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ABSTRACT 

This dissertation explores the use of deterministic scheduling theory for the design 

and development of practical manufacturing scheduling strategies as alternatives to 

current scheduling methods, particularly those used to minimize completion times and 

increase system capacity utilization. The efficient scheduling of production systems can 

make the difference between a thriving and a failing enterprise, especially when 

expanding capacity is limited by the lead time or the high cost of acquiring additional 

manufacturing resources.  

A multi-objective optimization (MOO) resource constrained parallel machine 

scheduling model with setups, machine eligibility restrictions, release and due dates with 

user interaction is developed for the scheduling of complex manufacturing systems 

encountered in the semiconductor and plastic injection molding industries, among others. 

Two mathematical formulations using the time-indexed Integer Programming (IP) model 

and the Diversity Maximization Approach (DMA) were developed to solve resource 

constrained problems found in the semiconductor industry. A heuristic was developed to 

find fast feasible solutions to prime the IP models. The resulting models are applied in 

two different ways: constructing schedules for tactical decision making and constructing 

Pareto efficient schedules with user interaction for strategic decision making aiming to 

provide insight to decision makers on multiple competing objectives. 

Optimal solutions were found by the time-indexed IP model for 45 out of 45 

scenarios in less than one hour for all the problem instance combinations where setups 

were not considered. Optimal solutions were found for 18 out of 45 scenarios in less than 
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one hour for several combinations of problem instances with 10 and 25 jobs for the 

hybrid (IP and heuristic) model considering setups. Regarding the DMA MOO 

scheduling model, the complete efficient frontier (9 points) was found for a small size 

problem instance in 8 minutes, and a partial efficient frontier (29 points) was found for a 

medium sized problem instance in 183 hrs. 



 

  iii 

DEDICATION 

This dissertation is dedicated to my wife Anabella, my children Anabella, Jonas, 

Clarissa and Lucas for their patience, support and encouragement. I also want to dedicate 

this manuscript to my parents Luis and Olga and my sister Susana for their support and 

words of wisdom. To all my family members and friends that cheered me up along the 

way- Thank you! 

Above all, I want to thank God for giving me the strength and patience to persevere 

in this long journey. 



 

  iv 

ACKNOWLEDGEMENTS 

The completion of this Ph. D. manuscript in Systems Engineering could not have 

been possible without the technical direction, assistance and guidance of my ASU faculty 

committee members Dr. Villalobos, Dr. Fowler and Dr. Rogers. Their technical support, 

and guidance were invaluable.  I want to acknowledge Intel Corporation for supporting my 

studies and also thank my Intel fellows who supported me during this time: CC Liong, Dr. 

Shai Rubin, Jim Evers, Matt Ward, Ricardo Guemes, Andrea Balmores, Rital Klin, Brad 

Urbanek, Steve Shong, Jarrod Bowser, Lorinda Braun, Michael Vento, Dr. Chelsea Brown, 

Dr. Josh Prickett, Katherine Adams and Dr. Ramona Perez among others. Special thanks 

to Dr. Gerardo Trevino for his technical guidance in the field of operations research. 

 



 

  v 

TABLE OF CONTENTS 

                         Page 

LIST OF TABLES ............................................................................................................. ix  

LIST OF FIGURES ........................................................................................................... xi  

CHAPTER 

1 INTRODUCTION ....................................................................................................... 1 

1.1. Introduction ....................................................................................................... 1 

1.2. Definition of Terms........................................................................................... 3 

1.3. Statement of the Problem .................................................................................. 8 

1.4. Dissertation Goals ........................................................................................... 10 

1.5. Benefits of Proposed Research ....................................................................... 12 

1.6. Organization of the Dissertation ..................................................................... 14 

2 LITERATURE REVIEW ......................................................................................... 16 

2.1. Semiconductor Scheduling ............................................................................. 17 

2.1.1. Real-time Dispatching Rules ............................................................. 17 

2.1.2. Photolithography Machine Scheduling ............................................. 24 

2.2. Optimization Models ...................................................................................... 29 

2.2.1. Single Machine Scheduling ............................................................... 31 

2.2.2. Parallel Machine Scheduling ............................................................. 33 

2.2.3. Multi-objective Optimization (MOO) ............................................... 37 

2.3. Practical Production and Manufacturing Scheduling .................................... 45 



 

  vi 

 

CHAPTER                                                Page 

2.3.1. Incorporate Human Expertise ............................................................ 47 

2.3.2. User-model Interaction in Artificial Intelligence .............................. 48 

2.4. Conclusion and Literature Contribution ......................................................... 50 

3 METHODOLOGY .................................................................................................... 54 

3.1. Background into Semiconductor and Traditional Scheduling ....................... 54 

3.2. Envisioned Framework of Study .................................................................... 58 

3.2.1. Possible Tactical Scenarios ............................................................... 58 

3.2.2. Near Optimal Allocation of Resources ............................................. 59 

3.2.3. Possible Strategic Scenario ............................................................... 59 

3.2.4. Overall Hierarchical Plan .................................................................. 60 

3.3. Objectives of the Research ............................................................................. 62 

3.4. Phase I Optimization Model Pm|rj,Mj,aux 1|Cj ............................................... 64 

3.5. Phase II Optimization Model and Heuristic Pm|sjk,rj,Mj,aux 1|Cj .................. 65 

3.6. Phase III MOO Optimization Model Pm|sjk,rj,dj,Mj,aux 1|wjCj,Tj,Tmax ......... 65 

3.7. Solution Approach .......................................................................................... 67 

3.7.1. Phase I and Phase II IP Models ......................................................... 68 

3.7.2. Phase III MOO Model with User Interaction .................................... 69 

 



 

  vii 

CHAPTER                                                Page 

4 PHASE I RESOURCE CONSTRAINED PARALLEL MACHINE SCHEDULING  

MODEL ..................................................................................................................... 71 

4.1. Phase I Mathematical Model Formulation ..................................................... 71 

4.2. Experimental Design ....................................................................................... 74 

4.3. Phase I Experimental Results and Conclusions ............................................. 76 

4.4. Phase I Conclusions ........................................................................................ 78 

4.5. Phase I Summary ............................................................................................ 79 

5 PHASE II RESOURCE CONSTRAINED PARALLEL MACHINE SCHEDULING 

WITH SETUPS MODEL ......................................................................................... 81 

5.1. Phase II Mathematical Model Formulation.................................................... 83 

5.2. Phase II Heuristic Pseudocode ....................................................................... 86 

5.3. IP Model Experimental Results ...................................................................... 93 

5.4. Heuristic Experimental Results .................................................................... 100 

5.5. Hybrid Model Experimental Results (IP/Heuristic) .................................... 102 

5.6. Best Integer Solution Comparison ............................................................... 104 

5.7. Chapter 5 Conclusions .................................................................................. 109 

5.8. Chapter 5 Summary ...................................................................................... 110 

6 MOO RESOURCE CONSTRAINED PARALLEL MACHINE SCHEDULING 

MODEL ................................................................................................................... 114 

6.1. MOO Resource Constrained PMS Mathematical  

       Pm|sjk,rj,dj,Mj,aux 1|lex(α.wjCj,Tj,Tmax) Model ............................................. 119 



 

  viii 

CHAPTER                                                Page 

6.2. Case Study Hierarchical Model and Process Flow......................................124 

6.3. Phase III Experimental Results for RED|J10|M2|R4|1.0 ............................. 128 

6.4. Experimental Resuts for RED|J50|M5|R12|1.0 with User Interaction ........ 130 

6.5. Chapter 6 Conclusions .................................................................................. 142 

6.6. Chapter 6 Summary ...................................................................................... 142 

7 CONCLUSIONS AND FUTURE RESEARCH ................................................... 145 

7.1. Dissertation Summary................................................................................... 145 

7.2. Conclusions and Contributions ..................................................................... 146 

7.3. Future Research............................................................................................. 151 

7.3.1. Methods and Algorithms ................................................................. 151 

7.3.2. Overall Framework Future Research .............................................. 152 

REFERENCES................................................................................................................154 

  



 

  ix 

LIST OF TABLES 

Table              Page 

  1-1: Key Differences Between Academic and Industry Needs ...................................... 11 

  2-1: Dispatching Rule Summary ..................................................................................... 18 

  2-2: Approaches to Wafer Fabrication Scheduling (Min and Yih, 2003)....................... 20 

  2-3: Characteristics of Scheduling Problems (Mönch et al., 2011) ................................ 21 

  2-4: MIP Formulations Single Machine Scheduling (Nogueira et al, 2014) .................. 32 

  2-5: Non-family Scheduling with Setup ......................................................................... 35 

  2-6: Family Scheduling Summary with and without Setup ............................................ 36 

  2-7: A-DMA Algorithm (Masin and Bukchin (2008)) ................................................... 44 

  4-1: Model Parameter Summary for Model with Objective Function Cj ....................... 75 

  4-2: Complexity Design Parameters ............................................................................... 75 

  4-3: Phase I IP Model Results ......................................................................................... 77 

  5-1: Model Results for Optimization Model Pm|sjk,rj,aux|Cj  .......................................... 95 

  5-2: IP Model Gap % Summary...................................................................................... 97 

  5-3: J50|M5|R12|0.66 Results for 30 to 120 min. Run Time .......................................... 98 

  5-4: J50|M5|R12|0.66 results Cplex heuristic disabled 30 to 120 min. run time ............ 99 

  5-5: Heuristic Results .................................................................................................... 101 

  5-6: Hybrid IP/Heuristic Results for Pm|sjk,rj,aux|Cj ..................................................... 103 



 

  x 

Table                                                                                                                              Page 

  5-7: Hybrid Model Gap% Summary ............................................................................. 104 

  5-8: Best Solution Small Scenarios (10/25 Jobs) .......................................................... 105 

  5-9: Best Solution Medium Scenarios (50/75 Jobs) ..................................................... 107 

  5-10: Best Solution Large Scenario (100 Jobs) ............................................................ 108 

  6-1: A-DMA Algorithm (Masin and Bukchin (2008)) ................................................. 124 

  6-2: MOO-MDA Efficient Frontier for RED|J10|M2|R4|1.0........................................ 128 

  6-3: Partial Efficient Frontier for RED|J50|M5|R12|1.0 ............................................... 132 

  6-4: Run Time for RED|J50|M5|R12|1.0 ...................................................................... 135 

  6-5: Set of Job-Machine-Resource Pre-assigned at Time t ........................................... 138 

  6-6: Euclidian Distance Between New Point and Efficient Frontier ............................ 141 

 



 

  xi 

LIST OF FIGURES 

Figure               Page 

  1-1: Wafer Fabrication Flow (Brown et al., 2010) ........................................................... 2 

  1-2: Generic Manufacturing System with Parallel Machines and Auxiliary Resources .. 9 

  2-1: Scheduling methods (Zhang et al., 2017) ................................................................ 23 

  2-2: Convex and Non-Convex Space .............................................................................. 39 

  2-3: MOO Taxonomy Summary (Chiandussi et al, 2012) .............................................. 41 

  3-1: Production Planning and Control Hierarchy (Hopp and Spearman., 2011) ............ 56 

  3-2: Flexible and Adaptive Manufacturing Scheduling System ..................................... 61 

  3-3: Research Phase Diagram ......................................................................................... 63 

  5-1: Heuristic Process Flow ............................................................................................ 89 

  5-2: Input Sets ................................................................................................................. 90 

  5-3: Heuristic Pseudocode .............................................................................................. 92 

  5-4: Heuristic Sets for Scheduled and Unscheduled jobs ............................................... 93 

  5-5: IP Model Constraints vs Gap (%) Correlation ........................................................ 96 

  6-1: DMA MOO Flow Diagram ................................................................................... 126 

  6-2: Example of Gantt for Job-Machine-Resource Schedule ....................................... 127 

  6-3: 3-D Plot for J10 Efficient Frontier ........................................................................ 129 

  6-4: Solution Time for RED|J10|M2|R4|1.0 ................................................................. 130 



 

  xii 

Figure               Page 

  6-5: 3-D Plot for J50 Efficient Frontier ........................................................................ 133 

  6-6: Solution Time for RED|J50|M5|R12|1.0 ............................................................... 134 

  6-7: 183-hr Partial Efficient Frontier vs. 4-hr Partial Efficient Frontier....................... 136 

  6-8: Schedule for Efficient Point Five .......................................................................... 137 

  6-9: Decision Maker Edited Schedule .......................................................................... 139 

  6-10: Efficient Frontier with New Point (edited solution) ............................................ 140 



 

  1 

1.  CHAPTER 1 INTRODUCTION 

1.1. Introduction 

When manufacturing capacity becomes the lead constraint in revenue and profit, 

efficient operations of the production systems can make the difference between a thriving 

and a failing enterprise. This is particularly true when expanding capacity is limited by 

the new equipment lead time or the high cost of acquiring additional manufacturing 

resources.  Thus, increasing utilization of existing capacity is extremely important, not 

only for the manufacturing industry, but also for the economies of the communities in 

which they operate. One of the industries that can benefit significantly from efficient and 

effective manufacturing operations is the electronics industry, specifically the 

semiconductor industry. 

According to Hunter et al. (2002) semiconductor manufacturing fabrication lines 

are considered some of the most complex manufacturing processes in the world. This is 

due to multiple factors such as highly re-entrant and long process flows, rework, and 

variable yields.  The fabrication of 200 mm and 300 mm wafers require over 1,000 

processing, inspection and test steps (Brown et al., 2010).  Figure 1-1 depicts a generic, 

highly re-entrant process flow consisting of pad deposition, photoresist, lithography, etch, 

and strip. As shown, lots can be sent to inspection and/or measurement from any of the 

process steps previously mentioned. After the strip process step, lots are sent to implant 

and/or diffusion, insulator deposition, polish, and metal deposition. This process repeats 

multiple times until lots are sent to bond, assembly, and packaging. 
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  Figure 1-1: Wafer Fabrication Flow (Brown et al., 2010) 

 Brown et al. (2010) claim that the time to complete a lot is typically several 

months; however, as manufacturers are able to shrink the size of transistors and pack 

more chips on a single wafer, new technologies face greater manufacturing challenges, 

resulting in even longer throughput times. 

In this dissertation, we advocate for the use of deterministic scheduling theory for 

the design and development of more efficient scheduling strategies as alternatives to 

current methods to increase the utilization and the capacity of the manufacturing system. 

"Sequencing and scheduling are forms of decision-making that play crucial roles in 

manufacturing and service industries. In the current competitive environment effective 

sequencing and scheduling has become a necessity for survival in the market-place” 

(Pinedo, 2016).  Scheduling optimization is an approach widely used in manufacturing to 

improve the performance of a system by optimizing multiple competing objectives such 

as minimizing machine idle time, setups, job completion times, job tardiness and 

maximizing throughput.  According to Hopp and Spearman (2011) increasing throughput 

of the factory constraint will increase the overall factory throughput to that given by the 

rate of the new constraint.  It is worth highlighting that these complex manufacturing 
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systems not only arise in the electronics and semiconductor industry, but also in 

telecommunications and plastic injection molding industries, among others. 

Photolithography is an example of these complex systems in the semiconductor industry. 

This dissertation/research also aims to reduce the chasm between theoretical and 

practical research for manufacturing scheduling systems by proposing a heuristic that 

interacts with the Integer Programming (IP) model to ultimately find better solutions. 

Before we establish the statement of the problem, it is necessary to introduce some 

concepts and the notations to be used throughout this manuscript. 

1.2. Definition of Terms 

There are multiple scheduling scenarios in the open literature including, but not 

limited, single machine, parallel machines, flow shop, flexible flow shop, open shop, and 

job shop.  This research draws concepts from job shop and parallel machines scheduling 

since these environments are often found in the real world. Job shop scheduling can be 

framed as an operations research optimization problem consisting of a finite set of jobs 

𝑗 ∈ 𝐽 that must be processed on a finite set of parallel machines 𝑚 ∈ 𝑀 requiring 

auxiliary resources r ∈ 𝑅 in such a way that the overall resulting production plan is 

optimal, or at least efficient, with respect to one or more measures of performance.  An 

auxiliary resource is an additional scarce resource needed to process a job. A formal 

definition is provided below. According to Çaliş and Bulkan (2015) “The job shop 

scheduling problem is one of the most important and complicated problems which has 

been known to be NP-hard.  That is, the high complexity of a given problem makes it 

extremely difficult to find the optimal solution within reasonable time in most cases”. 
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Unlu and Mason (2010) stated that parallel machine scheduling is also NP hard. It is 

noteworthy that a considerable amount of literature has been published in the field of 

scheduling during the past 50 years. These studies cover a wide spectrum of problems 

ranging from deterministic to stochastic optimization, single vs. multiple machines, 

single vs. multiple resources, single vs. multiple objectives, job vs. family, and setup vs. 

no setup times.  According to Allahverdi (2015) "tens of thousands of papers, addressing 

different scheduling problems, have appeared in the literature since the first systematic 

approach to scheduling problems was undertaken in mid-1950s".  However, a limited 

number of publications in the scheduling field have focused on practical models using 

time-indexed, mix integer linear programing (MILP) and Integer Programing (IP) 

methods for parallel machines with auxiliary resources and multiple competing objectives 

including sequence-dependent setup times. 

Despite the fact that the majority of scheduling researchers perceive time-indexed 

IP/MILP formulations unattractive for real-time applications, Avella et al. (2017) were 

able to challenge this claim by developing a time-indexed IP approach capable of solving 

to optimality real-life instances of airplane runway scheduling. On a similar note, the 

author of this dissertation conducted a comparison of six single machine formulations and 

the time-indexed IP outperformed five other single machine formulations for problem 

instances between 10 and 65 jobs.  It is also important to highlight that sequence-

dependent setups have an adverse and significant impact on the efficiency of the 

manufacturing systems since machines must pause processing while waiting for an 

auxiliary resource to be made available. Thus, as previously stated, scheduling theory is 
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proposed in this study to aid manufacturers become more efficient through the 

application of scheduling algorithms and best practices. 

According to Pinedo (2016) the following framework and notations are able to 

succinctly capture the majority of the deterministic scheduling problems that arise in 

general manufacturing environments: 

• Resource scheduling can be defined as the assignment of jobs to limited 

processing resources (i.e. machines, tools, auxiliary resources, etc.) in order to 

find the schedule or sequence that optimizes an objective function. 

• Auxiliary resource is defined in this dissertation as an additional scarce resource 

that can be shared across multiple machines and it is required to be loaded at one 

machine in order to process a job. If the auxiliary resource is available, but the 

machine is not, then the job cannot be processed. Vice-versa, if the machine is 

available, but the auxiliary resource is not available, then the job cannot be 

processed either. 

• Setup is defined as the idle time a machine incurs when two jobs are not 

compatible with each other; hence, an auxiliary resource swap is required. 

• Process time (pj) is the time to process job j on any identical parallel machine. 

• Release date (rj) is the time when job j arrives at the system also known as ready 

time. 

• Due date (dj) is the committed shipping date for job j or completion date. 

• Weight (wj) is a priority factor denoting the importance of the job j relative to 

other jobs in the system. 



 

  6 

• Operation (oj) is the operation attribute for job j that denotes job's location.  

Most scheduling problems in the open literature can be described as a triple α | β | γ 

where α field describes the machine environment, β provides details of processing 

characteristic and the γ field describes the objective function(s) to be minimized. 

• Identical machines in parallel (pm) denotes a workstation with m identical 

machines in parallel that can run process job j at operation o. if a job is restricted 

to run on certain machines, the subscript Mj is used in field β to denote the 

machines that can process job j.  

• Sequence-dependent setup times (sjk) represent the set up time between job j 

and k. s0k denotes set up time for job k if it is the first in the sequence and sj0 is the 

clean-up time after job j if it is the last job in the sequence. 

• Preemptions (prmp) means job j can be interrupted at any time. 

• Completion time (Cj ) is the time when job j exits the system. 

• Makespan (Cmax) is the equivalent to the completion time of the last job j 

processed. 

• Lateness (Lj) is the amount of time by which the completion time of job j exceeds 

its due date (dj). If Lateness is negative the job j completed early-> Lj = Cj - dj 

• Tardiness (Tj) is the positive lateness of a job where Ti= (Cj - dj, 0) = max (Lj, 0). 

• Unit penalty (Uj) is one if Cj > dj; 0 otherwise. 

• Flowtime (Fj) is the amount of time job j spends in the system.  

Some of the common objective functions that appear in the scheduling literature include:  
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• Total weighted completion time (∑ 𝒘𝒋𝑪𝒋) is the sum of the weighted completion 

times of n jobs also known as flow time. 

• Total weighted tardiness (∑ 𝒘𝒋𝑻𝒋) is the sum of weighted tardiness of n jobs. 

• Maximum lateness (max L) is the worst violation of the due dates 

• Tardy jobs (∑ 𝑼𝒋) and weighted number of tardy jobs (∑ 𝒘𝒋𝑼𝒋) are mainly 

academic objective functions (Pinedo, 2016). 

Multi-resource scheduling can be defined as the assignment of jobs to a machine and 

auxiliary resources simultaneously in order to find the schedule that optimizes the 

objective function or functions.  For instance, Bitar et al. (2016) investigated a memetic 

algorithm for unrelated parallel machine scheduling that considered auxiliary resources 

(i.e. lenses) with two optimization criteria tested separately, minimize weighted flow time 

and maximize number of products that are processed denoted as 

𝑅𝑚|𝑎𝑢𝑥|𝑚𝑖𝑛 ∑ 𝑊𝑗𝐹𝑗 , ∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐶𝑜𝑢𝑛𝑡. 

Ham (2018) investigated a parallel machine scheduling problem with auxiliary 

resources in semiconductor manufacturing with a single objective to minimize the 

maximum completion time 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 | ∑ 𝐶𝑗.  

The practice of considering two or more optimization objectives simultaneously is 

known as Multi-objective optimization (MOO). Addressing two or more objectives is not 

commonly used in optimization models that have been developed for job scheduling. 

However, the use of more than one objective is a common practice in the semiconductor 

industry (Ham, 2018). Multi-objective optimization (MOO) is defined as the assignment 

of jobs to resources with the goal to simultaneously optimize k objective functions 
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defined as: [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)] and forming a vector function F(x): defined as: 

[𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]T. In most cases, the objectives are usually in conflict with each 

other and a solution must be found in which the values of all the objective functions are 

acceptable to the user (Chiandussi et al., 2012). Next, we present the statement of the 

problem. 

1.3. Statement of the Problem 

The focus of this dissertation is to develop efficient model-based procedures for 

the scheduling of identical parallel machines with shared, constrained, auxiliary resources 

with sequence-dependent setups, machine eligibility restrictions, job release and due 

dates with single and multiple objectives.  The need to effectively schedule finite 

resources exist across multiple industries including semiconductor fabrication and 

assembly, mold injection, and printed circuit board (PBC) assembly, amongst others. 

Thus, improvements in modeling to get efficient scheduling solutions will have a large 

impact on those manufacturing systems subject to capacity constraints, especially if the 

system being optimized is the overall factory constraint. As previously stated, increasing 

throughput at the factory lead-constraint will increase the overall factory throughput 

dictated by the new constraint. 

We aim to develop a single objective time-indexed IP model and a MOO time-

indexed IP model that resemble practical manufacturing systems. We also aim to develop 

a heuristic capable of solving large problems to prime the time-indexed IP models by 

providing feasible initial solution. The proposed models can be defined as 

𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 and 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥  
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Figure 1-2 depicts the environment we plan to study where jobs must be processed 

by one machine and one auxiliary resource simultaneously. Also, the auxiliary resource 

cannot be assigned to more than one machine at the same time.  

 
 Figure 1-2: Generic Manufacturing System with Parallel Machines and Auxiliary 

Resources 

This environment has a set of jobs J either ready to be processed ("ready jobs") or 

incoming to the system.  These jobs can be processed in any of the unrestricted M parallel 

machines, provided that they are fitted with an instance r of the set of scarce auxiliary 

resources R, which are shared with other machines.  Note the dotted line between jobs 

and machine in Figure 1-2 denotes a job-machine restriction. Incoming jobs require a 

release date to prevent assignment before they are available. Due dates are also 

incorporated to meet customer on-time delivery commitments. Once a job is assigned to 

machine-auxiliary resource pair, that job must complete processing. That is, preemption 

is not allowed. Once a job has been assigned to a combination of resources, that job may 

need a setup time. A setup time is incurred when job j is not compatible with the previous 

job and a different auxiliary resource is required to be added to the machine to run the 

job. Thus, the machine must temporarily idle for the auxiliary resource setup.  If jobs are 
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compatible with each other they belong to the same family since no setup is required. In 

practice, a family consists of a combination of specific product and an operation; 

however, for this study a family is created by randomly assigning jobs to family sets 

forcing each set to have a similar number of jobs.  If a resource is transferred from one 

machine to another one, an additional setup time (travel time between machines) is 

required.  Inefficient resource assignments may cause a machine to be temporarily idle 

until the proper auxiliary resource is installed. Typically, auxiliary resources are finite 

and expensive that need to be shared among different machines, thus if a resource is 

being used in one machine, another one may be idle waiting for this resource. Thus, 

generating efficient schedules not only optimizes resource assignment and utilization, but 

also overall factory throughput resulting in lower cycle times. Since multiple job-machine 

scheduling studies have been published across multiple industries we plan to keep our 

terminology and assumptions aligned to the open literature (Pinedo, 2016; Ham, 2018; 

Edis, 2009). 

1.4. Dissertation Goals 

One of the goals of this research is to find efficient solutions for the manufacturing 

system previously described by applying time-indexed IP model in conjunction with 

heuristics. Our goal is to develop a framework that allows collaboration among exact 

methods and heuristics to provide more tools and options to practitioners looking to 

implement more sophisticated models to solve real-world practical problems.  Another 

goal is to develop multi-objective (MOO) models to enable the decision maker to interact 

with the model in order to test different schedules and hypothesis via efficient frontier. 



 

  11 

Not only should the model allow user input restrictions, but also help the decision maker 

trust the optimization model and its parameters. It needs to be noted that our goal is to use 

the MOO model for strategic purposes and not real-time scheduling. 

It is important to highlight that there is a paucity of publications in the scheduling 

field focusing to bridge the gap between theory and practice.  Pinedo (2016) states that it 

is not clear how stylized and elegant mathematical models studied by academic 

researchers can be applied to real-world scheduling problems since they tend to differ 

significantly.  Table 1-1 presents key differences between academic research and industry 

needs as listed by Pinedo (2016). These differences are particularly related to objective 

functions, job-machine availability, job priorities, penalty functions and dynamic 

environments. 

          Table 1-1: Key Differences Between Academic and Industry Needs 

Key differences Theoretical scheduling  

assumptions 

Real-world scheduling  

needs 

Objective 

function 

Deal with single objective 

function 

Require two or more objectives 

   

Jobs in  

the system 

All jobs are ready to be 

scheduled 

Jobs continue to arrive, 

dynamic environment    

Machine 

assumptions 

Simplified machine 

restrictions 

Real processing restrictions 

may require more involved 

constraints    

Reactive  

scheduling 

Do not emphasize in 

resequencing after 

random changes occur 

Require reactive schedules to 

accommodate minor/major 

random event changes    

Job priorities 

(weights) 

Same weight is applied 

across all time periods 

Weights typically fluctuate 

over time    

Machine  

availability 

Assume machine is 

available 100% of the 

time 

Machine availability fluctuates 

due to unscheduled 

maintenance 

 



 

  12 

The topic related to incorporating human expertise to scheduling has received mixed 

reviews and will be covered in detail in the literature review since there is controversy on 

benefits of incorporating expert knowledge into the solution. Some researchers state that 

complex scheduling systems are beyond the cognitive capability of human beings 

(Steffen, 1986) and (Fox, 1990). However, other authors state there are potential benefits 

(Reinschmidt et al., 1990) and (Framinan and Ruiz, 2010). We suggest and propose that 

human experts and decision makers should be able to provide feedback to scheduling 

systems. 

We believe there is merit in studying semiconductor manufacturing systems given the 

recommendations previously stated by Allahverdi (2015) and Ham (2018).  While 

multiple publications have successfully applied IP and MILP models with heuristics to 

solve parallel machine scheduling problems, to our knowledge no single study has 

addressed this problem by applying the MOO MDA resource constrained parallel 

machining scheduling model with and without setups using the time-indexed IP model.  

Our proposed research should contribute to multiple manufacturing industries to address 

tactical and strategic practical applications.  Our problem should be of great relevance, 

not only in the semiconductor industry, but also in the molding injection industry 

amongst other. 

1.5. Benefits of Proposed Research 

According to Brown et al. (2010) advanced queueing models and optimization 

techniques can become an integral part of predicting factory bottlenecks, prioritizing 

continuous-improvement efforts, planning capital equipment investments, and managing 
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factory lead times. The return on the investment reported by optimizing IBM’s fab was 

over $30 million in capital avoidance and over $700,000 per year in lower operating 

expenses in addition to lead times and variability reduction.  We estimate today’s 

complex manufacturing facilities could realize similar benefits or greater as each 

technology becomes more complex driving inefficiencies to a higher degree.  

Commercial software vendor Applied Materials published “With Scheduling, customers 

can defer or eliminate investment in additional lithography equipment by increasing tool 

utilization. Customer results reported litho equipment utilization > 1% and throughput 

improvement of 2.1%” (Applied Materials, 2012). 

Another publication claims the following “To demonstrate the effectiveness of the 

scheduler’s objective function capabilities, we used samples of production data to 

generate a production schedule; the same data was compared with pure heuristics-only 

real time dispatching. In this test, the software significantly improved cycle time for the 

highest priority lots by ~20%, then improved the second highest priority lots by <5%. 

The cycle time for lower priority lots remained unchanged. This example verified that the 

objective function capability in the scheduling component works and helps customers 

meet their KPIs, in this case, improving cycle time” (Marteney, 2011). We believe a 

practical scheduling framework combined with effective IP models and heuristics has 

potential to outperform existing rule-based heuristics in many manufacturing industries.  

Avella et al. (2017) stated that most of the scheduling research using time-indexed 

IP/MILP report that these models are unattractive for real-time applications due to 

computation times likely to grow too large. In their paper, the authors reverse this claim 
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by developing a time-indexed IP/MILP approach capable of solving to optimality real-

life instances of airplane runway scheduling. The following section presents the 

organization of this manuscript. 

1.6. Organization of the Dissertation 

This dissertation is divided in three phases. Phase I and II aim to generate efficient 

schedules for small, medium and large problem instances under one hour.  Phase III aims 

to generate a MOO framework and strategic models—Pareto efficient frontier— to 

enable decision maker to interact with the schedule/model.  Feedback is given to the 

decision maker on the goodness of the edited schedule in the form of distance metric to 

the closest optimal point.  The remaining part of this dissertation proceeds as follows. 

Chapter 2 presents an overview of the existing literature related to semiconductor 

scheduling, optimization models and practical production scheduling. This chapter also 

discusses the limitations and gaps of the existing literature. 

Chapter 3 presents the methodology, research objectives, a heuristic-optimization 

framework and assumptions for the problem instances data input. 

In chapter 4, we present the phase I model with the objective to minimize total 

completion time for the resource constrained parallel machine scheduling model with 

release dates, job-machine eligibility restrictions 𝑃𝑚|𝑟𝑗, 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 for five problem 

instance sizes, three complexity levels and three machine eligibility restriction levels  

In chapter 5, we present the phase II mathematical models consisting on phase I 

formulation with addition of sequence-dependent setups and resource travel time between 

machines 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗  for five problem instance sizes, three complexity 
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levels and three machine eligibility restriction levels. A heuristic that primes the 

optimization IP model is also presented in this chapter. 

In chapter 6, we present phase III mathematical formulation consisting of phase I and 

II models combined with the DMA lexicographic MOO model for parallel machine 

scheduling denoted as 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼, ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥). 

In chapter 7 and 8 we present the results for the three phases, conclusions and future 

research respectively. 
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2. CHAPTER 2 LITERATURE REVIEW 

Many comprehensive surveys have been published since 1979 up to a more recent 

comprehensive survey by Allahverdi (2015) which listed hundreds of papers followed by 

the suggestion that there is a need for more research in scheduling models that mimic 

real-world practical problems.  This chapter aims to summarize publications related 

model optimization, semiconductor scheduling and practical production scheduling. This 

chapter is subdivided in three subsections as depicted in Figure 2-1.  Our problem (“OP”) 

lies in the intersection among semiconductor scheduling presented in section 2.1; 

optimization modeling presented in section 2.2; and practical production scheduling 

presented in section 2.3. Finally, section 2.4 presents literature review conclusions and 

our contributions. 

 

 

Figure 2-1: Literature Review Sections 

  

Practical 
Production 
Scheduling

Semiconductor 
Scheduling

Optimization

Models

OP 
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2.1. Semiconductor Scheduling 

Publications related to semiconductor scheduling and real-time dispatching rules are 

presented in this section. Resource scheduling in semiconductor industry is considered a 

complex task. In fact, semiconductor manufacturing fabrication lines are considered some 

of the most complex manufacturing processes in the world, mainly due to long and highly 

re-entrant process flows, rework, and variable yields (Hunter et al., 2002). This section 

provides an overview on the scheduling publications in semiconductor manufacturing 

with emphasis in photolithography machine scheduling. 

2.1.1. Real-time Dispatching Rules 

For this study, we define dispatching rules as follows: "A dispatching rule is used to 

select the next job to be processed from a set of jobs awaiting service. The dispatching 

rule selected can be very simple or extremely complex” (Blackstone et al., 1982).  Simple 

rules range from selecting jobs randomly or oldest job to more complex rules selecting 

jobs based on customer's due date if the inventory has dropped below a pre-specified 

threshold. One of the comprehensive studies on dispatching rules across multiple job 

shop scenarios conducted by Blackstone et al. (1982) concluded that there is no one 

single rule that is superior to the rest under all circumstances. The study analyzed a total 

of 34 rules; however, the authors only provided a summary for the top eight rules which 

are shown in Table 2-1. 
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Table 2-1: Dispatching Rule Summary 
 

Dispatching rule Description 

Shortest Imminent  

Operation (SI) 

Selects job with shortest processing time 

Truncated SI Fj={time until due date-remaining processing time- 

Parameter} for job j 

  if Fj>0 select job by SI. if Fj<=0 select job smallest Fj 

Earliest due date job selected based on earliest due date 

Least slack (dynamic) Time since job entered operation (smallest value) 

Least slack-per-operation 

(dynamic) 

Time since it entered operation (smallest value) 

Critical ratio Days remaining until due date/ Lead time remaining 

FIFO (as a 'control' rule) Job selected as first-in-first-out basis 

COVERT  Delay cost over time remaining 

 

Blackstone et al. (1982) used flowtime, lateness, and tardiness as the key 

measurement criteria to study and compare dispatching rules performance.  The reader is 

referred to section 1.1 for definitions presented in table above. Blackstone et al. (1982) 

concluded that shortest imminent operation (SI) rule was generally the best rule when the 

shop floor had either tight or loose due dates, or the shop did not set due dates. If due 

dates were present the truncated SI metric performed well since it allows the decision 

maker to enter the parameters to balance SI and Fj. 

Similarly, Min and Yih (2003) conducted a study on wafer fabrication scheduling 

approaches and proposed a wafer fabrication scheduler aiming to select real-time 

dispatching decisions based on user-defined objectives.  The proposed strategy was to 

select rules initiated by both machines and vehicles transporting lots in the factory.  A 

simulation model was used to generate the expected relationship between the selected 

decision variables, dispatching rules, current system status, and performance metrics of a 
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semiconductor manufacturing fab. The decision variables, dispatching rules and 

objectives applied in their study are listed below: 

• Decision variables: lot selected by critical machine, non-critical machine, stocker 

(buffer) rule, and vehicle in monorail rule.  

• Dispatch rules linked to each of the decision variables: First-In-First-out (FIFO), 

Shortest Remaining Processing Time (SRPT), Earliest Due Date (EDD), Critical 

Ratio (CR), Lowest Remaining Space in Stocker (LRSS) and In Bay First (IBF) 

among others.   

• Objectives to optimize were mean flow time, slack time and total remaining 

processing time.  

A brief summary of previous approaches to wafer fabrication scheduling was also 

presented by Min and Yih (2003) and it is depicted in Table 2-2. 
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Table 2-2: Approaches to Wafer Fabrication Scheduling (Min and Yih, 2003) 
Author Approaches to Wafer 

Fabrication Scheduling 

Summary 

Li et al. 

(1996) 

Minimum inventory variability 

schedule (MIVS) 

Reduced variability via simulation model using WIP 

level as indicator for variability between output and 

processing rate of station downstream 

Lu and 

Kumar 

(1991)  

 Dispatching rules: buffer-

based and due-date based rules 

BFR: focuses on processing step to perform or buffer 

to serve. 

DDBR: Focus on earliest due date and least Slack. 

Simulation results show that BBR policy performs well 

reducing mean cycle time. Least slack policy gives 

good results for minimizing variance 

Kim et al. 

(1998a) 

minimize mean tardiness using 

dispatching rules adapted for 

photo and non-photo 

workstations 

 Simulation results showed that dispatching rules in 

photo workstations have a greater effect on 

performance than dispatching rules in non-photo 

workstations 

Baek et 

al. (1998) 

Spatial Adaptation Procedure 

(SAP) 

Simulation and Taguchi experimental design applied to 

select the most appropriate dispatching rule. Results 

showed that the SAP method reduced mean cycle time 

when compared to a single decision rule policy 

Hung and 

Chen 

(1998) 

simulation-based dispatching 

rule to reduce a cycle time in a 

fab 

Aim to predict waiting times and flow times using 2-

phase simulation (parent and children simulations). 

The results outperformed other static dispatching rules 

that use only queue information at the time of dispatch 

Nakata et 

al. (1999) 

Justice/Moral method 

dynamically detects a 

bottleneck machine and feeds 

work to the machine at an 

appropriate time 

Bottleneck synchronized with all the machines in the 

line controlling progress speed of all lots. Simulation 

results indicated that cycle time can be reduced by ~ 

13%, throughput increase ~10% vs FIFO rule 

Lin et al. 

(2001) 

Vehicle dispatching policies 

via simulation 

Simulation results show dispatching policy has a 

significant impact on average transportation time, 

waiting time, throughput and vehicle utilization. 

Combining shortest distance and nearest vehicle and 

first encounter first-served rule outperformed the other 

rules 

 

Min and Yih (2003) suggest that most studies have focused on algorithm 

development for single objective (i.e. cycle time reduction and throughput increase) and 

single dispatching decision variables. However, semiconductor scheduling is complex; 

hence, rule selections must consider multiple objectives and multiple decision variables 

in order to utilize resources efficiently. The authors also concluded that their proposed 

system (scheduler) was able to select effective dispatching strategies given the 
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complexity of semiconductor wafer fabrication systems. The authors also concluded that 

no single dispatching strategy consistently dominated the others in all situations. 

Mönch et al. (2011) published a comprehensive survey of semiconductor 

manufacturing problems, solution techniques, and challenges in semiconductor 

manufacturing operations. The authors identified typical scheduling problems 

encountered in semiconductor manufacturing systems. Not only were batch scheduling 

problems presented but also parallel machine scheduling problems and scheduling 

problems with auxiliary resources which is the focus of this study. The key metrics used 

in this survey are: (a) Cycle time, (b) Throughput, and (c) On-time delivery performance 

measures. Table 2-3 presents the characteristics of some of the scheduling problems 

found in wafer fabrication lines. 

Table 2-3: Characteristics of Scheduling Problems (Mönch et al., 2011) 
Work 

area 

Parallel 

machines 

Dedication Cluster 

tools 

Bottleneck Batching Sequence- 

dependent 

setups 

Auxiliary 

resources 

Oxidation 

Y Y N N 

p-batching  

with 

incompatible 

 families 

N N 
Deposition 

(CVD/PVD) 

Diffusion 

Lithography Y Y Y Y 

s-batching  

with  

job  

availability 

Y reticles 

Etch Y Y Y Y N N N 

Ion 

Implantation 
Y Y N Y N Y N 

Planarization Y Y N N N N N 

 

 Mönch et al. (2011) cited the work of Park et al., (1999) who conducted a 

simulation analysis to study reticle management issues as a result of different storage and 

inspection policies, and the relationship between cycle time and product mix. They 

concluded that jobs wait due to reticle unavailability and/or machine availability. 
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 Mönch et al. (2011) also cited the work of Akcali and Uzsoy (2000), the 

photolithography work center scheduling problem assuming  that an operation requiring a 

reticle type can be assigned to at most r machines, where r is the existing number of 

reticles of the corresponding type that are available in their simulation-based analysis.  

Cakici and Mason (2007) studied the scheduling heuristics based on dispatching rules for 

the problem 𝑃𝑚|𝑟𝑗 , 𝑎𝑢𝑥| ∑ 𝑤𝑗𝐶𝑗 motivated by stepper scheduling problems (as cited 

Mönch et al. (2011)).  

A slightly different approach to job scheduling research is proposed by Zhang et 

al. (2017) based on Industry 4.0. This concept started from a German government project 

in the high-tech industry and it is gaining momentum with researchers. The key idea 

behind Industry 4.0 is to transition from centralized scheduling to more intelligent 

distributed manufacturing systems supported by mass customization, Cyber-Physics 

Systems, Digital Twin, and SMAC (Social, Mobile, Analytics, Cloud). The authors 

presented over 120 papers written as early as 1954 (Johnson’s Optimal two and three 

stage production schedules with setup times included) to the most recent algorithms 

related to metaheuristic methods such as ant colony and particle swarm optimization 

depicted in Figure 2-1.  
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Figure 2-1: Scheduling methods (Zhang et al., 2017) 

One of the conclusions reached by the authors is that manufacturers must rely on 

technology to enable smart objects or entities interact with each other to optimally 

allocate resources based on static and dynamic scheduling. Zhang et al. (2017) propose 

that researchers should focus more on Multi-resource Flexible Job Shop (MrFJSP) and 

Multi-plants Flexible Job Shop MpFJSP algorithms to prepare for industry 4.0.  The 

meta-heuristic methods shown in Figure 2-1 are gaining more momentum and Genetic 

Algorithms is one of the most frequently cited meta-heuristic methods in the open 

literature (Zhang et al., 2017).  Overall, the concept proposed include scheduling 

decentralization and autonomous decisions; flexibility and adaptability; integration and 

networking in environments with rising complexity. It is worth to highlight the authors 

are proposing more research on approximate methods instead of focusing on exact 

mathematical methods. This brief overview of publications in semiconductor dispatching 

and optimization models leads to a review of publications related to machine scheduling 
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with auxiliary resources in the photolithography functional area which is considered one 

of the most complex areas in wafer fabrication lines.  

2.1.2. Photolithography Machine Scheduling 

Photolithography—the process step in semiconductor manufacturing in which 

circuit patterns are transferred onto the wafer thru a lens known as a reticle—is a 

complex manufacturing process due to its highly reentrant nature. It is necessary to 

subject the wafer under fabrication to several applications of the lithography machines to 

get the final version of the edged circuitry, leading to the reentrant nature of the 

semiconductor manufacturing process. Akcalt et al. (2001) claim that “Photolithography 

is usually the bottleneck process with the most expensive equipment in a wafer fab. 

Being one of the processes that is repeated the most during fabrication, any reduction in 

photolithography cycle time will reduce overall fab cycle-time”.  According to Yan et al. 

(2013) lithography is the major constraint in semiconductor manufacturing due to limited 

number of expensive resources and its process complexity. Consequently, it is imperative 

that semiconductor manufacturers seek more effective ways to manage photolithography 

and other factory constraints in order to improve key performance indicators.  

Ham and Cho (2015) proposed a two-phase approach to machine scheduling in 

lithography by integrating dispatching logic with MILP technique.  For phase 1, the 

following is considered: 

Sets 

• J set of jobs {j} 

• R set of auxiliary resources {r} 
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• M set of machines {m} 

Parameters:  

• Crm shipping (=setup) cost of auxiliary resource r to machine m,  

• Pj processing time of job j  

• Tprev previous iteration’s completion time for machine m.  

Decision variables: 

• Xjrm 1 if job j is assigned to machine m with auxiliary resource r.  

• Yrm 1 if auxiliary resource r is assigned to machine m 

• Tm completion time of machine m 

• Gm+ amount of production overachievement by machine m,  

• Gm- amount of production underachievement by machine m 

• CMAX completion time of the last completing machine  

• CMIN completion time of the first completing machine.  

The mathematical model for the two-phase approach has four terms in the objective 

function aiming to minimize overall cycle time while balancing the load among 

machines. The constraints can be summarized at a high level as follows:  

• minimize auxiliary resource setup cost 

• calculation of completion times 

• prevent model from over and under achieving the output targets. 

The phase 1 model utilizes a MILP method known as the transportation model where 

jobs, auxiliary resources and machines are assigned in order to minimize cycle time as 

previously described. Phase 2 is described as the lower-stage level that optimizes job 
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dispatch sequence for each machine by iterating between phase 1 model and a rule-based 

heuristic in phase 2.  It can be observed that this two-phase practical approach is quite 

simple, but practical and outperforms existing rule-based heuristics (Ham and Cho, 

2015).   

Three years later, Ham (2018) published the "Scheduling of Dual Resource 

Constrained Lithography Production" model. The dual resource constrained (DRC) 

problem arises when a finite number of machines and auxiliary resources are needed 

simultaneously to process a job. This problem becomes more challenging when auxiliary 

resource must be tracked, and a setup time is incurred as a function of auxiliary resource 

location. This means, an auxiliary resource swap within the machine may take two 

minutes when an auxiliary resource swap between machines may take 20-40 minutes. 

The concept is to apply a hybrid approach using MILP model and a constraint 

programing (CP) model to solve the complex DRC problem. The scheduling problem 

was decomposed into two sub-decisions: a) assign jobs to auxiliary resources and 

machines without sequence (MILP) and b) let the CP solver start a search in a set of 

decision variables referred as warm start, aiming to reduce search time. 

The overall results showed that CP alone outperformed the hybrid model initially 

proposed. The author stated that CP is a promising method to reach optimality for large-

scale problems that once were intractable. CP proved optimality for the small (20 jobs), 

medium (50 jobs), large (100 jobs) and industry-size model (200 jobs) within two 

minutes and a gap of <1% GAP against the best solution found. It is important to mention 

that Ham, (2018) concluded in his paper that his MILP model used was based on 
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positional and assignment variables which turned out to be inefficient for the given 

problem due to the large number of binary variables. His proposed MILP model took 

several hours to find an optimal solution even for a small problem instance (10 jobs).  As 

future research Ham (2018) proposed to explore time-indexed IP/MILP models as an 

alternative to his exact model. 

 Yan et al. (2011) proposed a MILP model with the objective to meet daily 

production targets while reducing the number of auxiliary resource setups. A branch-and-

cut method was used to solve the problem. The authors in this paper do not distinguish 

among different lots and focus on machine and auxiliary resource setups which differs 

from  Ham and Cho’s approach. Yan et al. (2012) modified their previous model to 

include load balancing and auxiliary resource expiration. The authors continue to use 

MILP models with capacity constraints and process requirements. The objective is to 

meet daily targets while keeping the load balanced to minimize auxiliary resource 

shortage and machine setups. In this paper, they solved the model using a two-phase 

approach as well, the higher phase reduced the problem range through constraint 

relaxation. For the lower phase they applied a similar concept to Ham and Cho, (2015) 

consisting on scheduling jobs and removing them from the unscheduled set.  

 Yan et al. (2013) proposed a photolithography machine scheduling approach 

based on convex hull analyses. The authors discovered that the convex hull of the 

problem was difficult to solve; hence, a two-phase approach was also utilized in order to 

solve the problem within reasonable time.  Phase 1 consisted of removing certain 

complicated constraints (i.e. auxiliary resource setups) from the original full-size problem 
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in order to solve it more efficiently. In other words, the first phase reduces the ranges of 

the decision variables.  Then, phase 2 efficiently solves the problem with the full set of 

constraints within a reduced decision space.  For instance, the problem was simplified by 

fixing the machine-auxiliary and resource-layers assignment and/or fixing the number of 

lots scheduled in each machine-auxiliary resource combination. "consider a fab with M 

lithography machines (m), R auxiliary resources (r), P product types (p), L layer types (l) 

and K discrete periods (k) within a day." (Yan et al., 2013). The objective function and 

ten constraints are described next. 

The objective function has four terms that are solved simultaneously in one step 

which may not lead to an optimal solution as opposed if these four terms were solved 

using an iterative multi-objective optimization (MOO) method. The four terms are 

summarized as follows:  

• Meet daily targets for product p and layer l.  

• The second term balances future loads, WL denotes the weight for future stacking 

layer load balancing. SSG and Sg
MS denote set of stacking groups and set of 

machines in stacking group g respectively. LDgm denotes load difference for a 

stacking group per machine.  

• The third term avoids simultaneous auxiliary resources expiring, Gpl denotes 

expected expiration interval for auxiliary resources p and l. R denotes the 

auxiliary resource lifetime before recalibration is needed and WRP is the reward-

penalty weight. 4) The fourth term aims to avoid excessive auxiliary resource 

setups, the term ymr denotes the beginning and completion points as binary 
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variable for a machine m and auxiliary resource r pair. The constraints for this 

method can be summarized at a high level as follows: 1) do not exceed resource 

capacity, 2) calculate processing time requirement and 3) maximize the number of 

lots scheduled for each setup and 4) minimize the number of machine-auxiliary 

resource setups. 

Up to this point dispatching rules and photolithography machine scheduling have 

been discussed. There seems to be a shortage of publications related to parallel machine 

scheduling with auxiliary resources on semiconductor manufacturing. Most researchers 

concluded that semiconductor wafer fabrication facilities are complex and IP/MILP 

methods alone cannot solve industry-size problems. The proposed methods rely on hybrid 

concepts including, IP, MILP, CP and heuristics. It is worth mentioning that none of the 

publications found has attempted to use the time-indexed IP or MILP method which is 

proposed in this dissertation. The next subsection presents an overview of single and 

multiple parallel machine scheduling. 

2.2. Optimization Models 

Deterministic sequencing and scheduling publications began to appear as early as the 

1950s, which included results by W.E. Smith, S.M. Johnson, and J.R. Jackson (Pinedo, 

2008). A comprehensive survey published in 1979, "Optimization and Approximation in 

Deterministic Sequencing and Scheduling", listed over 100 publications related to single 

and parallel machine, open shop, flow shop, and job shop scheduling  (Graham et al., 

1979).  Many other studies, including surveys and reviews, have been published in the 

field of deterministic scheduling. A recent comprehensive survey of scheduling problems 
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was published by Allahverdi (2015) listing hundreds of papers. However, due to the large 

amount of literature published in this field, it is impossible to discuss all the material in 

this review. Therefore, we must restrict our literature review to deterministic machine 

scheduling with single and multiple objectives. For further scheduling theory and 

algorithms not covered in this review, the reader is referred to sequencing and scheduling 

books published by (Baker, 1974; Brucker, 2007; Pinedo, 2016).  Section 2.2 presents an 

overview of key publications related to exact mathematical models and it is further 

subdivided as follows: section 2.2.1 presents single machine scheduling formulations. 

Section 2.2.2 presents parallel machine scheduling formulations, and section 2.2.3 multi-

objective optimization (MOO) concepts for machine scheduling. 

It is noteworthy that publications addressing machine scheduling first appeared in 

the 1950s due to increasing complexity in manufacturing environments. Exact scheduling 

methods have been studied for many years in order to find an optimal schedule for job 

and machine assignment over time. These scheduling models are optimized with respect 

to one or multiple objectives. These scheduling models have been extended to include 

setup times, job release dates, and due dates which complicates the problem further. It is 

worth mentioning that these problems turn into very challenging combinatorial problems 

that become computationally intractable as the number of jobs and machines increase (i.e. 

65+ jobs).  Scheduling finite resources with setup times and/or costs play a very 

important role in manufacturing in order to deliver the right products at the right time and 

cost (Allahverdi, 2015). 
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2.2.1. Single Machine Scheduling  

This subsection will focus on single machine scheduling formulations with the 

objective function of minimizing weighted completion time ∑ 𝑤𝑗𝐶𝑗𝑗  and weighted 

tardiness ∑ 𝑤𝑗𝑇𝑗𝑗  for a single machine with and without setup. Most of the research 

conducted on MILP scheduling models emanate from the following five key formulations 

(Nogueira et al., 2014) 

1. Manne formulation- completion time modeled as continuous variable (Manne, 

1960) 

2. Potts formulation - job sequence modeled by binary linear ordering variables 

(Potts, 1980) 

3. Wagner formulation - variables are a fixed number of slots per machine 

(Wagner, 1959) 

4. Sousa and Wolsey formulation- discrete time periods for horizon (Sousa and 

Wolsey, 1992) 

5. Pessoa et al. formulation- discrete time periods for horizon and precedence 

relationships (Pessoa et al., 2010) 

Table 2-4 summarizes previous publications related to the five formulations previously 

mentioned. Refer to (Nogueira et al., 2014) for a full list of the references summarized 

below. 
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Table 2-4: MIP Formulations Single Machine Scheduling (Nogueira et al, 2014) 

MIP 

Formulations 

Problem 

Parameters 
         ∑ j w jCj               ∑ j w jTj 

Manne  
no 

parameters  
Keha et al. (2009), Keha et al. (2009), 

 
 Queyranne and Wang (1991)  Khowala et al. (2005) 

 rj and no sij Keha et al. (2009)  Keha et al. (2009) 

  with sij Queyranne (1993) Queyranne (1993) 

Potts 
no 

parameters 
Blazewicz et al. (1991), Blazewicz et al. (1991), 

 

 

Chudak and Hochbaum 

(1999), 
Keha et al. (2009), 

 
 Keha et al. (2009)  Khowala et al. (2005), 

 rj and no sij Dyer and Wosley (1990),  Keha et al. (2009) 
 

 Keha et al. (2009),  

 
 Queyranne et al. (1994),  

 
 Unlu and Mason (2010)  

  with sij   Tanaka and Araki (2013) 

Wagner 
no 

parameters 
Keha et al. (2009), Keha et al. (2009), 

 
 Khowala et al. (2005),  

 

 

Lasserre and Queyranne 

(1992), 
 

 
 Queyranne et al. (1994)  

  rj and no sij Keha et al. (2009) Keha et al. (2009) 

Sousa and 

Wolsey 

no 

parameters 
Keha et al. (2009) Bigras et al. (2008a),(2008b) 

 
 Khowala et al. (2005) Keha et al. (2009), 

 
  Razaq et al. (1990), 

 
  Sadykov (2006), 

 

  

Sadykov and Vanderbeck 

(2011), 
 

  Sourd (2009a), 
 

  Sousa and Wolsey (1992), 
 

  Tanaka et al. (2009) 
 rj and no sij Avella et al. (2005) Keha et al. (2009), 
 

 Keha et al. (2009),  Queyranne et al. (1994) 

    Queyranne et al. (1994)   

Pessoa et al. 
no 

parameters 
 Pessoa et al. (2010) 
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Some of the key conclusions from the study conducted on the five formulations 

previously described include that the number of jobs and the length of the time horizon 

significantly impact the MILP model performance. The most used formulations are those 

created by Manne, Sousa and Wolsey. The authors stated that "All the MIP formulations 

developed in this article present a polynomial number of constraints and variables...it is 

worth noting that as the horizon (h) >>> n jobs, h ∝ n, “Pessoa et al.”, “Sousa and 

Wolsey” and “Sousa and Wolsey Improvement” formulations will grow faster than other 

formulations (Nogueira et al., 2014). Even though time-indexed MIP formulation has a 

negative reputation in some of the open literature, it is the focus on this study given 

preliminary experimentation results obtained in a project in which six single machine 

formulations were compared including discrete and continuous decision variables as well 

as ordering techniques. The results showed that time-indexed formulation for single 

machine with due-dates outperformed five other single machine formulations for problem 

instances of up to 65 jobs. 

2.2.2. Parallel Machine Scheduling 

This subsection deals with m parallel machines and requires that all the jobs are 

assigned to a single operation similarly to what was described last section.  This study 

focuses on identical parallel machine schedules (PMS) assuming all the machines may 

have the same speed for a given job.  A sequence-dependent setup time may be incurred 

for individual jobs or a family of jobs as proposed  by Allahverdi (2015).  This section 

presents publication with and without setup times as well as publications with job-machine 

eligibility restrictions. 
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 Cheng and Sin (1990) presented a state-of-the-art review of PMS of more than 80 

papers with publications ranging from 1959-1990. The authors stated that PMS problems 

have been a subject of extensive study fueled by the need to schedule incoming jobs to 

parallel processors in a computer system.  Likewise, manufacturing environments such as 

machine shops encountered the problem to schedule job orders on groups of identical 

production facilities. Previous survey papers on PMS were presented by Graham et al., 

(1979).  Most of the papers reviewed by Cheng and Sin (1990) focused on job and 

machines scheduling and excluded auxiliary resources. However, auxiliary resources are 

present in multiple real-life manufacturing environments such as plastic injection 

molding, semiconductor and electronics industries. 

For the case of identical parallel machines Edis (2009) cited the papers by 

Blazewicz et al. (1983) and Ventura and Kim (2000) proposing polynomial time exact 

algorithms for identical machines with resources. Edis (2009) also cited papers related to 

uniform machines (Kovalyov and Shafransky, 1998; Ruiz-Torres A.J. et al., 2007) and 

unrelated machines (Grigoriev et al., 2005).  Multiple scholars have also conducted 

research on solving the sequence-dependent setup time or setup cost for non-family 

problems with the objective function of minimizing maximum completion time (Cmax) 

or tardiness (T) as depicted in Table 2-5. 
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   Table 2-5: Non-family Scheduling with Setup 

Authors Criterion Method Applied  

Behnamian et al. 

(2009) 
𝐶𝑚𝑎𝑥, ∑ 𝐸𝑗

+ 𝑇𝑗 

Hybrid algorithm consisting of simulated 

annealing, Ant colony opt and variable 

neighborhood search.  

Fan and Tang 

(2006) 
∑ 𝑤𝑗 𝐶𝑗  Integer programming model, a column 

generation algorithm for parallel machines 

Hou and Guo 

(2013) 
𝐶𝑚𝑎𝑥 

 

MIP with Genetic Algorithms. Multiple 

resource constraints 

Hu and Yao 

(2011) 
𝐶𝑚𝑎𝑥 

 

MIP model, lower bound, GA 

Rocha et al. 

(2008) 
𝐶𝑚𝑎𝑥, ∑ 𝑤𝑗 𝑇𝑗 MIP, B&B algorithm.  

Toksarı and 

Güner (2010) 
∑ 𝑤𝑗1𝐸𝑗

+ 𝑤𝑗2𝑇𝑗 

MIP 

 

According to Behnamian et al. (2009) most of the publications used a MILP model 

for small size problems and a heuristic for larger size problems. It can be observed that 

MIP and genetic algorithms were applied to the formulations with completion time being 

at least one of the objective functions.  Table 2-6 presents a summary of publications related 

to exact methods mixed with metaheuristics in order to schedule a family jobs (non-family) 

with sequence-independent setup, sequence-dependent setup and without setup times. 
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Table 2-6: Family Scheduling Summary with and without Setup 

Authors Criterion Method Applied  

Bettayeb et al. 

(2008)  
∑ 𝑤𝑗 𝐶𝑗 Lower bounds, Branch and bound and 

constructive heuristic| Sequence 

Independent. 

Schaller (2014) ∑ 𝑇𝑗 TS and GA | Sequence Independent. 

Tavakkoli-

Moghaddam and 

Mehdizadeh (2007) 

∑ 𝑤𝑗 𝐹𝑗 
Integer Linear programming, GA| 

Sequence Independent. 

Bozorgirad and 

Logendran (2012) 

∑ 𝑤𝑗 𝐶𝑗, 

∑ 𝑤𝑗 𝑇𝑗  

 

MILP, meta-heuristic with TS| 

Sequence dependent. 

Chung et al. (2009) 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑓𝑖𝑡 Two new algorithms| Sequence 

dependent. 

Loveland et al. 

(2007) 

TSC (Total 

setup cost) 

Algorithm combining optimization and 

heuristic component 

Monkman et al. 

(2008) 

TSC (Total 

setup cost) 

GRASP 

Park et al. (2012) ∑ 𝑇𝑗 
Heuristic Algorithm 

 

Table 2-6 presents a summary of publications related to exact methods mixed 

with metaheuristics in order to schedule a family of jobs with and without setups. It is 

worth noting that summary above excludes other publications since they were not related 

to the topic of this dissertation.  A brief summary provided by Allahverdi (2015) for 

family sequence-independent setup times states that Schaller (2014) found that genetic 

algorithms (GA) outperformed Tabu Search (TS) algorithms for the problem of parallel 

machines with objective function to minimize tardiness.  Tavakkoli-Moghaddam and 

Mehdizadeh (2007) address the weighted flowtime problem for parallel machines using 

an integer linear programming model and they also proposed a Genetic Algorithm 

approach for solving large size problems. Bettayeb et al. (2008) addressed the weighted 
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completion time for parallel machines problem using a constructive heuristic and 

provided three lower bounds. A branch-and-bound algorithm was proposed, it 

incorporates the lower bounds showing that the algorithm is effective. As per Bettayeb et 

al. (2008) resource scheduling without setups has been intensively studied and Garey and 

Johnson (1978) proved that weighted completion time problem is strongly NP-hard.  

Allowing preemption reduces the complexity to polynomial time as proved by 

McNaughton (1959). For the family sequence-dependent setup time problem, Bozorgirad 

and Logendran (2012) addressed the minimization of weighted completion time and 

tardiness utilizing a MILP and a meta-heuristic with Tabu Search showing that a meta-

heuristic works well by comparing the performance with the optimal solution for small 

size problem instance.  Chung et al. (2009) used the objective function of maximizing 

total profit and applied two new algorithms that showed they are efficient.   

Most of the publications reviewed in the previous sections report that more than one 

objective function was utilized to solve the model. However, not many researchers used 

multi-objective optimization (MOO) where k objective functions were optimized 

simultaneously using an iterative approach similar to method described in the next 

section. 

2.2.3. Multi-objective Optimization (MOO) 

Multi-objective optimization (MOO), also known as multi-criteria optimization, is 

concerned with decision making based on multiple criteria. Typically, mathematical 

optimization models involving more than one objective function are used in order to 

optimize k objective functions simultaneously. According to Metta (2008) these functions 
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form a mathematical description of performance criteria which are usually in conflict 

with each other.  A key difference between MOO and single-objective problem is that 

MOO does not have a single optimal (best) solution.  The Pareto method which is one 

way to implement MOO finds a feasible schedule that minimizes several objectives in 

such a way that no improvement can be made on one objective without degrading the 

other objective metric in the objective vector (Suresh and Mohanasundaram, 2006).  

According to Suresh and Mohanasundaram (2006) the user may generate a schedule 

with a weighted combination of several scheduling objectives as the performance 

measure.  MOO models allow experts to choose a Pareto optimal solution according to 

the existing priorities when a decision needs to be made. In this case, a Pareto optimal set 

is to be found as a family of best trade-off schedules. The set of Pareto solutions is called 

the Pareto frontier (Suresh and Mohanasundaram, 2006). Chiandussi et al. (2012) provide 

a wide variety of algorithms that can be successfully applied for multiple engineering 

projects and the following definition about MOO.  

The general multi-objective optimization problem has an objective function set 

𝐹(𝑥) = 𝑓1(𝑥) … 𝑓𝑘(𝑥) composed of multiple single optimization objective functions that 

are either minimized or maximized subject to the following inequality constraints 

𝑔𝑖(𝑥) ≤ 0 𝑓𝑜𝑟 𝑖 = 1 … 𝑚 

ℎ𝑗(𝑥) = 0 𝑗 = 1 … 𝑝 

Therefore, we have k objectives reflected in the k objective functions, m + p constraints 

on the objective functions and n decision variables (Chiandussi et al., 2012). Convexity is 

described as a function 𝑓(𝑥) over the domain of R if and only if 



 

  39 

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤  𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2) for the vectors 𝑥1 𝑎𝑛𝑑 𝑥2 ∈ 𝑅 

Where α is a scalar in the range 0 ≤ α ≤ 1. In other words, the values obtained by the 

linear interpolation is greater than or equal to any value obtained the function above. See 

Figure 2-2 for an illustration of a convex and non-convex space.  

                     Figure 2-2: Convex and Non-Convex Space 

Four MOO techniques were analyzed by (Chiandussi et al., 2012)  including 

formulation, advantages and disadvantages.  

The first technique is "Linear Combination of Weights" which is a scalar 

optimization method in which the objective function is the product sum of the objective 

function components and the weight per objective function.  Two advantages of this 

method are the simplicity to implement and the computational efficiency. One main 

disadvantage is that this method is unable to generate certain portions of the Pareto front 

if the shape is concave (Chiandussi et al., 2012).  

The second technique analyzed was the MOGA method which can be single and 

multi-objective optimization based on genetic algorithms know to be part of evolutionary 

algorithms. Some advantages of this method are the fact that supports general constraints 

with a mixture of real and discrete variables. It also allows users to find several members 

a) Non-convex b) Convex 
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of the Pareto optimal set in a single ‘run’ vs separate runs as it occurs with exact methods 

such as traditional mathematical programming that has one major disadvantage 

(computationally expensive) (Chiandussi et al., 2012). 

The third technique discussed was the Global criterion method which requires the 

user to pre-select a goal before searching for optimality. The algorithm aims to minimize 

the distance between decision maker vector and ideal vector. Some advantages: Since 

these methods do not require a Pareto ranking, they are simple and efficient.  One 

disadvantages is that the user must select a goal which may require extra effort to 

compute and results may be limited by the selected goal (Chiandussi et al., 2012). 

The fourth technique is the ε-constraint method which is consider one of the best 

options for MOO since the model solves for one objective function at a time while 

transforming the other objectives into constraints.  One key advantage is these methods 

are relatively simple to understand as only one of the original objectives is minimized 

while the others are transformed to constraints. Two disadvantages of this method are the 

potential high computationally cost and objective function encoding for certain problems 

can be extremely difficult (Chiandussi et al., 2012). 

These methods can be grouped under one of the following categories depicted in 

Figure 2-3: a) A priori preference which assumes the expert has prior information 

allowing a decision first, then perform a search; b) A posteriori Preference performs a 

search before making any decisions and do not require prior preference information from 

the decision maker; c) Progressive Preference which is a back-and-forth combination of 

search and decision making; and at a high level, it finds a non-dominated solution, then 
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gets input from the decision maker with respect to non-dominated solution found, and 

modify the preferences of the objectives accordingly. Finally, repeat previous steps until 

user signals to end search. There are many other algorithms available to solve MOO, a 

taxonomy is presented in Figure 2-3. 

 
  Figure 2-3: MOO Taxonomy Summary (Chiandussi et al, 2012) 

As per Behnamian et al. (2010) multi-objective models always lead to a choice of 

a solution among all efficient solutions known as a posteriori approach. Hence, a set of 

best trade-off schedules called the Pareto optimal must be generated. A Diversity 

Maximization Approach (DMA) for MOO was proposed by Masin and Bukchin (2008) 

to generate the efficient frontier for MILP and combinatorial problems which is aligned 
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with our research interest and goals. The advantage of using the DMA for multi-objective 

optimization is that it has been successfully applied to MILP formulations for machine 

scheduling and a well-diversified partial efficient frontier is guaranteed to be obtained. 

The following MOO formulations and definitions are excerpts from Masin and 

Bukchin, (2008) publication with minor formulation changes since Xue and Villalobos, 

(2012), identified a typo in the M-DMA algorithm steps. 

For the MOO DMA preliminaries, Masin and Bukchin, (2008) assumed the 

minimization of multiple objective functions presented by the set K and each objective 

function has its own weight defined as wk: 

min 𝑍 = ∑ 𝑤𝑘𝑓(𝑘)(𝑥)
𝑘∈𝐾

 

s.t  𝑥 ∈ 𝑋 𝑤ℎ𝑒𝑟𝑒 𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

Given y = f(x) ∈ Y the solution obtained from the kth objective function is 

described as 𝑦(𝑘) = 𝑓(𝑘)(𝑥).  Let us define  𝑦1 = 𝑦2 if 𝑦1
(𝑘)

= 𝑦2
(𝑘)

 and 𝑦1 ≤ 𝑦2 if 𝑦1
(𝑘)

≤

𝑦2
(𝑘)

 for all k. Two solutions 𝑥1𝑎𝑛𝑑 𝑥2 are equivalent if 𝑦1 = 𝑓(𝑥1) =  𝑦2 = 𝑓(𝑥2)  and 

one solution 𝑥1𝑎𝑛𝑑 𝑥2 dominate another one if 𝑦1 = 𝑓(𝑥1) ≤  𝑦2 = 𝑓(𝑥2)  in this case 

we say 𝑦2 is dominated by 𝑦1. 𝑌𝑒𝑓𝑓 represents the complete efficient frontier while 𝑌𝑝𝑎𝑟 

represents the partial set of Pareto optimal solutions. 𝑦 = 𝑓(𝑥) is called efficient if x is 

Pareto optimal.  The, the diversity measure 𝛼𝐸(𝑦) is defined as follows: 

𝛼𝐸(𝑦) = 𝑚𝑎𝑥𝑦𝑒∈𝐸 (𝑚𝑖𝑛1≤𝑘≤𝑊

𝑦(𝑘) − 𝑦𝑒
(𝑘)

∆𝑘𝑒
) 
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Where ∆𝑒𝑘 is a positive scaling coefficient and E is defined as the partial efficient 

frontier 𝐸 ∈ 𝑌𝑒𝑓𝑓. It is important to accurately estimate the scaling factor ∆𝑘𝑒 in order to 

obtain an accurate representation of the efficient frontier for each iteration. (Masin and 

Bukchin, 2008) proposed ∆𝑒𝑘= 𝑅𝑘 =  𝑚𝑎𝑥𝑦∈𝑌𝑒𝑓𝑓
𝑦(𝑘) − 𝑚𝑖𝑛𝑦∈𝑌𝑒𝑓𝑓

𝑦(𝑘) ∀ 𝑦𝑒 ∈ 𝐸, 𝑘 =

1, = 1 … 𝑊. 

∆𝑒𝑘= {
𝑅𝑘, 𝑖𝑓 𝑅𝑘 > 0;
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Masin and Bukchin (2008) define [P1] which finds the initial point 𝑌𝑒 ∈ 𝐸: 

[P1]  min 𝑍 = ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾   s.t 𝑥 ∈ 𝑋 

where Wk k = 1...Ware positive weights for kth objective function. The subset E to 

be used to build the efficient frontier starts empty, then one point per iteration is added 

until a full efficient frontier is obtained or a pre-defined ε is provided. 

[P2]  min 𝑍 = 𝑙𝑒𝑥 min(𝛼, ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾 ) 

s.t min 𝛼 = 𝑚𝑎𝑥𝑦𝑒∈𝐸 (𝑚𝑖𝑛1≤𝑘≤𝑊
𝑓(𝑘)(𝑥)−𝑦𝑒

(𝑘)

∆𝑘𝑒
)  𝑥 ∈ 𝑋. 

Then the non-linear constraint α used as constraint for P2 is linearized using binary 

variables. 

[P3] min 𝑍 = 𝑙𝑒𝑥 min(𝛼, ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾 ) 

s.t. 𝛼 ≥ 𝛽𝑒∀𝑦𝑒 ∈ 𝐸, 

𝛽𝑒 ≤
𝑓(𝑘)(𝑥) − 𝑦𝑒

(𝑘)

∆𝑒𝑘
∀ 𝑦𝑒 ∈ 𝐸, 𝑘 = 1 … 𝑊,, 

𝛽𝑒 = ∑
𝛾2𝑘𝑒 − 𝑦𝑒

(𝑘)
𝛾1𝑘𝑒

∆𝑒𝑘

𝑊

𝑘=1

∀ 𝑦𝑒 ∈ 𝐸, 
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∑ 𝛾1𝑘𝑒 = 1 ∀𝑒 ∈ 𝐸
𝑊

𝑘=1
 

𝛾2𝑘𝑒 ≥ 𝑓(𝑘)(𝑥) + (𝛾1𝑘𝑒 − 1)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≤ 𝑓(𝑘)(𝑥) + (1 − 𝛾1𝑘𝑒)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≤ 𝛾1𝑘𝑒𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾1𝑘𝑒 ∈ {0,1} ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≥ 0 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝑥 ∈ 𝑋. 

Where M is a large number. The A-DMA iterative algorithm is described next. 

             Table 2-7: A-DMA Algorithm (Masin and Bukchin (2008)) 

Step Action 

1 

 

  

 Solve [P1] 

Let y* = f(x*) be optimal value 

Set E={y*} 

Select 𝜀 ≥ 0 𝑎𝑛𝑑/𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

2  

 Solve [P3] 

Let y* = f(x*) be optimal value 

3 

 

 

 

 

  

 IF 𝛼(𝑦∗) <  −𝜀 𝑜𝑟 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 THEN 

   𝐸 = 𝐸 ∪ 𝑦∗ 

   Go to step 2** 

ELSE 

   Stop; 

END IF 

**Original paper says step 1 (Typo), should be step 2. 

 

As the algorithm iterates a single efficient point (𝑦∗)is added to E when the absolute 

value of 𝛼(𝑦∗) is less than or equal to its value in the previous iteration. The user has 

three options to stop the algorithm early: 

i. Set 𝜀 = 0 to find the whole efficient frontier or selected number of efficient points 
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ii. Set 𝜀 = 0 to find the whole efficient frontier or after predetermined time 

iii. Set 𝜀 ≥ 0 to desired resolution of the efficient frontier. 

Selecting the right value for ε may not be an easy task in practice; hence, one can set a 

desired number of solutions when implementing the algorithm which is what we propose 

in this study. 

DMA MOO was also applied to solve the multi-objective optimization problem for 

primary planning of the "Inspection Effort Allocation (IEA) problem for a point-of-entry 

Inspection (Xue and Villalobos, 2012).  It is worth mentioning that a diversity 

maximization algorithm was also developed to enable the decision maker to select the 

proper solution easily. If the decision maker decided to override the proposed solutions, 

the model would run and immediately find a new optimal solution by adding the user-

input as a new constraint that must be satisfied.  

2.3. Practical Production and Manufacturing Scheduling 

This subsection provides an overview of publications in manufacturing scheduling. 

focusing in the framework of the systems, the multiple components required for a 

successful practical scheduling system and user-model interaction. “While the literature 

on manufacturing scheduling models and solution procedures is extensive, very little has 

been written on how to bring these models and procedures into practice. This has given 

rise to the so-called ‘‘gap” between the theory and practice of scheduling“ (Framinan and 

Ruiz, 2010). Our goal with this subsection is to shed light on expert systems and practical 

production scheduling systems aiming to close the gap between theory and practice. This 

subsection combines ideas and frameworks presented since 1980’s until today and 
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summarizes the key concepts focusing on the overall structure and problem models.  It is 

worthwhile to mention that most scheduling papers tend to focus on techniques and/or 

methodologies rather than the overall system and the structure of these tools (Dios and 

Framinan, 2016). That is, problem modeling and problem solving are at the forefront of 

the research. 

According to Romero-Silva et al. (2015) there is not an established notion of the 

term “practical scheduling”; however, several authors (Hoitomt et al., 1993; Olsen, 1999) 

have used this term for studies related to scheduling.  Even though the proposed 

technique could be applicable to real-world practical problems the authors did not focus 

on the real-world production scheduling topic. For this study, the term practical 

production and/or manufacturing scheduling systems will be used to refer to real-world 

scheduling problems and systems. 

 Framinan and Ruiz (2010) summarizes key components of a scheduling system 

architecture based on the type of functionality: scope of the system, problem modeling, 

problem solving, problem evaluation, reactive scheduling, capacity analysis, user 

interface and integration of existing business information systems.  Even though this is 

not the only framework in the open literature, it provides a significant list of references 

related to this line of work for practitioners to successfully design, plan and develop a 

practical scheduling system.   

Similarly, the proposed framework from (Romero-Silva et al., 2015) summarizes 

the topics into: manufacturing environment, production schedule, scheduling goals, 

incoming jobs, schedule construction and knowledge update, representation of 
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manufacturing environment, manufacturing environment status perception and schedule 

construction update activity. Some of the key findings for succesful designing of real-

world scheduling systems is to consider all the elements that are relevant to environment 

in question. Another key finding is that most practical problems consider more than one 

goal and many papers in the academic literature review focus on single objective. It is 

also noteworthy that scheduling parameter inputs provided by content expert vary from 

person to person; hence, it is important to obtain information from multiple experts and 

multiple sources in order to design robust system. A practical scheduling system should 

be flexible, capable of reacting to changes in the environment and able to repair or 

reschedule resources in the shortest amount of time.  

2.3.1. Incorporate Human Expertise 

As previously mentioned in Chapter one, Ahn (2008) stated "human computation 

problems" are those large-scale computational problems that often cannot be solved by 

either computer or humans alone.  The goal is to harnesses human brainpower to solve 

complex problems that computers may not be able to solve in relatively short periods of 

time. That is, computers should enhance human intelligence instead of replacing it. Thus, 

this subsection focuses on the topic related to incorporating human expert knowledge in 

the scheduling system. (Framinan and Ruiz, 2010) reported that there is controversy in 

the open literature whether incorporating expert knowledge into the solution is a good or 

bad idea. According to Steffen (1986) and Fox (1990) some of the practical real-world 

scheduling problems have a complexity that goes beyond the cognitive capability of the 

human brain. Others claim that if human experts exist the scheduling system 
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incorporating their knowledge would only automate good or bad decisions (Kanet and 

Adelsberger, 1987).  On the other hand, other authors state there are potential benefits to 

the overall scheduling system if human experts are able to interact with the model 

(Reinschmidt et al., 1990) and (Framinan and Ruiz, 2010). For instance, if the scheduling 

tool is programmed in a way that is open and flexible so that expert knowledge can be 

captured and translated into objectives and constraints it would be a potential benefit. 

According to (Framinan and Ruiz, 2010) it is preferable to support the decision maker 

with enhanced systems rather than replacing them with a scheduling tool that may not 

comprehend and represent practical problems.  

User-model interactive systems also open up the opportunity for experts to better 

understand the problem they are trying to solve and the scheduling tool can also serve as 

a training platform for less experienced schedulers. (Stevenson et al., 2009) claim that 

their workload control tool and production planning concept with user-model interaction 

allows users to be trained. Their decision support system provides an action-learning 

package for end-users and improves decision-making experience related to parameter 

settings (i.e. due dates), acceptance or rejection of jobs and scheduling intervention 

among others. Similarly, Framinan and Ruiz (2010) suggest that it would be interesting to 

make the suggestions of the system more transparent to the scheduler so that he or she 

can learn from the system and gain insight to the decisions proposed.  

2.3.2. User-model Interaction in Artificial Intelligence 

According to Chai et al. (2009) many applications in the field of computer science 

are starting to employ information extraction (IE) and integration (II) programs to infer 
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knowledge from unstructured data. Chai et al. (2009) propose a solution for users to 

provide feedback and for IE/II programs to automatically process feedback. The proposed 

model was capable of incorporating recent feedback with historical user feedback using 

"hlog", a declarative IE/II language. These applications can be related to simple website 

feedback applications to improve customer satisfaction.  

A similar approach is utilized in crowdsourcing applications which rely on human 

computation to extract knowledge from text, sound, video and images.  Since it is 

relatively easy for humans to understand text, sound and video but hard for algorithms 

(Parameswaran et al., 2012), humans are often tasked with text feature extraction.  

However, it is not easy for systems to interact with users in order to obtain feedback. 

Thus, a declarative query model is proposed. "The goal is to design a query processor and 

optimizer that automatically decomposes the query into small unit tasks that are 

answerable by humans. These unit tasks could be as simple as comparing two items, 

rating an item or answering a Boolean question." (Parameswaran et al., 2012). Support 

Vector Machines (SVM) are popularly used in text classification; however, these models 

rely on large amounts of data properly labeled in order to train the model.  If labeled data 

does not exist companies like Yahoo pay humans to label the data (Raghavan and Allan, 

2007).  On the other hand, there applications where the user is willing to label data which 

will result in increased user satisfaction. For example, personalized news or email 

filtering  an algorithm can be used to ask the user to label as little as possible to decrease 

the tediousness of the process and improve customer satisfaction (Raghavan and Allan, 

2007). 
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 Xue and Villalobos (2012) incorporated user input into the flexible inspection 

system for a port of entry. One of their objectives was to present a set of solutions to 

choose from and evaluate some plans enacted by the inspector.  

In summary, it is evident that researchers–mainly in the computer science field– 

are relying more on user feedback/interaction to extract knowledge or preferences that 

can be incorporated into their models or applications. However, the concept of user-

model interaction does not appear to be widely studied in the scheduling field. Thus, our 

proposed research should contribute to bridge this gap.  

2.4. Conclusion and Literature Contribution 

This review focused on three basic lines of research most relevant to the problem of 

interest this study: 1) scheduling techniques in semiconductor industry, 2) Optimization 

models for single and parallel machine scheduling including multi-objective optimization 

(MOO), and 3) practical manufacturing scheduling systems including user-model 

interaction and system architecture for highly modular systems. Overall, we observed that 

machine scheduling has received a significant amount of attention over the last few 

decades with over 1,000 research papers published with three comprehensive reviews. 

According to Allahverdi (2015) scheduling problems with setup times/costs are growing. 

However, considering most scheduling environments involve setup operations, only 10% 

of the research in scheduling includes setup times/costs. Hence, more research on 

scheduling problems with explicit consideration of setup times/costs is needed. He also 

proposes more research that considers family setup time for the parallel and job shop 

environments. The multiple criteria scheduling problems constitute less than 10% of the 
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papers, while in real life many scheduling problems require multiple criteria. Therefore, 

there exists a need to address more scheduling problems with multiple criteria. Finally, he 

concluded that there are about 500 papers, which he summarized and concluded that most 

of them use heuristic methods such as Genetic algorithms while only 50 papers used MIP 

and 30 used branch and bound (exact methods). Our proposed models and approach are 

well aligned with many of the recommendations proposed by (Allahverdi, 2015) from his 

third comprehensive scheduling review, we highlight some salient point and state the 

advance made in this dissertation 

• "The research on scheduling problems with setup times/costs is still less than 10 

percent of the available research on scheduling problems while most scheduling 

environments involve setup operations. Hence, more research on scheduling 

problems with explicit consideration of setup times/costs is needed" (Allahverdi, 

2015). Our proposed phase II model includes sequence-dependent setup times and 

addresses this recommendation. 

• "...for the single machine environment with family setup time case, about 75 

percent of the papers addressed the sequence-independent problem. This indicates 

the need for addressing the sequence-dependent scheduling problems in single 

machine" (Allahverdi, 2015). Our formulation addresses the multiple identical 

parallel machine with sequence-dependent scheduling problem; hence, setting 

m=1 aligns with the recommendation previously stated. 

•  "...in the current competitive work environment, firms strive to save in every 

possible way, and minimizing work-in process is a major cost saving. It has been 
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observed that the total completion time performance measure has been addressed 

by a relatively smaller number of papers for the single machine, parallel machine, 

and job shop environments. It has been also observed that total tardiness 

performance measure has been only utilized in a few papers for the job shop 

environments. Therefore, there is a need to consider these performance measures 

in those scheduling environments" (Allahverdi, 2015). Our phase III objective 

function addresses this recommendation since we are minimizing total weighted 

completion time and total tardiness.  

• For the Diversity Maximization Approach (DMA) for MOO presented by Masin 

and Bukchin, (2008) with MILP scheduling problem, our model allows user-

model interaction for the parallel machine scheduling with shared auxiliary 

resource which addresses Masin and Bukchin's, (2008) recommendation to 

explore an interactive DMA with the decision maker resulting in a more effective 

method since the user could focus on the relevant parts of the efficient frontier. 

Our proposed research is going to address this recommendation since we plan to 

enable model-user interaction for the DMA MOO model in phase III.  

• Ham (2018) suggested to apply the time-indexed MILP model instead of 

"positional & assignment" variables used in Ham’s study. Similarly, Avella et al. 

(2017) successfully applied MILP model in runway scheduling problems 

reversing the opinion that time-indexed MILP models are unattractive for real-

time applications or large scale models. Our formulations address these two 
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recommendations by applying time-indexed IP and MILP models for the three 

phases.  

• Edis (2009) claims that most of the research on parallel machine scheduling 

neglects machine eligibility restrictions. Our three phases apply job-machine 

eligibility restrictions to mimic real-world practical models.  

Finally, our MOO model addresses the following recommendation: "The multiple 

criteria scheduling problems constitute less than 10 percent of the papers while in real life 

many scheduling problems require multiple criteria. Therefore, there exists a need to 

address more scheduling problems with multiple criteria" (Allahverdi, 2015). 
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3. CHAPTER 3 METHODOLOGY 

This section presents the methodology used to carry out our research and is 

subdivided into seven sections. Section 3.1 presents traditional scheduling background, 

section 3.2 presents the envisioned framework of study, section 3.3 presents research 

objectives, section 3.4-3.6 present phase I, II and III of the research, respectively. Finally, 

Section 3.7 presents the solution approach we adopted in this dissertation. 

3.1. Background into Semiconductor and Traditional Scheduling 

The ultimate purpose of the research presented in this dissertation is to develop 

decision support tools through which semiconductor manufacturers can improve factory 

performance resulting in cycle time reduction, increased on-time delivery, and maximal 

throughput. There are multiple factors that need to be considered before devising a 

scheduling framework for semiconductor manufacturing.   

Leachman (2013) states that the competition in the semiconductor industry has 

evolved due to multiple factors such as proprietary designs, pricing, quoted lead times, 

and on-time delivery commitments.  Even though the semiconductor industry has 

improved on-time delivery to as high as 90% success rate, there are organizational 

barriers that make production planning and production scheduling a difficult undertaking.  

Higher pressure to meet customer requirements has increased the need to improve factory 

performance and the ability to generate efficient and effective production schedules that 

meet customer expectations. Semiconductor manufacturers are currently striving to 

optimize production around the globe; however, there are key challenges these 
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manufacturers face, such as the need to consistently improve cost and reduce cycle time 

to maximize revenue, and increased time spent planning and managing factory resources 

driven by higher product variation and volume (Applied Materials, 2012). Semiconductor 

manufacturers are realizing that productivity is key to improve the on-time delivery and 

increasing efficiency in the wafer fabrication lines is a must to remain competitive. 

Photolithography is one area that is highlighted by researchers and software vendors as a 

key opportunity for improvement due to the complexity of assigning jobs to machines, 

largely due to machines being partially restricted (i.e. not capable of running all jobs) and 

shared limited auxiliary resources.   

It is important to understand how this study contributes to  production planning and 

control hierarchy presented in Figure 3-1, which illustrates long term strategic decisions, 

short-term scheduling, and control issues in manufacturing. Hopp and Spearman (2011) 

state that long term decisions occur at the strategic level where the basic function is to 

establish a production environment capable of meeting the plant’s goals. Forecasting and 

planning (workforce and capacity) are the major activities here. 

The basic function of the tactical tools is to receive input from the long-range plans 

and turn them into a general plan of action in the form of WIP/quota settings. The 

scheduling module takes the master production schedule quotas and customer demands 

and translates them into a work schedule for the near term. The focus of this dissertation 

is to develop efficient mathematical formulations and heuristics that are able to sequence 

and schedule jobs in complex manufacturing systems. 
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Figure 3-1: Production Planning and Control Hierarchy (Hopp and Spearman., 2011) 

"Sequencing and scheduling are forms of decision-making that play crucial roles in 

manufacturing and service industries. In the current competitive environment effective 

sequencing and scheduling has become a necessity for survival in the market-place” 

(Pinedo, 2016). Not only does this study draws ideas and principles from academic 

scheduling theory, but also from the perspective of decision support software for the 

semiconductor industry. For instance, software vendor AMAT offers a predictive 
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scheduling solution that improves productivity of key bottleneck areas in the factory. 

According to a commercial software vendor  (Applied Materials, 2012) the scheduling 

solution offers the following features: Co-optimize cycle time, throughput and yield; 

Incorporation of WIP management best-know-methods from industry; combination and 

integration of multiple data sources in real time and an open solutions users can 

customize objective functions and constraints by themselves among other features 

allowing users to conduct comprehensive experimentation and what-if analysis 

capability. Up to this point, a brief background into semiconductor and traditional 

scheduling has been provided in order to justify the need for more effective systems and 

algorithms. Now, we move to describe in greater detail the underlying hypotheses of this 

dissertation. 

We hypothesize that the judicious combination of exact methods (optimization 

models) with heuristics can be used to solve practical scheduling problems. An effective 

combination of these methods can provide the basis for the development of an integrated 

decision support system that generates schedules that consistently outperform the 

dispatching rules currently used in the semiconductor industry. We further hypothesize 

that this combination of methods can render even better results in areas considered as the 

bottleneck of the production line, where shared auxiliary resources are required to 

process a job in a machine, such as photolithography. We also hypothesize that Integer 

Programming (IP) mathematical formulations can find solutions capable of 

outperforming any rule-based heuristic.  We anticipate that a set of algorithms and 
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practices resulting from this dissertation will reduce manufacturing system inefficiencies 

by reducing setups and changeovers, therefore shortening cycle times. 

3.2. Envisioned Framework of Study 

In this dissertation, we seek to provide a manufacturing scheduling framework and 

develop mathematical optimization models, heuristics, and short-time scheduling plans 

for tactical and strategic scheduling planning purposes. A conceptual framework, 

depicted in Figure 3-3, is the result of bringing together several scheduling functions in 

the form of module in order to solve the problem at hand. The proposed framework is an 

integrated approach that enables development and testing of several independent modules 

as needed. A framework is key for a structured systems development and also serves as 

the foundation of the overall scheduling system.   

We divide the study in three phases, Phase I and II aim to generate efficient 

schedules for small, medium and large problem instances under one hour and phase III 

aims to generate efficient solutions for multi-objective optimization (MOO) models for 

the offline analysis of the problem.  This section presents the basic framework and the 

interaction among different modules that will result in a proof of concept scheduling 

system. We anticipate a few scenarios will arise in the real-world that our dissertation 

will address: 

3.2.1. Possible Tactical Scenarios 

We consider a complex manufacturing area in the semiconductor industry, such as 

photolithography, which is typically considered a factory constraint. We deal with the 
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case where we have incoming jobs and ready jobs. Often, incoming jobs are dynamic and 

may not arrive on the expected time. Each job may have a different processing time, 

depending on the operation, and may be restricted to run only on certain machines, 

further complicating the scheduling problem. Given the dynamic nature of the 

manufacturing environment being considered, it is extremely important to develop 

practical scheduling models capable of running in short periods (under 5 minutes) to be 

useful for real-time dispatching. The proposed study can also generate practical models 

capable of running under 15 minutes to be used as hybrid scheduling systems in which an 

existing real-time heuristic is combined with our proposed optimization models.   

3.2.2. Near Optimal Allocation of Resources 

The outcome of phase I models may result in tangible action plans or schedules in 

which a user can manually influence resource assignments to supplement existing rule-

based heuristics. 

Semiconductor factories experience high variability from different sources, as previously 

stated in chapter 1. Some of these sources of variability come from process variability, 

machine breakdown, customer demand fluctuations, and tighter on-time delivery 

requirements, among others. It is important to design a flexible framework and include 

multiple model parameters that will allow the decision maker to simulate the scenarios 

via optimization scheduling.   

3.2.3. Possible Strategic Scenario 

This scenario is likely to occur when the decision maker is not sure how to prioritize 

resource allocation given a factory being under-loaded or over-loaded, customer commits 
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performance (on-time delivery) and cycle time.  For this possible scenario, we offer an 

interactive approach that allows the decision maker to assign weights in the objective 

function, set thresholds for a given objective, and optimize other objectives. A pareto 

efficient frontier is proposed for this strategic offline modeling. In this scenario, it is 

important that the model runs fast, but it is more important to provide insight to the 

decision maker, even if the model needs to run for an extended period of time to find a 

solution.  It is important to mention that the outcome of this model is not meant to affect 

in real-time the schedules being used. 

3.2.4. Overall Hierarchical Plan 

It is extremely important to build a modeling framework that allows developers and 

decision makers to continuously learn and improve. The framework should also allow the 

decision makers and experts to customize objective functions and constraints and enable 

them to conduct comprehensive experimentation with what-if analysis capability. In 

order to develop a system capable of accommodating the previous scenarios, this 

dissertation uses a three-phase approach to solve the problems previously defined as 

𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 and 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥.  An interactive 

scheduling system is envisioned and proposed. The envisioned system is motivated by 

the research carried out by Xue and Villalobos (2012) aiming to incorporate new 

information available from the decision maker to generate new solutions iteratively and 

by semiconductor software vendor AMAT (Marteney, 2011). The overall envisioned 

system architecture is presented in Figure 3-2.   
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 Figure 3-2: Flexible and Adaptive Manufacturing Scheduling System 

 

A similar scheduling architecture is presented in Pinedo (2016), but has been 

modified to fit our proposal.  The proposed system architecture envisions a real-time 

factory database interacting with a scheduling database through the data pre-processing 

module which takes all data inputs and generates input data files to feed the scheduling 

module.  The scheduling module reads the optimization model(s) and the heuristic(s) 

from the algorithm module. This study also envisions a feasibility module with a 

graphical user interface to enable user interaction. It is worth noting that the feasibility 

module and graphic user interface will not be fully developed in this study. The 

development of these modules will be left as future research.  

The focus of this dissertation lies in the scheduling and the algorithm modules and 

focuses in the development of IP models interacting with a heuristic in order to obtain a 

feasible solution. The objectives of this research are presented in the next section. 
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3.3. Objectives of the Research 

In this dissertation, we aim to develop a modeling framework and a set of exact methods 

(optimization models) and heuristics that attempt to produce near-optimal scheduling 

solutions for highly complex and constrained areas. In order to achieve this, we target 

three main objectives: 

1. Development of a practical scheduling framework that is compatible with 

semiconductor manufacturing systems. The goal of this framework is to enable 

algorithm design flexibility and user interaction capability.  The architectural 

design must be highly modular in order to facilitate development, testing, and 

debugging.  

2. Development mathematical models and heuristics capable of solving practical 

problems with instances ranging from small to large in order to provide the 

decision maker with near optimal job-machine-resource schedules for the 

manufacturing system outlined in section 1.3. The job-machine-resource 

schedules should be generated in 15 minutes or less, including time to generate 

input files. The aim of Phase I and II models is to generate schedules for real-time 

dispatching.  We will also explore heuristic approaches to prime the model and 

reduce the time horizon 

3. Develop a multi-objective optimization model with user interaction capability, 

seeking to assist management and decision makers with strategic decision making 

with respect to multiple conflicting objectives.  The model should allow the 

decision maker set upper bounds for one or more objectives (i.e. maximum 
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tardiness < t units) and enable the decision maker to override existing optimal 

schedules as needed.  In this research effort, a time-indexed IP model coupled 

combined with a MOO mathematical formulation is proposed in order to 

addresses each of the objectives described above. In order to validate our models, 

a set of randomized data that resembles real-world semiconductor lines needs to 

be created.  The envisioned use of this model is an offline module capable of 

generating an entire or partial efficient frontier.  The overall research flow 

diagram for each phase is presented in Figure 3-3. 

 
          Figure 3-3: Research Phase Diagram 

The plan is to formulate the mathematical model, program it in an optimization 

programing langue and validate the results as depicted in Figure 3-3.  The model is 

deemed feasible if no job overlaps with each other in the same machine. Similarly, no job 
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should overlap on the same auxiliary resource as described in chapter 1. A Gantt chart is 

used to visually validate and inspect the solutions rendered by the model. Each phase is 

described in detail in the next section. 

3.4. Phase I Optimization Model 𝑷𝒎|𝒓𝒋, 𝑴𝒋, 𝒂𝒖𝒙 𝟏| ∑ 𝑪𝒋 

The first phase of the study consists of building optimization models to 

characterize the problem and to establish boundary conditions for the problem to be 

tractable when setups are not considered. In this case, we propose the development of 

optimization models that consider real-world variables in order to allow users represent 

real semiconductor problems. This study aims to incorporate as many model parameters 

as possible to enable the flexibility to schedule complex practical problems. Ready times, 

variable process times and job-machine restrictions are incorporated. 

There will be a total of 45 problem instances to be explored as a result of the three 

factors considered: problem instance size, problem instance complexity, and machine 

eligibility restrictions (aka sharing density matrices) at five, three, and three levels, 

respectively. Problem instance size is a function of the number of jobs-machines-

resources.  Problem instance complexity is a function of job process times, ready times, 

and setup times. Sharing density matrices of 100% indicate that each job can run on every 

machine while a density matrix of 33% indicates that a job can run on 1/3 of the machine 

available. A table with the exact parameters used to generate each problem instance is 

presented in chapter 4. 
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3.5. Phase II Optimization Model and Heuristic 𝑷𝒎|𝒔𝒋𝒌, 𝒓𝒋, 𝑴𝒋, 𝒂𝒖𝒙 𝟏| ∑ 𝑪𝒋  

Even though the outcome of phase I consists of the development of optimization 

models that ignored setups, the learnings in the model development will be invaluable. 

The objective of the second phase is to attempt to minimize total completion time by 

including setups which makes this approach attractive to solve real-world practical 

problems. The first phase is less complex as setups are not included. The model can still 

be used to determine rough cut capacity metrics and determine jobs to machine 

assignment. However, the model in phase I is not complex enough to create a real 

schedule that can be used in a wafer fabrication line. Hence, phase II focuses on creating 

efficient solutions for large models and optimal or near optimal solutions for small to 

medium problem instances. Phase II, similar to phase I, minimizes total completion time 

for the resource constrained parallel machine scheduling including release dates, job-

machine restrictions and auxiliary resources including setup times 

𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗  for five problem instance sizes, three complexity levels, and 

three different levels of machine restrictions as depicted in Table 4-1.  

A heuristic is also developed in phase II in order to interact with the optimization 

model in order to reduce the time horizon and provide an initial feasible solution. 

3.6. Phase III MOO Optimization Model 

𝑷𝒎|𝒔𝒋𝒌, 𝒓𝒋, 𝒅𝒋, 𝑴𝒋, 𝒂𝒖𝒙 𝟏| ∑ 𝒘𝒋𝑪𝒋 , ∑ 𝑻𝒋, 𝑻𝒎𝒂𝒙 

In this phase, the key component of the problem formulation is the set of multiple 

competing objectives: (1) the minimization of weighted completion times, (2) the 
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minimization of total tardiness and (3) minimization of the maximum tardiness. To 

address this problem, we propose the use of a MOO IP in the form of a hypothetical case 

study with model-user interaction. 

As previously stated in the literature review, this section provides a framework for 

practical scheduling system and user-model interaction. “While the literature on 

manufacturing scheduling models and solution procedures is extensive, very little has 

been written on how to bring these models and procedures into practice. This has given 

rise to the so-called ‘‘gap” between the theory and practice of scheduling“ (Framinan and 

Ruiz, 2010). Our goal with this section is to demonstrate how interactive optimization 

models can aid close the gap between theory and practice. We anticipate practitioners and 

decision makers will see the benefit of having multiple optimal alternative schedules and 

gaining insight in the model objectives, constraints and parameters used to generate it. 

Phase III is a combination of the scheduling models developed in phase I and II 

with the addition of a lexicographic MOO model for resource constrained parallel 

machine scheduling including release dates, job-machine restrictions, auxiliary resources 

with and without setup times 𝑃𝑚|𝑠, 𝑟𝑗, 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥). Setup 

times are included for the reduced small problem instance (i.e. 10 jobs, 2 machines, 4 

resources) with no job-machine restrictions in order to keep run times tractable since the 

model must run n times to find the entire efficient frontier.  For the medium size problem 

instance, setup times were removed for the reduced medium problem instance (i.e. 50 

jobs, 5 machines, 12 resources with 100% machine eligibility). The decision to remove 
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setups was made to enable larger models to find n optimal solutions in the form of the 

entire efficient frontier.   

3.7. Solution Approach 

Linear Optimization, specifically Integer Programming (IP) is the exact method we 

selected to solve a highly complex problem previously introduced in chapter 1.  These 

exact methods have been successfully applied across multiple industries with positive 

results.  Practical problems can be modeled with a MILP or IP formulation in the form of: 

min{𝑐𝑥 ∶ 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} 

 

Where A is an m by n matrix, c is an n-dimensional row vector, b is an m-dimensional 

column vector, and x an n-dimensional column vector of variables or unknowns.  A 

binary problem is obtained if the variable x is restricted to be 0 or 1 and an integer 

program (IP) is obtained if the variable is restricted to non-negative integers (Wolsey, 

1998).  A know issue with mathematical IP models is that they require a significant 

amount of time to find an optimal solution as the problem instance size grows.  Thus, 

exact heuristics need to be applied to find optimal solutions more efficiently. Branch and 

bound (B&B) is a widely known method also known as divide and conquer methodology. 

That is, a problem is divided into a series of smaller problems that are easier to solve. The 

smaller problems need to be put together in order to solve the original problem, the reader 

is referred to Wolsey (1998) for a detailed explanation on this method.  The proposed 

problem will be solved with a commercial solver that applies a series of cuts and a 

branch-and-bound method to solve the IP/MILP models. 
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3.7.1. Phase I and Phase II IP Models 

One of the main difficulties in solving the proposed models (in both phases) is 

dealing with problem instance size and computational complexity. This is due to the large 

number of decision variables and constraints involved in the formulations. There are 

multiple ways to reduce complexity by using a judicious combination the exact methods 

and heuristics. Transforming job’s actual process times into a different time scale that 

allows the time horizon to be reduced is imperative to keep models tractable and render 

practical results. Clement et al. (2016) proposed a big bucket time indexed formulation 

for non-preemptive single machine scheduling problems. “The length of each period can 

be as large as the processing time of the shortest job. For larger minimum processing 

times the big bucket model can have significantly fewer variables and non-zeros than the 

time indexed model at the expense of a greater number of constraints” (Clement et al., 

2016).  

Another approach is to relax the setup restriction but respect resource allocation. 

This relaxation provides a lower boundary for all the objectives involved in this 

dissertation. That is, we are guaranteed to find better optimal solutions if setups are 

removed; however, those plans may not be feasible or easily implementable. These 

models without setup can be used to estimate the capacity of the area and the maximum 

throughput that can be achieved to establish goals. 

For phase II, we plan to expand the model developed in phase I and add setups to 

create feasible schedules. The Phase II model is more computationally intensive. Our 
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approach to reduce complexity as previously mentioned, is to prime the model with an 

initial heuristic that is provided as initial solution.  The hybrid model is anticipated to 

achieve better results since the search space is reduced. 

3.7.2. Phase III MOO Model with User Interaction 

The basic premise of this phase is to generate an efficient frontier using MOO 

models. This is a slightly different modeling approach from that used in phase I and II in 

which scheduling solutions had to run fast to accommodate changes in the environment 

and machines going up and down.  This phase is more strategic in nature and the aim here 

is to allow the decision maker to interact with an offline model.  A hypothetical case 

study is simulated that mimics real-world what-if scenarios  As previously introduced in 

chapter 2, we plan to apply the MOO DMA approach presented by Masin and Bukchin, 

(2008). The generic MOO model assumes the minimization of multiple objective 

functions presented by the set K and each objective function has its own weight defined 

as wk: 

min 𝑍 = ∑ 𝑤𝑘𝑓(𝑘)(𝑥)
𝑘∈𝐾

 

s.t  𝑥 ∈ 𝑋 𝑤ℎ𝑒𝑟𝑒 𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

The three objective functions to be minimized in chapter 6 are the following: weighted 

completion time, total tardiness and max tardiness. Refer to section 2.2.3 for a detailed 

explanation on the diversity maximization approach (DMA) we plan to use in chapter 6. 

Prior to moving the chapter 4, we present a short list of resources required to 

complete this dissertation.  Since this dissertation is a proof of concept of a scheduling 
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system, the key requirements are only related to software, hardware, and data generation. 

The software requirements are IBM Cplex Commercial Solver (full license installed and 

available) and Python 3.5+ to build data sets and heuristic. The hardware requirements 

are a Laptop with 16GB of RAM for model development and virtual server with Intel ® 

Xeon® CPU E5-2650 0 @ 2.00 GHz (2 processors) with 64GB RAM, with Windows 

server 2016 operating system. 
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4. CHAPTER 4 PHASE I RESOURCE CONSTRAINED PARALLEL MACHINE 

SCHEDULING MODEL 

To formulate a scheduling system framework compatible with semiconductor 

manufacturing systems, the phase I model was developed. The phase I model consists to 

minimize the total completion time for the parallel machine scheduling problem with job-

machine restrictions and auxiliary resources without setup  𝑃𝑚|𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 for five 

problem sizes, three complexity levels, and three machine eligibility restriction levels, as 

presented in chapter 3. 

A time-indexed IP model is proposed to address the problem with m parallel 

machines and j jobs, ignoring setup time. The objectives of phase I are to verify and 

validate our mathematical model is efficient, and additionally, establish lower bounds for 

computational time and optimality gap when sequence-dependent setups are added in 

phase II.  Phase I will effectively set the stage for phase II. A key contribution of the 

phase I model is the combination of medium and large model instances with identical 

parallel machines that include release times and auxiliary resources with an objective 

function that aims to minimize cycle time. 

4.1. Phase I Mathematical Model Formulation 

The purpose of phase I is to explore relatively simple, yet practical, IP models 

capable of scheduling n jobs in m machines for small-to-large job sizes for tactical 

purposes. 

Indices and Sets 

𝑗 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑗𝑜𝑏𝑠, 𝑗 ∈ 𝐽 
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𝑟 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑟 ∈ 𝑅 

𝑚 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠, 𝑚 ∈ 𝑀 

𝑡 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒, 𝑡 ∈ 𝐻 

Parameters:  

𝑟𝑗  𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑝𝑗  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝐻 𝑆𝑒𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤ℎ𝑒𝑟𝑒 |𝐻| ≥  ∑ 𝑝𝑗
𝑗∈𝐽

+ max {𝑟𝑗}  

Decision variables: 

𝑥𝑗𝑚𝑟𝑡

=  {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Formulation 

The objective function (eq 4.1) aims to minimize total sum of completion times 

(Cj). That is, if 𝑥𝑗𝑟𝑚𝑡 = 1, the process time for job j is added to start time t which 

determines completion time of job j. The sum of the job’s completion time makes up the 

objective function which must be minimized. It is noteworthy that each job-machine 

combination has a unique auxiliary resource, but these resources are shared among 

multiple jobs-machines according to the job-machine eligibility restrictions. 

𝑚𝑖𝑛 ∑ 𝐶𝑗
𝑗∈𝐽

 
(4.1) 

Subject To:  



 

  73 

∑ ∑ ∑   (𝑡 + 𝑝𝑗 − 1) 𝑥𝑗𝑚𝑟𝑡

𝐻−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 ≤  𝐶𝑗∀ 𝑗 ∈ 𝐽 

(4.2) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡 = 1
𝐻−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 ∀ 𝑗 ∈ 𝐽 

(4.3) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡′ ≤ 1
min (𝑡,𝐻−𝑝𝑗+1)

𝑡′=max (𝑟𝑗,𝑡−𝑝𝑗+1)𝑟∈𝑅𝑗∈𝐽
 ∀ 𝑚 ∈ 𝑀, 𝑡 

∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗 + 1} 

(4.4) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡′ ≤ 1
min (𝑡,𝐻−𝑝𝑗+1)

𝑡′=max (𝑟𝑗,𝑡−𝑝𝑗+1)𝑚∈𝑀𝑗∈𝐽
 ∀ 𝑟 ∈ 𝑅, 𝑡 

∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗 + 1} 

(4.5) 

𝑥𝑗𝑟𝑚𝑡 ∈ {0,1} (4.6) 

The first constraint (eq. 4.2) calculates the expected completion time for each job 

j, and the expression in parentheses serves to offset the process time for each job. The 

second constraint (eq. 4.3) forces all jobs to be processed at one period t. Constraints (eq. 

4.4) and (eq. 4.5) enforce that at any given time t only one job can be processed at most 

on a given machine and resource, respectively. Note that setups are not incorporated in 

this formulation; Sequence-dependent setups are incorporated in phase II, which is 

presented in chapter 5.  Equation (4.6) defines the binary variable that indicates job j to 

start processing at the beginning of period t in machine m with resource r. At time t =1, 

the model assumes a resource (randomly selected) was previously loaded in the machine 

and aims to assign a job that is compatible with that resource to minimize setups.  This 
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formulation can be applied to any practical, real-world manufacturing environments in 

the semiconductor and plastic molding injection industry. 

4.2. Experimental Design 

The experimental design adopted in this dissertation aims to represent real-world 

practical problems. Hence, the following three factors were selected: problem instance 

size, problem instance complexity and job-machine sharing density (also known as 

machine eligibility restrictions in the parallel machine scheduling literature).  Problem 

instance size is defined as a function of the number of jobs, machines, and auxiliary 

resources. For instance, a small problem instance of 10|2|4 is defined as a combination of 

10 jobs, 2 machines, and 4 auxiliary resources with problem instance complexity defined 

as a function of process times, release dates, and resource setup/delivery times (cf. Sousa 

and Wolsey, 1992).  We define sharing density as the percent of job-machine 

combinations (i.e. 100%, 66% and 33%), which are used for each scenario described in 

Table 4-1 Based on personal experience in large scale manufacturing, real-world problem 

instances resemble more of a sparse matrix than a dense one. It must be noted that jobs 

were randomly assigned to families; hence, the number of families per problem instance 

is depicted in table below. It is worth mentioning that chapter 4 and chapter 5 will use the 

same problem instances.      
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         Table 4-1: Model Parameter Summary for Model with Objective Function ∑ 𝐶𝑗 

Instance Size 

Jobs|Mach|Res (families) 

Instance 

Complexity  

Sharing 

Density  
• 10 |2| 4 (2 families) 

• 25 |3| 6 (3 families) 

• 50|5|12 (6 families) 

• 75|7|18 (9 families) 

• 100|10|24 (12 families) 

• Reduced 

• Moderate 

• Complex 

 

 
 

• 33% 

• 66% 

• 100% 

 

 

 
 

 

A total of 45 scenarios resulted from running 3 factors (size, complexity and 

sharing density) at 5, 3, 3 levels, respectively. We introduced three model complexities: 

reduced, medium, and hard complexity. Reduced complexity was defined as solving a 

problem with process times (PT) and ready times (RT) uniformly distributed between 1-5 

units of time. Setup time is 1 unit and resource travel time between machines (RTTBM) 

is between 1-2 units of time. The process time and ready time lower bound was 1 unit of 

time, the upper bounds can be seen in Table 4-2, including the detailed parameters 

utilized for the medium and hard complexity cases. 

               Table 4-2: Complexity Design Parameters 

Complexity PT UB 

RT 

UB 

RTTBM 

LB 

RTTBM 

UB 

reduced 5 5 1 2 

medium 10 10 3 4 

hard 20 20 5 9 

 

We believe these levels of problem instance size, complexity, and sharing density 

should provide insight to practitioners on the proposed models capability. Next, we 

present the experiment results and conclusions. 
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4.3. Phase I Experimental Results and Conclusions 

The computational results for the time-indexed IP model are depicted in Table 4-3 

for the 45 test problem instances which resulted from the combination of 3 complexity 

levels, 5 job-machine-resource combinations, and 3 job-machine density levels. The Gap 

(%) provided by Cplex is the difference between the best integer solution and the best 

bound. Solution time (seconds) includes the model build and solve times.  The number of 

model variables (Vars) and constraints (Cons) generated by the model are also presented 

to provide insight into the Gap % and run times. 

Optimal solutions were found for 45 out of the 45 scenarios in less than one hour for 

all the combinations.  It must be highlighted that several instances of 100 jobs with 

reduced and medium complexity found optimal solutions under 150 seconds (2.5 

minutes), up to the “MED|J100|M10|R24|0.33” instance.  Optimal solutions were found 

in less than 600 seconds (10 minutes) for 41 out of the 45 scenarios, including the 

medium complexity J100 instance. 
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Table 4-3: Phase I IP Model Results 

Com|Jobs|Mach|Res|Den 
Obj 

Funct 

Best 

Bound 

Sol Time 

(sec) 

Gap 

(%) 

Vars Cons 

RED|J10|M2|R4|0.33 111 111 0.13 0 487 283 

RED|J10|M2|R4|0.66 93 93 0.13 0 479 217 

RED|J10|M2|R4|1.0 100 100 0.28 0 654 236 

RED|J25|M3|R6|0.33 399 399 0.41 0 2098 619 

RED|J25|M3|R6|0.66 267 267 0.38 0 2181 477 

RED|J25|M3|R6|1.0 304 304 0.53 0 3760 535 

RED|J50|M5|R12|0.33 739 739 1.78 0 4691 1150 

RED|J50|M5|R12|0.66 793 793 3.19 0 9866 1289 

RED|J50|M5|R12|1.0 692 692 3.44 0 14520 1149 

RED|J75|M7|R18|0.33 1090 1090 2.94 0 10979 1746 

RED|J75|M7|R18|0.66 899 899 3.53 0 19773 1594 

RED|J75|M7|R18|1.0 1123 1123 9.77 0 33535 1846 

RED|J100|M10|R24|0.33 1261 1261 21.92 0 17871 2162 

RED|J100|M10|R24|0.66 1283 1283 13.6 0 37070 2163 

RED|J100|M10|R24|1.0 1250 1250 26.38 0 54310 2172 

MED|J10|M2|R4|0.33 211 211 0.25 0 893 514 

MED|J10|M2|R4|0.66 181 181 0.31 0 867 387 

MED|J10|M2|R4|1.0 192 192 0.25 0 1196 424 

MED|J25|M3|R6|0.33 741 741 1.73 0 3927 1133 

MED|J25|M3|R6|0.66 478 478 1.08 0 3800 809 

MED|J25|M3|R6|1.0 574 574 1.81 0 6946 964 

MED|J50|M5|R12|0.33 1382 1382 3.98 0 8447 2026 

MED|J50|M5|R12|0.66 1444 1444 331.93 0 18041 2305 

MED|J50|M5|R12|1.0 1266 1266 9.92 0 26260 2024 

MED|J75|M7|R18|0.33 2007 2007 13.16 0 19868 3079 

MED|J75|M7|R18|0.66 1634 1634 39.55 0 35475 2782 

MED|J75|M7|R18|1.0 2103 2103 104.43 0 62228 3342 

MED|J100|M10|R24|0.33 2336 2336 32.1 0 32038 3775 

MED|J100|M10|R24|0.66 2313 2313 263.4 0 66521 3777 

MED|J100|M10|R24|1.0 2206 2206 291.93 0 97520 3798 

HAR|J10|M2|R4|0.33 411 411 0.27 0 1716 982 

HAR|J10|M2|R4|0.66 358 358 0.3 0 1627 719 

HAR|J10|M2|R4|1.0 383 383 0.41 0 2298 805 

HAR|J25|M3|R6|0.33 1435 1435 6.31 0 7447 2120 

HAR|J25|M3|R6|0.66 929 929 1.2 0 7316 1530 

HAR|J25|M3|R6|1.0 1096 1096 5.14 0 13039 1785 

HAR|J50|M5|R12|0.33 2607 2607 20.11 0 15970 3777 

HAR|J50|M5|R12|0.66 2798 2798 123.09 0 34402 4338 

HAR|J50|M5|R12|1.0 2402 2402 222.89 0 50215 3807 

HAR|J75|M7|R18|0.33 3849 3849 336.99 0 37998 5793 

HAR|J75|M7|R18|0.66 3138 3138 162.31 0 66891 5158 

HAR|J75|M7|R18|1.0 4008 4008 741.87 0 119607 6322 

HAR|J100|M10|R24|0.33 4427 4427 771.7 0 60364 7000 

HAR|J100|M10|R24|0.66 4327 4327 1944.18 0 125540 7006 

HAR|J100|M10|R24|1.0 4215 4215 3132.99 0 187890 7186 
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In conclusion, this formulation rendered positive results since optimal solutions were 

found for 45 out of the 45 scenarios in less than one hour.  This chapter excluded setups 

to determine lower bounds on run times when setups are excluded.  The emphasis of the 

subsequent phase is to reduce run-time and complexity when setups are included, which 

is studied in chapter 5. 

These experimental results provide successful insight into how the time-indexed IP 

model alone could be used in a tactical space for practical problems where setups are not 

required, and resources are needed to process a job. 

4.4. Phase I Conclusions 

A time-indexed IP parallel machine scheduling problem with dual resources and 

ready times was studied. The proposed 𝑃𝑚|𝑟𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 model is an expansion of the 

model originally proposed by (Sousa and Wolsey, 1992) known as the time-index 

formulation.  The original model was expanded to include multiple machines and 

auxiliary resources.  To our knowledge, the proposed IP formulation has not been 

published before nor have the following results been previously reported. Optimal 

solutions were found for 45 out of the 45 scenarios in less than one hour for all the 

combinations.  Several instances of 100 jobs with reduced and medium complexity found 

optimal solutions under 150 seconds (2.5 minutes) up to the “MED|J100|M10|R24|0.33” 

instance.  Optimal solutions were found in less than 600 seconds (10 minutes) for 41 out 

of the 45 scenarios including the medium complexity J100 instance. Phase I formulation 

is recommended to run longer time horizons in order to determine area capacity.  This 

formulation can also be used to establish the objective function lower bound since a 
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model without setups is going to allow more jobs in the schedule seeing that there is no 

idle time changing auxiliary resources. Finally, this model can be used to determine the 

lower bound for run time and to decide complexity as compared with a model that 

includes setups.   

4.5. Phase I Summary 

This chapter has addressed the minimization of total completion time for resource 

constrained parallel machine scheduling problems with job-machine eligibility 

restrictions with release dates denoted 𝑃𝑚|𝑟𝑗, 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 .  To our knowledge, this 

exact formulation has not been used to solve the photolithography scheduling problems 

with release dates without setups. 

A time-indexed IP optimization model has been formulated to solve this problem for 

45 test problem instances resulting from five problem sizes, three complexity levels and 

three machine eligibility restriction levels as presented in chapter 3.  We vary the number 

of jobs, machines, resources, process times, release times, and job-machine restrictions to 

determine how this model would behave in a real-world environment.  IBM Cplex 

optimization engine was used to solve the problem with default settings.  

These experimental results provide insight on how the time-indexed IP model alone 

could be used to solve real-world practical resource constrained parallel machine 

scheduling problems where setups are not required.  Process times of real-world practical 

systems also need to be compared to those used in this study in order to gain more insight 

into the proposed model. The results of phase I modeling lay the foundation for the phase 
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II (Chapter 5) and Phase III (Chapter 6), where we will incorporate sequence-dependent 

setups, which further complicates the scheduling problem.  These results could also be 

used to determine objective function bounds for large size problem instances where 

optimization model alone could not find a reasonable result in one hour.  
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5. CHAPTER 5 PHASE II RESOURCE CONSTRAINED PARALLEL 

MACHINE SCHEDULING WITH SETUPS MODEL 

In Phase II, we expand the overall complexity of the models by adding sequence-

dependent setup times and resource transportation time between machines.  An NP-hard 

problem becomes even more difficult to solve with the addition of sequence-dependent 

setups. 

The objective function aims to minimize total completion time for resource 

constrained parallel machine scheduling model with sequence-dependent setup times 

denoted as 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗. A pre-processing heuristic is proposed in order to 

keep the solution time tractable according to the problem instance size and complexity 

previously depicted in Table 4-1. The main objective of this phase is to verify and 

validate our mathematical model is efficient with auxiliary resources and sequence-

dependent setup times. A key contribution of this phase is the combination of medium 

and large size model instances for identical parallel machines, shared auxiliary resources 

with sequence-dependent setup time including release dates which also complicates the 

problem as opposed to the assumption that all jobs are available at time t=1.  

We first describe an IP model to find exact optimal solutions for this problem. We 

then introduce a heuristic algorithm to find feasible solutions within a reasonable amount 

of time.  This method aims to find feasible solutions to be provided to the timed-indexed 

IP model as a starting solution. The objective of this method is to attempt to improve the 

solution found by the heuristic using branch and bound algorithms provided by the IP 

solver. The manufacturing problem we are addressing considers jobs that must be 
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processed by one machine and one auxiliary resource simultaneously.  Also, we assume 

that the auxiliary resource cannot be assigned to more than one machine at the same time. 

The environment has a set of jobs J either incoming to the system ("ready dates") or 

available for immediate scheduling.  These jobs can be processed in one or more of 

identical parallel machines if fitted with one of the auxiliary resources r in set R. These 

scarce resources are shared among some or all machines. Incoming jobs require a release 

date to prevent assignment before they become available. Once a job is assigned to 

machine-auxiliary resource pair, that job must complete processing. That is, preemption 

is not allowed. Once a job has been assigned to a combination of resources, that job may 

need a setup time. A setup time is incurred when job j is not compatible with the previous 

job and a different auxiliary resource is required to be added to the machine to run the 

job. Thus, the machine must temporarily idle for the auxiliary resource setup.  If jobs are 

compatible with each other they belong to the same family since no setup is required. In 

practice, a family consists of a combination of specific product and an operation; 

however, for this study a family is created by randomly assigning jobs to family sets 

forcing each set to have a similar number of jobs.  If a resource is transferred from one 

machine to another one, an additional setup time (travel time between machines) is 

required.  Inefficient resource assignments may cause a machine to be temporarily idle 

until the proper auxiliary resource is installed. Typically, auxiliary resources are finite 

and expensive that need to be shared among different machines, thus if a resource is 

being used in one machine, another one may be idle waiting for this resource. Thus, 

generating efficient schedules not only optimizes resource assignment and utilization, but 
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also overall factory throughput resulting in lower cycle times.  We assume that a random 

auxiliary resource was previously loaded in a machine at time 0. Hence, the model must 

respect an initial setup during period t=1. 

One of the goals of this study is to find near-optimal solutions for the 

manufacturing system previously described by applying exact optimization methods, 

such as the time-indexed IP model introduced in chapter 4. The second goal is to develop 

a heuristic capable of generating fast and feasible initial solutions when IP model is not 

capable of finding one. The third goal is to generate a hybrid model between the IP model 

and the proposed heuristic. That is, the solution found by the heuristic is given to the IP 

model aiming to reduce the time horizon and provide an initial solution to the IP model. 

We believe a combination of an exact and a heuristic algorithm allow practitioners tackle 

medium and large size problem instances where setups are required for machine and 

auxiliary resources in complex manufacturing systems such as photolithography. 

We now turn to defining the time-indexed IP model including the indices, sets, 

objective function, and constraints.  

5.1. Phase II Mathematical Model Formulation 

Indices and Sets 

𝑗 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑗𝑜𝑏𝑠, 𝑗 ∈ 𝐽 

𝑟 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑟 ∈ 𝑅 

𝑚 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠, 𝑚 ∈ 𝑀 

𝑡 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒, 𝑡 ∈ |𝐻′|  
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Parameters:  

𝑟𝑗  𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑝𝑗  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑠𝑟′,𝑟 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟′ 𝑎𝑛𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 

𝑡𝑡𝑚′,𝑚 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑖𝑚𝑒  

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚′ 𝑎𝑛𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 

𝐻 𝑆𝑒𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤ℎ𝑒𝑟𝑒 |𝐻| ≥  ∑ 𝑝𝑗
𝑗∈𝐽

+ max {𝑟𝑗}  

            𝐻′𝑃𝑟𝑖𝑚𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤ℎ𝑒𝑟𝑒 |𝐻′|  ≥ Ɵ ∗ (
∑ 𝑝𝑗𝑗∈𝐽 + max{𝑟𝑗}

𝑚
)  𝑎𝑛𝑑  2 ≤ Ɵ

≤  𝑚 𝑓𝑜𝑟 𝑡𝑖𝑔ℎ𝑡𝑒𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 

H should be used for single machine scheduling or when model parameters are not well 

understood. Otherwise, use |𝐻′| formulation and a machine factor (Ɵ) of 2 or greater to 

tighten the formulation. This paper used Ɵ =2 for 45 problem instances without any 

infeasibility issues.  

Decision variables: 

𝑥𝑗𝑚𝑟𝑡

=  {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡;

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Formulation: 

The objective function aims to minimize total sum of completion times (Cj). That 

is, if 𝑥𝑗𝑟𝑚𝑡 = 1, the process time for job j is added to start time t which determines 

completion time of job j. The total sum of all the job’s completion time makes up the 
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objective function which must be minimized. It is noteworthy that each job-machine 

combination has a unique auxiliary resource, but these resources are shared among 

multiple jobs-machines according to the density matrix. 

𝑚𝑖𝑛 ∑ 𝐶𝑗
𝑗∈𝐽

 
(5.1) 

Subject To:  

∑ ∑ ∑   (𝑡 + 𝑝𝑗 − 1) 𝑥𝑗𝑚𝑟𝑡

𝐻′−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 =  𝐶𝑗∀ 𝑗 ∈ 𝐽 

(5.2) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡 = 1
𝐻′−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 ∀ 𝑗 ∈ 𝐽 

(5.3) 

𝑥𝑗𝑚𝑟𝑡+ ∑ ∑ 𝑥𝑖𝑚′𝑟′𝑡′ ≤ 1
min(𝑡+𝑝𝑗+𝑡𝑡

𝑚,𝑚′+𝑠
𝑟,𝑟′−1,𝐻′−𝑝𝑗+1)

𝑡′=max(𝑟𝑗,𝑡−𝑝𝑖−𝑡𝑡𝑚′,𝑚−𝑠𝑟′,𝑟+1)𝑟′∈𝑅
 

∀ 𝑖, 𝑗 ∈ 𝐽: 𝑖 > 𝑗; 𝑚, 𝑚′ ∈ 𝑀: 𝑚 = 𝑚′;  𝑟 ∈ 𝑅;  𝑡 ∈ {𝑟𝑗 … 𝐻′ − 𝑝𝑗 + 1} 

(5.4) 

𝑥𝑗𝑚𝑟𝑡+ ∑ ∑ 𝑥𝑖𝑚′𝑟′𝑡′ ≤ 1
min(𝑡+𝑝𝑗+𝑡𝑡

𝑚,𝑚′+𝑠
𝑟,𝑟′−1,𝐻′−𝑝𝑗+1)

𝑡′=max(𝑟𝑗,𝑡−𝑝𝑖−𝑡𝑡𝑚′,𝑚−𝑠𝑟′,𝑟+1)𝑚′∈𝑀
 

∀ 𝑖, 𝑗 ∈ 𝐽: 𝑖 > 𝑗; 𝑚 ∈ 𝑀;  𝑟, 𝑟′ ∈ 𝑅: 𝑟 = 𝑟′;  𝑡 ∈ {𝑟𝑗 … 𝐻′ − 𝑝𝑗 + 1} 

(5.5) 

𝑥𝑗𝑟𝑚𝑡 ∈ {0,1}, 𝐶𝑗 ∈ 𝑍+  (5.6) 

The first constraint set (eq. 5.2) calculates the expected completion time for each 

job j, the expression in parentheses serves to offset the process time for each job. The 

second constraint set (eq. 5.3) forces all jobs to start processing at only one period t 

between the ready time and the latest time it can start (and still finish by the end of the 
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horizon) per machine-resource combination. The third constraint set (eq. 5.4) prevents 

job-machine-period overlap and incorporates two different setups: i) resource-sequence 

dependent setup and ii) a machine-sequence dependent setup which is incorporated in the 

form of resource travel time between machines. It is worth pausing for a moment to 

highlight the resulting computational complexity of constraint (eq. 5.4), since all 

combinations between job j and i where 𝑖 ≠ 𝑗 must be explored. All combinations 

between machine 𝑚 and 𝑚′ where  𝑚 = 𝑚′, also need to be explored. Similarly, all 

resource combinations must be explored between 𝑟 and 𝑟′where 𝑟 = 𝑟′. We estimate the 

model will generate O(jmrt) variables and O(jmt2r) constraints. The constraint sets (5.4) 

and (5.5) are the two that generate the most constraints in this formulation up to 16.9 

million among all the constraints in our experimentation. 

Similarly, constraint set (eq. 5.5) enforces that at any given time t at most one job can be 

processed on a given machine and resource respectively This formulation resembles real-

world complex manufacturing environments in the semiconductor industry, mold 

injection operations, and the PCB industry.  Equation (5.6) defines a binary decision 

variable x and a non-negative integer variable for completion time. 

5.2. Phase II Heuristic Pseudocode 

This study proposes a heuristic to find fast feasible solutions that can be used to 

prime the proposed IP model with an initial feasible solution. The proposed heuristic 

aims to minimize weighted completion time by reducing auxiliary resource setups.  The 

objective is accomplished by scheduling as many jobs as possible of the same family to 

the same machine and resource. That is, all jobs that can run on the same 
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machine/resources and do not require a setup (i.e. jobs are compatible due to same 

resource type) are said to be part of the same family.  Jobs in the same family are 

scheduled and/or sequenced together in order to reduce setups and minimize auxiliary 

resource travel time when moved between machines when possible. That is, ready times 

may not allow all jobs of the same family to be scheduled back to back.   

The heuristic aims to reduce completion time and accomplishes its objective 

through a series of sorts and assignments as depicted in Figure 5-1 : i) a set of pre-

assigned jobs randomly selected (i.e. set name jmrt_pre-assigned) are given to the model 

to simulate that all machines start with a pre-assigned job in the busy state. ii) then, the 

pre-assigned jobs are removed from the “Full_Set” which contains all unscheduled jobs 

in addition to other attributes to run the heuristic. The pre-assigned jobs are added to the 

“jmrtf_scheduled” set which contains all jobs that have been scheduled including the 

following attributes: job id, machine id, resource id, family id, process time, ready time, 

start time and end time. Model variables and attributes are updated to reflect the pre-

assigned jobs. iii) An initialization sort logic consisting of four attributes (i.e. 

mach_score, job process_time, job family and mach_res_score) is executed.  The four 

attributes are sorted ascending or descending in order to select the machine to be loaded 

next. It is worth noting that four attributes sorted in two different ways (ascending or 

descending), similar to the levels of a factorial experiment design resulting in the 

generation of 16 combinations used to implement the heuristic. Then, a post-initialization 

sort is executed by sorting 3 attributes (i.e. res_last_completion_time, job_ready_time, 

job_fam) either all ascending or all descending resulting in two additional combinations. 
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Hence, a total of 32 sorting variations are executed for each problem instance based on 

the pre-initialization and post-initialization logic. iv) After the initialization logic step, all 

future sorts for the job-machine-resource combinations aim to select the least utilized 

machine-resource combination. Machine-resource utilization is tracked using the 

“mach_current_load” and “res_current_load” attributes that track total time assigned to 

those resources. The “Least Utilized Mach Sort” logic consists of sorting 

“mach_current_load” attribute ascending to select the least utilized machine as shown in 

Figure 5-1. Then, the job-resource are selected and evaluated to make sure they are 

available. That is, the resource must be readily available.  The process it is repeated until 

all jobs are assigned and until all the scenarios are generated as outlined in Figure 5-1 

The full set of attributes for jobs, machines (mach) and resources (res) that are used to 

keep track of time variable and the history of jobs assigned to machine and resources is 

shown in Figure 5-4.  
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Figure 5-1 Heuristic Process Flow 

A full set of input files and variables is presented next in Figure 5-2.  These input 

sets are given to the optimization IP model and the heuristic. Set “jmrf” represents the 

job-machine-resource-family combinations and the sample shown represents the job id, 

machine id, resource id and family id. Similarly, the set “jmrt pre-assigned” represents 

the job-machine-resource-family randomly pre-assigned (part of the input files) where the 

numbers shown in the Figure 5-2 represent job id, machine id, resource id and job’s start 

time. The set “job” provides the job-family-process time (pt)- ready times (rt) 

combinations. Set “m2m Time” provides the resource travel time from m1 id to m2 id.  
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The “Set r2r Time” provides the setup time when swapping resource r1 id to r2 id.  It 

must be noted that in this study the start time is set at t=1.  

 
                                  Figure 5-2 Input Sets 

 

An explanation on how the attributes are initialized is provided next. 

o mach_score = sum of process time of all jobs capable of running on a given machine. 

o mach_last_res = 0 unless a job-resource was pre-assigned. 

o mach_current_load = sum of the process time of the jobs assigned to it. 

o mach_last_completion_time = t_start+ process time -1 for the last job assigned. 

o mach_res_score = 1 for all machine-resource combinations during 

initialization. Then, set = 0 for the machine-resources combinations that 

received a pre-assigned job. Sorting by mach_res_score (asc) after the 

job’s first pass allows the heuristic to select the next job of the same 

family aiming to eliminate a setup. 
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o res_last_machine= 0 unless a job-machine was pre-assigned. 

o res_current_load = sum of the process times of the jobs assigned. 

o res_last_completion_time = t_start+ process time -1 for the last job assigned. 

The pseudo code associated with the heuristic is presented in Figure 5-3. 
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Load all scenario names //45 instances to run 

For scenario i do 

Initialize variables (job_counter=0) 

Read data sets (See Figure 5-2) 

Create & Initialize machine-resource attributes (See Full_Set in Figure 5-4) 

Add pre-assigned jobs to jmrtf_scheduled set (initial solution given) 

Delete pre-assigned jobs from the Full_Set 

            While unscheduled_jobs exist do  

                       If job_counter ==0 or job_first_pass = True //Initialization Sorting 

                             job_counter = job_counter +1 & job_first_pass = False 

                              Full_Set.Sort by mach_score (**ascending/ descending) 

                                Full_Set.Sort by job process_time (**descending/ ascending) 

                                   Full_Set.Sort by job family (**ascending/descending) 

                                      Full_Set.Sort by mach_res_score (**descending/ ascending) 

           Else //after the first job pass, all future job sorting end up here! 

                              Full_Set.Sort mach_current_load (ascending) 

                        top_mach = Full_Set.machine row1(least loaded mach_current_load) 

                       For jmrt_m in Full_Set where mach= top_mach sorted by **res_last_completion_time 

(asc), job_ready_time (asc), job_fam (asc) 

                              top_res = jmrt_m.resource row1(least loaded res_current_load) 

For jmrt_mr in Full_Set where mach= top_mach & res=top_res  

fam_filter= jmrt_mr.family id (row 1) 

     For jmrf_mrf  in Full_Set where mach= top_mach & res=top_res & Fam = 

fam_filter sorted by job_ready_time (asc) 

                                  IF job_avail = True & Res_available=True (feasible schedule) 

                 Add job to jmrtf_scheduled set 

                             Update Full_Set attributes 

        Delete jmrt combination from Full_Set 

                         ELSE 

                               Do nothing, move to next row 

End for jmrt_mr 

End For jmrt_m 

                If no jobs scheduled 

                           mach_last_completion_time = mach_last_completion_time+1  

                        End If 

End While unscheduled_jobs exist 

            Save results (output) after all jobs have been scheduled for scenario i  

End For scenario i do 

 Figure 5-3 Heuristic Pseudocode 

The decision variable xjmrt (heuristic output) is generated using the attributes 

presented in Figure 5-4 which allow the model keep track of all job-machine-resource 

assignments and time. 
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  Figure 5-4 Heuristic Sets for Scheduled and Unscheduled jobs 

 

A job can be scheduled if it is readily available (i.e. variable job_avail = True). 

That is, the job’s ready time must be equal or less the machine’s last completion time 

attribute denoted by mach_last_completion_time + 1 unit. A resource can be scheduled 

with a job-machine if the resource is available. That is, the variable Res_avail=True if 

resource is not being utilized by other machine or the resource is not being transferred 

between machines based on the set m2m  

5.3. IP Model Experimental Results 

The computational results for the time-indexed IP model are depicted in Table 5-1 

for the 45 problem instances.  The first column gives the problem instance as denoted by 

the combination of complexity, number of jobs-machines-resources and sharing 

density—Com|Jobs|Mach|Res|Den, The second column gives the objective function 

value, the third column provides the best bound generated by the solver, the fourth 

column shows the solution time in minutes. The fifth column gives the Gap (%) provided 

by Cplex as the difference between the best integer solution and the best bound. The last 

two columns give the number of variables (Vars) and constraints (Cons) generated by the 
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model. As previously stated, a total of 45 scenarios were run as a result of the 

combinations among 3 complexity levels, 5 job-machine-resource combinations and 3 

job-machine density levels. 

Optimal solutions were found for 16 out of the 45 scenarios in less than one hour 

for several combinations of 10/25 job sizes.   A Gap of 10% or less was found for 24 out 

of the 45 scenarios ranging from 10 jobs up to 75 jobs (i.e. MED|J75|M7|R18|0.33).  

Optimal solutions were found for 15 out of the 45 scenarios for the small instances (10/25 

job) in less than 600 seconds (10 minutes). No results are reported for one out of the 45 

instances (HAR|J100|M10|R24|1.0) due to constraints equation (4) and (5) making the 

model excessively large. It must be noted that prior to using H’ time horizon formulation 

the H formulation rendered at least 5 instances out of memory. Hence, it was decided to 

tighten the model using the H’ formulation described in section 4. 
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       Table 5-1: Model Results for Optimization Model 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑎𝑢𝑥| ∑ 𝐶𝑗 

Com|Jobs|Mach|Res|Den 
Obj 

Funct 

Best 

Bound 

Sol Time 

(sec) 

Gap 

(%) 

Vars Cons 

RED|J10|M2|R4|0.33 128 128 1 0% 542 1740 

RED|J10|M2|R4|0.66 110 110 0 0% 556 2362 

RED|J10|M2|R4|1.0 118 118 1 0% 756 4207 

RED|J25|M3|R6|0.33 464 464 46 0% 2282 17521 

RED|J25|M3|R6|0.66 322 322 43 0% 2409 24466 

RED|J25|M3|R6|1.0 341 341 693 0% 4139 66275 

RED|J50|M5|R12|0.33 991 957 3601 3% 5086 51560 

RED|J50|M5|R12|0.66 937 873 3602 7% 10622 200233 

RED|J50|M5|R12|1.0 1660 62 3601 96% 15794 500112 

RED|J75|M7|R18|0.33 1451 1292 3602 11% 11891 191405 

RED|J75|M7|R18|0.66 2231 85 3602 96% 21361 689285 

RED|J75|M7|R18|1.0 2545 88 3603 97% 36290 1719167 

RED|J100|M10|R24|0.33 3072 118 3602 96% 19385 409063 

RED|J100|M10|R24|0.66 3087 125 3604 96% 40324 1769745 

RED|J100|M10|R24|1.0 3063 122 3610 96% 59085 3793645 

MED|J10|M2|R4|0.33 232 232 3 0% 1002 3235 

MED|J10|M2|R4|0.66 197 197 1 0% 1020 4337 

MED|J10|M2|R4|1.0 214 214 2 0% 1403 7803 

MED|J25|M3|R6|0.33 824 824 185 0% 4297 33201 

MED|J25|M3|R6|0.66 548 548 116 0% 4249 43286 

MED|J25|M3|R6|1.0 619 609 3601 2% 7730 123864 

MED|J50|M5|R12|0.33 1718 1655 3601 4% 9240 93821 

MED|J50|M5|R12|0.66 1704 1581 3603 7% 19552 369559 

MED|J50|M5|R12|1.0 2813 79 3602 97% 28786 913568 

MED|J75|M7|R18|0.33 2449 2249 3601 8% 21707 349682 

MED|J75|M7|R18|0.66 4398 107 3603 98% 38683 1248299 

MED|J75|M7|R18|1.0 4897 114 3605 98% 67784 3214873 

MED|J100|M10|R24|0.33 5683 155 3601 97% 35072 740634 

MED|J100|M10|R24|0.66 5583 165 3606 97% 73046 3204091 

MED|J100|M10|R24|1.0 5461 144 3615 97% 107061 6875867 

HAR|J10|M2|R4|0.33 432 432 1 0% 1935 6277 

HAR|J10|M2|R4|0.66 376 376 2 0% 1935 8239 

HAR|J10|M2|R4|1.0 406 406 9 0% 2720 15157 

HAR|J25|M3|R6|0.33 1524 1524 349 0% 8182 63302 

HAR|J25|M3|R6|0.66 1016 1016 328 0% 8225 84006 

HAR|J25|M3|R6|1.0 1154 1146 3602 1% 14610 233934 

HAR|J50|M5|R12|0.33 3095 2940 3602 5% 17546 178486 

HAR|J50|M5|R12|0.66 3109 2702 3602 13% 37414 708309 

HAR|J50|M5|R12|1.0 2846 2001 3603 30% 55270 1756920 

HAR|J75|M7|R18|0.33 4660 3974 3602 15% 41696 672674 

HAR|J75|M7|R18|0.66 7792 160 3605 98% 73320 2366947 

HAR|J75|M7|R18|1.0 9639 160 3620 98% 130768 6207290 

HAR|J100|M10|R24|0.33 9582 2670 3602 72% 66446 1403993 

HAR|J100|M10|R24|0.66 10442 239 3611 98% 138488 6080351 

HAR|J100|M10|R24|1.0 - - - - - - 

Avg 2589 769 2334 37% 28402 1055745 

Std dev 2722 939 1704 45% 34524 1743657 
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It is evident that there is a positive correlation (factor = 0.68) between Gap % and 

the number of constraints generated as depicted in Figure 5-5. It is also evident that the 

relationship is not linear. 

 
                    Figure 5-5 IP Model Constraints vs Gap (%) Correlation 

 

The Gap % summary in Table 5.2 shows the IP formulation presents higher Gaps 

for the instances with 100% sharing which indicates the solution space is larger; hence, 

the model iterated through more combinations.  Table 5-2 also shows that Gaps get larger 

as the number of Jobs increases. However, the Gap for the complexity instances did not 

follow a pattern despite the fact that the hard instances have more variables and 

constraints than the reduced ones. We believe, the Gap is not impacted due to factors 

such as multiple machines used and time horizon |H’| provided a tighter formulation 

potentially neutralizing the effect of process times. The average for the hard complexity 

includes a gap of 100% for the HAR|J100|M10|R24|1.0 combination which was not 
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solved by the optimization model. The table below shows the average gap by number of 

jobs, density sharing (DS %) and by complexity. The complexity table has two additional 

columns to show the average number of variables and average number of constraints. 

 Table 5-2 IP Model Gap % Summary 

Jobs 

Avg 

Gap %   

DS 

(%) 

Avg 

Gap%   Complexity Avg Gap% 

Avg 

Vars 

Avg 

Const 

10 0%  0.33 20.8%  reduced 39.9% 15368 629386 

25 0%  0.66 40.6%  medium 40.3% 28042 1148408 

50 29%  1.0 54.1%  hard 35.3% 42754 1413278 

75 69%          

100 94%         

Overall 

Gap 37%     

 

In order to better understand the behavior of this model with respect to run time, 

we selected the J50|M5|R12|0.66 scenario and ran it for 30, 60, 90 and 120 minutes for 

the three complexity levels (reduced, medium, hard). Table 5-3 presents the results.  Prior 

to discussing the results, a striking observation that emerged from this experiment needs 

to be discussed.  The initial models ran on a virtual server and the results obtained 

became slightly inferior as the model ran longer than 60 minutes. That is, Cplex found 

slightly better solutions for the 60-minute run than for the 90- and 120-minute runs. Upon 

investigation in technical forums and by analyzing solver logs, it was apparent this 

behavior has been reported out by other researchers and Cplex logs show Cplex inducing 

what it seems to be a smart heuristic allowing the model to find a small improvement 

(less than 1%) minutes before model reached maximum run time.  In order to fix this 

behavior, the model ran in a laptop to minimize the impact of a virtual server balancing 
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computing loads and the results are depicted in table 5-3. The laptop has an Intel Core i7-

8665U CPU @ 1.9 GHz, 4 Core(s), 8 Logical Processors(s) and 32 GB RAM. 

 

 Table 5-3: J50|M5|R12|0.66 Results for 30 to 120 min. Run Time 

Complexity 

Stop Criteria 

(min) OF BB 

Sol 

Time 

(sec) 

Gap 

(%) Var Con 

  30 1047 785 1802 24.9% 

10622 200233 
Reduced 60 950 876 3601 7.8% 

  90 948 876 5400 7.6% 

  120 947 876 7201 7.5% 

  30 1681 1579 1801 6.1% 

19552 369559 
Medium 60 1681 1579 3601 6.1% 

  90 1671 1579 5401 5.5% 

  120 1671 1579 7201 5.5% 

  30 3144 2404 1801 23.5% 

37414 708309 
Hard 60 3099 2931 3601 5.4% 

  90 3099 2931 5401 5.4% 

  120 3091 2949 8121 4.6% 

 

It is evident that 30 minutes is not enough time to get a near optimal solution for 

the reduced and hard problem instances. However, the results are the same for the 

medium 30- and 60-minute instance. The most noticeable improvement is from 30 to 60 

minutes, running the model for 90 and 120 minutes did not have a significant effect for 

this problem instance.   

Additionally, the model ran on a laptop with 3 parameters disabled as suggested 

in technical forums in order to remove the unexpected behavior of the solver. The results 

presented in Table 5.4 were obtained by applying the following settings: 

MIP.Strategy.RINSHeur = -1;  MIP.Strategy.FPHeur= -1), and MIP.Strategy.LBHeur = 0 
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which disabled Cplex built-in heuristics. The columns of table below present the 

objective function, best bound, solution time, Gap %, number of variables and constraints 

grouped by complexity and maximum run time (stop criteria) given in minutes. 

 

    Table 5-4 J50|M5|R12|0.66 results Cplex heuristic disabled 30 to 120 min run time 

Complexity 

Stop Criteria 

(min) 

Obj 

Funt 

Best 

Bound 

Sol Time 

(sec) 

Gap 

(%) Var Con 

  30 -1 872.7 1800 - 

10622 200233 
Reduced 60 989 876 3601 11.5% 

  90 989 876 5400 11.5% 

  120 964 876 7201 9.1% 

  30 -1 1578 1801 - 

19552 369559 
Medium 60 1738 1578 3601 9.2% 

  90 1734 1579 5401 9.0% 

  120 1734 1582 7201 8.7% 

  30 - 2934.53 1800 - 

37414 708309 
Hard 60 - 2946.69 3602 - 

  90 - 2947 5402 - 

  120 - 2947 7202 - 

 

Results in Tables 5-3 and 5-4 show that Cplex was consistent in finding either the 

same or better result as the model ran longer.  However, disabling Cplex heuristics is not 

an option as many scenarios did not find a feasible solution (“-“) and the results were 

significantly inferior 

In summary, running the model longer than 60-minutes may not be the right 

decision for practical problems that resemble the characteristics of the J50 size with 66% 

job-machine sharing density. Next, we present the results obtained by the proposed 

heuristic.  
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5.4. Heuristic Experimental Results 

The heuristic results for the 45 problem instances are presented in Table 5-5. The 

objective function value was calculated by adding up the completion time for each job 

(total completion time). It is evident that the heuristic run times are fast with a range of 

0.4 seconds for the “RED|J10|M2|R4|D0.33” and 47 seconds for the 

RED|J100|M10|R24|1.0 scenario.  The table below shows the minimum objective found 

by the heuristic, the average objective found for the 32 combinations, the standard 

deviation of the objective function. The last two columns provide the average solution 

time and the standard deviation (in seconds). 

It is evident from Table 5-5 that the average objective function provided by the 

heuristic (2212) is lower than the average obj function provided by the IP model (2589). 

Section 5.6 shows the breakdown by scenario for the IP model, heuristic and the hybrid 

(heuristic + IP model).  A total of 32 sorting variations were run per problem instance 

with the best solution given to the IP model in order to prime it with an initial feasible 

solution. 
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   Table 5-5 Heuristic Results 

Com|Jobs|Mach|Res|Den 
 Min Obj 

Funct 

Avg Obj 

Funct 

Std Obj 

Funct 

Avg Sol Time 

(sec) 

Std Sol Time 

(sec) 

RED|J10|M2|R4|0.33 141 151 12 0.4 0.1 

RED|J10|M2|R4|0.66 137 146 7 0.5 0.1 

RED|J10|M2|R4|1.0 127 135 7 0.4 0.0 

RED|J25|M3|R6|0.33 556 577 28 1.4 0.1 

RED|J25|M3|R6|0.66 418 441 15 1.8 0.2 

RED|J25|M3|R6|1.0 427 440 8 2.8 0.5 

RED|J50|M5|R12|0.33 1400 1445 35 3.4 0.3 

RED|J50|M5|R12|0.66 1062 1175 91 4.9 0.4 

RED|J50|M5|R12|1.0 932 987 47 11.6 1.8 

RED|J75|M7|R18|0.33 1947 2010 51 6.7 0.5 

RED|J75|M7|R18|0.66 1452 1509 41 15.0 1.5 

RED|J75|M7|R18|1.0 1593 1660 34 29.6 6.4 

RED|J100|M10|R24|0.33 2366 2519 75 10.2 0.7 

RED|J100|M10|R24|0.66 2010 2155 79 28.3 5.6 

RED|J100|M10|R24|1.0 1930 1993 30 47.5 7.3 

MED|J10|M2|R4|0.33 263 274 16 0.4 0.1 

MED|J10|M2|R4|0.66 227 246 15 0.5 0.1 

MED|J10|M2|R4|1.0 244 250 5 0.5 0.1 

MED|J25|M3|R6|0.33 985 1060 75 1.4 0.2 

MED|J25|M3|R6|0.66 738 762 15 1.8 0.1 

MED|J25|M3|R6|1.0 721 752 28 3.6 0.4 

MED|J50|M5|R12|0.33 2457 2521 44 3.0 0.2 

MED|J50|M5|R12|0.66 2110 2209 104 5.8 0.7 

MED|J50|M5|R12|1.0 1651 1752 84 13.3 2.8 

MED|J75|M7|R18|0.33 3333 3435 57 6.0 0.3 

MED|J75|M7|R18|0.66 2723 2760 35 14.4 0.9 

MED|J75|M7|R18|1.0 2720 2878 158 22.9 1.8 

MED|J100|M10|R24|0.33 4183 4287 63 9.9 0.7 

MED|J100|M10|R24|0.66 3544 3667 71 29.9 7.7 

MED|J100|M10|R24|1.0 3267 3418 122 42.2 2.3 

HAR|J10|M2|R4|0.33 497 516 30 0.5 0.2 

HAR|J10|M2|R4|0.66 437 463 19 0.4 0.1 

HAR|J10|M2|R4|1.0 477 481 4 0.5 0.1 

HAR|J25|M3|R6|0.33 1865 1954 116 1.7 0.2 

HAR|J25|M3|R6|0.66 1336 1509 101 3.6 1.3 

HAR|J25|M3|R6|1.0 1349 1387 23 3.9 0.4 

HAR|J50|M5|R12|0.33 4612 4665 53 4.0 0.4 

HAR|J50|M5|R12|0.66 3994 4073 51 5.9 0.2 

HAR|J50|M5|R12|1.0 3295 3334 37 12.2 2.4 

HAR|J75|M7|R18|0.33 6244 6452 136 7.4 0.7 

HAR|J75|M7|R18|0.66 4757 5032 146 15.2 1.1 

HAR|J75|M7|R18|1.0 5187 5338 110 24.3 1.7 

HAR|J100|M10|R24|0.33 7590 7689 63 12.0 1.5 

HAR|J100|M10|R24|0.66 6213 6780 232 25.5 4.2 

HAR|J100|M10|R24|1.0 6039 6271 143 42.2 3.3 

Avg 2212 2301 60 11 1 

Std dev 1938 2006 - 12 - 
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A short summary characterizing the sorting results are provided for small, medium 

and large problem sizes.  It is evident form the results that for the problem size instances 

with 10 jobs all instances achieved the best results when post initialization sort was: 

last_completion_time (desc), job ready_time (desc), family (desc). For 4 out of 9 

combinations for job size =10 the best results were obtained when the initialization 

sorting logic was the following: m_score (asc), process time (desc), family (asc), 

mr_score (asc). For problem instances with 25 jobs 4 out of 9 scenarios obtained the best 

results when the initialization sort logic was the following: m_score (asc), process time 

(asc), family (desc), mr_score (desc). Similarly, for J50 problem instances 6 out of 9 

scenarios obtained best results when initialization sort logic was -> m_score (asc), 

process time (asc), family (desc), mr_score (desc). For problem instances with 75 and 

100 jobs no sorting logic dominated the best results. In summary, the post-initialization 

sorting logic had more effect on the smaller problem instances than the larger ones. 

5.5. Hybrid Model Experimental Results (IP/Heuristic) 

Table 5-6 presents the results for the hybrid model consisting of the heuristic 

feasible solution provided to the IP model by the heuristic. As previously stated, the 

heuristic solutions were provided to the IP model as “MIP start” in order to reduce time 

horizon and to provide the IP model with an initial solution which could be further 

improved. Reducing the time-indexed IP formulation horizon results in a smaller solution 

space which is likely to provide better results in less time. It is also important to highlight 

that providing an initial solution from the heuristic reduced time horizon by ~50% when 

H formulation was used instead of the H’ presented in section 4.  



 

  103 

         Table 5-6 Hybrid IP/Heuristic Results for 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑎𝑢𝑥| ∑ 𝐶𝑗 

Com|Jobs|Mach|Res|Den 
Obj 

Funct 

Best 

Bound 

Sol Time 

(sec) 

Gap 

(%) 

Vars Cons 

RED|J10|M2|R4|0.33 128 128 0.5 0% 542 1740 

RED|J10|M2|R4|0.66 110 110 0.3 0% 556 2362 

RED|J10|M2|R4|1.0 118 118 0.5 0% 756 4207 

RED|J25|M3|R6|0.33 464 464 43.3 0% 2072 15715 

RED|J25|M3|R6|0.66 322 322 29.6 0% 2409 24466 

RED|J25|M3|R6|1.0 341 341 608.5 0% 4064 64915 

RED|J50|M5|R12|0.33 992 957 3601.8 4% 7406 77776 

RED|J50|M5|R12|0.66 1062 63 3600.7 94% 9877 184813 

RED|J50|M5|R12|1.0 932 62 3601.3 93% 15794 500112 

RED|J75|M7|R18|0.33 1454 1293 3601.9 11% 11891 191405 

RED|J75|M7|R18|0.66 1452 85 3602.2 94% 21361 689285 

RED|J75|M7|R18|1.0 1593 88 3605.2 94% 31565 1472594 

RED|J100|M10|R24|0.33 2366 118 3601.9 95% 19385 409063 

RED|J100|M10|R24|0.66 2010 125 3605.3 94% 40324 1769745 

RED|J100|M10|R24|1.0 1930 122 3611.4 94% 55085 3507813 

MED|J10|M2|R4|0.33 232 232 0.5 0% 942 3010 

MED|J10|M2|R4|0.66 197 197 0.4 0% 972 4085 

MED|J10|M2|R4|1.0 214 214 1.7 0% 1243 6715 

MED|J25|M3|R6|0.33 824 824 231.5 0% 4157 31997 

MED|J25|M3|R6|0.66 548 548 77.6 0% 3955 39872 

MED|J25|M3|R6|1.0 616 616 3045.4 0% 6305 98024 

MED|J50|M5|R12|0.33 1724 1655 3601.8 4% 12280 128173 

MED|J50|M5|R12|0.66 1696 1578 3603.8 7% 17764 332551 

MED|J50|M5|R12|1.0 1492 1202 3602.3 19% 25786 808508 

MED|J75|M7|R18|0.33 2477 2250 3602.2 9% 21707 349682 

MED|J75|M7|R18|0.66 2723 107 3603.9 96% 35434 1132478 

MED|J75|M7|R18|1.0 2720 114 3607.9 96% 56759 2639536 

MED|J100|M10|R24|0.33 3861 2189 3605.4 43% 35072 740634 

MED|J100|M10|R24|0.66 3544 165 3610.1 95% 71000 3104173 

MED|J100|M10|R24|1.0 3267 144 3622.1 96% 86061 5375249 

HAR|J10|M2|R4|0.33 432 432 1.2 0% 1647 5197 

HAR|J10|M2|R4|0.66 376 376 0.9 0% 1647 6727 

HAR|J10|M2|R4|1.0 406 406 3.3 0% 2120 11077 

HAR|J25|M3|R6|0.33 1524 1524 390.5 0% 6467 48553 

HAR|J25|M3|R6|0.66 1016 1016 95.0 0% 5873 56694 

HAR|J25|M3|R6|1.0 1154 1154 3124.5 0% 9810 146894 

HAR|J50|M5|R12|0.33 3097 2936 3604.1 5% 20106 207414 

HAR|J50|M5|R12|0.66 3146 2942 3603.5 6% 29517 544857 

HAR|J50|M5|R12|1.0 2817 2191 3605.7 22% 41020 1257885 

HAR|J75|M7|R18|0.33 4618 3972 3603.5 14% 40786 656449 

HAR|J75|M7|R18|0.66 4664 2497 3609.4 46% 60324 1903663 

HAR|J75|M7|R18|1.0 5187 2371 3628.1 54% 93493 4262103 

HAR|J100|M10|R24|0.33 7575 3197 3606.9 58% 63176 1327463 

HAR|J100|M10|R24|0.66 6213 239 3634.6 96% 111208 4748111 

HAR|J100|M10|R24|1.0 6039 198 3645.5 97% 153025 9458057 

Avg 1993 931 2335 0 27617 1074485 

Std dev 1838 1039 1691 0 33552 1863529 
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The feasible solution found by the heuristic for problem instance 

“HAR|J100|M10|R24|D1.0” was not further improved by the hybrid model in one hour 

due to the large number of constraints generated (9,458,057). 

It is evident From Table 5-7 that the hybrid model Gap % follows a similar pattern to the 

optimization model where the gap grows as there are more jobs and the sharing density 

grows. The process times used to simulate the complexity do not make the gap worse 

since we used H’ making the model tighter. 

            Table 5-7 Hybrid Model Gap% Summary 

Jobs 

Avg Gap 

%   DS (%) 

Avg 

Gap%   Complexity 

Avg 

Gap% 

10 0%  0.33 19.7%  reduced 44.9% 

25 0%  0.66 42.0%  medium 34.6% 

50 28%  1.0 44.4%  hard 26.6% 

75 57%        

100 91%         Total Gap 34% 

 

Optimal solutions were found for 18 out of the 45 scenarios in less than one hour 

for all the combinations of 10/25 job sizes. A Gap of 10% or less was found for 24 out of 

the 45 scenarios ranging from 10 jobs up to 75 jobs (i.e. MED|J75|M7|R18|0.33).  

Optimal solutions were found for 15 out of the 45 scenarios for the 10/25 job size 

instances in less than 600 seconds (10 minutes). 

5.6. Best Integer Solution Comparison 

Table 5-8 shows the best integer solution found for smaller size problem instances 

and the comparison among them. Optimal solutions were obtained in one hour or less for 

all the scenarios executed by the hybrid model. The optimization IP model alone shows a 
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Gap of 2% and 1% for scenarios “MED|J25|M3|R6|1.0” and “HAR|J25|M3|R6|1.0” when 

stopped after one hour. The best integer solution % delta was calculated as follows: 

1 −
𝑂𝑝𝑡

𝐻𝑒𝑢𝑟
; 1 −

𝐻𝑦𝑏𝑟

𝐻𝑒𝑢𝑟
; 1 −

𝐻𝑦𝑏𝑟

𝑂𝑝𝑡
, respectively. 

In summary, the heuristic does not add a lot of value for the small scenarios since the IP 

model is faster and obtains the same results. 

  Table 5-8 Best Solution Small Scenarios (10/25 Jobs) 

  

Best Integer 

 Solution 

Solution Time 

(sec) 

Best Integer 

Solution % Delta 

Com|Jobs|Mach|Res|Den Opt Heur Hybr Opt Heur Hybr 

Opt 

vs 

Heur 

Hybr 

vs 

Heu 

Hybr 

vs 

Opt 

RED|J10|M2|R4|0.33 128 141 128 1 0 0 9% 9% 0% 

RED|J10|M2|R4|0.66 110 137 110 0 0 0 20% 20% 0% 

RED|J10|M2|R4|1.0 118 127 118 1 0 0 7% 7% 0% 

RED|J25|M3|R6|0.33 464 556 464 46 1 43 17% 17% 0% 

RED|J25|M3|R6|0.66 322 418 322 43 2 30 23% 23% 0% 

RED|J25|M3|R6|1.0 341 427 341 693 3 609 20% 20% 0% 

MED|J10|M2|R4|0.33 232 263 232 3 0 1 12% 12% 0% 

MED|J10|M2|R4|0.66 197 227 197 1 0 0 13% 13% 0% 

MED|J10|M2|R4|1.0 214 244 214 2 1 2 12% 12% 0% 

MED|J25|M3|R6|0.33 824 985 824 185 1 232 16% 16% 0% 

MED|J25|M3|R6|0.66 548 738 548 116 2 78 26% 26% 0% 

MED|J25|M3|R6|1.0 619 721 616 3601 4 3045 14% 15% 0% 

HAR|J10|M2|R4|0.33 432 497 432 1 1 1 13% 13% 0% 

HAR|J10|M2|R4|0.66 376 437 376 2 0 1 14% 14% 0% 

HAR|J10|M2|R4|1.0 406 477 406 9 1 3 15% 15% 0% 

HAR|J25|M3|R6|0.33 1524 1865 1524 349 2 391 18% 18% 0% 

HAR|J25|M3|R6|0.66 1016 1336 1016 328 4 95 24% 24% 0% 

HAR|J25|M3|R6|1.0 1154 1349 1154 3602 4 3124 14% 14% 0% 

Average             16% 16% 0% 

Std Dev             5% 5% 0% 

 

Table 5-9 shows the best integer solution found for medium size problem 

instances and the comparison among them. As expected, the hybrid model outperformed 
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the IP model when stopped after one hour except for three instances: 

RED|J50|M5|R12|0.66, MED|J75|M7|R18|0.33, HAR|J50|M5|R12|0.66. The IP model 

found a better solution due to the reduced time horizon provided by H’ formulation and 

the heuristic initial solution not being as efficient.  Additionally, four instances 

*|J50|M5|R12|0.33 and MED|J75|M7|R18|0.33 did not accept the initial solution of the 

heuristic since the H’ formulation was more efficient than the Cmax provided by the 

heuristic. Hence, the H’ formulation was modified for these instances from Ɵ = 2 to Ɵ = 3 

in order to extend the time horizon and accept the initial solution from the heuristic.  The 

average for the best integer solution delta (%) is provided at the bottom of the table. The 

results show that the heuristic adds more value for the medium size scenarios than for 

small size scenarios. 
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  Table 5-9 Best Solution Medium Scenarios (50/75 Jobs) 

  

Best Integer 

 Solution 

Solution Time 

(sec) 

Best Integer 

Solution % Delta 

Com|Jobs|Mach|Res|Den Opt Heur Hybr Opt Heur Hybr 
Opt 

vs 

Heur 

Hybr 

vs 

Heu 

Hybr 

vs 

Opt 

RED|J50|M5|R12|0.33 991 1400 992 3601 3 3602 29% 29% 0% 

RED|J50|M5|R12|0.66 937 1062 1062 3602 5 3601 12% 0% -13% 

RED|J50|M5|R12|1.0 1660 932 932 3601 12 3601 -78% 0% 44% 

RED|J75|M7|R18|0.33 1451 1947 1454 3602 7 3602 25% 25% 0% 

RED|J75|M7|R18|0.66 2231 1452 1452 3602 15 3602 -54% 0% 35% 

RED|J75|M7|R18|1.0 2545 1593 1593 3603 30 3605 -60% 0% 37% 

MED|J50|M5|R12|0.33 1718 2457 1724 3601 3 3602 30% 30% 0% 

MED|J50|M5|R12|0.66 1704 2110 1696 3603 6 3604 19% 20% 0% 

MED|J50|M5|R12|1.0 2813 1651 1492 3602 13 3602 -70% 10% 47% 

MED|J75|M7|R18|0.33 2449 3333 2477 3601 6 3602 27% 26% -1% 

MED|J75|M7|R18|0.66 4398 2723 2723 3603 14 3604 -62% 0% 38% 

MED|J75|M7|R18|1.0 4897 2720 2720 3605 23 3608 -80% 0% 44% 

HAR|J50|M5|R12|0.33 3095 4612 3097 3602 4 3604 33% 33% 0% 

HAR|J50|M5|R12|0.66 3109 3994 3146 3602 6 3604 22% 21% -1% 

HAR|J50|M5|R12|1.0 2846 3295 2817 3603 12 3606 14% 15% 1% 

HAR|J75|M7|R18|0.33 4660 6244 4618 3602 7 3604 25% 26% 1% 

HAR|J75|M7|R18|0.66 7792 4757 4664 3605 15 3609 -64% 2% 40% 

HAR|J75|M7|R18|1.0 9639 5187 5187 3620 24 3628 -86% 0% 46% 

Average             -18% 13% 18% 

Std Dev             48% 13% 22% 

 

Table 5-10 shows that for the large size (100 jobs) the heuristic initial solution 

was further improved by the hybrid model for only two out of 9 scenarios.  That shows 

the heuristic becomes more attractive as the number of jobs increases above 100 jobs. In 

summary, the average best integer solution of the optimization IP model vs heuristic is -

50% showing the heuristic adds more value as feasible solutions were found and the IP 

formulation failed to find efficient solutions within one hour. 
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 Table 5-10 Best Solution Large Scenario (100 Jobs) 

  

Best Integer 

 Solution 

Solution Time 

(sec) 

Best Integer 

Solution % Delta 

Com|Jobs|Mach|Res|Den Opt Heur Hybr Opt Heur Hybr 
Opt 

vs 

Heur 

Hybr 

vs 

Heu 

Hybr 

vs 

Opt 

RED|J100|M10|R24|0.33 3072 2366 2366 3602 10 3602 -30% 0% 23% 

RED|J100|M10|R24|0.66 3087 2010 2010 3604 28 3605 -54% 0% 35% 

RED|J100|M10|R24|1.0 3063 1930 1930 3610 48 3611 -59% 0% 37% 

MED|J100|M10|R24|0.33 5683 4183 3861 3601 10 3605 -36% 8% 32% 

MED|J100|M10|R24|0.66 5583 3544 3544 3606 30 3610 -58% 0% 37% 

MED|J100|M10|R24|1.0 5461 3267 3267 3615 42 3622 -67% 0% 40% 

HAR|J100|M10|R24|0.33 9582 7590 7575 3602 12 3607 -26% 0% 21% 

HAR|J100|M10|R24|0.66 10442 6213 6213 3611 26 3635 -68% 0% 40% 

HAR|J100|M10|R24|1.0 - 6039 6039 - 42 3645 - 0% - 

Average             -50% 1% 33% 

Std Dev             17% 3% 7% 

 

It is evident From Table 5-10 that the solutions found by the hybrid model 

outperformed the IP model for the large instances when a stop limit of one hour is used 

(i.e. optimization IP model has an average Gap of ~33% if the hybrid solution is used as 

the lower bound). 

Overall, we believe these results should provide insight to industry practitioners to 

estimate solution time feasibility for real world complex problems requiring multiple 

setups and including ready times. These results provide insight to how the proposed time-

indexed IP model, heuristic and hybrid models behaved for the 45 different problem 

instances.  We believe the proposed models should allow practitioners to find optimal 

solutions for small and medium problem instances. This study also provides insight on 

how the time-index IP formulation can be applied to larger models if practitioners can 

transform 1 unit of time into y units of time per period t where y > 1. For example, if 
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processing times take anywhere from 100 to 150 minutes, these process times can be 

divided by 5 minutes to find a reduced time horizon which in turns reduces the 

computational complexity of the model.  That is, this transformation allows the modeler 

to control computational complexity by keeping the time horizon from growing 

extremely large; hence, preventing the model from becoming increasingly complex. 

Lastly, practitioners may also modify time-indexed IP model constraint (Eq. 3) from an 

“=” sign to a “≤” sign as shown below in order to keep the model from growing 

extremely large and complex.  

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡 ≤ 1
𝐻−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
     ∀ 𝑗 ∈ 𝐽 

Additionally, a new constraint must be added in order to force at least n lots to be 

scheduled where n is approximately 50 jobs in order to obtain near optimal solutions in 

relatively short time by controlling the time horizon. 

5.7. Chapter 5 Conclusions 

This study proposed an exact time-indexed IP model and a heuristic algorithm 

(hybrid) for parallel machine scheduling with dual resources, ready times, and multiple 

setups. The proposed IP 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑎𝑢𝑥| ∑ 𝐶𝑗 model is an expansion of the model 

originally proposed by (Sousa and Wolsey, 1992) known as the time-index formulation.  

The original model was expanded to include multiple machines, auxiliary resources, and 

sequence-dependent setups (i.e. resource and resource travel time between machines). 

The heuristic was developed with the objective to find fast, feasible solutions that can be 
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provided to prime the time-indexed IP model in order to reduce the time horizon and 

provide an initial solution that could be further improved. Generating 32 sort variations 

per problem instance for the heuristic resulted in superior integer solutions than the IP 

time-bound model for medium and large problem instances.  

The hybrid model (IP model with initial solution given from heuristic) found optimal 

solutions for 18 out of the 45 scenarios in less than one hour for all the problem instances 

of 10/25 jobs. A Gap of 10% or less was found for 24 out of the 45 scenarios ranging 

from 10 jobs up to 75 jobs (i.e. MED|J75|M7|R18|0.33).  Optimal solutions were found 

for 15 out of the 45 scenarios for the 10/25 job size instances in less than 600 seconds (10 

minutes). The heuristic initial solutions for the 45 problem instances were improved by 

the hybrid model by 2% to 33%.  As expected, the “hard” scenario with 100 jobs was not 

solved in less than one hour due to the excessive number of constraints (9,458,057) which 

are mainly generated by equations (3) and (4). These equations prevent overlap among 

jobs, machines, and resources for each period and include both setups (i.e. resources and 

resource travel time).  To our knowledge, the proposed IP formulation has not been 

published before nor has solutions for small (10/25 Jobs) size problems been solved to 

optimality in less than 10 minutes with this formulation. 

5.8. Chapter 5 Summary 

This chapter has addressed the minimization of total completion time for resource 

constrained parallel machine scheduling problem with job-machine eligibility restrictions  

with release dates denoted 𝑃𝑚|𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗.  To our knowledge, this exact 
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formulation has not used to solve the photolithography scheduling problem with release 

dates with setups. 

A time-indexed IP optimization model has been formulated to solve this problem for 

45 test problem instances resulting from five problem sizes, three complexity levels and 

three machine eligibility restriction levels as presented in chapter 3.  We vary the number 

of jobs, machines, resources, process times, release times and job-machine restrictions to 

determine how this model would behave in a real-world environment.  IBM Cplex 

optimization engine was used to solve the problem with default settings. 

This study proposes an exact time-indexed IP model and a heuristic algorithm 

(hybrid) for parallel machine scheduling with dual resources, ready times, and multiple 

setups. The proposed IP 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑎𝑢𝑥| ∑ 𝐶𝑗 model is an expansion of the model 

originally proposed by (Sousa and Wolsey, 1992) known as the time-index formulation.  

The original model was expanded to include multiple machines, auxiliary resources, and 

sequence-dependent setups (i.e. resource and resource travel time between machines). 

The heuristic was developed with the objective to find fast, feasible solutions that can be 

provided to prime the time-indexed IP model in order to reduce the time horizon and 

provide an initial solution that could be further improved. 

The hybrid model (IP model with initial solution given from heuristic) found optimal 

solutions for 18 out of the 45 scenarios in less than one hour for all the problem instances 

of 10/25 jobs. A Gap of 10% or less was found for 24 out of the 45 scenarios ranging 

from 10 jobs up to 75 jobs (i.e. MED|J75|M7|R18|0.33).  Optimal solutions were found 

for 15 out of the 45 scenarios for the 10/25 job size instances in less than 600 seconds (10 
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minutes). The heuristic initial solutions for the 45 problem instances were improved by 

the hybrid model by 2% to 33%.  As expected, the “hard” scenario with 100 jobs was not 

solved in less than one hour due to the excessive number of constraints (9,458,057) which 

are mainly generated by equations (5.3) and (5.4). These equations prevent overlap 

among jobs, machines, and resources for each period and include both setups (i.e. 

resources and resource travel time).  To our knowledge, the proposed IP formulation has 

not been published before nor has solutions for small (10/25 Jobs) size problems been 

solved to optimality in less than 10 minutes with this formulation. 

In the future, we plan to further improve the heuristic that is currently providing 

“good” feasible solutions in a relative short amount of time by testing more variations 

beyond the 32 combinations per instance. We also plan to incorporate multiple objectives 

(multi-objective) allowing practitioners to use this formulation for real-world problems 

where there is a need to model machines with resources and setups. If setups were 

omitted, the run time would be reduced significantly as the number of variables and 

constraints would be reduced. We believe it would be interesting to solve the time-index 

IP formulation using a rolling horizon approach to maintain the time horizon short and 

efficient.  

In conclusion, a time-index IP model with heuristic (hybrid) can add value to 

practitioners looking to solve practical scheduling problems with parallel machines, dual 

resources and sequence-dependent setups. It is extremely important to control problem 

instance size and time horizon to obtain near-optimal solutions within acceptable run 
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times. The proposed heuristic primes with the IP model to reduce the space search by 

reducing the time horizon and provide an initial solution to the optimization model. 
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6. CHAPTER 6 MOO RESOURCE CONSTRAINED PARALLEL MACHINE 

SCHEDULING MODEL 

The focus of this study is to develop efficient model-based procedures for the 

scheduling of identical parallel machines with shared, constrained, auxiliary resources 

with sequence-dependent setups, machine eligibility restrictions, job release and due 

dates with single and multiple objectives.  As previously stated, the need to effectively 

schedule finite resources exist across multiple industries including semiconductor 

fabrication and assembly, mold injection, and printed circuit board (PBC) assembly, 

amongst others. These industries often are subject to manufacturing bottlenecks, which 

reduce throughput and overall profit. Thus, improvements in modeling to get efficient 

scheduling solutions will have a large impact on those manufacturing systems subject to 

capacity constraints, especially if the system being optimized is the overall factory 

constraint. 

This chapter explores the multi-objective resource constrained parallel machine 

scheduling model with sequence-dependent setups, machine eligibility restrictions, 

release and due dates with user interaction: 

𝑃𝑚|𝑆𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥).  This environment has a set of jobs J 

either ready to be processed ("ready jobs") or incoming to the system.  These jobs can be 

processed in any of the unrestricted M parallel machines, if they are fitted with an 

instance r of the set of scarce auxiliary resources R, which are shared with other 

machines. 
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More specifically, the time indexed Integer programing (IP) multi-objective 

optimization (MOO) model is used to solve small problem instances with setups and 

medium size problem instances without setups. Prior to re-introducing key terms and 

formulations, it is noteworthy to highlight that to our knowledge, this work is the first one 

combining aforementioned parameters to solve problems found in the semiconductor 

industry. 

Multi-objective optimization (MOO), also known as multi-criteria optimization, is 

concerned with decision making based on multiple criteria. Typically, mathematical 

optimization models involving more than one objective function are used in order to 

optimize k objective functions simultaneously. A key difference between MOO and 

single-objective problem is that MOO does not have a single optimal (best) solution.  The 

Pareto method, which is one way to implement MOO, finds a feasible schedule that 

minimizes several objectives in such a way that no improvement can be made on one 

objective without degrading the other objective metric in the objective vector (Suresh and 

Mohanasundaram, 2006). According to Suresh et al. (2006) the user may generate a 

schedule with a weighted combination of several scheduling objectives as the 

performance measure.  MOO models allow experts to choose a Pareto optimal solution 

according to the existing priorities when a decision needs to be made. In this case, a 

Pareto optimal set is to be found as a family of best trade-off schedules. The set of Pareto 

solutions is called the Pareto frontier (Suresh et al, 2006).  In this chapter, we refer to the 

Pareto frontier as the partial or entire efficient frontier. 
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Phase III consists of a combination of scheduling models developed in phase I, 

phase II, and the addition of new multiple objectives using the Diversity Maximization 

Approach (DMA) model proposed by (Masin and Bukchin, 2008) to solve the MOO 

model 𝑃𝑚|𝑆𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗, 𝑇𝑚𝑎𝑥).  The reader is referred to 

section 2.2.3 for detailed MOO and DMA definitions. However, a brief re-introduction to 

DMA MOO is provided next. 

 Masin and Bukchin (2008) define [P1] which finds the initial point 𝑌𝑒 ∈ 𝐸: 

[P1]  min 𝑍 = ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾   s.t 𝑥 ∈ 𝑋 

where Wk k = 1...Ware positive weights for kth objective function. The subset E to 

be used to build the efficient frontier starts empty, then one point per iteration is added 

until a full efficient frontier is obtained or a pre-defined ε is provided. 

[P1’] min 𝑍 = 𝑙𝑒𝑥 min(𝛼, ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾 ) 

s.t min 𝛼 = 𝑚𝑎𝑥𝑦𝑒∈𝐸 (𝑚𝑖𝑛1≤𝑘≤𝑊
𝑓(𝑘)(𝑥)−𝑦𝑒

(𝑘)

∆𝑘𝑒
)  𝑥 ∈ 𝑋. 

Then, the non-linear constraint α used as constraint for P1’ is linearized using binary 

variables. 

[P2] min 𝑍 = 𝑙𝑒𝑥 min(𝛼, ∑ 𝑤𝑘𝑓(𝑘)(𝑥)𝑘∈𝐾 ) 

s.t. 𝛼 ≥ 𝛽𝑒∀𝑦𝑒 ∈ 𝐸, 

𝛽𝑒 ≤
𝑓(𝑘)(𝑥) − 𝑦𝑒

(𝑘)

∆𝑒𝑘
∀ 𝑦𝑒 ∈ 𝐸, 𝑘 = 1 … 𝑊,, 

𝛽𝑒 = ∑
𝛾2𝑘𝑒 − 𝑦𝑒

(𝑘)
𝛾1𝑘𝑒

∆𝑒𝑘

𝑊

𝑘=1

∀ 𝑦𝑒 ∈ 𝐸, 
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∑ 𝛾1𝑘𝑒 = 1 ∀𝑒 ∈ 𝐸
𝑊

𝑘=1
 

𝛾2𝑘𝑒 ≥ 𝑓(𝑘)(𝑥) + (𝛾1𝑘𝑒 − 1)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≤ 𝑓(𝑘)(𝑥) + (1 − 𝛾1𝑘𝑒)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≤ 𝛾1𝑘𝑒𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾1𝑘𝑒 ∈ {0,1} ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝛾2𝑘𝑒 ≥ 0 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 

𝑥 ∈ 𝑋. 

For this phase we study a pareto efficient frontier obtained by solving k objectives 

simultaneously which adds a layer of complexity to what is already a complex scheduling 

optimization model (NP-hard). The objective functions for this phase aim to minimize 

total weighted completion time ∑ 𝑤𝑗𝐶𝑗, total tardiness [∑ 𝑇𝑗] and maximum tardiness 

𝑇𝑚𝑎𝑥 which allows manufacturers to target meeting on-time delivery customer 

commitments. The objective of this phase is to find optimal solutions for small instances 

and enable decision makers to interact with the model by editing or proposing schedules 

and/or add new constraints to drive the solutions according to his/her needs. 

The model and the framework presented in this chapter represents a conceptual 

prototype, tested using simulated data since real-world data is not publicly available. 

Similarly, certain assumptions about the decision maker are made in finding a solution 

for the problem, such as the quality of the solution and when to stop the algorithm.  

Nonetheless, this model and framework mimic real world requirements which can easily 

be replicated using real data. 
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The framework proposed in this dissertation also aims to demonstrate how decision 

makers can interact with the model and learn from it, ultimately gaining trust and insight 

to make better strategic decisions with respect to policies bounding the options of these 

decision makers, i.e. multiple conflicting objectives). 

As previously indicated, enabling human-model interaction has potential benefits. 

Ahn (2008) stated "human computation problems" are those large-scale computational 

problems that often cannot be solved by either computer or humans alone.  The goal of 

this work is to harnesses human brainpower to solve complex problems that computers 

alone may not be able to solve in relatively short periods of time. That is, computers 

should enhance human intelligence instead of replacing it.  Reinschmidt et al. (1990) and 

Framinan and Ruiz, (2010) state that there are potential benefits to the overall scheduling 

system if human experts are able to interact with the model, especially if the system is 

programmed in such a way that it is open and flexible so that expert knowledge can be 

captured and translated into objectives and constraints. 

Another objective of this chapter is to show how to provide feedback to the decision 

maker, in terms of the associated consequences, if a solution—schedule in the form of a 

Gantt chart—is changed or overridden. Here, feedback will be given to the decision 

makers in the form of the Euclidian distance between every point in the efficient frontier, 

in terms of time units, and the new point associated with the new solution. A key 

contribution of this phase is the user-model interaction for the medium problem size 

instances. 
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Two user-model interaction scenarios are evaluated in this chapter using the 

RED|J50|M5|R12|1.0 problem instance. The first scenario aims to find an alternate 

schedule that reduces the weighted completion time ∑ 𝑤𝑗𝐶𝑗 for a given schedule that has 

one of the lowest maximum tardiness (Tmax) while maintaining the best possible total 

tardiness [∑ 𝑇𝑗]. The second scenario consists of investigating how far the decision 

maker’s edited schedule is (new point) from the efficient frontier using the Euclidian 

distance as the standard metric. 

The rest of this chapter is subdivided as follows. Section 6.1 presents the MDA MOO 

mathematical model, section 6.2 presents the case study hierarchical model and process 

flow, section 6.3 present the experimental results for RED|J10|M2|R4|1.0, section 6.4 

presents the experiment results for RED|J50|M5|R12|1.0, section 6.5 presents chapter 

conclusions, and section 6.6 provides a summary of this chapter. We proceed to describe 

the MOO resource constrained PMS mathematical formulation. 

6.1. MOO Resource Constrained PMS Mathematical 

𝑷𝒎|𝒔𝒋𝒌, 𝒓𝒋, 𝒅𝒋, 𝑴𝒋, 𝒂𝒖𝒙 𝟏|𝒍𝒆𝒙(𝜶. ∑ 𝒘𝒋𝑪𝒋 , ∑ 𝑻𝒋, 𝑻𝒎𝒂𝒙) Model 

The purpose of this model is to find multiple job-machine-resource schedules that 

are optimal with respect to the three objective functions previously described. The indices 

and sets along with the mathematical model are defined next. 

Indices and Sets: 

𝑗 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑗𝑜𝑏𝑠, 𝑗 ∈ 𝐽 

𝑚 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠, 𝑚 ∈ 𝑀 

𝑟 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑟 ∈ 𝑅 
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𝑡 𝑖𝑛𝑑𝑒𝑥 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒, 𝑡 ∈ 𝐻 

Parameters: 

𝑑𝑗  𝑑𝑢𝑒 𝑑𝑎𝑡𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑟𝑗  𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑤𝑗  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑊𝑘 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 obj function k 

𝑝𝑗  𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑗 

𝑠𝑖𝑗 𝑠𝑒𝑡𝑢𝑝 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗𝑜𝑏 𝑖 𝑎𝑛𝑑 𝑗 

𝑡𝑡𝑚′,𝑚 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑖𝑚𝑒  

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚′ 𝑎𝑛𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 

 

𝐻 𝑆𝑒𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑙𝑢𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑑𝑎𝑡𝑒) 

𝑤ℎ𝑒𝑟𝑒 𝐻 ≥  ∑ 𝑝𝑗
𝑗∈𝐽

+ max {𝑟𝑗}  

Decision variables: 

𝑥𝑗𝑟𝑚𝑡

=  {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
; 

𝐶𝑗  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑗𝑜𝑏 𝑗;  𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∑ 𝑤𝑗
𝑗∈𝐽

𝐶𝑗 

𝑇𝑗  𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑜𝑓 𝑗𝑜𝑏 𝑗 𝑤ℎ𝑒𝑟𝑒 𝑇𝑗 =  max {0, 𝐶𝑗 − 𝑑𝑗};  𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 

∑ 𝑇𝑗𝑗∈𝐽  

𝑇𝑚𝑎𝑥 Maximum 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 among all 𝑗𝑜𝑏𝑠  
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Then, [P1] becomes the model used to find the initial point 𝑌𝑒 ∈ 𝐸 as follows: 

[P1]  min 𝑍 = 𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3                                                              (6.1) 

Subject To:  

∑ 𝑤𝑗
𝑗∈𝐽

𝐶𝑗 = 𝑓1 
(6.2) 

∑ 𝑇𝑗
𝑗∈𝐽

= 𝑓2 
(6.3) 

𝑇𝑚𝑎𝑥 = 𝑓3 (6.4) 

𝐶𝑗 − 𝑑𝑗 ≤ 𝑇𝑗  ∀𝑗 ∈ 𝐽 (6.5) 

𝑇𝑗 ≤ 𝑇𝑚𝑎𝑥  ∀𝑗 ∈ 𝐽 (6.6) 

∑ ∑ ∑   (𝑡 + 𝑝𝑗 − 1) 𝑥𝑗𝑚𝑟𝑡

𝐻−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 =  𝐶𝑗  ∀ 𝑗 ∈ 𝐽 

(6.7) 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡 = 1
𝐻−𝑝𝑗+1

𝑡=𝑟𝑗𝑟∈𝑅𝑚∈𝑀
 ∀ 𝑗 ∈ 𝐽 

(6.8) 

𝑥𝑗𝑚𝑟𝑡+ ∑ ∑ 𝑥𝑖𝑚′𝑟′𝑡′ ≤ 1
min(𝑡,𝐻−𝑝𝑗)

𝑡′=max(𝑟𝑖,𝑡−𝑝𝑖−𝑡𝑡𝑚′,𝑚+𝑠𝑟′,𝑟+1)𝑟′∈𝑅
 

∀ 𝑖, 𝑗 ∈ 𝐽 𝑖 ≠ 𝑗; 𝑚, 𝑚′ ∈ 𝑀: 𝑚 = 𝑚′;  𝑟 ∈ 𝑅;  𝑡 ∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗} 

(6.9) 

𝑥𝑗𝑚𝑟𝑡+ ∑ ∑ 𝑥𝑖𝑚′𝑟′𝑡′ ≤ 1
min(𝑡,𝐻−𝑝𝑗)

𝑡′=max(𝑟𝑖,𝑡−𝑝𝑖−𝑡𝑡𝑚′,𝑚+𝑠𝑟′,𝑟+1)𝑚′∈𝑀
 

∀ 𝑖, 𝑗 ∈ 𝐽 𝑖 ≠ 𝑗; 𝑚 ∈ 𝑀;  𝑟, 𝑟′ ∈ 𝑅: 𝑟 = 𝑟′;  𝑡 ∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗} 

(6.10) 

𝑥𝑗𝑟𝑚𝑡 ∈ {0,1}, 𝐶𝑗,𝑇𝑗,𝑇𝑚𝑎𝑥 ,𝑓𝑘 ∈ 𝑍+. (6.11) 
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Equation (eq. 6.1) calculates the objective function to be minimized which is the 

sum of weighted function f1, f2, f3 where these objective functions are defined as the first 

three constraints (eq. 6.2, 6.3 and 6.4), respectively. The first constraint eq. 6.2 calculates 

total weighted completion time. Equation 6.3 calculates total tardiness and equation 6.4 

calculates maximum tardiness for all jobs. Equation 6.5 calculates tardiness for each job, 

equation 6.6 calculates maximum tardiness (Tmax). Equation 6.7 calculates completion 

time for every job. Equation 6.8 enforces all jobs to be processed at one period t. 

Equation 6.9 and 6.10 enforce that at any given time t at most one job can be processed 

on a given machine and resource, respectively. Please note that in chapter 6 we plan to 

run one small instance including resource sequence-dependent setups and a medium size 

instance excluding setups due to the high complexity of the model that needs to run 

multiple times in order to find the full efficient frontier.  The last constraint (eq 6.11) 

defines the binary variable indicating job j to start processing in period t at machine m 

with resource r and the non-zero integer variables needed to estimate completion time, 

tardiness, maximum tardiness, and each function. Final note, in order to run this model 

without setups equations 6.9 and 6.10 need to be replaced with Equations 4.4 and 4.5 

previously introduced in chapter 4: 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡′ ≤ 1
min (𝑡,𝐻−𝑝𝑗+1)

𝑡′=max (𝑟𝑗,𝑡−𝑝𝑗+1)𝑟∈𝑅𝑗∈𝐽
 ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗 + 1} 

∑ ∑ ∑ 𝑥𝑗𝑚𝑟𝑡′ ≤ 1
min (𝑡,𝐻−𝑝𝑗+1)

𝑡′=max (𝑟𝑗,𝑡−𝑝𝑗+1)𝑚∈𝑀𝑗∈𝐽
 ∀ 𝑟 ∈ 𝑅, 𝑡 ∈ {𝑟𝑗 … 𝐻 − 𝑝𝑗 + 1} 
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After P1 is solved the first efficient point is found; then, we proceed to iteratively 

solve model [P2] via the lexicographic MOO method as per Table 6-1 

[P2] min 𝑍 = 𝑙𝑒𝑥 min(𝛼, 𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3) (6.12) 

Subject To:  

[P1] constraints Eq. 6.2-6.11  

𝛼 ≥ 𝛽𝑒∀𝑦𝑒 ∈ 𝐸 (6.13) 

𝛽𝑒 ≤
𝑓(𝑘)(𝑥) − 𝑦𝑒

(𝑘)

∆𝑒𝑘
∀ 𝑦𝑒 ∈ 𝐸, 𝑘 = 1 … 𝑊 

(6.14) 

𝛽𝑒 = ∑
𝛾2𝑘𝑒 − 𝑦𝑒

(𝑘)
𝛾1𝑘𝑒

∆𝑒𝑘

𝑊

𝑘=1

∀ 𝑦𝑒 ∈ 𝐸, 
(6.15) 

∑ 𝛾1𝑘𝑒 = 1 ∀𝑒 ∈ 𝐸
𝑊

𝑘=1
 

(6.16) 

𝛾2𝑘𝑒 ≥ 𝑓(𝑘)(𝑥) + (𝛾1𝑘𝑒 − 1)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 (6.17) 

𝛾2𝑘𝑒 ≤ 𝑓(𝑘)(𝑥) + (1 − 𝛾1𝑘𝑒)𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 (6.18) 

𝛾2𝑘𝑒 ≤ 𝛾1𝑘𝑒𝑀 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 (6.19) 

𝛾1𝑘𝑒 ∈ {0,1} ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 (6.20) 

𝛾2𝑘𝑒 ≥ 0 ∀𝑦𝑒 ∈ 𝐸, 𝑘 = 1, … , 𝑊 (6.21) 

Where M is a large number, equations (6.14-6.16) ensure that 𝛽𝑒=𝑚𝑖𝑛1≤𝑘≤𝑊 (𝑓(𝑘)(𝑥) −

𝑦𝑒
(𝑘)

/∆𝑘𝑒) and equations (6.17-6.19) ensure that 𝛾2𝑘𝑒 = 𝑓(𝑘)(𝑥)𝛾1𝑘𝑒.as defined by Masin 

and Bukchin (2008). The A-DMA algorithm is used to find the efficient frontier. 
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        Table 6-1: A-DMA Algorithm (Masin and Bukchin (2008)) 

Step Action 

1 

  

 Solve [P1] 

Let y* = f(x*) be optimal value 

Set E={y*} 

Select 𝜀 ≥ 0 𝑎𝑛𝑑/𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

2  

 Solve [P3] 

Let y* = f(x*) be optimal value 

3 

 

  

 IF 𝛼(𝑦∗) <  −𝜀 𝑜𝑟 𝑁𝑝𝑜𝑖𝑛𝑡𝑠 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 THEN 

   𝐸 = 𝐸 ∪ 𝑦∗ 

   Go to step 2** 

ELSE 

   Stop; 

END IF 

 

Selecting the right value of ε may not be straightforward in practice; hence, we 

propose to select an acceptable run time or number of efficient points as stopping criteria. 

The main advantage of the DMA algorithm is that the first few points are computational 

friendly and relatively easy to obtain (run time is fast) and those points are guaranteed to 

be as diverse as possible which provides a good representation of the extreme points in 

the efficient frontier. Thus, the entire efficient frontier may not be needed in practice nor 

practical for the decision maker to test different hypothesis. The following section 

describes the process flow to be used in this chapter for the model-user interaction case 

study. 

6.2. Case Study Hierarchical Model and Process Flow 

This subsection aims to explain the proposed process flow to show how a decision 

maker may interact with the model and find the best schedule that meets the decision 

maker’s objectives 
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1. Solve job, machine, and auxiliary resource schedules using DMA-MOO IP for 

small and medium size problem instances. 

2. Let the decision maker review all schedules. 

3. The preferred schedule is selected, and the decision maker changes some job 

sequences. 

4. Re-run MOO model incorporating decision maker’s desires in the form of new 

constraint(s). 

5. A new schedule and the distance of the new point to the efficient frontier is 

provided to the decision maker. 

Figure 6-1 presents the proposed flow diagram of the decision methodology just 

described for the decision maker to interact with the model and obtain quantitative 

feedback on the quality of the new solution (job-machine-resource schedule) by 

providing the minimum distance between the new point and each efficient point in the 

Pareto frontier. 
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      Figure 6-1: DMA MOO Flow Diagram 

The proposed framework is strategic at this point since medium or large problem 

instances may run for several hours or days in order to run [P1] model followed by 

multiple [P2] models in order to find n efficient points using DMA MOO algorithm. The 

run time is directly related to the problem instance complexity and size.  The algorithm is 

storing the efficient point and the job-machine-resource schedule presented in the form of 

a Gant Chart. 
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  Figure 6-2: Example of Gantt for Job-Machine-Resource Schedule  

The example depicted in Figure 6-2 shows two schedules labeled scenario 1 and 5, 

each job is assigned to start running at period t in machine m and resource r.  The 

decision maker reviews the different schedules and selects one. The preferred schedule is 

modified by removing a partial set of jobs without impacting the rest of the jobs). Then, 

[P1] model runs again considering a new constraint (eq. 6.22) which ensures that a set of 

pre-assigned jobs (solutions) denoted by φ are enforced by the model. 

𝑥jmrt = 1 ∀ jmrt ∈ φ                                       (6.22) 

Then, the decision maker obtains an edited schedule and gets feedback on how far 

from optimal it is using the Euclidian distance for this point with respect to all other 

points in the efficient frontier.  In this simulated case study, Tmax is not acceptable to the 

decision maker. Hence, equation 6.4 𝑇𝑚𝑎𝑥 = 𝑓3is modified as follows: 

𝑇𝑚𝑎𝑥 ≤ 𝜏                                                                           (6.23) 
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Where 𝜏 is a user-defined threshold (i.e. same unit times as per the objective 

function).  Then, the model runs for a second time with user defined parameters. 

Let us assume that the new optimal solution is acceptable to the decision maker.  

Since there are many possible ways on how the decision maker can interact with a 

complex scheduling system, we limit our case study to “keep/delete” jobs from a 

previously generated optimal schedule.  The experimental results are presented next. 

6.3. Phase III Experimental Results for RED|J10|M2|R4|1.0 

The experimental results for the 𝑃𝑚|𝑆𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥)  

model with a small problem instance RED|J10|M2|R4|1.0 is presented in Table 6-2. The 

smallest problem instance was selected in order to understand how the MOO-MDA 

model would respond to the resource constrained parallel machine scheduling with 

setups.  The entire efficient frontier is found in a relatively short period of time (~8 

minutes) and only 9 points were enough to obtain the full frontier. 

          Table 6-2: MOO-MDA Efficient Frontier for RED|J10|M2|R4|1.0 

Point WCompTime Tardiness Tmax alpha 

1 260 14 8 - 

2 355 13 5 -3.0000 

3 295 12 7 -1.0000 

4 277 15 6 -0.3333 

5 302 12 6 -0.3333 

6 284 14 7 -0.1157 

7 268 18 7 -0.0947 

8 274 17 7 -0.0315 

9 275 16 7 -0.0210 
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The same points are depicted in Figure 6-3 where a 3-D graph represents the entire 

efficient frontier for completion time, tardiness, and maximum tardiness. One can 

conclude that for this specific problem instance the completion time and Tmax have a 

trade-off. The shorter the weighted completion time, the higher the Tmax.  

 
                                 Figure 6-3: 3-D Plot for J10 Efficient Frontier 

 Figure 6-3 clearly depicts that the run time for a small instance problem the 

solution time grows linear with one point (i.e. 9) running slower than the rest (82 

seconds).  
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             Figure 6-4: Solution Time for RED|J10|M2|R4|1.0 

6.4. Experimental Resuts for RED|J50|M5|R12|1.0 with User Interaction 

This subsection presents the experimental results for the medium size problem 

instance RED|J50|M5|R12|1.0 omitting sequence-dependent setups in order to obtain 30 

or less points in approximately one week.  A medium-size problem instance with multiple 

objectives and sequence dependent setups would not be able to run in one week which is 

an extremely long time to wait for results in tactical or strategic decision-making. 

Previously described, two scenarios are evaluated in this subsection using the 

RED|J50|M5|R12|1.0 problem instance. The first scenario consists of investigating how 

far the decision maker’s edited schedule is from the efficient frontier using the Euclidian 

distance for a standard metric. The second scenario aims to find an alternate schedule that 

reduces the maximum tardiness (Tmax) while maintaining the best possible ∑ 𝑤𝑗𝐶𝑗 and 

total tardiness [∑ 𝑇𝑗]. Figure 6-1 shows the flow diagram. 

The medium size problem instance was selected to better understand how the 

decision maker could learn how multiple conflicting objectives interact with each other 

and to demonstrate how a user can interact the model as previously stated. 
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For this case, even though setups were omitted, finding a solution for the model 

took long time (183 hrs.) and found 29 points of the efficient frontier.  Table 6-3 shows 

the results found by the proposed model from chapter 5 combined with the MOO-MDA 

𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥) model. In this chapter, weighted 

completion time was used instead of completion time in order to get a richer efficient 

frontier. 
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        Table 6-3: Partial Efficient Frontier for RED|J50|M5|R12|1.0 
Point WCompTime Tardiness Tmax Alpha 

1 3233 91 13 - 

2 3885 22 7 -69.0000 

3 3271 102 7 -0.9417 

4 3420 45 8 -0.7125 

5 3400 60 5 -0.5000 

6 3612 30 5 -0.3750 

7 3247 83 11 -0.2347 

8 3461 41 6 -0.2316 

9 3255 84 9 -0.2224 

10 3278 68 16 -0.1871 

11 3280 68 14 -0.1818 

12 3284 68 12 -0.1779 

13 3285 87 7 -0.1764 

14 3287 69 10 -0.1733 

15 3294 71 8 -0.1625 

16 3317 58 14 -0.1250 

17 3320 58 12 -0.1227 

18 3322 59 10 -0.1196 

19 3322 62 8 -0.1125 

20 3532 32 13 -0.1125 

21 3333 77 6 -0.1028 

22 3395 51 6 -0.1012 

23 3546 32 11 -0.1012 

24 3528 33 9 -0.1000 

25 3984 22 5 -0.1000 

26 3543 33 8 -0.0919 

27 3311 69 7 -0.0909 

28 3421 52 5 -0.0909 

29 3459 44 5 -0.0909 

 

Figure 6-5 presents the partial efficient frontier for the 29 points (i.e. schedules) 

found by the MOO MDA algorithm. 
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      Figure 6-5: 3-D Plot for J50 Efficient Frontier 

It is evident that the largest tradeoff this for this example is between completion 

time and tardiness. That is, schedules that end up with shorter completion time results in 

jobs with higher tardiness. The biggest drawback to obtain these results is that the model 

ran for over one week (183 hrs) which is not acceptable in industry to solve practical 

strategic problems. 

Figure 6-6 shows the run time for each point in the efficient frontier and the 

cumulative run time required to find the full set of points. It is visible in the graph that 

those points after point 19 took significantly higher time to solve (i.e. 10+ hrs). 
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      Figure 6-6: Solution Time for RED|J50|M5|R12|1.0 

 

Table 6-4 presents run time in hours for each point and the cumulative run time 

graphed in Figure 6-6. As previously mentioned, not many practitioners would be willing 

to wait one week to interact with the model and make decisions.  Since the algorithm 

used guarantees to find the most diverse frontier, we pose the following question: Is there 

a point where we can learn enough from the partial frontier that every point is adding less 

value and increasingly extending the run time? 
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      Table 6-4: Run Time for RED|J50|M5|R12|1.0 
Point Time per point (hrs) Cum Time (hrs) 

1 0.0033 0.0033 

2 0.0989 0.1022 

3 0.0321 0.1343 

4 0.2016 0.3359 

5 0.3253 0.6612 

6 0.6942 1.3555 

7 0.4219 1.7774 

8 1.1865 2.9639 

9 0.1129 3.0767 

10 0.1681 3.2448 

11 0.4217 3.6666 

12 0.6088 4.2754 

13 2.6353 6.9107 

14 1.7587 8.6694 

15 1.4343 10.1038 

16 0.5324 10.6362 

17 5.5163 16.1525 

18 1.7826 17.9351 

19 0.4570 18.3921 

20 10.8920 29.2841 

21 36.8548 66.1389 

22 1.7237 67.8626 

23 2.2799 70.1425 

24 26.8327 96.9752 

25 13.0967 110.0720 

26 47.4828 157.5547 

27 3.7707 161.3254 

28 7.4193 168.7447 

29 14.4476 183.1922 

 

The answer to question above is yes, the decision maker could obtain a good 

representation of the partial frontier with only 12 points as depicted in Figure 6-7 (right 

hand side). Table 6-4 shows that it took 4.2 hours to obtain the partial representaiton 

depicted in Figure 6-7 (right hand side) vs. 183 hrs for the 3-D plot depicted Figure 6-7 

(left hand side). 
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Figure 6-7: 183-hr Partial Efficient Frontier vs. 4-hr Partial Efficient Frontier 

It is noteworthy to mention that each point of the pareto was validated by running 

the [P1] model and fixing two objectives (Tardiness and Tmax) in order to solve for the 

weighted completion time. If the solution matched the values provided by the partial 

efficient frontier, we concluded that the model worked as intended. 

Up to this point P1 and P2 models found 29 optimal alternate schedules with respect 

to the three objective functions previously introduced. For the first case study the 

decision maker selects one schedule that meets his/her objectives. Then, the decision 

maker deletes all jobs and leaves the top 10 jobs in the original position.  Then, the model 

runs again. Assuming the decision maker is not happy with the results, a new set of 

restrictions (Eq 6.22) are added to the model in order to guide the new solution. Once the 

new optimal schedule is obtained, feedback is provided to the decision maker in the form 

of Euclidean distance between the new point and the efficient frontier.  
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Figure 6-8 shows one of 29 schedules found. Let us assume the decision maker 

selected this scenario (i.e. schedule) as the best solution since Tmax =5 is one of the 

lowest. 

 
   Figure 6-8: Schedule for Efficient Point Five 

However, the total weighted completion time for scenario 5 is high when 

compared to the other 29 scenarios. Thus, the decision maker removes all jobs except the 

first 19 jobs which are left in the same sequence aiming to find a new schedule with 
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lower weighted completion time.  The 19 jobs left in the same sequence are depicted in 

Table 6-5. 

         Table 6-5: Set of Job-Machine-Resource Pre-assigned at Time t 

Scenario Time Job Mach Res pj rj dj Start End 

5 1 19 1 6 2 1 20 1 2 

5 1 49 2 11 1 1 16 1 1 

5 1 6 3 1 1 1 6 1 1 

5 1 9 4 2 5 1 15 1 5 

5 2 15 3 4 3 2 12 2 4 

5 2 46 5 12 4 2 14 2 5 

5 3 3 1 1 1 3 20 3 3 

5 3 31 2 7 1 3 30 3 3 

5 4 29 1 8 1 4 7 4 4 

5 4 2 2 1 1 3 10 4 4 

5 5 4 1 1 1 3 10 5 5 

5 5 38 2 9 2 4 18 5 6 

5 5 37 3 10 1 3 20 5 5 

5 6 1 1 2 2 4 14 6 7 

5 6 42 3 10 3 5 18 6 8 

5 6 13 4 4 3 3 20 6 8 

5 6 17 5 3 2 3 12 6 7 

5 7 43 2 9 2 3 20 7 8 

5 8 18 1 3 3 5 10 8 10 

 

After running the model, the edited schedule provides an improved weighted 

completion time of 3235 units which is lower than the original 3400. Tardiness and Tmax 

resulted in 91 and 14-time units, respectively. However, Tmax is not acceptable to the 

decision maker since it exceeded 10-time units. Hence, a maximum threshold 𝜏 of 10 hrs. 

is imposed on the objective function Tmax using the following equation: 

𝑇𝑚𝑎𝑥 ≤ 10 
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After the model runs again a new alternate schedule is obtained. Let us assume the 

decision maker is satisfied with the new results since weighted completion time is 3240-

time units, Tardiness 94 and Tmax 10. Figure 6-9 depicts the final edited schedule 

resulting from the user-model interaction. 

 
     Figure 6-9: User-Model Interaction Resulting Schedule  

Figure 6-10 depicts the partial efficient frontier and the new point (red asterisk) which is 

the resulting schedule obtained by the user (decision maker)-model interaction. 
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Figure 6-10: Efficient Frontier with New Point (edited solution) 

For the second test case, the decision maker gets feedback on the quality of the 

solution that resulted from editing one of the schedules. As previously stated, the quality 

of the solution is measured by calculating the distance between the new point (edited 

schedule) and each point in the efficient frontier using the Euclidean distance.  In this 

example, point 1 resulted to be the closest efficient point to the new point (red asterisk) 

based on the distance of 8.18-time units (See Table 6-6). 
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       Table 6-6: Euclidian Distance Between New Point and Efficient Frontier 

Point WCompTime Tardiness Tmax alpha 

Distance between 

Eff Point and New 

Point 

1 3233 91 13 - 8.18 

2 3885 22 7 69.0000 649.01 

3 3271 102 7 -0.9417 32.16 

4 3420 45 8 -0.7125 186.56 

5 3400 60 5 -0.5000 163.65 

6 3612 30 5 -0.3750 377.50 

7 3247 83 11 -0.2347 13.08 

8 3461 41 6 -0.2316 227.30 

9 3255 84 9 -0.2224 18.06 

10 3278 68 16 -0.1871 46.43 

11 3280 68 14 -0.1818 47.87 

12 3284 68 12 -0.1779 51.15 

13 3285 87 7 -0.1764 45.64 

14 3287 69 10 -0.1733 53.24 

15 3294 71 8 -0.1625 58.73 

16 3317 58 14 -0.1250 85.09 

17 3320 58 12 -0.1227 87.75 

18 3322 59 10 -0.1196 89.16 

19 3322 62 8 -0.1125 88.05 

20 3532 32 13 -0.1125 298.52 

21 3333 77 6 -0.1028 94.63 

22 3395 51 6 -0.1012 160.90 

23 3546 32 11 -0.1012 312.22 

24 3528 33 9 -0.1000 294.39 

25 3984 22 5 -0.1000 747.49 

26 3543 33 8 -0.0919 309.09 

27 3311 69 7 -0.0909 75.33 

28 3421 52 5 -0.0909 185.88 

29 3459 44 5 -0.0909 224.69 

New 

Point 3240 94 10 -   

Min Dist         8.19 
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At this point, let us assume the decision maker can set different weights and/or 

restriction to this model but using data, he/she can interactively learn about the trade-off 

between multiple competing objectives and the cost associated with user overrides.  

6.5. Chapter 6 Conclusions 

The MDA MOO is a powerful methodology that allows researchers find the most 

diverse Pareto frontier.  If it is not practical to wait for all the points in the efficient 

frontier, the decision maker can stop the algorithm after t units of time or after alpha 

reaches a threshold.  The most useful, key component of the MDA MOO algorithm is 

that the first few points are the most diverse, which represent the extreme points on the 

frontier. There is a potential to fit hyperplanes through the partial efficient frontier to 

project the full frontier, this proposal will be listed as future research. 

On the other hand, one of the shortcomings of the proposed methodology is the long 

run time observed for medium size problem instance for the scheduling of identical 

parallel machines with shared, constrained, auxiliary resources, machine eligibility 

restrictions, job release and due dates with three objectives (weighted completion time, 

tardiness and maximum tardiness). The proposal is to find a partial efficient frontier and 

fix a model to stop after n hrs. since it was evident the complexity and run time grew 

exponentially as the number of points increased for the J50|M5|R12|1.0 problem instance.  

6.6. Chapter 6 Summary 

This chapter has addressed the minimization of weighted completion time, total 

tardiness, maximum tardiness (Tmax) for the scheduling of identical parallel machines 
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with shared, constrained, auxiliary resources with sequence-dependent setups, machine 

eligibility restrictions, job release and due dates with single and multiple objectives 

denoted as 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥). To our knowledge, this 

exact formulation has not been used to solve the photolithography scheduling problem in 

the semiconductor industry. 

A time-indexed IP optimization model has been formulated to solve the scheduling 

problem for the small problem instance RED|J10|M2|R4|1.0 and the medium size 

problem instance RED|J50|M5|R12|1.0.  It is noteworthy that for the medium size 

problem instance sequence-dependent setups were omitted to speed up the model which 

took 183 hrs. to find 29 efficient points (schedules). 

In summary, this chapter resulted in an exact IP model capable of finding 9 optimal 

solutions (entire efficient frontier) for the small size problem instance in 8 minutes.  The 

computational complexity of this model behaved in a linear fashion. For the medium size 

problem instance, the model found 29 points in 183 hrs. and the computational 

complexity of this model grew exponentially. The first 12 points were obtained in 4.2 hrs; 

however, after the 12th point the time per solution was as high as 47 hrs. for a single 

schedule. 

The MOO MDA model can be used for strategic decision making for small size 

problem instances and for medium size problem instances with time-based stop criteria. 

We believe it would be interesting to solve the time-index IP formulation using a rolling 

horizon approach to maintain the time horizon short and efficient. For future research it 



 

  144 

would be interesting to add constraint programming (CP) to MOO model and a heuristic 

to potentially speed up the results. 
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7. CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 

This chapter is subdivided in three sections, section 7.1 presents a brief dissertation 

summary, section 7.2 presents the conclusions and contributions, and section 7.3 presents 

future research. 

7.1. Dissertation Summary 

When manufacturing capacity becomes the lead constraint in revenue and profit 

generation, efficient execution of the production systems can make the difference between 

a thriving and a failing enterprise. This is especially true in the wafer fabrication lines of 

the semiconductor industry due to high equipment costs and the highly complex process.  

In this dissertation, we advocate for the use of deterministic scheduling theory for the 

design and development of more efficient scheduling strategies to serve as alternatives to 

the current methods in order to increase the utilization and the capacity of manufacturing 

systems.  

The focus of this dissertation is to develop efficient model-based procedures for 

the scheduling of identical parallel machines with shared, constrained, auxiliary resources 

with sequence-dependent setups, machine eligibility restrictions, job release and due 

dates with single and multiple objectives.  Increasing throughput at the factory lead-

constraint will increase the overall factory throughput dictated by the new constraint. 

Improved overall factory throughput will directly correlate to increased capacity of the 

manufacturing system, which is the objective of system optimization. 

We developed a single objective time-indexed IP model and a multi-objective 

(MOO) time-indexed IP model that resemble practical manufacturing systems. We also 
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developed a heuristic capable of solving large problems to collaborate with the time-

indexed IP models by providing feasible initial solution under one minute of run time. 

The proposed models can be defined as 𝑃𝑚|𝑆𝑗𝑘, 𝑟𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗 and 

𝑃𝑚|𝑆𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥  

7.2. Conclusions and Contributions 

In this study, we discussed the advantages and disadvantages of various proposed 

modeling approaches for the multi-objective optimization (MOO) parallel machine 

scheduling problem with auxiliary resources, sequence-dependent setup times, job release 

dates, due dates, and machine restrictions.  

In Phase I (Chapter 4) we addressed the minimization of total completion time for 

resource constrained parallel machine scheduling problems with job-machine eligibility 

restrictions with release dates denoted as 𝑃𝑚|𝑟𝑗, 𝑀𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗. 

Optimal solutions were found for 45 out of the 45 scenarios in less than one hour of 

computing time for all the problem instance combinations.  Several instances of 100 jobs 

with reduced and medium complexity found optimal solutions under 150 seconds (2.5 

minutes) including the “MED|J100|M10|R24|0.33” scenario.  Optimal solutions were 

found in less than 600 seconds (10 minutes) for 41 out of the 45 scenarios.  Phase I 

formulation is recommended to run longer time horizons in order to determine area 

capacity.  This formulation can also be used to establish objective function lower bound 

since a model without setups is going to allow more jobs in the schedule since there is not 

idle time changing auxiliary resources. Finally, this model can be used to determine 
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lower bound for run time and to determine complexity as compared with a model that 

includes setups. 

In Phase II (Chapter 5) we addressed the minimization of total completion time for 

constrained parallel machine scheduling problem with sequence-dependent setups, job-

machine eligibility restrictions and release dates denoted as 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑎𝑢𝑥 1| ∑ 𝐶𝑗.  The 

original formulation proposed by Sousa and Wolsey (1992) known as the time-index 

formulation was expanded to include multiple machines, auxiliary resources, and 

sequence-dependent setups (i.e. resource and resource travel time between machines). 

Our work has successfully proofed a scheduling system that can work for increasingly 

complex systems than the original formulation in 1992.  To our knowledge, this exact 

formulation has not used to solve the photolithography scheduling problem with respect 

to release dates and setups.   

A heuristic for parallel machine scheduling problem with dual resources, ready 

times, and multi-setup was developed with the objective to find fast feasible solutions 

that can be provided to the time-indexed IP model in order to reduce the time horizon and 

provide an initial solution to the model that could be further improved. The heuristic 

initial solutions for the 45 problem instances were improved by the hybrid model by 2% 

to 33%.  The hybrid model (IP model with initial solution given from heuristic) found 

optimal solutions for 18 out of the 45 scenarios in less than one hour for all the problem 

instances of 10/25 jobs. A Gap of 10% or less was found for 24 out of the 45 scenarios 

ranging from 10 jobs up to 75 jobs (i.e. MED|J75|M7|R18|0.33).  Optimal solutions were 
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found for 15 out of the 45 scenarios for the 10/25 job size instances in less than 600 

seconds (10 minutes). 

As expected, the “hard” scenario with 100 jobs was not solved in less than one hour 

due to the excessive number of constraints (9,458,057) which are mainly generated by the 

most complex constraints. The hybrid model (time indexed IP and heuristic) has potential 

to be applied in real-world semiconductor environments to solve medium to large 

problem size instances for the photolithography area. The small and medium problem 

instances found optimality in one hour or less, but the large model with 100 jobs was 

only solved by the heuristic.  The proposed models have potential to render better results 

that existing heuristics used in many manufacturing environments as stated by Ham 

(2018) 

In Phase III (Chapter 6) we addressed the  minimization of weighted completion time, 

total tardiness, maximum tardiness for the scheduling of identical parallel machines with 

shared, constrained, auxiliary resources with sequence-dependent setups, machine 

eligibility restrictions, job release and due dates with single and multiple objectives 

denoted as 𝑃𝑚|𝑠𝑗𝑘, 𝑟𝑗 , 𝑑𝑗 , 𝑀𝑗 , 𝑎𝑢𝑥 1|𝑙𝑒𝑥(𝛼. ∑ 𝑤𝑗𝐶𝑗 , ∑ 𝑇𝑗 , 𝑇𝑚𝑎𝑥). To our knowledge, this 

exact formulation has not been used to find the Pareto frontier in the semiconductor 

Industry. 

A time-indexed IP optimization model has been formulated to solve the scheduling 

problem for the small problem instance RED|J10|M2|R4|1.0 and the medium size 

problem instance RED|J50|M5|R12|1.0.  It is noteworthy that for the medium size 

problem instance sequence-dependent setups were omitted to speed up the model that 
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ended up taking 183 hrs. to find 29 efficient points.  Our model allows user-model 

interaction for the parallel machine scheduling with shared auxiliary resource. 

In summary, this chapter resulted in an exact IP model capable of finding 9 optimal 

solutions (entire efficient frontier) for the small instance problem in 8 minutes.  The small 

problem instance complexity grew linearly. For the medium problem size instance, the 

model was capable of finding 29 points in 183 hrs. of computation time since the model 

complexity grew exponentially. After the first 12 points the time per solution was as high 

as 47 hrs. for a single schedule. In summary, practitioners may not be able to find the 

entire efficient frontier for medium size problems. Hence, the proposed model will 

provide insight to the multiple objective functions but is not recommended for real-time 

dispatching. 

The key contributions from this study to the literature and to practitioners looking to 

solve complex manufacturing problems are the following: 

• According to (Allahverdi, 2015)"The research on scheduling problems with setup 

times/costs is still less than 10 percent of the available research on scheduling 

problems while most scheduling environments involve setup operations. Hence, 

more research on scheduling problems with explicit consideration of setup 

times/costs is needed". Our proposed phase II model includes sequence-dependent 

setup times and addresses this recommendation. 

• According to (Allahverdi, 2015) "...for the single machine environment with 

family setup time case, about 75 percent of the papers addressed the sequence-

independent problem. This indicates the need for addressing the sequence-
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dependent scheduling problems in single machine". Our formulation addresses the 

multiple identical parallel machine with sequence-dependent scheduling problem; 

hence, setting m=1 aligns with the recommendation previously stated. 

•  According to (Allahverdi, 2015) "...in the current competitive work environment, 

firms strive to save in every possible way, and minimizing work-in process is a 

major cost saving. It has been observed that the total completion time 

performance measure has been addressed by a relatively smaller number of papers 

for the single machine, parallel machine, and job shop environments. It has been 

also observed that total tardiness performance measure has been only utilized in a 

few papers for the job shop environments. Therefore, there is a need to consider 

these performance measures in those scheduling environments". Our phase III 

objective function addresses this recommendation by minimizing total weighted 

completion time and total tardiness.  

• For the Diversity Maximization Approach (DMA) for MOO presented by Masin 

and Bukchin, (2008) with MILP scheduling problem, our model allows user-

model interaction for the parallel machine scheduling with shared auxiliary 

resource which addresses Masin and Bukchin's, (2008) recommendation to 

explore an interactive DMA with the decision maker resulting in a more effective 

method since the user could focus on the relevant parts of the efficient frontier. 

Our proposed research is going to address this recommendation since we plan to 

enable model-user interaction for the DMA MOO model in phase III.  
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• Ham (2018) suggested to apply the time-indexed MILP model instead of 

"positional & assignment" variables used in Ham’s study. Similarly, Avella et al., 

(2017) successfully applied MILP model in runway scheduling problems 

reversing the opinion that time-indexed MILP models are unattractive for real-

time applications or large scale models. Our formulations address these two 

recommendations by applying time-indexed IP and MILP models for the three 

phases.  

• Edis (2009) claims that most of the research on parallel machine scheduling 

neglects machine eligibility restrictions. Our three phases apply job-machine 

eligibility restrictions to mimic real-world practical models.  

 

7.3. Future Research 

This section is further subdivided in two sections. Section 7.3.1 presents proposed 

research for methods and algorithms and section 7.3.2 provides future research related to 

the overall framework.  We propose the following topics for future research on methods 

and algorithm: 

7.3.1. Methods and Algorithms 

The heuristic proposed in Chapter 5 is currently providing “good” feasible solutions 

in a relatively short amount of time. The model accomplishes its results by generating 32 

sorting variations per problem instance with the lowest completion time selected as the 

final solution to prime the time-indexed IP model. The proposal for future research is to 
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further improve the heuristic that is currently providing “good” feasible solutions in a 

relative short amount of time by testing more sorting variations beyond the 32 

combinations per instance. We also propose to incorporate multiple objectives (multi-

objective) allowing practitioners to use this formulation for real-world problems where 

there is a need to model machines with resources and setups. 

7.3.2. Overall Framework Future Research 

The proposed research in this subsection deals with the integration of each 

component in the system architecture. 

A scheduler database module deals with the storage of input data to the model and 

output from the model which may interact with the factory database.  The proposed 

databased should be designed in a way that allows data input/output into the algorithms, 

input for machines and Gantt Charts. The database may be designed with pre-processing 

subroutines to allow faster model building. 

The feasibility module’s main objective is to determine if user-model interaction 

results in a feasible schedule. If the user overrides the model rendering an unfeasible 

instance this module should warn the user or potentially repair the change to make it 

feasible.  This module could also help link two or more schedules in order to minimize 

completely different schedules. That is, the module should minimize schedules’ changes 

especially if auxiliary resources were requested to be transferred between machines. 

Finally, it is recommended that a user-friendly interface be developed that allows 

the decision maker to efficiently interact with the Gantt Charts in a way that he/she can 
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edit, add and delete job-machine-resource combination with minimal interface 

operations. 
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