention. 
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The common use-cases of wearables include tracking footsteps & activities using 

wristwatch for weight management and promoting active lifestyle; or monitoring trends in 

blood oxygenation, blood pressure & electrocardiogram (ECG) using wristwatches or chest 

straps to diagnose disease conditions like hypertension, atrial fibrillation etc. Wearables 

have also been adopted in sports like football to assess the impact of collisions and chances 

of concussion [5-8]. 

However, the area of cardiorespiratory signal monitoring is relatively unexplored 

in wearable technology research, especially for respiration and transcutaneous blood gas 

monitoring. Respiration related physiological parameters such as respiration rate (RR), 

tidal volume (TV), Forced Expiratory Volume (FEV), forced expiratory volume in 1 

second (FEV1), Peak Expiratory Flow (PEF), minute ventilation (VE), oxygen 

consumption rate (VO2), carbon dioxide production rate (VCO2) are of high importance 

for pulmonary function tests (PFTs), and metabolic rate measurement, which are critical 

for the diagnosis and management of asthma, COPD, and obesity. And transcutaneous 

blood gas monitoring is widely used in neonatology, fetal monitoring, skin circulation 

monitoring, ventilation control, and sleep studies. 

Along with measuring and analyzing physiological signals, another crucial function 

of wearable devices is the ability to transfer & transmit data to other host devices such as 

smartphones, tablets, computers etc. Bluetooth Low Energy is a popular means of 

transmission, which has been widely adopted among the contemporary host devices, from 

smart phones to hubs like raspberry pi. But Bluetooth Low Energy also has issues ranging 

from variable transfer speeds to packet losses. The reliability of the wireless connectivity 

is an important aspect in wearable device design. 
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This research focuses on developing the following wearable technologies for 

respiration and transcutaneous blood gas monitoring 

1) A mask device for reliable tracking of respiration under free living conditions, 

and 

2) A wristwatch for reliable detection of transcutaneous blood gases (oxygen & 

carbon dioxide). 

The novelties of this research include: 

1) Miniaturized flow rate tracking system based on venturi tube, MEMS pressure 

sensor and baseline tracking algorithms; 

2) Algorithms to compensate for external artifacts and track the true pattern of 

exhalation; 

3) Respiratory pattern recognition algorithms to identify & establish unique 

signatures for the subjects; 

4) Non-invasive optical sensing techniques for tracking arterial O2 and CO2 using 

pulse oximetry and transcutaneous gas monitoring; 

5) Wireless synchronization protocol to mitigate data loss over Bluetooth Low 

Energy in wearable systems. 

These research works have contributed to advancing wearable technologies for 

cardiorespiratory monitoring. With the pervasiveness of wearables, these research works 

have provided solutions to unmet needs as well as attempts to bring in a paradigm shift to 

the next generation healthcare. 
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2 BREATHING TRACKING WITH WEARABLE MASK DEVICE 

2.1 Introduction 

Breathing, or pulmonary ventilation, is a cardiopulmonary process, which is 

essential to the metabolism of human body. The primary role of the respiratory process is 

to support the gas exchange between the ambient air and the body by supplying oxygen 

(O2) and removing carbon dioxide (CO2) from the blood. The two processes involved in 

the O2 and CO2 exchange pathway are: ventilation, a mechanical process that allows air to 

move in and out of the lung; and diffusion, a gas exchange process to transfer the O2 into 

and CO2 from alveoli, blood and cells.  

The mechanical manifestation of respiration is traditionally monitored using 

pulmonary function tests (PFTs), with spirometry being one of the most widely used PFTs. 

Lung diseases such as chronic obstructive pulmonary disease (COPD) and asthma can be 

diagnosed using the parameters monitored during spirometry such as forced vital capacity 

(FVC), forced expiratory volume (FEV), peak expiratory flow (PEF), and tidal volume 

(TV) etc. [9-12]. The breath flow rate measurement is the key function of a spirometer [13-

15].  

The chemical manifestation of respiration i.e., breath biomarkers are also an 

important part of disease diagnosis [16-19]. Since the concentration of biomarkers can be 

influenced by the exhalation flow rate, in practice, breath analyzers are usually integrated 

with flow sensors. For example, it is recommended to measure fractional exhaled nitric 

oxide (FeNO) at exhalation flow rate of 50 ml/s [20]. Some breath biomarkers are required 

to be measured during the end of exhalation phase, i.e., the end-tidal region [21, 22]. Thus, 



  6 

breath flow rate tracking is also essential for accurately measuring the breath biomarkers 

concentration.  

The most common ways of breath flow rate measurement are turbine flow meter, 

ultrasonic flow meter, and differential pressure pneumotach approach. In the turbine flow 

meter, the volumetric flow rate is determined by measuring the speed of the rotor [15]. 

Though it offers wide dynamic range and low flow resistance, the inertial effect 

compromises the accuracy. The ultrasonic flow meter uses frequency shift of an ultrasonic 

wave transmitted through flowing gas to measure the flow rate, but is sensitive to 

temperature [23]. The differential pressure pneumotach approach quantifies the gas volume 

flow rate by measuring pressure difference created by the orifice in the flow channel [24-

26]. This method is simple, has fast-response and avoids contamination of the sensor.  

To monitor the respiratory status and breath flow, the measurement equipment itself 

can be an intervention to patient’s physical or psychological status. Maintaining a natural 

state in free-living condition is very important for measuring true physiology parameters. 

Wearable device is a practical solution for monitoring physiology parameters under free 

living conditions since they provide unobtrusive sensing methods [27-29]. For breathing 

tracking, a wearable, lightweight, less flow resistant mask device is a competitive 

candidate. But this approach offers two technical challenges: 1) finding a miniaturized, 

reliable, and wide dynamic range flow sensing technology. 2) finding an effective way to 

deal with the motion-induced artifacts; Motion-induced artifact is an intrinsic challenge for 

wearable healthcare devices. Several approaches have been applied to address this issue on 

different wearable platforms, such as respiratory rate monitor, photoplethysmography 

(PPG) monitor, and heart rate monitor [30-34]. Typically, redundant sensors such as 
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gyroscope and accelerator are implemented in the device together with the signal 

processing algorithms for compensation and correction [35]. 

This chapter provides an integrated solution to address the issues related to 

miniaturized sensing setup as well as dealing with motion artifacts. This solution introduces 

the following innovations. 1) An integrated flow sensing method based on differential 

pressure pneumotach approach 2) Motion sensing and smart data processing algorithms for 

breathing tracking in free-living conditions. The sensing mechanism is integrated into a 

face mask to provide a wearable for breathing tracking in free-living conditions.  

 
Figure 2-1 The Differential Pressure Pneumotach Setup Integrated On Face Mask. 

(a) Flow Module Configuration, (b) Mask Device Worn By The Subject, (c) Integrated 

Components, And (d) Profile of Breath Signal. 
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2.2 Sensing Principle 

Figure 2-1 (a) depicts the schematic of a differential pressure-based flow 

measurement module. The geometry of a venturi tube helps build up pressure change along 

the flow channel. As shown in Figure 2-1 (b) and (c), the face mask covers the nose and 

the mouth of the patient. The face mask uses one-way valves in two channels to separate 

inhalation and exhalation during breathing. The Venturi tube is connected to the exhalation 

channel of the face mask, thereby only monitoring the exhalation breath flow. 

The relationship between differential pressure and the flow velocity in the venturi 

tube can be described by the simplified Bernoulli equation, assuming the potential energy 

component to be zero: 

 
∆𝑃 =  

1

2
𝜌𝑉2 (2.1) 

where 𝑃 is the differential pressure, 𝜌 is the breath density, and 𝑉 is the flow velocity at 

the orifice. The flow rate can be determined from the flow velocity at the orifice and the 

area of the orifice cross section. Figure 2-1 (d) shows the typical exhalation flow pattern 

measured by the MEMS sensor. The peaks correlate with the flow rate profile of each 

exhalation cycle. The flat baselines between two consecutive peaks indicate that the venturi 

tube is only subjected to exhalation flow and the inhalation channel is not monitored. 

The differential pressure in the venturi tube is computed from the pressure sensor 

signal using the following equation: 

 ∆𝑃 =  
(𝑂𝑢𝑡𝑝𝑢𝑡(𝑓𝑙𝑜𝑤) − 𝑂𝑢𝑡𝑝𝑢𝑡(𝑛𝑜𝑓𝑙𝑜𝑤))

0.6⁄  (2.2) 
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where 𝑃 is the differential pressure (in Pa), Output (no flow) and Output (flow) is the 

voltage measured on the output pin of the pressure sensor (in mV) during no flow and 

active flow through the Venturi tube, respectively. 

 

2.3 Materials and Device Setup 

The D6F-P MEMS flow sensor from Omron Electronics Inc (Manufacturer Part 

number: D6F-P0010A2) is used as the differential pressure transducer to measure the 

pressure difference at the orifice of the flow channel in the configuration illustrated in 

Figure 2-1.  

A custom made integrated circuit provides input voltage to the D6F-P MEMS flow 

sensor, reads the output voltage signal, performs signal processing, and wirelessly 

transmits the data from the circuit to a customized smart phone app. iOS-based application 

receives the data transmitted wirelessly from the circuit, parse & store the data, and perform 

any other necessary data processing and analysis. A compact lithium ion polymer battery 

(3.7 V, 500 mAh) provides the power to the entire circuit. 

A low-power three-axis angular rate sensor, the MEMS Motion Sensor 3-Axis 

Digital Output Gyroscope from STMicroelectronics (Manufacturer Part number: 

L3GD20H), is used to estimate the orientation change of the mask device and its signal is 

used to correct the baseline change of the MEMS pressure sensor. 

A miniaturized Venturi tube with the orifice diameter of 7.4 mm and length of 46 

mm is connected to the pressure sensor in the bypass configuration to measure high flow 

rate [36]. Sensirion flow sensor (SFM3000, Sensirion AG), connected in series with the 

venturi tube, is used as the reference flow meter for the flow module calibration. The flow 
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rate has been adjusted in the range of 0 - 150 L/min to calibrate the venturi tube of the mask 

device. The flow calibration uses dry air from an air cylinder. 

 

2.4 Monitoring Breath Flow Profile 

The breathing profile from a subject for 11 minutes measurement is shown in Figure 

2-2 (a). The exhalation flow pattern has been reliably detected by the pressure sensor. Since 

the sensor has a fast response time (a sampling rate of 25 ms has been used during the 

measurement), detailed dynamic features can be captured, as shown in the zoom-in plots 

of Figure 2-2 (b) and (c). There are several high peaks in the middle of the test, which 

correlates with deep breaths the subject has taken. 

As mentioned earlier in the equation (2.1), the flow rate is proportional to the square 

root of the differential pressure. The slope obtained from the linear regression of the flow 

rate and the square root of the differential pressure serves as the conversion factor (the 

differential pressure as defined in equation (2.2)). As seen in Figure 2-3, the pressure 

profile (Figure 2-3 (a)) can be reliably converted into flow rate profile (Figure 2-3 (d)). 

This conversion is critical for determining the accuracy of the measured flow rate. 

 

2.4.1 Algorithms for Robust Flow Rate Monitoring 

It is well-known that MEMS pressure sensor is sensitive to gravity and mechanical 

movement. This is a key challenge for reliable and robust breath flow rate monitoring since 

the user can wear the device and subject themselves to various activities under free-living 

conditions. Any change in orientation causes the membrane of the pressure sensor to 

deform and cause signal jumps, which deviates from the true breath pattern. 
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Two innovative strategies have been developed to address this issue: the firmware 

approach and the hardware approach. The firmware approach is based on signal processing 

algorithm while the hardware approach uses 3-axis digital output gyroscope to compensate 

the baseline shift of the pressure sensor. 

The key concept of the firmware approach is to develop an algorithm that can 

automatically track the baseline of the pressure sensor for each breath cycle. A typical 

breath cycle is described in 4 phases: Baseline, Ramp-Up, Positive Flow, and Ramp-Down, 

as illustrated in Figure 2-4 (a). 

 

Figure 2-2 Pressure Signal Of Breathing Profile From Real Breath.  

(a) The Entire Breathing Profile Recorded By The MEMS Sensor For 11 Minutes 

Monitoring. (b) And (c) Are The Zoom-In Plots Of The Profile At The Beginning And The 

End Of Measurement.  
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Figure 2-3 Pressure Signal To Flow Signal Conversion.  

(a) The Pressure Response Profile Recorded By The MEMS Sensor During Breathing. (b) 

The Response Of Pressure Sensor (Differential Pressure) For Various Exhalation Flow 

Rates. (c) The Linear Relationship Between √ Differential Pressure And Flow Rate. (d) 

The Flow Rate Profile Of The Same Breathing Profile Converted By Applying The 

Calibration Factors To The Pressure Signal.  
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Figure 2-4 Phases Of A Breath Cycle. 

(a) A Typical Breath Cycle With Different Phases (Baseline, Ramp-Up, Positive Flow, 

Ramp-Down). (b) The Relationship Of Various Phases In A Breath Cycle. The Arrows 

Indicate All The Valid Transitions Possible Between Phases. 
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The relationship between these phases is illustrated in Figure 2-4 (b). These 4 

phases are described as follows: 

1) Baseline: Indicates the inhalation phase or approach to next exhalation. It is 

important to keep track of this baseline to determine the rest of the phases. In this 

phase, the baseline required for computing flow rate is obtained using weighted 

average. It gives preference to the data points closer to the ramp-up phase so that 

the baseline is as precise as possible, but also has weightage for the history of 

baseline phase involved, so that it does not drift away with noise fluctuations. 

2) Ramp-Up: Indicates the end of inhalation phase and the start of exhalation phase. 

This phase acts as a bridge between baseline and positive flow. This phase is 

identified with a monotonically increasing pattern of differential pressure over time 

with respect to baseline.  

3) Positive Flow: Indicates the exhalation part of the breathing process. The flow rate 

is positive during this phase, which is used to compute critical parameters like tidal 

volume and peak flow rate. 

4) Ramp-Down: Indicates the end of exhalation part and end of current breath cycle. 

This phase acts as a bridge between positive flow and baseline. A decreasing/falling 

pattern of pressure data for a given window of points indicates end of exhalation or 

ramp-down phase. 

Number of ramp-up or ramp-down phases encountered in a window of one minute 

indicates breath frequency (BF) of that window. The integral of flow rate over time i.e., 

volume, for a window one minute, indicates minute ventilation (VE). The average volume 

over the set of breath cycles in the window indicates the tidal volume (TV).  
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As seen in Figure 2-4 (b), transitions with solid arrows indicate regular and repeated 

occurrence. The transitions with dotted arrows indicate influence of gravity or orientation 

induced artifacts over the breath cycle. By identifying the artifacts through the analysis of 

the four phases, the true baseline of the pressure sensor for each breath cycle can be 

obtained. 

The baseline tracking algorithm has been verified by the data shown in Figure 2-5. 

Figure 2-5 (b) shows a natural drift in the baseline of the pressure sensor. But the baseline 

tracking algorithm can precisely determine the baseline reading for each individual 

breathing cycle. The baseline reading is calculated by averaging the pressure sensor signal 

from the inhalation period right until before the exhalation period in order to minimize the 

influence of noise.  

 

Figure 2-5 Dynamic Baseline Tracking On A Cycle-By-Cycle Basis Over Time.  

(a) The Pressure Sensor Response (Red) And Simultaneous Baseline Tracking (Green) In 

A Real Breathing Test. (b) The Zoom-In Of Plot (a) To Show The Baseline Tracking 

Algorithm Accurately Determining The Baseline For Each Individual Cycle When The 

Pressure Sensor Signal Is Drifting.  
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A complementary system (hardware approach) has been developed to eliminate the 

orientation induced artifacts from the pressure sensor signal. The baseline tracking 

algorithm is capable of dealing with gradual drift in the baseline but cannot catch up with 

sudden and dramatic orientation change, which may cause loss of baseline tracking. In this 

case, the signal from gyroscope can provide the necessary information to compensate for 

the jump in the pressure sensor. 

 

Figure 2-6 The Relationship Between Pressure Sensor Response And Gyroscope Response 

Due To Orientation Change.  

(a) The Change Of Pressure Sensor Response Due To Orientation Change Of The Mask 

Device. (b) The Accumulated Angle Measured By Gyroscope Due To The Orientation 

Change Of Mask Device. (c) The Linear Relationship Between Pressure Sensor Response 

And The Accumulated Angle On Y-Axis Of The Gyroscope.  
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As shown in Figure 2-6 (a) and (b), the responses of the MEMS pressure sensor 

and the gyroscope due to the orientation change correlate very well with each other. The 

quantitative correlation between the pressure sensor response and the accumulated angle 

on Y-Axis of the gyroscope is plotted in Figure 2-6 (c). A high R2 (= 0.9161) value for the 

correlation makes this a potential compensation mechanism. Movements like forward chin 

touch and head back correspond to the changes that show up in the Y-Axis of the 

gyroscope. Neck flexion towards shoulders, i.e., along other axes does not show any 

noticeable effect on the response of the pressure sensor. This linear relationship provides a 

solid foundation for the signal compensation algorithm in eliminating orientation-induced 

artifacts in this wearable breathing tracking device. 

Figure 2-7 shows the effectiveness of the gyroscope-assisted MEMS pressure 

sensor signal correction to keep track of the correct baseline. When there is a sudden 

orientation change in the middle of the measurement (∼ 70 s), the firmware approach is 

unable to keep the correct baseline tracking (Figure 2-7 (a)). But when the gyroscope signal 

compensation algorithm is applied, the correct baseline tracking can be achieved (Figure 

2-7 (b)). 

To evaluate the performance of the baseline tracking algorithms under the influence 

of orientation changes and different motions, the device has been tested in typical daily life 

scenarios, such as walking, climbing etc. This experiment result demonstrates the 

reliability of baseline tracking algorithms under different combination of motion and 

orientation variations. Robust baseline tracking algorithms guarantee reliable and accurate 

flow rate computation of the wearable mask device. 
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Figure 2-8 (a) shows the dynamic baseline under different daily life scenarios and 

Figure 2-8 (b) shows the recorded gyroscope response. It should be mentioned that these 

scenarios involve a lot of head and neck movements, which introduce artifacts from 

orientation and motion. Since wearing the mask requires fastening and adjusting the mask 

device around the head, a lot of random spikes show up in the gyroscope signal. The 

baseline is quite stable when the subject is sitting idle. The random forward and backward 

head movement causes alternating signal in the gyroscope response. Steady walking does 

not show any considerable baseline change since the pressure sensor is more sensitive to 

orientation changes rather than translatory motion. Climbing Stairs creates significant 

baseline alternation because of the entangled orientation and motion changes. Overall, the 

baseline tracking never gets lost and the algorithms are robust enough to handle the breath 

tracking under different daily life scenarios. 

 

Figure 2-7 Gyroscope-Assisted Pressure Sensor Signal Correction To Keep Track Of The 

Correct Baseline For Flow Rate Computation.  

(a) Baseline Tracking Without Gyroscope Correction. (b) The Baseline Tracking With 

Gyroscope Correction.  
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Figure 2-8 The Performance Of The Baseline Tracking Algorithms Under The Influence 

Of Orientation Changes.  

(a) The Dynamic Baseline Tracked By The Algorithms Under 5 Different Daily Life 

Scenarios Using The Baseline Correction & Gyroscope Compensation. (b) Gyroscope 

Response Used For Correction And Compensation Of Pressure Signal. 

 

2.5 Validation with Reference 

Usability test for this flow sensing mechanism has been performed with 8 different 

subjects (IRB Approval: STUDY00006562). The mask device is worn by each subject for 

10 minutes and the device continuously monitored the subject’s breath flow profile. The 

test results are summarized in Figure 2-9. Figure 2-9 (a) and (b) show the typical breath 

profiles measured by algorithm-enhanced pressure sensor and Sensirion flow sensor. It is 

clear that though the shape of individual breath cycles is very different, the real time flow 

rate measured by both sensors correlate very well, even preserving the detailed features of 

the breath cycles.  
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The minute ventilation (VE) measured by both sensors has a correlation factor (R2) 

of 0.9964 and the mean of VE differences between these two sensors is within 2.5%. Since 

the real breath profiles from subjects are very diverse and can have the influence of motion-

induced artifacts during the breathing tracking, the accuracy of the algorithm-enhanced 

pressure sensor is adequate for these needs. 

 

Figure 2-9 Comparison Of Flow Rate Measured By Algorithm-Enhanced Pressure Sensor 

With Reference Flow Sensor For Real Breath Test.  

(a) Breath Profile Of Subject-A: Tidal Volume = 1390 ml, Breath Frequency = 9 Per 

Minute; And (b) Breath Profile Of Subject-B: Tidal Volume = 840 ml, Breath Frequency 

= 13 Per Minute. (c) The Correlation Of Minute Ventilation (VE) Between The Readings 

Of Both Sensors.  
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2.6 Discussion 

A miniaturized, reliable, and wide-dynamic range flow measurement module based 

on algorithm-enhanced pressure sensor has been developed in this chapter. The dynamic 

baseline tracking algorithm and the gyroscope-assisted signal compensation algorithm are 

implemented in the breathing flow measurement module. By integrating this flow module 

to a face mask, accurate breathing tracking has been achieved with subjects under free 

living conditions. The performance of the wearable flow measurement module has been 

validated with a pilot study. The flow measurement technology developed in this work can 

be used to track breathing in free-living conditions for the assessment of lung functions, 

exercise physiologies, and energy expenditure [37]. 

The pneumotach can also be adapted for Spirometry, which involves forced 

exhalation to track the flow-volume loop curves is also of great interest and has flow rates 

that go as high as 750 L/min. This can be easily achieved with the pneumotach by 

modifying diameter of the constriction in the venturi tube. This increases the range of flow 

rates that can be calibrated against the pressure gradient generated, but a lower Signal-To-

Noise ratio (SNR) at lower flow rates is a trade-off that needs to be accounted for, based 

on the application scenario. 
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3 RESPIRATION PATTERN RECOGNITION BY WEARABLE MASK DEVICE 

3.1 Introduction 

The dashboard that reflects basic health information of the human body consists of 

four major vital signs: heart rate, body temperature, blood pressure, and respiratory rate. 

These vital signs are essential to assess a person’s basic physical health, diagnose certain 

diseases, and monitor the effectiveness of the treatment. In a general clinical examination, 

usually heart rate, body temperature, blood pressure, and sometimes the peripheral oxygen 

saturation (SpO2) will be routinely checked by the healthcare professionals. Tremendous 

innovations have been made in the recent past for measuring heart rate, body temperature, 

and blood pressure with wearables for personal use. Wearable heart rate monitors, digital 

thermometers, and wearable blood pressure monitors have been commercially available 

and widely used in home settings.  

While the respiratory rate measurement is a competing biomarker for judging 

disease severity and prognosis, it is often overlooked  due to lack of easily accessible tools 

and data processing algorithms to monitor the respiration pattern, extract health-relevant 

information, and establish the personal respiration profile for the patient [38-41]. 

Traditionally, respiratory rate is measured by counting the total number of breaths in one 

minute. To improve the accuracy of the measurement, it is suggested to do the 

measurement in a surreptitious manner to minimize the conscious alteration of respiratory 

rate by the patient.  

Besides respiratory rate, other respiratory parameters of the respiration pattern also 

carry useful health information, such as tidal volume, respiratory minute volume, 
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exhalation peak flow rate, and the respiratory waveform [42]. It is also important to extract 

this patient relevant respiration information and quantify the features to build a 

personalized signature that can be tracked over time. This also helps to build a database for 

a large population to enable epidemiological studies & inter-subject analysis.  

Conventional methods used for respiratory analysis in clinical settings include 

manual counting, spirometer, capnometry, and impedance pneumography [40]. Continuous 

non-invasive monitoring [40] explored in the recent past include the following: 1) 

physiological signals-based indirect measurement, such as using algorithms to process 

physiological signals like pulse oximetry (PPG), electrocardiography (ECG) etc., [43, 44] 

to extract respiration related parameters, 2) direct measurement using mechanical 

movements in the chest and abdomen areas by piezoelectric sensor [45, 46], accelerometer 

[47, 48], inductive sensor [49]; and image processing [50-52]; 3) direct measurement of 

the respiratory gas flow around the nasal area using different kind of transducers, such as 

acoustic sensor [53, 54], resistive sensor [55], infrared sensor [56], humidity sensor [57, 

58], and thermistor [59].  

Even though the recent research has proposed solutions for non-invasive respiration 

monitoring, most of them face issues when adapting them for mass manufacturing (large 

scale deployments) or reliability (everyday use). Along with this, most respiratory 

monitoring research focuses on clinical-setting or bed-side environment. The currently 

reported methods suffer from scalability issues to improve the dynamic range, and are 

influenced by the quality of the original signals, motion artifacts and the deployment 

environments [40, 60].  
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The previous work [61] (discussed in Chapter 2) provides a sensing technology that 

potentially addresses the issues mentioned above. It uses a face mask-based pneumotach 

in combination with miniaturized pressure sensor for respiratory gas flow measurement 

and gyroscope-based motion artifact correction, making it easily adaptable for non-

invasive, unobtrusive, continuous monitoring under everyday usage conditions. This 

chapter extends on the same principle to build a comprehensive face mask device that not 

only measures gas flow rate, but also computes key respiratory parameters, including 

respiratory rate, tidal volume, respiratory minute volume, and exhalation peak flow rate. 

Computing these respiratory parameters within the device enables deployment of this 

device to test large group of subjects, consistently collect the parameters and provide intra 

& inter subject analysis.  This chapter also extracts various other respiratory features that 

go beyond the primary parameters to help understand the intricate details of respiratory 

signal manifestation. Principal Component Analysis (PCA) is used to analyze the features, 

remove redundant parameters and establish a unique respiratory signature for each subject. 

 

Figure 3-1 Wearable Mask For Respiration Tracking. 

(a) Engineering Structure Of The Device. (b) The Mask Device Being Used By A Subject.  
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3.2 Device Configuration and Setup 

As seen in Figure 3-1 (a), the wearable is decoupled into two parts, the device 

housing and disposable mask. The disposable mask contains separated exhalation and 

inhalation channels to avoid cross-contamination when used by multiple subjects. The 

housing is an ergonomic body that holds the pneumotach (venturi) and the associated 

circuit board that holds the pressure sensor. A thermistor is placed at the entry of the venturi 

tube to read the breath temperature, which is required to convert the readings to standard 

temperature pressure (STP) conditions (if necessary). The battery and circuit are adjusted 

across the housing to maintain weight-balance across the body. Also, the mask is worn by 

the subject using a head-strap which is tightly fixed around the head. This strap holds the 

disposable mask and the housing in place without much discomfort. 

The microcontroller on the circuit implements the algorithms developed in Chapter 

2 to reliably track the exhalation flow rate [61]. Along with tracking respiratory flow, it 

also tracks the respiratory rate (RR), tidal volume (TV), exhalation minute volume (VE). 

Respiratory rate is the number of exhalation cycles encountered in a window of 1 minute. 

Tidal volume is computed by integrating exhalation flow rate i.e., the positive flow rate. 

Exhalation minute volume is obtained by integrating positive flow rate in a window of 1 

minute.  

The microcontroller supports wireless connectivity with Bluetooth Low Energy 

(BLE), using which it transfers necessary information to a receiver. The receiver used here 

is an inhouse built iOS application that parses the necessary information and stores the data 

for future use.  
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3.3 Analytical Performance and Subject Validation 

The performance of mask device and goodness of the computed parameters are 

assessed in two steps. First, a bench test is performed using lung simulator (VacuMed) to 

generate artificial breath patterns. The lung simulator, the reference flow sensor (Sensirion 

SFM3000 flow sensor) and the mask device are connected in series to generate and record 

the respiration patterns simultaneously. The setup for bench tests is illustrated in Figure 

3-2. 

 

Figure 3-2 Setup For Bench Tests & Evaluation Of Mask Device. 

 

The lung simulator is a combination of rotating disc & piston where the rotation of 

the disc moves the piston forward and backward, effectively simulating the inhalation and 

exhalation pattern. To keep the test similar to that to real subject test, the inhalation and 

exhalation channels of the simulator are also separated, therefore delivering only the 

exhalation gas to Sensirion & mask device. The position of the piston can be changed on 

the disc to generate varying levels of tidal volume, while a turning knob on the control 

panel of the simulator is used to vary the respiratory frequency.  
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The tidal volume and respiratory rate are set in the range of values applicable for 

typical adults, (300 - 1200 ml) & (5 - 20 breaths per min) respectively.  The results are 

reported in Figure 3-3. 

 

Figure 3-3 Analytical Performance Of The Wearable Mask Device.  

(a) Flow Rate Profiles Measured By Mask Device And Sensirion Flow Meter Respected 

To Different Respiratory Patterns Generated By Lung Simulator. The Correlation Plots 

Between Mask Device And Sensirion Flow Meter For (b) Respiratory Rate, (c) Tidal 

Volume, (d) Exhalation Peak Flow Rate, And (e) Respiratory Minute Volume 

Measurement. The Data Points In The Correlation Plots Of Figure 2 (b)~(e) Are The Data 

Processed From Flow Rate Profiles. 

 

Figure 3-3 (a) shows that the mask device can reliably track the respiratory profiles 

of different respiratory patterns generated by the lung simulator. The recorded respiratory 

profiles from the mask device and the Sensirion flow meter correlate very well with each 

other. As mentioned before, the key respiration parameters i.e., RR, TV, VE and exhalation 

peak flow rate (PFR) are obtained from the mask device. These four respiratory parameters 

were also calculated by processing the respiratory flow rate data recorded by the Sensirion 
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flow meter via MATLAB program. The correlation plots of respiratory rate, tidal volume, 

exhalation peak flow rate, and respiratory minute volume measured by the mask device 

and Sensirion flow meter are shown in Figure 3-3 (b), (c), (d), (e), respectively. All four 

respiratory parameters show very high correlation between two methods. The error of 

accuracy of the mask device for flow rate measurement is less than 3% in the range of 0-

150 L min-1.  

 

Figure 3-4 Mask Device For Respiration Tracking.  

(a) Respiratory Profile Measured By The Mask Device At Low, Natural And High 

Respiratory Flow Rate From Real Respiration. (b) Respiratory Profiles Measured By The 

Mask Device And Sensirion Flow Meter Simultaneously On One Subject. (c) Three 

Consecutive Respiration Tracking Tests On The Same Subject By The Mask Device.  
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The second step in evaluating the mask device is to check the reproducibility and 

reliability when testing with human subjects. Here, the subject strapped on the mask device 

that is connected to Sensirion in series, to simultaneously record the flow rate. Figure 3-4 

(a) shows the respiratory profile of the same subject who intentionally created low, natural, 

and high respiratory flow rate in single test. It is clear that even with complex respiratory 

pattern, the mask device can track the respiratory profile reliably. The zoom-in plots in the 

inset of Figure 3-4 (a) shows that the waveform is asymmetric, in which the exhalation 

flow rate quickly reaches the peak and then gradually reduces to zero. Comparison study 

shows that the recorded respiratory flow rate curve from the mask device overlaps well 

with the curve measured by the Sensirion flow meter (reference), as shown in Figure 3-4 

(b). 

Since the wearable mask device is stand-alone, it allows the subjects freedom of 

movement and gesture/position change. Thus, it is easy for the subjects to reach and 

maintain their natural and intrinsic respiration pattern. This has been observed in our 

human subject tests. Figure 3-4 (c) shows three consecutive respiration tracking tests on 

the same subject by the mask device. All of the recorded respiratory flow rate profiles have 

very similar waveforms in terms of respiration frequency and amplitude. This result 

demonstrates the unique advantage of the wearable platform for long-term and less 

obtrusive monitoring.  
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3.4 Analysis of Respiratory Patterns 

As seen in Figure 3-4 (c), a subject can be monitored continuously while they 

maintain their natural and reproducible state. All the subjects participated voluntarily in 

this study (IRB reference protocols # STUDY00006562). A new, personal disposable mask 

was provided to each subject to avoid cross contamination. The device body and housing 

were disinfected after each test. The respiratory profile was monitored in real-time with the 

device transmitting all the necessary information to an iOS application, deployed in an iPad 

that sat beside the subject all through the measurement. The subject was allowed to rest by 

sitting on a chair, in a calm environment, for 15 minutes. The actual measurement lasted 

for 11 minutes.  

Using this respiratory profile from the test subjects, a comprehensive pattern 

analysis has been performed. A total of 5 subjects were tested over multiple days spanning 

a month. Each subject was tested at least 5 times, and a total of 45 tests were collected.  

 

3.4.1 Selection of Variables 

Figure 3-5 (a) shows the features extracted from a typical respiration flow 

waveform. They are chosen from the following domains to encompass possible 

information related to respiration.  



  34 

 

Figure 3-5 Respiration Waveform Features And Principal Component Analysis (PCA) 

Procedures.  

(a) Respiration Features Extracted From A Representative Respiration Waveform 

Consisting Inhalation And Exhalation Signals From The Mask Device. (b) The Steps 

Undertaken To Determine The Principal Components Of A Given Feature Matrix.  
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1) Frequency domain variables: Respiratory Rate (RR). This component carries the 

periodicity of the lung operation.  

2) Amplitude domain variables: these variables include Tidal Volume (TV) and 

exhalation Peak Flow Rate (PFR). Tidal Volume is a measure of lung capacity and 

exhalation peak flow rate is a measure of the airway efficiency. 

3) Hybrid domain variables: These variables include the Respiratory Minute Volume 

(VE) and Inhalation Contribution (IC). VE is the product of respiratory rate and 

tidal volume. It reflects how efficient the gas exchange between the lung and the 

ambient can be. IC is defined as the ratio between inhalation time and the total time 

(inhalation time + exhalation time). IC quantifies the time distribution between the 

exhalation and inhalation in the respiratory process. 

4) The waveform variables: including the Full Width at Half Maximum (FWHM), 

Symmetry Factor (SF), Inhalation Time (IT), and Exhalation Time (ET). FWHM 

describes the span of exhalation peak and SF describes the symmetry of exhalation 

waveform. IT and ET are the durations of inhalation and exhalation in a breath 

cycle, respectively.  

 

3.4.2 Principal Component Analysis (PCA) 

As mentioned in section 3.4.1, a set of 9 features/variables (RR, TV, PFR, VE, IC, 

FWHM, SF, IT, ET) are extracted from each breath cycle encountered during the 

measurement.  In each measurement of 11 minutes, the first 1 minute is discarded as it 

involves the activity of the subject wearing the mask device, which does not represent the 

true respiratory pattern. The remaining 10 minutes are divided into sections of 1 minute, 
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known as the “windows”, represented by wi where “i” indicates the minute. Each 

measurement results in 10 windows. The average of the 9 features of all the cycles that 

belong to a given wj is the feature vector of that window. When this is applied to the entire 

measurement span, it produces 10 X 9 feature matrix. When this is further extended to the 

entire dataset of 45 measurements, it produces a final feature matrix of size 10 X 9 X 45.  

One of the methods to achieve dimensionality reduction is Principal Component 

Analysis (PCA). PCA is a statistical method that involves computing orthogonal 

components which retain features that maximize the amount of variance [62-64]. Since it 

retains the key features and information of a dataset, while discarding others, it is a popular 

method which is widely used in biological research, where large & redundant data exists. 

Computing PCA, illustrated in Figure 3-5 (b), involves the following steps.  

1) Standardization of variables: This step converts all the variables (RR, TV, PFR, 

VE, IC, FWHM, SF, IT, and ET) to the same scale. It is done by subtracting the 

mean from the value of each variable and dividing by the standard deviation.  

2) Computation of Covariance Matrix: This step checks whether the correlations 

between two variables. The covariance matrix is constructed with the covariances 

between all possible pairs of the initial variables listed above. This step removes 

any redundant variables that explain the same variance more than once. 

3) Identification of Principal Components: This step involves constructing the 

principal components by calculating the eigenvectors and eigenvalues of the 

covariance matrix. The significance of the principal components is determined by 

the eigenvalues of the eigenvectors. Principal components are the linear 

combinations of initial variables, in which the first principal component carries 
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maximum information of the variance and the second principal component carries 

the maximum remaining variance and so on.  

4) Selection of Feature Vector: This step selects principal components which have 

high significance. The matrix of vectors formed by the selected principal 

components is the feature vector of the data set. 

5) Visualization of Data: This step involves plotting the data along the axes of the 

selected principal components. 

 

 

Figure 3-6 Respiration Patterns Of 5 Subjects From PCA.  

(a) Respiration Patterns Of 5 Subjects Represent By 3 Primary Components, Which 

Explain 94.25% Of Variation. (b) A Zoom-In Respiration Pattern Of Subject 5, Illustrating 

The Inclusion Of Feature Points Re-Casted Along Principal Components. 
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When PCA is computed over the feature matrix of all the subjects, the first three 

components with decreasing explanation of variance are chosen. Component 1 explains the 

highest variance, while Component 2 explains the second highest variance, and so on. The 

primary three components are chosen here since they explain > 90% of the variance, while 

adding subsequent components does not convey any more useful explanation. 

The output of PCA is visualized in the coordinate system along the axes of the 

primary three dominating principal components in Figure 3-6. It is clear from Figure 3-6 

(a) that the respiration patterns of the same subject are clustered together and are separated 

away from other subjects. Figure 3-6 (b) shows the zoom-in picture of a given sphere, 

illustrating the point spread and outliers for Subject 5. The center of the sphere indicated 

with “*” is the weighted mean of all datapoints belonging to Subject 5. The radius of the 

sphere is the mean of Euclidean distance of all the datapoints with respect to the center. 

Two observations are made from Figure 3-6. First, clustering of datapoints indicates 

that each subject has a unique respiration feature representing the subject’s respiratory 

pattern. Second, reduction in outliers leads to smaller radius and more clustered respiration 

features, implying reduction in overlap between subjects. 

 

3.4.3 Identifying the Steady State 

Human error is an important issue to be considered for respiration monitoring since 

lots of factors can cause disturbance in the respiration status consciously and unconsciously 

[65]. Thus, monitoring respiration for long enough time and identifying the steady state 

will further minimize the human error and reduce outliers. The steady state is personalized 

to each individual subject. The most widely and commonly accepted definition of steady 
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state is a subset or segment of time in which the coefficient of variation of respiratory 

minute volume is less than or equal to 10% [66].  

The steady state for each measurement is extracted using an overlapping grouping 

of windows. A grouping of 4 minutes (4 windows) is used, which is an optimized time span 

to establish steady state, and also is not too long for the user to deviate from consistent 

patterns. When overlapping subsets are used, a set of 10 windows generates 7 subsets (2-

5, … 7-10, 8-11), with each of them known as a “frame”. Each measurement produces 7 

frames, which are used to identify the periods of steady state. 

The occurrence of steady states at different time windows of the measurements for 

all the subjects is shown in Figure 3-7 (a). Finding a frame with maximum probability of 

occurrence of steady state might be a difficult task. For some subjects, e.g. Subject (2), the 

frame with maximum probability of steady state lies in the first half of the measurement, 

while for Subject (3) it lies towards the end of measurement. With such uncertainty in 

finding an appropriate time frame that works for all subjects, it gives rise to the need to 

find a fixed time frame which is close to steady state but maintains the unique respiration 

feature of the subject.  A fixed time frame not only avoids the hassle of finding the right 

frame for each subject in the algorithms, but also makes computation of respiratory 

parameters and decision making much easier. 

To find the best fixed time frame, the measurement is divided into two halves, 

namely the first half and the second half. The first half of the measurement indicated the 

time window beginning from window 2 to end of window 6. The second half of the 

measurement indicated the time window beginning from window 7 to end of window 11. 

These two halves together span the entire 10 minutes of a measurement. The objective is 
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to find the frame which preserves the uniqueness of respiratory features of subjects while 

being as close as possible to the individual steady state. Figure 3.7 (b) shows the 

comparison of the features computed between first half and second half. The second half 

pushes the feature clusters away from each other which improves the uniqueness (as shown 

between subjects 2&4, 1&3 respectively). In the first half, the features of subject 1 lie 

completely inside the feature of subject 3, with no power of discrimination. Figure 3.7 (c) 

shows the comparison of the features computed between the second half and the steady 

state. It is clearly observed that the feature from the second half is very close to that of the 

steady state, with the centers and radii being almost the same. From Figure 3.7 (b) and 6(c) 

it can be concluded that the second half (time window of 7 – 11 minutes) is an effective 

and practical choice of time frame to compute the respiration features of the subjects. 
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Figure 3-7 Representation And Comparison Of The Steady States Of Subjects.  

(a) Probability Distribution Of The Occurrence Of Steady State In The 7 Frames Of A 

Measurement For Three Subjects. (b) Comparison Between The Respiration Features 

Obtained From First Half (Time Window Of 2-6 Minutes) And Second Half Of The 

Measurement (Time Window Of 7-11 Minutes). (c) Comparison Between The Respiration 

Features Obtained From Windows With Steady State And The Second Half Of The 

Measurement (Time Window Of 7-11 Minutes). 

 

3.5 Discussion 

The wearable mask device developed in this chapter is capable of providing a full 

spectrum of respiratory information, from parameters like respiratory rate, tidal volume 

etc., to respiratory pattern in a non-invasive and continuous manner. This wearable mask 

device is less obstructive, immune to motion artifacts, free of cross-contamination, fully 

integrated, and wireless. 

The accuracy of the wearable mask device for respiratory rate, tidal volume, 

respiratory minute volume, and exhalation peak flow rate measurement has been validated 

by the reference method and the correlation factors are 1.000, 0.999, 0.999, and 0.997, 

respectively. By implementing PCA into the data processing algorithms the respiration 

patterns have been successfully extracted and visualized. This feature provides a new 

dimension for potential application in diseases diagnostics and management.  

Since the mechanical components can be produced by 3D printing and the 

electronic components are cheap and easy to get, the reported wearable mask device could 

be a very helpful tool for routine clinical examination, lung function assessment, asthma 

and COPD management, metabolic rate measurement, sleep pattern analysis, and 

biometrics. Potential applications might include using the mask device as a wearable 
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spirometer for lung function assessment, integration with the oximeter and motion sensor 

for sleep apnea tests and diagnosis.  

An issue from system integration perspective, which is of high importance, is the 

ease of using a mask device in scenarios where an existing face mask-based equipment 

exists, like using a CPAP machine for sleep apnea, or nebulizers & inhalers for asthma 

treatment. A possibility of developing adapters that fit the standard equipment needs to be 

explored for this technology to cater the medical needs. 

Establishing a unique respiratory signature or feature for each subject unlocks a 

great potential to track various diseases based on the movement of the feature around the 

base feature established at healthy, resting conditions. It can also be extended to monitor 

exercise conditions that help evaluate progress towards healthy lifestyle. In the current 

pandemic of COVID-19, where face covering is mandatory in public areas, a mask 

wearable is a much-needed tool for the medical and governing communities. The 

respiratory signature if adapted to look for symptoms of COVID-19 patients such as 

shortness of breath and cough, the pervasive deployment of smart masks could be a 

potential measure for early diagnosis and symptoms progression tracking [67, 68]. 
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4 WRISTWATCH TO DETECT BLOOD GASES 

4.1 Background 

Pulmonary gas exchange is the result of respiratory processes that exchange oxygen 

(O2) from & carbon dioxide (CO2) to the ambient air. The partial pressure of dissolved O2 

& CO2 (PaO2 & PaCO2 respectively) in the blood stream (also known as arterial blood 

gases (ABG)) indicates the efficiency of respiratory functions [69]. A well-known 

procedure, the arterial blood gas (ABG) analysis, provides an assessment of the subject’s 

pulmonary gas exchange efficiency and blood acid-base balance. Continuous monitoring 

of ABG values over time helps in the detection of hypo & hypercapnia, which contributes 

to morbidities, especially in neonates [70, 71]. Monitoring ABG has also been adopted as 

a part of polysomnography to assess subjects for sleep apnea and other related disorders 

[72, 73]. 

Traditionally, ABG analysis is done by using invasive blood sampling and central 

laboratory equipment, which is painful for the subject and requires skilled personnel to 

perform the tests. For non-invasive detection of PaO2 & PaCO2, partial pressure of 

transcutaneous oxygen & carbon dioxide (PTcO2 & PTcCO2 respectively) diffusing out 

from the skin has been shown to correlate well and act as a good representative of arterial 

blood gases [69, 74]. This procedure is user-friendly, and the gases can be captured on 

easily accessible parts of the skin like ear lobes, wrist, chest etc.  
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The dermal PO2 and the consumption of oxygen as part of metabolic reaction affect 

the overall transcutaneous O2 that diffuses from the skin. The PTcO2 is more likely to 

indicate the health of local tissue and vascular events and is typically used in wound care, 

ischemia and diabetic foot care [75-77]. As an alternative, blood oxygen saturation (SO2) 

is widely used to monitor respiration, due to the high affinity of oxygen to hemoglobin [76, 

78]. CO2 is readily available in dissolved form that can diffuse between capillaries, tissues 

and membranes. PTcCO2 is usually monitored using variations of electro-chemical sensor 

(like the Severinghaus electrode) [79, 80]. End tidal CO2 is often used as another non-

invasive way to evaluate the arterial blood CO2. 

The accuracy of transcutaneous gas monitors has improved over decades. However, 

their sensing systems are limited to bench-top machines deployed in clinical settings. 

Moreover, these monitors heat up the area of skin where the sensor patches are placed, to 

improve the visibility and diffusion of ABG in the contact area. But this procedure is known 

to be painful since it damages the skin and associated tissue underneath in long-term 

monitoring. Thus, a periodical change of the sensor patch location is required in clinical 

use to avoid skin burning. Currently a truly stand-alone wearable device is not available 

yet for transcutaneous gas monitoring. Recent literature has shown evidences of using the 

rate of increase in CO2 concentration, rather than the saturated CO2 concentration, as an 

indicator to determine the absolute partial pressure of transcutaneous CO2 [81, 82]. Though 

promising results such as trends in CO2 concentration with varying levels of activity of the 

subject have been demonstrated, bench-top bulky IR sensors are still adopted in these 

systems. These systems also use pure N2 to periodically purge the dead space in the sensing 

chamber, making them not compatible with the wearable sensing platform. 
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In the following sections, two approaches have been explored to build wearable 

transcutaneous gases sensing systems. The first approach uses off-the-shelf miniaturized 

sensors to track pulse oximetry and TcCO2. This approach provides a solution to build 

rapid prototypes that can be easily assembled and deployed for field tests. The second 

approach uses CMOS camera based optical sensing to simultaneously track pulse oximetry 

using camera image intensities as well as TcCO2 with colorimetric sensor. The colorimetric 

sensor quantifies CO2 concentration based on color change observed on the sensor strip. 

 

4.2 Photoplethysmography (PPG) & Pulse Oximetry 

Blood oxygen saturation (SO2) is the percentage of hemoglobin bounded with 

oxygen in the blood stream. The traditional blood analysis approach measures oxygen 

saturation (SaO2) by invasively taking blood sampling from the artery for analysis. But this 

is a painful process and it does not allow continuous monitoring. Later, non-invasive 

methods using light absorbance have been developed to track blood oxygenation in the 

peripheral capillaries (fingertip or wrist area), known as SpO2. SpO2 monitoring, 

commonly known as “Pulse Oximetry” is a non-invasive, inexpensive, and easy-to-use 

method with continuous monitoring capability [78, 83]. Pulse oximetry is a well-studied 

area and miniaturized optical sensors for wearable platforms are already available as 

commercial components that can be directly integrated into existing systems. Integrating 

pulse oximetry and transcutaneous gas sensing module into a wristwatch platform can 

synergize optical-based physiological parameters with chemical parameters to provide 

comprehensive information about the health condition of the respiratory system.  
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Figure 4-1 Sensing Principle And Design Of Pulse Oximeter. 

(a) Arrangement Of Light Source And Photodiode To Receive Hemoglobin Absorption 

Profile. (b) An Illustration Of The Expected Hemoglobin Absorption Profile Over Time. 

(c) The Hemoglobin Absorption Profile Over Various Wavelengths Of Incident Light, 

Copyright © 2016, IEEE [84]. (d) The Photodiode Reading For IR Light Source Taken 

From A Window Of Measurement. (e) The Fast Fourier Transform (FFT) Spectrum For 

The Signal Recorded In (d). (f) Readings Of A Reference Pulse Oximeter To Evaluate The 

Performance Of Sensor Shown In (a). 

 

The sensing setup is illustrated in Figure 4-1 (a) along with a commercial pulse 

oximetry sensor for wearables, MAXREFDES117 [85]. The detection of light absorption 

signal from hemoglobin (also known as photoplethysmography (PPG)) works on the 

principle of Beer-Lambert’s law (shown in equation (4.1)) which states that the absorption 

of light by a substance in a given solution (assuming fixed distance) is proportional to the 

concentration.   
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 𝐴 =  𝑙𝑜𝑔
𝐼𝑖𝑛

𝐼𝑜𝑢𝑡
⁄ =  𝜀𝑙𝑐  (4.1) 

where 𝐼𝑖𝑛 is the intensity of incident light,  𝐼𝑜𝑢𝑡 is the intensity of emergent light after 

passing through the target solution, 𝜀 is the molar extinction coefficient of the solution, 𝑙 

is the length of light path and 𝑐 is the concentration of solution. 

Due to the pulsating nature of blood flow in a capillary, it is difficult to use this 

relationship directly since the diameter of the capillary changes with blood flow, which 

causes variation in the emitted light intensity. A direct correction of change in length on 

the absorption intensity is not practically feasible due to the light path going through and 

being reflected by various capillaries, blood vessels, tissue etc. As shown in Figure 4-1 (b), 

a typical absorption profile of photoplethysmography consists of pulsatile (AC) & non-

pulsatile (DC) components [86, 87]. Pulsatile component is contributed by the arterial 

blood with each systole-diastole cycle, while the non-pulsatile component is mostly 

contributed by the skin, underlying tissue and venous blood. 

To eliminate the effect of varying length of light path, a two-fold approach is used. 

The first level of correction is to normalize the AC signal with DC signal to get the 

absorption of only the pulsatile component, which represents the arterial blood along the 

difference in the length of light path. This is also known as the ratio at given wavelength 

of light, represented using the following equation. 

 𝑅𝜆 =  𝑙𝑛((𝐼𝐴𝐶(𝜆) 𝐼𝐷𝐶(𝜆)⁄ )) (4.2) 

where IC represents the intensity of light (for a given wavelength λ) perceived by the 

photodiode after the light passes through blood. 
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To eliminate the difference in length of light path, ratio of Rλ at two different 

wavelengths (λ1 & λ2) is used. This, popularly known as Ratio of Ratios (RoR) is 

represented by the equation   

 𝑅𝑜𝑅 =  
 𝑙𝑛(𝐼𝐴𝐶(𝜆1) 𝐼𝐷𝐶(𝜆1)⁄ )

 𝑙𝑛(𝐼𝐴𝐶(𝜆2) 𝐼𝐷𝐶(𝜆2)⁄ )⁄  (4.3) 

where 𝐼𝐴𝐶(𝜆𝑤) and 𝐼𝐷𝐶(𝜆𝑤) are the pulsatile and non-pulsatile components extracted from 

the signal received when the light of wavelength w is incident over the target area.  

 Determining the right choice of λ1 & λ2 in order to derive SpO2 from equations (4.1) 

and (4.3) requires a closer look at the absorption profile of oxygenated (HbO2) and de-

oxygenated hemoglobin (Hb). As seen in Figure 4-1 (c), the contribution from Hb and 

HbO2 is present in various levels over all the visible and near-infrared wavelengths. But 

the maximum difference is observed at red and near infrared in the opposite directions. 

Therefore, choosing λ1 in the red region (630nm – 660nm) and λ2 in the near-infrared 

region (800nm – 1000nm) should maximize the contribution of absorption information of 

Hb & HbO2 in the blood. 

Applying Beer-Lambert’s law and ratio of ratios to the absorbance of Red & IR 

light by oxygenated and de-oxygenated hemoglobin results in the following equation. 

 
𝑅𝑜𝑅 =  

((𝜀(𝜆𝑅)𝐻𝑏) + (𝑆𝑝𝑂2((𝜀(𝜆𝑅)𝐻𝑏𝑂2
) − (𝜀(𝜆𝑅)𝐻𝑏))))

((𝜀(𝜆𝐼𝑅)𝐻𝑏) + (𝑆𝑝𝑂2((𝜀(𝜆𝐼𝑅)𝐻𝑏𝑂2
) − (𝜀(𝜆𝐼𝑅)𝐻𝑏))))

 (4.4) 

 
𝑆𝑝𝑂2 =  

(𝐶𝐻𝑏𝑂2
) ∗ 100%

(𝐶𝐻𝑏𝑂2
+ 𝐶𝐻𝑏)

 
(4.5) 

where 𝜀(𝜆𝑤)𝐻𝑏𝑂2
 and 𝜀(𝜆𝑤)𝐻𝑏 are the molar extinction coefficients of oxygenated and de-

oxygenated hemoglobin respectively for the given wavelength w, and SpO2 is the 

percentage of oxygenated hemoglobin in the target sensing area, CHbO2 is the concentration 
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of HbO2 and CHb is the concentration of Hb [84, 88]. The molar extinction coefficients in 

equation(4.4) are empirically derived constants and the AC/DC components of equation 

(4.3) are obtained using the PPG signal from the sensing system. Substituting and equating 

both the equations returns the expected SpO2 value. 

Figure 4-1 (d) shows a typical signal recorded by the PPG sensor for the IR channel. 

The peaks & valleys correspond to the AC-DC components. Similar signal can be 

simultaneously retrieved for the red channel to compute RoR and find SpO2 values. Figure 

4-1 (e) is the Fast Fourier Transform (FFT) spectrum of the signal recorded in Figure 4-1 

(d). The spectral peaks are seen at the frequency and harmonics of the heart rate at 1.33 

Hz. Figure 4-1 (f) is the picture of a finger-based reference pulse oximeter. The 

MAXREFDES117 sensor connects to the system using Inter-Integrated Circuit (I2C) bus 

and costed less than $5 when bought off-the-self. The datasheet [85] provides details for 

other options including intensity of the incident light, ambient light correction, detection 

of proximity of the sensor to the skin and range of sampling frequencies based on various 

requirements. 

Pulse oximetry is a popular and well-established parameter in the world of 

wearables. Devices ranging from smart phones to smartwatches offer these services [89, 

90]. But pulse oximetry suffers from accuracy issues due to motion and other external 

artifacts that are introduced in the PPG signals. A wide range of research is available 

dealing with this area [33, 91, 92]. Non-contact photoplethysmography has also been 

explored where PPG signals are captured without the necessity of contact with the skin 

using a camera monitoring system [52, 93, 94].  
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4.3 Monitoring Transcutaneous CO2 using Miniaturized Nondispersive Infrared (NDIR) 

Sensor 

CO2 and water are the part of by-products released during the process of 

metabolism that produces the required energy and maintains the homeostasis of the human 

body. The generated CO2 is eventually transported to lungs via blood vessels and excreted 

out into ambient atmosphere during exhalation phase of respiratory process. While most of 

CO2 in the blood is present as bicarbonate ion, a minor portion is bound to the hemoglobin 

as carbamate compounds. The remaining exists as dissolved gas that diffuses across the 

blood vessels and capillaries. 

The relationship between dissolved CO2 & bicarbonate ion is given by equation 

(4.6).  Any mismatch in the pH causes the blood to push the equilibrium towards the 

required direction and maintain the homeostasis. For example, loss of bicarbonate ion 

converts more dissolved CO2 into carbonic acid and makes hemoglobin buffer the 

hydrogen ions [95]. Similarly, the loss of dissolved CO2 makes the carbamate compounds 

release hydrogen ions and react with bicarbonate in the blood to release CO2 gas. 

The diffusion and release of diffused CO2 occurs across the blood capillary loops 

that run close to the skin [96]. This CO2 gas eventually gets released through the skin due 

to the concentration gradient with the ambient air. When a sensor is placed over the skin to 

capture the transcutaneous gas for measurement, the accumulation of CO2 reduces the 

gradient across skin, thereby lowering the flux of transcutaneous gases which leads to a 

plateau over time [97-99].  

 CO2 + H2O   ⇌   H2CO3   ⇌   H+ + HCO3
- (4.6) 
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Traditional bench-top transcutaneous CO2 monitors use electrochemical sensor 

(Stow-Severinghaus Electrode) to measures pH change in the electrolyte caused by the 

CO2 diffusing out from the skin. Change in pH has a logarithmic calibration to the partial 

pressure of CO2 in the sample gas [100, 101]. But electrochemical sensors are bulky, 

delicate, drift over time and require constant calibration. Interference from other analytes 

with the electrochemical sensor can also cause interference issues to the sensor.  

NDIR sensors for CO2 are known for their longevity, robustness and low power 

consumption. Beer-Lambert’s law, which establishes relationship between the 

concentration and the absorption of a given analyte, is used for determining the CO2 

concentration in NDIR sensors. The sensor uses 4.26-micron band of Infrared spectrum 

since CO2 has one of its highest absorption at this wavelength. A long sampling channel is 

filled with the target gas sample and flashed using the IR light source from one end. The 

absorption measured on the other end of the channel is calibrated against the absolute 

reference concentration [102, 103]. From Beer-Lambert’s law it is also seen that the 

sensitivity or range of the sensor depends on the length of the sampling channel. Over years 

the cost of NDIR sensors have reduced dramatically, along with the form factor of the 

sensors being reduced to coin size (Cozir NDIR CO2 sensor) using various structures of 

waveguides [104]. These sensors can be directly integrated into an enclosed chamber for 

transcutaneous CO2 sensing without implementing any active gas sampling components in 

the system.  
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4.3.1 Sensor Setup 

 

Figure 4-2 View And Design Of The Wristwatch To Accommodate Commercial Sensors. 

The Zoom In Shows Cross-Section View Of The Sensing Chamber, Along With The 

Assembled Wristwatch. 

 

The integrated sensor setup is illustrated in Figure 4-2. The wristwatch consists of 

a watch body that accommodates the NDIR CO2 sensor (Cozir NDIR CO2 sensor). The 

opening of sensor is exposed to the skin, allowing the transcutaneous gases to diffuse 

directly into it. An O-ring placed over the NDIR sensor acts as a cushion between the watch 

and the skin, also to provide air-tight sealing to avoid any gas leakage from ambient air. 

To perform simultaneous TcCO2 and SpO2 measurements, the commercial PPG sensor can 

be placed in the wristwatch.  

The initial tests with this sensor setup and the trend in the buildup of CO2 within 

the O-ring is shown in Figure 4-3 (a). The rise in the concentration of CO2 reaches a plateau 

over time to an expected concentration. But this is not a reproducible setup since the NDIR 

sensors are known to be affected by humidity, with their specifications limiting the 

operating condition of relative humidity (RH) to a maximum of 95% non-condensing. 

Figure 4-3 (b) illustrates this issue where the concentration reported by the sensor keeps 

rapidly rising upwards and saturates at 20.1% (which is the maximum that is reported by 
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the sensor). The absorption spectrum of water shows high extinction coefficient at 

wavelengths close to 4.26 microns [105]. It is important to ensure that the time required to 

estimate the absolute transcutaneous CO2 concentration does not cause the sensor to be 

subjected to condensation due to its long-term coverage of human skin. As seen in Figure 

4-3 (c), the temperature in the O-ring space tends to reach body temperature and the relative 

humidity rises upwards towards condensation.  

 

Figure 4-3 Trends In The Buildup Of CO2 Within The O-Ring Setup Of Wristwatch. 

(a) Measurements With The Concentration Of CO2 Reaching A Plateau Over Time. (b) 

Measurements With The Concentration Never Reaching A Plateau Due To Interference 

From Humidity And Condensation. (c) The Temperature And Humidity Profile Within The 

O-Ring Dead Space When The Wristwatch Is Strapped To The Skin. 

 

4.3.2 Hydrophobic Membranes 

A hydrophobic membrane is a potential solution to avoid interference from 

humidity. These membranes are polymers that tend to decrease the permeability of water 

vapor as well as avoid absorbing condensed water. Here, potential candidates of the 

hydrophobic membranes are evaluated to assess the compatibility with the sensor setup.  
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Figure 4-4 Evaluation Of Hydrophobic Membranes For NDIR CO2 Sensing In The 

Wristwatch. 

(a) Comparison Of Hydrophobic Properties Of Teflon And PDMS [106-109]. (b) Response 

Of The CO2 Sensor With The Membranes When Tested Under Same Conditions. 

 

Hydrophobic membranes are widely used in biosensors. But when adapting them 

for transcutaneous gas monitoring, the permeability of water vapor & CO2, along with the 

contact angle of water droplets are the important properties that need to be taken into 

consideration. Membranes like Polymethyl methacrylate (PMMA) and polyvinylidene 

difluoride (PVDF) have very low permeability to CO2 (as low as ~ 1 Barrer) [110, 111]. 

Membranes like Polytetrafluoroethylene (Teflon) and Polydimethylsiloxane (PDMS) have 

better permeability to CO2, as shown in Figure 4-4 (a).  
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Traditional transcutaneous monitors use Teflon as the hydrophobic membrane with 

the associated CO2 sensor [112-114]. To maximize the exposure of NDIR sensor to 

transcutaneous gases, PDMS has been chosen over Teflon. PDMS is popularly known to 

be used in application scenarios that require high permeability of gases [115]. As also seen 

in Figure 4-4 (b), when the membranes are tested with the wristwatch strapped to the skin, 

PDMS gives a higher response when compared to Teflon.  

 

4.3.3 Offline Bench Tests with PDMS Membrane 

A comprehensive evaluation of PDMS membrane is performed to understand the 

influence of the membrane on transcutaneous gases as well as the response behavior of the 

NDIR sensor. The membrane is synthesized by using the Silicone Elastomer Kit by Dow 

Corning Corporation. A petri dish with the diameter 50mm is used and 0.9 g elastomer 

solution spreads across the base of the petri dish and is cured at 45°C overnight to produce 

a membrane with the thickness of 0.15mm [116].  

 

Figure 4-5 Schematic Of The Sensor & Membrane Setup For Bench Tests.  
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The offline bench test setup, as illustrated in Figure 4-5 allows the evaluation of 

PDMS membrane over various concentrations of CO2 under different conditions. The 

diffusion chamber on the top provides an inlet and outlet for the gas being actively pumped 

at a flow rate of 0.8 L min-1. A preparation phase of 5 minutes is used to allow buildup of 

CO2 inside the diffusion chamber and eventually diffuse towards the CO2 sensor. The 

PDMS membrane is fixed on the other end of diffusion chamber. The membrane and CO2 

sensor are separated by a dead space of ~1.0 ml, which can be purged with pure N2 to 

remove any traces or residue of contaminants that remain behind between tests. The test 

setup is maintained at a relatively constant room temperature of 25 °C. A set of 6 different 

concentrations of CO2 in the range of 0.75% to 4% are generated using a mixture of 4% 

CO2 and N2 from gas cylinders by Praxair and Matheson, respectively. To generate and 

test the sensor response to humidity, the gases are bubbled through a bench top water bath 

at room temperature of 25°C, which generates a humidity upwards of 85% for the sample 

gases. All gas samples with different CO2 concentrations are tested back to back to ensure 

consistency between results.  

As seen in Figure 4-6 (a), the CO2 response curves from the PDMS membrane-

covered  NDIR sensor show non-linear behavior, in which the signal reaches a plateau 

reading that is proportional to the concentration of CO2 diffusing into the sensor, as shown 

in Figure 4-6 (b). The sensor response to humid gas sample generated from water bath 

setup is offset from the response to dry gas sample by a linear scaling factor of 0.797, 

shown in Figure 4-6 (c).  
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Based on the trend of relative humidity level shown in Figure 4-3 (c), it is evident 

that the level of humidity saturates and remains fairly constant over time. Combining the 

results from  Figure 4-3 and Figure 4-6, it can be safely concluded that with the help of 

PDMS membrane, the NDIR CO2 sensor can reliably detect humid transcutaneous gases 

from the skin and the sensor performance is as good as for detecting dry gas samples in 

bench tests. 

 

Figure 4-6 Performance Of Cozir CO2 Sensor With PDMS Membrane.  

(a) Response Of The Sensor For Varying Conc. Of CO2 Pumped Into The Diffusion 

Chamber. (b) Correlation Between The Plateau And The Conc. Of CO2 Shown In (a). (c) 

Correlation Between The Response Of Cozir Sensor To Dry And Humid CO2. (d) Rise In 

CO2 Across The PDMS Membrane After Purging The Sensor With N2. (e) Linear Fit Of 

The CO2 Trends Shown In (d). (f) Correlation Between The Slope Of The Linear Fit And 

Absolute Conc. Of Diffusing CO2. 
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It is also observed that the slopes at the rising stage of response curves also shows 

a high correlation with the CO2 concentration, as seen in Figure 4-6 (d) – (f). This indicates 

that it is not necessary to wait for the sensor to reach a plateau to determine the CO2 

concentration, which can be used to improves the response time. But this can be achieved 

only when the purging gas does not contain any other contaminant that can interfere with 

the transcutaneous gases. This sensing system also involves using of active sample delivery 

components, e.g. pump and valves. Active components interacting with the target sample 

gas might complicate the transcutaneous gas sensing on wearable device. Hence, the 

plateau of sensor response is used to track the trends in transcutaneous CO2 when testing 

the sensor with subjects, since it can be done passively without active sample delivery. 

 

4.3.4 Validation of Transcutaneous Gas Sensor with End-Tidal Carbon Dioxide (EtCO2) 

To validate the sensor performance for real subject test, end-tidal CO2 (EtCO2) is a 

good reference technique, since partial pressure of end-tidal CO2 shows a strong positive 

correlation with arterial and transcutaneous CO2 (TcCO2) [117, 118]. The end-tidal CO2 is 

measured using fast-response breath analyzer (shown in Figure 4-7 (a)) connected to a 

pneumotach based face mask and a sampling tube.  

The end tidal CO2 and wristwatch CO2 signals are simultaneously monitored in real 

time for point-to-point comparison. As shown in Figure 4-7 (b) & (c), the EtCO2 is 

computed by selecting the concentration of CO2 at the end of exhalation cycle right before 

the flip towards inhalation begins. For transcutaneous CO2 monitoring, the sensor is placed 

on the subject’s wrist using watch straps to tightly hold on to the skin to avoid leakage 

(Figure 4-7 (d)). The sensor response from the wristwatch reaches a plateau, as seen in 
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Figure 4-7 (e), and after it reaches the plateau, the EtCO2 and TcCO2 are monitored for 

another 10 minutes to ensure the subject and sensor responses are stable. The sensor signals 

are periodically averaged over a window of 2 minutes to remove random noise and retrieve 

an overall trend, as shown in Figure 4-7 (f). 

 

 

Figure 4-7 Test Setup For Simultaneous Comparison Of End-Tidal And Transcutaneous 

CO2. 

(a) Vacumed Carbon Dioxide Analyzer, Model 17630, To Track Exhalation CO2 In Real 

Time. (b) Sample Window Showing The Real Time Profile Of Exhalation Carbon Dioxide 

By The Subject. (c) Zoom In Plot Of A Single Respiratory Cycle With An Indication Of 

End Tidal CO2 Computed From It. (d) Sensor Setup With PDMS Membrane Worn By A 

Subject On The Left-Arm, As A Typical Wristwatch. (e) Initial Rise In CO2 For The First 

30 Minutes After The Sensor Is Strapped On By The Subject. (f) The Trend In CO2 

Computed From End-Tidal And Transcutaneous Signals After Reaching A Plateau.  
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Figure 4-8 Simultaneous CO2 Monitoring Using Wristwatch (TcCO2) And Face Mask 

(EtCO2). 

(a) Trends in CO2 under various conditions of the subject. (b) Calibration of wristwatch 

signal with EtCO2 based on selected feature points. (c) Comparison of EtCO2 & wristwatch 

signal from the generated calibration. (d) Field test of wristwatch with the subject under 

regular, everyday activity. 

 

The initial test starts with the subject at resting (fasting for 12 hours). The sensors 

reach a plateau with stable reading. The subject consumed black coffee and resumed the 

test with sensors continuously monitoring the readings. As seen in Figure 4-8 (a), the CO2 

profile shows a fast increase with a considerable lag between TcCO2 and EtCO2. At some 

point during the test, subject starts to hyperventilate intentionally, which shows a decrease 

in the CO2 profile. These scenarios are chosen as the feature points to correlate and calibrate 

TcCO2 to EtCO2. Figure 4-8 (b) shows the calibration curve. It is a linear curve with strong 

positive correlation. Figure 4-8 (c) shows the TcCO2 reading after using the calibration 

established in Figure 4-8 (b), and it is seen that the trends match very well.  
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The wristwatch sensor is also evaluated in a field test for about 4.5 hours (Figure 

4-8 (d)). The sensor monitors TcCO2 signal as the subject performs daily routine activities. 

It is seen that consuming lunch consisting of rice, beans and cheese shows a quick rise in 

CO2. This is expected since consumption of food increases the metabolism, thus increases 

CO2 releasing. Higher levels of CO2 are sustained over time, which is consistent with the 

trends reported in other previous work [81]. Further consumption of black coffee shows an 

expected rapid increase in CO2 as well. 

Overall, the wristwatch integrated with NDIR CO2 sensor and PDMS membrane is 

capable of continuously monitoring TcCO2 and is also able to reflect the changes 

introduced by respiration patterns changes and daily activities from the subject. 

 

4.4 Scalable System using Colorimetric Sensing for Transcutaneous Gas Monitoring 

Though commercial sensors provide a convenient method to monitor 

transcutaneous gases, they face challenges of their own. Firstly, it uses sensors of two 

different sensing principles making the sensor setup cumbersome, along with not being 

able to scale the system to other analytes when necessary. Other transcutaneous gases like 

volatile organic compounds (alcohols, aldehydes, ketones) are known to potentially 

indicate other diseases and it gets difficult integrating multiple off-the-shelf sensors into 

one wearable device [119]. 

Using a shared optical detector (CMOS camera) is a potential answer to this issue, 

where a part of the camera frame can be used to for photoplethysmography (PPG), while 

the rest of the frame can be used to track transcutaneous gases using colorimetric sensing 
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mechanism. The system setup is illustrated in Figure 4-9. This gives an advantage to build 

scalable sensors that can be easily adapted to many heath information on demand.  

The colorimetric sensors quantify the concentration of analyte through monitoring 

the color change associated with specific colorimetric chemical reactions between the 

analyte and the sensing probes. Colorimetric sensing is a well-known technique that has 

been traditionally used for qualitative and semi-quantitative purposes. Over the years, 

colorimetric sensors have been quantified and adapted for various use-cases to replace the 

bulky sensing equipment [120]. 

To detect transcutaneous CO2, a pH change based sensor has been adapted which 

is reversible in nature. The sensor changes color when subjected to CO2 and returns back 

to the original color when purged with clean air. It uses a Teflon substrate coated with an 

alkaline buffer solution of HCO3
-/CO3

2- and m-cresol indicator [121]. 

When the substrate is exposed to CO2, it changes its color according the 

concentration of CO2. As seen in equation (4.6), the presence of CO2 leads to production 

of hydrogen ions which in turn protonates m-cresol causing a change color from purple to 

yellow (mCPH-). Dissociation of CO2 causes deprotonation of m-cresol, therefore 

changing the color from yellow to purple (mCP2-) [121]. This color change is shown in 

Figure 4-9 (d), where a sensing strip manifests a tinge of yellow shade over time when 

subjected to 4% CO2 gas. As seen in the plot, the color development seen in the image rises 

over time and reaches a plateau based on the concentration of CO2 it is exposed to over 

time. 
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Figure 4-9 Colorimetric Sensor Based Wristwatch To Track Transcutaneous Blood Gases. 

(a) Frontal View Of System Setup, Illustrating The Arrangement Of Components. (b) 

System Realized & Developed Based On The Proposed Setup. It Also Includes A Sample 

Image Captured From The CMOS Camera. (c) Lateral View Of The System Setup 

Described In Section (a). (d) Expected Color Change In The Colorimetry Channel For The 

Detected Transcutaneous CO2. 

 

4.4.1 Offline Bench Tests 

The membrane and test setup remain the same as described in section 4.3.3 and 

Figure 4-5, respectively. The colorimetric sensor setup (shown in Figure 4-9 (b)) is used in 

place of miniaturized NDIR sensor. The setup uses a Raspberry Pi camera Rev 1.3 

(OV5647) with the lens removed from the top. The frequency of image capture by the 

camera also known as frame rate, is set to 60 fps. The duration of exposure of pixels to the 

perceived light, also known as shutter speed, is set to 6.25 milliseconds. The sensitivity of 

the pixels indicated by camera ISO is set to 200. The auto white balance, auto focus and 

exposure compensation of the camera are turned off to get the true image intensities 

without any artificial compensation being introduced by the camera processing algorithms. 
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A red led (LTST-C190CKT, Lite-On Technology Corporation, λ = 638 nm) is used as the 

light source in this test setup. 

 

Figure 4-10 Performance Of Colorimetric CO2 Sensor With PDMS Membrane. 

(a) Response Of The Sensor For Varying Conc. Of CO2 Pumped Into The Diffusion 

Chamber. (b) Correlation Between The Plateau And The Conc. Of CO2 Shown In (a). Also 

Demonstrates The Reproducibility & Variation Between Different Sensing Strips. (c) 

Correlation Between The Response Of Colorimetric Sensor To Dry And Humid CO2. (d) 

Repeatability Of The Sensing Strip For The Same Concentration. (e) Linear Fit Of The 

Trends In The First 30 Seconds, For Data Shown In (a). (f) Correlation Between The Slope 

From The Linear Fit And Absolute Conc. Of Diffusing CO2. 

 

As seen in Figure 4-10 (a) & (b), the sensor shows a good linear response to varying 

concentration of diffusion gas. It is also seen that multiple sensing strips from the same 

casting provide similar responses. This is important since it shows that the sensing strips 

can be mass produced and utilized using calibration from a single strip rather than requiring 

individual calibration for all the strips. For the same concentration of CO2, the response 

from humid gas, bubbled through water bath at room temperature of 25°C produces a 
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response curve similar to that of dry gas, except it reaches the plateau at a lower intensity, 

as seen in Figure 4-10 (c). This is a consistent result between varying concentrations, where 

the humid gas responses are scaled down by a factor of 0.956. The repeatability & precision 

of the colorimetric sensor is demonstrated in Figure 4-10 (d), where the response curve of 

the sensing strip evaluated for a given concentration of gas shows similar plateau over three 

consecutive measurements.  

It is also observed from Figure 4-10 (e) & (f) that the rate of accumulation of CO2 

over the sensing strip is proportional to the concentration of CO2 diffusing into the sensor 

setup. As discussed in section 4.3.3, using rate-based estimation of absolute concentration 

of the diffusion gas requires active components that interact with the transcutaneous gases 

and also avoid leaks with ambient air. Hence moving forward, the plateau of the response 

curve from the sensor is used to detect transcutaneous CO2 over various subject tests. 

 

4.4.2 Validation of Colorimetric Transcutaneous CO2 Sensor with End-Tidal Carbon 

Dioxide (EtCO2) 

The test setup and methodology described in section 4.3.4 and Figure 4-7 have been 

used to compare EtCO2 with Colorimetric sensor based setup i.e., Wrist-Colorimetric CO2.  

The EtCO2 values are simultaneously monitored when the wristwatch is strapped to the 

subject’s forearm/wrist. The subject was fasting overnight (~ 14 hours) before starting this 

test. The initial 30 minutes of measurements are discarded, before starting the comparison. 
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Figure 4-11 Simultaneous Monitoring Using Wrist-Colorimetric Sensor (TcCO2) And Face 

Mask (EtCO2). 

(a) Trends In CO2 Under Various Conditions Of The Subject. (b) Calibration Of 

Wristwatch Signal With EtCO2 Based On Selected Feature Points. (c) Comparison Of 

EtCO2 & Wristwatch Signal From The Generated Calibration. 

 

As seen in Figure 4-11 (a), during the first 20-25 minutes of the measurement, the 

subject is at resting and the Wrist-Colorimetric CO2 response has reached a plateau. The 

plateau remains consistent & stable for EtCO2 as well within the same timeframe. After 25 

minutes, the subject consumed a cup (300 ml) of black coffee and resumed the EtCO2 

measurement. It is observed that the trends of end tidal CO2 and Wrist-Colorimetric CO2 

remain consistent and similar to each other over time. Post 60-minute mark, the subject 

performed a voluntary hyperventilation over a span of 5 minutes. This caused a dip in both 

EtCO2 and colorimetric sensor. A group of feature points are chosen along these 

measurement points to form a calibration between end tidal CO2 and transcutaneous CO2. 

This provides a linear regression with an R2 of 0.88. The Wrist-Colorimetric sensor trends 
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when quantified using the calibration established in Figure 4-11 (b) provides a very reliable 

estimate of transcutaneous CO2. 

Overall, the Wrist-Colorimetric CO2 sensor is capable of responding to a wide 

range of concentrations of CO2. It also provides a reliable measurement of transcutaneous 

CO2 when validated against EtCO2. Thus, the Wrist-Colorimetric sensor is capable of 

monitoring the respiration over a range of regular respiratory activity. 

 

4.4.3 Photoplethysmography, Pulse Oximetry and Transcutaneous Oxygen (TcO2) 

The integration of dual wavelength light source with the CMOS camera enables 

photoplethysmography and pulse oximetry in this system. As shown in Figure 4-9 (a) and 

(b), the pulse oximetry channel is exposed directly to the skin and the intensity of light 

observed on this channel corresponds to the absorption profile of blood in the capillaries.  

As seen in section 4.2, pulse oximetry requires two wavelengths, Red and Near 

Infrared (Near IR). As illustrated in Figure 4-9 (b), LEDs of two wavelengths (Red LED 

(LTST-C190CKT, Lite-On Technology Corporation, λ = 638 nm) and Near IR LED 

(QBLP601-IR2, QT-Brightek, λ = 880 nm) respectively) are used in reflectance mode with 

the CMOS camera. The PPG signal from the camera is shown in Figure 4-12 (a). A single 

wavelength light source sampled at 60 Hz produces a good signal, with the Fourier 

transform in Figure 4-12 (b) showing a clear peak at the frequency of heart rate.    
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Figure 4-12 Photoplethysmography Using The Pulse Oximetry Channel Of CMOS 

Camera. 

(a) PPG Signal Observed By Illuminating The Target Area With Single Wavelength Light 

Source. (b) The Fast Fourier Transform Of The Signals Obtained In (a). (c) Mechanism To 

Enable Dual-Wavelength Light Source And Obtain Simultaneous PPG Signals. (d) 

Simultaneous PPG Signals Observed Using The Implementation Of Mechanism Described 

In (c). (e) Fast Fourier Transform Of The Signals Obtained In (d). (f) Changes In Frame 

Intensities Due To Variations In Spo2 Obtained By Changing The Respiration Pattern. 

 

The camera uses a callback-based mechanism to provide frames to the end 

application. Therefore, switching between different light sources incurs loss of frames due 

to overlap and synchronization delays. As shown in Figure 4-12 (c), a flip between Red 

and Near IR LEDs appears as an overlapped image frame. This is a result of rolling shutter 

effect of CMOS cameras where pixels need to be refreshed at a fixed periodicity to capture 

new light intensity information for the next frame [122].   
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The camera (OV5647) does not provide the functionality to synchronize light 

source flip with the rolling shutter and frame rate. Therefore, these overlapped frames are 

discarded and the next frame in sequence is used before flipping the light source for the 

other wavelength intensity. This effectively discards every alternate frame, thus reducing 

the effective sampling rate to 30 Hz, 15 Hz per wavelength. Figure 4-12 (d) and (e) show 

a sample window of simultaneous PPG signals captured with dual wavelength light source 

and their respective Fourier transforms that indicate the heart rate frequency.  

From Figure 4-1 (c) it is known that HbO2 shows higher absorption of Near IR light 

while Hb shows higher absorption of Red light. A simple experiment to validate the sensing 

setup with changing SpO2 values is conducted. Holding breath causes a temporary decrease 

in the concentration of HbO2 and increase in Hb, therefore reflecting an opposite trend in 

the reflected light onto the camera. Figure 4-12 (f) reflects the expected trend when a 

moving average filter of 150 points is applied to smoothen each of the PPG signal. 

Overall, PPG and pulse oximetry are enabled in this sensing setup using the dual 

wavelength light source with periodic switch and alternating camera frames to capture the 

reflected intensity. Though the expected absorption trends and heart rate peaks are 

observed from the obtained signals, computation of Ratio of Ratios and a comprehensive 

evaluation over a wide range of SpO2 values is necessary.  
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As discussed in section 4.1, along with SpO2 oxygen is also available as a 

transcutaneous gas that can be continuously monitored. The colorimetry channel can be 

extended to include sensing elements for the detection of oxygen.  The formulation used is 

based on indigo-carmine cast over a Teflon substrate, where oxidation of indigo carmine 

is expected to produce a blue colored shade [123]. The sensing strip is dried overnight and 

packed in an oxygen-inert environment to avoid any contamination.  

 

Figure 4-13 Offline Bench Test To Evaluate The Performance Of Colorimetric O2 Sensor. 

 

As seen in Figure 4-13, the formulation does not respond to varying concentrations 

of O2 over time. The expected color change is from dark yellow to dark blue while the 

observed color change is from dark yellow to pale yellow with hints of dark spots all over 

the substrate. A likely reason for this result is interference of humidity with the indicator 

as well as the permeability of oxygen by Teflon. An evaluation with other formulations 

and potential substrates is necessary in order to successfully use this setup to detect 

transcutaneous O2.  
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4.5 Discussion 

The sensing platform developed in this chapter is capable of monitoring multiple 

transcutaneous signals like photoplethysmography and cutaneous CO2 using inexpensive 

sensing components and wearable wristwatch setup. Though the setup shows promising 

results, the following issues need to be addressed in order to make it robust reliable.  

Firstly, the longevity of PDMS membrane needs serious evaluation. This chapter 

shows the performance of the membrane over a field test of 4.5 hours with no degradation 

in the permeability of the membrane. But further analysis is required to check longer time 

frames as well as the retention of the linearity for CO2 response.  

Secondly, EtCO2 measurements might not truly reflect the estimation of TcCO2, 

because of the delay and breath-by-breath variation. Previous studies have shown that 

TcCO2 values very closely follow up the values estimated from ABG, while EtCO2 is 

lower than ABG and has a constant offset when compared to them [117, 118]. Future tests 

with the proposed sensing setup needs evaluation with commercial TcCO2 sensors or ABG 

based measurements to provide better accuracy and reflect the true state of transcutaneous 

gases. It is also seen in Figure 4-8 and Figure 4-11 that the TcCO2 seen by the wristwatch 

sensing setup show a rapid rise before and after the consumption of coffee. This could be 

associated with the vasodilation effects caused by caffeine [124]. Caffeine is also known 

to show a mild increase in myocardial and forearm blood flow at resting, which might 

further increase with stress [125, 126]. This gives a compelling reason to consider the 

effects of vasodilation and vasoconstriction on the sensor and its reported accuracy.  

Finally, the permeability of PDMS over other transcutaneous analytes needs to be 

studied. If the colorimetric sensing setup is used to scale up for other analytes such as 
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transcutaneous oxygen, volatile organic compounds (VOCs) etc., the permeability & 

diffusion coefficient of PDMS for these gases needs to be investigated. The role of sweat 

based deposits on the membrane also needs a closer look to establish the long-term use of 

PDMS as the hydrophobic membrane for the wristwatch setup. 
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5 WIRELESS CONNECTIVITY OF WEARABLE DEVICES 

5.1 Background 

A typical wearable ecosystem consists of wearable peripherals as the sensor nodes 

to sense & process the environmental and health signals and a host/hub unit as the gateway 

for data collection, integration, and sharing. Wireless communication plays an essential 

role in transmitting data among the wearables and the host, since it enables the real-time 

data communication without obstructing the normal use of the wearables. Though research 

on wearables is mostly focused on developing novel sensing technologies, the reliability 

of the wireless data transmission in the wearable ecosystem is also an important aspect. 

Compared to other wireless communication technologies, such as 6LowPAN and 

Zigbee, Bluetooth Low Energy (BLE) technology has shown its advantages with high data 

transmission rate, low power consumption, strong signal strength, miniaturized size, and 

low cost [127-129]. Typically, the wearables run on battery-constrained environments and 

BLE provides the necessary benefits of having low power consumption as compared to 

classic Bluetooth 2.1 [130]. BLE has ubiquitously diffused into most contemporary 

electronic devices, such as PCs, smart phones, hubs like raspberry pi, smart watches, fitness 

trackers etc., for wireless data transmission [131-133]. 

Achieving reliable BLE-based data transmission involves many challenges and 

considerations. A typical BLE connection uses a list of parameters that need to be tailored 

based on the application scenario. While BLE 4.0 implementation uses 23-byte packet 

transmission, BLE 4.2 allows extension of packet size to up to 255 bytes [128, 134-136]. 

Piconets, which only use and fetch data from one sensor, can use BLE 4.0, but Body Sensor 
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Networks (BSN) that use multiple wearable devices use BLE 4.2 implementation to expand 

their data transfer sizes to accommodate information from all the sensors in the network. 

Existing work on BLE predominantly focuses on maximizing throughput and 

minimizing power consumption [128, 134, 137-139]. But not much work has been reported 

on packet losses of BLE in a wearable ecosystem. The contemporary systems involve many 

off-the-shelf smartphones (Android, iOS) or hubs like Raspberry Pi that use various 

chipsets and operating systems. It has been suggested that a comprehensive analysis of 

chipsets and devices available from various vendors would provide more insights into the 

flexibility and limitations posed by the hardware, firmware and operating systems that 

control these modules [128, 140, 141].  

The various factors that influence packet loss in a BLE connection between devices 

include connection parameters, signal strength, external interference, data corruption etc. 

[137]. The connection parameters are primarily determined by the specifications laid out 

by the host. iOS has a set of defined values for connection parameters to the device 

developers and has a limit on the maximum transmission unit (MTU) size [142]. Android 

on the other hand allows the application developers to set the required MTU size. But it 

does not give a standard connection parameter specification and each Original Equipment 

Manufacturer (OEM) of Android phones define varying values. Using an optimized 

parameter list for one set of OEMs might not work well for others, causing many 

uncertainties to the reliability of data transmission. 

Another important aspect to consider in a host is the interaction between the BLE 

chipset drivers and the custom application that uses BLE. Most of the modern operating 

systems (OS) use Hardware Abstraction Layer (HAL) in application development [143, 
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144]. With HAL, the internal hardware drivers and parameters are abstracted from the 

external application. The developer invokes a standard function to request a BLE specific 

task and provides a callback handle, which is then invoked back by the OS when the 

internal drivers complete the requested action. The number of functions exposed by this 

interface are limited to the most critical operations. Also, it is possible for the packet to be 

delivered to the underlying hardware chipset but not be delivered from the chipset to the 

requesting application function due to other high priority tasks running simultaneously on 

the host. Eventually the chipset might start dropping packets due to scheduling & priority 

conflicts. These complex nuances make developing a robust BLE-based data transmission 

scheme between the wearable peripheral and the host very difficult. Since the hosts 

(smartphone or hub) used by the end users vary significantly, there is a need for 

comprehensive understanding of BLE connectivity & data transmission in wearable 

ecosystem. 

As one of the important application scenarios, epidemiological research uses 

plethora of wearables in the large-scale cohort studies. Typically, multiple wearable 

sensors are used to collect various physiological & environmental data from the subject in 

order to obtain comprehensive information for accurate analysis of triggers, symptom 

progression, and feedback on treatment [145-148]. When dealing with such systems, it is 

important that information from multiple sensing units is collected, merged properly, 

synchronized and indexed to the correct timestamps & user profiles. To achieve this, it is 

beneficial to have the wearable units comply and agree to a common communication 

structure that can easily request and integrate relevant information without much hassle. 
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Complying with a common communication protocol also makes the integration of future 

devices and 3rd party sensors to the wearable ecosystem easy and straightforward. 

This chapter focuses on evaluating the influence of BLE connection parameters and 

other external factors on the data packet losses. The trade-offs between reliability and 

transmission times are also explored. Finally, mitigation strategies are proposed to ensure 

that the lost packets are recovered and the intended data is reliably transmitted between the 

peripherals and hosts. 

 

5.2 Ecosystem of Devices and Their Interaction 

The components of a typical BLE-based wearable ecosystem (shown in Figure 5-1), 

are defined as follows: 

a) Wearables (also known as peripherals): These are devices used/worn by the users. 

They have built-in sensors and microcontrollers to monitor environment or 

physiological signals, memory to store data, and battery to power the devices. 

Wireless means of data transmission makes these devices suitable for non-obtrusive 

and continuous monitoring in free-living conditions. BLE’s high availability in the 

mainstream wearables and host devices makes it an ideal choice for wireless 

transmission in the wearable ecosystem. Some of the widely used microcontrollers 

that support BLE & sensor integration include TI CC2640, Nordic nRF51 & nRF52 

etc. This ecosystem adopts a piconet style for its network topology, where only one 

peripheral interacts with the host at any given time. 

b) Hosts (such as smartphones) & Hubs (such as Raspberry Pi): These devices are the 

intermediate layer between the wearables and the users. The current generation of 
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hosts or hubs are BLE enabled, supporting the communication with the peripherals. 

These devices also have high data processing capabilities and long battery life. 

Therefore, they are sometimes used to process the raw data received from the 

peripherals. Examples include Android Phones like Samsung Galaxy Phones & 

iPhones, Android Tablets & iPads etc. As part of the piconet, the host 

communicates with only one peripheral at once. They use a well-known data 

management software system, called databases. Databases are designed to handle 

large streams of data to be stored and retrieved on demand. The hosts and hubs can 

also serve as the gateways, through which the data can be further uploaded to IoT 

cloud so it can be accessed by healthcare professionals. 

 

5.2.1 Peripheral Devices 

Two homemade peripheral devices (shown under Wearables/Peripherals in Figure 

5-1) have been used to test the BLE connectivity with the hosts under consideration. The 

first device is “Asthma Research Tool” (ART), built using TI CC2640 Bluetooth® Low 

Energy wireless MCU. ART is a wrist-worn device that can monitor the user’s personal 

exposure to various environmental pollutants. It has built-in sensors that can monitor 

ozone, volatile organic compounds (VOCs), temperature and relative humidity [149, 150]. 

In this application scenario, real-time data transmission is not always required, and it is not 

necessary for the peripheral device to always be within the connectivity range of the host. 

ART monitors the pollutant exposure throughout the day. Therefore, the device is designed 

to process sensor signals and store the data as packets in the flash memory every minute. 

The storage sector location is designed to act as a pointer or index to the packet for future 
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retrieval. This design makes the ART less power consuming since it allows to store the 

processed data internally and transmit it to a host when the user demands it, rather than 

streaming the data continuously. Whenever the user requests for the data from the host, the 

device retrieves packets from the flash and transmits it to the host over BLE notifications. 

 
Figure 5-1 Overview Of The Components & Interactions In A Typical BLE-Based 

Wearable Ecosystem.  

The Peripherals Collect & Process The Necessary Signals From Wearables And Transmit 

The Data To The Host Over Bluetooth Low Energy. 

 

The second device is “Wearable Mask Device” (WMD), built using TI CC2640 

Bluetooth® Low Energy wireless MCU as well. WMD is a face mask device that can 

monitor respiration related physiological parameters of the user based on integrated sensing 
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technologies. The device collects signals from multiple built-in sensors, such as flow 

sensor, chemical sensors, gyroscope, thermistor, and humidity sensor, at a sampling rate of 

40 Hz. The device keeps track of key respiratory parameters such as respiratory rate (RR), 

tidal volume (TV), respiratory minute volume (VE), and resting energy expenditure (REE) 

after processing the necessary data. The respiratory parameters are monitored in real-time 

and the user is immediately notified with results like resting energy expenditure through 

the host after collecting information for a period of 11 minutes [37, 151]. 

 

5.2.2 Host Devices 

Figure 5-2 shows the various contemporary smart phones and tablets that are 

commonly sold in the market and chosen for this evaluation. These devices include 1) iOS-

based devices like iPhone 6, iPad Pro, iPod; 2) Android based devices like Samsung Galaxy 

Note 9, Samsung Tab A 7.0 and 3) hubs like Raspberry Pi 3 B+. The operation systems 

and the BLE chipsets are summarized in Table 5-1. 
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Figure 5-2 Peripherals And Hosts Of The Wearable Ecosystem. 

(a) Hosts And Peripherals Used In The BLE Data Loss Evaluation. (b) Circuit Board Of 

ART, With All The Sensors Combined On The Top Side Of The Board. (c) Paired Circuit 

Boards Of WMD, Which Is Weight-Balanced On Both Sides Of The Face Mask. 

 

 

Table 5-1 Hardware And Software Specification Details Of The Host And Peripheral 

Devices. 

 

Device 
Operating System 

(OS) 
BLE Chipset 

iPod Touch 6th Gen iOS 12.0.1 BCM4335 

iPhone 6 iOS 12.4.8 BCM4345 

iPad Pro iOS 13.6 ---- 

Samsung Note 9 Android 10 SDM845 

Galaxy Tab A 
Android 5.1.1 

(Kitkat) 
BCM4330 

Raspberry Pi 3 B+ Raspberry Pi OS BCM20702 

Raspberry Pi 3 B+ Raspberry Pi OS CSR8510 

ART TI-RTOS CC2640 

WMD TI-RTOS CC2640 

 

 

5.2.3 Firmware 

The firmware for the peripheral devices has been developed for TI-RTOS (Real-

Time Operating System (RTOS) for Microcontrollers (MCU)) by Texas Instruments (TI) 

using Code Composer Studio (CC Studio). The firmware, as illustrated in Figure 5-3, is 

designed to have three tasks that have separate functions and responsibilities. In such a 

design, the tasks do not share responsibilities and failures in one task does not affect the 

functioning of other tasks. 
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Figure 5-3 Structure And Interaction Between Tasks In The Firmware. 

 

TI-RTOS provides the BLE-Stack that can start a BLE task (BT) and enable BLE 

connectivity on CC2640. The BLE task is responsible for advertising the availability of 

connection, interacting with the BLE-Stack to negotiate the necessary connection 

parameters requested by the host, and transmitting and receiving any data packet sent over 

by the host application. The BT starts one service that contains two characteristics: 

command and data.  

1) For ART, the command is a write only characteristic which accepts commands from 

the host application. It forwards the command packet to Control Task (CT) for 

further action. The data is a notification only characteristic, which notifies the host 

when a new packet is available from CT.  
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2) For WMD, the command is a write only characteristic which accepts commands 

from the host application. It forwards the command packet to CT for further action. 

The data is a read only characteristic which keeps the most updated packet from 

CT and to be read by the host application. 

 

TI-RTOS also provides functions to create parallel processing tasks, which are used 

to acquire signals from sensors, store data into flash memory if necessary, and update the 

BLE task with any data packet requested by the host application. These tasks are divided 

into two categories: 

1) Data Acquisition Task (DAT): This task interacts with various built-in sensors 

integrated on the circuit board via different buses like Inter-Integrated Circuit (I2C), 

Serial Peripheral Interface (SPI), Analog-to-Digital Converter (ADC), and 

Universal Asynchronous Receiver/Transmitter (UART).  

For ART, the connected sensors include Temperature & Humidity over I2C, total 

volatile organic compounds (TVOC) over I2C, real-time clock over I2C, metal 

oxide semiconductor (MOS) gas sensor over ADC, and Serial NOR Flash Memory 

over SPI. The sensor data is sampled at 1 Hz, averaged over the time window of 

one minute. The sensor readings are converted into the final output values if 

necessary and then passed to the control task. 

For WMD, the connected sensors include flow sensor, thermistor, barometric and 

humidity sensors over ADC, gyroscope over I2C. It also includes chemical sensors 

which are tracked using photodiodes whose intensities are taken over ADC. This 

task samples the sensor data at 40 Hz and implements the breathing tracking 
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algorithm described in [61] to convert, compute and aggregate the parameters such 

as RR, TV & VE, measurement status, elapsed time etc. These values are 

aggregated cumulatively for each second and passed on to the control task. 

2) Control Task (CT): This task ensures synchronization and mediation of data 

between DAT and BT. It validates the byte array structure of any packets received 

from BT. It is also responsible for arranging the data from DAT into the right 

format. 

For ART, this task controls the conversion of sensor data from DAT into pre-

defined byte array structure for storage in flash memory, the conversion of flash 

memory data into byte array structure to be transferred to BT, and the flash memory 

erasing when requested by BT.  

For WMD, this task converts the parameters into pre-defined byte array structure 

and passes it to BT. 

 

5.2.4 Homemade Applications 

Homemade applications have been built using libraries provided by the hosts 

(XCode, Android SDK & BlueZ) for peripheral interaction. For Android & iOS 

applications, the user interacts with the applications to initiate data transmission from the 

peripheral to the host. For the raspberry pi application, the application scans for the 

peripheral periodically and collects the data if the peripheral is available. The periodicity 

of scheduling the application can be configured by the user based on their preferences, e.g. 

once every hour or twice a day. 
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Figure 5-4 Overview, Interaction And Structure Of Homemade Custom Applications. 

(a) Design And Interaction Between Application And System BLE Library. (b) (c) (d) The 

Applications Built Over iOS, Android & Raspberry Pi Respectively To Collect, Process 

And Store The Data. 

 

XCode has been used to build the iOS application [152] and Android SDK for the 

Android application [153]. In these applications, the user can initiate data transfer from the 

peripheral to the host. The application for Raspberry Pi has been built in BlueZ [154], 

where the application scans for the peripheral and collects any available data. 
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All the applications follow an observer design pattern [155], where the host 

application registers with the underlying BLE library for notifications on new data from 

the peripheral, using a callback function (illustrated in Figure 5-4 (a)). The BLE library is 

responsible for maintaining the connection along with receiving and forwarding the data 

packet of the peripheral to the registered application. iOS application uses the “Core 

Bluetooth” library, provided by XCode package [156, 157]. The Android application uses 

BLE service from android.bluetooth.BluetoothAdapter [158]. The Raspberry Pi 

application uses BlueZ & BluePy services [159, 160]. 

 

5.3 BLE Performance and Packet Loss 

Since the Connection Intervals, Slave Latency & Timeouts of the peripheral’s BLE 

are already specified for iOS in the Accessory Design Guidelines for Apple Devices [142], 

the same recommended values are used in the peripheral’s firmware. The following 

sections evaluate the reliability of the BLE-based data transmission and associated packet 

losses. 

 

5.3.1 Maximum Transmission Unit (MTU) Size and Packet Transmission Frequency 

The size of data packets in the BLE Attribute Protocol (ATT) layer is defined by 

the MTU size requested by the host. The dependency of packet losses on varying MTU 

sizes as well as the packet transmission frequency has been evaluated. Each peripheral 

requires at least 30 bytes to accommodate the necessary sensor data. Therefore, packet 

sizes in the multiples of 30 are chosen for tests. In these tests, the peripheral has transmitted 

a fixed number of packets (1440 packets numbered sequentially) to the host. Based on the 
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design guidelines [142], the connection intervals (CI) ranging from 30 ms to 105 ms have 

been considered. Pervious work has reported that the maximum number of packets per CI 

varies between 4 and 6 for iOS & Android, respectively [138]. Therefore, packet 

transmission frequencies from 38 Hz (CI = 105 ms, 4 packets per CI) to 200 Hz (CI = 30 

ms, 6 packets per CI) have been used. 

 

Figure 5-5 Evaluation Of BLE Connectivity With Hosts Over Varying Connection 

Parameters. 

(a) Influence Of Packet Sizes And Transmission Frequency Over Packet Loss At The 

Receiver. (b) – (h) Packet Losses For Individual Host Devices Under Consideration. (i) 

Relation Between Transmission Frequency And Total Transfer Time. 
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The overall packet losses (Figure 5-5 (a)) are proportional to the packet 

transmission frequency. The average losses increase with packet size although some hosts 

show slightly varying trends (like CSR8510). Figure 5-5 (b) – (h) show the relationship 

between packets loss and packet transmission frequency on different hosts. The test results 

suggest the following: 

a) The chance of packet loss declines with the decreasing transmission frequency. A 

transmission frequency less than 10Hz can guarantee a reliable packet transmission 

without any losses in our test. 

b) Figure 5-5 (i) shows that reducing transmission frequency rapidly increases the total 

transfer time. In high load applications which require higher throughput, long total 

transfer time can be mitigated by bundling the data packets. 

 

These observations are further confirmed by the test results shown in Figure 5-6. 

The best result that shows the least packet losses across various hosts is the parameter 

combination of packet size of 30 bytes and transmission frequency of 38 Hz. The same 

payload can be transmitted without any losses by bundling 4 packets together in a payload 

of size 120 bytes, while reducing the transfer frequency by 4 times to 9.5 Hz. The results 

in Figure 5-6 show that the packet losses in different hosts have been drastically reduced 

with most hosts reporting zero losses. 

Furthermore, the packet loss under different power modes of the hosts has also been 

tested. Smartphones like iPhone 6 provide an option to switch the device into “Low Power 

Mode”. Galaxy Note 9 provides various battery saving modes like “High Performance”, 

“Optimized”, “Medium Power Saving” and “Maximum Power Saving”. When the packet 
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size and the transmission frequency are set to be 120 bytes and 9.5 Hz respectively, the 

power mode of the host does not affect the packet loss, which remains at zero percent. 

 

Figure 5-6 Comparison Of Packet Loss Under Reduced Transmission Frequency And Data 

Bundling. 

 

5.3.2 Influence of External Environment 

The distance and the objects between host & peripheral determines the signal 

strength of the BLE connection perceived by the host. In most cases, the data transmission 

is initiated by a user from their smartphone (host), when the wearables (peripherals) are 

around. In this case, the distance between the host and peripheral is typical within arm 

length, i.e., within 1 meter. However, when a hub like raspberry pi is used to initiate a 

periodic scan and data transmission, increased distance between the hub and peripherals is 

expected and the influence of RSSI and throughput on reliability of data transmission needs 

to be carefully evaluated. 
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Usually with the ART, a user would synchronize their data at the end of the day, to 

check the daily pollutant exposure. While with the WMD, the user would access the data 

immediately through the host during the measurement. Both these scenarios most likely 

happen in a typical living room/bedroom or office environment. The average size of a 

regular living room or bedroom of a house in the USA is about 40 sq. meters [161]. 

 

Figure 5-7 Evaluation Of Influence Of External Environment On Packet Losses In BLE 

Transmission. 

(a) Room Environment Used To Check The RSSI Of Peripherals. (b) Comparison Of RSSI 

Between Peripheral And Host At Various Distances Across The Room. (c) Reported Packet 

Loss For The Influence Of Microwave Oven On BLE Transmission.  
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Figure 5-7 (a) gives an overview of the test environment, which represents a living 

room or office. The room has metal shelf, wood desk, plastic chair and dry wall, which can 

serve as the obstacles for the BLE data transmission. The peripheral is placed at a fixed 

position labeled as “TX” at one corner of the room, while the host moves away from “TX” 

to approach the positions labeled “RX1” and “RX2”, during which the RSSI is measured 

at increasing distances. As seen in Figure 5-7 (b), the signal strength drops by an average 

of 18.5 decibels over 6 meters. This result is consistent with previous findings [162], in 

which a signal strength drop of 15 decibels is reported for room with obstacles like wood, 

human body, metal and brick wall within a distance of 6 meters. But this drop in the signal 

strength does not affect packet losses and the losses remain zero over increasing distances. 

The work undertaken in [162] also shows that the drop in signal strength over 6 meters has 

negligible impact on the energy consumption of BLE module during data transmission. 

A common household or work environment also has appliances like a benchtop 

microwave oven that emit radio signals at the frequencies close to that of BLE, which could 

potentially interfere with the peripheral’s signal [163]. The influence of microwave oven 

on the data loss in BLE transmission has also been investigated. As seen in Figure 5-7 (a), 

a kitchen microwave oven (Emerson MW8987B, rated 900W, full microwave power) is 

located at the position L1. The oven heats up a 300ml cup of tap water at highest power 

setting through the entire data transfer session. Another location at L2 (~ 6 meter away 

from L1) is chosen based on normal, everyday usage scenario for these tests.  

It has been observed that if both the peripheral and the host are located together 

(within a distance of 0.5 meters) at L1 or L2, no packet losses are observed. But placing 

one of them at L1 and the other at L2 shows a consistent packet loss pattern when the oven 
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is turned on, as shown in Figure 5-7 (c). The hosts show a packet loss of less than one 

percent. Though this packet loss is not significant, it is critical when high data transmission 

reliability is required in certain application scenarios. 

 

5.4 Mitigation of Packet Loss over BLE 

As discussed before, the packet loss rate varies greatly across various host devices, 

and it also depends on the internal parameter settings and external environment under 

which the hosts operate. Even with a low transmission frequency and data bundling, it is 

observed that external environment can affect the data transmission in BLE. Therefore, 

mitigation strategies are needed to avoid packet loss in BLE for wearable ecosystem. 

The peripheral can opt to work under one of the two modes, real-time mode or 

offline mode, as illustrated in Figure 5-8 (a). In the real-time mode, data from the 

peripherals is transmitted to the host as soon as it is available. This host does not check for 

data loss and can end the transmission at will. WMD adopts this mode, since user needs to 

actively interact with the device in real-time to follow the measurement procedures and 

access the test results. 

To avoid data losses in real-time mode, the peripheral needs to reduce its 

transmission frequency. The WMD computes respiratory information like respiratory rate, 

tidal volume, minute ventilation and accumulates this data over time. The accumulated 

values are transmitted over BLE at 1Hz. The host receives the data packets and process the 

data using the timestamps tagged with the data. Since respiratory parameters change much 

slower than 1 Hz, the transmission frequency of 1 Hz is sufficient for real-time data 

transmission between the peripheral and the host. Any occasional packet losses can still be 
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mitigated by adopting the values received in the upcoming data packets without 

compromising the quality of the measured respiratory parameters. The sequence of 

operations and interactions between the peripheral and host in real-time are shown in 

Figure 5-9. 

 

Figure 5-8 Data Transmission Protocol For BLE To Mitigate Packet Loss. 

(a) Two Transmission Modes Between The Peripheral And The Host. (b) Queue Based 

Mechanism To Track Packet Loss And Re-Request Packets Before Ending The Session. 

 

In the offline mode, the peripheral is not expected to maintain a constant connection 

with the host. The peripheral might also not be constantly available within the BLE range 

of the host. Devices like ART monitor the environmental exposure throughout the day 

continuously and passively without any need of user interaction. Hence these peripherals 
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store all measured data in their flash memory. After the daily monitoring, the user could 

initiate a request for the sensor data transmission on the host and the peripheral can transmit 

all the data to the host at once. The offline mode is also more energy efficient since a 

constant communication between the peripheral and the host is not maintained which in 

turn helps to extend the battery life of the peripheral device. 

 

Figure 5-9 Sequence Diagram Indicating The Series Of Interactions Involved With Data 

Requested In Real Time Mode. 

The End User Initiates A Request By Interacting With The Application On The Host. The 

Host Application Connects To The Peripheral And Sends Out A Command Packet For 

Real-Time Data. The Peripheral Continues To Collect The Sensor Data And Notify The 

User With New Data Packets Generated Using The Latest Sensor Information. The Host 

Application May Choose To Display Necessary Packet Information To The End User. The 

Mode Ends With The End User Requesting To Exit The Application. 
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As illustrated in Figure 5-8 (b), ART peripheral transmits all data stored in its flash 

memory to the host. The host keeps track of the missing packet indices between the 

incoming packets in a queue structure. When the host receives the End Packet from the 

peripheral, it checks for missing data in the queue and initiates a re-request using the 

request command packet. But this time it mentions the specific packet indices that need to 

be transmitted again. The host recursively keeps track of any missing indices in the re-

request routines as well. This continues until the host receives all the expected packet 

indices and finally ends the transmission session by sending the erase command. When the 

peripheral receives the erase command, it erases the flash memory to make space for future 

sensor data storage. This transmission protocol ensures that none of the data gets lost in the 

offline mode. The sequence of operations and interactions are shown in Figure 5-10. The 

peripheral bundles the data from the flash memory and transmits the data at a low frequency 

to avoid packet loss. Any occasional packet loss due to external interference can be 

mitigated by the re-request routines. 

 

5.5 Discussion 

In this chapter, a wearable sensor ecosystem is established over BLE with various 

commercially available hosts. The performance of data transmission over BLE has been 

evaluated under several connection parameters as well as other potential external 

parameters that influence packet losses.  The ecosystem also provides flexibility to the 

peripheral to work either in real-time mode providing one-time measurement results or in 

offline mode by collecting the sensor information over long periods and making a bulk 

transfer to the host when requested. This way the mobility and usability of the device is not 
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restricted. This ecosystem would be an ideal setup for homecare-based studies and 

epidemiological studies where a combination of sensors is deployed which have a spectrum 

of requirements for operation, as well as with a wide range of users who use various 

commercial hosts. 

 

Figure 5-10 Sequence Diagram Indicating The Series Of Interactions Involved With 

Requests For Transmitting Data That Has Been Stored In The Flash Memory Of The 

Peripheral. 

The End User Initiates A Request To Get All The Stored Information From The Peripheral. 

The Host Application Connects To The Target Peripheral And Sends Out A Command To 

Retrieve The History Of Logged Data From The Flash Memory. The Peripheral 

Temporarily Stops Storing The Sensor Information And Sends Out The Data Packets From 

The Flash Which Are Tagged With The Storage Address As Packet Index. After The End 

Of Initial Transmission, The Host Verifies The Sequence Of Indices Received And Invokes 

A Re-Request Routine For Any Lost Packets. The Invocation Of Re-Request Routine 

Continues Until Host Received Packets Of All Expected Indices. The Session Ends With 

The Host Terminating The Connecting By Sending Out A Command To Erase The 

Existing Flash Data On The Peripheral. The Peripheral Sends An Erase Command To The 

Flash, Waits For The Flash To Return With A Successful Erase Before Storing New Sensor 

Information From The First Available Storage Address. 
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In the current work, the evaluation of MTU size is restricted based on the maximum 

size allowed within the set of hosts considered (Eg., 135 by iPod 6th Generation). But other 

hosts can go up on their MTU sizes, all the way until 255 bytes. This allows bundling of 

larger amounts of sensor information, thereby increasing the throughput and reducing the 

overall transfer time even further. Also, the transfer protocol assumes a fixed packet byte 

structure for each device. Adding more devices in the future requires manual intervention 

to provide meta-data to the protocol to understand the structure of each new device. The 

protocol can be made more dynamic by exchanging the maximum MTU size and 

maximizing the bundling on the peripheral side which enhances the overall user 

experience. Also, the peripheral can be made to send the packet structure to the host before 

the start of packet transfer, enabling addition of devices to the ecosystem on demand. 
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6 CONCLUSIONS AND FUTURE WORK 

The works undertaken in this thesis have provided practical and scalable solutions 

for building wearable devices to monitor cardiorespiratory signals. Using miniaturized 

sensing principles and associated processing algorithms, vital signs related to the 

respiratory process of the human body are continuously monitored. This opens up more 

possibilities to track respiratory features over time, provide early diagnosis of lung 

diseases, and help improve the patient’s quality of life.  

Several novel contributions have been made to this area of research. The salient 

contributions include the following:  

1) A miniaturized pneumotach based respiratory flow rate sensing system & 

algorithms to enable continuous respiratory monitoring from a mask platform under 

everyday living conditions. 

2) A principal component analysis (PCA) based respiratory flow analysis algorithm 

to extract breath features and establish a personalized respiratory signature that can 

be tracked over time for potential diagnosis of diseases. 

3) A wristwatch device to track pulse oximetry & transcutaneous carbon dioxide using 

inexpensive commercial off-the-shelf miniaturized sensors, which reflect the status 

of respiratory oxygen and carbon dioxide.  

4) A CMOS camera-based wristwatch device that enables simultaneous tracking of 

pulse oximetry as well as using colorimetric sensor to measure transcutaneous 

carbon dioxide.   
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5) A comprehensive exploration of wireless data transmission by the wearable devices 

using Bluetooth Low Energy (BLE) for data losses mitigation over various 

environmental & receiver related factors. Established a robust application level 

protocol to ensure complete transmission of health information and avoid any 

packet losses over BLE. 

 

Though these works have made substantial progress towards the applications of 

wearables to monitor cardiorespiratory signals, there are certain challenges still needs to 

be explored and addressed in order to have a successful & deployable device. 

First, the wearable mask device is not suitable for applications that involve existing 

face mask-based systems, like continuous positive airway pressure (CPAP) machines or 

nebulizers. These systems require suitable adapters to fit the wearable device. Also, these 

systems introduce other external artifacts that may interfere with the pneumotach sensing 

in the wearable. CPAP machines pump external air into the nasal areas & lungs which 

might interfere with the natural respiration pattern. Nebulizers generate aerosols that need 

to be inhaled by the subject. These aerosols might interfere with the chemical sensors. 

Further analysis & research needs to be made to assess the impact of aerosols getting 

deposited and interfering with the accuracy of the MEMS pressure sensor as well.  

Second, the respiratory signature established by PCA needs to be assessed for 

conditions like exercise, resting, pulmonary diseases etc., to better help with the early 

diagnosis. The current research has tested the subjects in resting condition, but this only 

provides limited value in terms of determining the health of respiratory system. Flow-

Volume loops, a widely used technique to assess pulmonary diseases like asthma or chronic 
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obstructive pulmonary disease (COPD) needs to be integrated with the PCA approach to 

provide solutions that are acceptable to the medical community.  

Third, the wristwatch device to track transcutaneous gases using commercial off-

the-shelf sensors need to be evaluated under various other scenarios like physical activities, 

change in body temperature and interference from other transcutaneous analytes. Motion 

artifact correction is an area of interest for improving accuracy of pulse oximetry. Also, 

previous research has shown that concentration of end-tidal CO2 is a bit lower than the 

transcutaneous CO2. Therefore, using arterial blood CO2 or other transcutaneous monitors 

might be a better reference for sensor calibration and accuracy validation. Also, the 

longevity of PDMS membranes to mitigate the humidity effect needs to be evaluated if this 

sensor has to be used for everyday conditions.  

Fourth, CMOS cameras are known to generate heat during operation. This can 

cause discomfort to the subject. Heat mitigation methods need to be explored to enable 

long-term monitoring. Also, the colorimetric CO2 sensor needs to be evaluated to discover 

potential interference from other transcutaneous analytes like, volatile organic compounds 

etc.  

And finally, the data transmission protocol has to be improved to reduce the total 

response time to an acceptable range so a better user experience can be achieved.  
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