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ABSTRACT

In the era of artificial intelligent (AI), deep neural networks (DNN) have achieved

accuracy on par with humans on a variety of recognition tasks. However, the high

computation and storage requirement of DNN training and inference have posed chal-

lenges to deploying or locally training the DNNs on mobile and wearable devices.

Energy-efficient hardware innovation from circuit to architecture level is required.

In this dissertation, a smart electrocardiogram (ECG) processor is first presented

for ECG-based authentication as well as cardiac monitoring. The 65nm testchip

consumes 1.06 µW at 0.55 V for real-time ECG authentication achieving equal error

rate of 1.7% for authentication on an in-house 645-subject database.

Next, a couple of SRAM-based in-memory computing (IMC) accelerators for deep

learning algorithms are presented. Two single-array macros titled XNOR-SRAM and

C3SRAM are based on resistive and capacitive networks for XNOR-ACcumulation

(XAC) operations, respectively. XNOR-SRAM and C3SRAM macros in 65nm CMOS

achieve energy efficiency of 403 TOPS/W and 672 TOPS/W, respectively. Built

on top of these two single-array macro designs, two multi-array architectures are

presented. The XNOR-SRAM based architecture titled “Vesti” is designed to support

configurable multibit activations and large-scale DNNs seamlessly. Vesti employs

double-buffering with two groups of in-memory computing SRAMs, effectively hiding

the write latency of IMC SRAMs. The Vesti accelerator in 65nm CMOS achieves

energy consumption of < 20 nJ for MNIST classification and < 40 µJ for CIFAR-

10 classification at 1.0 V supply. More recently, a programmable IMC accelerator

(PIMCA) integrating 108 C3SRAM macros of a total size of 3.4 Mb is proposed.The

28nm prototype chip achieves system-level energy efficiency of 437/62 TOPS/W at

40 MHz, 1 V supply for DNNs with 1b/2b precision.

In addition to the IMC works, this dissertation also presents a convolutional neural
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network (CNN) learning processor, which accelerates the stochastic gradient descent

(SGD) with momentum based training algorithm in 16-bit fixed-point precision. The

65nm CNN learning processor achieves peak energy efficiency of 2.6 TOPS/W for

16-bit fixed-point operations, consuming 10.45 mW at 0.55 V.

In summary, in this dissertation, several hardware innovations from circuit to

architecture level are presented, exploiting the reduced algorithm complexity with

pruning and low-precision quantization techniques. In particular, macro-level and

system-level SRAM based IMC works presented in this dissertation show that SRAM

based IMC is one of the promising solutions for energy-efficient intelligent systems.
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Chapter 1

INTRODUCTION

Deep neural networks (DNNs) and convolutional neural networks (CNNs) have un-

precedentedly improved the accuracies in large-scale recognition tasks [1–6]. However,

the arithmetic complexity and memory access have limited the energy-efficiency and

acceleration of DNN hardware [7–11]. Innovation in both algorithm and hardware

design is required to address this issue.

On the algorithm side, two major methodologies have been proposed in the past

decade to reduce the neural network complexity: network pruning and network

quantization. By pruning a large number of less important parameters in the neu-

ral network without hurting the classification accuracy, we can reduce the memory

footprint for storing the parameters and also greatly reduce the total number of

operations [12–15]. Quantizing neural network activations and/or weights can also

simplify the required computation complexity of DNNs. In recent algorithms, weights

and neuron activations are binarized to +1 or -1 [16,17] such that the multiplication

between an weight and an activation becomes an XNOR operation and the accumula-

tion of the XNOR operations becomes bitcount of those XNOR results. Although the

initial XNOR-Net [16] showed a relatively large test accuracy degradation (∼10-20%)

for the ImageNet dataset, recent works that employ 2-bit precision [18] have shown

1–3% accuracy degradation for ImageNet.

On the hardware side, a number of digital ASIC designs [7, 8, 19, 20] have been

presented to accelerate the inference or classification phase of DNNs with enhanced

energy-efficiency. Below we briefly introduce the representative ASIC accelerators.

Eyeriss [7] proposed a new dataflow called Row Stationary (RS) on a spatial ar-
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chitecture with 168 processing elements. RS dataflow reconfigures the computation

mapping of a given shape, which optimizes energy efficiency by maximally reusing

data locally to reduce expensive data movement, such as DRAM accesses. ENVI-

SION [8] presented an energy-scalable CNN processor achieving efficiencies up to 10

TOPS/W, where the data precision of MAC units can be dynamically scaled from

4-bit to 16-bit, together with voltage/frequency scaling and body bias modulation.

DNPU [19] demonstrated a reconfigurable processor that can efficiently map both

CNN and Recurrent Neural Network (RNN) algorithms. It employed dynamic fixed-

point precision with online adaptation via overflow monitoring. It also proposed

a quantization table based matrix multiplication to reduce off-chip memory access.

In [20], an accelerator for fully-connected DNNs is presented, featuring circuit and al-

gorithmic error resilience with in-situ timing error detection and correction techniques

(also known as Razor [21]).

Figure 1.1: Power breakdown of Eyeriss chip [7] running the first convolution layer

of AlexNet CNN [1]. Besides the clock network, most power is consumed by on-chip

SRAM (scratch pads, global buffer).

In the Eyeriss chip results [7] of running AlexNet CNN [1], Fig. 1.1 shows that the
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Arithmetic Logic Unit (ALU) operations only accounted for less than 10% of the to-

tal power. Memory access and data movement related components, including on-chip

SRAMs, buffers, and network-on-chip, accounted for up to 45%. This confirms that

memory access and data movement are actually significantly more energy consuming

than ALU operations. Eyeriss chip consumes relatively high clock power (33% of

total power), but the authors acknowledged that this can be considerably reduced

with proper clock-gating techniques [7]. Therefore, we can conclude that the on-chip

SRAMs indeed dominated on-chip power consumption, which infers that in-memory

computing has a large potential to effectively reduce memory accesses and substan-

tially improve the overall system energy efficiency of DNN hardware accelerators.

Taking advantage of the reduced computation complexity, dedicated hardware

accelerators [22, 23] for CIFAR-10 dataset [24] have been proposed with digital or

mixed-signal neuron array, achieving ∼86% test accuracy with all weights stored on

a chip. It should be also noted that ternary precision have demonstrated better

performance to binary precision [25], especially for large-scale datasets. To that

end, implementing deep neural networks with ternary activation precision and binary

weight precision is of a particular interest.

The arithmetic complexity reduction from the binary and ternary algorithms, how-

ever, makes row-by-row memory access dominating the speed and energy efficiency

of DNN hardware [7]. Conventional on-chip static random-access memory, SRAM,

requires row-by-row accesses, and fetching a very large number of weights in this

manner consumes substantial energy and delay.

The advent of the binary-weight DNNs and CNNs opens a new possibility for

SRAM-based in-memory computing, since each weight in those algorithms can be

nicely stored in a single SRAM bitcell. By turning on multiple or all rows simultane-

ously, the input/activation values are applied as wordline voltages, which in turn in-
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teract with the bitcells to perform MAC computation, typically in an analog manner.

This can eliminate explicit memory access, which otherwise pose energy/performance

bottlenecks in DNN/CNN hardware implementations. A number of works recently

have demonstrated this type of in-SRAM computing [26–34], and we summarized

representative works in Table. 1.1.

In [26], in-SRAM computing hardware in 130nm CMOS was demonstrated. This

design employs binary weights, each of which is stored in a 6T bitcell. The 5-bit

inputs are converted to analog voltages via Digital-to-Analog Converters (DACs) em-

bedded in the address decoder, which drives the WordLines (WL). Each WL voltage

modulates the resistance of access transistors of bitcells of that row. Depending on

the weight stored in each bitcell, the bitcell either discharges or charges the BitLines

(BL), making BL voltage proportionally grow with the MAC computation results.

The bitline voltage is finally digitized into a binary value by a single sense amplifier

in the column circuitry.

Table 1.1: Comparison of Recent in-SRAM Computing Hardware Demonstrations.

Biswas et al. [28]

ISSCC 2018

Khwa et al. [30]

ISSCC 2018

Valavi et al. [31]

Symp. VLSI 2018

XNOR-SRAM [32]

Symp. VLSI 2018

Technology 65nm 65nm 65nm 65nm

SRAM bitcell 10T 6T 10T1C 12T

SRAM

array size
256×64 512×256 192×192 256×64

Supply voltage 0.9-1.2V 1V 0.68-1.2V 0.6-1V

Column/row

sensing
Integrating ADC SA SA Flash ADC

DNN model
CNN

(A: 7b, W: 1b)

FC layer of CNN

(A: 1b, W: 1b)

CNN

(A: 1b, W: 1b)

CNN/MLP

(A:ternary, W:1b)

Energy Efficiency

(TOPS/W)
28.1 55.8 658 403

MNIST accuracy 96% 95.1% 98.6% 98.3%

CIFAR-10 accuracy N/A N/A 83.3% 85.7%
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This work employs 6T SRAM circuits, promising a compact silicon footprint.

However, it cannot support mainstream DNN and CNN algorithms. Even though

binarized neural network algorithms [16, 35] binarize the activation at the output of

each layer, still the partial sum and accumulation needs to be performed with high

precision. Since the partial sum result at each SRAM output is binarized prematurely

in [26], if the neural network layer cannot fit in one SRAM array, the final neural

network accuracy can be considerably degraded. By combining many weak classifiers

(shallow neural networks), a boosting classifier is demonstrated, but only achieved

90% accuracy for MNIST dataset.

In-SRAM computing hardware was also presented in [27]. This was not for ac-

celerating neural network algorithms but for Content Addressable Memory (CAM)

and bit-wise AND/OR/XOR operations of two rows of SRAM. The main focus of

the work was on the novel 6T bitcell design featuring portless write using N-well and

decoupled differential read, scaling the lowest functional voltage down to 0.3V in a

55nm CMOS technology.

Conv-RAM [28] integrates digital-to-analog converters (DACs) for analog inputs,

binary weights stored in SRAM, and analog-to-digital converters (ADCs) to convert

the in-memory computation results back to digital values. In-memory computation

in [28] targets convolution operation, which is accomplished by row-wise charge shar-

ing of the SRAM bitcells in the same row. To perform this, local analog multiply-and-

average circuits are added every 16 rows (out of the 256-row custom SRAM array).

However, within a block of 16 rows, the in-memory SRAM still goes through row-

by-row operation, and the integrating ADC exhibits slow speed. MNIST accuracy of

96% was reported, but only 100 test images was used for the accuracy calculation.

In-memory computing with on-chip training capability was presented in [29],

where the weights were fine-tuned based on on-chip variability. The work reported an
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accuracy of 96% on the MIT-CBCL dataset for relatively simple face detection tasks.

In-memory computation in this work is limited to reading out multi-bit weights that

are stored in different rows to a single analog voltage, instead of performing a MAC

or convolution operation inside the memory.

In [30], the authors demonstrated MAC operations using a 4kb SRAM for fully-

connected neural networks in edge processors. The paper proposed techniques to

mitigate the challenges of excessive current, sense-amplifier offset, and sensing ref-

erence voltage optimization, arising due to simultaneous activation of multiple word

lines in the in-memory computing scheme. However, similar to [26], each column

output is binarized with a single sense amplifier, which limits the accuracy and scal-

ability to arbitrary large DNNs. In addition, only fully-connected layers of DNNs are

mapped onto in-SRAM computing, and the measured MNIST accuracy was limited

to 95.1%.

Neural Cache [34] re-purposes the large last-level caches in microprocessors to-

wards CNN acceleration with in-memory computing. However, the in-memory com-

puting scheme only turns on two rows of SRAM in one cycle, which limits the paral-

lelism.

PROMISE [33] is a programmable mixed-signal accelerator that supports diverse

machine learning algorithms with a custom Instruction Set Architecture (ISA) and

compiler support. However, they only demonstrated machine learning tasks on rela-

tively simple benchmarks including MNIST and MIT-CBCL datasets.

A binarized CNN accelerator was presented in [31], which also performs a modified

batch normalization with analog computation, and reported 83.27% test accuracy for

CIFAR-10 dataset. However, since each column end is binarized with a single sense

amplifier, it cannot naturally support ensuing high-precision operations such as max-

pooling, and also lacks scalability for larger CNNs.
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Twin-8T [36] employed two of the conventional 8T SRAM structures [37]. Sup-

porting multi-bit CNNs, it achieves the accuracy of up to 90.42% for CIFAR-10. This

design can simultaneously turn on 9/18 rows in single-/dual-channel mode, achieving

energy efficiency of 37.5/72.1 TOPS/W. Compute SRAM [38] employs transposable

SRAM [39] and implements bit-serial digital operations near the peripherals. The pro-

posed ‘digital’ computing scheme avoids less robust analog computation, but allows

to turn on only two rows of bitcells in one clock cycle, resulting in limited throughput

and energy-efficiency.

To reduce the delay and energy associated with on-chip SRAM accesses, recent

works have proposed SRAM-based in-memory computing (IMC) scheme, which per-

forms computation on the bitline without reading out each row of bitcells [29–32,

36, 40, 41], demonstrating large improvement in energy efficiency and throughput.

CONV-SRAM [41] integrates digital-to-analog converters (DACs) for analog word-

lines, binary weights stored in SRAM, and analog-to-digital converters (ADCs) to

convert the in-memory computation results back to digital values.

While prior in-SRAM computing works have made different design decisions, we

focus on robust and scalable in-memory computing with the goal to further advance

the trade-off of the DNN accuracy and energy-efficiency. Unlike some of the prior

works [30, 31] that connect the drain/source of additional transistors directly to the

SRAM storage nodes, we only connect the gate of additional transistors. This is

critical to eliminate any write disturb when all rows are asserted. Also, unlike [30,31]

that prematurely binarize the analog bitline voltage with a single sense amplifier, we

employ a multi-bit ADC. This enables scalability to arbitrary-sized DNNs.

In addition to DNN inference acceleration, on-device DNN training hardware

acceleration has also attracted research interests from both academia and indus-

try. With local training capability on mobile or edge devices, people can train the
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DNN models with users own sensitive data. Unlike inference-only tasks, the back-

propagation (BP) based training algorithm involves weight transpose for convolution

and fully-connected (FC) layers. Maintaining two copies of weights (original and

transposed) or employing transposable SRAM [42] incurs large area overhead or cus-

tom SRAM bitcell design.

The rest of this dissertation is organized as follows: Chapter 2 presents a low-

power processor for real-time ECG-based biometric authentication and cardiac mon-

itoring. This chapter explains the ECG processing data flow for real-time biometric

authentication, arrhythmia and anomaly detection. In particular, lower power op-

timizations are proposed to reduce the ECG processor power including employing

selective precisions in the hardware design, hardware optimization for Finite Impulse

Response (FIR) filter, normalization module and inverse of square root module, net-

work pruning based on Lasso regression. Measurement results are presented for a

65nm prototype chip of the proposed ECG processor.

Chapter 3 proposes a resistive in-memory computing SRAM macro named “XNOR-

SRAM”. The bitcell macro design of XNOR-SRAM is first presented. The resisitve

voltage divider model is presented to explain the analog averaging operation for both

binary and ternary activations. Design choices on the number of ADC levels, con-

fined linear vs. nonlinear quantization scheme are also explained. The XNOR-SRAM

macro is implemented in 65nm CMOS technology. Measurement results of a number

of prototype chips are presented and analyzed in details. In addition, an ensemble-

network based technique is proposed to improve the IMC classification accuracy.

Comparison to a digital baseline and prior works is made to show the advantage of

XNOR-SRAM macro in energy efficiency.

In Chapter 4, a capacitive in-memory computing SRAM macro named “C3SRAM”

is presented. C3SRAM macro architecture is first presented followed by the bit cell

8



design. Double-samplng based self-calibrating single-ended comparators are used for

the ADC operation. Signal switching order is explained to ensure correct functional-

ity and highest throughput. Next, multi-bit activation precision support in C3SRAM

is explained. The C3SRAM macro is implemented in 65nm CMOS. Finally, measure-

ments on power/energy, the DNN accuracy and ADC varaiability are presented and

analyzed.

Chapter 5 describes an in-memory computing architecture titled “Vesti”, which

is built on top of XNOR-SRAM macros. This chapter first presents a more detailed

review of prior in-SRAM computing macros. Next, practical challenges of IMC accel-

erators are analyzed, based on which the Vesti accelerator design is proposed. Double

buffering technique is explained for the Vesti architecture to hide the weight loading

latency. A special activation memory storage and access pattern is presented for

3×3 convolution. Experiment results are finally presented and analyzed for different

activation precision and DNN models.

Chapter 6 proposes a programmable in-memory computing architecture named

“PIMCA” which consists of 108 C3SRAM macros. First, the PIMCA overall ar-

chitecture and instruction set is explained. Next, storage and access pattern of the

activation memory is explained. PE organization and mapping are explained for

different layer types and weight precision, followed by the 256-way SIMD processor

design explanation. Measurement results of a 65nm prototype chip on ADC variabil-

ity, power/energy and DNN workload accuracies are finally presented.

Chapter 7 presents a fixed-point CNN learning processor. The chapter first re-

views the commonly used stochastic gradient descent (SGD) based learning algorithm.

Next, the CNN learning processor design and optimization are presented. In partic-

ular, the layer-layer instruction set, input feeder with two-level FIFO array, and

dual-read-mode weight storage/access scheme are described. Finally, measurement
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results of a 65nm prototype chip are presented.

Finally, chapter 8 concludes the dissertation.
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Chapter 2

A SMART ECG PROCESSOR FOR REAL-TIME BIOMETRIC

AUTHENTICATION AND PERSONAL CARDIAC MONITORING

2.1 Introduction

Wearable devices are becoming ubiquitous in our daily lives, many of which fea-

turing ability to sense and process our physiological signals including photoplethys-

mogram (PPG), electrocardiogram (ECG), bio-impedance, etc. Smart watches such

as Apple Watch Series 3 [43] and Samsung Gear S3 [44] can measure our heart rate by

analyzing PPG signals. However, to obtain further cardiac health information beyond

heart rate, ECG signals can be analyzed. By inspecting the rhythm/shape of ECG

beats, initial assessment of cardiovascular diseases can be performed. Due to privacy

concerns, instead of processing ECG signals on cloud servers, performing ECG-based

cardiac monitoring on local wearable devices has gained a lot of attention.

Several custom ECG processors [45–47] have demonstrated arrhythmia detection

by continuously monitoring heart rate variability or frequency spectrum of ECG sig-

nals. In addition, detection of abnormal ECG pulse shapes has been presented in [48].

In the commercial market, several wearable ECG recording devices are available for

ambulatory monitoring such as Zio patch [49], KardiaBand [50], and Simband [51].

On the other hand, privacy concerns on personal health data necessitate enhanced

security to access such wearable devices. Authentication based on biometrics such

as fingerprint [52], iris [53], gesture [54], etc., is becoming increasingly popular for

wearables. ECG signal has emerged as an attractive biometric modality, due to two

key advantages compared to other existing methods: (1) ECG originates from the
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electrical activity of the heart, thus providing intrinsic liveness proof, and (2) ECG

authentication is difficult to spoof, since the ECG signal cannot be easily replicated.

In recent years, many prior works proposed ECG-based authentication methods using

various machine learning algorithms [55–59].

A few ECG-based authentication works have been reported in hardware. The

authors of [57] implemented an ECG authentication deep neural network on FPGA,

consuming ∼1 MB memory and 256 mW power. In [58], a cross-correlation based

ECG authentication algorithm was implemented on the ARM microcontroller unit

(MCU) in a wearable watch. However, both works evaluated authentication only on

relatively small databases (90 subjects for [57] and 28 subjects for [58]). Furthermore,

considering severe power constraints of wearable devices, compared to FPGAs/MCUs,

energy-efficient ASIC processors are desired. Since both ECG authentication and

cardiac monitoring share certain computation modules, it is natural to integrate both

functionalities in a single chip.

In this chapter, we present an ultra-low-power smart ECG processor that per-

forms both ECG-based authentication and cardiac monitoring including arrhythmia

detection and anomaly detection [60]. Fig. 2.1(a) shows the high-level illustration

of the proposed ECG processor. The ECG processor was designed for watch-type

wearable devices such as smart watches or wristbands. We evaluated the ECG-based

authentication performance on three ECG databases: MIT-BIH NSRDB [61] (18

subjects) and ECG-ID [62] (90 subjects) and an in-house ECG database (645 sub-

jects). The arrhythmia detection performance was evaluated on MIT-BIH arrhythmia

database [63], targeting atrial premature contraction (APC) or premature ventricular

contraction (PVC). Our main contributions include:

1. This chapter presents, to the best of our knowledge, the first ECG processor

that integrates both ECG-based authentication and cardiac monitoring func-

12



(a)

(b)

Figure 2.1: (a) The proposed ECG processor integrates two functionalities: cardiac

health monitoring and biometric authentication. (b) Computation flow of the ECG

processor.

tionalities.

2. A novel neural network based ECG feature extraction method is implemented

and optimized for on-chip weight memory storage via data-driven Lasso regres-

sion. Aided by this, the ECG processor only consumes 1.06 µW at 0.55 V for

real-time ECG authentication.

3. ECG authentication accuracy is verified on a large 645-subject database consid-

ering temporal variability of ECG signals, and achieves a low equal error rate

(EER) of <2.5%, demonstrating its practical feasibility.
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4. For cardiac monitoring, we achieve 93.13% arrhythmia detection sensitivity with

a specificity of 89.78% for 42 subjects in the MIT-BIH arrhythmia database.

2.2 Smart ECG Processor Operations

The input to the ECG processor is single-lead raw digitized ECG signal sampled

at 250 Hz with 13-bit precision, which goes through FIR filtering, R-peak detection,

outlier detection/removal, normalization, neural network based feature extraction

and cosine similarity evaluation. Fig. 2.1(b) illustrates the computation flow of these

modules. The proposed ECG processor supports two ECG functionalities with shared

hardware: (1) authentication and (2) cardiac health monitoring.

In the authentication mode, the ECG processor works in two stages: registration

and identification. In the registration stage, 30 continuous ECG beats of the user are

acquired, among which the outliers are detected and removed. The feature vectors

(FVs) of all remaining valid ECG beats are extracted by neural networks (NNs), and

the mean FV is registered. In the identification stage, the ECG processor acquires 4

valid (outlier-free) ECG beats, and the FVs of the 4 ECG beats are extracted using

the same NNs. If the mean of the 4 newly extracted FVs is sufficiently similar to

the registered mean FV, then the user is accepted; otherwise, the user is rejected.

Acquiring 4 valid ECG beats for identification achieves a good balance between the

identification time and authentication accuracy, where EER is 1.1% in software simu-

lation using NNs with floating-point precision and without Lasso compression. If we

use only 3 and 2 valid beats for authentication, we observed that the EER noticeably

degrades from 1.1% to 2.0% and 3.9%, respectively.

In the cardiac monitoring mode, R-peak detection and outlier detection modules

are used to detect arrhythmia (irregular ECG rhythm) and anomaly (abnormal ECG

shape), respectively. Fig. 2.3 shows the overall architecture and operations, which
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are described further in the following subsections. We explored the design space with

different choices of the FIR filtering frequency bands, data segmentation, network

topology, activation function, similarity metric, etc., using a forward greedy and

backward greedy algorithm [64]. In the forward greedy algorithm, we evaluated each

candidate model (a neural network and its preprocessing) on the first half of ECG

records of the in-house 645-subject ECG databases, and incrementally augment the

pool of models with a model that achieves the highest accuracy when combined with

other ones in the pool. In the backward greedy algorithm, we incrementally remove

a model such that the remained models in the pool achieve the best accuracy. Four

final models remained in the pool were selected as the final choice.

Figure 2.2: Representative ECG waveforms. From top to bottom: ECG raw signal,

256-tap FIR NRF output, 42-tap FIR BPF output, differentiator output, and

11-tap FIR LPF output (green line: dynamic threshold).
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Figure 2.3: The overall architecture, dataflow, and computations of the proposed

ECG processor.

2.2.1 FIR Filtering

A 256-tap FIR noise rejection filter (NRF) with cutoff frequency of 1-40 Hz is

designed to reject both high frequency noise as well as DC wandering of the raw

ECG signal. The NRF output (“ECG NRF”) is further filtered by a 40-tap FIR high

pass filter (HPF), as well as a cascade of 42-tap FIR band pass filter (“ECG BPF”),

differentiator (“ECG DIFF”) and a 11-tap FIR low pass filter (“ECG LPF”). Sim-

ulated waveforms of these filter outputs are shown in Fig. 2.2. In parallel, we have

three additional 256-tap FIR BPFs with cutoff frequencies of 5-40 Hz, 1-40 Hz, and

5-50 Hz. These filters extract ECG information in different frequency ranges, which

will be later used for 4 separate NNs. Let us denote these three filters as BPF 5 40,

BPF 1 40, and BPF 5 50, respectively.
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2.2.2 R-peak Detection

The outputs of LPF, HPF and four 256-tap FIR BPFs will be buffered in different

but time-aligned consecutive 64-sample windows. The HPF output is used to accu-

rately determine the maximum/minimum peaks in a 64-sample window. The LPF

output is compared with a dynamic threshold (“ECG THR”) to detect the R-peak

of ECG beats within a window [65], as shown in Fig. 2.2 (bottom). When a valid

R-peak is detected, we extract a 160-sample segment from the buffer for the outputs

of NRF and BPF 5 40 aligned at R-peak, two 50-sample segments from the buffer for

the output of BPF 1 40 (one aligned at R-peak, the other aligned at Q-point), and

a 30-sample segment from the buffer for the output of BPF 5 50 aligned at R-peak.

The aligned 30 or 4 ECG beats after NRF are stored in on-chip memory for outlier

detection.

2.2.3 Arrhythmia Detection

Among the various types of arrhythmia that concern cardiac health, we focus on

the detection of sudden change in the R-R interval. This can be caused by premature

contractions such as atrial premature contraction (APC) and premature ventricular

contraction (PVC), for which example ECG waveforms from the MIT-BIH arrhyth-

mia database [63] are shown in Fig. 2.4. We first estimate the instantaneous heart rate

as the inverse of R-R interval. Then, the instantaneous heart rate variability (HRV)

is estimated by computing the standard deviation of the past three consecutive heart

rates. If the instantaneous HRV is above a threshold, we define that an arrhythmia

is detected. If needed, the stored ECG beats can be exported for further diagnosis

by cardiologists. Our arrhythmia detection algorithm is similar to that in [47], where

HRV in a non-overlapping 10-second time window is estimated. In our ECG proces-

17



sor, HRV in a overlapping window of four ECG beats is estimated, which can more

precisely locate the ECG beat when arrhythmia occurs.

(a)

(b)

Figure 2.4: ECG waveforms of (a) atrial premature contraction (APC) and (b)

premature ventricular contraction (PVC) are shown, from record 100 and 116

of [63], respectively.

2.2.4 Outlier Detection/Removal

Following the R-peak and arrhythmia detection module, the outlier detection

module is present. It is notable that we employ the same outlier detection hardware

for both authentication and cardiac monitoring modes, but in an opposite manner.

For authentication, the objective is to detect the outliers and remove them, to form

a representative (outlier-free) set of ECG beats for personal ECG feature extraction;

for cardiac monitoring, we actually detect the outliers and save them, since they are

considered as potential anomalies for the individual’s cardiac health. Further details

of the outlier detection/removal module for both operation modes are described below.

Authentication mode: In the authentication mode, after a certain number

of ECG beats are obtained, we find outliers among the collected ECG beats and

discard them, in order to acquire an outlier-free, representative ECG beat set for each
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individual. The outlier removal algorithm is adopted from the techniques proposed in

[66]. An ECG beat is defined as an outlier when any of the following three conditions

is satisfied:

1. Xmax > 1.5X̃max,

2. Xmin < 1.5X̃min,

3. dcos > d̄cos + γ · σ,

where Xmax/Xmin are the maximum/minimum value of the ECG beat, respectively,

and X̃max/X̃min are the median of maximum/minimum values of all acquired ECG

beats. dcos is the cosine distance of the ECG beat to the mean ECG beat, d̄cos is

the mean of the cosine distances of all ECG beats to the mean ECG beat, and σ is

the standard deviation of the cosine distances. γ is a configurable parameter in our

hardware design, whose value can be 0.25, 0.5, 1 or 2. Smaller γ represents more

stringent outlier removal. Depending on the scale and noise level of the target ECG

data, different γ values might be desired. In our experiments, 0.5 is found to be the

optimal γ value for all three ECG databases we investigated. The cosine distance

between two ECG beats is defined as:

dcos(X1,X2) = 1− XT
1 X2

‖X1‖2‖X2‖2
, (2.1)

where X1 and X2 are two 160-sample ECG beats.

To ensure that sufficient ECG beats are used in the identification stage, in case

an outlier is detected and discarded, new ECG beats are continuously read in until

four ECG beats are collected. With outlier removal, EER improves from 2.60% to

1.70% for the in-house 645-subject ECG database.

Cardiac monitoring mode: In the cardiac monitoring mode, in addition to

detecting abnormal heart rate, we can also detect abnormal ECG pulse shape. As
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aforementioned, outliers among acquired ECG beats will be detected and removed in

the authentication mode for better feature extraction quality. By reusing this identical

outlier detection module, outliers in every 30 ECG beats will be continuously detected

and reported in the cardiac monitoring mode. The ECG beats detected with abnormal

ECG pulse shapes might be classified as an anomaly for cardiac health, as shown in

Fig. 2.4(b). As needed, all 30 ECG beats can be exported for further analysis by

cardiologists. Similar to the authentication mode, cosine distance threshold parameter

γ can be varied to adjust the criteria for anomaly detection in the cardiac monitoring

mode.

2.2.5 Normalization

Before the four ECG streams are sent to four corresponding NNs, we normalize the

data such that NN input values are bounded within a certain range. Normalization

is performed in two steps. First, the aligned ECG beats are normalized to zero-mean

and unit-variance across different beats. Second, we normalize the ECG beats by the

mean and standard deviation of ECG beats used for NN training. Then, ECG beats

become normalized in both inter-beat and intra-beat dimensions.

2.2.6 Neural Network Based Feature Extraction

As shown in Fig. 2.5, four parallel NNs with input layer, one hidden layer, and

output layer are designed to extract features from different frequencies and alignment

(e.g. aligned at Q versus R). For each NN, there are 100 hidden layer neurons and

1,146 output layer neurons. The number of input neurons varies from 30 to 160,

depending on the number of samples. The activation function of the hidden layer

is tanh(x). The NNs were trained on the first half of ECG records of the in-house

645-subject ECG database with 10-fold cross-validation. Each subject has a different

20



Figure 2.5: Four parallel neural networks for ECG feature extraction. Four 100×1

FVs are concatenated to form a 400×1 FV.

number of ECG records acquired over different time, and the total number of ECG

records is 1,146. We could map different ECG records from the same subject to the

same output neuron or to different output neurons. We tried both mapping schemes

and found that the latter one leads to better EER, as it could extract ECG features

in the hidden layer more effectively when we spread out each ECG record’s data to

different neurons. Therefore, we employed 1,146 output neurons in the NNs.

Training: We first pre-train a two-layer deep belief network as the initial weights

values of NN [67]. Then, we use the identity labels of samples as the supervision

information for fine tuning. After training is done, the intention is to use the hidden

layer output as the feature descriptor.

As illustrated in Fig. 2.6, two loss functions are collectively employed to improve

the accuracy: identification loss function and verification loss function [64]. The iden-

tification loss function maximizes the difference of ECG features from different users.

The cross entropy value after a softmax layer is evaluated for the identification loss.

On the other hand, the verification loss function minimizes the ECG feature variation

from the same user, considering the temporal variation in ECG signals from the same

user. Pairs of ECG data xi,xj are fed to the NNs. If they are from the same subject,
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Figure 2.6: Identification and verification loss function used for training the neural

networks.

the Euclidean distance between their network outputs is minimized; otherwise, the

Euclidean distance is maximized to be greater than a specified threshold m.

Classification: Classification is performed with feedforward propagation using

the trained NNs. Four 100×1 FVs are extracted from the hidden layer of four NNs

and concatenated to form a 400×1 FV. The average 400×1 FV over all valid beats

is considered as the final FV. Since the hidden layer is directly used for FVs, weights

between hidden and output layers are not required for classification (only used in

training).

2.2.7 Cosine Similarity Evaluation

In identification stage, cosine similarity is computed between the current (identi-

fication) FV and the registered FV:

cossim =
FV T

newFVreg
‖FVnew‖2‖FVreg‖2

. (2.2)

When cossim is above the pre-defined threshold, the user will be accepted; otherwise,

the user will be rejected.
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2.3 Low-power Design Optimization

Power consumption is critical for our ECG processor due to the limited power

budget of wearable devices. The ECG processor employs extensive clock gating based

on module-level activity, and is optimized from software and hardware perspectives

to substantially reduce the power consumption.

2.3.1 Selective Precision in Hardware Design

To reduce the power and area of the ECG processor, we adopted fixed-point preci-

sion representation. The input raw digitized ECG exhibits 13-bit precision. However,

there is no need in keeping this precision throughout the entire signal processing flow.

To optimally reduce the power without hampering accuracy, we selectively reduced

the precision for different modules to the lowest before accuracy degradation occurs.

The final precision values optimized for FIR filter coefficients, FIR filter signals, R-

peak detection, normalization, NN based feature extraction, and similarity evaluation

modules are 8-bit, 13-bit, 13-bit, 11-bit, 12-bit, 6-bit and 9-bit, respectively. Note

that the 32-bit floating-point NN weights are quantized to only 6-bit, reducing the

weight storage by 5.3×.

2.3.2 FIR Filter Design

We adopted the systolic architecture [68] for our direct form FIR filters design to

improve the throughput. Since our FIR filters are linear-phase, the coefficients are

always symmetrical around the center coefficient. Exploiting this, we used pre-adder

to sum the samples associated with two symmetric coefficients, halving the number

of necessary multipliers. In addition, we reduced the precision of the FIR coefficients

to 8-bit. Consequently, a portion of the heading and ending coefficients were quan-
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Figure 2.7: Normalization module based on three rotation rounds.

tized to zeros, which effectively reduced the orders of the FIR filters. Nonetheless,

no significant impact was found on the filtering effect by discarding these coefficients.

Therefore, we implemented reduced-order FIR filters to reduce area and power. For

example, the 256-tap NRF, BPF 5 40, BPF 1 40 and BPF 5 50 were simplified to

148-tap, 178-tap, 178-tap and 178-tap, respectively. Delay lines were added to syn-

chronize signals across different channels.

2.3.3 Normalization Module Design

As mentioned in Section II.E, the normalization of ECG beats consists of two

steps. First, we compute the mean and standard deviation of an ECG beat. Then,

we subtract the ECG beat by the mean and divide by the standard deviation. After

this first step normalization, each ECG beat becomes zero-mean and unit-variance.

Finally, we subtract the normalized ECG beat by a global mean vector and divide by

a global standard deviation vector. We could have processed all samples in an ECG

beat in parallel to reduce the normalization latency to a few clock cycles. However,

since normalization is performed while reading in new ECG beats and the ECG beat
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Figure 2.8: Piecewise linear approximation of 1/
√
x with 48 uniformly spaced

segments on [1, 4).

rate is relatively low (60-100 bpm), the normalization module can tolerate higher

latency (e.g. a few hundred clock cycles).

We designed a rotation-based normalization module (Fig. 2.7), which is time-

multiplexed for three rounds of computation. The ECG beat is fed into a shift

register from QRS alignment module. In the first round of rotation, the mean of the

ECG beat is computed, and in the second round, the standard deviation of the ECG

beat is computed. In the third round of rotation, the second-step normalization is

completed. By reusing the data path for all samples in an ECG beat, only three

multipliers are required for the normalization of one channel.

2.3.4 Inverse of Square Root Module Design

When we compute the cosine distance in outlier detection module, the standard

deviations in normalization and arrhythmia detection module or the cosine similarity,

we need to evaluate the inverse of square root (INVSQRT) function (1/
√
x), which is

a nonlinear function. We approximated this nonlinear function with a piecewise linear

function. In particular, we pre-computed the values (offset and slope) for 48 uniform-
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length segments between [1, 4) as shown in Fig. 2.8. The input of the INVSQRT

function has 14-bit precision. The six most significant bits (MSBs) of the input are

used for segment index. The INVSQRT value for the input range beyond [1, 4) is

obtained by bit-shifting. For example, if the input is 0.2, we first left-shift the input

by 4 bits (i.e. 0.2 ∗ 24 = 3.2), to make the input fall within the valid range of [1, 4),

then we need to left-shift the INVSQRT output by 2 (= 4/2) bits. In general, the

amount of shifting at the output is half of the amount of shifting at the input, due

to the fact that:

1/
√
x = 1/

√
x× 22k × 2k. (2.3)

2.3.5 Lasso Regression Based Sparsification of Neural Networks

As mentioned in Section II.F, the output layers of four parallel NNs are discarded

as we extract the ECG features from the hidden layers, which reduces the number of

weights by 16×. The input dimension of each NN is 160, 50, 50 and 30, respectively.

The hidden layer dimension is 100 for all four NNs. The remaining fully-connected

weight matrices have (160 + 50 + 50 + 30)× 100 = 29, 000 weights, which could still

exceed on-chip storage capacity of wearable devices.

To reduce the power/area of NNs, we propose to sparsify weight matrices by Lasso

regression. Denote the original trained dense NN weight matrix between the input

layer (m neurons) and the hidden layer (n neurons) as Wori (m×n). Given a sufficient

number (p) of representative input samples X (p×m) to the NNs, the weighted sum

for the hidden layer will be:

Y = X×Wori. (2.4)

We seek a sparse weight matrix W∗ such that

X×W∗ ≈ Y. (2.5)
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Figure 2.9: Summary of NN compression at different levels. (1) software model; (2)

output layer removal; (3) quantization; (4) Lasso regression.

Lasso regression is a well-known algorithm [69] to find a sparse solution to (5). To

sparsify the NN weights, we formulate n Lasso regression problems as follows:

min
w∗

i

‖X×w∗
i −X×wori,i‖2 + λi‖w∗

i ‖1, i = 1, . . . , n, (2.6)

where w∗
i and wori,i are the i-th column of W∗ and Wori, respectively, and λi is the

regularization parameter in each Lasso regression problem. For the convenience of

hardware implementation and efficient storage of sparse weight matrices, each w∗
i is

preferred to have the same number of non-zero weights. Typically, the larger λi is,

the sparser w∗
i will be.
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For each Lasso regression problem, we conduct a binary search to find the smallest

λi for each w∗
i column, so that the same target sparsity is achieved for all columns. For

10× weight compression, Lasso regression results in better EER of 1.70%, compared

to the EER of 3.31% that is obtained when magnitude-based pruning is performed

to reach the same sparsity. With 10× weight reduction, we achieved 4.6× memory

compression (including overhead for weight indices) with only 0.2% EER degradation.

Starting from the software NN model, Fig. 2.9 summarizes the overall NN weight

reduction of 390×, collectively achieved by output layer removal, low-precision quan-

tization, and Lasso-based compression.

The extracted features from four NNs are evaluated in parallel. The weighted sum

of one hidden neuron is computed in one cycle. 160-to-16, 50-to-5, 50-to-5 and 30-3

multiplexers are used in the four NNs, to select corresponding partial inputs according

to the sparse weight indices for each hidden neuron. In total, only 29 multipliers are

required for the four NNs. After the bias is added, the weighted sum goes through

a 128-entry look-up table based tanh(x) module that only stores the positive parts,

exploiting the rotational symmetry of tanh(x).

2.4 Measurement Results

Figure 2.10: (a) Prototype chip micrograph and (b) power breakdown.
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The prototype chip is implemented in 65nm LP CMOS (Fig. 2.10(a)). Total on-

chip memory is 19.5 kB, out of which 4.6 kB is used for the NN weights. Measured

power consumption of the ECG processor is 1.06 µW at 0.55 V supply and 2 kHz

clock frequency, when it performs continuous real-time authentication. For cardiac

monitoring, the ECG processor consumes 0.83 µW (at 1 kHz) for arrhythmia detection

and 0.88 µW (at 3 kHz) for anomaly detection at 0.51 V supply. All measurements

are performed at room temperature. Fig. 2.10(b) shows the power breakdown, based

on module-level power percentages obtained from post-layout simulation.

2.4.1 Biometric Authentication

Vdd=0.55V
Temp.=25C

Temp.=25C

Real-time 
constraint

Fmax

0.55

Figure 2.11: Measurement results of power, frequency and latency for

authentication.

The maximum clock frequency scales down with lower supply voltages as shown in

Fig. 2.11 (left). Fig. 2.11 (right) shows the tradeoff between authentication latency

and power consumption at 0.55 V as we sweep the clock frequency. The minimum

clock frequency for real-time authentication is 2 kHz. The combined latency of outlier

detection, NN, and similarity evaluation modules dictates that the clock frequency
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should not be too low; otherwise, user will need to wait for more than one second

from the moment when the last ECG beat is acquired till the final authentication

result comes out.

Figure 2.12: Measurement results of registration/identification FVs (features

201-300 are shown) from same and different users.

We tested the ECG processor with real-time ECG signals from a few volunteers.

Fig. 2.12 shows the registration and identification FVs for one volunteer (user A),

and the identification FV for another volunteer (user B). It can seen that there is a

very small difference between the registration and identification FVs of user A, while

there is sufficient difference between the registration FV of user A and identification

FV of user B. As a result, only user A is authenticated during identification when

user A’s ECG data is registered.

We evaluated the authentication performance on three ECG databases. Note that

clinical studies typically use 12-lead ECG signals to obtain spatial information of the

heart’s electrical activity. However, since we focus on wearable applications, which can

practically integrate only single-lead ECG sensors, only single-lead or single-channel

ECG signals are used for all three databases below. “Lead I” represents one of the

12-lead ECG orientations, namely right arm (-) to left arm (+).

• MIT-BIH normal sinus rhythm database (MIT-BIH NSRDB) [61, 70] includes

18 subjects (5 men, age 26-45, and 13 women, age 20-50) and ECG data of two
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channels. We used the first channel in our testing.

• ECG-ID database [62] includes 90 subjects (44 men and 46 women, age 13-75)

and data of one channel (lead I).

• In-house ECG database includes 645 subjects half men and half women. The

ECG data has only one channel (lead I, electrodes on the wristband sense ECG

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FR
R

, F
A

R

Threshold

 FRR
 FAR

(a)

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FR
R

, F
A

R
Threshold

 FRR
 FAR

(b)

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FR
R

, F
A

R

Threshold

 FRR
 FAR

(c)

0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FR
R

, F
A

R

Threshold

 FRR
 FAR

(d)

Figure 2.13: Measurement results of FAR and FRR of ECG authentication for three

databases and different starting points are shown: (a) MIT-BIH NSRDB with 18

subjects (EER=0.10%), (b) ECG-ID database with 90 subjects (EER=0.74%), (c)

in-house ECG database with 645 subjects with authentication starting at 4 seconds

(results in best EER of 1.70%), and (d) in-house ECG database with 645 subjects

with authentication starting at 1 second (results in worst EER of 2.48%).
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signals from right index finger (-) to left wrist (+)), digitized by analog front

end (AFE) chip ADS1292R [71] on a custom wristband. The subjects wearing

the custom wristband sat calmly during ECG acquisition, and each ECG record

is 2-minute long. The first half of the ECG records were used for NN training,

and the second half of the ECG records were used for ECG authentication

evaluation.

To evaluate the authentication accuracy, false acceptance rate (FAR), false rejec-

tion rate (FRR) and equal error rate (EER) are measured. FAR is the rate at which

a wrong user is accepted; FRR is the rate at which a correct user is rejected; EER is

the error rate when FAR and FRR are identical.

We perform registration once and identification three times for every subject.

If a database has n subjects, we perform ECG authentication experiments for n ×

3n times, where there are 3n same-user identification attempts and 3n × (n − 1)

different-user identification attempts. By comparing n × 3n cosine similarity values

with the threshold, we obtain FRR as the ratio of the number of the same-user cosine

similarities that is less than the threshold, to the total number of the same-user

cosine similarities (3n). FAR is obtained as the ratio of the number of the different-

user cosine similarities that is greater than or equal to the threshold, to the total

number of the different-user cosine similarities (3n × (n − 1)). By increasing the

threshold, FAR decreases while FRR increases. Fig. 2.13 shows the FAR/FRR for a

range of threshold values for MIT-BIH NSRDB, ECG-ID, and 645-subject in-house

databases. The EER values are: 0.10% for MIT-BIH NSRDB, 0.74% for ECG-ID,

and 1.70%/2.18%/2.48% (best/average/worst) for in-house ECG database. These

measured EERs are comparable to EERs of recent fingerprint (0.8% [72]) and iris

(0.82% [73]) based authentication algorithms.

Temporal variability exists in ECG signals for any individual, which poses a crit-
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Figure 2.14: EER results on 645-subject in-house ECG database with varying

starting points for registration and identification.

ical challenge for ECG authentication accuracy. To evaluate this, for the in-house

ECG database, we varied the starting point of registration and identification among

∼8 seconds in the ECG records for 645 individuals, and measured EERs for these

experiments. As shown in Fig. 2.14, the best EER is 1.70%, the worst EER is 2.48%,

and the average EER for all 9 temporal experiments is 2.18%.

2.4.2 Arrhythmia Detection

We tested arrhythmia detection with ECG recordings from MIT-BIH arrhythmia

database [63], which includes 48 half-hour excerpts of two-channel ambulatory ECG

recordings from 25 men (age 32-89) and 22 women (age 23-89). We used the ECG

data from channel 1. Fig. 2.15(a) shows successful arrhythmia detection for record

100 from [63]. When the PVC beat occurs, the HRV rises above the threshold (7.5

bpm) for a short period, which promptly turns on the detection signal.

In arrhythmia detection mode, the detection results are reported every heart beat

based on the R-R intervals for the past 4 heart beats. Therefore, starting from the

4th ECG beat, we can compare the arrhythmia detection results with annotations

made by experts in the database to evaluate our arrhythmia detection accuracy. As

mentioned in Section II.C, we focus on detection of APC and PVC, which are the
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Figure 2.15: Measurement results of (a) arrhythmia detection and (b) anomaly

detection.

two most common premature contractions [74, 75], and can be occasionally caused

by heart diseases. The configurable HRV threshold can be a value between 0 and

15.9375 bpm.

Fig. 2.16 shows arrhythmia detection sensitivity (true positive rate) and speci-

ficity (true negative rate) measurement results for 48/42 subjects in the MIT-BIH

arrhythmia database [63]. For all 48 subjects in [63], when the HRV threshold is

5 bpm, the sensitivity of APC or PVC detection is 80.65%, while the specificity is

88.98%. We noticed that 6 subjects (record 207, 208, 209, 213, 223, 232) contain

hundreds of consecutive premature contraction beats that cannot be detected by our

ECG processor, since HRV would be small in those cases. When these 6 subjects

are excluded, the sensitivity for 42 subjects improve considerably, which shows that

our ECG processor can well detect sudden HRV changes. At the HRV threshold of 6

bpm, the sensitivity is 93.13% and the specificity is 89.78%.
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Figure 2.16: Measurement results of arrhythmia detection (APC or PVC) for

subjects in MIT-BIH arrhythmia database [63].

2.4.3 Anomaly Detection

Anomaly detection is aimed at detecting abnormal ECG pulse shapes among

normal ones, even if the heart rate is normal. We tested the ECG processor with ECG

recordings with such abnormal pulse shapes. Fig. 2.15(b) shows the measurement

results for an ECG recording (record 300) from MIT-BIH ST change database [76].

It can be seen that, although the heart rate is regular, the 24th ECG beat appears to

be very different in the ECG pulse shape, and its cosine distance (from simulation)

to the mean ECG beat among the 30 beats is much higher than others and is higher

than the threshold. Also, the minimum value of this 24th is much lower than the 1.5

times the median minimum value. Therefore, this beat is detected as an outlier and

reported by the ECG processor. The anomaly detection result will be updated every

30 ECG beats.

2.4.4 Comparison with Related Works

Table 2.1 provides the comparison of our proposed ECG processor against other

related works. AFE is not included in our processor, so only the digital power of
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prior works are reported in Table 2.1. While the cardiac monitoring part compares

similarly to prior works, note that anomaly detection is much more complex than

arrhythmia detection.

On the authentication side, our work is the first ASIC that implements ECG-based

biometric authentication. The authors of [57] achieved a very low EER on the ECG-

ID database. However, they trained different NNs for different users, while we used

a fixed common NN for all users across different ECG databases. In addition, our

ECG processor is tested on a much larger in-house database of 645 subjects, together

with temporal variability in the ECG records. Only our ECG processor supports

both cardiac monitoring and authentication in a single chip with ∼1 µW power for

real-time operation.

2.5 Conclusion

We presented an ultra-low-power ECG processor that performs both biometric

authentication and personal cardiac monitoring. Aided by output layer removal, low

precision, and Lasso-based compression, a total of 390× NN memory is reduced com-

pared to software. We achieved <2.5% EER for a 645-subject in-house ECG database,

consuming 1.06 µW power for real-time ECG authentication. For arrhythmia detec-

tion, we achieved 93.13%/89.78% sensitivity/specificity for 42 subjects in MIT-BIH

arrhythmia database. The proposed ECG processor enables secure access and cardiac

monitoring in wearable devices with stringent power/area constraints.
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Chapter 3

XNOR-SRAM: A RESISTIVE IMC SRAM MACRO

3.1 Introduction

Deep neural networks (DNNs) and convolutional neural networks (CNNs) have

unprecedentedly improved the accuracies in large-scale recognition tasks [1–6]. How-

ever, the arithmetic complexity and memory access have limited the energy-efficiency

and acceleration of DNN hardware [7–11].

To address this, in recent algorithms, weights and neuron activations are binarized

to +1 or -1 [16,17] such that the multiplication between an weight and an activation

becomes an XNOR operation and the accumulation of the XNOR operations becomes

bitcount of those XNOR results. Although the initial XNOR-Net [16] showed a rel-

atively large test accuracy degradation (∼10-20%) for the ImageNet dataset, recent

works that employ 2-bit precision [18] have shown 1–3% accuracy degradation for

ImageNet, and this is an active research area in the machine learning community.

Taking advantage of the reduced computation complexity, dedicated hardware accel-

erators [22, 23] for CIFAR-10 dataset [24] have been proposed with digital or mixed-

signal neuron array, achieving ∼86% test accuracy with all weights stored on a chip.

It should be also noted that ternary precision have demonstrated better performance

to binary precision [25], especially for large-scale datasets. To that end, implementing

deep neural networks with ternary activation precision and binary weight precision is

of a particular interest.

The arithmetic complexity reduction from the binary and ternary algorithms, how-

ever, makes row-by-row memory access dominating the speed and energy efficiency
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of DNN hardware [7]. Conventional on-chip static random-access memory, SRAM,

requires row-by-row accesses, and fetching a very large number of weights in this

manner consumes substantial energy and delay.

To reduce the delay and energy associated with on-chip SRAM accesses, recent

works have proposed SRAM-based in-memory computing (IMC) scheme, which per-

forms computation on the bitline without reading out each row of bitcells [29–32,36,

40,41], demonstrating large improvement in energy efficiency and throughput.

In this chapter, we present an in-memory mixed-signal SRAM macro titled “XNOR-

SRAM” that not only energy-efficiently computes ternary-XNOR-and-accumulate

(XAC) in binary/ternary DNNs, but also supports the DNNs/CNNs of arbitary size

with high accuracy. Our XNOR-SRAM performs a 256-input XAC without explicit

memory readout, via analog accumulation of bitwise ternary-XNOR results on the

read bitline (RBL) voltage of the SRAM array, and digitizes the RBL voltage (VRBL)

using a flash analog-to-digital converter (ADC) embedded in the periphery. XNOR-

SRAM supports binary weights (+1, -1) and binary inputs (+1, -1) as well as ternary

inputs (+1, 0, -1).

Our 65-nm prototype chip achieves 300X better energy-delay product (EDP) than

a digital baseline in computing XAC. DNN classification using our XNOR-SRAM

achieves 98.3%/98.8% accuracy for MNIST and 87.3%/88.8% accuracy for CIFAR-10

using binary/ternary precision, respectively.

3.2 XNOR-SRAM Macro Design and Optimization

3.2.1 XNOR-SRAM Bitcell Design

Fig. 3.1 presents the proposed XNOR-SRAM architecture, which can map con-

volutional and fully-connected layers of CNNs and multi-layer perceptrons (MLPs).
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Figure 3.1: Overall architecture of XNOR-SRAM macro.

It consists of a 256-by-64 custom bitcell array, a row decoder, an XNOR-mode WL

driver, and a column periphery including a 3.46-bit flash ADC. The XNOR-SRAM

operates in either of two modes: memory mode and XNOR mode. In memory mode,

it performs row-by-row digital read/write as regular SRAM. In XNOR mode, it per-

forms in-memory XAC computation with all rows asserted simultaneously.

Fig. 3.2(a) shows the proposed 12T bitcell for XNOR-SRAM. T1 to T6 form a

6T cell; T7 to T10 form complimentary pull-up (PU) and pull-down (PD) circuits for
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Figure 3.2: XNOR-SRAM bitcell design and XNOR-ACC operation with ternary

inputs/activations and binary weights.

XNOR mode (and memory mode read); T11 and T12 power-gate the PU/PD circuits

when the corresponding column is disabled. Fig. 3.2(b) shows the layout of the bitcell

drawn in logic ground rules. The area is 3.915 µm2 (2.7-by-1.45 µm). Except T7,

T8, and T11, all transistors in the bitcell use the minimum size. We slighltly sized

up the PMOS transistors T7, T8, and T11 to match its strength to their NMOS

counterparts.

In XNOR mode, the read wordline (RWL) driver translates each ternary/binary
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input activation to four RWLs according to Fig. 3.2(c). In the second half of a clock

cycle, T11 and T12 in a selected column are turned on, and T7 to T10 perform

ternary-XNOR operation between RWLs (activations of +1, 0, or -1) and the binary

weight (+1 or -1) stored in the bitcell. The RBL voltage finally settles and is read by

the flash ADC.

3.2.2 Proposed In-Memory Computing Operation and Analysis

Binary Activations and Binary Weights

For binary activations, the bitcell produces the XNOR output of ‘+1’ with one strong

PU by PMOS and one weak PU by NMOS. It produces the XNOR output of ‘-1’ with

one strong PD by NMOS and one weak PU by PMOS. This operation is summarized

in the first two rows of the Fig. 3.2(d). The 256 bitcells in a column contribute such

XNOR-output-controlled PU and PD circuits and essentially form a resistive voltage

divider from the supply voltage to the ground, where RBL is the output. If PU

and PD resistances are identical, the RBL voltage (VRBL) will be a symmetric and

monotonic function of the XAC value. In practice, they are different due to process

variations. Our design is capable of correcting this non-ideality by tuning the PMOS

body bias of the bitcell array, which is made as a separate pin in our prototype chip

(more details in Fig. 3.14).

The first-order analysis on the relationship between XAC value and RBL voltage

is as follows. If the number of rows is N , the range of XAC is from −N to +N .

Suppose that u is the number of PU cells among N cells in a column, and d is the

number of PD cells. As shown in (3.1), we can represent N as the sum of u and d.

Given that each PU and PD cell represents bitwise XNOR output of ‘+1’ and ‘-1’,

respectively, the XAC result that accumulates all cells’ XNOR outputs is formulated
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as (3.2). As described in Fig. 3.2(c), the bitwise XNOR output of ‘+1’ and ‘-1’ results

in two PU and two PD paths, respectively. This is illustrated in Fig. 3.3, and VRBL

can be represented as (3.3) with the resistive divider. Using (3.1) and (3.2), VRBL

can be formulated as (3.4), showing a linear relationship with XAC value. Note that

VRBL is not affected by the activation/weight patterns as long as they result in the

same the XAC bitcount.

N = u+ d, (3.1)

XAC = u− d, (3.2)

VRBL =
2u

2u+ 2d
, (3.3)

VRBL =
XAC +N

2N
, (3.4)

VDD

RBL

GND

(2×u) 

PU paths

(2×d) 

PD paths

Binary 

Activation

Figure 3.3: PU/PD paths for VRBL with binary activations.

Ternary Activations and Binary Weights

To support ternary activations, we have additionally considered the activation value of

‘0’ and have derived the equations that are similar to (3.4). Suppose that the number

of cells that exhibit the bitwise ternary-XNOR output of ‘0’ as z, N would be the
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sum of u, d and z ((3.5)). Since those z bitcells do not contribute to the XAC output,

the equations for the XAC value are identical for the binary and ternary activation

case (i.e., (3.2) and (3.6)). To maintain the same linear relationship between VRBL

and N as in (3.4), the z bitcells should contribute z PU and z PD circuits. This is

illustrated in Fig. 3.4.

N = u+ d+ z, (3.5)

XAC = u− d, (3.6)

VRBL =
2u+ z

2u+ 2d+ 2z
, (3.7)

VRBL =
XAC +N

2N
, (3.8)

VDD

RBL

GND

(2×u + z) 

PU paths

(2×d + z)

PD paths

Ternary 

Activation

Figure 3.4: PU/PD paths for VRBL with ternary activations.

Since each u and d cell leads to 2u PU paths and 2d PD paths (one strong plus

one weak), each z cell should ideally yield the average strength of the u and d cells,

or 0.5 strong PU + 0.5 strong PD + 0.5 weak PU + 0.5 weak PD. However, since

T9-T10 (T7-T8) use (close to) minimum size, splitting T7-T10 transistors to support

such half/full strengths will complicate and enlarge the XNOR-SRAM bitcell design

by about 50% and double the current consumption. The bitcell-embedded ternary
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XNOR computation and operation are summarized in Fig. 3.2(c). Note that having

z cells to exhibit no PU and PD paths (i.e., turning off ‘0’ activation rows) will

make (3.8) deviate from equation (3.4), and introduce further difference in VRBL

depending on the number of ‘0’ activation rows. Without changing the bitcell design

that implements binary activations and weights, we propose to drive even ‘0’ rows with

weak PU/PD and odd ‘0’ rows with strong PU/PD (Fig. 3.2(e)), to effectively support

ternary activations. This design is based on the assumption that ‘0’ activations

are evenly distributed on even and odd rows. Deviation from this assumption, i.e.,

the number of even-row zeros and odd-row zeros are not equal, would cause VRBL

deviation. According to our post-layout simulation with parasitics annotated, the

VRBL variance caused by the mismatch in these two numbers in the ternary VGG-like

and ResNet CNNs (for CIFAR-10) and MLPs (for MNIST) that we benchmarked is

negligible compared to other variability sources such as transistor mismatch in the

XNOR-SRAM cells.

3.2.3 Transfer Function and ADC Optimization

The ADC plays an important role in the computing throughput and accuracy. It

digitizes the analog RBL voltage to the digital output. We chose to use the flash

ADC using strong-arm comparators for the high-speed advantages. We shared the

ADC among 64 columns via a 64-to-1 analog multiplexer for two reasons. First, the

RWL drivers could be considerably large to support column parallel operation as the

drivers need to supply the current flowing in the resistor dividers. Second, the 64

ADCs would incur a large overhead for the ADC area. As pointed out in [77], the

column multiplexing scheme would not degrade the energy efficiency in the first order,

since the amount of voltage switching on all the wordlines and bitlines are roughly

the same for both column multiplexing and column parallel schemes. Nonetheless,
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Figure 3.5: XAC is mapped to VRBL with 11-level confined linear quantization.

the column multiplexing in our design hurts the throughput by roughly 64 times,

compared to a fully column parallel design.

We investigate the distribution of XAC values. As the data distribution from

MLP for MNIST shows (Fig. 3.5), the XAC value is highly concentrated around zero.

Exploiting such statistics, we confined the quantization range to the region that covers

most data (-60 to +60), within which we linearly divided the quantization levels with

reference values. Each quantization reference in XAC value maps to a particular

reference voltage (Vref) for the flash ADC (Fig. 3.5). Note that the non-linearity of

the PD and PU resistance makes the VRBL transfer function non-linear, placing Vrefs

non-uniformly, as shown in Fig. 3.5.

We investigated the required ADC precision based on the MLP for MNIST (784-

512-512-512-10) and the VGG-like CNN for CIFAR-10 (128C3-128C3-MP2-256C3-

256C3-MP2-512C3-512C3-MP2-1024FC-1024FC-10FC). Fig. 3.6 shows the simula-
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Figure 3.6: MNIST and CIFAR-10 accuracy as a function of ADC levels.

tion results across the different numbers of ADC levels. This simulation ignore ana-

log non-ideality such as offset voltage and transistor variability. We have found that

employing 11 quantization levels (i.e., 3.46 bits) results in satisfactory accuracy. In

addition, the accuracy saturates for the ADC levels beyond 11. Based on these re-

sults, we have designed the 11-level flash ADC, which consists of ten strong-arm

comparators.

Note that in [32], we employed a non-linear quantization scheme based on Llyod-

Max algorithm [78]. This scheme produces finer grain reference levels where more

data exists (i.e., XAC'0). However, we have found that this made the difference

between two adjacent Vrefs to be very small, increasing the error associated with

ADC. In addition, the non-linear quantization scheme does not consider the difference

of RBL voltage variance for different XAC values. We have found that near-zero

XAC values have larger RBL voltage variance (more details in Fig. 3.13) and ideally

require wider ADC quantization intervals. As illustrated in Fig. 3.7, the difference of
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Figure 3.7: Comparison of non-linear quantization and confined linear quantization.

two adjacent Vrefs near the XAC value of zero with the confined linear quantization

scheme increases from 21 mV [32] to 49 mV in this work (at 0.6V supply). As shown

later, this helps to improve the CIFAR-10 accuracy from 85.7% in [32] to 88.8%.

3.3 Measurement Results

We prototyped the proposed XNOR-SRAM macro in a 65-nm CMOS (Fig. 3.8(a)).

The area and power breakdowns are presented in Fig. 3.8(b). The area of XNOR-

SRAM is majorly consumed by the bitcell array, where the array efficiency is 70.75%.

On the other hand, the XNOR-mode driver dominates the total power as it needs to

supplies the current of the restive voltage divider formed for XAC evaluation.

3.3.1 Energy Consumption and Performance Measurements

We have measured the power and energy dissipation of the XNOR-SRAM macro

under a range of conditions. First of all, the power consumption depends on the XAC

result (Fig. 3.9). This is because most of the power is consumed in the form of the

crowbar current in the resistive voltage divider. The input data that corresponds
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Figure 3.8: XNOR-SRAM prototype chip micrograph, power breakdown and area

breakdown.

to XAC value near 0 poses the worst case for energy-efficiency. The post-layout

simulation shows that the worst-case crowbar current is 1 mA and lasts for 1.26 ns

in the second half of a clock cycle at 0.6V. Under this worst case, we measured that

XNOR-SRAM consumes 235.5 pJ and takes 54.21 ns for 64 operations of 256-input

XAC at 1.0V. Fig. 3.10 shows the energy and the maximum frequency with voltage

scaling from 1.0 V to 0. 5V. At 0.6 V, XNOR-SRAM achieves 2.48 fJ per operation.

Considering one operation is either ternary multiplication or accumulation, this marks

the energy efficiency of 403 TOPS/W.

3.3.2 Comparison to a Digital Baseline Design

As a comparison, we designed a well-crafted digital baseline in the same technol-

ogy. It performs the exact the same function of the XNOR-SRAM but uses digital

XNOR gates, digital adders, and conventional SRAM (Fig. 3.11). This baseline hard-

ware reads 64 binary weights row by row, receives 256 binary/ternary inputs also one
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Figure 3.10: Energy and frequency scaling with supply voltage.

by one, and finally accumulates 64 XAC values over 256 cycles. The SRAM for

weight memory was generated by a commercial memory compiler. The digital de-

sign was synthesized and automatically placed/routed using commercial EDA tools

(Fig. 3.11(b)). The digital baseline achieves 500 MHz clock frequency. The post-

layout simulation based on parasitic-annotated netlists at 1.0V supply (typical cor-

ner, 25◦C) shows that the digital baseline consumes 7.81 nJ and 514 ns for the same
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Figure 3.11: Block diagram and layout of digital baseline design for XAC

accelerator.

64 256-input XAC operations, which represents 33X worse energy and ∼300X worse

EDP than the XNOR-SRAM macro also operating at 1.0V (Fig. 3.12). Similar EDP

gain of ∼300X is achieved for XNOR-SRAM down to 0.6V supply. Note that the

XNOR-SRAM prototype chips were functional down to 0.5V supply, however addi-

tional energy/EDP savings were not achieved below 0.6V, because the circuit delay

increases rapidly as the supply voltage gets closer to the near-threshold voltage. Dur-

ing this increased cycle time, the XNOR-SRAM consumes more energy from leakage

and crowbar current.

3.3.3 Variability and Compensation

Fig. 3.13 shows the measured VRBL variability resulting from process variation and

parasitics across different columns and data patterns, where the top and bottom bars

represent +3σ and -3σ points, respectively. The highest variation (20mV standard

deviation) occurred at the lowest XAC value of 0. The systematic strength imbalance

between NMOS and PMOS can skew the transfer function. We addressed this by
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 XNOR-SRAM (measurement)
 Digital-only XAC hardware (simulation)

Figure 3.12: Energy and delay comparison with digital baseline.

providing a knob to tune the body bias for PMOS transistors in the XNOR-SRAM

array at marginal area/power penalty (Fig. 3.14).

To compensate for the local variability or offset of the ADC, 10 external Vrefs

for the 11-level (3.46-bit) flash ADC were first calibrated for the corresponding 10

reference XAC values. For each reference XAC value Xf , 2,000 combinations of

random input vectors, columns and weight matrix that yield XAC values that fall in

the range of [Xf − 5, Xf + 5] were used to optimize each comparator’s Vref. The Vref

was initialized at 0.5×VDD. After each combination, the actual comparator output

was compared to the ideal output. If it was correct, no change was made to the

reference voltage; otherwise, a small and exponentially decayed correction amount

will be added to or subtracted from the current reference voltage, depending on

whether the ideal output is low or high. Each chip undergoes this type of reference

voltage calibration process before performing in-memory computing operation.

After compensation of the ADC offset, there are two remaining major variability
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sources: i) the transistor mismatch in the XNOR-SRAM cells and ii) the IR drop

on RBL wires. The transistor mismatch causes the bitcells in the different rows but

in the same column have different PU/PD strength (after the array-wide body bias

calibration), making RBL voltage depend on the input/weight pattern even for the

same XAC value. On the other hand, the RBL IR drop is a function of input/weight

patterns.

Table 3.1: RBL Voltage Variance of a Single Column at 1.0V and 0.6V Supply

Extracted from Post-layout Monte-Carlo Simulations.

VDD [V]

1.0

0.6

�VRBL [mV]

from mismatch

2.71

7.09

�VRBL [mV]

from IR drop

36.4

6.06

�VRBL [mV]

from both

36.8

9.33

We performed Monte-Carlo simulations for the parasitic-annotated netlist of a
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Figure 3.14: Body bias tuning for PMOS/NMOS mismatch.

single column of bitcells to characterize these two variability sources. We used 1,000

random combinations of input/weight vectors that result in the XAC value of 0.

To isolate the impact of each variability source, in our extracted simulations, we i)

included only the mismatch for the cell transistors; ii) included only the extracted

resistance of the RBL; iii) included both two variability sources. Table 3.1 summarized

the results of the post-layout simulations. We can see that at 1V, as the current is very

large, the IR drop along the RBL contributes most to the overall variation of VRBL.

At 0.6V, variation due to IR drop significantly decreases as the current decreases,

reducing the overall amount of variation to just a quarter of that at 1V.

3.3.4 The Statistical Model of XNOR-SRAM and Voltage Scaling

We developed the statistical model of XNOR-SRAM as a function of the XAC

value. To do so, we measured the ADC output for 1,600 times for each XAC value,

25 times per column. Each time a random test vector that will result in the target

XAC value for a given column is generated. Based on 1,600 measured ADC outputs
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Figure 3.15: Measured ADC output probability distribution as a function of XAC

value at VDD of 1.0V, 0.8V, 0.6V, and 0.5V.

for each XAC value, we estimated the probability distribution of the ADC output as

function of the XAC value (Fig. 3.15). We iterated this experiment at four different

supply voltages of 1.0V, 0.8V, 0.6V, and 0.5V.

Counter-intuitively, Fig. 3.15 shows that, as supply voltage lowers, the ADC out-

put distribution becomes tighter. To see it clearly, we can model the read bitline

voltage VRBL as a function of XAC value X and VDD as

VRBL(X, VDD) = V̄RBL(X, VDD)±∆VRBL(X, VDD), (3.9)

where V̄RBL(X, VDD) represents the average VRBL for given XAC valueX under supply

voltage VDD over all possible combinations of input and weight vector, ∆VRBL(X, VDD)

represents the standard deviation of the actual VRBL over all possible combina-
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tions of input and weight vector for given XAC value X. ADC’s Vrefs are cali-

brated against V̄RBL(X, VDD) as aforementioned. ADC quantization error is then

governed by the distribution of ∆VRBL(X, VDD) and quantization scheme. The re-

duced ADC quantization error at lower VDD can be explained from two aspects:

reduced ∆VRBL(X, VDD)/VDD and enhanced normalized slope of transfer function.

Voltage Scaling of RBL Voltage Variance

As shown in Table 3.1, according to our post-layout simulation on a single column of

XNOR-SRAM array, RBL voltage variance at X = 0 reduces from 36.8 mV to 9.33

mV when we scale VDD from 1.0 V to 0.6 V. This reduction in RBL voltage variance

majorly comes from the reduction of variance contribution from IR drop along the

RBL, which is a result of reduction in current.
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Figure 3.17: Mapping convolution and fully-connected layers of deep CNNs onto

XNOR-SRAM arrays.

Normalized Slope of Transfer Function

As VDD decreases, the transfer function slope in near-zero region increases when

normalized to VDD as shown in Fig 3.16. As a result, two adjacent XAC values will

be more separated in terms of VRBL/VDD, tolerating larger variance in VRBL/VDD.

Combining the above two aspects, as VDD decreases, the enhanced normalized

slope of VRBL transfer function and reduced variance of VRBL lead to reduced ADC

quantization error as shown in Fig. 3.15.

3.3.5 Strategy for Mapping DNNs onto XNOR-SRAM Arrays

Mapping convolution layers of deep CNNs onto XNOR-SRAM arrays is illustrated

in Fig. 3.17(a). We propose to use a mapping strategy where (1) kernels for separate
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input channels are stored on separate rows, (2) kernels for separate output channels

are stored on separate columns, and (3) weights within each kernel (e.g., 9 weights for

3×3 kernel) are stored in separate XNOR-SRAM macros. The XAC results (partial

sums) obtained from separate macros are accumulated digitally, to generate the final

sum results for each neuron. This scheme extensively re-uses the input activations,

with stationary weights in the XNOR-SRAM arrays.

As illustrated in Fig. 3.17(b), it is straightforward to map fully-connected layers

of DNNs, where activations are in vectors and weights are in matrices. This nicely

maps to the row drivers for activations and weights stored in the XNOR-SRAM.

For the fully-connected layers whose size is larger than 256×64, we break the large

weight matrix into a number of small sub-matrices (that fit XNOR-SRAM macros)

and accumulate the matrix-vector multiplication results accordingly.

3.3.6 DNN Accuracy Characterization

Using the XNOR-SRAM macro, we evaluated the accuracy of DNNs for MNIST

and CIFAR-10 datasets. For MNIST, an MLP with three hidden layers, each with 512

neurons, is used (784-512-512-512-10). For CIFAR-10, we evaluated two deep CNNs:

VGG-like CNN and ResNet-14. VGG-like CNN [17] has six convolutional layers

and three fully-connected (FC) layers: 128C3-128C3-MP2-256C3-256C3-MP2-512C3-

512C3-MP2-1024FC-1024FC-10FC, where nC3 represents a convolutional layer with

n 3×3 filters, mFC is a FC layer with m neurons and MP2 is a max-pooling layer with

2×2 pooling size. ResNet-14 [17,79] consists of 3 basic residual blocks (block widths

of 80, 160 and 320), with a total of 13 3×3 convolution layers, two 1×1 convolution

layers in short-cut paths (not counted for the number of layers), and 1 FC layer.

Starting from the first hidden layer of the MLP/CNN, XNOR-SRAM computes 256-

input XACs for MAC/convolution operations in all convolution/FC layers (e.g., all
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Figure 3.18: Measurement based simulation framework for CIFAR-10 accuracy

evaluation using XNOR-SRAM macros.

yellow-colored layers in Fig. 3.17). Accumulation of XAC outputs, pooling, and batch

normalization are performed in digital simulation with bit precisions of 12, 12, and

10, respectively. Note that the digital hardware that executes these functions would

degrade the overall energy-efficiency to some extent. Recently, several works have

tried to shed a light on this matter [80].

The MNIST accuracy results were obtained entirely from measurements, while the

CIFAR-10 accuracy results were obtained from our measurement based simulation

framework (illustrated in Fig. 3.18) due to limited scan chain throughput of the

prototype chip. Employing the same methodology used to generate the probability

distribution in Fig. 3.15, ADC output distributions for each possible XAC value

were estimated from measured samples from 10k MNIST test images MLP inference.

Each column was sampled from the probability table, obtaining an ADC output for

each bitcount, then this mapping was kept for all the 10k CIFAR-10 test images. The
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Table 3.2: Measured MLP (for MNIST) and CNN (for CIFAR-10) Accuracy

Summary at 0.6V Supply.

MLP VGG-like CNN

Binary Ternary Binary Ternary

98.77% 99.07% 88.60% 90.70%

DNN Model

Activation 
Precision

SW Baseline 
Accuracy

HW Measured 
Accuracy

MNIST CIFAR-10Dataset

ResNet-14 CNN

Binary Ternary

89.61% 90.80%

98.65%
(-0.12%)

98.84%
(-0.23%)

87.23%
(-1.37%)

88.78%
(-1.92%)

85.72%
(-3.89%)

87.05%
(-3.75%)

measured distributions were then used to draw random samples in a GPU-accelerated

Python program that simulates XNOR-SRAM XAC and quantization operations for

inference of 10k CIFAR-10 test images using trained binary CNN [17]. Our Python

simulation program repeated 20 runs with different random seeds, and the average

accuracy values are reported.

Table 3.2 summarizes the measured accuracy results of MLP for MNIST and

VGG/ResNet-14 CNNs for CIFAR-10 datasets with binary/ternary activations at

0.6V chip #2. It is hypothesized that ResNet-14 CNN has more accuracy degradation

than VGG CNN compared to the software baselines, because ResNet-14 CNN is

deeper and requires higher partial sum precision to maintain high accuracy. It can

be seen that DNNs with ternary activations demonstrate relatively higher accuracy

than those with binary activations for both MNIST and CIFAR-10 datasets, and our

XNOR-SRAM can execute both ternary and binary activations in a single cycle with

the same design change (Sec. 3.2.2).

Fig. 3.19 shows the accuracy characterization of CNN for CIFAR-10 with binary

activations/weights across different supply voltages and different chips, where top

and bottom bars represent +σ and -σ points, respectively. With tighter ADC output

60



(a)

0.5 0.6 0.7 0.8 0.9 1.0
79
80
81
82
83
84
85
86
87
88
89

C
IF

A
R

-1
0 

Te
st

 A
cc

ur
ac

y 
(%

)

VDD (V)
(b)

1 2 3 4 5
79
80
81
82
83
84
85
86
87
88
89

C
IF

A
R

-1
0 

Te
st

 A
cc

ur
ac

y 
(%

)

Chip Number

VDD=0.6V

Figure 3.19: Accuracy characterization of binary CNN for CIFAR-10 for (a) Chip

#1 at different supply voltages and (b) five different chips at 0.6 V.

distribution for XAC values at lower VDD (Fig. 3.15), the CNN accuracy improves

as we lower VDD, down to 0.6V (Fig. 3.19(a)). Fig. 3.19(b) shows the accuracy

distribution of five different chips at 0.6V supply, where most chips exhibit a relatively

constant mean accuracy of >87%. Note that chip 5 achieves lower accuracy compared

to the other four chips we measured. While we are in lack of sufficient access to the

internal signals of the prototype chip, we still found that chip 5 behaves similarly to

other chips except that the ADC outputs exhibit larger errors as compared to those

of other chips.

3.3.7 Ensemble Networks for Accuracy Improvement

In the deep learning literature, ensemble neural networks have been commonly

used to improve classification accuracy [1, 2, 81–83], where a collection of networks
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Figure 3.20: Binary DNN accuracy improves with ensemble hardware exploiting

intra-die variation.

(typically less than 10) are trained separately with different initial random weights or

training data, and the final prediction is calculated as the average of the predictions

of all networks models. The reason that ensemble methods improve accuracy is that

different models will usually not make the same errors on the test set [84].

Inspired by such ensemble algorithms, we investigated combining multiple XNOR-

SRAM arrays from the same chip or different chips, in order to possibly improve the

XNOR-SRAM hardware accuracy. Compared to the software baseline, the mixed-

signal XNOR-SRAM based DNN accuracy was degraded due to intra-/inter-column

transistor mismatch, RBL resistance difference, and ADC offsets. Compared to the

ensemble algorithms, the main difference in our proposed ensemble hardware for

XNOR-SRAM is that, we do not train different DNNs, instead we use identical DNNs

but exploit the hardware variability as the source of the difference in prediction errors.

First, we used the measurement data from a single chip (chip #1) and ran-
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Figure 3.21: Binary DNN accuracy improves with ensemble hardware exploiting

intra-die variation from 5 different chips.

domly sampled the probability table in Fig. 3.18 and evaluated the CNN accuracy for

CIFAR-10. To test the ensemble hardware exploiting intra-die variation, we iterated

this procedure for 2, 5, and 10 times (ensemble size) with different random sampling,

and averaged the values of 10 neurons of the last output layer from ensemble hard-

ware for classification. This intra-chip ensemble hardware accuracy results are shown

in Fig. 3.20, where considerable accuracy improvement is achieved, while trading off

area and energy. For ensemble sizes of 5 or larger, the CNN hardware accuracy values

are even higher than the software baseline accuracy.

Next, we used the measurement data from five different chips, and experimented

to ensemble different number of chips to exploit inter-die variation. Even though

chip #5 exhibits somewhat lower CNN accuracy than other chips (Fig. 3.19(b)),

Fig. 3.21 shows that the CNN accuracy for CIFAR-10 continuously improved when

we increasingly used more chips. In both Fig. 3.20 and Fig. 3.21, top/bottom bars
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Figure 3.22: Energy-efficiency (TOPS/W) and Cifar-10 accuracy comparison

against in-/near-memory computing literature.

represent +σ/-σ points.

3.3.8 Comparison

Fig. 3.22 shows the comparison of energy-efficiency (TOPS/W) and CIFAR-10

accuracy against prior in-memory computing works. The neural network architecture

of ours (XNOR-SRAM), digital baseline, and [31] is the same. [23] uses a simpli-

fied version (2×2 convolution filters, etc.) of the same network. [36] uses a differ-

ent residual CNN (ResNet) for the same dataset of CIFAR-10. Compared to [31],

energy-efficiency is ∼38% lower, but CIFAR-10 accuracy is significantly higher by

4.7%. Compared to [36], the CIFAR-10 accuracy is 1.4% lower, but the energy-

efficiency is >10X higher. Table 3.3 shows a more detailed comparison to recent

in-SRAM computing works [31, 36, 41] and the digital baseline. Our XNOR-SRAM

macro improves energy/EDP by ∼100X/300X over digital baseline performing the

same XAC operations. Compared to other in-SRAM computing works in the liter-

ature, XNOR-SRAM also demonstrates the best trade-off in high energy-efficiency
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Table 3.3: Comparison with Recent In-SRAM Computing Works.

[28] [31] [36]
Digital

baseline
This work

Technology 65nm 65nm 55nm 65nm 65nm

SRAM bitcell 10T 10T1C
8T MSB

8T LSB
6T 12T

SRAM

array size
256×64

64×64

64 tiles
64×60 256×64 256×64

# of rows

turned on
16 64 9/18 1 256

Power supply 0.8-1.0V 1.0V 1.0V 1.0V 0.6-1.0V

Column

sensing

7b integrating

ADC

SA +

DAC

5b SAR

ADC

digital

adder

3.46b flash

ADC

Energy

efficiency

(TOPS/W)

51.3

(A: 6b, W: 1b,

mult./avg.)

658

(binary

XAC)

18.4-71.9

(A: 1/2/4b,

W: 2/5/5b)

4.2

(ternary

XAC)

403

(ternary

XAC)

GOPS/mm2 57 1498 Not reported 1369 5461

MNIST

accuracy

(%)

98.0 98.58

99.02/99.52

(A: 1/4b,

W: 2/5b)

99.07 98.84

CIFAR-10

accuracy

(%)

N/A 84.09

85.56/90.42

(A: 1/4b,

W: 2/5b)

90.70 88.78

and high CIFAR-10 classification accuracy.

3.4 Conclusion

In this chapter, we present an in-memory computing SRAM macro titled “XNOR-

SRAM” that computes ternary-XNOR-and-accumulate operations in binary/ternary

MLP and CNNs with high energy-efficiency and high accuracy. Our 256×64 XNOR-

SRAM asserts all 256 rows simultaneously, performing a 256-input ternary XAC in a

65



single cycle, via analog accumulation of bitwise XNOR results on the read bitline volt-

age, which is digitized using an optimized 11-level flash ADC embedded in the periph-

ery. Our 65nm XNOR-SRAM prototype achieves energy-efficiency of 403 TOPS/W

for XAC operations and 88.8% test accuracy for CIFAR-10 dataset, achieving 33X

better energy and 300X better energy-delay product than digital ASIC baseline with

off-the-shelf SRAM. Compared to non-linear quantization, the proposed confined lin-

ear quantization scheme improves CIFAR-10 accuracy from 85.7% to 88.8% owing

to wider reference voltage intervals. Further accuracy improvement has been shown

by employing an ensemble hardware of XNOR-SRAM arrays/chips implementing the

same DNNs, exploiting intra-/inter-die variation.
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Chapter 4

C3SRAM: A CAPACITIVE IMC SRAM MACRO

4.1 Introduction

As deep convolutional neural networks (DCNNs) continue to demonstrate im-

provements in inference accuracies [1,2,85–87], deep learning is shifting towards edge

computing. This development has motivated works on low-resource machine learning

algorithms [16, 17, 88–93], and their accelerating hardware [7, 8, 19, 20, 94]. The most

common operations in DCNNs are multiply-and-accumulate (MAC), which dominates

power and delay. MAC operations have high regularity and parallelism, therefore

is very suitable for hardware acceleration. However, the amount of memory access

severely limits the energy-efficiency in conventional digital accelerators [7,8,19,20,27].

As a result, in-memory computing (IMC) has become increasingly appealing to DCNN

acceleration.

IMC is the design approach that performs highly-parallel computation inside

the memory block without explicit row-by-row memory access. Recent IMC works

[27, 29, 31, 32, 36, 38, 40, 41, 95–100] show significant energy-efficiency and throughput

advantages over conventional architectures. These benefits come at the cost of accu-

racy degradation from analog-mixed-signal (AMS) computing non-idealities. Hence,

robust computing mechanisms and error-tolerant algorithms are the IMC design’s

main considerations and challenges [77].

This chapter presents an IMC SRAM macro based on capacitive-coupling com-

puting (C3), hence named C3SRAM. The prototyped macro is 256×64 in size and

computes 64 256-input binary-MAC operation (bMAC) in parallel. The macros can be
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used in a modular fashion to support networks of arbitrary size. The 65-nm prototype

chip demonstrates 671.5 TOPS/W energy efficiency, and 1,638 GOPS throughput,

which is 3,975X improvement in energy-delay product (EDP) than digital baseline.

It achieves 98.3% accuracy for MNIST and 85.5% for CIFAR-10 dataset.
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Figure 4.1: Architecture of C3SRAM in-memory computing macro.

4.2 Architecture and Operation

4.2.1 Memory Array Operation

We present the C3SRAM architecture and the operations in detail. Fig. 4.1

presents the architecture of the proposed macro. C3SRAM performs a fully-parallel

vector-matrix multiplication of 256 binary inputs and 256×64 binary weights. The

macro consists of a 256×64 memory cell array, SRAM peripherals for read/write

operations, input activation decoder/driver, and per-column flash analog-to-digital
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converters (ADCs).
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Figure 4.2: C3SRAM bitcell design and in-cell MAC operand table.

Fig. 4.2 shows the 8T1C bitcell layout of the proposed design, a circuit diagram

showing two bitcells in a column, and the table of XNOR operands. The bitcell is

80% larger than the conventional 6T bitcell in the same logic design rule, due to the

two additional pass transistors and one capacitor constituting 27% of the bitcell area.

The capacitor is implemented as MOSCAP for high capacitive density. A MOMCAP

covering the area of a C3SRAM bitcell (MOMCAP can be placed on top of transistors

with no area overhead) has 80% lower capacitance than CC ( 4 fF).

To perform binary dot product, the cap is charged/discharged by MAC wordlines

(MWL/MWLB) via the pass transistors, which are gated by the stored weight and

its complement. Since the pass transistors are NFETs, there would be highly variable

threshold voltage (Vt) drop across T7/T8 if the MWLs and the memory core have
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Figure 4.3: Threshold voltage variability effects on charged capacitor voltage.

the same voltage source. To avoid the variability problem, we implement T7/T8 with

LVT devices, and set a separate source VDR to drive the MWLs, at 200mV lower than

VCORE (e.g., 0.8V VDR for 1V VCORE). We ran Monte Carlo SPICE simulations

including only CC, T7, and T8 to isolate the variation of the pass transistors’ effect

on capacitor charge. As shown in Fig. 4.3 histograms, the x-axis (note the different

scales) shows the voltage level at the VC node. Given the 200mV margin, the variation

of VC has the small sigma of only 0.36mV. T7/T8 decouple memory function and

compute function to avoid potential read and write disturb [40,97].

The bMAC operation of C3SRAM is shown in Fig. 4.4. There are two steps in

this operation; each is completed in a half cycle duration. In step 1, each column’s

MAC bitline (MBL) is pre-charged via the footer TFT to VRST =0.5·VDR. VRST

is set near the voltage corresponding to bMAC output of 0 (nominally 0.4V). This is

done to minimize the voltage swing on the MBL nodes since typical bMAC outputs

in BNNs have a narrow distribution near 0 value. In the same step, each row’s MWL
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Figure 4.4: Capacitive coupling based in-memory computation of bMAC.

and MWLB are likewise reset to VRST such that there is no voltage potential on

bitcell capacitors. At this step, the capacitors are effectively arranged in parallel

where both nodes are reset to the same voltage, as illustrated in Fig. 4.4 bottom left.

In step 2, the footer is turned off. The 256 input activations (denoted as Ini)

are applied to 256 MWLs/MWLBs in parallel. For Ini = +1 (-1), MWL is driven

from VRST to VDR (VSS), while MWLB is driven to VSS (VDR). For Ini = 0, both

MWL and MWLB remain at VRST without consuming dynamic power. When the

weight is +1 (-1), the voltage ramping via T7 (T8) induces a displacement current

through capacitor CC ( 4 fF) in the bitcell, whose magnitude is:

Ic = Cc · dVMWL(B)/dt. (4.1)
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The charge transferred from the bitcell to MBL is:

Qci =

∫ t1

0

Icdt = 1/2CcVDR, (4.2)

where t1 is the time it takes VMWL to reach VDR. The shared MBL voltage is set

to:

VMBL = CcVDR

256∑
i=1

XNORi/(256Cc + Cp). (4.3)

where XNORi is the XNOR output of the i-th bitcell and Cp is the parasitic capac-

itance of MBL plus the input capacitance of the ADC. At this step, each column can

be seen as two sets of parallelly-connected capacitors, which are in turn connected in

series between VDR and VSS, forming a capacitive voltage divider as illustrated in

Fig. 4.4 bottom right.

Figure 4.5: (a) MOSCAP capacitance at TT corner simulation shows variation

across temperature as well as the gate voltage. (b) MOSCAP capacitive voltage

divider transfer function at various temperatures.

MOSCAP’s high capacitive density provides bMAC transfer curve a wider full-
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scale range (FSR) than using the less capacitively-dense MOMCAP [31]. Given the

same level of MBL parasitics, the FSR loss from using MOMCAP would be 80%

higher than using MOSCAP. MOSCAP capacitance is dependent on temperature

and gate voltage. Fig. 4.5(a) shows CC change over temperature and gate voltage.

Fig. 4.5(b) shows the simulated transfer function of a capacitive voltage divider com-

posed of CC. The good news is that the temperature-related non-ideality of MOSCAP

has small impact on the transfer function stability. The voltage-related non-linearity

gives the transfer function a slight sigmoidal shape which in fact could give some

benefit to ADC (negligibly small in our design) because the slightly steeper slope in

the region of interest provides slightly higher margins for reference voltages.

4.2.2 ADC Operation

The bMAC output of each column is a pre-activation partial sum. To digitize these

values, C3SRAM includes an 11-level flash ADC per column. Each ADC consists of 10

double-sampling-based self-calibrating single-ended comparators (Fig. 6 top). Each

comparator consists of an offset-cancelling capacitor followed by an inverter chain,

where the first inverter acts as an amplifier.

The ADC operation has two steps (Fig. 4.6): during bMAC computation (step

2), MBL connects to the comparator input capacitor. The input and output of the

first inverter are closed, placing the inverter in the high voltage gain region. In step

3, the input node of the capacitor switches to the reference voltage, and the negative

feedback path is turned off. The voltage differential between VMBL and Vref then

causes (dis)charging on the capacitor. The inverter previously balanced at the trip

point is driven high or low according to the direction of the induced current. The

gain-stage inverter chain completes the amplification to digital domain.
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Figure 4.6: Operation of the double-sampling self-calibrating single-ended

comparator.

4.2.3 Signal Switching Order

In the aforementioned three-step procedure, relevant signal transitions in step 1

and step 3 are decoupled in separate modules, meaning that while the digital output

is being evaluated by the ADC, the memory array can begin computing the next

batch of bMACs. This allows a half-cycle pipeline where step 1 (Fig. 4.4) and step 3

(Fig. 4.6) operate concurrently.

The bMAC operation is timing sensitive. To minimize analog non-idealities, con-

current signal switches described in the previous subsections must follow a strict order,
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shown in Fig. 4.7. We implemented timing control circuitry with minimal delay el-

ements to guarantee the correctness of the signals’ order. The relevant transitions

from steps 1 and 3 to step 2 follow this order: 1) the reference voltage must be dis-

connected from the comparator input capacitor before MBL leaves reset, otherwise,

reference voltage source would inject charge onto MBL floating node; 2) the negative

feedback on the inverter stage must turn on before MBL is connected to the input

capacitor; otherwise, VMBL will be affected by the induced current of inverter gates

driven to trip point; 3) MBL must be connected to the comparator input capacitor

before MBL leaves reset, otherwise, the charge differential of reference voltage stored

on the capacitor will be injected into the floating MBL; 4) MWL cannot be driven

until MBL is floating, otherwise, some coupling current would be discharged.

The relevant transitions from step 2 to step 1 and 3 follow this order: 1) MBL

must disconnect from comparator input before MWL drivers switch to reset voltage,

otherwise, the input changes will induce current on the MBL; 2) also, MBL needs to

disconnect before MBL reset footer turns on, otherwise, VMBL stored on the input

capacitor would begin to reset as well; 3) also, MBL needs to disconnect before the
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negative feedback is turned off, since the act of disconnection can disturb the inverter

input which is at the sensitive trip point; 4) the negative feedback needs to switch off

before reference voltage is connected to the comparator input, otherwise, the charge

differential would be (dis)charged via the feedback path.

4.3 Algorithm and Hardware Specification

In this section, we determine the design specification pertaining to algorithmic

support: activation precision and pre-activation quantization levels.

Figure 4.8: MLP on MNIST dataset inference accuracy losses at various levels of

activation precisions.

4.3.1 Activation Bit Precision

Operating using the same IMC hardware, inference accuracy loss of a BNN is

found less than that of a BWN with multi-bit activation [100]. One reason is that the

analog representation of multi-bit activation requires additional domain conversion

through DAC [36]. Another reason is that network models trained at higher precision

are more sensitive to AMS error. As the study in [101] suggests, robustness is a
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benefit of weight redundancy. In similarly accurate models, error in multi-bit MAC

is more severe than bMAC due to BNNs’ weight duplication scheme.

We examine this issue by applying various levels of stochastic error during the

inference of the MNIST dataset. The network topology used in this examination is a

binary-weight multi-layer perceptron (MLP) consisting of three fully-connected (FC)

hidden layers, each with 512 neurons. The network is trained at various activation

precisions from 1 to 4 bits. The trained MLPs are then mapped on the C3SRAM for

testing inference accuracy, each time with decreasing the pre-activation resolution to

simulate increasing level of stochastic noise. Here, we use the digital representation

for activations as in [100], i.e., activations are fed in a bit-serial fashion and outputs

are accumulated using digital adders. As shown in Fig. 4.8, at the same level of

stochastic error, networks trained at higher precision degrade more. We conclude

that, for IMC hardware running multi-bit activation BWN to achieve comparable

accuracy as BNN, the hardware may need more resources to compensate for AMS

errors and this could result in inefficiencies. For this reason, the proposed C3SRAM

primarily supports BNN acceleration.

4.3.2 Partial Convolution Quantization Levels

In practical neural networks, a typical convolution filter is too large to fit in a

column of memory cells, therefore would be split into several C3SRAM arrays. In such

cases, each array produces partial convolution results which are then accumulated in

digital peripheral to produce final output.

For the 256-row C3SRAM, the full resolution of partial convolution results is 8

bit. For an ADC to achieve this high resolution, it would incur considerable area,

power, and latency overhead. The objective here is to use a lower resolution ADC

design that is still able to maintain the final accuracy.
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Figure 4.9: MNIST and CIFAR-10 inference accuracy increase as quantization

resolution of pre-activation partial sum (256-input) increases.

To find the appropriate ADC resolution that can maintain inference accuracy, we

examine the effect of quantization on the MNIST and CIFAR-10 datasets. We use

the same MLP described in the previous subsection for the MNIST dataset. For

CIFAR-10, we use a VGG-like convolutional BNN [9], with six convolutional layers

and three FC layers. For partial convolution results in these network models, we

apply several quantization levels, successively reducing ∆Vref. Fig. 4.9 shows the

effect of quantization on the task accuracy. We find that in both cases the accuracy

reach saturation at 30 mV ∆Vref which corresponds to 5-bit resolution given the 640

mV FSR. This is consistent with results in [41] where 5-bit ADC is used to achieve

high accuracy on MNIST dataset using LeNet-5.

To further reduce the cost of the ADC, the pre-activation distribution can be

exploited to reduce unnecessary hardware. Partial convolutions are not uniformly

distributed for the entire range of the activation function input. Rather, they are

usually narrowly distributed around 0 which is the point of nonlinearity in common
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Figure 4.10: The bMAC distribution of MLP for MNIST and quantization in

limited ADC range.

BWN/BNN activations functions ReLU/binary step. Fig. 4.10 top shows the MLP

bMAC distribution. Since the data is distributed in a small region of the FSR, the

ADC range can be confined to this region without accuracy loss. Fig. 4.10 bottom

shows an illustration of an ideal transfer function and linear quantization levels in

a confined range. The x-axis is the bMAC output value; the y-axis is VMBL corre-

sponding to the bMAC output. In the voltage region corresponding to bMAC value

from -120 to +120, only 11 reference levels (∆Vref = 30 mV) are needed to match

5-bit ADC resolution.
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Figure 4.11: The bMAC distribution of MLP for MNIST and quantization in

limited ADC range.

4.4 Measurements and Analysis

The C3SRAM macro is implemented in a 65-nm CMOS technology. Fig. 4.11

shows the micrograph of the test chip. The macro has a capacity of 16 kb at the

footprint of 0.081 mm2.

4.4.1 Energy and Throughput

The memory macro has 2 kB capacity. For bMAC computations, the macro oper-

ates at a maximum frequency of 50 MHz, limited by minimal sized footer discharging

ADC input capacitors. The macro computes 64 independent 256-input bMACs per

cycle. The throughput is 2×256×64/20ns = 1638 GOPS. The compute density is

thus 20.2 TOPS/mm2. At the operating voltages of 1V core supply (VCORE), 0.8V

driver (VDR), and 0.6V ADC (VADC), it consumes 49 pJ excluding input/output

data movement, reaching an energy efficiency of 671.5 TOPS/W, a 3,975X improve-

ment in energy-delay-product (EDP) over the digital baseline formulated in [100],
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Figure 4.12: C3SRAM energy and delay comparison with XNOR-SRAM and digital

ASIC with traditional SRAM and ALU.
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Figure 4.13: Measured power and area breakdown of the C3SRAM module.

and 14X over XNOR-SRAM (Fig. 4.12). Fig. 4.13 (a) shows the power breakdown

measurements: 38.7% of the total power is consumed by driving the MWL and bit-

cell capacitors, 22.0% by ADCs, and 39.3% by all other digital peripherals including

MWL decoder and partial sum accumulation.

To fully benefit from the speed and power improvement of C3SRAM, striding

and other dedicated input movement circuits such as those in the implementation of
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Table 4.1: Comparison to Prior IMC Works.

[28] [97] [31] [32] [36] [29] This work

Technology 65nm 65nm 65nm 65nm 55nm 65nm 65nm

Cell Type 10T split-6T 10T1C 12T Twin-8T 6T 8T1C

Power Supply

1.2V (DAC)/

0.8V (Array)/

1V (rest)

1V 1V 0.6-1V 1V 1V

1V (Array)/

0.8V (Driver)/

0.6V (ADC)

Memory Capcity 2 kB 512 B 32 kB 2 kB 480 B 16 kB 2 kB

Input Precision 6 1 1 1 1-4 8 1

Weight Precision 1 1 1 1 2-5 8 1

Output Precision 6 1 1 5 3-7 4 51

Efficiency

(TOPS/W)2
40.3 30.49-55.8 658 403 18.37-72.03 6.25 671.5

Throughput

(GOPS)3
8 1,112.8 589.9 665 84.8-269.6 8.26 1,638

1 Margin equivalent to 11-level mid-range of 5-bit resolution.

2 One MAC is counted as two operations (multiplication and addition).

3 Consider an array size of 256×64 as unit capacity.

Vesti [100] are also needed to prevent the memory macros from stalling to wait the

next input arrival. Otherwise, it would impose significant overhead in activation data

movement. Hence, C3SRAM is better utilized in a stand-alone module than a direct

replacement of SRAM in conventional von Neumann architecture.

Table 4.1 shows the comparison of recent IMC works for neural network accel-

eration. C3SRAM achieves high energy efficiency and throughput. Note that some

designs support higher activation precision.
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Figure 4.14: Measured VMBL transfer curve shows lower FSR from ideal curve due

to charge sharing with ADC input capacitors.

4.4.2 Transfer Function

In this subsection, we measure and analyze the transfer function characteristics of

C3SRAM under the same operating condition as Section V-A. The transfer function

is measured according to the following steps. First we set all weights to zero, then

apply known input pattern corresponding to a target bMAC output, resulting in a

determinate voltage output on the MBL which we then measure. We set the off-chip

flash ADC reference voltages such that we observe the result of a single comparator,

i.e., set all but the first reference voltages beyond the VDR range. Then sweep the

reference voltage of the comparator to find the value at which the result flips. This

trip point corresponds to the bMAC output. We repeat these steps at each bMAC

value to construct the transfer function. As shown in Fig. 4.14, the transfer function

measurement shows good linearity and stability, while the FSR is reduced due to

ADC input capacitors and MBL wire parasitics.
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Figure 4.15: (a) ADC output offset due to comparator gain stage mismatch, (b)

VMBL error variation measurement, (c) RMS error of the C3SRAM macro.

4.4.3 Variability Measurement

In this subsection, we characterize C3SRAM variabilities. The box chart in

Fig. 4.15(a) shows the variation measurements of the ADC comparator offset. The

data include offset statistics of 10 chips, each with 64 columns and 10 comparators

per column. The variation is resultant from charge leakage, input/reference signal

noise, and device mismatch. Monte Carlo simulations at TT corner shows 5mV
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Figure 4.16: ADC power increases exponentially as ADC power supply increases;

the trip point variation increases linearly.

sigma in comparator variations, consistent with measurements. The charge leakage

that most significantly affects comparator output is during the capacitor input switch.

As described in Section III-C, if the level of leakage or noise is greater than the delta

between VMBL and reference during input capacitor switch, the comparator output

can be corrupted. After the input stage, device mismatch dominates the variation.

It causes trip point differential in the inverter chains. Fig. 4.16 shows that the lower

the operating voltage is, the trip point variation becomes less prominent. Since the

post-input offset voltage is dominated by the trip point delta between the first and

second inverters divided by the gain of the first, we operate the ADC at a lower

voltage of 0.6V and use long channel device for the first inverter to achieve high gain.

This also helps with power reduction as shown in Fig. 4.16.

Fig. 4.15(b) shows the measured variation of bMAC operations. The main sources

of variation are CC mismatch. The mismatch variation of a single CC has σC/CC

of 4.2% according to Monte Carlo simulation. We determine the deviation on the

transfer function using propagation of uncertainty rule:

σMBL =
n

256

√
n · σ2

C

n2 · CC
2 +

256 · σ2
C

2562 · CC
2 =

n · σC
256 · CC

√
1

n
+

1

256
. (4.4)
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The variation of VMBL from the confined region of -120 to +120 has a sigma ranging

from deviation is 0.91mV to 1.77mV, based on the 600mV FSR from Fig. 4.14,

consistent with Fig. 4.15(b) (which also includes intra-chip ADC offset variation).

Fig. 4.15(c) shows the RMS error of the macro performing bMAC operations. As

pre-activation vary greatly in distribution variance, there is no universal input set that

can characterize C3SRAM for neural networks in general. A uniform input set is used

for the measurement. This result includes all non-idealities previously described, and

the additional errors from unary-to-binary conversion which has no error-correction

feature for low area overhead. Thus, simple bubble error can cause deviations at the

final output larger than the signal variation level. This error can be mitigated with

additional error correction circuitry in future works.
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computing.

86



Table 4.2: Accuracy Comparison.

MNIST CIFAR-10

Neural Network MLP VGG-like CNN

Network Topology1
784FC-512FC-

512FC-512FC-10FC

128C3-128C3-MP2-

256C3-256C3-MP2-

512C3-512C3-MP2-

1024FC-1024FC-10FC

Baseline Accuracy 98.7% 88.6%

Test Chip Accuracy 98.3% 85.5%

1 nCk: k×k kernel convolution layer with n filters, mFC: m-neuron

FC layer, MPp: max-pooling layer with p× p pooling size.

4.4.4 Evaluation on Neural Networks Tasks

In our evaluation for BNN accuracy, C3SRAM is responsible for the computa-

tions of convolution layers and FC layers, and all other operations of the BNN are

performed in digital simulation. To evaluate the accuracy performance of C3SRAM

for deep neural networks, C3SRAM computes all bMAC operations from the first hid-

den layer. A weight-stationary mapping scheme optimized for data reuse is adapted

in our experiments. The mapping of FC layer weights in C3SRAM is as such: weights

of a layer is organized column-wise, inputs/activations are applied at each row. On

the other hand, convolutional layer mapping is an extension of the FC layer mapping.

Mapping a 3×3×256 filter from a convolution layer is the same as mapping nine

256-neuron FC layer weights. The channels are organized in column orientation, each

channel’s kernel is distributed across multiple macros. The partial sums produced by

ADCs are accumulated to generate the pre-activation for each neuron. The mapping
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of a representative 256-channel 3×3 kernel filters is shown in Fig. 4.17.

As detailed in Table 4.2, we evaluated the inference accuracy of C3SRAM for

MNIST and CIFAR-10 datasets. Max-pooling and batch-normalization are performed

in the digital domain with bit precisions of 12 and 10, respectively. The accuracy for

MNIST is 98.3%, against the digital baseline result of 98.7%. This accuracy result

was obtained from direct measurements of the entire network. For CIFAR-10, due to

test chips’ limited throughput, the accuracy is evaluated from simulations based on

measured error probability. We injected AMS and quantization errors in the inference

of CIFAR-10 test images. At 20 runs with random seeds, the average accuracy is at

85.5%, while the digital baseline accuracy is 88.6%. This accuracy can be improved

with better trained model, as researches [92, 101] have found BNN conversion with

wider topology improve both robustness and accuracy. As [92] demonstrates the

algorithmic advances of BNNs, the scalable mapping of C3SRAM could be used as

computational primitive for larger BNNs for more complex machine learning tasks.

4.5 Conclusion

The IMC concept is developed to meet the challenge of memory bottleneck in

neural network inference in conventional hardware. It can achieve high parallelism and

throughput via memory cell density and achieves low power from analog computing

and substantial reduction in data access. IMC faces design challenges of its own in

the form of analog computing robustness issues, from process variation to system

noise. Design decisions such as error-tolerant algorithms and low-variation hardware

are important considerations. In this chapter, we present C3SRAM, an IMC macro

for neural network acceleration. It supports noise-resistant binary neural networks,

utilizes low variability components, and is scalable to map large neural networks in a

modular fashion. Using robust capacitive coupling mechanism, the architecture can
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reach comparable accuracy with algorithmic baseline. The 16 kb prototype in 65nm

achieves the energy-efficiency of 671.5 TOPS/W and throughput of 1,638 GOPS for

bMAC operations.
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Chapter 5

VESTI: ENERGY-EFFICIENT XNOR-SRAM BASED IMC ACCELERATOR

FOR DEEP NEURAL NETWORKS

5.1 Introduction

In Chapter 3, we demonstrated a new SRAM macro that can perform MAC along

the bitline of the SRAM macro with all rows turned on simultaneously [32]. Titled

as XNOR-SRAM, it performs XNOR-and-ACcumluate (XAC, replacing MAC in the

binary-weight DNN) fast and energy-efficiently, and supports core computing primi-

tives of state-of-the-art DNNs and CNNs, achieving highly competitive classification

accuracy. In 65nm CMOS, the XNOR-SRAM chip measurements reported 235.5 pJ

energy and 54.21 ns latency for completing 64 operations of 256-input XAC at 1V.

A well-crafted digital hardware, which computes the same XAC but has to read out

each row of weights from off-the-shelf SRAM, takes 7.81 nJ and 514 ns for 64 256-

input XAC operations, which are respectively 33X higher energy and 9.5X longer

latency than those of XNOR-SRAM [32]. When the convolution and MAC opera-

tions of DNNs are measured with the single XNOR-SRAM array hardware and other

computations (e.g., max-pooling, batch normalization) are simulated digitally, 85.7%

accuracy for CIFAR-10 dataset and 98.3% for MNIST dataset have been reported.

Although a large amount of energy reduction is demonstrated, it should be noted

that XNOR-SRAM and most in-SRAM computing works that turn on all rows or

columns simultaneously only demonstrate a relatively small custom SRAM array at

the single-array-level [28, 30, 32]. To implement an overall DNN accelerator using

in-memory computing SRAMs, there are several important challenges and missing
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pieces, including integration of many in-memory computing SRAM arrays, activation

storage/communication, additional digital logic for non-MAC operations, and row-

by-row write energy consideration.

In this chapter, we substantially expanded the single-array-level prior XNOR-

SRAM design towards a configurable DNN accelerator architecture that integrates 72

XNOR-SRAM arrays with inter-array communication, and supports a wide range of

DNN/CNN algorithms with configurable activation precision. The proposed acceler-

ator supports 3×3 and 1×1 convolutional kernels and up to 256 feature maps in a

convolutional layer.

The main contributions of this work are as follows:

• We construct the chip-level DNN/CNN accelerator architecture that employs

many instances of in-memory computing SRAM (e.g., XNOR-SRAM) macros

with a methodology to efficiently load/map weights onto such XNOR-SRAM

arrays for convolution layers and fully-connected layers of DNNs.

• By re-using the XNOR-SRAM macro originally designed for binary activations

and weights, we add peripheral digital logic that can support multi-bit acti-

vations, which becomes an effective knob to favorably trade-off energy versus

accuracy.

• We employ double-buffering technique with two groups of in-memory comput-

ing SRAMs, which effectively hides the latencies of re-programming in-memory

computing SRAM arrays with new DNN weights.

• We evaluate the chip-level energy benefits and remaining bottlenecks of in-

memory computing based DNN accelerators.

In this chapter, we are focusing on SRAM as the memory substrate of in-memory
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computing. On the other hand, researchers have also presented in-memory computing

designs based on emerging non-volatile memory technologies, such as Phase Change

Memory (PCM) [102, 103], Resistive RAM (RRAM) [96, 104], and Magnetic RAM

(MRAM) [105,106]. As compared to SRAM, these technology promises a bitcell that

can store multi-bit weight, often in the form of analog variables (e.g., resistance),

in a smaller footprint. This is a significant benefit to supporting DNN and CNN

algorithms using multi-bit weights. However, these emerging memory devices exhibit

significant challenges including high variability and non-linearity [107,108], and most

importantly the manufacturability has not reached that of CMOS technologies, which

severely limits system-level integration with many large arrays.

The remainder of the chapter is organized as follows. Sec. 5.2 discusses practical

design challenges when we design a chip-level DNN accelerator using many in-memory

computing macros such as XNOR-SRAM. In Sec. 5.3, we describe the microarchitec-

ture of the proposed accelerator, optimal precision study and the methodology to

efficiently map optimized DNNs/CNNs onto XNOR-SRAM arrays. Sec. 5.4 reports

experimental results on speed, energy dissipation, and classification accuracy across

several workloads. Finally, this chapter is concluded in Sec. 5.5.

5.2 Practical Challenges of In-memory Computing based Accelerators

Although XNOR-SRAM as well as other in-memory computing SRAMs show

promising energy-efficiency at the single-array-level, there are several important chal-

lenges and missing pieces towards building a chip-level DNN accelerator using these

arrays.

Integration of many in-memory computing SRAM arrays: First, it should

be noted that XNOR-SRAM as well as most of the in-memory computing hardware

only demonstrated a relatively small custom SRAM array (around a few hundred
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kb or less). Therefore, to implement an overall DNN accelerator, many of these in-

memory computing SRAM arrays need to be employed and integrated together with

on-chip communication networks.

ADC overhead and offset cancellation: Second, the ADC design incurs area

and power overhead, which adversely affects the array efficiency and energy-efficiency.

In addition, ADC performance is sensitive to offset or variability, and for DNN appli-

cations, evaluation should be made on how much DNN accuracy degardation occurs

due to the variability. Ideally the ADC offsets should be calibrated out using offset

compensation circuits [109], but such calibration circuits will increase the area/power

further.

Post-processing modules: Third, towards evaluating accuracy for CNNs or

DNNs, these designs employ a considerable amount of post-processing modules such

as partial sum accumulation, batch normalization, pooling, non-linear activation,

etc. These post-processing modules add system-level design complexity and energy

consumption beyond those of the single in-memory computing SRAM array.

Activation storage and communication: Fourth, typically the in-memory

computing SRAM arrays store the DNN weights, while the activations are applied

as inputs to the custom SRAM array either at the wordlines or bitlines. Different

activation values need to be applied to the SRAM array every cycle, which means

that the activations need to be stored in a separate memory (e.g., another SRAM

array) and communicated to the in-memory computing SRAM array at the right

time. However, the energy of activation storage and communication are typically not

included in the in-memory computing SRAM macro energy values.

Write energy: Finally, since the state-of-the-art DNNs can be very large, we

will not be able to store the entire weights of DNNs in in-memory computing SRAMs

without consuming a huge amount of area and static power. To that end, it will
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be necessary to reload different weights in-memory computing SRAM arrays at dif-

ferent times. While XAC operation for in-memory computing SRAMs can be fully

parallelized by turning on all the rows, write operation of loading new weights to the

SRAM still requires row-by-row operation, which incurs long latency and consumes

write energy. Typically, the reported in-memory computing SRAM macros do not

include any write energy, but for a system-level accelerator, the corresponding write

energy of in-memory computing SRAM macros should be characterized and included.

In the subsequent sections, we will describe how a number of these key challenges

have been addressed and inclusively implemented in the proposed accelerator design,

and will report the accelerator evaluation results.

5.3 Vesti Accelerator Design

5.3.1 Microarchitecture Overview

Figure 5.1: (a) Overall microarchitecture of proposed in-memory computing Vesti

accelerator. (b) Computations for the thermometer-to-binary conversion, LUT,

batch normalization, etc. (c) Block diagram of the activation memory buffer.

We designed the microarchitecture of the Vesti accelerator, which integrates the
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aformentioned key missing pieces, and can execute inference for a wide range of

DNNs/CNNs. Fig. 5.1(a) shows the overall microarchitecture that computes a deep

CNN inference on a layer-by-layer basis. Employing the double-buffering scheme [110]),

it consists of two symmetric cores, one of which performs the in-memory computa-

tion, while the other can load new weights from an on-chip global buffer or an off-chip

DRAM. Each block consists of (1) the ensemble of the XNOR-SRAM macros that

perform XAC from convolution and fully-connected layers, and (2) a digital ALU that

performs other operations such as batch normalization, activation, and max-pooling.

In this work, 36×2 XNOR-SRAM macros are employed (Fig. 5.1) to support represen-

tative CNNs for CIFAR-10 dataset [35]. To support larger CNNs, the XNOR-SRAM

macros can be time-multiplexed and re-used over time. At 1V, the XNOR-SRAM

macro can operate at 1.2 GHz and the digital ALU was synthesized and placed/routed

at 0.55 GHz in the same 65nm CMOS technology.

The inputs and weights are fetched from off-chip DRAM. The inputs are saved in

the activation memory buffer and weights are written into the XNOR-SRAM macros.

The 36 XNOR-SRAM macros in each core are divided in 4 groups. The 4 groups

share the input activations, performing XAC operations for up to 256 (=64×4) output

feature maps in parallel. The 9 XNOR-SRAM macros in each group can accept inputs

from up to 256 input feature maps when performing 3×3 convolution and up to 2304

(=256×9) inputs when performing fully-connected matrix vector multiplication. In

each cycle, up to 36 256-input XAC operations can be executed in parallel. The

outputs of 36 XNOR-SRAM macros are processed by a 256-way digital ALU where

ADC output decoding, partial sum accumulation, max-pooling, batch normalization

and binary/ReLu activation are performed. The results will be saved back to the

activation memory buffer of the other core, which will perform computation for the

ensuing layer in a similar fashion.
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Double buffering technique [110] is employed to hide the weight loading latency.

While one core is performing computation for one layer, the other core loads the

weights for next layer. For example, for two adjacent convolution layers, of which

the channel size and map size is 256 and 16× 16, respectively, the 36 XNOR-SRAM

macros in one core complete the convolution in 256 cycles; at the same time, the 36

XNOR-SRAM macros in the other core load the weights for next layer in 256 cycles

(row by row). Fig. 5.3 shows the timing diagram that illustrates these operations for

two adjacent layers of a CNN. This layer-by-layer operation will continue to perform

all the layers of a given DNN/CNN.

5.3.2 Multi-bit Activation Support

Figure 5.2: Classification accuracy for CIFAR-10 dataset is shown across different

activation precision values for four different DNN sizes. For all data points, the

weight precision is binary (only two values of +1 or -1).

While the XNOR-SRAM macro has native support on binary activations and

binary weights, it should be noted that DNNs with binary activations and binary

weights do not yet reach the same accuracy level of their higher precision counter-

parts [16, 35]. Therefore, in our proposed Vesti accelerator, we support weights with
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Figure 5.3: Timing diagram of the accelerator operation for two adjacent layers of a

CNN, including in-memory computing, double-buffering, and peripheral

computations.

binary precision (+1 or -1) but activations with configurable precision from 1-bit to

4-bit. This scheme will not only minimize the weight memory footprint, but can also

reach the level of DNN accuracies with floating-point precision [91].

Our choice on binary weight and multi-bit activation is based on the algorithm

level experiments that we conducted. In particular, we swept (1) several CNN sizes

(various numbers of feature maps per layer) for the CIFAR-10 dataset, and (2) acti-

vation precision values including binary, ternary, 2-bit, 4-bit, 8-bit, and 32-bit. The

results are shown in Fig. 5.2. 1X CNN represents the network of input-128C3-128C3-

MP2-256C3-256C3-MP2-512C3-512C3-MP2-1024FC-1024FC-10FC, which was pre-

sented in [35]. Here, 128C3-128C3 refers to the convolution layer with 128 input

feature maps, 3×3 kernels and 128 output feature maps, MP2 refers to 2×2 max-

pooling, and 1024FC refers to the fully-connected layer with 1024 hidden neurons.

0.5X CNN represents the network input-64C3-64C3-MP2-128C3-128C3-MP2-256C3-

256C3-MP2-512FC-512FC-10FC, where the number of feature maps in all convolution

layers is reduced by half compared to those in the 1X CNN, and the number of hidden

neurons in the fully connected layers is reduced by half as well. Similarly, 0.25X CNN
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and 0.125X CNN represents the networks where all dimensions are reduced by 4X

and 8X, respectively, compared to the 1X CNN.

It can be seen in Fig. 5.2 that the accuracy of models using floating-point activation

precision could be reached by employing 3-/4-bit activation precision with binary

weights. However, employing binary activations do show considerable degradation in

CNN accuracy. To that end, we use in-memory computing hardware with fixed binary

weights, but employ configurable precision for the inputs and neuron activations at

the periphery of the XNOR-SRAM array.

In the microarchitecture level, the support of the multi-bit inputs is done by per-

forming XAC operation for each bit of input/activation using XNOR-SRAM macros

and then shift-and-accumulate the bitwise XAC results in the digital peripheries over

multiple cycles (e.g., N cycles for N -bit precision of activations). This is illustrated in

Fig. 5.1(b), together with other digital computations at the periphery. Configurable

precision (from 1-bit to 4-bit) for activations can be flexibly supported at the cost of

additional clock cycles.

5.3.3 Activation Memory

Activation memory in each core is employed to store the input feature maps for

that core and to save the output activations from the other core. Take a 256C3-256C3

convolution layer as an example. This convolution layer consists of 256 input feature

maps, each of 32×32 pixels. The input feature maps stored in an activation memory

need to be read out to perform convolution. 256×3×3 pixels should be fetched out and

presented to the 36 XNOR-SRAM macros at every cycle. A relatively large FIFO-

based buffer between the activation memory and XNOR-SRAM array can reduce

activation memory access by exploiting convolutional data reuse. However, this will

result in considerable power consumption in the buffer and significant area for the
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control logic.

To get rid of the buffer, we propose a new way to store the feature maps in

the activation memory. In particular, we divide the overall activation memory in 9

activation SRAM blocks of 128 rows and 256 columns as shown in Fig. 5.4. The input

feature maps are divided in 3×3 tiles. The input feature maps pixels are grouped

and stored in the 9 SRAM blocks according to their position in the 3×3 tiles they

belong to. By storing pixels in this fashion, we can read all the 256×3×3 pixels in

a single cycle given the fact that any 3×3 patch of input feature maps is now stored

in 9 different SRAM blocks. A controller block is designed to generate corresponding

addresses for the 9 SRAM blocks.

As shown in Fig. 5.1(c), the activation memory buffer has four parts: (1) coordi-

nate generator, (2) address decoder, (3) rewiring logic, and (4) XNOR-SRAM input

interpreter module, along with the 18 SRAM blocks. The functionalities of these

blocks are described in more detail below.

Coordinate Generator: The coordinate generator block generates the x and

y coordinates of the output map pixels sequentially in a row-major order. In case

that the convolutional layer is followed by a max-pooling layer, the coordinates cor-

respond to each pooling window will be generated in a row-major order inside each

pooling window to ease the buffer size requirement for max-pooling operation. These

coordinates will serve as inputs to our address decoder and rewiring logic blocks to

different combinations of row addresses and read enable signals for SRAM blocks.

Address Decoder: The address decoder block generates activation memory ad-

dresses for the 9 SRAM blocks according to the output feature map coordinates.

Zero padding can be supported smoothly by the address decoder as well. When the

generated addresses are found invalid for the input feature maps, corresponding read

enable signals will be inactive and substitute the SRAM output with zero values.
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Figure 5.4: Illustration of convolution layer feature map storage and access scheme

in 9 separate SRAM arrays. (a) 3×3 window starting from (0, 0); (b) 3×3 window

starting from (0, 1); (c) 3×3 window starting from (2, 2).

Since the feature map size and channel size vary from layer to layer, we further divide

each 256-bit-word-length SRAM block in two 128-bit-word-length SRAM blocks. For

some layers (e.g., map size = 32×32, channel size = 128), we concatenate these two

in depth direction to form a deeper SRAM block with 128-bit word length; for some

layers (e.g., map size = 16×16, channel size = 256), we concatenate these two in word

direction to form a wider SRAM block with 256-bit word length.

Rewiring logic: As shown in Fig. 5.4, although we can always fetch any 3×3

patch in input feature maps from 9 different SRAM blocks at the same time, the

order of the 9 SRAM outputs do not always align with the row-major order in each

3×3 patch. We need to rewire the SRAM outputs to make sure the 3×3 patches be
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Figure 5.5: Mapping convolution layers (left) and fully-connected layers (right) of

deep CNNs onto the Vesti accelerator.

presented to the XNOR-SRAM macros in correct order. There are 9 different rewiring

patterns in total, depending on the 3×3 patch row and column offset remainder

modulo by 3. Fig. 5.4 illustrates 3 different patterns with an example of 6×6 feature

maps, where the patch row and column offset is (0, 0), (0, 1) and (2, 2), respectively.

XNOR-SRAM input interpreter: Depending on whether we operate the

XNOR-SRAM in 1-bit binary activation (+1/-1) or multi-bit binary activation (+1/0)

mode, the XNOR-SRAM input interpreter will generate proper wordline inputs for

XNOR-SRAM array from what it receives from the rewiring logic.
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5.3.4 Mapping of Convolution, Fully Connected, and Other Layers

For convolution layers, we propose a mapping scheme where the same location

pixel (x, y) of the kernel from all the kernels for different input/output feature maps

will be stored in the same XNOR-SRAM array. Other location pixels of the kernels

will be stored in different XNOR-SRAM arrays. This is illustrated in Fig. 5.5 (left).

Then, the XAC or bitcount accumulation results will be gathered from these multiple

XNOR-SRAM arrays and accumulated together, to obtain the final output activation

result. This scheme enables extensive re-use of the activations, with weights being

stationary at the XNOR-SRAM arrays.

Using the weight-stationary scheme in the XNOR-SRAM macros, it is straightfor-

ward to map fully connected layers of DNNs, where neurons/activations are in vectors

and weights are in matrices. This nicely maps to the row drivers for activations and

weights stored in the SRAM. For the fully-connected layers whose size is larger than

256×64, we break the large weight matrix into a number of small sub-matrices and

accumulate the matrix-vector multiplication results accordingly. This is illustrated

in Fig. 5.5 (right).

We implement other computation modules such as max-pooling, batch normal-

ization, and non-linear activation with all-digital circuits, which will reside at the

periphery of XNOR-SRAM macros. The computing sequences of these modules are

as follows. Once the XAC operations are done inside the XNOR-SRAM array, they

are digitized with the flash ADC and outputs a thermometer code. The thermometer

code from each column gets converted to a binary number and a simple look-up table

(LUT) is used to bring it back to the exact bitcount value, according to the non-linear

quantization scheme that was employed with regards to the ADC reference voltages.

Then, the same columns from different XNOR-SRAM arrays are accumulated (to
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compute the summation of the partial sums of all convolution pixels), which then

sends out the final output sum value. Using the trained batch normalization param-

eters, this final sum value goes through batch normalization and non-linear quanti-

zation (thresholding for binary/ternary activations, ReLU for multi-bit activations).

Finally when the current layer’s computation is completed, the activation outputs are

ready to serve as the input activations for the next layer of the DNN/CNN.

5.4 Experimental Results

5.4.1 Experiment Setup

The Vesti accelerator consists of two main parts: (1) multiple instances of XNOR-

SRAM arrays (including ADC peripheries), and (2) activation SRAMs and additional

digital logic/control. As reported in [32], the XNOR-SRAM array itself consists of a

custom SRAM array and peripheral mixed-signal circuits, which are designed and laid

out manually. The remaining modules including activation SRAMs and additional

digital logic/control are implemented through the standard cell based design flow.

Activation SRAMs are off-the-shelf 6T SRAMs, and are obtained from industrial

memory compiler. Digital logic/control modules are implemented in RTL, synthesized

using Synopsys Design Compiler, and placed and routed using Cadence Innovus tool

in the same 65nm CMOS technology.

We characterized the power/energy consumption, throughput and accuracy (for

MNIST and CIFAR-10 datasets) of the Vesti accelerator. For all the MAC or XAC

operations in the convolution and fully-connected layers, the XNOR-SRAM testchip

measurement results from [32] are used. For all other digital logic and off-the-shelf

SRAMs, the power consumption results are obtained from Synopsys PrimeTime simu-

lation of the post-layout netlist with RC parasitics and actual data switching activity
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information.

We considered MLPs and CNNs for image classification tasks for MNIST and

CIFAR-10 datasets, respectively. For MNIST, a MLP with three hidden layers, each

with 256 neurons, is used. The CIFAR-10 CNN architecture used in this section is

adopted from the CNN reported in [35], consisting of six convolution layers and three

fully-connected layers, which is identical to the 1X CNN that was used in Section 5.3.2

except that the last two convolution layers have 256 feature maps. This represents the

network of input-128C3-128C3-MP2-256C3-256C3-MP2-256C3-256C3-MP2-1024FC-

1024FC-10FC.

Figure 5.6: Including the XNOR-SRAM prototype chip layout, the layout of

activation memory buffer/controller, accumulation and batch normalization modules

are shown.

The ADC employed in [32] was a 11-level flash ADC, which non-linearly quantized

the analog bitline voltage to produce approximate partial XAC values. Since the

distribution of partial XAC values was found to be concentrated around zero, finer-

grain quantization has been employed around zero XAC values in [32]. The effect

of noise/offset for the ADC, as well as process variation of XNOR-SRAM bitcells,

contribute to the 3-σ spread of the analog read bitline voltage for same XAC values
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in Fig. 3.13.

To evaluate the accuracy of binary-weight multi-bit-activation MLPs and CNNs

on Vesti, we first obtained a probabilistic model for the XNOR-SRAM XAC and quan-

tization operations from XNOR-SRAM chip measurements. Specifically, we used a

total of 656k (513 XAC values×64 columns×20 samples/XAC/column) random test

vectors and measured the outputs of the XNOR-SRAM to build XNOR-SRAM’s

probabilistic model as a function of XAC value. We simulated BNN model accuracy

on Vesti by running software simulations where we stochastically quantized all the

256-input XAC partial sums according to the measured probabilistic model. Offset

calibration or other techniques that lower the ADC noise/offset can result in tighter

distribution of the probabilistic model, which will result in better DNN accuracy.

Note that the probabilistic model was characterized based on single-array measure-

ment. Array-to-array variation could potentially result in further accuracy loss, while

more accurate array-by-array ADC calibration could alleviate the loss. In addition,

hardware-variation-aware network retraining algorithm [111] could potentially help

minimize the accuracy loss due to the array-to-array variation.

5.4.2 Area, Energy, Throughput, and Accuracy

In Fig. 5.6, the placed-and-routed layout of all digital peripheral blocks as well as

the 72 XNOR-SRAM arrays are shown. The total area of the Vesti accelerator is 15

mm2 in the 65nm CMOS process. The width and height of different modules that

comprise the accelerator are shown as well. Multiple XNOR-SRAM arrays consume

54% of the total area, the activation SRAMs consume 18%, and remainder of the area

(28%) is occupied by digital logic and control modules.

For MNIST MLP, we simulated and evaluated the total MLP energy for various

activation precisions of 1-3 bits in Fig. 5.7. The XNOR-SRAM macro energy is
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Figure 5.7: Energy breakdown of the entire MLP designed for MNIST dataset.

Figure 5.8: For MNIST dataset, accuracy vs. energy (per classification) comparison

with prior works for MNIST dataset classification.
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Figure 5.9: Energy breakdown of the entire CNN designed for CIFAR-10 dataset.

Two different sizes of CNNs (1X, 0.5X) and three different activation precision

schemes (1-bit to 3-bit) are shown.

Figure 5.10: Accuracy vs. energy comparison for CNNs for CIFAR-10 with variable

activation precision with prior works.
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acquired from chip measurements [32], and energy for other digital components is

obtained from post-layout simulation with data switching activity. Since activations

with N -bit precision consume N cycles to compute using the XNOR-SRAM array, the

overall energy roughly increases linearly with the activation precision. To perform a

single inference of the MLP using the 1-bit activation precision, the Vesti accelerator

consumes 21 cycles. At the 0.55-GHz clock frequency, which the Vesti accelerator can

operate at, the throughput of 26M inferences per second is achieved. Fig. 5.7 shows

the energy breakdown across various activation precision.

For the MNIST dataset, in Fig. 5.8, we compared Vesti (with 1-/2-/3-bit activa-

tion precision) to several prior works [20, 98, 112–114] that demonstrated the energy

and accuracy for the entire DNN for MNIST dataset. For all data points of prior

works shown in Fig. 5.8, we directly grabbed accuracy/energy numbers for MNIST

classification from [20, 98, 112–114] without adapting them. ‘SNN’ stands for spik-

ing neural network implementations [112, 114], and ‘IMC’ represents SRAM-based

in-memory computing works [98]. It can be seen that the proposed Vesti accelerator

results in superior accuracy versus energy trade-offs compared to the state-of-the-art

DNN implementations (MLP, CNN, SNN, and IMC) for MNIST dataset.

PROMISE [33], another mixed-signal in-memory computing accelerator, achieved

0.49 µJ/classification for the MNIST dataset using the MLP of 784-512-256-128-10

with 8-bit precision, but did not report the classification accuracy (due to the lack

of accuracy information, this work was not included in Fig. 5.8). Vesti achieves

0.012 µJ/classification for the MLP of 784-256-256-256-10 with 1-bit weight and 3-

bit activation precision, which resulted in 98.5% classification accuracy. Considering

that similar MLP networks were employed in both works, Vesti achieves ∼40X energy

improvement.

For CIFAR-10 CNN, we also simulated and evaluated the total CNN energy for
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Table 5.1: Comparison with Prior Works.

[115] [23] Vesti [20] [112] [113] [114] [98]

Technology

(nm)
45 28 65 28 45 40 28 65

Model SNN CNN
CNN/

MLP
MLP SNN CNN SNN CNN

Power Supply

(V)
0.6-0.8 0.6-0.8 1 0.6-1.1 0.6-0.8 0.55-1.1 0.9 1

Clock Frequency

(MHz)
– 10 550 667 – 204 163 –

CIFAR10

Accuracy (%)
83.41 86.05 88.6 – – – – –

CIFAR10

Throughput (FPS)
1249 237 328k – – – – –

CIFAR10 Energy/

Prediction (µJ)
163 3.8 23.3 – – – – –

MNIST

Accuracy (%)
– – 98.5 98.5 99.42 99 98.7 99

MNIST

Throughput (FPS)
– – 8.6M – 1k 13.4k 91.6k 70

MNIST Energy/

Prediction (µJ)
– – 0.012 0.588 108 0.45 0.773 0.45

various activation precisions of 1-3 bits for two CNN sizes (1X and 0.5X, as described

in Section 5.3.2) in Fig. 5.9. Since activations with N -bit precision consume N cycles

to compute using the XNOR-SRAM array, the overall energy roughly increases lin-

early with the activation precision. To perform the single inference of the CIFAR-10

CNN using the 1-bit activation precision, the Vesti accelerator consumes 1,676 cy-

cles. At 0.55-GHz clock frequency, which the Vesti accelerator can operate at, this

marks the throughput of 328K inferences per second. Fig. 5.10 shows the energy

across three activation precision values (from 1-bit to 3-bit) and two CNN sizes (1X

and 0.5X CNN). For the CIFAR-10 dataset, in Fig. 5.10, we show the energy and

accuracy trade-offs for variable activation precision using Vesti accelerator, and also
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compared to the energy and accuracy of the all-digital TrueNorth processor reported

in [115] and the mixed-signal binary CNN processor reported in [23] (energy scaled

to 65nm). Regarding the comparison with [23], we used an energy scaling factor of

11.77X from 28nm to 65nm, based on the dynamic energy consumption of two com-

mercial register file designs (array size of 256×64) at 28nm (0.81 V supply) and 65nm

(1.0 V supply). As shown in Fig. 5.10, Vesti accelerator results in superior accuracy

and energy trade-offs for two different CNN sizes (1X and 0.5X) for multiple acti-

vation precision schemes for the CIFAR-10 dataset. Comparison with prior works is

summarized in Table 5.1.

5.4.3 Discussions

For binary-weight CNNs, as shown in Fig. 5.2, 3-bit and higher activation precision

schemes have achieved similar accuracy in software simulations. With finer-grain acti-

vation representation, 3-bit (or higher) activation hardware designs seemingly become

more sensitive to similar amount of quantization error to signal ratio, introduced by

11-level ADCs, compared to coarser-grain 1-/2-bit activations. Given similar amount

of perturbation in XAC values, higher-precision-activation hardware are experiencing

more degradation in accuracy, especially for larger networks such as the 1X CNN in

Fig. 5.10. To achieve further accuracy improvement for 3-bit and higher activation

precision schemes, we postulate that ADCs with more levels (higher precision) will

be necessary.

In addition, the degraded accuracies for 3-bit activation scheme of 1X CNN in

Fig. 5.10 seem to be partially due to the fact that ReLU activation generates a rela-

tively large portion of zero activations for 3-bit or higher activation precisions, which

leads to overall small accumulation values and concentrates the bitcount values near

zero, in turn becoming more susceptible to variability. Reducing the variability effect
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is a crucial concern for in-memory computing designs involving analog computing.

With substantial reduction in on-chip DNN energy, off-chip DRAM access could

be a larger portion of the chip-level energy. This requires an in-depth analysis and

potentially need to exploit some of the recent DRAM energy improvement techniques

such as [116].

5.5 Conclusion

In-memory computing for DNNs and CNNs has been recently gaining significant

attention. This is because memory access is the main bottleneck to scaling delay and

energy dissipation of the MAC operation in digital DNN/CNN accelerators. Most in-

SRAM computing works that turn on all rows or columns simultaneously [28, 30, 32]

have only implemented a single custom SRAM array, which only computes a small

portion of total MAC operations in DNNs. In such prior works, the rest of the

operations and overall architecture to implement the DNN accelerator have not been

shown or implemented in hardware.

In this chapter, we substantially expanded the single-array-level prior XNOR-

SRAM work [32] towards a configurable DNN accelerator architecture that integrates

72 XNOR-SRAM arrays. The proposed Vesti architecture features (1) methodolo-

gies to efficiently load/map weights onto such XNOR-SRAM arrays for convolutional

layers and fully-connected layers of DNNs, (2) multi-bit activation memory storage

and control, (3) double-buffering technique to hide the latencies of re-programming

in-memory computing SRAM arrays, and (4) inter-array communication.

Due to these comprehensive designs, Vesti simultaneously achieves both high ac-

curacy and low energy for representative DNNs that are benchmarked for MNIST

and CIFAR-10 datasets. The Vesti accelerator presented in this work feature essen-

tial techniques for in-SRAM computing based deep learning processors, which can fit
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under the stringent power/energy envelopes of mobile, wearable, and IoT devices.
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Chapter 6

PIMCA: A PROGRAMMABLE IMC ACCELERATOR FOR ON-DEVICE DEEP

NEURAL NETWORK INFERENCE

6.1 Introduction

In the era of artificial intelligence (AI), various deep neural networks (DNN) have

achieved human-level performance in many recognition tasks. These DNNs usu-

ally require billions of multiply-and-accumulate (MAC) operations, soliciting energy-

efficient architecture for on-device DNN inference. In-memory computing (IMC) has

emerged as a promising technique owing to high parallelism, reduced data communi-

cation, and energy-efficient analog MAC computation. Single-macro-level [117, 118]

or layer-/system-level [99, 119–121] IMC designs have been demonstrated with high

energy-efficiency. However, a limited number of IMC macros were integrated on-

chip [119,120], or the dataflow of IMC/non-IMC operations were hard-wired [99,121],

exhibiting limited flexibility to support layer types other than batch normalization

(BN) and activation layers. Furthermore, hardware loop support is often omit-

ted [99,119–121], incurring large overhead in instruction counts.

In this chapter, we present a programmable IMC accelerator (PIMCA) in 28nm

CMOS integrating 3.4-Mb capacitive IMC SRAM macros, demonstrating one of the

largest integrations for IMC design to date. Also, as part of the instruction set ar-

chitecture (ISA), a flexible single-instruction-multiple-data (SIMD) processor is im-

plemented to support a range of non-MAC vector operations, such as average-/max-

pooling, residual layers, etc. The ISA also features hardware loop support, reducing

instruction count and latency. Leveraging recent low-precision DNN algorithms [122],
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PIMCA supports DNNs with 1-b and 2-b precision.

6.2 Design and Optimizations of PIMCA

6.2.1 Overall Architecture of PIMCA

Figure 6.1: Overall architecture of PIMCA.

Fig. 6.1 depicts the overall architecture of PIMCA, which integrates 108 IMC

SRAM macros organized in 6 processing elements (PEs). In each PE, 18 macros are

organized in a 3×6 array. At each cycle, one PE is activated, and the active PE

can perform matrix-vector multiplication (MVM) using 1 to 18 macros. Each of the

selected macros yields 128 4-b partial sums, which can be accumulated to 256-d 8-b

results by a configurable adder tree in the PE, in either 256-d 9-input mode for 3×3

convolution or 128-d 18-input mode for 5×5. The accumulation results can be further

processed by the 256-way SIMD processor for non-MAC operations and the SIMD

outputs are written back to the activation memory (AM).
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We designed the IMC SRAM macro based on the C3SRAM module [117] de-

scribed in Chapter 4, which contains 256 by 128 bitcells. Two transmission gates and

a coupling capacitor are added to the traditional 6T SRAM bitcell. Transmission

gates instead of NMOS pass gates [117] are used for better MAC word line driving

capability. Unlike using MOS capacitors in the original C3SRAM in [117], the cou-

pling capacitor Cc (2.2fF) is implemented as a MOM capacitor (M4-M6) on top of

the bitcell for better area-efficiency and capacitance linearity. It performs 256×128

MVM in one cycle by simultaneously turning on all 256 rows and 128 columns. The

binary multiplication result of each bitcell are accumulated over MBLs through ca-

pacitive coupling. The MBL voltage of each column is converted to 4-b values by

an 11-level flash. The peripheral circuitry such as decoders, flash ADC, and R/W

control is clock-gated to reduce the clock power when the macro is idle.

Fig. 6.2 illustrates the proposed ISA and the six-stage PE+SIMD pipeline. Every

cycle, an instruction is fetched from instruction memory (IF), then decoded (ID),

followed by reading input vectors from AM (LD), performing MAC (IMC) and vec-

tor operations (SIMD) in one of the PEs and the SIMD processor subsequently, and

optionally writing the SIMD results back to AM (WB). The ISA has two types of in-

structions: regular PE+SIMD and loop instructions. A regular instruction performs

MAC operation in PE and non-MAC operation in SIMD. It contains three major

fields: i) read and write (R/W) addresses and AM enable, ii) PE and macro selection

and accumulation mode control, iii) SIMD operands and operation code. The regular

instructions contain a 6-b field defining repetition times (up to 64) of this instruc-

tion. This loop support saves the instruction counts for implementing the innermost

loop such as horizontal sliding in each row of output feature map. Read and write

addresses are automatically increased by one when one regular instruction is repeat-

edly executed. In addition, loop instructions are devised to support generic for-loops.
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Figure 6.2: The 6-stage pipeline, instruction set and loop support of PIMCA.

Pairs of loop-setup (LS) and loop-end-check (LE) instructions can define up to eight

levels of nested for-loops. The parameters of a loop are set in the dedicated sets of

loop registers/counters (LR/LC). The proposed hardware loop support reduces the

instruction count by 4X with minimal loop latency overhead.

6.2.2 Storage and Access Pattern of Activation Memory

PIMCA also integrates 1.54-Mb activation memory (AM) using off-the-shelf single-

port SRAM for storing input image, intermediate data, BN parameters, and final

outputs. To avoid R/W conflict, we split the AM in two groups: top and bottom.

To compute a DNN layer, input data are read from the top (bottom) group, whereas
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Figure 6.3: Storage and access pattern of activation memory of PIMCA.

the output data are written back to the bottom (top) group. Each group of the AM

is further divided into six banks (1024×128 b) to support flexible yet efficient AM

access. As shown in Fig. 3, each row of a bank can store the activations of up to 128

channels, and three consecutive rows of feature maps are stored across six different

banks. Aided by proper address generation for different banks and activation rotation,

the active PE can access any 3×1×256 (height×width×channel) input patch in a

cycle, simplifying the streaming process by eliminating the need for extra buffering

between AM and PE (Fig. 6.3).
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6.2.3 PE Organization and Mapping

Figure 6.4: Flexible C3SRAM macro mapping of PE in PIMCA.

We organize the macros in a PE to effectively support typical convolution kernel

sizes, namely 3×3, 5×5, and 1×1. For 3×3, the 3×6 IMC macros in a PE are split

into two 3×3 groups. The 1-b or 2-b kernels of a 256×256 or 256×128 (input channels

x output channels) convolution layer can be mapped in that PE (Fig. 6.4 top left),

where the left and right groups share the input vectors. The input registers for the

3×3 macro group are pipelined horizontally, exploiting the convolutional data reuse.

Also, 5×5 1-b convolution kernels of a 128×128 convolution layer can be mapped by

connecting the output of input registers of the left group to the input of the right

group (Fig. 6.4 bottom left). Inactive macros’ outputs are held zeros; therefore, by
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disabling corresponding macros when input padded zeros are being processed, explicit

zero padding can be avoided (Fig. 6.4 bottom right), saving MVM computation energy

for zero inputs.

6.2.4 SIMD Processor

The 256-way SIMD processor performs non-MAC computing acceleration. It can

directly use the output of the selected PE or fetch data from AM. Each way of the

SIMD processor contains four 8-b registers (R0-R3) and a 10-b register (R4). The

MSB of R4 of the 256 ways are taken as the output of the SIMD processor. Eight

types of operations are supported:

1. ADD: perform addition between X and Y and store the result in Z;

2. ADD2: perform addition between 2X and Y and store the result in Z;

3. COMP: compare X and Y and save (X>Y) to Z;

4. CMP2: compare X against R0, R1, R2 and save (X>R0)+(X>R1)+(X>R2) to

Z for 2-bit activation;

5. LOAD: load X to Z;

6. MAX: load maximum of X and Y to Z;

7. RSHIFT: right-shift X by amount of Y and save the result to Z;

8. LSHIFT: left-shift the output of data memory to X by 1 bit.

In particular, ‘ADD2’ operation (2X+Y) is included to support both bit-serial

scheme for 2b input (X and Y from the same SIMD lane) and bit-parallel scheme

(Fig. 6.4 top left) for 2b weight (X and Y from left and right lanes). ’LSHIFT’
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operation is mainly designed for loading data from activation memory and writing

data back to activation memory in bit-by-bit fashion.

Figure 6.5: PIMCA prototype chip micrograph and performance summary.

Figure 6.6: Measured histogram of ADC outputs vs. partial MAC values.

6.3 Measurement Results

The PIMCA testchip is implemented in 28nm CMOS (Fig. 6.5). It operates

at 40 MHz under 1V supply. We evaluated the testchip on three different DNN

workloads for CIFAR-10 datasets: VGG-9 (A:1b, W:1b), ResNet-18 (A:1b, W:1b) and
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ResNet-18 (A:2b, W:2b), where A and W stand for activation and weight precision,

respectively.

6.3.1 ADC Output Variation

Due to bit-cell capacitor mismatch, ADC offset variation and other non-ideal

effects, the 11-level flash ADCs exhibit output errors which might hurt the DNN

inference accuracy. To evaluate the ADC output errors, we first program all the

C3SRAM macros to all +1’s, and generate 400 random input binary vectors (+/-1)

that contain the same number of +1’s for each possible partial MAC value between -70

and +70. Fig. 6.6 (left) shows the histogram of ADC outputs vs. partial MAC values

from a single C3SRAM macro while Fig. 6.6 (right) shows the histogram of ADC

outputs vs. partial MAC values from all 108 macros. The root-mean-square (RMS)

error of ADC outputs is 0.696 LSB and 0.703 LSB for single-macro and 108-macro

cases, respectively. It can be seen that the macro-to-macro variation is relatively

small as the ADC output RMS error does not increase much when we increase the

scale from single-macro to 108-macro, which makes large-scale IMC design an viable

option.

To alleviate the accuracy degradation due to the ADC output variation, we de-

veloped noise-aware DNN training framework that incorporates the measured condi-

tional probability distribution inferred from Fig. 6.6 in the training process.

6.3.2 DNN Workload Accuracy and Energy Efficiency

Fig. 6.7 shows the detailed network structure and exact PE macro mapping of

VGG-9 and ResNet-18 used in our experiments. Binary VGG-9 DNN requires 2.89

Mb weight storage, which can fully fit in the PIMCA chip. Binary ResNet18 need

4 times of mapping its convolution layers sequentially onto PIMCA chip. Measured
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Figure 6.7: Mapping of VGG-9 and ResNet-18 CNNs on 6 PEs of PIMCA chip.

accuracy and energy efficiency of three different DNN workloads are summarized

in Fig. 6.8. On-device inference of binary VGG-9 consumes 2.36 µJ energy and

47.3 µs latency, leading to 289 TOPS/W average energy-efficiency. When a DNN

continuously uses 18 macros per PE, 437 TOPS/W peak energy-efficiency is achieved

as shown in Fig. 6.9 (left). According to the measured power breakdown shown in

Fig. 6.9(right), C3SRAM macro MWL decoder, driver and cell array dominate the

total power of PIMCA chip.
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Figure 6.8: DNN accuracy and energy efficiency evaluation on PIMCA chip.

Figure 6.9: Power measurement of PIMCA prototype chip.

6.3.3 Comparison with Related Works

Table 6.1 shows the comparison to prior works on system-level IMC accelerator

design. Compared to the existing system-level IMC SRAM designs [99, 119–121],

the PIMCA chip demonstrates the largest integration of IMC SRAMs (3.4 Mb).

With flexible non-MAC operation support in SIMD processor, the PIMCA chip can

support a wide variety of layers such as max/average pooling layers, residual path

addition, etc., for which other works rely on host processors [121] or external digital
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processors for processing. With the aid of customized ISA and reconfigurability of PE

macro mapping, different convolution kernels such as 5×5 and 1×1 can be efficiently

supported in addition to the commonly used 35×53 convolution kernels. Compared

to the other programmable IMC processor [121], PIMCA achieves higher macro-level

energy efficiency and lower energy for binary VGG model inference.

6.4 Conclusion

In this chapter, we present a programmable in-memory computing (IMC) acceler-

ator integrating 108 C3SRAM macros of a total size of 3.4 Mb, demonstrating one of

the largest integrations for IMC design to date. A custom ISA featuring IMC+SIMD

functional units and hardware loop support is proposed to support a range of deep

neural network (DNN) layer types. The 28nm prototype chip achieves system-level

energy efficiency of 437/62 TOPS/W at 40 MHz, 1V supply for DNNs with 1b/2b

precision.
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Table 6.1: Comparison to Prior Works on System-level IMC SRAM Design.

VLSI’19
[119]

ISSCC’20
[120]

JSSC’19
[99]

JSSC’20
[121]

PIMCA

Technology 65nm 65nm 65nm 65nm 28nm
DNN Model RNN CNN/FC CNN CNN/FC CNN/FC
Supported

CNN Kernel
N/A 3×3 3×3 3×3

3×3, 5×5,
1×1

Flexible Non-MAC
Operation Support

No No No Yes Yes

Supply Voltage (V) 0.9-1.1 0.9-1.05
0.94/0.68

/1.2
0.85-1.2 0.82/1

Area (mm2) 9.6 5.66 12.6 13.5 20.9
Clock Frequency

(MHz)
5-75 50-100 100 40-100 40

IMC Bitcell 6T 8T 10T1C 10T1C 10T1C
Digital SRAM (kb) 80 1,312 64 256 1,608
IMC SRAM (kb) 64 4 2,304 576 3,456

Bit Precision 1b

2/4/6/8b
(Act.)
4/8b

(Weight)

1b 1b-8b 1b-2b

ADC Precision 3b 5b 1b 8b 4b
Performance

(TOPS)
0.61 0.17-2.0 18.9 2.2 (1b) 4.9 (1b)

Power (mW) N/A 31.8-65.2 N/A N/A 124 (1b)
IMC-Macro-Level

Peak Energy
Efficiency

(TOPS/W)

51.6 158.7 866 400 (1b) 588 (1b)

System-Level
Peak Energy

Efficiency
(TOPS/W)

11.7 35.8 658 N/A 437 (1b)

System-Level Avg.
Energy Efficiency

(TOPS/W)
for ResNet-18

N/A
6.91

(4b/4b)
N/A N/A

136 (1b)
35 (2b)

Energy per
Inference

for VGG (µJ)
N/A N/A 3.55 (1b) 5.31 (1b) 2.36 (1b)
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Chapter 7

A FIXED-POINT CONVOLUTIONAL NEURAL NETWORKS LEARNING

PROCESSOR

7.1 Introduction

With the advent of artificial intelligence (AI), various deep neural networks (DNNs)

such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

have emerged and achieved human-level performance in image/speech recognition

tasks. DNNs are typically trained by GPUs in 32-bit floating-point (FP32) preci-

sion after sending all training data to a central server. To train DNNs with a user’s

sensitive data, local training capability on mobile or edge devices is desired due to

privacy concerns. DNN inference accelerators [123,124] have progressively optimized

performance and energy efficiency, but inference-only DNN accelerators cannot adapt

to the evolving user-centric application scenarios. Since DNN training is consider-

ably more compute-/memory-intensive than inference, it is challenging to perform

DNN training on resource-limited mobile devices. In particular, the back-propagation

(BP) based training algorithm involves weight transpose for convolution and fully-

connected (FC) layers. Maintaining two copies of weights (original and transposed)

or employing transposable SRAM [42] incurs large area overhead or custom SRAM

bitcell design.

Recently, deep learning processors with on-chip learning functionalities have been

proposed [125–127]. An AI core capable of both learning and inference for DNNs

with programmable architecture and custom ISA was presented in [125], featuring a

2-D processing element (PE) array that supports floating-point precision and flexible
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dataflow such as weight-/output-/row-stationary schemes. However, the flexibility

comes at the cost of the complexity of PE-unit-level instructions and overhead in

inter-PE communications. A reinforcement learning (RL) accelerator was presented

in [126] using 16-bit floating-point precision (FP16), and proposed a transposable

PE array with an additional buffer, which was optimized for FC layers. However, if

the same technique were to be applied to convolution layers in CNNs, the additional

buffer requirement will be even larger. A deep learning neural processing unit (LNPU)

[127] was proposed for accelerating on-chip training of DNNs with input sparsity,

using fine-grained mixed precision of FP16 and FP8. However, the on-chip weight

transpose capabilities for both feed-forward (FF) and feed-backward (FB) phases

have not been reported, without which additional off-chip memory processing will

be required. The learning processors in [125–127] are all based on floating-point

arithmetic, while training hardware using fixed-point precision could achieve higher

density and energy efficiency [128].

In this chapter, we present a programmable CNN learning processor in 16-bit

fixed-point precision (FX16) that performs end-to-end training using a simple top-

level dataflow controller with layer-level instructions. Our CNN learning processor

integrates large on-chip SRAM (>1 MB) that eliminates off-chip weight memory re-

quirement for on-device training of small/medium-size CNNs such as LeNet-5 [129]

with up to 131k parameters, and features a new cyclic weight storage scheme that

allows accessing the same SRAMs for non-transpose/transpose operations during

FF/FB phases for both convolution and FC layers of CNNs. The 65nm prototype

chip achieves 2.6 TOPS/W at 0.55V, demonstrating energy efficiency improvements

of 20-50% over ASICs with FP16 precision [126,127] and >5X over Nvidia Titan XP

GPU.
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7.2 SGD Based Learning Algorithm

Stochastic gradient descent (SGD) based learning algorithm is a well known DNN

optimizer. A common variant of SGD algorithm introduces a momentum term Wm

which remembers previous update of parameters:

W t
m = mW t−1

m + ηW t
g , (7.1)

W t = W t−1 −W t
m, (7.2)

where η is the learning rate, m is the momentum factor and 0 < m < 1, Wg is the

gradient of loss function L with respect to weight W .

To calculate the weight gradient Wg, each iteration consists of three phases: feed-

forward (FF), feed-backward (FB), and weight gradient calculation (WG), as shown

in Fig. 7.1. In the FF phase, activations al in each layer are computed and stored

layer by layer in the forward direction:

al = ϕl(Wl · al−1 + bl), (7.3)

ɑ0 ɑ1 

W1

ɑ2

W1
T

21

W0 W2

ɑ3

W2
T

3

Wg2Wg1Wg0

FF

WG

FB
L

y

Figure 7.1: Back-propagation based DNN training algorithm in three phases:

feed-forward (FF), feed-backward (FB), weight gradient calculation (WG).
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where ϕl is the activation function such as ReLU, sigmoid, etc., “·” represents linear

matrix multiplication or convolution, and bl is the bias value for layer l. The term in

the parenthesis of Eq. (4) is called pre-activation value ol.

In the FB phase, the local gradients δl (=∂L/∂ol) are evaluated first at the output

layer using the output activations and target labels, and then δl are back-propagated

layer by layer:

δl = (W T
l · δl+1)� ϕl′(ol), (7.4)

where “�” represents element-wise multiplication. Note that the weights W are

transposed during the FB phase. For 4-D convolution kernels, the two dimensions

for input and output channels are transposed, while the other two dimensions are

flipped. In the WG phase, the weight gradients Wg,l are computed using previous-

layer activations al and current-layer error signals δl+1:

Wg,l =
1

N
aTl · δl+1, (7.5)

where N is the mini-batch size in each iteration.

In addition, max-pooling (MP) layers are often included in CNNs. After MP

layers in the FF phase, activations are down-sampled by selecting the maximum

value of each p×p patches of the feature maps, and MP indices are stored. During

the FB phase, local gradients are back-propagated through MP layers such that the

maximum-value pixels obtain the local gradients whereas other pixels get zeros.

7.3 Learning Processor Design and Optimization

In this section, we describe our proposed energy-efficient CNN learning processor

that implements end-to-end SGD with momentum based learning algorithm.
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Figure 7.2: Overall architecture of the proposed CNN learning processor.

7.3.1 Overall Architecture and Custom ISA

Our CNN learning processor (Fig. 7.2) consists of a 2-D MAC array, input and

weight feeder, a 16-way 1-D SIMD processor, input memory, weight memory, weight

momentum memory and miscellaneous memory for bias, bias momentum, pooling

indices, and activation derivatives. Output-stationary dataflow similar to [123] is

employed for multi-dimensional MAC operations in the FF, FB, and WG phases

of all the layers. 16 inputs from the input feeder and 16 weights from the weight

feeder are broadcast across the 16×16 MAC array, where 4×4 patches of up to 16

output feature maps are computed in parallel as shown in Fig. 7.3. Both inputs and

weights are in FX16 precision. The partial sums are accumulated in FX22 precision,

which eventually are serially shifted out to a pipelined 16-way SIMD processor. A
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Figure 7.3: Output-stationary dataflow for a convolution layer using a 16×16 MAC

array, where weights and inputs are broadcast across the MAC array vertically and

horizontally, respectively, and the outputs are accumulated inside each MAC.

configurable rounding module (22-bit to 16-bit) is added before feeding MAC outputs

to the SIMD processor, which performs element-wise operations such as ReLU, max-

pooling, up-sampling, mask, local gradient transpose, weight/bias updates, and saving

results back to on-chip memory. The entire columns or rows of the MAC array can be

disabled by clock gating when they are not utilized or when the operands are zeros.

The CNN learning processor supports kernel sizes from 3×3 to 5×5 with arbitrary

zero padding.

To make the learning processor programmable for different CNN topologies and

training hyper-parameters, we developed a custom instruction set architecture (ISA).

The CNN model structure and the training hyper-parameters are embedded in a series

of layer-level instructions. Fig. 7.4 shows the instruction fields defining a layer-level

computation step in a training iteration. Each instruction might take many cycles to
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Training Stage (2b)

Layer Type (1b)

Input Dimension (30b)

Weight Dimension (16b)

FF / FB / WG

conv. / FC

depth (12b) / height (9b) / width (9b)

filters (12b) / kernel Size (4b)

Zero Padding (4b) 0~15

Activation (1b) ReLU / linear

Bias(1b) yes / no

Data Addresses (83b)
input R/W (14b x 2), weight R/W (14b x 2), bias (7b), 

activation derivative (10b), pooling index (10b)

Special Post-processing (9b)

pooling / up-sampling / reshape / transpose / loss 

evaluation / generate activation derivatives (AD) / mask with 

AD / update weights / update biases

Training Hyper-parameters (41b) learning rate (16b), momentum factor (16b), batch size (9b)

MAC array configuration (3b) reconfigurable rounding (2b), skip MAC array (1b)

End of Program (1b) one training iteration ends

Instruction Fields Comments

Figure 7.4: Custom instruction fields that define layer-level computing steps.

complete, depending on the layer size and mini-batch size.

With limited on-chip memory size, the training mini-batch size (e.g., 40-100) is di-

vided into J groups such that each group could fit in the on-chip memory. Weight/bias

gradients resulted from each group are multiplied by the learning rate and then accu-

mulated in the weight/bias momentum memory, and the weights/biases are updated

after we obtain the averaged weight/bias gradients after J groups.

7.3.2 Input Convolutional Reuse

The input memory consists of 16 SRAM modules, and each SRAM has 16,384

rows of 16-bit words. Each row stores a 4×4 patch of the input feature maps. In

the input feeder, a two-level FIFO array (Fig. 7.5) is included to reduce the input

memory access. Since the receptive field of a 4×4 output patch with 5×5 kernel is of
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Figure 7.5: Input feeder with two-level FIFO array for convolutional data reuse and

16-input SRAM for flexible zero padding required in CNN training, illustrated with

an example of 5×5 same-mode convolution (pad = 2) with 8×8 input feature maps.

size 8×8, four rows of inputs corresponding to an 8×8 receptive field are first loaded

to FIFOs A/B/C/D in four cycles (Fig. 7.5). Subsequently, by properly loading data

from FIFOs A/C to FIFOs 0-7 in parallel and shifting data stored in FIFOs 0-7 and

FIFOs A-D serially, the outputs of FIFOs 0-3 are fed to the MAC array as the input

data for convolution. Thanks to the input feature map storage pattern, no matter how

many zeros are to be padded, any 4×4 patch in an input feature map is guaranteed

to be stored in 16 different SRAMs and could be accessed in one cycle. Therefore, the

input feeder can support any zero-padding for convolution with appropriate address

generation and remapping logic (Fig. 7.5), which could be different between the FF
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Figure 7.6: Weight feeder with cyclic weight storage/access scheme enables using

the same off-the-shelf SRAMs for both non-transpose (FF phase) and transpose (FB

phase) operations. Two examples are shown: (1) reading 16 weights associated with

pre-synaptic neuron 1 in FF phase and (2) reading 16 weights with post-synaptic

neuron 3 in FB phase.

and FB phases for the same convolutional layers.

7.3.3 Dual-read-mode Weight Storage Scheme

To avoid explicit weight transpose during FB phases, we propose a new on-chip

weight storage and read scheme with off-the-shelf SRAMs (Fig. 7.6) that can be read

in two modes: non-transpose mode and transpose mode. For FC layers, instead of
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storing 16 weights (16×16-bit) associated with one presynaptic neuron in the same

row of a single SRAM, we store the weights in 16 independent SRAMs, each with

16-bit word length (i.e. one weight per row), in a cyclic fashion (Fig. 7.6). The

rotation amount of 16 weights in a row is mod(ix, 16), where ix is the presynaptic

neuron index. Combined with proper rotation by the bit rotator, both the 16 weights

associated with one presynaptic neuron (non-transpose mode) and the 16 weights

associated with one postsynaptic neuron (transpose mode) can be accessed in one

cycle, eliminating the need for explicit weight transpose. The same idea is applied to

the input memory access for activations/gradients of FC layers, such that we can read

them in neuron-major order and image-major order in the FF/FB and WG phases,

respectively. A similar diagnoal data mapping scheme was proposed in [130] for 2-D

discrete/inverse discrete cosine transform (DCT/IDCT) in video coding standards.

Table 7.1: Comparison with Other Transpose Techniques.

[42] [126] This work

SRAM

Bitcell

Transposable

8T
6T 6T

Transpose

Technique

Row-/column-wise

read & write

Buffer

broad-/uni-casting

Diagonal storage

pattern & rotation

Area

Overhead
>100% N/A 6.4%

Weight

Precision
1-bit/4-bit 16-bit 16-bit

The proposed dual-read-mode weight storage scheme can be applied to weights

in convolution layers as well, with ix being the input channel index. Weights in a

k×k kernel share the same amount of rotation, and the access order inside a k×k

kernel is reversed during the FB phases. Compared to SRAM weight storage for
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inference (FF only), the proposed scheme supports both FF and FB with only 6.4%

area overhead due to the breakdown of the memory and the bit rotator. On the

other hand, transposable bitcell designs [42] incur >100% overhead due to additional

transistors and non-push-rule design.
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Figure 7.7: Prototype chip micrograph and performance summary.

7.3.4 Design Support and Limitations

In this design, other network layers such as 1×1 convolution and batch normaliza-

tion are not currently supported. Weight decay and other regularization techniques

are not included either. The loss function used in our hardware is the squared hinge

loss, and other loss functions such as cross-entropy are left for future work. A more

flexible SIMD processor is required to support these functions. Other popular opti-

mizers, e.g. Adam, AdaGrad, etc., are not currently supported. To support these

algorithms, the weight update rules should be more flexible and more memory storage

should be allocated for 2nd-order momentum of weight gradients.
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(b) 7-layer CNN for CIFAR-10 dataset

Figure 7.8: Measured accuracy convergence of DNNs. (CNN for MNIST: 8C3-8C3-

MP2-16C3-16C3-MP2-FC10; CNN for CIFAR-10: 16C3-16C3-MP2-32C3-32C3-

MP2-64C3-64C3-FC10.)

7.4 Measurement Results

The prototype chip is implemented in 65nm CMOS (Fig. 7.7). We trained 7-

/5-layer CNNs for CIFAR-10/MNIST datasets for 50 epochs with the prototype chip

(Fig. 7.8) programmed with 29/21 lines of custom layer-level instructions, respectively.

Momentum factor m=0.5 and J=10 for both CNNs. Square hinge loss is used as the

loss function for training. Since the on-chip memory can only hold data for 4 and

10 images in one training iteration for CIFAR-10 and MNIST CNNs, the mini-batch

size is set to 40 (4×J) and 100 (10×J), respectively. The weights were randomly

initialized. Input images are loaded to the beginning of the input memory through a

scan chain. Measurements on training both CNNs show on-par validation accuracies

compared to the FP32 baselines by GPUs (Fig. 7.8).

At 1.0/0.55V, the CNN learning processor consumes 299/10.45 mW power at

294/53 MHz clock frequency, achieving energy efficiency of 0.50/2.60 TOPS/W (Fig.

7.9). The average energy efficiency for training the 7-layer CNN for CIFAR-10 is
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Figure 7.9: Power/energy measurements with voltage and frequency scaling.

1.74 TOPS/W at 0.55V. Table 7.2 shows the comparison with prior works. With

>1 MB on-chip memory capacity, our 65nm CNN learning processor with FX16

precision demonstrates energy efficiency improvements of 20-50% over ASICs with

FP16 precision [126, 127] and >5× over 16nm Nvidia Titan XP GPU with FP32

precision.

7.5 Conclusion

In this work, we present a programmable CNN learning processor in FX16 preci-

sion with a custom ISA and layer-level instructions. A two-level FIFO array and in-

put storage scheme is employed for convolutional data reuse and flexible zero padding

support. A dual-read-mode cyclic weight storage scheme is implemented to enable

non-transpose/transpose-mode weight access without explicit transpose operations

during training. The 65nm prototype chip achieves peak/average energy efficiency of

2.6/1.74 TOPS/W at 0.55V.
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Table 7.2: Comparison with Prior Works.

[125] [126] [127]
Titan XP

GPU
This Work

Technology (nm) 14 65 65 16 65

Models

CNN

MLP

RNN

MLP

CNN

MLP

RNN

CNN

MLP

RNN

CNN

Supply (V) 0.58-0.9 0.67-1.1 0.78-1.1 – 0.55-1

Area (mm2) 9 16 16 471 16.9

Clock (MHz) 750-1500 5-200 50-200 1582 53.1-294.4

SRAM (MB) 2 0.44 0.36 >3 1.12

PE Precision FP16

FP16

(Feature)

FX16/8/4

(Weight)

FP16/8 FP64/32/16 FX16

Peak Perf.

(GOPS)
1500 (16b) 204 (16b) 300 (16b)

12,150

(32b)
151

Power (mW) – 2.4-196 43.1-367 250,000 10.45-299

Energy Efficiency

(TOPS/W)
– 2.16 (16b)

1.74 (16b)

3.48 (8b)
0.48 (32b) 0.50-2.60
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Chapter 8

CONCLUSION

In this dissertation, a comprehensive study of energy-efficient circuit and architecture

designs for intelligent systems is presented.

The dissertation first presented an ultra-low-power ECG processor that performs

both biometric authentication and personal cardiac monitoring. Aided by output

layer removal, low precision, and Lasso-based compression, a total of 390× NN mem-

ory is reduced compared to software. We achieved <2.5% EER for a 645-subject in-

house ECG database, consuming 1.06 µW power for real-time ECG authentication.

For arrhythmia detection, the proposed ECG processor achieved 93.13%/89.78% sen-

sitivity/specificity for 42 subjects in MIT-BIH arrhythmia database. The proposed

ECG processor enables secure access and cardiac monitoring in wearable devices with

stringent power/area constraints.

Next, two SRAM-based in-memory computing macro designs and one multi-array

in-memory computing architecture titled Vesti are presented. The 256×64 XNOR-

SRAM and C3SRAM macros achieve energy efficiency of 403 TOPS/W and 672

TOPS/W, respectively. The Vesti accelerator is fully designed and laid out in 65nm

CMOS, achieving energy consumption of < 20 nJ for MNIST classification and ¡ 40 µJ

for CIFAR-10 classification at 1.0 V supply. More recently, a programmable C3SRAM

based in-memory computing accelerator named “PIMCA” is proposed, which consists

of 108 256x128 C3SRAM macros. A customized instruction set assembly is designed

to program the 6-stage pipeline of the accelerator. The 28nm prototype chip achieves

system-level energy efficiency of 437/62 TOPS/W at 40 MHz, 1V supply for DNNs

with 1b/2b precision.
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Finally, in addition to the DNN inference accelerators, a programmable CNN

learning processor in FX16 precision with a custom ISA and layer-level instructions

is presented. A two-level FIFO array and input storage scheme is employed for convo-

lutional data reuse and flexible zero padding support. A dual-read-mode cyclic weight

storage scheme is implemented to enable non-transpose/transpose-mode weight ac-

cess without explicit transpose operations during training. The 65nm prototype chip

achieves peak/average energy efficiency of 2.6/1.74 TOPS/W at 0.55V.

In summary, a number of circuit-level and architecture-level hardware innovations

are presented, exploiting the reduced algorithm complexity with pruning and low-

precision quantization techniques. Hardware and software co-design plays a key role

in achieving the goal of energy-efficient computing. In particular, macro-level and

system-level SRAM based in-memory computing works presented in this dissertation

show that SRAM based IMC is one of the promising hardware solutions for energy-

efficient intelligent systems.
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