
Deep Learning-based Semantic Image Segmentation Techniques for Corrosive Particles of

Aluminum Alloy AA 7075

by

Daniel Barboza

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved September 2020 by the
Graduate Supervisory Committee:

Pavan Turaga, Chair
Nikhilesh Chawla
Suren Jayasuriya

ARIZONA STATE UNIVERSITY

December 2020

ABSTRACT

Semantic image segmentation has been a key topic in applications involving image

processing and computer vision. Owing to the success and continuous research in the

field of deep learning, there have been plenty of deep learning-based segmentation archi-

tectures that have been designed for various tasks. In this thesis, deep-learning architec-

tures for a specific application in material science; namely the segmentation process for

the non-destructive study of the microstructure of Aluminum Alloy AA 7075 have been

developed. This process requires the use of various imaging tools and methodologies to

obtain the ground-truth information. The image dataset obtained using Transmission X-

ray microscopy (TXM) consists of raw 2D image specimens captured from the projections

at every beam scan. The segmented 2D ground-truth images are obtained by applying

reconstruction and filtering algorithms before using a scientific visualization tool for seg-

mentation. These images represent the corrosive behavior caused by the precipitates and

inclusions particles on the Aluminum AA 7075 alloy. The study of the tools that work best

for X-ray microscopy-based imaging is still in its early stages. In this thesis, the underly-

ing concepts behind Convolutional Neural Networks (CNNs) and state-of-the-art Semantic

Segmentation architectures have been discussed in detail. The data generation and pre-

processing process applied to the AA 7075 Data have also been described, along with the

experimentation methodologies performed on the baseline and four other state-of-the-art

Segmentation architectures that predict the segmented boundaries from the raw 2D im-

ages. A performance analysis based on various factors to decide the best techniques and

tools to apply Semantic image segmentation for X-ray microscopy-based imaging was also

conducted.

i

ACKNOWLEDGMENTS

I would like to especially thank Professor Pavan Turaga, for giving me a wonderful

opportunity to work on my Master’s thesis under his guidance. He has been completely

supportive throughout his valuable suggestions and insights. I would also like to thank him

for his patience with me and for putting up with my slow progress over time.

I would also like to express my special thanks to Rajhans Singh for helping me through

the research with his valuable inputs and assisting me with technical difficulties and ap-

proaches related to the topic. Also, I wish to acknowledge Kowshik Thopalli for assisting

me with my queries. It was great being a part of the Geometric Media Lab at Arizona State

University (ASU) and contributing to research work in the time frame possible.

I am grateful to Professor Suren Jayasuriya and Professor Nikhilesh Chawla for being

willing to serve as panelists for the Thesis defense committee. I would also like to thank

Dr. Sridhar Niverty and the Center for 4D Material Sciences, ASU directed by Professor

Nikhilesh for granting me access to the dataset for research.

I also wish to thank my graduate advisor, Lynn Pratte, from the School of Electrical,

Computer and Energy Engineering at ASU, for assisting me on various occasions in my

Master’s program and for her kind advice.

Finally, I wish to thank my parents, sister, best friends, and roommates for their constant

support and encouragement throughout my Master’s program at ASU.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Thesis Outline . 2

2 LITERATURE REVIEW . 4

3 THEORY . 6

3.1 Convolutional Neural Network (CNN) . 6

3.1.1 Convolutional Layer . 6

3.1.2 Pooling Layer . 9

3.1.3 Activation Functions . 9

3.1.4 Fully-connected Layer . 12

3.1.5 Batch Normalization Layer . 13

3.1.6 Dropout Layer . 13

3.1.7 Backpropagation . 14

3.1.8 Transfer Learning . 14

3.2 Semantic Image Segmentation . 15

3.3 State-of-the-art (SOTA) Architectures . 15

3.3.1 U-Net . 16

3.3.2 U-Net++ . 18

3.3.3 Pyramid Scene Parsing Network (PSPNet) . 20

3.3.4 DeepLab v3+ . 21

iii

CHAPTER Page

4 EXPERIMENTS, RESULTS AND ANALYSIS . 24

4.1 Dataset . 24

4.1.1 Data Generation Process Using X-ray Microscopy 24

4.1.2 Aluminum 7075 Data . 25

4.1.3 Training, Validation and Testing Set . 26

4.1.4 Data Pre-processing and Augmentation . 27

4.2 Metrics for Model Evaluation . 27

4.2.1 Intersection over Union (IoU) . 28

4.3 Baseline U-Net Results for Different Experiments . 29

4.4 Comparative Analysis of the Results Obtained from State-of-the-art Ar-

chitectures . 32

4.5 Performance Analysis of the Models . 35

5 CONCLUSION . 38

5.1 Future Directions . 38

REFERENCES . 40

iv

LIST OF TABLES

Table Page

4.1 Baseline U-Net Results for Binary Segmentation on 5 Testing Images with

and without Mini-batching . 30

4.2 U-Net Results on the Testing Set for Binary and Multi (3-class) Segmentation 31

4.3 U-Net Results on the Testing Set for Different Patch-sizes (Multi-class Seg-

mentation) . 31

4.4 Mean IoU Segmentation Scores on the Testing Set Using Different Archi-

tectures and Backbones. 33

4.5 Performance Analysis of the Model Implementations . 36

v

LIST OF FIGURES

Figure Page

3.1 Basic Architecture of a Convolutional Neural Network. From LeCun et al.

(1998) . 7

3.2 Graphical Representation of the Sigmoid Function . 10

3.3 Graphical Representation of the tanH Function . 11

3.4 Graphical Representation of the ReLU Function . 12

3.5 Graphical Representation of the Leaky ReLU Function 12

3.6 U-Net Architecture. From Ronneberger et al. (2015) . 17

3.7 U-Net++ Architecture. From Zhou et al. (2018) . 18

3.8 Top-most Skip Pathway of the U-Net++ Architecture. From Zhou et al.

(2018) . 19

3.9 PSPNet Architecture. From Zhao et al. (2017) . 21

3.10 Atrous Convolutions. From Chen et al. (2018) . 22

3.11 Atrous Spatial Pyramid Pooling (ASPP). From Chen et al. (2018) 23

3.12 Model Architecture of DeepLab v3+. From Chen et al. (2018) 23

4.1 Sample Raw and Segmented Image from the AA 7075 Dataset 26

4.2 Intersection over Union (IoU) . 28

4.3 Comparison of Raw, Ground-truth and Segmented Output of Images 305,

555 and 699 Using Different DL Architectures . 34

4.4 Segmented Output of Images 482 and 234 Using DeepLab v3+. 34

4.5 Incorrect Segmentation of Raw Input Images 939, 112, 772 35

vi

Chapter 1

INTRODUCTION

1.1 Motivation

X-ray microscopy is the process of producing magnified images of specimen objects

using electromagnetic radiations. The Aluminum Alloy AA 7075 is a complex heteroge-

neous alloy containing particles such as metallic inclusions and corrosion that contribute

to the corrosion of the alloy. Using Transmission X-ray Microscopy (TXM), it is possible

to study the corrosion behavior of the alloy caused by the presence of other particles. The

study also involves the use of image segmentation techniques with the help of scientific

evaluation tools to quantify and visualize the distribution of the precipitates and inclusions

contributing to the damage caused by corrosion. With the advances in Semantic segmen-

tation approaches using deep-learning, it has been possible to effectively segment various

classes related to images from the medical domain.

Semantic image segmentation involves the processing of an image to infer semantic

labels for each pixel depending upon the class it belongs to. With recent progress in

Deep learning and the use of GPU’s with high computational capability, there has been

a substantial amount of work aimed at developing semantic segmentation approaches us-

ing Deep Convolutional networks (Zhao and Xie (2013)). It has been possible to train

deep-learning models with large datasets to obtain state-of-the-art performance for Com-

puter Vision tasks like Object Detection, Image segmentation, Instance segmentation, etc

(Minaee et al. (2020)).

Based on the advances in deep-learning and potential for its application to X-ray mi-

croscopy images, I have approached this task of performing Image segmentation on images

1

from the domain of Material science using deep-learning. The chosen approaches have

been able to achieve significant performance on image data from different domains (Liu

et al. (2019)). This problem requires the use of advanced techniques to obtain accurately

segmented particle boundaries which can be achieved with the help of deep-learning mod-

els. The research I have conducted focuses on the usage of state-of-the-art deep learning

architectures for the task of Semantic segmentation to achieve a modest improvement in

performance over our chosen baseline methodology. It discusses and comparatively ana-

lyzes the different methods chosen for Semantic segmentation based on the performance

and training metrics.

1.2 Objective

The primary objective of this thesis is to employ deep-learning techniques for the task of

semantic image segmentation on X-ray microscopy images. For an optimal segmentation

output, we also need to identify the ideal set of hyperparameters, methods, backbones,

and architectures ideal for training and prediction upon the dataset. The time and memory

consumption aspect of the chosen methods is also an important objective of this thesis

to achieve the best possible segmentation results using an optimal amount of time and

resources.

1.3 Thesis Outline

This thesis is divided into five parts, Chapter 1 introduces the problem, the motivation

to solve the problem and describes the research method. Chapter 2 discusses the litera-

ture survey conducted for the task of Semantic image segmentation to identify potential

deep-learning approaches apt for the task at hand. We discuss the work most relevant to

our problem starting from traditional methods to state-of-the-art Convolutional Neural Net-

work (CNN) architectures. Chapter 3 covers the background theory and concepts related

2

to CNN’s in detail and discusses four of the commonly used Deep Neural architectures for

Semantic segmentation in detail. Chapter 4 introduces the dataset of Aluminum AA 7075

images used for the research and other techniques employed to aid in training them using

various approaches. It also includes the experiments conducted and analysis obtained from

the results in comparison with the baseline model and each of the chosen architectures.

Chapter 5 concludes the research with a summary of our contributions to the task of ap-

plying Semantic image segmentation to X-ray microscopy images and also discusses some

future research directions.

3

Chapter 2

LITERATURE REVIEW

Semantic image segmentation deals with the assignment of class labels for every pixel of an

image based on the class it belongs to (Ikeuchi (2014)). It has multiple applications in the

fields of medical imaging and autonomous vehicles. Segmentation has been widely used

to classify biomedical images to segment neuron structures (Ronneberger et al. (2015)),

detection of brain tumor (Moon et al. (2002)), for the purpose of colon crypt segmenta-

tion (Cohen et al. (2015)), etc. The segmentation of different objects is significant in the

autonomous domain and such methods, described by Maldonado-Bascón et al. (2007) and

Gupta and Sortrakul (1998), have been used time and again before the use of neural network

architectures.

Traditional methods like k-means clustering, thresholding, histogram-based methods

have been employed for Semantic segmentation for various applications. However, over

the course of years, deep-learning has pushed the boundaries to develop various architec-

tures capable of enhancing the segmentation accuracy significantly. With the use of Deep

convolutional neural networks (DCNN), it has been possible to achieve state-of-the-art per-

formance for various visual tasks.

Krizhevsky et al. (2012) pioneered the current advancements in the field of deep-

learning by performing supervised training of a large network on the ImageNet dataset with

1 million training images. Different deep architectures modified for training in different

domains have been introduced since the advancement of deep learning-based segmentation

methods. A network with a sliding window setup to predict pixel labels was suggested by

Ciresan et al. (2012) which was slow in processing and less accurate. Various other imple-

mentation involved the use of features from different layers of the architecture as discussed

4

in Seyedhosseini et al. (2013). Ronneberger et al. (2015) introduced an encoder-decoder

type of architecture for biomedical image segmentation to improve localization accuracy.

Relevant work did by Chen et al. (2017), to add fully-connected random fields to CNNs

led to a significant upgrade in the segmentation performance. Various other approaches by

Zhao et al. (2017) involving the use of a pyramid architecture to concatenate various feature

maps also proved well. The DeepLab v1 (Chen et al. (2017)) and DeepLab v2 (Chen et al.

(2014)) paved the way for DeepLab v3+ (Chen et al. (2018)) which incorporates advanced

elements from the previous two implementations.

As discussed above, there are a variety of potential methods to be implemented for

the task of semantic segmentation. In this case, my approach would be to apply deep

learning-based Semantic segmentation to segment inclusions and precipitates in images of

Aluminum Alloy AA 7075. These images generated using the process of X-ray microscopy

seem similar to images used for segmentation in the biomedical domain. There has been

some research pertaining to segmentation for X-ray microscopy images as discussed by

Kaira et al. (2018), Wang (2008), Ma et al. (2018), and Chen et al. (2020).

In this section, an overview of the various semantic segmentation approaches was dis-

cussed that may be suitable for this research. The chosen architectures for this purpose will

be discussed in Chapter 3.

5

Chapter 3

THEORY

This chapter covers the background theory behind Convolutional Neural Networks (CNN).

The various layers that form a CNN are covered in detail, along with other important com-

ponents of the CNN. Lastly, this chapter covers the recent advances in semantic image

segmentation techniques and discusses four of the state-of-the-art deep neural architectures

used for segmentation.

3.1 Convolutional Neural Network (CNN)

Convolutional Neural networks are an extension of neural networks comprising of neu-

rons with learnable weights and biases. CNNs are designed to be used explicitly with

images. This allows us to encode certain properties into the architecture that aid in learn-

ing tasks relevant to image data and its distribution. CNNs take advantage of the image

as an input and help constrain the architecture and vastly reduce the total number of net-

work parameters. CNNs are made up of a sequence of layers that transform a volume of

activations into another using differentiable functions Goodfellow et al. (2016). Figure 3.1

shows the basic architecture of a Convolutional Neural network (CNN) with its primary

layers. The layers of a CNN and its other core components have been discussed in detail in

the following sections (LeCun et al. (1998), Lo et al. (1995)).

3.1.1 Convolutional Layer

The Convolutional layer is the primary building block that detects low and high-level

features in the input with spatial and temporal dependencies. The output volume is a 3-

dimensional tensor achieved after using a convolutional kernel or a filter matrix over the

6

Figure 3.1: Basic Architecture of a Convolutional Neural Network. From LeCun et al.
(1998)

input image. The resultant output is a feature-map based on the kernel that computes

various features from the receptive field of the kernel. The size of the output volume is

primarily controlled by three hyper-parameters: depth of the input, stride, size of zero-

padding.

1. The depth of the output volume corresponding to the number of filters used to extract

various features.

2. The stride value decides the amount of sliding a filter kernel used when performing

the convolution operation. The spatial volume of the output reduces as the stride

value increases thus reducing the receptive field.

3. To handle the spatial size of the output, it is essential to pad zeros to the input volume

around the image channels.

The spatial size of the output volume as described in equation (3.1) is computed using

the input volume (W), the size of the filter kernel (F), the stride applied during convolution

(S), and the amount of zero-padding used (P) on the input.

Spatial size of the Output Volume = (W − F + 2P)/S + 1 (3.1)

7

For example, an input of size 9 × 9 with a filter kernel of size 5 × 5 with a stride of 1

and no zero-padding would give a 7 × 7 output. If the stride is changed to 2, the output

would have the size 3× 3.

The convolutional layer generates the output by convolving the filter kernel over the

input. The operation can be described as in equation (3.2).

y(i, j) = (x ∗ h)[i, j] =
∑
k

∑
l

h[k, l] ∗ f [j − k, i− l] (3.2)

where:

y(i, j) = Output frame

x = Input frame

h = Filter kernel

(i, j) = Size of the frame

(k, l) = Size of the Kernel

The total number of parameters for a convolutional layer determines the number of

learnable parameters that are updated through training. As the network architecture gets

deeper, and more layers are added, the number of learnable parameters increase exponen-

tially and contribute to the model complexity. The equation to estimate the total number of

parameters for a layer with an input volume of W ×H ×D is as described in (3.3)

Total number of parameters = (F × F ×D + 1)×K (3.3)

F represents the size of a filter kernel used. The D in equation (3.3) represents the

depth or the number of channels present in the input volume. K represents the number of

filter kernels used for convolution. The constant 1 in the equation corresponds to the bias

parameter for every filter kernel leading to (F × F ×D)×K weights and K biases.

8

3.1.2 Pooling Layer

The pooling layer typically reduces the spatial size of the representation while extract-

ing dominant features from the data. This aids in reducing the number of parameters in the

network thus helping control overfitting. The pooling layer is usually placed right after a

convolutional layer as it removes the information and extracts distinct features. It operates

on every depth slice of the input volume and uses the MAX operation to resize it spatially.

Based on the choice of the pooling method, the size of the filter used to perform the pooling

operation varies. The most commonly used form of pooling, also referred to as ‘Max Pool-

ing’, is using a filter kernel of size 2 × 2 with a stride of 2 which downsamples the height

and width of every channel of the input volume by 2. The depth dimension of the input

remains unchanged after pooling. The pooling units can also perform other functions, such

as average pooling or even L2-norm pooling instead of the MAX operation. Max pooling

returns the maximum value from the data windowed by the kernel while Average pooling

returns the average of all the values in a windowed portion of the image. Max pooling per-

forms better as compared to Average pooling, owing to its de-noising properties and hence,

it is used widely in modern architectures Goodfellow et al. (2016).

3.1.3 Activation Functions

Activation functions are differentiable functions that introduce a non-linearity to the

data passed through it. These functions are attached to every neuron and determine if a

neuron will be activated or not based on the output of the function used. As backpropa-

gation is used to train the model parameters, the activation functions need to be compu-

tationally efficient. Using non-linear activation functions, the network can learn complex

data distributions and aid in providing accurate predictions (Caldelli et al. (2019)). The

following sections discuss the non-linear activation functions frequently used in modern

9

neural network architectures.

Sigmoid / Logistic

The sigmoid function is expressed as shown in equation (3.4). The sigmoid function has a

smooth gradient and it bounds the output values between 0 and 1. It suffers from the vanish-

ing gradient problem for very large or small values and is also computationally expensive.

Figure 3.2 shows its graphical representation.

σ(x) =
1

1 + e−x
(3.4)

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure 3.2: Graphical Representation of the Sigmoid Function

TanH / Hyperbolic Tangent

The tanH function is expressed as shown in equation (3.5). The hyperbolic tangent function

is very similar to the sigmoid function. It is more zero-centered which helps in modeling

inputs that are strongly positive, negative, or neutral. Figure 3.3 shows its graphical repre-

sentation.

tanh(x) =
e−x − e−x

e−x + e−x
(3.5)

10

−10 −5 5 10

−1

−0.5

0.5

1

x

y

Figure 3.3: Graphical Representation of the tanH Function

Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) function is expressed as shown in equation (3.6). ReLU

is more computationally efficient as compared to the sigmoid and the tanH function. Its

disadvantage is that it suffers from the Dying ReLU problem in which the gradient of the

function becomes zero when the inputs are negative or approach zero. Owing to this, the

network cannot perform backpropagation which in turn hinders learning. Figure 3.4 shows

its graphical representation.

fReLU(x) = max(0, x) =

 0 for x < 0

x for x ≥ 0
(3.6)

Leaky ReLU

The Leaky Rectified Linear Unit (ReLU) function is expressed as shown in equation (3.7).

Leaky ReLU solves the dying ReLU problem faced by the ReLU activation function, thus

enabling backpropagation for negative values as well. Figure 3.5 shows its graphical rep-

resentation.

11

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

Figure 3.4: Graphical Representation of the ReLU Function

−6 −4 −2 2 4 6

2

4

x

y

Figure 3.5: Graphical Representation of the Leaky ReLU Function

fLeaky(x) = max(0.1 ∗ x, x) =

 0.1x for x < 0

x for x ≥ 0
(3.7)

3.1.4 Fully-connected Layer

In a fully-connected layer, all the neurons have complete connections to all activations

in the previous layer, each having their weights. The activations are computed using a

12

matrix multiplication followed by a bias offset. The final fully-connected layer is referred

to as the ‘Output layer’ and it represents the class scores or the model output that will be

used for prediction or inference. The output layer decided the output size for translating the

data propagated through the CNN layers. Based on the desired output, different activation

functions may be used in the output layer.

3.1.5 Batch Normalization Layer

Batch Normalization (BN) is an important component of the CNN architecture. This

layer normalizes the feature maps by subtracting the mean value of the batch and divides

the values by the standard deviation of the batch being processed. This helps in maintaining

the feature map distribution by ensuring that the activation does not diverge to very high

values. Using BN layers also has regularization effects thus helping prevent overfitting the

model.

3.1.6 Dropout Layer

In deep-learning, models are trained upon huge sets of training data. If a model fits

very well to a training set with very high training accuracy, it is also able to model the

noise present in the training data. This is referred to as Overfitting, as the model is not able

to generalize or fit observations from the test set on which it has never trained. To avoid

overfitting, the Dropout layer is used in DL architectures which randomly chooses a certain

portion of neurons and ignores the rest (by not activating them) during the training process.

This also leads to improved training speed and prevents overfitting by reducing the number

of neurons to train.

13

3.1.7 Backpropagation

After the input signal propagates through the neural network to the output layer, the

parameters (weights and biases) of all the trainable layers need to be updated. Backprop-

agation is essentially the technique using which a neural network updates the parameters

based on the error rates of the output, by propagating the error, back through all the weights

using a loss function. The chain rule is used to compute the gradients for every parame-

ter, which are then used to update every parameter for the next iteration. The important

part here is to minimize the loss for better training as this minimizes the error difference

between the input and the ground truth. Optimizers are used to aid the network in updat-

ing its parameters throughout the layers. The Adam optimizer and the Stochastic Gradient

Descent (SGD) optimizer are the most commonly used optimizers for training. Adam uses

a set of different learning rates that help in achieving convergence faster than SGD which

uses a single learning rate (Hecht-Nielsen (1992)).

3.1.8 Transfer Learning

Convolution neural networks have a very high number of trainable parameters viz,

weights, and biases. Based on the architecture used, the number of trainable parameters

can greatly vary for deep-learning architectures. The weights are updated based on the

learning by minimizing the loss to find an optimal value that gives the best possible output.

Weights can learn different data features ranging from edge and color information to com-

plex structures and distributions. As mentioned by Goodfellow et al. (2016), it is possible

to exploit learning’s from one setting to generalize in another setting. It is possible to trans-

fer the learning’s (viz. weights and biases) of a trained model to another model expected

to function on a similar task. Also, model architectures trained from scratch, have ran-

dom weights set throughout the architecture. Depending upon the model and several other

14

factors, it may take the model a significant amount of time to converge and start learning

with a high training accuracy. Using Transfer learning, it is possible to use pre-trained

weights to initialize the model with the best possible learned parameters that will increase

the throughput and model performance.

3.2 Semantic Image Segmentation

Semantic image segmentation is the process of classifying each pixel in an image be-

longing to a particular class. Segmentation involves classification and localization of the

features. Classification involves making a prediction for the complete input. Localization

provides us with the desired classes and the spatial location of those classes. Using dense

predictions, labels are inferred for every pixel with the class of its enclosing region. Deep

learning architectures have been used specifically for the task of Semantic segmentation

and have been able to achieve significant performance boosts in terms of accuracy with the

latest advances in deep-learning (Zhou et al. (2019a)). The state-of-the-art deep learning

architectures typically used for Semantic segmentation tasks of different types of images

have different aspects and design elements in common. The encoder-decoder architecture

setup, skip connections, Multi-scale and Pyramid-based networks, Dilated Convolutional

models are commonly used in many of the State-of-the-art (SOTA) architectures that have

achieved the best performance over benchmarking image datasets (Minaee et al. (2020)).

3.3 State-of-the-art (SOTA) Architectures

This section discusses some of the advanced deep-learning architectures that have been

used for the task of semantic segmentation and have also contributed to the research in this

field by introducing advanced techniques and design patterns to improve the segmentation

score.

15

3.3.1 U-Net

The U-Net architecture as discussed by Ronneberger et al. (2015) is an encoder-decoder

type of deep-learning network architecture initially designed for medical image segmenta-

tion. The U-Net comprises of two parts, the encoder architecture that reduces the spatial

size of the input to capture the context and the symmetric decoder architecture that aids

in precise localization. The down-sampling portion comprises an architecture similar to

the Fully Convolution Network (FCN) which extracts image features using 3× 3 convolu-

tions. The up-sampling part of the architecture uses up-convolutions to reduce the number

of feature maps while increasing the dimensions. It uses 1 × 1 convolutions at the end to

generate a segmentation map categorizing each pixel by processing the feature maps. The

upsampling portion of the network has a large number of feature channels, which allows the

context information to propagate to higher resolution layers. The U-Net was specifically

designed to train with a fewer number of training images to yield precise segmentation

results (Lee et al. (2017)).

The network architecture as shown in figure 3.6 consists of repeated 3×3 convolutions,

followed by a Rectified Linear Unit (ReLU) and a 2× 2 max pooling operation for down-

sampling. At every downsampling step, the number of feature channels is doubled. For

upsampling, 2 × 2 convolution (up-convolution) is used that halves the number of feature

channels provided as input to that layer. It also includes skip connections concatenating the

output from the encoder architecture (downsampling), followed by two 3× 3 convolutions

and a ReLU layer. These skip connections provide the localization information from the

downsampling portion to the upsampling portion of the architecture. U-Net architecture

uses an overlap-tile strategy for training and prediction. The output size is smaller than

the input size because of the use of unpadded convolutions. The input image is broken

down into patches of a size acceptable to the model input. The model predicts the segmen-

16

Figure 3.6: U-Net Architecture. From Ronneberger et al. (2015)

tation map for every patch and these predictions are then combined to form the resultant

segmentation output. U-Net also performs well with data augmentation as it can general-

ize well to random deformations applied to the input image and the corresponding output

segmentation map (Falk et al. (2019)).

As discussed in Ronneberger et al. (2015), the U-Net implementation also includes a

weight map that is applied to the output of the network which is helpful in the separation of

class boundaries touching each other. The weight map is computed as shown in equation

(3.8)

w(x) = wc(x) + w0 · exp

(
−(d1(x) + d2(x))2

2σ2

)
(3.8)

where wc : Ω→ R is the weight map to balance the class frequencies, d1 : Ω→ R denotes

the distance to the border of the nearest cell and d2 : Ω → R the distance to the border of

the second nearest cell. The cross-entropy function is penalized at each pixel position by

17

Figure 3.7: U-Net++ Architecture. From Zhou et al. (2018)

the weight map and can be expressed as shown in equation (3.9)

E =
∑
x∈Ω

w(x) log(pl(x)(x)) (3.9)

where ` : Ω→ {1, . . . , K} is the true label of each pixel and w : Ω→ R is the weight map

introduced during the training.

3.3.2 U-Net++

The U-Net++ is a nested U-Net architecture developed by Zhou et al. (2018) based

on nested and dense skip connections for more accurate semantic segmentation. It was

designed for the task of image segmentation in the medical domain, yielding an appreciable

performance gain over the U-Net architecture.

The architecture of U-Net++ as shown in figure 3.7 consists of an encoder and decoder

that are connected through a series of nested dense convolutional blocks. As compared

to the U-Net, it bridges the feature maps from the encoder to the decoder before merging

them. For instance, in figure 3.7, the semantic gap between X0,0 and X1,3 are bridged

using three intermediate convolutional layers. The components in black color correspond

18

Figure 3.8: Top-most Skip Pathway of the U-Net++ Architecture. From Zhou et al. (2018)

to the original U-Net implementation with the encoder-decoder structure. The dense con-

volutional blocks on the skip pathways that are used to bridge the semantic gap have been

shown in blue and green colors. The portion in red color corresponds to the deep supervi-

sion mode used in the U-Net++ architecture. The primary differences that distinguish the

U-Net++ from the basic U-Net are the use of re-designed skip pathways connecting two

sub-networks and deep supervision (Zhou et al. (2019c)).

Re-designed Skip Pathways

The re-designed skip pathways in the U-Net++ architecture introduce dense convolution

blocks with a different number of convolutional layers based on the pyramid level. A

concatenation layer is used before the convolutional layer which fuses the output from the

previous convolutional layer of the dense block along with the up-sampled feature map

from the lower dense block.

These dense convolution blocks help in bringing the semantic maps of the encoder

closer to the decoder feature maps, thus making the optimization process faster.

The skip pathways can be formulated as shown below in equation (3.10).

xi,j =


H(xi−1,j), j = 0

H
([[

xi,k
]j−1

k=0
,U(xi+1,j−1)

])
, j > 0

(3.10)

In equation (3.10), xi,j denotes the output from the node X i,j where the index i refers

to the encoder layer and the index j refers to the dense convolutional block on the skip

19

pathway. The H represents the convolution operation followed by an activation function,

U denotes an upsampling layer, and [] represents the concatenation layer.

Deep Supervision

UNet++ generates full-resolution feature maps at various levels as it uses nested skip path-

ways between the encoder-decoder parts. Using Deep supervision enables the model to

operate in different modes. The outputs from all segmentation branches are averaged in

the Accurate mode. The fast mode lends a speed gain in which the final segmentation map

is obtained from only one of the segmentation branches. UNet++ uses a combination of

binary cross-entropy and dice coefficient as the loss function as shown in equation (3.11)

L(Y, Ŷ ′) = − 1

N

N∑
b=1

(
1

2
· Yb · log Ŷb +

2 · Yb · Ŷb
Yb + Ŷb

)
(3.11)

The Ŷb denotes the flattened predicted probabilities and Yb denotes the flattened ground

truths of bth image respectively. N indicates the batch size used.

3.3.3 Pyramid Scene Parsing Network (PSPNet)

Pyramid Scene Parsing network (PSPNet) by Zhao et al. (2017) is a scene parsing

network that makes the use of the Pyramid Pooling module with different-region-based-

context for achieving state-of-the-art segmentation performance. The pyramid pooling

module provides global information about the images leading to better segmentation re-

sults.

Figure 3.9 shows the PSPNet architecture with the Pyramid Pooling module that takes

the feature map from the last convolutional layer of the CNN as input. It fuses features un-

der four different pyramid scales. the topmost coarse level in the Pooling module performs

global pooling to generate a single output. The pyramid levels separate the feature maps

20

Figure 3.9: PSPNet Architecture. From Zhao et al. (2017)

into different sub-regions and form pooled representations of the map for different loca-

tions with different sizes. Using 1 × 1 convolutional layer, the dimensions of the context

representation is reduced from N to 1/N (Fang and Lafarge (2019)). The low dimension

feature maps are upsampled to the original input image size and then concatenated with the

original feature map. The pyramid module in the PSPNet as shown in figure 3.9 has four

bins of sizes 1×1, 2×2, 3×3 and 6×6. A pre-trained ResNet model with the dilated net-

work strategy is used to extract the feature map, provided as input to the Pyramid Pooling

module. The concatenated output from the pyramid pooling module is then passed through

a convolutional layer to generate the prediction map as the output of the PSPNet.

3.3.4 DeepLab v3+

Deeplab v3+ is a deep learning-based semantic image segmentation model presented

by Chen et al. (2018). The model is based on two main techniques; Atrous convolutions,

Atrous Spatial Pyramid Pooling (ASPP), and the use of an encoder-decoder architecture.

The above-mentioned techniques paired with an adapted Xception model as a backbone,

have resulted in breakthrough mIoU (Mean Intersection over Union) scores on bench-

marking testing datasets.

21

Figure 3.10: Atrous Convolutions. From Chen et al. (2018)

Atrous Convolutions

Atrous convolutions also referred to as dilated convolutions in some research papers, refer

to convolution operations in which the stride value used to sample the input is greater than

one. This leads to an output with a larger feature map thus leading to enlargement of

the field of view of the filters. It is an efficient technique to control the field-of-view of the

output thus finding the best trade-off between accuracy and efficiency. Figure 3.10 provides

an illustration of sparse and dense feature extraction with normal and atrous convolutions

(Chen et al. (2014)).

Consider two-dimensional signals, for each location i on the output y and a filter w,

atrous convolution applied over the input x can be expressed as shown in equation (3.12).

y[i] =
∑
k

x[i+ r · k]w[k] (3.12)

where the atrous rate r corresponds to the stride value.

Atrous Spatial Pyramid Pooling (ASPP)

ASPP is an atrous version of the pyramid pooling technique described in the PSPNet ar-

chitecture in section . In ASPP, the atrous convolutions with different sampling rates are

22

Figure 3.11: Atrous Spatial Pyramid Pooling (ASPP). From Chen et al. (2018)

Figure 3.12: Model Architecture of DeepLab v3+. From Chen et al. (2018)

computed in parallel and then fused. This helps to account for different scales of the ob-

jects in the input classes, thus improving the accuracy. Figure 3.11 shows the multiple

filters with the different sampling rates in the ASPP module (Chen et al. (2017)).

As shown in figure 3.12, the image features extracted using atrous convolutions are

provided to the ASPP which generates the output of the encoder part of the network. The

concatenated feature maps from the ASPP are provided to the decoder part through a 1 ×

1 convolution followed by upsampling. This is concatenated with the low-level features

received from the first two layers to generate the predicted output.

23

Chapter 4

EXPERIMENTS, RESULTS AND ANALYSIS

This chapter introduces the dataset containing the Aluminum Alloy 7075 images used for

semantic segmentation, the methodology used for data generation, pre-processing, and

other details regarding its usage. It then covers the various experiments conducted with

the baseline and different state-of-the-art architectures and relevant modifications made

during their implementations. It also covers a comparative analysis of the results obtained

after conducting these experiments and a performance analysis based on the Training Time,

Training complexity, GPU resources used, and scores obtained.

4.1 Dataset

4.1.1 Data Generation Process Using X-ray Microscopy

Aluminum alloy AA 7075 is a complex heterogeneous alloy consisting of particles such

as metallic inclusions and precipitates that affect the mechanical and corrosion behavior of

the alloy. In this study, Transmission X-ray Microscopy (TXM) has been employed to non-

destructively study the microstructure and corrosion behavior of Aluminum Alloy 7075 in

4D. Micropillars of AA7075 were fabricated using a Ga+ focused ion beam as a part of

a Zeiss Auriga Scanning Electron Microscope at Arizona State University. Transmission

X-ray microscopy was conducted on the pillars at the 32-ID-C beamline at the Advance

photon source at Argonne National Laboratory. The combination of a condenser lens,

custom-made Fresnel zone plates, and a camera binning value of 1, yielded a pixel size of

18 nm for this experiment. Further details about the beamline can be found in De Andrade

et al. (2016) and Kaira et al. (2017). X-ray energy of 9.75 keV was used during the exper-

24

iment as it was above the Zn absorption edge. This ensured a good contrast between the

precipitates and inclusions. Each scan involved capturing 1200 projections over an angular

range of 0-180 degrees with an exposure time of 1 second/ projection, thereby making the

duration of each scan to be 20 minutes. The datasets for both the peak aged and overaged

specimens were reconstructed using TomoPy, a Python-based toolbox used to reconstruct

and analyze synchrotron tomography-based data. A filtered back-projection algorithm was

used to reconstruct the projections into a reconstructed microstructure. The datasets were

then cropped appropriately, and a set of filters were applied to reduce noise and sharpen

the data on Avizo 9 (Bethesda, MD). Non-local means were employed to reduce noise in

the data and an unsharp mask was used to sharpen the relevant features in the images, such

as the inclusion and precipitate particles. Avizo 9 was then further used to perform image

segmentation on these datasets to visualize and quantify the distribution of precipitates,

inclusions, and the corrosion damage.

4.1.2 Aluminum 7075 Data

The dataset used for this research comprises of images of metallic inclusions and pre-

cipitates over an Aluminum substrate over time. The data generation process for the raw

and segmented images is as per section 4.1.1. The images have 3 classes namely the Pre-

cipitates, Inclusions, and the Al Alloy substrate. The current dataset consists of 1024 raw

and segmented image pairs referred to as the ‘Aluminum 7075 dataset’ in this report. The

raw images in the dataset have a size of 792×774 are in the .tif (Tagged Image File Format)

with a high bit-depth of 32 bits. Figure 4.1 shows a sample of raw and ground-truth seg-

mented images from the dataset. The segmented images have a bit depth of 8 bits described

in 3 color values representing the 3 classes (including the background class). The raw data

in the images need to be pre-processed and normalized before training to avoid overfitting

during training. Based on the model architecture used, the segmented image data was also

25

Figure 4.1: Sample Raw and Segmented Image from the AA 7075 Dataset

converted into a One-hot encoding format or Label encoding format. The Pre-processing

techniques and Data augmentation methods used have been covered in the next section.

4.1.3 Training, Validation and Testing Set

The Aluminum 7075 Dataset contains 1024 images pairs out of which 184 images have

missing precipitates and inclusions. These images are the specimens captured at the begin-

ning and end of the corrosion study on the Aluminum 7075 Alloy using X-Ray Microscopy.

For training and testing, only the remaining 840 images have been considered to handle data

imbalance for the classes present. In machine-learning and deep-learning applications, it

is ideal to split the dataset into a Training and a Testing set. In some cases, I have also

used a validation set by randomly selecting up to 10 images from the training set to vali-

date the accuracy and other metrics during training epochs. I have used an 80-20 split of

the dataset viz. 80 percent of the images for training (620 images) and 20 percent of the

images for testing (200 images). The models are trained on the training data pairs and the

predictions or model evaluations are done by using the testing set. The data pairs used for

training include the raw image and the segmented output based on which the model learns

26

to generalize on other data.

4.1.4 Data Pre-processing and Augmentation

The image data in the raw unsegmented training images have a high bit-depth and can

greatly affect a model’s capacity to fit to a training set whilst affecting its learning ability.

I have also applied Mean normalization to normalize the images before the training, This

allows scaling the image data in the range of zero to one, which can then be scaled to the

JPG image range by multiplying it by 255. Model architectures like the DeepLab v3+ train

specifically on images with 3 channels (viz. RGB). In this case, a single channel comprising

the raw data was repeated for each channel, thus forming the 3-channel RGB image.

Deep Neural Networks perform best when trained on larger sets of data. Convolutional

Neural Networks incorporating various layers contributing to the deep architecture often fit

well to the training set when fed with a huge dataset of images. Using data augmentation,

it is possible to artificially create modified versions of the images in the dataset which can

be used to training. This helps in increasing the size of the training set, to an amount suit-

able for deep-learning techniques, while improving a model’s performance and its ability to

generalize. I have used the ‘ImageDataGenerator’ class provided by Keras to perform aug-

mentations on the training set pairs. The image transforms done during data augmentation

include image manipulation techniques such as shifts, flips, zooms, rotations, brightness

variations, etc. I have used a random set of these operations while training to augment up

to 5-6 pairs of images per image in the training set.

4.2 Metrics for Model Evaluation

I have adopted the most commonly used metric viz. Intersection over Union (IoU), in

the field of Semantic image segmentation, to compare the performance of various segmentation-

based methods.

27

Figure 4.2: Intersection over Union (IoU)

4.2.1 Intersection over Union (IoU)

The Intersection over Union for a semantic class m, given the ground-truth mask and

predicted binary mask, can be defined as:

IoUm =
tpm

tpm + fpm + fnm

(4.1)

In the equation above, tpm refers to the number of true-positives, fpm refers to the

number of false-positives and fnm refers to the number of false-negatives in the predicted

masks. IoU can also be expressed as the ratio of the area of overlap between the predicted

mask and the ground truth divided by the area of union between the predicted mask and the

ground truth, as shown in figure 4.2.

The Mean IoU (mIoU) score is commonly used to compare different methods employ-

ing Semantic segmentation by finding the mean of the IoU scores for every class present in

the output. The IoU metric tends to penalize single instances of misclassification in the pre-

dicted output. Owing to this, the IoU metric measures performance closer to the worst-case

scenario.

28

4.3 Baseline U-Net Results for Different Experiments

The baseline U-Net used for initial experimentation was obtained from the Github

repository XLearn (Tomography), a deep-learning toolbox for X-ray imaging (Kaira et al.

(2018), Yang et al. (2017), Yang et al. (2018)). It is a basic U-Net that performs train-

ing and inference by doing patch-by-patch processing on the training/testing images. The

existing model only trained upon one image for up to 50 epochs before generating the pre-

dicted image. In this case, the model performed binary segmentation and overfit to the

single image used for training and was unable to generalize to the varying distributions

from the various images in the training set. I trained the model on a single image and a set

of 10 images enough for the GPU to train upon and recorded the mIoU results obtained on

5 testing images as shown in table 4.1. The results obtained by training the model upon a

single input image with a mean IoU score of 62.26 is referred to as the Baseline result for

the scope of this research.

To begin with, I modified the process of loading the images from the training and testing

dataset by making use of mini-batches. The U-Net converts every image input into patches

of the provided size (e.g. 32 × 32). Owing to this, the total number of image patches is

very high and it consumes a huge chunk of the memory while processing. With the help of

mini-batching, I was able to handle the process of generating the image patches and train

upon a fixed batch size of these patches which could easily fit in the allotted GPU memory.

The batch size selected for processing is made sure to be exactly divisible by the number

of GPU resources used. Different sets of hyper-parameters to fine-tune the model for the

task by varying the patch sizes, size of the batch used for processing the train/test input,

learning rate, optimizer, and loss function were tried.

29

Type
Training
Image(s) Epochs

mIoU
Score Batch size

GPU
Resources

used (Max. 8)

Loaded without 1 50 62.26 - 2

Mini-batching 10 30 60.19 - 2

Loaded with 100 5 40.65 128 2

Mini-batching 200 5 44.40 512 4

620 5 49.40 128 4

Table 4.1: Baseline U-Net Results for Binary Segmentation on 5 Testing Images with and

without Mini-batching

I added the Batch normalization layer to the baseline U-Net implementation, to allow

the model to effectively fit by normalizing the feature input before every ReLU activation

layer. Based on the initial few epochs for a small subset of the training set, the best set of

hyper-parameters were decided before initiating the training process.

The baseline model I used, only performed binary-segmentation on the input images.

The training input to the model and the last layer output (using Softmax activation to change

the number of output classes) were modified to generate the model output for 3 classes viz.

the inclusions, precipitates, and the background class. The model was trained on all 620

training images with a patch size of 32×32, the Adam optimizer with the MSE loss (binary

segmentation), and the Cross-entropy loss (3-class segmentation). The results for binary

segmentation and Multi-class (3-class) semantic segmentation have been shown in the table

4.2. The U-Net gave better results in the case of binary segmentation as the precipitates and

inclusion were together segmented as one class, the background being another class. In the

case of multi-class segmentation, the representation and distribution of the 3 classes in the

30

images varies which results in a comparatively reduced mean IoU score of all the classes.

Segmentation Training Images Epochs IoU score

Binary 620 10 74.42

Multi-class 620 10 73.88

Table 4.2: U-Net Results on the Testing Set for Binary and Multi (3-class) Segmentation

Table 4.3 shows the IoU scores obtained after training the model for multi-class seg-

mentation on different patch sizes for the complete testing set. The patch size 32×32 gives

the highest IoU as compared to the other patch sizes as it is the optimum patch size enough

to represent the distribution of the particles in the image. After training on multiple patches

of different images, the model can generalize well leading to improved performance (Zhang

et al. (2018)).

Patch size used IoU score

32× 32 73.88

64× 64 70.35

128× 128 69.16

Table 4.3: U-Net Results on the Testing Set for Different Patch-sizes (Multi-class

Segmentation)

31

4.4 Comparative Analysis of the Results Obtained from State-of-the-art Architectures

The segmentation architectures discussed in section 3.3 were implemented for this re-

search. The PSPNet and UNet++ can train on one-hot encoded segmented ground-truth

images. In the case of DeepLab v3+ (based on Tensorflow), I had to convert the complete

dataset into Tensorflow’s ‘.tfrecord’ format which is a compression format to efficiently

store and load training/testing data. The models can train faster on tfrecords as they con-

sume less memory during processing and are loaded faster from memory. The base im-

plementations of the architectures/backbones used for the purpose were referred to from

existing open-source implementations.

The training and testing for these DL models were done in Tensorflow/Keras with the

use of GPU computational resources. Mean normalization of the training data was done

to reduce the computation before training on every image. Based on the number of GPU

resources available, during the time of training, a fixed batch size was used and hyper-

parameters like learning-rate, weights initialization, and class weights were modified based

on a few initial epochs. Depending upon the backbone supported by the implementation,

the various architectures were trained and the segmentation results viz. mIoU scores were

recorded and are as shown in table 4.4.

The DeepLab v3+ works comparatively better as compared to the U-Net, the U-Net ++,

and the PSPNet owing to Atrous Spatial Pyramid Pooling (ASPP) technique. Its encoder-

decoder architecture paired with the ASPP module helps in the effective segmentation of

images with a different number of classes. It is also able to segment images with overlap-

ping classes as shown in figures 4.3 and 4.4. In the case of DeepLab v3+, I also used Data

augmentation techniques to augment newer images for every image supplied as input dur-

ing the training process. Table 4.4 compares the mIoU scores of the different architectures

implemented to segment the inclusions and precipitates from the images of the Aluminum

32

alloy AA 7075. The DeepLab v3+ has an mIoU score of 74.27 with slightly better and con-

sistent segmentation results as shown in figure 4.4. The mIoU scores represent the mean

IoU scores of all the 3 classes present in the segmented output. The IoU score for the back-

ground class which occupies the major portion of the images is very high, in the range of

88 to 95, while the IoU scores of the other 2 classes range from 55 to 76 depending upon

the implementation. I have used class weights during training to highlight the importance

of segmenting the precipitates and inclusion classes over the background class.

Architecture Variant/Backbone mIoU Score

U-Net
Baseline 62.26

Fine-tuned 73.88

U-Net ++
Inception-v3 72.43

ResNet-152 72.19

PSPNet
Inception-v3 72.36

ResNet-152 72.80

DeepLab v3+ Xception 74.27

Table 4.4: Mean IoU Segmentation Scores on the Testing Set Using Different

Architectures and Backbones

Figure 4.5 shows the incorrect segmentation output of images predicted from the testing

data. Image 939 has incomplete data and is a part of the set of images captured at the very

beginning and end, using X-ray microscopy. The ground-truth only has a few particles

at the top (enclosed in the red box) but the models identify the various disturbances in the

image and classify them as relevant classes. In the case of Image 112, the ground-truth does

33

Figure 4.3: Comparison of Raw, Ground-truth and Segmented Output of Images 305, 555
and 699 Using Different DL Architectures

Figure 4.4: Segmented Output of Images 482 and 234 Using DeepLab v3+

34

Figure 4.5: Incorrect Segmentation of Raw Input Images 939, 112, 772

not have any class information but the segmented output does identify the precipitates and

inclusions present in the input image. To handle such scenarios better, it would be ideal to

use data augmentation techniques to create more such data with disturbances, occlusions,

etc to help the model generalize to the variability of the classes during prediction. It is

also noticed that the model performs better for the class with a higher presence in the

image. With the use of class weights, I have also adjusted the values to handle the class

imbalance scenario. Image 772 is a standard input image with a good presence of both the

particles. The red box highlights the blue particles present in the ground-truth which were

not segmented in the output.

4.5 Performance Analysis of the Models

I conducted a performance analysis to infer which model implementation would be

ideal to achieve the highest Mean IoU score for the task of Semantic segmentation with

35

minimal use of GPU resources, requiring lesser time for training/prediction. The various

factors that I have used to assess the model with the highest performance are the num-

ber of epochs used for training, the batch size, active GPU resources used during train-

ing/prediction, the time required to train on the complete training set, the time required to

generate prediction images for an image and the resultant Mean IoU score.

Architecture
Batch
Size Epochs

Training
Time
(days)

GPU
Resources

used (max. 8)

Prediction
Time

per Image
(secs)

mIoU
Score

U-Net 2048 5 4 to 4.5 4 25 73.88

U-Net++ 2 10 1 to 1.2 4 30 72.43

PSPNet 2 10 1 4 30 72.36

DeepLab v3+ 8 5000 0.5 2 15 74.27

Table 4.5: Performance Analysis of the Model Implementations

Table 4.5 compares the four deep-learning architecture I have implemented based on

the factors mentioned above. Here, the U-Net model implementation we used takes the

highest amount of time owing to the process of patch-by-patch processing, which adds

up to computations and consumes a major chunk of the GPU resources. The U-Net++

and the Pyramid Scene Parsing Network (PSPNet) are able to achieve favorable mean IoU

scores in a training period of 1 day, but they require the availability of more GPU resources

for smaller batch size. The DeepLab v3+ outperforms the other model implementation

in terms of faster training time and IoU scores, as it can train in approximately 12 hours

by processing multiple images in parallel while handling an optimal batch size consuming

36

minimal GPU resources. The DeepLab v3+ thus proves to be an ideal fit for training upon

the Aluminum AA 7075 images with a mIoU score of 74.27.

37

Chapter 5

CONCLUSION

In this thesis, I have successfully implemented the four state-of-the-art architectures

proven to perform well for Semantic image segmentation in various domains using deep-

learning. The experiments I performed on the U-Net baseline model and with the other

deep-learning architectures show modest improvement in Mean Intersection-over-Union

(mIoU) scores. These experiments also show the importance of mean normalization, mini-

batching, choice of architecture, and other factors that contribute to improved semantic

segmentation performance. I have been able to achieve favorable performance as compared

to the baseline method, consuming less time for training while utilizing minimal GPU

resources, using the DeepLab v3+ architecture with pre-trained weights. The comparative

analysis also helps reiterate the strengths of different approaches and select an architecture

optimized for semantic segmentation of X-ray microscopy images.

5.1 Future Directions

There are several future avenues for research in Semantic segmentation for X-ray mi-

croscopy images. In the field of deep-learning, there has been consistent progress and the

performance of various models for different Computer Vision (CV) tasks has also increased

over time. The state-of-the-art architectures I have implemented for this research have var-

ious modified versions catering to different types of data from various domains employing

new techniques and modifications to the original architecture (Zhou et al. (2019b), Zhou

et al. (2019c), Li et al. (2020a)). There is also room for improvement in the configurations

and implementations of the PSPNet and Deeplab v3+ models used for training.

38

For this task, I have used a training set of 1024 images pair. In the future, it would be

ideal to train/test the models on more image data pairs with the help of Data Augmentation,

consisting of various corner-case scenarios based on which the models would be able to

generalize well to the complications in the data. Using augmentations, it would be possible

to considerably reduce the misclassification and incorrect segmentation of the classes in the

output, helping the model to generalize well to more variations in the data. Alternatively, it

is also possible to employ weakly supervised learning methods for dealing with the problem

of insufficiency in high-quality hand-labeled data samples.

Some research work related to Semantic segmentation also points towards the usage

of shape-aware models (Navarro et al. (2019), Clough et al. (2019)) that are aware of the

geometric shape of the classes in the segmented output. Models exploiting such properties

with the help of shape-aware loss functions (Al Arif et al. (2017), Hayder et al. (2016))

or feature maps that highlight such information may have a further scope in improving

the segmentation performance for the overlapping inclusions and precipitates found in X-

ray microscopy images of Aluminum alloy particles (Murugesan et al. (2019), Li et al.

(2020b)).

39

REFERENCES

Al Arif, S. M. R., K. Knapp and G. Slabaugh, “Shape-aware deep convolutional neural net-
work for vertebrae segmentation”, in “International Workshop and Challenge on Com-
putational Methods and Clinical Applications in Musculoskeletal Imaging”, pp. 12–24
(Springer, 2017).

Caldelli, R., R. Becarelli, F. Carrara, F. Falchi and G. Amato, “Exploiting cnn layer activa-
tions to improve adversarial image classification”, in “2019 IEEE International Confer-
ence on Image Processing (ICIP)”, pp. 2289–2293 (IEEE, 2019).

Chen, D., D. Guo, S. Liu and F. Liu, “Microstructure instance segmentation from aluminum
alloy metallographic image using different loss functions”, Symmetry 12, 4, 639 (2020).

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “Semantic im-
age segmentation with deep convolutional nets and fully connected crfs”, arXiv preprint
arXiv:1412.7062 (2014).

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs”, IEEE transactions on pattern analysis and machine intelligence 40, 4,
834–848 (2017).

Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation”, in “Proceedings of the
European conference on computer vision (ECCV)”, pp. 801–818 (2018).

Ciresan, D., A. Giusti, L. M. Gambardella and J. Schmidhuber, “Deep neural networks
segment neuronal membranes in electron microscopy images”, in “Advances in neural
information processing systems”, pp. 2843–2851 (2012).

Clough, J. R., I. Oksuz, N. Byrne, V. A. Zimmer, J. A. Schnabel and A. P. King, “A topo-
logical loss function for deep-learning based image segmentation using persistent ho-
mology”, arXiv preprint arXiv:1910.01877 (2019).

Cohen, A., E. Rivlin, I. Shimshoni and E. Sabo, “Memory based active contour algorithm
using pixel-level classified images for colon crypt segmentation”, Computerized Medical
Imaging and Graphics 43, 150–164 (2015).

De Andrade, V., A. Deriy, M. J. Wojcik, D. Gürsoy, D. Shu, K. Fezzaa and F. De Carlo,
“Nanoscale 3d imaging at the advanced photon source”, SPIE Newsroom 10, 2.1201604,
006461 (2016).

Falk, T., D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner,
Z. Jäckel, K. Seiwald et al., “U-net: deep learning for cell counting, detection, and
morphometry”, Nature methods 16, 1, 67–70 (2019).

Fang, H. and F. Lafarge, “Pyramid scene parsing network in 3d: Improving semantic seg-
mentation of point clouds with multi-scale contextual information”, ISPRS Journal of
Photogrammetry and Remote Sensing 154, 246–258 (2019).

40

Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio, Deep learning, vol. 1 (MIT press
Cambridge, 2016).

Gupta, L. and T. Sortrakul, “A gaussian-mixture-based image segmentation algorithm”,
Pattern Recognition 31, 3, 315–325 (1998).

Hayder, Z., X. He and M. Salzmann, “Shape-aware instance segmentation”, arXiv preprint
arXiv:1612.03129 2, 5, 7 (2016).

Hecht-Nielsen, R., “Theory of the backpropagation neural network”, in “Neural networks
for perception”, pp. 65–93 (Elsevier, 1992).

Ikeuchi, K., Computer vision: A reference guide (Springer Publishing Company, Incorpo-
rated, 2014).

Kaira, C. S., V. De Andrade, S. S. Singh, C. Kantzos, A. Kirubanandham, F. De Carlo and
N. Chawla, “Probing novel microstructural evolution mechanisms in aluminum alloys
using 4d nanoscale characterization”, Advanced Materials 29, 41, 1703482 (2017).

Kaira, C. S., X. Yang, V. De Andrade, F. De Carlo, W. Scullin, D. Gursoy and N. Chawla,
“Automated correlative segmentation of large transmission x-ray microscopy (txm) to-
mograms using deep learning”, Materials Characterization 142, 203–210 (2018).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks”, in “Advances in neural information processing systems”, pp.
1097–1105 (2012).

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to docu-
ment recognition”, Proceedings of the IEEE 86, 11, 2278–2324 (1998).

Lee, D., J. Yoo and J. C. Ye, “Deep residual learning for compressed sensing mri”, in
“2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)”, pp.
15–18 (IEEE, 2017).

Li, M., D. Chen, S. Liu and F. Liu, “Grain boundary detection and second phase segmenta-
tion based on multi-task learning and generative adversarial network”, Measurement p.
107857 (2020a).

Li, S., C. Zhang and X. He, “Shape-aware semi-supervised 3d semantic segmentation for
medical images”, arXiv preprint arXiv:2007.10732 (2020b).

Liu, X., Z. Deng and Y. Yang, “Recent progress in semantic image segmentation”, Artificial
Intelligence Review 52, 2, 1089–1106 (2019).

Lo, S.-C. B., H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman and S. K. Mun, “Artificial
convolution neural network for medical image pattern recognition”, Neural networks 8,
7-8, 1201–1214 (1995).

Ma, B., X. Ban, H. Huang, Y. Chen, W. Liu and Y. Zhi, “Deep learning-based image
segmentation for al-la alloy microscopic images”, Symmetry 10, 4, 107 (2018).

41

Maldonado-Bascón, S., S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gómez-Moreno and
F. López-Ferreras, “Road-sign detection and recognition based on support vector ma-
chines”, IEEE transactions on intelligent transportation systems 8, 2, 264–278 (2007).

Minaee, S., Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and D. Terzopoulos, “Image
segmentation using deep learning: A survey”, arXiv preprint arXiv:2001.05566 (2020).

Moon, N., E. Bullitt, K. Van Leemput and G. Gerig, “Automatic brain and tumor seg-
mentation”, in “International Conference on Medical Image Computing and Computer-
Assisted Intervention”, pp. 372–379 (Springer, 2002).

Murugesan, B., K. Sarveswaran, S. M. Shankaranarayana, K. Ram, J. Joseph and
M. Sivaprakasam, “Psi-net: Shape and boundary aware joint multi-task deep network
for medical image segmentation”, in “2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC)”, pp. 7223–7226 (IEEE,
2019).

Navarro, F., S. Shit, I. Ezhov, J. Paetzold, A. Gafita, J. C. Peeken, S. E. Combs and
B. H. Menze, “Shape-aware complementary-task learning for multi-organ segmenta-
tion”, in “International Workshop on Machine Learning in Medical Imaging”, pp. 620–
627 (Springer, 2019).

Ronneberger, O., P. Fischer and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation”, in “International Conference on Medical image computing and
computer-assisted intervention”, pp. 234–241 (Springer, 2015).

Seyedhosseini, M., M. Sajjadi and T. Tasdizen, “Image segmentation with cascaded hier-
archical models and logistic disjunctive normal networks”, in “Proceedings of the IEEE
international conference on computer vision”, pp. 2168–2175 (2013).

Wang, W., “Rock particle image segmentation and systems”, Pattern recognition tech-
niques, technology and applications pp. 197–226 (2008).

Yang, X., V. De Andrade, W. Scullin, E. L. Dyer, N. Kasthuri, F. De Carlo and D. Gürsoy,
“Low-dose x-ray tomography through a deep convolutional neural network”, Scientific
reports 8, 1, 1–13 (2018).

Yang, X., F. De Carlo, C. Phatak and D. Gürsoy, “A convolutional neural network approach
to calibrating the rotation axis for x-ray computed tomography”, Journal of Synchrotron
Radiation 24, 2, 469–475 (2017).

Zhang, Z., Q. Liu and Y. Wang, “Road extraction by deep residual u-net”, IEEE Geoscience
and Remote Sensing Letters 15, 5, 749–753 (2018).

Zhao, F. and X. Xie, “An overview of interactive medical image segmentation”, Annals of
the BMVA 2013, 7, 1–22 (2013).

Zhao, H., J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid scene parsing network”, in “Proceed-
ings of the IEEE conference on computer vision and pattern recognition”, pp. 2881–2890
(2017).

42

Zhou, B., H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba, “Semantic
understanding of scenes through the ade20k dataset”, International Journal of Computer
Vision 127, 3, 302–321 (2019a).

Zhou, Y., W. Huang, P. Dong, Y. Xia and S. Wang, “D-unet: a dimension-fusion u shape
network for chronic stroke lesion segmentation”, IEEE/ACM transactions on computa-
tional biology and bioinformatics (2019b).

Zhou, Z., M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, “Unet++: A nested u-net archi-
tecture for medical image segmentation”, in “Deep Learning in Medical Image Analysis
and Multimodal Learning for Clinical Decision Support”, pp. 3–11 (Springer, 2018).

Zhou, Z., M. M. R. Siddiquee, N. Tajbakhsh and J. Liang, “Unet++: Redesigning skip
connections to exploit multiscale features in image segmentation”, IEEE transactions on
medical imaging 39, 6, 1856–1867 (2019c).

43

