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ABSTRACT

The availability of data for monitoring and controlling the electrical grid has increased

exponentially over the years in both resolution and quantity leaving a large data foot-

print. This dissertation is motivated by the need for equivalent representations of grid

data in lower-dimensional feature spaces so that machine learning algorithms can be

employed for a variety of purposes. To achieve that, without sacrificing the inter-

pretation of the results, the dissertation leverages the physics behind power systems,

well-known laws that underlie this man-made infrastructure, and the nature of the

underlying stochastic phenomena that define the system operating conditions as the

backbone for modeling data from the grid.

The first part of the dissertation introduces a new framework of graph signal

processing (GSP) for the power grid, Grid-GSP, and applies it to voltage phasor

measurements that characterize the overall system state of the power grid. Concepts

from GSP are used in conjunction with known power system models in order to high-

light the low-dimensional structure in data and present generative models for voltage

phasors measurements. Applications such as identification of graphical communities,

network inference, interpolation of missing data, detection of false data injection at-

tacks and data compression are explored wherein Grid-GSP based generative models

are used.

The second part of the dissertation develops a model for a joint statistical de-

scription of solar photo-voltaic (PV) power and the outdoor temperature which can

lead to better management of power generation resources so that electricity demand

such as air conditioning and supply from solar power are always matched in the face

of stochasticity. The low-rank structure inherent in solar PV power data is used for

forecasting and to detect partial-shading type of faults in solar panels.
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Chapter 1

INTRODUCTION

1.1 Overview

Electric power systems are moving from using traditional system of fossil-fuel

based generation to serve passive loads, to renewable generation and smart active

loads. In order to have this energy system compliant with the traditional system and

address energy imbalances, there is need for advancing wide area sensing and control

in the power grid. This advanced management of the grid has led to the collection of

data from large new networks of sensors such as phasor measurement units (PMU)

[1, 2] in the transmission grid and advanced meters in the distribution grid. Since

the invention of PMUs, their deployment has steadily increased in size worldwide and

have become an important tool in wide area measurement for monitoring the electrical

grid [3] while the advanced metering infrastructure (AMI) has become an important

tool for electric utilities to monitor the possibly negative injections on distribution

feeders that increasingly incorporate solar generation and storage [4].

PMUs produce data with high temporal resolution since they sample at the rate

of 60 or 120 samples per second [3]. It is then natural that this wide area sensing

system will produce data with a large footprint, putting the study of electrical power

grid in the same league as fields that rely heavily on data-driven methods for decision

making. While this abundance of data from the power grid seems daunting, the main

tenet of the first part of this dissertation is that such data can be represented in

a low-dimensional subspace. Intuitively, correlation in the data is induced by the

physical laws of the grid and in part by collection of redundant measurements. The

1



goal of this dissertation is to go beyond intuition and empirical observation to justify

the black box models. Instead it is shown how it is possible to utilize the underlying

physics as well as the knowledge of electrical-grid that is a man-made infrastructure

to guide the process of abstraction and support the design of model-based machine

learning algorithms for power systems.

This dissertation explores the topic of modeling data from power systems in a

way that their low-dimensional representations become apparent. Then, these mod-

els are utilized to address several problems in both transmission and distribution of

power systems such as forecasting renewable energy generation and anomaly detec-

tion. Well-established theory of power systems, tools from statistical signal processing

and validation through a large amount of data from the power grid are the ingredients

for the model-based machine learning algorithms proposed in this dissertation.

The first part of the dissertation focuses on low-dimensional modeling techniques

to voltage phasor measurements that characterize the overall system ‘state’ of the

power grid. Given that data from the power grid lies on a graph that is the electric

grid, it introduces the framework of graph signal processing (GSP) in general and

specializes the tools and ideas from GSP to voltage measurements. It establishes

that voltage measurements have a generative model in the realm of GSP which is

suggestive of the underlying low-dimensionality in the data.

The second part of this dissertation focuses on AMI measurements of power in-

jection from solar photo-voltaic (PV) power generation and power consumption of

thermostatically controlled loads (TCL) while modeling the statistical dependency

that exists between these data.

Since both solar PV power and temperature are dependent on weather and the

sun, there is natural correlation not just between the two quantities but also in

space due to geographical proximity between residential consumers. This induces

2
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Figure 1.1.1: An Overview Of This Dissertation And The Corresponding Chapters.

correlation in the variability that lies in the heating or cooling power demand and

renewable power production. Therefore an equivalent low-dimensional representation

of these quantities is possible and the joint modeling of solar PV power and outdoor

temperature is studied. In fact, prior works have already applied concepts from GSP

to model the spatial correlation in solar radiation [5] and outdoor temperature [6]. The

graph considered is based on the geographical distance between multiple locations.

This dissertation fill the gap that exists in modeling the temporal structure and

coupling between these data sets modeling the correlation between solar PV power

and temperature at one location while accounting for temporal stochasticity and then

considering the spatial model for locations in close geographical proximity.

The models introduced in this dissertation make the low-dimensional representa-
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tion explicit and utilize these observations to address problems such as forecasting,

data compression and fault detection. Fig. 1.1.1 presents an overview of the disser-

tation.

Section 1.2 introduces the first part of the dissertation including GSP, class of

GSP models to which power systems data belongs to and details the prior work and

contributions. In Section 1.3, second part of the dissertation is introduced wherein

joint models for solar PV power and temperature are motivated and prior work in

this area are discussed.

1.2 Graph Signal Processing for the Power Grid

The power grid is one of the foremost examples of a large-scale man-made network.

The nodes of the associated graph are the grid buses and its edges are its transmission

lines. It is therefore natural to see data from the power grid such as voltage phasor

as signals that reside on a graph or ‘graph signals’. Although this perspective is not

new, the field of graph signal processing (GSP) [7,8] has the ability to provide further

insight into data from the electrical grid since it extends ideas from discrete-time signal

processing to data that reside on a graph. In a similar vein as linear time-invariant

(LTI) filters in discrete-time signal processing, a graph filter can be classified as either

low-pass, band-pass, or high-pass, depending on its graph frequency response.

It is well known that voltage phasor data tend to be confined to a much smaller

dimension compared to the size of the data record in both space and time. Many

papers have adopted this observation of dimensionality reduction for missing data

interpolation [9, 10], correcting bad data [11] and to detect faulty events [12–15].

Unlike the aforementioned papers that only discuss the reduction in dimensionality,

it is possible to explicitly put forth the structure of this low-dimensional subspace

using a GSP-based generative model.
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This characteristic of dimensionality reduction of voltage data can be well modeled

by a low-pass graph filter which captures a smoothing operation applied to an input

graph signal. As it turns out, this is a common property of processes observed in

many physical/social systems. Chapter 2 briefly reviews the concepts entailing low-

pass GSP and provides a set of particular examples highlighting the fact that low-pass

graph signals often appear in different application domains.

Once the general concepts from low-pass GSP are introduced, Grid-GSP: a GSP

framework for the power grid is discussed in Chapter 3. It builds upon the exist-

ing system-level knowledge of power systems to create a solid foundation to analyze

power-grid measurements using tools from GSP. Well-known results for sampling,

data interpolation and network-inference in GSP are extended to power system data

without losing the associated physical interpretation. The core idea in this chapter

is derived by rewriting the differential algebraic equations (DAE) [16] in a way of-

ten done in transient stability analysis of power systems, to reveal that the inherent

structure in voltage phasor measurements can be explained using a low-pass graph

filter, whose inputs are the generator voltages, as a generative model.

In Chapter 4, few applications of Grid-GSP are studied namely-identification of

community structure in the grid which is a consequence of the low-pass nature of volt-

age graph signals, fault localization using under-sampled grid, data data compression

and the detection of false data injection attacks using Grid-GSP.

1.2.1 Prior Works and Contributions

Several papers have used insights from spectral and algebraic graph theory for

problems such as optimal placement [17–20], for generating statistically accurate

topologies [21], for grid topology identification [22, 23] and to defend against at-

tacks [24, 25]. GSP concepts have been leveraged in [26, 27] to detect false data
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injection (FDI) attacks. Prior work in [28] dealt with performance limits on fault

localization with inadequate number of PMUs and connected it with graph signal

sampling theory and optimal placement of PMUs for best possible resolution of fault

localization in this under-sampled regime.

The Kron-reduced network among the generator buses and the associated prop-

erties are used in [29, 30] to detect low-frequency oscillations as well as the resulting

islanding patterns. In [31], the authors have shed light on the relationship that exists

between Graph Laplacian and modes in power systems. Recently, a comprehensive

review of graph-theoretical concepts in power systems is presented in [16].

Additionally, there have been several papers adopting graphical models for state

estimation [32], topology estimation [33] and optimal power flow [34]. While the

modeling approach is valid, the graphical models capture correlation whereas GSP-

based method models the underlying cause for that correlation structure thereby

opening the door for statistical and non-statistical approaches.

Note that with the exception of [26, 27], no other papers make the connection

with GSP and even in the aforementioned work, GSP is used in an empirical manner

without establishing a foundation, as done in preliminary work [35,36].

Contributions The overarching goal of Chapters 3 and 4 are to lay down the

foundations of Grid-GSP and elucidate properties of power grid signals using tools

from GSP. In particular:

1. A generative model for voltage measurements is established which states that

voltage phasors are the result of an excitation to a low-pass graph filter whose

graph shift operator (GSO) is defined using a function of the system admittance

matrix. This was partly explored in previous work in [35,36] and used for blind

community detection.
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2. Study the spatio-temporal structure of the sparse excitation that, at a fast time

scale, dominated by the generators dynamics. It is shown that the excitation

can be modeled as an auto-regressive graph filter [37] (AR-2) for the input

signals from the generator internal bus.

3. Known GSP based algorithms for sampling and reconstruction, interpolation

and denoising and network inference in the context of signal-processing voltage

data are revisited.

4. Specific applications of Grid-GSP are discussed namely:

• Nature of the voltage graph signal is used to inspect the underlying com-

munity structure in the electrical grid by utilizing tools from blind com-

munity detection [38].

• Fault localization in the under-sampled grid regime [28] and optimal

placement of sensors under such conditions is studied.

• A sequential lossy voltage data compression algorithm that exploits the

spatio-temporal structure in the generative model is studied to arrive at

an empirical rate-distortion curve.

• Detection of False data injection attacks (FDI) by explicitly using the

structure of the subspace specified by the low-pass graph filter for voltage

data.

1.2.2 Related Publications

Work discussed in the first part of the dissertation can be found in

• Raksha Ramakrishna and Anna Scaglione ,“Grid-Graph Signal Processing (Grid-

GSP): A Graph Signal Processing Framework for the Power Grid”, (under re-

view) in IEEE Transactions on Signal Processing

• Raksha Ramakrishna, Hoi-To Wai, Anna Scaglione, “A User Guide to Low-
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Figure 1.3.1: Figure highlighting the relationship between solar PV power and
thermostatically controlled loads (TCL).

Pass Graph Signal Processing and its Applications”, IEEE Signal Processing

Magazine (accepted)

• Mahdi Jamei, Raksha Ramakrishna, Teklemariam Tesfay, Reinhard Gentz, Cia-

ran Roberts, Anna Scaglione, Sean Peisert , “Phasor Measurement Units Opti-

mal Placement and Performance Limits for Fault Localization”, IEEE Journal

on Selected Areas in Communications, vol. 38, no.1, pp. 180-192, Jan 2020

• Raksha Ramakrishna and Anna Scaglione, “Detection of False Data Injection

Attack using Graph Signal Processing for the Power Grid”, 2019 IEEE Global

Conference on Signal and Information Processing (GlobalSIP), 2019

• Raksha Ramakrishna and Anna Scaglione, “On Modeling Voltage Phasor Mea-

surements as Graph Signals”, IEEE Data Science Workshop (DSW), 2019
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Figure 1.3.2: The block diagram describing the overall joint system modeling ap-
proach in Chapter 5. (a) A deterministic system model for solar PV power was
introduced in [39]. (b) A joint system model for both solar PV power and temper-
ature was introduced in [40]. (c) Stochastic model for solar PV power is introduced
in [41] so that it can be used for (d) joint probabilistic forecasting methods.
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1.3 Model for Solar Photo-voltaic Power and Temperature for Renewable

Integration

Solar power generation, both from solar photo-voltaic (PV) farms and roof-top

solar panel installations is on the rise and its impact is increasingly felt in traditional

energy markets. Being a weather-dependent natural resource, attached to this renew-

able energy production is certain level of variability and uncertainty that cannot be

controlled. This calls for greater amounts of reserves to be online to compensate for

renewable generation shortage. On the other hand, electricity consumption is also af-

fected by the weather. In fact, the so-called thermostatically controlled loads (TCL),

i.e. the appliances used for heating and/or cooling, have a consumption pattern that

has direct dependence on outdoor temperature. Naturally, solar irradiation affects

both solar power production as well as temperature, making supply of solar power

and TCL demand statistically dependent. This is illustrated in Fig.1.3.1. These

underlying dependencies, however, are not leveraged in traditional power systems

operations. Today, there is significant interest in introducing stochastic optimiza-

tion tools in power systems operations [42, 43] and the challenge is the explosion

of complexity associated with representing such uncertainty. Typically, accounting

for uncertainty involves constructing scenario trees [44] i.e., quantization of multidi-

mensional random processes with random variables being load, renewable generation

and electricity prices. Treating solar production and TCL load, or demand response,

as independent random variables is inaccurate and inefficient besides increasing the

domain of the associated random variables. By capturing the relationship between

temperature and solar power, using the model presented in this work, one can re-

late renewable infeed (solar PV power) with TCLs (see Fig.1.3.1). Such modeling

leads to reduction in the size of the sample space by excluding the unlikely joint
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events of occurrence of a certain PV output power and TCL consumption. A smaller

sample space neglects low-probability outcomes and limits the computational com-

plexity while computing expected cost which is the objective function in a stochastic

optimization problem. [42]

The main goal of Chapter 5 is to provide a mathematical model for the joint

uncertainty in solar PV power and temperature which can also be used to pro-

duce probabilistic forecasts.The modeling approach is motivated by the physics of

the problem which helps in understanding the underlying phenomenon and provides

an easier interpretation of the results obtained. The proposed forecasting method

provides parametric predictive densities which are useful for creating scenario trees

for stochastic optimization to take decisions under uncertainty. The premise is that

solar irradiation is the cause of both solar PV power and temperature and therefore

acts as a cofounding or lurking variable [45]. Solar PV power exclusively depends

on solar irradiance which means that the random variable of solar power is a direct

transformation of irradiance. The uncertainty in solar power or irradiance is dictated

almost entirely by the cloud cover. The residual uncertainty in temperature given

solar power is then captured by the means of a conditional density function. A vast

array of literature exists in the area of forecasts for solar power. On the other hand,

there are very few papers that model the relationship that solar PV power has with

TCLs. These are reviewed separately in the subsequent paragraphs.

1.3.1 Prior Works and Contributions

Solar PV power forecasting: A majority of approaches taken to model solar

power generation can be broadly classified as being physical, statistical or a hybrid

of the two methods (see e.g. [46] for a review). Physical methods employ astronom-

ical relationships [47], meteorological conditions and numerical weather predictions
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(NWPs) for an improved forecast [48–51]. Other papers use static images of clouds

recorded by a total sky imager (TSI) [52] recording cloud motion [53] to predict solar

power. These models rely on a deterministic mapping given additional information

to produce an estimate of the power generated by the panel.

One of the most prevalent statistical methods for solar power forecasting include

time-series modeling such as using autoregressive (AR) models [54–56] that are de-

signed to model stationary processes. They assume that some transformation such as

dividing by the clear sky power time series makes the series stationary. Such assump-

tions may not be sufficient to fully capture the non-stationarity of solar power pro-

duction. Alternatively, there are other approaches such as autoregressive integrated

moving average (ARIMA) and autoregressive with exogenous input (ARX) [46,57,58]

based non-stationary methods for solar power prediction. In the same class of statis-

tical methods there exist other works that capture variability in solar PV power in a

multitude of ways [59–61] including the use of black box methods like artificial neural

networks (ANN) [62, 63]. Additionally, there are also methods assuming that solar

PV power is a Markov process [64, 65] for forecasting. The body of work on prob-

abilistic forecasting of solar PV power is relatively small. In [66], a non-parametric

kernel density estimation method is used to fit a probability distribution to PV power.

In [67], a higher order Markov chain is used to characterize solar PV power and oper-

ating points based on temperature are also used to classify different PV systems and

then Gaussian mixture models (GMM) are used for probabilistic forecasts. In [68], a

combination of beta distribution, quantile regression and Markov model is used for

probabilistic forecasting. More recently, producing parametric predictive densities

was undertaken in [69] where beta and two-sided power distributions were used to

provide an aggregated forecast distribution. A review of approaches for probabilistic

forecasting of solar PV power can be found in [70].
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Joint modeling of solar PV power and temperature: Empirical studies

such as in [71,72] and data driven approaches like in [73] demonstrated a relationship

between temperature and PV power. In [74], ARMA models are utilized to model

PV power generation, load and wind generation separately, and their profiles are

used to investigate reliability of the resultant hybrid power system which consists of

renewable infeed and flexible loads. In the area of stochastic optimization, clustering

methods such as k-nearest neighbors (k-NN) along with auxiliary variables such as

temperature are used in [75] to create k scenarios for PV power and TCL load.

Correlation was accounted for in this case; however, equal probabilities were assigned

to all k scenarios. Self-consumption of photo-voltaic power in buildings, i.e. usage

of rooftop solar PV power production for satisfying the load requirements within a

building has also been studied to some extent. See [76], for a literature review.

The goal of Chapter 5 is to present a unified forecasting approach using a joint

stochastic model for solar PV power and temperature that is physically inspired.

To highlight this, Fig. 1.3.2 illustrates the block diagram of the joint stochastic

model. The deterministic models for solar PV power and temperature were introduced

in [39] and [40] respectively. In this chapter, a stochastic model for solar PV power

is introduced and a forecasting methodology is developed. In combination with the

model for temperature [40], a joint stochastic model is presented.

The proposed model for solar PV power at a macro-level defines a regime switch-

ing process [77] that classifies the PV production under one of the following three

settings: sunny, partly cloudy, overcast. The stochastic models for sunny and over-

cast are Gaussian distributions whereas for the partly cloudy regime, a hidden Markov

model (HMM) is proposed. Such an approach simplifies the understanding of tem-

poral variations in solar PV power by examining each regime separately. It is also
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important to note that no assumption of stationarity is made while describing the

regime switching process and no attempt is made to estimate this time-varying tran-

sition probability. In this manner, the proposed method uniquely captures the non-

stationarity in solar power, which is not just due to its diurnal structure, and maps

that onto the non-stationarity of the temperature process. The key contributions of

the chapter are:

1. The proposition of a regime-switching process for solar PV power that consists

of periods that can be classified as sunny, overcast and partly cloudy and

development of stochastic models for the three regimes.

2. A HMM for the partly cloudy regime whose latent states are the support of

sparse parameters pertaining to attenuation of power.

3. A classification algorithm to identify the present regime using solar power data

and use it for solar power prediction. No other auxiliary data such as wind

speed is used.

4. A Volterra model to capture the correlation between temperature and solar

PV power for a joint forecast of temperature and solar PV power in the prob-

abilistic sense using the reduced size uncertainty model that emerges from the

proposed modeling approach.

In Chapter 5, a spatial model for solar PV power is proposed wherein the fact that

all the panels in a small enough geographical area see the same levels of irradiance and

cloudiness. This observation is consistent with the modeling of solar PV power and

temperature as graph signals [5] and helps to tackle the problem of partial shading

in solar panels as explained in the following subsection.
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1.3.2 Partial Shading in Solar Panels

Partial shading type of faults in solar panels reduce the power output from solar

panels to a value below their operating point since panels are shaded due to dirt,

soiling, buildings or tree shadows [78, 79]. As a consequence, regular maintenance is

of utmost importance in solar PV panel arrays. However, there could be thousands

of panels and human inspection to determine which panels are soiled or shaded is an

impossible task. Besides, such soiling errors can go unnoticed for a very long time

and slowly degrade the performance of the system.

In Chapter 6, a distributed algorithm that can be applied both in the context of

a utility-scale array of solar panels or multiple residential installations of solar panels

within a certain geographical region is proposed. The underlying principle is simple:

all the panels in a small enough geographical area see the same levels of irradiance

and cloudiness as corroborated by real-data and are consistent with the graph signal

model. This lends to the problem a low-rank structure which we utilize to detect the

fraction of partial-shading or soiling of solar panels in multiple installations. Since

it is assumed that very few panels are shaded, the infrequent nature of shading can

be modeled by assuming a prior distribution that promotes sparsity, such as that of

independent truncated exponentially distributed shading coefficients. Near-neighbor

communication based methods are a natural extension to the existing state of the art

which use just local information for fault detection. Additionally, such communica-

tions could be multipurpose and be used not just for fault detection but for general

monitoring and participation in demand-response programs as an aggregate load.

This serves as motivation for a decentralized algorithm that is used to find the com-

mon feature of cloud-induced shading among the nodes with fewer number of data

exchanges whereas the specific partial-shading parameter is computed locally.
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Under these assumptions, the problem of partial shading estimation can be cast as a

decentralized matrix decomposition into a rank-1 matrix, where the left singular vec-

tor represents the common attenuation pattern due to the clouds, and it is estimated

in a decentralized way via average consensus among agents, while the right singular

vector (fractions of partial shading) is sparse and it is estimated locally, alternating

between the two estimates. It is noted that existing methods, such as the decentral-

ized power iteration methods [80] could be applied, but they would not leverage fully

the structure of the problem.

Related works: Many papers address the fault detection problem. They range

from utilizing panel specific electrical characteristics such as their operating points

that depend on solar irradiance levels [81] to applying machine learning algorithms

[82–84] including k-means clustering [79] and minimum covariance determinant [78,85]

methods and general statistical methods like multi-resolution signal analysis [86,87].

A review of machine learning techniques for fault detection in solar panels can be

found in [88]. Also, a more recent paper [89] detects faults using concepts from

graph signal processing (GSP). Most of the aforementioned studies focus mainly on a

single installation with an array of solar PV panels. However, in this work, structure

in solar data from different installations is used to estimate the fraction of partial

shading instead of using additional data like irradiance or temperature.

1.3.3 Related Publications

Work discussed in the second part of the dissertation can be found in

• Raksha Ramakrishna and Anna Scaglione ,“A Bayesian lower bound for pa-

rameters with bounded support priors”, 2020 54th Annual Conference on In-

formation Sciences and Systems (CISS), Princeton, NJ, USA, 2020, pp. 1-6

• Raksha Ramakrishna, Anna Scaglione, Vijay Vittal, Emiliano Dall’Anese,Andrey
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Bernstein, “A Model for Joint Probabilistic Forecast of Solar Photo-voltaic

Power and Outdoor Temperature”, IEEE Transactions on Signal Processing,

vol. 67 no. 24, pp. 6368-6383, Dec 2019

• Raksha Ramakrishna, Anna Scaglione, Andreas Spanias, Cihan Tepedelenli-

oglu, “Distributed Bayesian Estimation with Low-rank Data: Application to

Solar Array Processing”, 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP)

• Raksha Ramakrishna, Andrey Bernstein, Emiliano Dall’Anese, Anna Scaglione,

“Joint Probabilistic Forecasts of Temperature and Solar Irradiance”, in IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2018

• Raksha Ramakrishna and Anna Scaglione,“A Compressive Sensing Framework

for Solar Photo-Voltaic Power”, in Conference Record of the Fiftieth Asilomar

Conference on Signals, Systems and Computers, 2016

1.4 Notation

In this dissertation, lowercase letters x are used to denote scalars, boldfaced low-

ercase letters are used for vectors, x and uppercase for matrices, A. Transpose of

vector or matrix is x>,A> and conjugate transpose as AH . [x]M denotes the new

vector that contains elements of the vector indexed by the set M. The operation

<{.},={.} denote the real and imaginary parts of the argument. Pseudo-inverse of a

matrix is indicated as A†. The operation Diag(.) implies extraction of the diagonal

values of a matrix A when the input is a matrix and creating a diagonal matrix with

elements from a vector if the input is a vector x.
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Chapter 2

GRAPH SIGNAL PROCESSING

The need for processing graph data has led to the emerging field of graph signal pro-

cessing (GSP), which takes a deterministic and system theoretic approach to justify

the properties of graph data and to inspire the associated signal processing algo-

rithms. A cornerstone of GSP is the formal definition of graph filter, which extends

the notions of linear time invariant (LTI) filtering of time series signals to processing

data defined on a graph, a.k.a. graph signals. Classical signal processing tools such

as frequency analysis have been successfully applied with analogous interpretation to

graph data, generating new insights for data science. The notion of graph filters can

be used to define generative models for graph data. In fact, the data obtained from

many examples of network dynamics may be viewed as the output of a graph filter.

With this interpretation, the specific class of graph data, where the generating graph

filters are low-pass, i.e., the filter attenuates contents in the higher graph frequencies

while retaining contents in the lower frequencies is studied in this chapter. This choice

is motivated by the prevalence of low-pass models in application domains such as so-

cial networks, financial markets, and power systems. As a motivating example, in

Fig. 2.0.1, a few real datasets with such models from social networks, power systems

and financial market, and show the eigenvalues of their sample covariance matrices.

A salient feature observed is that these sample covariance matrices are low-rank, thus

displaying an important symptom of low-pass filtered graph signals. Also, in Fig.

2.0.2, eigenvalues of sample covariance matrices of solar PV power and temperature

are shown for an area around San Francisco, California to highlight again the low-

rank nature of sample covariance matrices which in turn are indicative of the fact that
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Figure 2.0.1: Illustrating the eigenvalues or spectra of sample data covariance matrix
of voltage, Senate rollcall, and financial stock data. These data admit physical/social
models that can be regarded as low-pass filtered graph signals. A salient feature of
their low-pass nature is observed as the low-rank property of the sample covariance
matrices.

solar PV power and temperature can also be modeled as low-pass graph signals. The

low-pass property of solar radiation has been studied in [5] and outdoor temperature

in [6] and used for data compression.

In this chapter, the basics of Graph Signal Processing (GSP) are briefly reviewed

specifically from the standpoint of low-pass GSP in Section 2.1. Then, a few examples

of graph data general processes that can be modeled as outputs of low-pass graph

filters are discussed in Section 2.2. Lastly, in Section 2.3, complex-valued GSP is

discussed to lay down the foundation on which the GSP framework for the power

grid is built in Chapter 3.
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Figure 2.0.2: Eigenvalues or spectra of sample data covariance matrix of solar PV
power and temperature. Solar PV power data is obtained from SolarCity dataset
that is also used in [39, 41]. Power data is normalized by the sunny day pattern at
the location to remove panel related variability. Temperature data obtained from
National Oceanic and Atmospheric Administration (NOAA) weather stations.

2.1 Basics of Graph Signal Processing

In this section, fundamental concepts of GSP and a formal definition of low-pass

graph filters/signals are reviewed for real-valued signals. For more details, please refer

to the excellent prior overview articles such as [7, 8].

Consider a weighted undirected graph G = (N , E) with n nodes such that N =

{1, . . . , n} and E ⊆ N ×N is the edge set. A graph signal is a function x : N → R

which can be represented by a n-dimensional vector x = (x(i))i∈N . The set of nodes

connected to node i is called the neighborhood of i and denoted asNi. GSP generalizes

the notion of discrete time shift for a time series by introducing the notion of graph
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shift operator (GSO):

Definition 1. A graph shift operator (GSO) is a linear neighborhood operator, such

that each entry of the shifted graph signal is a linear combination of the graph signal

neighbors’ values [90].

Generally, the GSO is a matrix S ∈ Rn×n satisfying [S]ij 6= 0 if and only if i = j

or (i, j) ∈ E . When multiplied by a graph signal x, each entry of the shifted graph

signal is a linear combination of the one-hop neighbors’ values, therefore ‘shifting’

the graph signal with respect to the graph topology. For the simplicity of exposition,

Laplacian matrix is regarded as the GSO although it is not the only choice. The

Laplacian matrix is defined as L := D − A, where A is the weighted symmetric

adjacency matrix of G, and D = Diag(A1) is a diagonal matrix of the weighted

degrees. It is also common to take the GSO as the normalized Laplacian matrix, or

the adjacency matrix [6].

Using the definition of GSO, one can measure the smoothness of graph signals

and analyze their content in the graph frequency domain. Recall that if a signal is

smooth in time, the norm of its time derivative is small. For a graph signal x, its

graph derivative is defined as

[∇x]ij =
√
Aij(xi − xj).

The squared Frobenius norm of graph derivative, a.k.a. the graph quadratic form [7],

provides an idea of the smoothness of the graph signal x:

S2(x) :=
1

2
‖∇x‖2

F = x>Lx =
∑

i,j

Aij(xi − xj)2. (2.1.1)

Observe that if xi ≈ xj for any neighboring nodes i, j, then S2(x) ≈ 0. A graph signal

is smooth if S2(x)/‖x‖2 is small.
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Figure 2.1.1: The GFT basis, u1,u2,u10,u15, associated to the graph Laplacian
of an undirected, unweighted graph with 15 nodes. As the eigenvalue increases, the
eigenvectors tend to be more oscillatory.

Let the eigendecomposition of the Laplacian matrix be L = UΛU> and assume

that it has eigenvalues of multiplicity one ordered as Λ = Diag(λ1, . . . , λn) with

0 = λ1 < λ2 < · · · < λn, and U = (u1 u2 · · · un) with ui ∈ Rn being the eigenvector

for λi. Observe that for any x ∈ Rn, it holds S2(x)
‖x‖2 ≥

S2(u1)
‖u1‖2 = λ1, and for any x

orthogonal to u1, it holds S2(x)
‖x‖2 ≥

S2(u2)
‖u2‖2 = λ2 and so on for the other eigenvectors.

The observation indicates that the larger the eigenvalue, the more oscillatory the

eigenvector is over the vertex set. In particular, the smallest eigenvalue λ1 = 0 is

associated with the flat, all-ones eigenvector u1 = (1/
√
n)1, as seen in Fig. 2.1.1.

The above motivates the definition of graph frequencies as the eigenvalues λ1, . . . , λn

and of the Graph Fourier Transform (GFT) basis as the set of eigenvectors U [6].

Therefore, the ith frequency component of x is defined as the inner product between

ui and x:

x̃i = u>i x, i = 1, . . . , n, (2.1.2)

and x̃ = U>x is called the GFT of x. The magnitude of the GFT vector |x̃| is the

‘spectrum’ of the graph signal x, where |x̃i|2 represents the signal power at the λith

frequency.

It is worth noting that the GSO and Fourier transforms do not have in general
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important properties that are found in their conventional counterparts for time series.

One notable fact is that the spectrum of Lx does not have the same amplitude as the

spectrum of x. In fact, the effect of the GSO is closer to that of a derivative, since

each of the GFT coefficients is rescaled by the corresponding frequency.

An important concept to modeling data with GSP is the graph filtering operation.

To this end, consider the definition of a shift-invariant operator and consequently the

graph filter. Given a GSO L, a shift-invariant operator H acting on a graph signal is

such that:

H : x 7→ y, ⇐⇒ H : Lx 7→ Ly. (2.1.3)

As it turns out, these operators must be linear and, more specifically, matrix polyno-

mials of the GSO L. Hence:

Definition 2. A graph filter is a linear operator:

y = H(L)x, H (L) =
P−1∑
p=0

hpL
p = U

(
∑P−1

p=0 hpΛ
p

)
U>, (2.1.4)

where P is the filter order and {hp}P−1
p=0 are the filter’s coefficients. As a convention,

use L0 = I and λ0
0 = 00 = 1. Note that by Cayley-Hamilton theorem, any matrix

polynomial can be represented as in (2.1.4) with P ≤ n. From (2.1.4), one can

see that the graph filter has similar interpretation as an LTI filter in discrete-time

signal processing where the former replaces the time shifts by powers of the GSO.

Meanwhile, the second expression in (2.1.4) defines the frequency response as the

diagonal matrix h(Λ) :=
∑P−1

p=0 hpΛ
p. A graph signal y is said to be filtered by H(L)

with the input excitation x when

y = H(L)x. (2.1.5)

To better appreciate the effects of the graph filter, note that the ith frequency com-

ponent of y is:

ỹi = h(λi) · x̃i, i = 1, . . . , n, (2.1.6)
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where h(λ) :=
∑P−1

p=0 hpλ
p is the transfer function of the graph filter, or equivalently,

ỹ = h(λ) � x̃. It is similar to the convolution theorem in discrete-time signal pro-

cessing.

Inspired by (2.1.6), the ideal low-pass graph filter with a cut-off frequency λk is

defined through setting the transfer function as h(λ) = 1, λ ≤ λk and 0 otherwise [91].

Alternatively, one can say that a graph filter is low-pass if its frequency response is

concentrated on the low graph frequencies. In this chapter, the following definition

from [38] is adopted:

Definition 3. For any 1 ≤ k ≤ n− 1, define the ratio

ηk :=
max{|h(λk+1)|, . . . , |h(λn)|}

min{|h(λ1)|, . . . , |h(λk)|}
. (2.1.7)

The graph filter H(L) is k-low-pass if and only if the low-pass ratio ηk satisfies ηk ∈

[0, 1).

The integer parameter k characterizes the bandwidth, or the cut-off frequency of

the low-pass filter is at λk. The ratio ηk quantifies the ‘strength’ of the low-pass graph

filter. Upon passing a graph signal through H(L), the high frequency components

(above λk) are attenuated by a factor of less than or equal to ηk. Using this definition,

the ideal k-low-pass graph filter has the ratio ηk = 0, whose filter order has to be at

least P ≥ n− k + 1 and transfer function h(λ) has {λk+1, . . . , λn} as its roots.

Finally, a k-low-pass graph signal refers to a graph signal that is the output of a

k-low-pass filter, subject to a ‘well-behaved’ excitation, i.e. does not possess strong

high-pass components, which includes, but is not limited to, the white noise.

2.1.1 The Impact of Graph Topologies on Filter Order

From Definition 3, observe that the low-pass ratio ηk of a graph filter depends on

the filter’s coefficients {hp}P−1
p=0 and the graph Laplacian matrix’s spectrum λ1, . . . , λn.
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The condition λk � λk+1 facilitates the design of a k-low-pass graph filter with a

favorable ratio ηk � 1 and a small filter order P . For example, the order-1 graph

filter H(L) = I−λ−1
n L is k-low-pass with the ratio ηk = λn−λk+1

λn−λk = 1− λk−λk+1

λn−λk , where

ηk is small if λk � λk+1.

An example of graph topologies favoring the condition λk � λk+1 is the stochastic

block model (SBM) [92] for describing random graphs with k blocks/communities with

nodes in N partitioned as N1, . . . ,Nk. Consider a simplified SBM with k equal-sized

blocks specified by a membership matrix Z ∈ {0, 1}n×k such that Zi` = 1 if and only

if i ∈ N`; and a latent model B ∈ [0, 1]k×k where Bj,` is the probability of edges

between nodes in block j and `. Consider the homogeneous planted partition model

(PPM) such that B = b11> + aI with b, a > 0. With the above specification, the

adjacency matrix A is a symmetric binary matrix with independent entries satisfying

E[A] = ZBZ>. When the graph size grows to infinity (n → ∞), the Laplacian

matrix of an SBM-PPM graph converges almost surely to its expected value [92,

Theorem 2.1]:

L
a.s.−→ E[L] =

n(a+ kb)

k
I −Z

(
b11> + aI

)
Z>. (2.1.8)

From the above, it can be shown that λk+1 − λk = na
k
� 1 for E[L], i.e., a favorable

graph model for k-low-pass graph filters. Lastly, the bottom-k eigenvectors of the ex-

pected Laplacian associated with λ1, . . . , λk can be collected into the matrix
√

k
n
ZP ,

where P diagonalizes the matrix B. In other words, the eigenvectors corresponding

to the bottom-k eigenvalues of L will reveal the block structure.

In contrast, the Erdös-Rényi graphs have Laplacian matrices that do not generally

satisfy λk � λk+1. In fact, asymptotically (n → ∞) the empirical distribution of

the eigenvalues of Laplacian matrices tends to the free convolution of the standard

Gaussian distribution and the Wigners semi-circular law [93]. Such spectrum does
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not favor the design of a k-low-pass graph filter with ηk � 1, reflecting the fact that

block structure or communities do not emerge in Erdös Rényi graphs.

2.1.2 Low-pass Graph-Temporal Filter

When the excitation to a graph filter is of time-varying nature, and the topology

is fixed, consider a graph-temporal filter [94] with the impulse response:

H(L, t) :=
∑P−1

p=0 hp,tL
p, (2.1.9)

such that the graph filter’s output is given by the time-domain convolution yt =

∑t
s=0H(L, t − s)xs. The filter is causal and xs = 0 for s < 0. By applying z-

transform and the GFT to the graph signal process {xt}t≥0, it is possible to obtain

the z-GFT signal, X̃(z), given by:

X(z) =
∑∞

t=0 xtz
−t, X̃(z) = U>X(z), (2.1.10)

which represents {xt}t≥0 in the joint z-graph frequency domain. Then, the input-

output relation and graph-temporal joint transfer function are obtained as

Ỹ (z) = h̃(z)� X̃(z), (2.1.11)

H(λ, z) :=
∞∑

t=0

P−1∑

p=0

hp,tλ
pz−t, (2.1.12)

respectively. A class of graph-temporal filters for modeling graph signal processes is

the GF-ARMA (q, r) filter, whose input-output relation in time domain and z-GFT

domain are described below, respectively:

yt −A1(L)yt−1 · · · − Aq(L)yt−q = B0(L)xt + · · ·+ Br(L)xt−r,

ã(z)� Ỹ (z) = b̃(z)� X̃(z),
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where the z-transform of the graph frequency responses of the graph filter taps

{As(L)}qs=1, {Bs(L)}rs=0 for the GF-ARMA (q, r) filter are

ã(z) = 1−
q∑

s=1

ãsz
−s, b̃(z) =

r∑

s=0

b̃sz
−s (2.1.13)

Note that the joint frequency response is given by

H(λi, z) =
[b̃(z)]i
[ã(z)]i

, (2.1.14)

whose poles and zeros may vary depending on the graph frequencies λ1, . . . , λn. A

relevant case is when H(L, t) is a low-pass graph-temporal filter. Similar to Defini-

tion 3, H(L, t) is said to be low-pass with a cutoff frequency (λk, ω0) and ratio ηk

if:

ηk =
maxλ∈{λk+1,...,λn},ω∈(ω0,2π) |H(λ, ejω)|

minλ∈{λ1,...,λk},ω∈[0,ω0] |H(λ, ejω)| < 1. (2.1.15)

Graph signals filtered by a low-pass graph-temporal filter are also commonly found

in applications, as illustrated next.

2.2 Models of Low-pass Graph Signals

It turns out that many physical and social processes are naturally characterized

by low-pass graph filters. In this section, various such examples are presented briefly

while showing that their generation processes can be represented as outputs from

low-pass graph filters.

2.2.1 Diffusion Model

The first case pertains to observations from a diffusion process, whose variants

are broadly applicable in network science. As an example, consider the heat diffusion

model in [95]. In this example, the relevant graph is a proximity graph where each

node i ∈ N is a location (e.g., cities), and if locations i, j are close to each other,

27



then (i, j) ∈ E . The graph is endowed with a symmetric weighted adjacency matrix

encoding the distance between locations. The graph signal yt ∈ Rn encodes the

temperature of n locations at time t, and let x0 ∈ Rn be the initial heat distribution.

The temperature of a location is diffused to its neighbors. Let σ > 0 be a constant,

then,

yt = e−tσLx0 =

(
I − tσL+

(tσ)2

2
L2 − · · ·

)
x0 (2.2.1)

where (2.2.1) is a discretization of the heat diffusion equation [95]. As L1 = 0, the

matrix exponential e−tσL = I−tσL+ (tσ)2

2
L2−· · · is row stochastic. The temperature

at time t is thus a weighted average of neighboring locations’ temperatures at t = 0,

i.e., this is a diffusion dynamical process.

To understand (2.2.1) under the context of low-pass filtering, observe that yt is

a filtered graph signal with the excitation x0 and the graph filter H(L) = e−tσL.

Also verify that H(L) is k-low-pass with Definition 3 for any k < n. Note that the

low-pass ratio ηk is:

e−tσλk+1

e−tσλk
= e−tσ(λk+1−λk).

As λk+1 > λk and tσ > 0, note that H(L) is a k-low-pass graph filter for any

k = 1, . . . , n− 1.

It is assumed that x0 is an impulse excitation affecting the system only at the

initial time. In practice, the excitation signal may not be an impulse and the output

graph signal yt is expressed as the convolution yt =
∑t

s=0 e
−(t−s)σLxs. This corre-

sponds to a low-pass graph-temporal filter with the joint transfer function H(λ, z) =

(1−e−λσz−1)−1. Besides, the diffusion process is common in network science as similar

models arise in contagion process and product adoption to name a few.
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2.2.2 Opinion Dynamics

This example pertains to opinion data mined from social networks with the influ-

ence of external excitation [38,96]. The relevant graph G is the social network graph

where each node i ∈ N is an individual, and E is the set of friendships. Similar

to the previous case study, this graph is endowed with a symmetric weighted adja-

cency matrix A, where the weights measure the trust among pairs of individuals. Let

α ∈ (0, λ−1
n ), β ∈ (0, 1) be parameters of trust on others and susceptibility to external

influence of an individual respectively. The evolution of opinions follows that of a

combination of DeGroot’s and Friedkin-Johnsen’s model [97], which is a GF-AR(1)

model:

yt+1 = (1− β)

(
I − αL

)
yt + βxt, (2.2.2)

where yt ∈ Rn is a graph signal of the individuals’ opinions at time t, and xt ∈ Rn is a

graph signal of the external opinions perceived by the social network. Note that this

also corresponds to a low-pass graph-temporal filter with the joint transfer function

H(λ, z) = β[1− (1− β)(1− αλ)z−1]−1.

To discuss the steady state of (2.2.2), assume that xt ≡ x. Considering (2.2.2),

observe that yt+1 is a convex combination of x and weighted average of the neighbors’

opinions at time t that is formed by taking a weighted average of neighboring signals

in yt using a diffusion operator I − αL. As β > 0, the recursion is stable, leading to

the steady state (or equilibrium) opinions:

y = lim
t→∞

yt = (I + α̃L)−1 x = H(L)x, (2.2.3)

where α̃ = β(1− α)/α > 0 and y is a filtered graph signal excited by x.

The graph filter above is given by H(L) = (I + α̃L)−1. To verify that it is a

k-low-pass graph filter with Definition 3, note that for any k < n, the low-pass ratio
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ηk is

1 + α̃λk
1 + α̃λk+1

= 1− α̃λk+1 − λk
1 + α̃λk

.

Again, observe that as λk+1 > λk, the above graph filter is k-low-pass for any k =

1, . . . , n− 1. However, that this low-pass ratio may be undesirable with ηk ≈ 1 when

α̃ � 1. Interestingly, a similar generative model as (2.2.2) is found in equilibrium

problems such as quadratic games [98].

Two remarks are in order. First, social networks are typically directed, and this

suggests using a non-symmetric shift operator as opposed to the symmetric Laplacian

matrix, which is only used for simplicity of exposition. Second, many alternative

models for social networks interactions are non-linear and linear GSP is insufficient

in those contexts.

2.2.3 Finance Data

Financial systems such as stock market and hedge funds produce return reports

periodically about their business performances. A collection of these reports can be

studied as graph signals, where the relevant graph G consists of nodes N that are

financial institutions, and edges E that are business ties between them. It has been

studied [99] that business performances are correlated according to the business ties.

Moreover, the returns are affected by a number of common factors [100]. Inspired by

[99], [100, Ch. 12.2], let β ∈ (0, 1) be the strength of external influences, a reasonable

model for the transient dynamics of the graph signal yt of business performance

measures is also a GF-AR(1):

yt+1 = (1− β)H(L)yt + βBx, (2.2.4)

where H(L) is an unknown but low-pass graph filter, B ∈ Rn×r represents the factor

model affecting financial institutions, and x ∈ Rr is the excitation strength. The
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equilibrium of (2.2.4) is:

y = lim
t→∞

yt =

(
1

β
I − β

β
H(L)

)−1

Bx ≡ H̃(L)Bx,

where β = 1 − β. The excitation signal is Bx and the equilibrium y is the filter

output. Suppose that H(L) is a k-low-pass graph filter with the frequency response

satisfying h(λ) ≥ 0, then for H̃(L), the low-pass ratio ηk is evaluated as

1−
β

{
min`=1,...,k h(λ`)−max`=k+1,...,n h(λ`)

}

1− βmax`=k+1,...,n h(λ`)
.

As min`=1,...,k h(λ`) − max`=k+1,...,n h(λ`) > 0 since H(L) is a k-low-pass graph filter

itself, observe that H̃(L) is again k-low-pass according to Definition 3.

For y to be a k-low-pass graph signal, one has to also assume that Bx is not

high-pass (i.e., not orthogonal to a low-pass one). This is a mild assumption as the

latent factor affecting financial institutions are either independent of the network,

or are aligned with the communities. Above all, it is to be noted that (2.2.4) is an

idealized model where determining the exact model is an open problem in economics,

see [99, 100].

2.2.4 Power Systems

In the case of power systems, the relevant graph is the electrical transmission

lines network. The nodes of this graph are referred to as buses. The graph signals

considered are complex-valued voltage phasors. These voltage graph signals can be

modeled as output of low-pass graph filter while considering the branch admittance

matrix as the GSO. The detailed discussion of this model, which is a core contribution

of this thesis is in Chapter 3.
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2.3 Complex-valued Graph Signal Processing

Section 2.1 covered the basics of GSP. Certain concepts in GSP are to be con-

sidered differently if the graph signal is complex-valued which is the case with mea-

surements from power systems. This section specifies GSP for complex-valued graph

signals.

A complex-valued graph signal x ∈ Cn is a vector whose ith entry [x]i is associated

to node i ∈ N . As before, graph weighted Laplacian L ∈ Cn is considered as the

GSO, i.e.

[L]i,j =





∑
k∈Ni si,k, i = j

−si,j, i 6= j

(2.3.1)

The focus here is on complex symmetric GSOs, L = L> as it is applicable to the

GSO considered for the power grid. Consider the following eigenvalue decomposition

of the complex symmetric GSO L, given by Theorem 4.4.13 in [101] for diagonalizable

complex symmetric matrices:

L = UΛU>, U>U = UU> = I. (2.3.2)

Here Λ is the diagonal matrix with eigenvalues λ0, λ1, . . . λn on the principal diagonal

and U are complex orthogonal eigenvectors. An equivalent concept of frequency

domain in GSP is defined using eigenvalues and eigenvectors of the GSO.

Instead of using the graph quadratic form as in (2.1.1) with p = 2, smoothness of

graph signal and the order of graph frequencies can be more generally defined via the

total variation (TV) criterion [90,102] using the discrete p Dirichlet form Sp (x) with

p = 1 as in [103] as:

S1 (x) = ‖Lx‖1 =⇒ S1(ui) = ‖Lui‖1 = |λi| ‖ui‖1 (2.3.3)
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After normalizing the eigenvectors such that ‖ui‖1 = 1 ∀i, it is clear that S1 (ui) >

S1 (uj) =⇒ |λi| > |λj|. Hence, the ascending order of eigenvalues corresponds to

increase in frequency, |λ0| = 0 ≤ |λ1| ≤ |λ2| . . . |λ|N ||. This ordering is not unique

since two distinct complex eigenvalues can have the same magnitude.

The Graph Fourier Transform (GFT) basis is the complex orthogonal basis con-

sisting of columns of U in (2.3.2). Hence, the GFT of a graph signal x, x̃ and the

inverse GFT are given by x̃ = U>x and x = Ux̃ respectively where [x̃]m is the

frequency component that corresponds to the m-th eigenvalue λm.

Note that for complex symmetric GSO, unlike Hermitian GSOs, unfortunately

also Parseval theorem is not valid i.e.

‖x̃‖2
2 =

∥∥U>x
∥∥2

2
6= ‖x‖2

2 (2.3.4)
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Chapter 3

GRID-GSP: A GRAPH SIGNAL PROCESSING FRAMEWORK FOR THE

POWER GRID

Having described the relevant concepts in graph signal processing (GSP) in Chapter 2

and introducing power systems model as an example of data generated as outputs of

low-pass graph filter in Subsection 2.2.4, in this chapter the Grid-GSP framework is

introduced. Firstly, grid quantities and parameters of interest are described in Section

3.1. Secondly, GSO for the grid is defined and the low-pass graph-filter model that

justifies voltage phasor measurements is introduced. Then, temporal dynamics of

these measurements is also characterized. All of the above yields a GSP generative

model for the voltage phasor measurements.

Section 3.2, lays the foundation for Grid-GSP mapping the physical laws to a

spatio-temporal generative model for voltage signals. Through these lens, in Section

3.3, the chapter revisits algorithms and tools from GSP for PMU data pertaining

sampling and reconstruction along with optimal placement of PMUs, interpolation

of missing samples and network inference. The algorithms and methods are tested

numerically in Section 5.5.

3.1 Measurements and Parameters of the Electric Grid

Consider a network of generators and non-generator/load buses that can be rep-

resented as a graph where vertex set is a union between set of generator, NG and

non-generator/ load buses, NL, i ∈ {NG ∪NL} = N and with undirected edge set

(i, j) ∈ E . Ohm’s law for the network is described through a branch admittance

matrix, Y , is the complex-valued graph Laplacian matrix associated with the power
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grid [104]:

[Y ]i,j =





∑
k∈Ni yi,k, i = j

−yi,j, i 6= j

(3.1.1)

where yi,j is the admittance of the branch between nodes i and j if (i, j) ∈ E . The

branch admittance matrix Y is a complex symmetric matrix. Next, the nodes/buses

are partitioned into generator and non-generators, so that:

Y =



Ygg Yg`

Y >g` Y``


 , (3.1.2)

where Ygg is the generators to generators network, Yg` includes the portion connecting

generators and loads and Y`` corresponds to the section of the grid connecting the

loads buses among themselves. To model thermal loss on the lines, one needs to

introduce shunt elements at all generator buses by ygsh ∈ C|NG| and at all load buses

by y`sh ∈ C|NL|.

The state of the system, from which all other physical quantities of interest can be

derived, are the voltage phasors at each of the buses. In the following it is assumed

that a phasor measurement unit (PMU) [3] installed on node/bus i ∈ N provides

a noisy measurement of voltage and current phasors at time t with voltage phasors

denoted as vi(t) = |vi(t)|ejθi(t). With some abuse of notation, PMU data is referred

to as vi(t) as well. Let the vector of voltage phasors at time t be vt ∈ C|N |. Let vt

be partitioned into voltages at generator and non-generator buses, let igt ∈ C|NG| be

the generator current and i`t ∈ C|NL| the load current. Ohm’s law for a network is:

Y +Diag






ygsh

y`sh








vt=it, where vt=



vgt

v`t


 ,it=



igt

i`t


 (3.1.3)

To describe the operating conditions of the system it is useful to introduce a few

more quantities. In power systems transient dynamic analysis the impact of gener-
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ating units is modeled as an internal bus characterized by a generator impedance

(or admittance) yg ∈ C|NG| for g ∈ NG connected to an ideal voltage source called

internal voltage [104]; and denote its value at time t by Ei(t) = |Ei(t)|eδi(t), i ∈ NG
and the corresponding vector as et ∈ C|NG|. It holds that:

igt = Diag(yg) (et − vgt ) (3.1.4)

The generators respond to the grid electric load. To model the generators response the

approximation used is that loads buses ` ∈ NL are slowly varying admittances [16].

Let this admittance be denoted as y`(t) ∈ CN . Its value is given by the ratio of

conjugate of the apparent load power s∗i (t) and the voltage amplitude squared |vi(t)|2

at a particular load bus [104],

[y`(t)]i = s∗i (t)/|vi(t)|2, i ∈ NL. (3.1.5)

3.2 Graph Signal Processing for the Grid

In order to derive the GSP based generative model for voltage phasors, the relevant

GSO is firstly defined as follows:

Definition 4. The graph shift operator (GSO) is a complex symmetric matrix

equal to a diagonal perturbation of the branch admittance matrix with generator ad-

mittance values,

S , Y + Diag






yg + ygsh

y`sh





 (3.2.1)

With the GSO S is defined as in (3.2.1),

vt = H(S)



Diag(yg)et

i`t


+ ηt (3.2.2)
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where ηt the measurement noise and H(S) = S−1. The graph filter H(S) can be

written as a matrix polynomial using Cayley-Hamilton theorem and is therefore shift-

invariant. It is a low-pass graph filter due to the inversion of GSO. From the definition

of the GSO it follows that

Definition 5. The grid Graph Fourier Transform (GFT) basis for voltage phasors

is the orthogonal matrix U given by the eigenvalue decomposition of the GSO in

Definition 4:

S = UΛU>, |λmin| > 0 (3.2.3)

Here, the GSO S is a complex-symmetric matrix that has the same support as

the electric-grid graph Laplacian as Y with the diagonal addition of generator ad-

mittances. Note that unlike the graph Laplacian, this GSO is invertible, |λmin| > 0.

However, due to scale difference between additive elements in the diagonal and in the

system admittance matrix Y , the structure of generic power grids to be organized

as communities and the system admittance matrix Y being sparse [105], the GSO S

has a high condition number.

To explicitly visualize the underlying subspace in which voltage graph signal lies,

consider ΛK be the diagonal matrix with entries λi, i ∈ K = {1, . . . , k}. Define

a low-pass filter with k frequency components and consequently the voltage phasor

measurements as

Hk(S) , U Diag
(
h̃k

)
U>,

[
h̃k

]
i

=





λ−1
i , i ∈ K

0, else

vt ≈ Hk(S)



Diag(yg)et

i`t


+ ηt, (3.2.4)

where Hk(S) will therefore represent the principal subspace of the voltage phasors

whose dimensionality is the number of graph-frequencies |K|. Therefore (3.2.4) defines
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the low-dimensional generative model for quasi-steady state voltage phasor measure-

ments. The approximation error ηt captures modeling approximations.

While (3.2.2) is sufficient to establish the Grid-GSP model when loads are slowly

varying the following proposition establishes a model that can be even more effective

to capture the low-dimensional structure of the voltage phasors vector vt.

Proposition 1 (Grid-GSP generative model with low rank-excitation). In quasi-

steady state, the voltage phasor vector vt is approximately the output of a low-pass

graph filter H(Sci) , S−1
ci with input, Diag(yg)et,

vt = H(Sci)



Diag(yg)et

0


+ ηt, (3.2.5)

where the GSO Sci is defined as

Sci = S + Diag







0

y`





 (3.2.6)

Proof. After partitioning the system into generator and non-generator buses, one can

write [16]



vgt

v`t


≈


Y +Diag






ygsh+yg

y`sh+y`










−1 

Diag(yg)et

0


+ ηt, (3.2.7)

The result is a straightforward consequence of using the constant impedance model

in (3.1.5) (with y`(t) ≈ y`) to simplify Ohm’s laws in (3.1.3).

Proposition 1 implies that in quasi-steady state, the voltage phasor measurement

vt, is approximately the output of a low-pass graph filter, H(Sci) with a low rank

excitation. However, to fully leverage this approximation one would have to revise

the definition of GSO and replace S with Sci, to absorb the load as an impedance.
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To provide insights on the temporal dynamics of the voltage phasors, it is necessary

to capture the structure of the excitation term. As a matter of fact, et and i`t, have

different dynamics, as discussed in the subsequent subsections.

3.2.1 A GSP Model for Generator Dynamics

The excitation term corresponding to generator currents has elements as [et]i

coming from each generator i ∈ G. A non-linear dynamical model for the generators

internal voltages, namely et ∈ CNG is illustrated. The model is inspired by the

classical swing equations [106,107] describing the coupled dynamics of the generators

phase angles, δi(t), i ∈ G and the resulting variation in frequency, ωi(t) , δ̇i − ω0

where ω0 = 2πf0 with f0 being the grid frequency (50 or 60 Hz).

The model, relies on two steps. First, the dynamics of a signal obtained through

the following non-linear transformation of the internal generator voltages is modeled:

xt = (Diag(m))
1
2 ln(et) → δt = ={ln(et)} (3.2.8)

where the vector m entries are the so-called generators masses and δt are the gener-

ators angles that appear in the swing equations. Second, like in the swing equations,

Kron-reduction [106, 107] of the network in which generators are all adjacent, is uti-

lized to describe the generators interactions. Let the Schur complement of block B

of matrix A be denoted by Sh(A,B) To define this generator network and the cor-

responding GSO, first compute the Schur complement of block Sci of the matrix Yall,

defined as:

Yall =




Diag (yg+ygsh) −
[
Diag (yg+ygsh) 0

]

−
[
Diag (yg+ygsh) 0

]>
Sci




The Schur complement of the Sci in Yall has two contributions:

Sh(Yall,Sci) = jYred +Ered (3.2.9)
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where Ered is a real diagonal dominated matrix, and the imaginary part Yred has the

structure of a graph Laplacian. The proposed dynamical model for the graph signal

xt relies on the following definition for the GSO of the Kron-reduced generator-only

graph:

Definition 6. A GSO is defined for the Kron-reduced generator only network as

Sred = (Diag(m))−
1
2Yred(Diag(m))−

1
2 ∈ R|NG| (3.2.10)

with the following eigenvalue decomposition,

Sred = UredΛredU
>
red (3.2.11)

and the orthonormal GFT basis being Ured.

The GSP dynamics for the generator internal voltages et are as follows,

et = exp
(

(Diag(m))−
1
2xt

)
(3.2.12)

where xt is a GF-AR (2) process, i.e. the z-GFT X̃(z) satisfies the following equation:

Diag (ã(z)) X̃(z) = W̃ (z) (3.2.13)

ã(z) = 1− ã1z
−1 − ã2z

−2 (3.2.14)

To the best of our knowledge, the dynamics of the amplitudes of the generators

internal voltages are typically ignored, but the swing equation for the generators

angles are a key tool for power systems dynamical analysis:

Diag (m) δ̈ + Diag (d) δ̇ = w − Yredδ, (3.2.15)

where m are the generators masses, introduced previously, d are the damping coeffi-

cients of generators that are often neglected and w−Yredδ is the imbalance between

the electrical and mechanical power that triggers the change in generator angular ve-

locity and acceleration. Note that ={x} = (Diag (m))
1
2 δ. By manipulating (3.2.15),

the following is proved:
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Proposition 2. Let w be such that ={w} = (Diag(m))−
1
2w. Using the approxima-

tion:

Diag (d) Diag (m)−1 ≈ χI,

the dynamics of ={xt} can be justified with an GF-AR (2) model with GSO Sred:

={xt} − A1(Sred)={xt−1} − A2(Sred)={xt−2} ≈ ={w},

A1(Sred) := (2−χ)I− Sred, A2(Sred) := (χ−1)I (3.2.16)

Proof. Simple algebra on (3.2.15) allows to recast the equations in the following form:

={ẍ}+ χ={ẋ} = Diag (m)−
1
2 w − Sred={x}. (3.2.17)

Assuming that the sampling rate is fast enough, and normalizing it to 1, the finite

difference approximations for the derivatives are ẋ ≈ xt−xt−1, ẍ ≈ xt+1−2xt+xt−1

and can be used to obtain GF-AR (2) equations for the samples ={xt} in (3.2.16).

The suggested model is simply extending the GF-AR (2) model to capture both

the real and imaginary part of xt and suggesting to search the 2|NG| parameters

to fit the model with ã1, ã2 rather than exploring a general MIMO filter response.

For simplicity of representation, the dynamical equation for xt is written in the GF

domain,

x̃t = Diag (ã1) x̃t−1 + Diag (ã2) x̃t−2 + w̃t (3.2.18)

such that the impulse response of the filter at graph-frequency λred,i is defined by

[ã1]i , [ã2]i. Note that [ã1]i , [ã2]i can be written as polynomials in graph frequency

λred,i,

[ã1]i =
∑K1−1

k=0 ak,1λ
k
red,i, [ã2]i =

∑K2−1
k=0 ak,2λ

k
red,i, (3.2.19)

which characterizes the poles of the AR system using graph frequencies. From

(3.2.16), it is seen that a first order polynomial may suffice to characterize [ã1]i , [ã2]i

in most cases.
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w̃t

⊕ ⊕

⊗
z−1

⊗
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2

exp (.)
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[
Diag (yg) 0

]T
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⊕

ηt
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⊗
z−1

⊗

Diag (b1) Diag (b2)

i`t

[
0
I

]

z−1

⊕load current dynamics

generator dynamics

voltage phasor

Figure 3.2.1: Block diagram showing generative model for voltage phasor measure-
ments.

3.2.2 Load Dynamics

There are several papers in the literature that deal with load forecasting and

modeling [108]. A simple autoregressive (AR)-2 model per node or load busis adopted

to describe the dynamics of the load,

i`t = Diag (b1) i`t−1 + Diag (b2) i`t−2 + εt (3.2.20)

where parameters b1, b2 are estimated load data time series. The block diagram in

Fig.3.2.1 summarizes the modeling efforts.

The unique nature of voltage phasor measurements allows to describe a similar

model for any subset of measurements on a graph. This is discussed next.

3.2.3 Low-pass Property of Down-sampled Voltage Graph Signal

Let vM (time index t is ignored for simplicity) be the down-sampled voltage graph

signal whereM⊂ N is the set of node indices at which measurements are available.

An interesting self-similarity/fractional property is observed for voltage graph signals
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which is summarized in the following proposition

Proposition 3. Let vM be the graph signal down-sampled in the vertex-domain with

|M| samples. Then, with the GSO defined with respect to the reduced-graph of M

vertices as Sred,M, graph signal vM is the output of low-pass graph filter H (Sred,M) ,

S−1
red,M

vM = H (Sred,M)ϕ (3.2.21)

where the GSO for the reduced-graph is given by Kron-reduction of S, Sred,M =

Sh (S,SMcMc)

Proof. The GSO can be written in a block form,

S =




SMM SMMc

S>MMc SMcMc


 (3.2.22)

The Kron reduction gives the Schur complement of the block SMcMc in the GSO S

i.e.,

Sred,M = Sh (S,SMcMc) = SMM − SMMcS−1
McMcS>MMc

From Kron reduction [107], one can write:

vM = S−1
red,M

ϕ︷ ︸︸ ︷(
iM − SMMcS−1

McMciMc

)
(3.2.23)

Note from (3.2.23) that the down-sampled version vM is still a low-pass graph sig-

nal with the GSO being the Kron-reduced matrix Sh (S,SMcMc). This preservation

of the low-pass property suggests that one can utilize all the methods for low-pass

graph signals also for thw down-sampled versions of the voltage graph signal as well.

This property has been illustrated empirically in several papers that highlight low-

dimensional properties even with measurements from a subset of buses. Although the
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reduced-graph is denser compared to the original graph, it still helps to infer faults

or events that occurred in a subset of nodes where sensors are not installed as long

as correct placement strategies are devised i.e. that of choosing the subsetM. Work

in [28] explored the optimal placement for fault localization in the under-sampled

regime and also made connections with GSP theory.

3.3 Revisiting Algorithms from GSP for PMU Data

In this section some of the implications Grid-GSP has while understanding sam-

pling, optimal placement of measurement devices in power systems, interpolation of

missing samples and network inference are studied. The underlying generative model

responsible for low-rank nature of data that has been established in the previous sec-

tion helps explaining the success that many past works, such as [11, 109, 110], have

attained in recovering missing PMU data using matrix completion methods. The

low-pass nature of the voltage graph signals discussed in Proposition 1 provides the

theoretical underpinning that support the arguments made in the literature.

3.3.1 Sampling and Recovery of Grid-Graph Signals

From the approximation in (3.2.4) it is seen that voltage graph signals have graph

frequency content that drops as λk grows. This characteristic renders the signal

approximately band-limited in the GFT domain [111] which means that there is a

cut-off frequency λk such that frequency content corresponding to λk+1 and higher is

negligible. Let the GFT basis corresponding to the first dominant k graph frequecies

be UK. The bandlimiting operator is, BK = UKU>K ∈ C|N |×K and the low frequency

component of vt is:

BKvt = UKU>Kvt (3.3.1)
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Similarly, a vertex limiting operator (with |M|) vertices is DM = PMP>M where PM

has columns that are coordinate vectors such that each column chooses a vertex/node.

When the voltage measurements on the electrical network are from a few nodes,

i ∈ M at time t, it can be written as [vt]M = P>Mvt. For reconstruction, results

in [111] dictate the necessary condition be that |M| ≥ |K|. In the presence of noise

or modeling error relative to the perfect band-limited definition, the optimal sampling

pattern (i.e. the best placement for PMUs on the grid) to minimize reconstruction

error is closely tied to the grid topology and the model mismatch relative to a strictly

band-limited graph signal. An optimal placement of PMUs according meeting this

criterion maximizes the smallest singular value, σmin (DMUK), i.e. choose rows of UK

such that they are as uncorrelated as possible and the resulting matrix has the highest

condition number [111]. Consider then the spatial sampling mask DM = Diag(1M)

that selects M locations.

3.3.1.1 Sampling

The optimal placement ofM PMUs maximizes σmin(DMUK) which amounts to choos-

ing the rows of UK with the smallest possible coherence (as close as possible to being

orthogonal). In [111] and references therein, a greedy method is employed to find M

rows from UK so that the least singular value is maximized. The method is described

in Algorithm 3.1.

Power systems topologies exhibit naturally a community structure that is reflected

in the system admittance matrix Y [35] due to population density or clusters of loads.

Therefore, the eigenvectors of S follow suit and reflect the community structure of

the graph. Thus, choosing rows of UK to be uncorrelated is intuitively putting PMUs

in different graph-clusters or communities. This fact was also discussed in [28] in

the context of sensor placements for fault localization. The PMUs sampling rate
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Algorithm 3.1: Optimal Placement Algorithm

Input: M , U, M = ∅ while m < M do

i∗ = arg maxi∈Mc σmin(D{M,i}UK) ;

M←M+ {i∗} ;

m← m+ 1 ;

Output: M

in time exceeds the needs for reconstructions in a quasi-steady state conditions by a

significant margin and it is designed to help detect sharp transients in the system.

3.3.1.2 Reconstruction

Voltage data samples are obtained down-sampling in space after the optimal place-

ment of PMUs and also uniformly down-sampling in time. At time t when |M|

samples, [vt]M are available, the following model applies

[vt]M ≈ P>MUKṽt (3.3.2)

where ṽt is the GFT of graph signal vt Therefore, reconstruction in spatial domain is

done via GFT basis as

v̂t = UK
(
P>MUK

)†
[vt]M (3.3.3)

Reconstruction in temporal domain can be done independently by up-sampling, i.e.

via the windowed inverse Fourier transform of the up-sampled signal created from

uniformly time-decimated data.

3.3.2 Interpolation of Missing Samples

When voltage measurements are missing or corrupted, denoising and interpolation

of such data can be cast as a graph signal recovery problem by regularizing the total
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variation, (TV). Overall, the problem resembles time-vertex graph signal recovery

[112]. Let the voltage phasor measurements matrix V be represented as

V =

[
v1 v2 . . . vT

]
. (3.3.4)

Let PΩ

(
V̂
)

be the set of available measurements that have samples in entries of set

Ω and are noisy,

min
V

∥∥∥PΩ

(
V̂−V

)∥∥∥
2

F
+cg

∑T
t=1 ‖Svt‖1

+ ct
∑T

t=2 ‖vt − vt−1‖2
2 (3.3.5)

where the two regularizing terms measure the variation in the graph and time domain

and cg, ct are the corresponding regularization constants. Importantly, one can use

the GSO of the reduced graph, Sred,M if only a subset of measurements on the grid,

M, are available and employ the same formulation as in (3.3.5) for interpolation of

missing samples.

3.3.3 Network inference as Graph Laplacian Learning

Estimating S from voltage phasor can be accomplished along similar lines, by

seeking the GSO that minimizes the total variation of the observed voltage phasors’

signals, while imposing additional constraints on the GSO (complex-symmetry, dom-

inant diagonal values and sparse off-diagonal entries). Also, S tends to have larger

imaginary values than real especially on the diagonal. Therefore the problem becomes

min
S

∑T
t=1 ‖Svt‖1 + γ ‖S− Diag (Diag (S))‖2

F +
∑T

t=1 ‖Svt − it‖
2
2 (3.3.6)

subject to <[S]i,j = <[S]j,i,=[S]i,j = =[S]j,i, i 6= j, (3.3.7)

<Tr (S) = α|N |,=Tr (S) = β|N | (3.3.8)

Here α, β > 1 control the amplitude of real and imaginary values on the diagonal.

As before, the problem above can be recast with down-sampled voltage graph sig-

47



non-generator buses
0 500 1000 1500 2000

0

500

1000

1500

2000

Graph Shift Operator (GSO) S

generator 
buses

Figure 3.4.1: Support of the GSO S of the Network.

nals to infer the Kron-reduced GSO Sred,M with the approximation that the term

SMMcS−1
McMciMc in (3.2.23) is treated as additive Gaussian noise.

3.4 Numerical Results

The numerical results in this section are mostly obtained using data from the

synthetic ACTIVSg2000 case [113], a realistic model emulating the ERCOT system,

which includes 2000 buses-with 432 generators and the rest non-generator buses.

The ACTIVSg2000 case data include a realistic PMU data time series, in which 392

generators are dispatched to meet variable load demand. The sampling rate, as for

real PMUs, is 30 samples per second. As all the system related parameters are known,

it is easier to verify the proposed modeling strategy through the ACTIVSg2000 PMU

data set. Fig. 3.4.1 shows the support of the GSO S or the graph Laplacian Y matrix

when ordered into generator and non-generator buses. The block-diagonal structure

is notable, and is the result of the population distribution in the state of Texas, which

is concentrated in 8 metropolitan areas.

Grid-GSP model: In Fig. 3.4.2, magnitude of GFT of voltage graph signal vt and
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Figure 3.4.2: Magnitude of Graph Fourier Transform (GFT) for voltage graph
signal, |ṽt| (left) and input to generator-only network |x̃t| (right) plotted with respect
to normalized graph frequency.

the input xt are plotted for a single time instant with respect to their corresponding

normalized graph frequencies |λi|/maxi|λi| and shown in log-scale. From the linear

decay, it is evident that the magnitude of GFT coefficients |ṽt| corresponding to lower

frequencies are more significant as compared to higher frequencies.

Similarly, the GFT of the exponent in the input, x̃t = U>redxt with the generator

GSO Sred, is plotted with respect to the graph frequencies in Fig. 3.4.2. The decay in

GFT coefficients with respect to frequency is less pronounced confirming that graph

signal xt is not necessarily low-pass and in general depends on the topology of the

generator only network.

In Fig. 3.4.3, magnitude of GFT of the down-sampled voltage graph signal, ṽM =

U>red,MvM for |M| = 867 and |M| = 261 with two different down-sampling strategies:

with PMUs placed at buses in few communities within the GSO S and the other being

optimal placement for graph signal reconstruction (see algorithm 3.1). The placement

strategy has an effect on the low-pass nature of the down-sampled signal. The steeper

attenuation of GFT magnitude with placement strategy being community-wise is a

result of loss in spatial-resolution.
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Figure 3.4.3: Magnitude of GFT for spatially down-sampled voltage graph signal,
|ṽM| plotted with respect to normalized graph frequency.
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Figure 3.4.4: AR model fit to the GFT of xt. Component corresponding to smallest
graph frequency, λred,1, [x̃t]1

To highlight the temporal variation in the GFT domain of input exponent, x̃t, a

short time-series of the real and imaginary parts along with the fit of the AR model

are shown in Fig. 3.4.4. As expected, the AR model fits well. Fig. 3.4.5 shows the

similar AR-2 model fit to the load current at a bus that had the highest absolute value

of load. To emphasize the temporal nature of the input, the 2-dimensional frequency

response (in both graph and time domains) is plotted for the input x̃t in Fig. 3.4.6.

The figure provides evidence of the coupling between the graph frequencies and time

50



20 40 60 80 100 120 140 160 180 200 220
−1.86
−1.85
−1.84
−1.83

<{
[ i

` t] j
}

<{
[
i`t
]
j
} <{

[
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Figure 3.4.5: AR model for load bus, j = 1312, i.e. bus with highest absolute value
of load.

Figure 3.4.6: 2−D Frequency Response for x̃t

series Fourier power spectrum, and the variability of the temporal response depending

on what GFT frequency mode is excited with Fourier spectra that are more or less

concentrated towards low frequencies depending on the GFT mode. Hence, temporal

dynamics can inform about what is happening in space (i.e. the trends are coupled).

Revising GSP Tools: Sampling and Optimal Placement Fig. 3.4.7 shows the place-

ment of 100 PMUs super-imposed on the support of the ordered Grid-GSO, S when

|K| = |M| = 100 graph frequency components are considered. Note the distribution

of PMUs to different communities as well as on the generator buses as they belong to
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Figure 3.4.7: Optimal Placement of |M| = 100 PMUs. K = 100, 2000 buses.
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Figure 3.4.8: Reconstruction performance after optimal placement (algorithm 3.1)
of |M| PMUs. Number of frequencies used: |K| = |M|. Total number of buses is
2000.
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Figure 3.4.9: (a) The map of PMUs placed in ISO-NE test case 3 [114], (b) the
support of estimated GSO via (3.3.8). Note that the community structure exactly
corresponds to groups of PMUs in the actual system.
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different graph communities. Fig. 3.4.8 exhibits the performance of the GSP based

reconstruction method on optimally placed |M| PMUs that provide down-sampled

measurements, vM. Even with just 5% of measurements (100 PMUs), the reconstruc-

tion error is extremely low.

To illustrate that the proposed modeling holds and algorithms work well also for

real PMU data, in the next numerical experiments, a real-world dataset of measure-

ments from 35 PMUs placed in ISO New-England grid (ISO-NE) [114] is used. The

data corresponds to a period of 180 seconds when a large generator near Ln:2 and

Ln:4 introduces oscillations in the system. PMU signals are decimated in time to

have sampling frequency of 1 sample/s.

Network inference: As the underlying GSO is unknown, it is estimated via (3.3.8)

with the goal of recovering the underlying reduced-GSO. Fig. 3.4.9 shows the support

of the estimated GSO. Comparing it with the map of PMUs in Fig. 3.4.9a, it is

seen that the block-diagonal nature of the recovered GSO captures the community

structure highlighted in the map.

Interpolation of missing measurements: Once the GSO is estimated, consider the

interpolation problem in (3.3.5) for the same ISO-NE dataset. Data is deleted at ran-

dom and noise is added. The problem in (3.3.5) is solved to recover missing measure-

ments. In Fig.3.4.10 voltage phasor angles θ of the original, corrupted and recovered

measurements are compared. Corrupted measurements have missing samples not just

at random but also contiguous in time. The normalized MSE,
∥∥∥V − V̂

∥∥∥
2

F
/ ‖V‖2

F is

the metric used to gauge the reconstruction performance. As a comparison, the

AM-FIHT algorithm proposed in [115] is tested on the same data, which regularizes

the reconstruction task assuming that the Hankel matrix formed with the columns of
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Figure 3.4.10: Interpolation of missing measurements for an ISO-NE case using
GSO based regularization. Voltage phasor angles are shown. Note the contiguous
missing of samples and our ability to interpolate. The relative noise level used is,
(|M|T )σ2/ ‖V‖2

F = 10−4 Normalized MSE for this run is 6.22× 10−4.
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Figure 3.4.11: Comparison of AM-FIHT algorithm in [115] (r = 10, n1 = 3, β = 0)
and the proposed GSO based interpolation with 50% of missing measurements in the
ISO-NE dataset.

V, i.e. H(V), has low rank r,

min
V

∥∥∥PΩ

(
V̂ −V

)∥∥∥
2

F
subject to rank (H(V)) = r (3.4.1)

The plot comparing the two methods is shown in Fig. 3.4.11. As seen, the GSO

based method outperforms the AM-FIHT for this dataset, indicating that the reg-

ularization using the GSO is more effective at capturing the low-rank nature of the

data, compared to seeking an arbitrary low rank structure in the the Hankel matrix

of the data.
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Chapter 4

APPLICATIONS OF GRID-GSP

The goal of this chapter is to showcase the benefits of casting problems in the Grid-

GSP framework introduced in Chapter 3 through four exemplary applications, namely

blind community detection, fault localization in under-sampled regime, data compres-

sion and anomaly detection. In Section 4.1, a consequence of the low-pass nature of

voltage measurements that is, the ability to identify communities in the electrical

grid using blind community detection is studied. In Section 4.2, concepts pertain-

ing to fault localization in under-sampled graph regime are explored. In Section 4.3,

compression of PMU data by the use of Grid-GSP generative model for PMU data

is discussed. In Section 4.4 the detection of false data injection attacks is described

along with the method of isolating affected buses.

4.1 Identification of Community Structure in the Electrical Grid

In [38] it was established that the eigenvectors of the data covariance of graph

signals can be used to unveil the community structure of the underlying graph, when

signals are the output of a low-pass graph filter. However, the result does not hold

if a GSO has edge weights with negative or complex-valued weights. In this case,

the ratio-cut minimization formulation cannot rely on such Laplacian operators and

the algorithm proposed based on spectral clustering returns meaningless results. But

when the GSO has weights with a common phase, the technique of community de-

tection makes sense. This is the case with nearly purely imaginary valued system

admittance matrix. Hence, the voltage phasor measurements are good candidates to

reveal the community structure of the power grid. The electric grid has an inherent
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community structure that is driven by the fact that population density is highly un-

even, and its spatial distribution determines the graph density [116]. Assume that

Algorithm 4.1: Blind Community Detection for Grid Graph Signals

Input: Voltage phasors {vt}Tt=1 and desired number of communities K.

1: Compute sample covariance matrix Cv = T−1
∑T

i=1 vtv
H
t .

2: Find the K eigenvectors corresponding to top K eigenvalues. Denote them by

ÛK ∈ C|N |×K .

3: Define a higher dimensional matrix Û2K ∈ R|N |×2K as

Û2K =

[
<{ÛK} ={ÛK}

]
.

4: Apply k-means clustering method that minimizes the objective

F = min
A1,...AK

K∑

k=1

∑

i∈Ak

∥∥∥∥∥û
row
i − 1

|Ak|
∑

m∈Ak
ûrow
m

∥∥∥∥∥ (4.1.1)

where ûrow
i is the ith row of Û2K .

Output: K communities Â1, . . . ÂK

there are K communities. The grid is also designed such that each community is

served by a portfolio of generators, which means that there are more generators than

communities, K < |G|. From (3.2.4), , PMU voltage phasor data vt is the output

of a low-pass graph filter Hk(S). Assuming that system admittance matrix is purely

imaginary, the graph filter has the form S−1 = UΛ−1U>. The eigenvectors U are

real valued and orthonormal and the connection between spectral clustering [117] and

the blind community detection as in [38] is seamless. The community structure can

be recovered using eigenvectors of [38], Cv = T−1
∑T

i=1 vtv
H
t where H is the complex
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conjugate operator. Each outer product yields

vtv
H
t ≈ H(S)



Diag(yg)et

i`t



[
(Diag(yg)et)

H (
i`t
)H
]

(H(S))H +Cη (4.1.2)

≈ UΛ−1UT



Diag(yg)et

i`t



[
(Diag(yg)et)

H (
i`t
)H
]

︸ ︷︷ ︸
=Ce,t

UΛ−1UT +Cη (4.1.3)

The rank of the excitation covariance matrix,

T−1
∑T

t=1Ce,t (4.1.4)

is roughly the order of number of generators |G|. Thus, the rank of Cv will be

approximately K and therefore the top K eigenvectors of covariance matrix Cv can

be used instead of the lowest K eigenvectors of graph Laplacian S. Therefore, as

in spectral clustering [118], a k-means clustering on the top K eigenvectors of Cv

correspond to the smallest eigenvectors of S and can be used for community detection

[38]. Clustering using k-means is performed in a higher dimension due to complex

valued eigenvectors. Algorithm 6.1 specifies the steps undertaken for community

detection.

Also, when the DC approximation holds, k-means clustering on the covariance ma-

trix of phase angle measurements, Cθ =T−1
∑T

t=1 θtθ
T
t which has real-valued eigen-

vectors and non-negative eigenvalues, can also recover the community structure [35].

4.1.1 Numerical Results

As in Section 5.5, numerical results were obtained using data from Matpower

testcase, ACTIVSg2000. From Fig.3.4.1, the community structure due to population

cluster is evident. It is seen that there are K = 8 distinct clusters. As ground truth,

spectral clustering is performed on the eigenvectors U of Laplacian S wherein the
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(a) Spectral Clustering of Ordered Lapla-

cian Matrix of the Network. The k-means

optimal objective value F ∗ = 1.8921

(b) Community Detection Using Com-

plex Voltage Phasors vt of the Network.

The k-means Optimal Objective value is

F̃y = 2.3369

(c) Community detection using phase angles,

θ of the network. The k-means optimal ob-

jective value is F̃θ = 2.9233

Figure 4.1.1: Spectral Clustering and Community Detection
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goal was to recover K communities. The support of recovered adjacency matrix for

the clusters is shown in Fig.4.1.1a. Then, algorithm 6.1 is utilized and clustered the

eigenvectors of the data covariance matrix Cv where voltage phasor measurements

were used. The corresponding support of adjacency matrix is given in Fig.4.1.1b.

Also, to test the DC approximation, eigenvectors from the covariance matrix formed

by phase angles θt,Cθ were clustered and the results are shown in Fig.4.1.1c. For

both of the above techniques for community detection, the k-means optimal objective

values were F̃y = 2.3369 and F̃θ = 2.9233 when using complex voltage phasors vt

and phase angle θ respectively. The respective difference from optimal objective

value for spectral clustering and the were found to be F̃y − F ∗ = 0.4448 and F̃θ −

F ∗ = 1.0312. This is indicative of the better performance using voltage phasor

measurements although the DC approximation roughly holds for this dataset.

4.2 Fault Localization Using Under-sampled Grid Graph Signals

Line or current faults, switching events, voltage sags and faults at generators are

associated with events that start with a localized spatio-temporal pattern, eventually

smoothened by the low-pass response of the network. It is intuitive that to pin-point

the location of such faults, one needs to be able to reconstruct sharp spatio-temporal

derivatives, i.e. signals that have a wide graph-Fourier and time-Fourier transform

based spectra. The question is to what extent one is able to localize faults in a system

using a small number of PMU measurements, which could be sufficient in a quasi-

steady state regime but are not sufficient if the signal has a broader graph-Fourier

spectrum. The optimal placement of M PMUs in this case would not guarantee a

good reconstruction but rather be aimed at detecting with the maximum possible

resolution the fault in space and time. Resolution in localizing an event on a graph

refers to the ability of localizing the correct `-hop neighborhood, with ` as small
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as possible. Although there are both parametric and non-parametric approaches to

localization such as in [119–121], the connection to topology was first made in [122]

and elucidated upon in [28].

Assume that the measurements pre-fault and post-fault currents are given by

Pre-fault: I0 = Yv0, Post-fault: IF + IE = YvF (4.2.1)

with IE a sparse vector with 1 non-zero entry and equal to injected fault current at

faulty bus. Subtracting pre-fault from post-fault,

(IF − I0) + IE = δI + IE = Y (vF − v0) = Yδv (4.2.2)

The current and voltages can be parsed as available and unavailable PMUs measure-

ments:


δIa

δIu


+



IaE

IuE


 =



Yaa Yau

Y T
au Yuu






δVa

δVu


 . (4.2.3)

Let us define the vector z obtained from the available measurements as follows:

z =

H︷ ︸︸ ︷(
I | − (Yaa − YauY −1

uu Y
T
au)

)


δIa

δVa


 (4.2.4)

Rearranging (4.2.3), the following measurement model for z can be obtained, tying

the observation to the faults:

z = (−I |
C︷ ︸︸ ︷

YauY
−1
uu )

s︷ ︸︸ ︷

IaE

IuE


+

C︷ ︸︸ ︷
YauY

−1
uu

ε︷︸︸︷
δIu (4.2.5)

z = [−I | C] s+Cε (4.2.6)

where s is sparse with fault current at non-zero entries and ε is the noise term with

complex normal distribution, ε ∼ CN (0, σ2
ε I). Let the singular value decomposition
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(SVD) be C = UCΣCW
H
C , whitening ε, i.e. multiplying Σ−1

C U
H
C , gives:

d = Σ−1
C U

H
C z = Fs+ ε (4.2.7)

where ε = WH
C ε ∼ CN (0, σ2

ε I), and F =
[
−Σ−1

C U
H
C |WH

C

]
. Model in (4.2.6) and

(4.2.7) is a well-known linear model with a sparse input and additive Gaussian

noise. However, remember that measurements d are obtained as a linear combi-

nation through F of graph signals at different nodes i.e. s. Fault localization is then

equivalent to recovering the support of s. It is assumed that s is 1-sparse i.e. only 1

location at fault.

The sparsity of s underscores the problem with the under-sampled nature of the

grid graph signals d. Its excitation is no longer a bandlimited graph signal, all graph-

frequency components are important which makes the recovery not possible when

the number of PMUs is much less than number of nodes in the graph. It is then

required to operate under this loss of resolution and place PMUs to obtain maximum

resolution possible. Following [122], fault localization can be formulated as a multiple

hypothesis testing problem based on (4.2.7) where the goal is to identify the fault

location `. With assumptions about the distribution of s for each hypothesis `, the

conditional distribution of d for hypothesis H` is given by

d|H` ∼ CN (Fµ`, σ
2
ε I + FΦ`F

H) (4.2.8)

where µ` = E[s], Φ` = E[ssH |H`]. The maximum-likelihood (ML) detector of the

fault location is then

`∗ = argmax
`

λ`(d) = argmin
`

(d−m`)
HΨ−1

` (d−m`) + ln(πK |Ψ`|). (4.2.9)

where m` = Fµ`, Ψ` = FΦ`F
H . If for a given fault at location `∗, the value of

log-likelihood λ`∗(d) is close to λk(d) (k 6= `∗), the location of the fault can be mis-
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(a) Reduced IEEE-34 Test Case with Added Generator. Boxes show optimal

placement of PMUs.

(b) Log-likelihood value for fault at bus 820-Phase-A

Figure 4.2.1: Fault localization for IEEE-34 Bus Case [123]

identified. A cluster then can be defined as a set of nodes for which λ`(d) ≈ λ`∗(d) un-

der y|H`∗ . The distance between conditional distribution of data under different hy-

potheses is characterized by the Kullback-Leibler (KL) Divergence, DKL(f(d|H`)‖f(d|Hk)).

In this case,

DKL(f(d|H`)‖f(d|Hk)) ∝ (r`k)
−1, r`k =

|fH` fk|
||f`|| ||fk||

(4.2.10)

where f` is the `th column of F . Higher the r`k, more the possibility of misclassi-

fication between ` and k hypothesis. In other words, k, ` will belong to the same
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cluster. More small size clusters of vectors of F with high mutual correlation imply

finer localization resolution. The mutual coherence of F [124] is:

µ(F ) = max
k,`,k 6=`

r`k (4.2.11)

One can consider (4.2.7) as a sparse recovery problem. From the theory of recovery

of sparse signals [124], it is well known that, when

‖x‖0 ≤
1

2

(
1 + µ(F )−1

)
, µ(F ) = max

k,`,k 6=`
r`k (4.2.12)

where µ(F ) is the mutual coherence of matrix F , then the `1 minimization of the

support can recover x. In general, the lower is the mutual coherence of a matrix, the

better the recovery performance as it is similar to unitary matrices. To compute the

mutual coherence, consider

FHF =



UΣ−2UH −UΣ−1WH

−WΣ−1UH I


 . (4.2.13)

The magnitude of each entry of the matrix FHF , with suitable normalization, cor-

responds to r`k except for the diagonal entries. Naturally, the magnitude depends

on the spectrum Σ of the matrix C = YauY
−1
uu which must be as flat as possible

so as to lower the mutual coherence of the matrix F . This suggests to minimize

the so called Shatten infinity norm of the matrix YauY
−1
uu , which is the infinity norm

‖σ‖∞ of the vector σ containing the non-zero singular values of YauY
−1
uu . The design

strategy, detailed in the next section, is aimed precisely at providing a flat spectrum

for C. In addition to interpretation using sparse recovery, one can also understand

the loss of resolution and consequent best possible placement using sampling theory

from graph signal processing [125]. Placing PMU sensors can be thought of as the

problem of sampling a graph signal in a fixed spatial pattern. This is because voltage

or current signals are graph signals that occur on the electrical network. Not having
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sufficient PMUs means not sampling from enough nodes in the graph. This under-

sampling leads to poor recovery or reconstruction. However, if the graph signal is

sparse in the graph Fourier domain, then measurements of the order of the number

of approximately non-zero components in the Fourier domain are enough for perfect

reconstruction. For rigorous theory, please see [111]. The same theory can be applied

to signals from the electrical grid like the measurement d.

In [35] it was established that voltage phasor measurements are an output of a low-

pass graph filter defined using the graph-shift operator of system admittance matrix

Y which means that voltage signals are sparse or band-limited in the graph Fourier

domain where graph Fourier transform is defined as UT
Y a where UY are the eigenvec-

tors of Y and a is a graph signal. It means that measurements from a certain number

of nodes say M̃ are needed for perfect reconstruction [125]. Since sparsity in graph

Fourier domain is only approximate, optimal placement of M̃ measurement units on

the network aims to minimize the reconstruction error. This criterion leads to the

optimization problem of maximizing the singular value of DM̃UY i.e. σmin(DM̃UY )

where DM̃ is a diagonal matrix with values from {0, 1} indicating 1 if the node is

chosen for placement and it is the same size as Y . Intuitively, this amounts to choos-

ing the rows of UY with the smallest possible coherence or, in simpler terms, as close

as possible to being orthogonal.

Similar intuition continues while looking at C = YauY
−1
uu . With UY , it is choosing

a representative row per ‘cluster’ in a graph. Similarly, in C, choosing the rows of

YauY
−1
uu to be uncorrelated is attained by having non overlapping support among of

the rows in YauY
−1
uu and having Yuu as close as possible to a block diagonal matrix,

where the diagonal blocks as matched to the non zero portions of rows Yau. Therefore,

it is possible to predict how to obtain good placements looking at the structure of the

graph, and particularly of its natural clustering in sub-graphs with higher connectivity
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within themselves. In network science, these sub-graphs are often referred to as

communities. This is because the spectral properties that are sought can be tied to

selecting nodes in such a way that the sparsity patterns of the rows of Yau and of Yuu

separate in clusters. Since there are few observable nodes, the rank of the matrix Yau

is limited by its number of rows. The algorithm performs best if the rows of YauY
−1
uu

are as uncorrelated from each other as possible. Given the similarity of line parameter

values, low correlation is mostly attained by having non overlapping support among of

the rows in YauY
−1
uu . As the next example illustrates, this can be attained by having

Yuu as close as possible to a block diagonal matrix, where the diagonal blocks are

matched to the non zero portions of rows Yau. This is possible if the neighborhoods

of the buses where the sensors are located, have the smallest intersection possible.

For example, for the system in Fig. 4.2.2, if the PMUs are placed at bus 2 and 5 as

1 2 3 4 5 6
34y 45y 56y12y 23y

Figure 4.2.2: One-Line Diagram of a Sample Radial Network

shown, the admittance matrix is partitioned in the following desirable way:

Y =




y2 0 −y12 −y23 0 0

0 y5 0 0 −y45 −y56

−y12 0 y1 0 0 0

−y23 0 0 y3 −y34 0

0 −y45 0 −y34 y4 0

0 −y56 0 0 0 y6




(4.2.14)

This design is clearly distancing the PMUs in the graph and dividing the network

in neighborhoods, each associated with one of the sensors immediate and two hop

neighbors where measurements are unavailable. The remaining ambiguity is confined

to a connected set of buses that are topologically close to the PMU sensors. Hence,
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the optimum resolution for a certain grid is tied to the same intrinsic topological

properties that are studied in graph clustering.

4.3 Compression of PMU Measurements

Due to their relatively high sampling rate and their wide deployment, PMU data

have have called for compression. The performance of several off-the-shelf lossless

encoding techniques applied to PMU data were investigated in [126]. In [127], a

lossless compression called slack referenced encoding (SRE) method of PMU voltage

measurements is introduced, by identifying a slack-bus and differentially encoding

the difference between slack-bus measurements in time and all other buses. Similarly,

in [128], phasor angle data is encoded in a lossless manner by preprocessing data

using techniques from [127] and then using Golomb-Rice entropy encoding.

The idea of slow-variation with time in PMU data such as phase angles is used

in [129] to firstly transform data into frequency domain (in time) and then using

a ‘reverse water-filling’ technique to encode frequency components in the difference

measurements. Many lossy compression techniques utilize the low-rank structure

inherent in voltage phasor data [130–132]. Several other wavelet based compression

algorithms exist in the literature as well [133].

The proposed compression algorithm leverages both (3.2.2) and (3.2.18). The

measure of distortion used is the mean-squared error (MSE):

d(v, v̂) , (|N |T )−1
∑>

t=0 ‖vt − v̂t‖
2
2 (4.3.1)

Since a temporal dynamical model for the evolution of voltage in time is used,

differential encoding [134] is used to quantize the residuals in both generator and

load dynamics, w̃t and εt respectively. The voltage at time t is:
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Algorithm 4.2: Encoding Algorithm for Compression

Input: x̃0, x̃1, i
`
0, i

`
1, {vt}Tt=2 for t = 2 : T do

States ˆ̃xt, î
`
t from (4.3.4) and (4.3.5) respectively. ;

Voltage estimate:

v̂0
t =H(S)



Diag(yg) exp

{
Diag(m)−

1
2 Ured

ˆ̃xt

}

î`t


 (4.3.2)

Compute GFT of modeling error: ξ̃t = U> (vt − v̂0
t ) ;

Quantize: ˆ̃ξt = Q
{
ξ̃t

}
, v̂t = v̂0

t + Uˆ̃ξt;

Update states,

ˆ̃xt ← U>redDiag(m)
1
2 ln(êt), î

`
t ← [Sv̂t]NL (4.3.3)

where êt = (Diag(yg))
−1 [Sv̂t]NG

;

Output:
{

ˆ̃ξt

}T
t=2

vt = H(S)



Diag (yg) exp

{
Diag(m)−

1
2 Ured

(
x̃0
t + w̃t

)}

i`,0t + εt




where x̃0
t = Diag (a1) x̃t−1+ Diag (a2)x̃t−2 (4.3.4)

i`,0t = Diag (b1) î`t−1+ Diag (b2) î`t−2 (4.3.5)

Thus, vt can be approximated as:

vt≈H(S)






Diag (yg) exp

{
Diag(m)−

1
2 Uredx̃

0
t

}

i`,0t


+ξt


 (4.3.6)

Note that,for the vector ξt, the GFT U>ξt has energy mostly in lower frequency

components and is therefore an appropriate term to quantize using an optimal rate
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allocation. Specifically, bits are allocated to each component by setting a desired

level of total distortion, applying the reverse water-filling result [135] which is op-

timum for a random vector U>ξt whose entries are circularly symmetric complex

independent Gaussian random variables and then quantize the components accord-

ingly. The covariance matrix is not diagonal and ideally one would first whiten the

vector U>ξt and then quantize the individual components with bit-allocation akin to

reverse water-filling. Since the statistics of U>ξt are time-varying, one has to per-

form the whitening transform at each time instant which is a cumbersome operation.

Therefore the assumption of a diagonal covariance matrix is made while sacrificing the

benefit of modeling the underlying correlations among the random variables. Then,

the quantized vector U>ξt is used to update the state i.e. to estimate x̃t and i`t.

Algorithms 4.2 and 4.3 describe the encoding and decoding algorithms respectively.

Note that the proposed scheme of compression is sequential unlike others in literature.

Algorithm 4.3: Decoding Algorithm for Reconstruction

Input: x̃0, x̃1, i
`
0, i

`
1,
{

ˆ̃ξt

}T
t=2

for t = 2 : T do

States ˆ̃xt, î
`
t from (4.3.4) and (4.3.5) respectively. ;

Reconstruction of voltage from (4.3.2) v̂t = v̂0
t + Uˆ̃ξt ;

Update states ˆ̃xt, î
`
t from (4.3.3) ;

Output: {v̂t}Tt=2

Several corrections can be made as data is collected in time such as the update of

parameters ã1, ã2, b1, b2.

4.3.1 Numerical Results

: For voltage data compression, two other schemes are compared: scalar quan-

tization and singular value thresholding (SVT) from [132]. Fig. 4.3.1 plots the em-
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Figure 4.3.1: Empirical rate distortion (RD) curve for the proposed compression
method compared with singular value thresholding and quantization.

pirical rate-distortion (RD) curve and shows the comparison between all 3 schemes.

As expected, scalar quantization does poorly compared to the other schemes. The

SVT scheme simply uses few of the largest singular vectors for data reconstruction.

Considering that it is indicative of voltage graph signal lying in a low-dimensional

subspace, it is not surprising that the SVT scheme does well. However, the SVT

curve rate-distortion curve eventually saturates. Note that the performance of the

proposed method are comparable to those of the SVT. However, the latter is a batch

method, while the proposed method is sequential, which has important implication

for the online communications of PMU data.

4.4 Detection of Anomalies and False Data Injection Attacks

Measurement systems, in general, are vulnerable to several types of attacks, in-

cluding denial of service (DoS), data framing, spoofing attacks and ransomware. Thus,
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significant efforts have been devoted to maintain confidentiality and integrity of PMU

data by: (i) securing the transfer of PMU data; (ii) protecting state estimation (SE)

through bad data detection (BDD); and (iii) placing the sensors in such a way that

the reconstruction is robust to data erasures. BDD techniques, dropout rejection, and

stale-data replacement [136–139] are effective against random sensor errors and in-

termittent communications. But, a large body of prior research has shown that False

Data Injection (FDI) attacks can bypass classical BDD mechanisms [140–154] and

trigger incorrect decisions or hide line overflows and contingencies [155–164]). This

specific vulnerability, which is the focus of this section, is not addressed by existing

communication PMU and data standards. Some recent papers on PMU data integrity

have proposed to leverage the low rank spatio-temporal nature of PMU data not only

to help with erasures but also to strengthen conventional BDD mechanisms [165].

In [162] the authors have suggested an FDI attack strategy that can pass the afore-

mentioned BDD approach in [165] by generating false samples that approximately

preserve the original subspace structure.

In this section the problem of False Data Injection (FDI) attacks to electric power

systems synchrophasors measurements is revisited through the lens of graph signal

processing (GSP). First, a physics based model that supports the empirical evidence

that Phasor Measurement Unit (PMU) data are low-pass graph signals is introduced.

This insight is used to investigate how one can leverage such a structure to construct

more effective bad data detection (BDD) algorithms that can detect FDI attack sig-

natures through appropriate utilization of the features of the PMU graph-signal. The

typical structure of the FDI attack model is as follows. The observer is interested in

recovering x from a set of noisy observations:

z = H(x) +w, (4.4.1)
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where H(·) represents the, possibly non-linear, system equations. We make the follow-

ing assumptions the attacker: 1) the attacker has knowledge of H(·); 2) the attacker

can only manipulate data from PMUs on buses i ∈ M. By manipulating just the

subset zM of the measurements in z, for a sufficiently large set M, the attacker can

stage a stealth attack that ensures (4.4.1) is met by a signal x̃ = x+ δx, where δx is

the error relative to the ground truth x. Let HM(·) be the functions that are associ-

ated with the compromised measurements and HH(·) the remaining (honest) ones. To

ensure the perturbed measurements are consistent with (4.4.1), the FDI attack ma-

nipulates the measurements zM by adding a vector δzM = (HM(x + δx)− HM(x))

such that (HH(x + δx) − HH(x)) = 0. In this case a BDD based on the residual

error of the model will not identify the presence of the attack. What that entails is

particularly obvious in the case of a linear mapping H(x) = Hx with

δzM = HMδx, such that HHδx = 0. (4.4.2)

This implies that the perturbation should be such that the vector δx must be in

the null-space of HH. However, the fact that x is a graph signal, adds the extra

constraint δx = H(L)δe. Hence, the stealth attack needs to achieve:

HHH(L)δe = 0 (4.4.3)

which is impossible if HHH(L) is full rank because the nullspace of HHH(L) is

empty and there exists no non-zero δe. This, in a nutshell, is the benefit uncovering

additional structure in x. Next it is clarified how to leverage the model presented in

Section 3.2 to enhance the Byzantine fault tolerance towards FDI attacks.

4.4.1 FDI Attacks on SCADA Measurements

Many studies of FDI attacks to grid measurements focus on the so-called DC power

flow approximation that can be used in conjunction with power injection measure-
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ments. The model consists of a linear relationship between power injection samples

collected by legacy SCADA systems and the bus voltage phase angles. More specifi-

cally, let θ = ∠v, B = =[Y ] and P = <[S] where S = Diag(i∗)v. The DC power

flow model is P = Bθ, and the measurements are the bus power injections P . The

stealth FDI attacks studied in the literature are analogous to the ones described

above, with P and θ playing the role of z and x respectively. Owing to the fact

that difference in phase at two connected buses is small, by assuming the GSO of the

phase angles signal is the susceptance matrix of the grid, the authors in [26] suggest

the signature of an FDI attack is apparent in unexpected components in the Graph

Fourier Transform (GFT) of the phase angles. Specifically, during an FDI attack,

they stipulate that the phase angles vectors will exhibit a broader than normal graph

spectrum, which they use as the signature to detect the attack. Next beyond the

empirical arguments and justifications the case of PMU measurements which has a

unique low pass, low rank structure is examined, that can be leveraged to design BDD

algorithms that raise the bar of Byzantine fault tolerance to FDI attacks.

4.4.2 FDI Attacks on PMU Measurements

Assuming that access to PMU measurements of voltage and current from the

buses they are installed on. Let A be the set of available measurements where PMUs

are installed and U be set of unavailable ones. A measurement model can be written

using ‘state’ x to be the voltage as



îA

v̂A




︸ ︷︷ ︸
z

=



YAA YAU

I|A| 0




︸ ︷︷ ︸
H



vA

vU




︸ ︷︷ ︸
x

+w (4.4.4)

73



The attacker follows the strategy outlined in (4.4.2) to manipulate both current and

voltage on buses i ∈M ⊂ A by introducing a perturbation

δxT =

[
δvTM 0T|H|+|U|

]
, such that YHMδvM = 0 (4.4.5)

where H is the set of honest nodes. This requires special conditions and accurate

attack placement, since YHM is tall. Nonetheless, since the system admittance matrix

Y is generally sparse [105], YHM does not have full column-rank for a sufficient

number of attackers M even when all the measurements are available with A = N .

4.4.3 Detection of Attack

This application is based on preliminary work in [36]. Note that, even though we

cast the problem as that of FDI attacks detection, the idea can be easily extended to

unveil sudden changes due to physical events (like fault-currents, or topology changes)

that similarly excite high GF content. Our detection problem entails deciding between

the hypotheses of attack H1 and no attack H0. To this end, we can leverage the low-

dimensional generative model for the voltage graph signal that comes from (3.2.4),

which imposes additional constraint on the perturbation along with that in (4.4.5). In

short, for the attacker to be successful and undetected, she needs to have knowledge of

system parameters and the graph filter with k frequency componentsHk(S). However,

since the attacker does not have all this knowledge, a typical FDI attack as studied in

literature is launched using (4.4.5). Using the generative model in (3.2.4), we know

that under normal operating conditions in quasi-steady state, the received data z

under the no-attack and attack hypotheses H0,H1 respectively have the structure:

z=





H0 :HHk(S)

[
(Diag(yg)et)

> (
i`t
)>
]>

+ε

H1 :HHk(S)

[
(Diag(yg)et)

> (
i`t
)>
]>

+Hδv+ε

(4.4.6)
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Therefore, we project the received z into the subspace orthogonal to columnspace of

HHk(S) to get a test statistic, d(z). The projector is:

Π⊥HHk(S) , I− [HHk(S)] [HHk(S)]† (4.4.7)

and under the no attack hypothesis H0, energy in the orthogonal subspace is less than

when there is an attack, H1. This can be converted to the following test,

d(z) ,
∥∥Π⊥HHk(S)z

∥∥2

2

H1

R
H0

τ (4.4.8)

where τ is a threshold that can be chosen based on an empirical receiver operator

characteristics (ROC) curve. Note that, since Hk(S) is a low pass filter, the projector

Π⊥HHk(S) in (4.4.7) is filtering high graph frequencies and the detection measures the

energy on such frequencies as a signature for anomalies.

4.4.4 Isolation of Compromised Buses

Isolation of compromised buses or estimate of δv can also undertaken with a

similar logic. Firstly, using the assumptions in the previous section we can solve the

following regression problem to recover δv, formulating a LASSO relaxation of the

sparse support recovery problem:

min
δv

∥∥Π⊥HHk(S)(z−Hδv)
∥∥2

2
subject to ‖δv‖1≤µ (4.4.9)

Constraint on the `1 norm is used to incorporate the prior knowledge that the attacker

has access to a few measurement buses, M� N . Note that the performance of the

algorithm is also dependent on the number of graph-frequency components i.e. k

considered.

4.4.5 Numerical Results

Fig.4.4.1 shows the magnitude of the projection of the received measurement z

on the orthogonal subspace Π⊥HHk(S). From Fig. 4.4.1 it is evident that when
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Figure 4.4.2: Empirical ROC curve for different |M| when a percentage of them
are malicious, |M|/|A| × 100 with |A| = 500 (out of 2000) are available.

there is no attack, the magnitude of the projected component is orders of magnitude

lower than when the measurements are under the FDI attack. This validates the

idea of using high GFT frequency activity as an indicator of anomalies. Fig. 4.4.2

shows the empirical receiver operator characteristics (ROC) curve highlighting the

detection performance of the proposed FDI attack detection scheme. The detection

performance remains good, even when very few buses are attacked. Fig. 4.4.3 shows

the reconstruction of magnitude of the attack vector δv when 500 measurements are
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available and number of attacked buses |M| = 50.
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Chapter 5

MODEL FOR JOINT PROBABILISTIC FORECAST OF SOLAR

PHOTOVOLTAIC POWER AND OUTDOOR TEMPERATURE

In this chapter, a stochastic model is proposed for a joint statistical description of

solar photovoltaic (PV) power and outdoor temperature. The underlying correlation

emerges from solar irradiance that is responsible in part for both the variability in

solar PV power and temperature. The proposed model can be used to capture the

uncertainty in solar PV power and its correlation with the electric power consump-

tion of thermostatically controlled loads. First, a model for solar PV power that

explicitly incorporates the stochasticity due to clouds via a regime-switching process

between the three classes of sunny, overcast and partly cloudy is proposed. Then,

the relationship between temperature and solar power is postulated using a second-

order Volterra model. This joint modeling is leveraged to develop a joint probabilistic

forecasting method for solar PV power and temperature. Real-world datasets that

include solar PV power and temperature measurements in California are analyzed

and the effectiveness of the joint model in providing probabilistic forecasts is verified.

The proposed forecasting methodology outperforms several reference methods thus

portraying that the underlying correlation between temperature and solar PV power

is well defined and only requires a simple lower-complexity sampling space.

Prior work in [39] briefly described in Section 6.1 involved the development of

a parametric model that was proven to efficiently capture the effect of clouds on

solar PV power while providing a compact representation. In [41], the prior modeling

technique is extended to fit a switching process to solar PV power, using which a solar

power prediction algorithm to provide short-term probabilistic forecasts is designed.
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The resulting low order model ensures reduced computational complexity for the

proposed algorithm.

In Section 6.1, the deterministic modeling strategies for solar PV power and tem-

perature from [39] and [40] respectively are reviewed. In Section 5.2, the joint stochas-

tic models is detailed. Section 5.5 contains the numerical results by testing the fore-

casting methodology with real-world data and benchmarking with other reference

methods.

5.1 Discrete-time Model for Solar PV Power and Temperature

In this section, the discrete time model for solar PV power output that was de-

rived in detail in the authors’ prior work in [39] and Volterra-type model relating

temperature and solar irradiance developed in [40] are briefly reviewed as a precursor

to the joint stochastic model. Instead of directly formulating a stochastic model, the

deterministic model with parameters is first constructed. Then, the stochasticity in

parameters is characterized and further leveraged in Section 5.2 to define stochastic

models for solar power output and temperature.

5.1.1 Solar PV Power Model

It is hypothesized that the panel sums solar irradiation by weighting each contri-

bution with a bi-dimensional gain function that handles the scaling factors to obtain

total electrical power. The solar irradiation is attenuated by clouds modeled as a

random mask that subtracts a percentage of the light coming from the patch of sky

it covers at a certain time. The motion of the clouds over the panel can be approx-

imated to be moving at a constant speed in a certain direction throughout the day.

This assumption is reasonable considering the size of the panel relative to that of

the displacement of the clouds. It is known that the solar irradiation has two major
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components [166], direct beam component and diffuse beam component. Each of these

components is attenuated by the cloud coverage in different ways. Let the power

produced by the PV panel be wd[n] on day d and time instant n ∈ {0, . . . , N}, then:

wd[n] = sd[n]− (pbd[n] + pdifd [n]) + ped[n] + ηd[n] (5.1.1)

where sd[n] is the solar power if the dth day is sunny, pbd[n] and pdifd [n] are the

components pertaining to direct and diffused beam component attenuation by the

clouds respectively, ped[n] is attributed to edge of the cloud effect and ηd[n] is Gaussian

measurement and modeling noise.

Sunny days parametrization: Each cloudless day is modeled using a simple

basis expansion model, whose expansion coefficients are periodically updated to reflect

seasonal variations. Let S denote the set of sunny days. For d ∈ S the solar PV power

samples are modeled as:

wd[n] = sd[n] =

Q∑

q=0

sdqbq[n] + ηd[n] (5.1.2)

where {bq[n]} are given basis functions; for example, one could use a set of non-

overlapping cubic splines that cover three daylight periods delimited by two control

points nk1, nk2 chosen as time instants at which an abrupt change in the data (first

and second order, i.e. C1 and C2 discontinuity) is observed. This particular basis is

constructed using Q = 9 i.e. 10 functions derived from Bernstein polynomials [167],

Bj,ν(t) of degree ν = 3 as

bq=νi+j[n] = Bj,ν (ti[n]) , i = 0, 1, 2 (5.1.3)

Bj,ν(t) =

(
ν

j

)
tj(1− t)ν−jrect(t), j = 0, 1, 2, 3, (5.1.4)
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Figure 5.1.1: Plot Showing sd[n] and wd[n] for a Sunny Day on October 22, 2009

rect(t) denotes the rectangular function between [0, 1) and

t0[n] = n/nk1, 0 ≤ n < nk1 (5.1.5)

t1[n] = (n− nk1)/(nk2 − nk1), nk1 ≤ n < nk2 (5.1.6)

t2[n] = (n− nk2)/(N − nk2), nk2 ≤ n ≤ N (5.1.7)

Coefficients sdq are found by linear regression with respect to power data wd[n]. The

residual error is minimal for sunny days, wd[n] = sd[n]. The approximated sd[n] for a

sunny day is shown in Fig. 5.1.1. It highlights the very specific pattern obtained in

October due to shading.

Cloudy days parametrization: By referring to the previous work in [39] where

the expressions for pbd[k] and pdifd [n] were derived as,

pbd[n] ≈ abd[n]sd[n], pdifd [n] ≈
∑

q

h[q]zd[n− q] (5.1.8)

and where abd[n] is the stochastic time series capturing the sudden power attenua-

tions caused by clouds directly occluding the sun. The diffuse beam attenuation is

smoother and, thus, is modeled as the convolution of a one-dimensional filter h[k]

with a stochastic input zd[n] that represents the cloud attenuation. Furthermore, to

explain the increase of power even beyond the expected sunny day power sd[n], along
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the lines of direct beam attenuation, the term ped[n] is introduced to be present only

when wd[n] > sd[n],

ped[n] ≈ aed[n]sd[n], (5.1.9)

This term captures the so called edge of the cloud effect that has been reported in

literature [168, 169]. The edges of some clouds act like magnifying lenses when their

paths intersect with that of the sun thereby boosting the power. It is important to

note that the edge of cloud effect cannot occur simultaneously with cloud related

attenuation and in general this term will be far sparser.

Complete model: From the cloudy day parametrization, the complete model

for power on day d is written in vector form as

wd = sd −U
[
Sda

b
d + T (h)zd

]
+ ŨSda

e
d + ηd (5.1.10)

wherewd, sd, a
b
d, a

b
d ∈ RN

+ , zd ∈ R(N+M−1)
+ and U = diag(U(sd−wd)), where U(.) is the

Heaviside step function operating element-wise, Ũ = I−U and I is the identity matrix

of size N . The convolution term in matrix-vector form with extended end conditions

[170] as T (h)zd where, h ∈ RM
+ and T (h) ∈ RN×(N+M−1)

+ is the Toeplitz matrix

with first column

[
h[M − 1], 01×N−1

]T
and first row

[
h[M − 1], . . . , h[0], 01×N−1

]
.

Cloud cover parameters abd, a
e
d are assumed to be sparse since direct cloud occlusions

are rare events in time and zd is regularized to avoid overfitting. Here, the estimation

of the cloud coverage parameters is seen as a blind deconvolution problem that falls

in the class of sparse dictionary learning problems [171, 172]; this can be solved, for

example, by alternating between the estimation of the vectors zd, a
b
d, a

e
d by sparse

coding [173] and the estimation of filter h via least squares over multiple iterations.

More specifically, as in a typical sparse coding problem formulation, estimates can be
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obtained by solving:

min
h,zd,a

b
d,a

e
d

∑

d

∥∥∥U
[
sd −wd − Sda

b
d − T (h)zd

]
+ Ũ [sd −wd + Sda

e
d]
∥∥∥

2

2

+
∑

d

λ1(1Taed) + λ2(1Tabd) + λ3(1Tzd)

subject to abd ≥ 0, , aed ≥ 0, zd ≥ 0 ∀d, h ≥ 0

Ũ
[
Sda

b
d + T (h)zd

]
= 0, USda

e
d = 0

(5.1.11)

The alternating algorithm is guaranteed to find only a locally optimal solution and

it depends on the initialization [174] . Regularization constants are chosen such that

λ1 ≥ λ2 � λ3 in order to force abd and aed to be more sparse than zd. Such a choice is

made since sudden power attenuation due to direct occlusion of sun (abd) and the edge

of the cloud effect (aed) are less likely events as compared to diffuse beam attenuation

(zd). It was shown in [39] that the proposed model led to an excellent fit with the data.

Even though the regression problem in [39] was solved in a completely deterministic

fashion, such a model allowed the separation of the components and study a plausible

stochastic model for them. This is explained in detail in the section 5.2.

5.1.2 Relationship Between Temperature and Solar PV Power

In [40], a Volterra model was derived to describe the relationship between tem-

perature and solar irradiance. This model can be extended to solar PV power since

the stochasticity in solar power is due to solar irradiance itself. Also, solar PV power

is a linear transformation of solar irradiance [166]. Thus, the deriation in [40] can be

directly applied to capture the dependency of PV power and temperatures.

Solar irradiance heats up landmass during the day that causes temperature in-

crease in a certain geographical region. At night, heat absorbed by land is dissipated.

This phenomenon is analogous to charging and discharging a capacitor in an RC cir-

cuit where voltage across the resistor can be thought of as temperature τd[n] at time
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instant n on day d. Current source is a function of solar irradiance and consequently

solar PV power,

Pw
in[n] ≈

M1−1∑

q=0

g[q]wd[n− q]. (5.1.12)

The resistor R[n] and capacitor C[n] themselves are quantities dependent on temper-

ature [175] since they relate to thermal resistance of air and heat capacity 1 of the

landmass respectively:

R[n] ≈
M2∑

q=1

a[q]τ [n− q], C[n] =
C0 +

∑M1

q=1 b[q]τ [n− q]
(τ [n]− τ [n− 1])

. (5.1.13)

Here g[q], a[q], b[q] are coefficients describing Pw
in[n], R[n], C[n] respectively at a certain

location. Wind and other weather related phenomena are considered as noise in

the model. Fig. 5.1.2 depicts the equivalent circuit describing the physics of the

system. Writing the first order linear difference equation for the analogous circuit

1In [176], heat capacity is defined as “the proportionality constant between the heat that the object

absorbs or loses and the resulting temperature change of the object”. The heat absorbed by the

surroundings to change the temperature from τ [n − 1] to τ [n] can also be modeled as a linear

relationship with temperature.

R[n]

C[n] ⌧ [n]

Pw
in[n]

Figure 5.1.2: Equivalent thermal circuit to describe the effect of solar PV power
wd[n] on temperature τ [n]
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and performing further simplification as in [40] the model for temperature is:

τ [n] ≈
M2∑

q=1

γ[q]τ [n−q]+
M1−1∑

k=0

M1−k∑

p=1

α[k]τ [n−p]τ [n−p−k]

+

M1−1∑

k=0

M1−k∑

p=1

β[k]wd[n− p+1]τ [n−p−k] + ε[n] (5.1.14)

where ε[n] is the modeling error. This model for temperature is interpreted as a

Volterra series expansion [177, 178] up to second order with solar PV power as an

input. In this way, the non-linearity in the system which is a result of temper-

ature dependent thermal resistivity and heat capacity is captured. The parameters

α[k], β[k], γ[q] can be estimated by solving a least-squares problem using training data

of temperature and solar power output. Let a vector of parameters x ∈ RM2+2M1 be

defined as xT =

[
αT βT γT

]
where

[α]k = α[k], [β]k = β[k], [γ]q = γ[q] (5.1.15)

For time instant n, define

qTn =

[
rTττ rTwτ rTτ

]
, where

[rττ ]k =
∑M1−k

p=1 τ [n− p]τ [n− p− k],

[rwτ ]k =
∑M1−k

p=1 wd[n− p+ 1]τ [n− p− k],

k = 0, . . .M1−1, rττ ∈ RM1 , rwτ ∈ RM1

[rτ ]q = τ [n− q], q = 1,. . .M2, rτ ∈ RM2 .

Let Q ,
[
q1 q2 . . . qN

]
,Q ∈ RN×M2+2M1Then, the estimate of x̂ is given by

solving

x̂ = arg minx ‖Qx− τ‖2
2 , (5.1.16)

where τ ∈ RN , [τ ]n = τ [n]. If Q is full rank, x̂ can be written in terms of pseudo-

inverse as x̂ = Q†τ .
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5.1.3 Spatio-temporal Model for Solar Power and Temperature

After modeling solar PV power and temperature for a single location, it is desirable

to exploit spatial correlation among solar PV panel installations that are in close

proximity. For example, installations that belong to a single ZIP code which means

that the geographical area is 6 − 7 km in diameter share similar power patterns as

shown in [179]. Let us consider multiple residential solar PV installations within a

ZIP code. It can be assumed that all the locations under consideration are seeing the

same cloud cover which means that the sparse parameters abd, a
e
d, zd are approximately

same for all the locations on a day d = 1, 2, . . . D. This assumption gives rise to

the following model for solar PV power (in vector form) for locations indexed by

ˆ̀= 1, 2, . . . , L similar to (5.1.10):

w
ˆ̀

d = s
ˆ̀

d −U
[
S

ˆ̀

da
b
d + T (h

ˆ̀
)zd

]
+ ŨS

ˆ̀

da
e
d + η`d (5.1.17)

The goal is to estimate the sparse parameters abd, a
e
d, zd for each day d and filter h

ˆ̀

for each location ˆ̀. Then, the regression problem can be written as in (5.1.11),

min
hˆ̀,∀ˆ̀,zd,a

b
d,a

e
d

∑

ˆ̀

∑

d

∥∥∥U
[
s

ˆ̀

d −w
ˆ̀

d − S
ˆ̀

da
b
d − T (h

ˆ̀
)zd

]
+ Ũ

[
s

ˆ̀

d −w
ˆ̀

d + S
ˆ̀

da
e
d

]∥∥∥
2

2

+
∑

d

λ1(1Taed) + λ2(1Tabd) + λ3(1Tzd)

subject to abd ≥ 0, , aed ≥ 0, zd ≥ 0 ∀d, h
ˆ̀≥ 0,∀ˆ̀

Ũ
[
S

ˆ̀

da
b
d + T (h

ˆ̀
)zd

]
= 0, US

ˆ̀

da
e
d= 0

(5.1.18)

It can be solved similarly as the single location problem using alternating minimiza-

tion. Outdoor temperature can be assumed to be almost constant for all locations

in a ZIP code. As a proxy to solar irradiance, sum of solar power values from all

86



locations ˆ̀ serves as the current source,

Pw,ˆ̀

in [n] ≈
M1−1∑

q=0

g[q]
L∑

ˆ̀=1

w
ˆ̀

d[n− q]. (5.1.19)

Thus, with different values for the parameters, temperature for an entire ZIP code,

τ̃ [n] can be modeled as in (5.1.14) with different parameters α̃, β̃, γ̃:

τ̃ [n] ≈
M2∑

q=1

γ̃[q]τ̃ [n−q]+
M1−1∑

k=0

M1−k∑

p=1

α̃[k]τ̃ [n−p]τ̃ [n−p−k]

+

M1−1∑

k=0

M1−k∑

p=1

β̃[k]
L∑

ˆ̀=1

w
ˆ̀

d[n−p+1]τ̃ [n−p−k]+ε[n] (5.1.20)

5.2 Stochastic Models for Classification and Forecast of Solar Power Data

In spite of the fact that the switching regime of solar PV power is not intrinsically

part of the model discussed in section 6.1 and that parameters were considered deter-

ministic, as reported in [39], the results of the least-squares fit after solving (5.1.11)

highlighted such nature for solar irradiation/power. The solar PV power produced in

a period of time can be broadly classified as coming from sunny, overcast or partly

cloudy models. The model switches between the three classes as shown in Fig. 5.2.1

due to weather changes. In this section, a stochastic model for each of the three

classes is proposed. The first application of this model is to classify power data as

coming from one of the three models to provide a probabilistic short-term forecast by

assuming that the model persists.

5.2.0.1 Stochastic Model For Sunny Period

For sunny periods, it is hypothesized that the solar power is the deterministic solar

power pattern i.e.,

wd[n] = sd[n] + ηd[n] (5.2.1)
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    Sunny

Overcast

Partly  
cloudy

HMM

Figure 5.2.1: Block diagram highlighting the proposed switching process between
stochastic models.

The modeling error is given by ηd[n] ∼ N (0, σ2
s) ∀n and d ∈ S. The variance σ2

s is

estimated using the error values after fitting the sunny day pattern from Section. 6.1

to the sunny days, d ∈ S.

5.2.0.2 Stochastic Model For Overcast Period

During overcast periods, the attenuation of solar power is mostly from the diffuse

beam component [166] which is why zd[n] accounts for the relevant attenuation. Also,

there is an average component in the overcast days for zd[n] that mimics a scaled

version of sunny day pattern sd[n] [39]. Given the smoothness of this attenuation,

the model postulated for the overcast period is:

wd[n] ≈ αdsd[n] + ηn[k], (5.2.2)

The parameter αd is analogous to clear sky index defined as wd[n]/sd[n] that many

papers use to model solar PV power [180]. However, all the samples in the overcast

period are used to estimate αd unlike the determination of clear sky index. This

leads to robustness with respect to noise. Noise ηn[k] follows a truncated Gaussian

distribution with mean 0 and noise variance σ2
oc for overcast period so as to limit the

values of power wd[n] to lie in the interval Ioc , [0, sd[n]]. The distribution considered
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for wd[n] during overcast period is,

foc(wd[n])=





(2πσ2
oc)
− 1

2 e−(wd[n]−αsd[n])
2
/2σ2oc

Φ
(
sd[n]−αdsd[n]

σoc

)
−Φ
(
−αsd[n]
σoc

) , wd[n]∈Ioc

0 otherwise

(5.2.3)

where Φ(.) denotes the CDF of a standard normal distribution.

5.2.0.3 Stochastic Model For Partly Cloudy Period

The model for the partly cloudy period includes all the three parameters in (5.1.10).

However, a hidden Markov model (HMM) can capture the underlying on-off process

that characterizes the sparse parameters in periods with fast moving clouds that

cause sharp fluctuations in solar PV power. The observed solar PV power data wd[n]

is modeled as coming from underlying hidden states that are Markovian in nature.

Let the state/latent vector, qn be a coordinate vector that enumerates all the possible

support combinations of sparse parameters for time instant n, i.e. of the vector

xn =

[
zd[k −M + 1] . . . zd[n] abd[k] aed[k]

]T
(5.2.4)

. The relationship between observations and latent state is:

wd[n] = αdsd[n]−P diag (Φqn) xn (5.2.5)

E (qn+1|qn) = ATqn (5.2.6)

P =

[
h[M − 1] . . . h[0] sd[n] −sd[n]

]
(5.2.7)

Parameter αd is included to model any constant attenuation over the time period

considered unlike the other sparse parameters xn. Let the total number of states be

Ns. Then, A ∈ RNs×Ns is the state transition matrix where A(i, j) is the probability

of going from state i to state j. The state vector qn ∈ R(M+2) is a binary vector

taking values from the set of coordinate vectors {e1, e2, . . . , eNs} where ei ∈ RNs has
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a 1 at position i and zero elsewhere. Each column in matrix Φ ∈ R(M+2)×Ns consists

of a possible support of vector xn.

Certain assumptions are made to decrease the number of states. Firstly, the vector[
zn[k −M + 1] . . . zd[n]

]
is restricted to have ` < M non-zero entries. Secondly,

aed[k] cannot co-exist with the other parameters due to the fact that edge of cloud

effect is indicative of the absence of attenuation. As a simplification, it is also assumed

that direct beam and diffuse beam attenuations do not occur together which means

that the total number of states is:

Ns =
∑̀
˜̀=0



M

˜̀


+ 2 (5.2.8)

Noise term can be ignored in the observation (5.2.5) since it is small in amplitude

relative to the ‘noisy’ nature of the solar power data that is caused by the fast move-

ment of clouds. The simplest case of choosing ` = 1 and having Ns = M + 3 states is

considered. All non-zero coefficients in xn are hypothesized to come from independent

exponential distributions with different parameters since they have different levels of

sparsity. While in state i a certain wd[n] is observed:

wd[n]=





αdsd[n], i = 1

αdsd[n]− h[i−2]zd[n−i+2], i = 2,. . .,M + 1,

αdsd[n]− sd[n]abd[n], i = M + 2

αdsd[n] + sd[n]aed[n], i = Ns

(5.2.9)

where the following statistical model is postulated for the parameters

zd[n] ∼ exp(λz), a
b
d[n] ∼ exp(λab), a

e
d[n] ∼ exp(λae) (5.2.10)

The corresponding conditional probability distribution given the state i is denoted as
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fi(wd[n]) , f(wd[n]|qn = ei) and is equal to,

fi(wd[n])=





δ(αdsd[n]− wd[n]), i = 1

Ciλz
h[i−2]

e−
λz(αdsd[n]−wd[n])

h[i−2] i=2,· · · ,M+1

Ciλ
b
a

sd[n]
e
− λba
sd[n]

(αdsd[n]−wd[n])
, i= M+2

λea
sd[n]

e
− λea
sd[n]

(wd[n]−αdsd[n])
, i = Ns

(5.2.11)

where Ci is the normalizing constant for the probability distribution given by

C−1
i =





1− e−λzsd[n]/h[i−2], i = 2, 3, . . .M + 1

1− e−λba , i = M + 2

. (5.2.12)

The normalization is done so that wd[n] ∈ [0, sd[n]].

Learning the parameters of the HMM: Viterbi training

The models for sunny and the overcast periods are such that the only the mean of

the process can be predicted in both cases. The mean during sunny period, sd[n] is

assumed to be known. The mean for overcast periods can be determined by estimat-

ing the scaling αd. Hence, the problem of learning the stochastic parameters of the

model to perform predictions is non-trivial only during partly cloudy periods. To do

so, it is assumed that the values of the parameters λz, λ
b
a, λ

e
a of conditional probability

distributions are known. It was seen that the algorithm is not very sensitive to the

exact values of these parameters as long as they follow λz ≤ λab ≤ λea which is con-

sistent with the regularization performed in the regression problem. The probability

of starting from a state i denoted by πi = 1/Ns is also assumed to be known. In

order to learn the the state transition matrix A, Viterbi training [181] or segmental

k-means [182] approach was adopted. Let

ξ = {A(i, j)|i, j ∈ {1, · · · , Ns}} (5.2.13)
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be the set of unknown parameters to be estimated. Let

Q =

[
q1 . . . qN

]
and w =

[
wd[1] . . . wd[N ]

]

denote the sequence of hidden states and solar power observations respectively. In the

Viterbi training algorithm, instead of maximizing the likelihood over all possible state

sequences, Q̄, the likelihood is maximized only over the most probable state sequence

to find the estimates of parameters in ξ. The algorithm starts with an initial estimate

for all the unknown parameters ξ0 = {A0(i, j)|i, j ∈ {1, · · · , Ns}} and performs this

maximization iteratively [182],

ξ̂k = arg max
ξ

(
max

Q
f(w,Q|ξ̂k−1)

)
(5.2.14)

where k is the iteration number and

f(w,Q|ξ)=f(q1)
N∏

n=1

f(wd[n]|qn, ξ)
N−1∏

n=1

f(qn+1|qn, ξ) (5.2.15)

The inner maximization is performed by using Viterbi algorithm [183]. As a result of

this maximization,

Q̂k = arg max
Q

f(w,Q|ξ̂k−1) = q̂k1, q̂
k
2, . . . , q̂

k
Ñ
, (5.2.16)

is the most likely state sequence at iteration k which best describes the observed data.

Then maximum-likelihood (ML) estimates, ξ̂k, are

ξ̂k = arg max
ξ

f(w, Q̂m|ξ̂k−1) (5.2.17)

Maximizing log f(w, Q̂k|ξ̂k−1) with respect to Ak(i, j) under the constraint that Ak

is a column-stochastic matrix gives

Âk(i, j) = N̂ij

/
Ns∑
j=1

N̂ij (5.2.18)
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Figure 5.2.2: The specific way in which state transition from time instant k − 1 to
k takes places determines the structure of the state transition matrix A

where N̂ij is the number of times the transition from state i to state j occurs within

the state sequence Q̂k. Following from section 5.2.0.3 wherein the number of active

coefficients at time instant n in xn is restricted to 1, only a limited number of tran-

sitions from state i are possible. Also, since zn is the input to a filter with memory

M , it means that M − 1 components need to be retained and shifted while a new one

comes in. All of the above reasons give the state transition matrix A a sparse and

specific structure as shown in Fig. 5.2.2 which is forced on A0 during the initialization

. As a result, only (M − 1) + 4× 3 entries of the matrix need to be estimated when

` = 1 instead of (Ns)
2.

5.3 Regime Classification for Prediction

The premise for prediction is the persistence in the weather condition for the time

horizon over which a forecast of solar power is provided. Therefore, the proposed

prediction algorithm has two steps:

• Classification of the solar power from a given period as coming from one of the

three classes of models: sunny, overcast, partly cloudy

• Assuming that this weather condition persists for the duration of the prediction
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horizon and provide with a point forecast corresponding to the class decided in

the classification step.

Such a scheme captures the inherent switching behavior that solar power exhibits,

i.e. that of going from one model to another, while persisting for a certain duration

in each of these. Note that the classification step can be skipped if prior knowledge

in the form of weather prediction is available.

5.3.1 Classification Algorithm for Solar Power

The classification algorithm uses the stochastic models for the solar power data as

detailed in 5.2. The underlying principle behind classification leverages the fact that

it is easier to classify a segment of data as coming from sunny or overcast regime by

computing the negative log-likelihood since they both follow Gaussian distributions

with different mean and variance. If the negative log- likelihood is low, then the

means are compared to distinguish between the two classes. If neither of the negative

log-likelihoods is lower than a certain threshold, then it is classified to be partly

cloudy. The thresholds for classification are determined empirically using training

data. Let w−M1

n ,
[
wd[n−M1] . . . wd[n]

]
be the M1 solar power samples that have

to be classified into one of the three regimes. Here, M1 is the length of the filter β[q]

in (5.1.14). The algorithm begins by computing the error made by assuming sunny

period and comparing with some threshold. If

n∑

k=n−M1

(wd[k]− sd[k])2 ≤ τsunny, (5.3.1)

then it is classified as a sunny period, where the threshold is chosen so that τsunny =

µσs, µ > 1. If that is not the case, then the hypothesis that it is overcast is tested
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by calculating

α̂n = arg min
αn

n∑

k=n−M1

(wd[k]−αnsd[k])2 (5.3.2)

and checking if both the value of α̂n as well as the estimation error is less than some

threshold,

α̂n ≤ τα, and
n∑

k=n−M1

(wd[k]−α̂nsd[k])2 ≤ τovercast. (5.3.3)

If these conditions are also not satisfied, then the regime is classified as partly cloudy.

If the decision is in favor of partly cloudy, the most likely state sequence QM1 that

generated the power observations w−M1

n is determined using the Viterbi algorithm with

state transition matrix Â. Fig.5.3.1 shows the flowchart describing the classification

algorithm.

5.3.2 Prediction for Each Class of Models

Based on the classification results on w−M1

n , a probabilistic solar power forecast for

m time steps ahead is provided. It is an m dimensional probability density function,

f (w+m
n |w−M1

n ) where w+m
n ,

[
wd[n+ 1] . . . wd[n+m]

]
.

5.3.2.1 Prediction Using Sunny Model

When the classification algorithm chooses the hypothesis that the present solar power

data is from a sunny model, then:

fs
(
w+m
n |w−M1

n

)
=(2πσs)

−m
2 e
−‖w+m

n −s+mn ‖2
2

/
2σ2
s

(5.3.4)

where s+m
n ,

[
sd[n+ 1] . . . sd[n+m]

]
Note that the deterministic sequence of the

sunny day solar power pattern is known beforehand and it is updated at a very slow

pace on days that are classified as being sunny, to adjust for seasonal variations.
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5.3.2.2 Prediction Using Overcast Model

If it is overcast, the predicted distribution is

foc
(
w+m
n |w−M1

n

)
=

(2πσoc)
−m

2 e
−‖w+m

n −α̂ns+mn ‖2
2

/
2σ2
oc

∏m
i=1

(
Φ
(
sd[n+i]−α̂nsd[n+i]

σoc

)
−Φ

(
−α̂nsd[n+i]

σoc

)) , (5.3.5)

when wd[n+ i] ∈ [0, sd[n+ i]] ,∀i and α̂n is estimated using (5.3.2).

5.3.2.3 Prediction Using Partly Cloudy Model

Since solar PV power on a partly cloudy day has an underlying Markov model, the

estimated state transition matrix Â and state at time n is used to compute a forecast

distribution for m steps ahead as

fpc(w
+m
n |w−M1

n ) =
m∏

`=1

Ns∑

j=1

A`(̂i, j)fj(wd[n]) (5.3.6)

where î is the most probable state at time n. This is estimated by Viterbi algo-

rithm [184, see section III.B] using solar power values w−M1

n . Therefore, the predictive

distribution of solar PV power can be summarized as

f

(
w+m
n

∣∣∣∣w−M1

n

)
=





fs(w
+m
n

∣∣∣∣w−M1

n ), sunny

foc(w
+m
n

∣∣∣∣w−M1

n ), overcast

fpc(w
+m
n

∣∣∣∣w−M1

n ), partly cloudy

(5.3.7)

where the expressions of fs(w
+m
n

∣∣∣∣w−M1

n ), foc(w
+m
n

∣∣∣∣w−M1

n ) and fpc(w
+m
n

∣∣∣∣w−M1

n ) are in

(5.3.4), (5.3.5) and (5.3.6) respectively.
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Input: wd[k], k ∈ (n−M2, n)

e1 =
∑n

k=n−M2
(wd[k]− sd[k])2

e1 ≤ τsunny

sunny

α̂n = argminαn e2(αn)

e2(αn),
n∑

k=n−M2

(wd[k]−αnsd[k])2

α̂n ≤ τα,
e2(α̂n) ≤ τovercast

ŵd[n] = sd[n] partly cloudy

HMM
overcast

ŵd[n] = α̂nsd[n]

yes

no

yes

no

Figure 5.3.1: Flowchart of the Solar Power Prediction Algorithm

5.4 Joint Probabilistic Forecasts

Since the relationship between temperature and solar PV power was established

in section.6.1, joint description of future values, i.e. probabilistic forecasts of temper-

ature and solar power can be provided.

5.4.1 Conditional Distribution of Temperature Given Solar Power

After solving the problem in (5.1.16) in section 5.1.2, residual ε[n] from (5.1.14)

was analyzed and found that it can be approximated to be drawn from a Laplacian

distribution with parameter µ. This is illustrated in Fig. 5.4.1. To write the condi-

tional distribution of temperature at time n given all the past values of temperature

and solar PV power, define the vectors

τ −M2

n =

[
τ [n] τ [n−1] · · · τ [n−M2]

]T

s−M1

n =

[
sd[n] sd[n−1] · · · sd[n−M1]

]T
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Figure 5.4.1: Laplacian Fit for ε[n] with µ = 3.1422

Then the conditional distribution from (5.1.14) is

f

(
τ [n]

∣∣∣∣w−M1

n , τ −M2

n−1

)
=
µ

2
e
−µ

∣∣∣∣τ [n]−g(w−M1
n ,τ−M2

n−1)

∣∣∣∣
, (5.4.1)

g(w−M1

n , τ −M2

n−1) =

M2∑

q=1

γ[q]τ [n−q] (5.4.2)

+

M1−1∑

k=0

M1−k∑

p=1

α[k]τ [n−p]τ [n−p−k]

+

M1−1∑

k=0

M1−k∑

p=1

β[k]wd[n− p+ 1]τ [n− p− k]

5.4.2 Joint Distribution and Probabilistic Forecast

From the conditional probability formula, the joint distribution of τ [n], wd[n] at

time n given w−M1

n−1 and τ −M2

n−1 is

f

(
τ [n], w[n]

∣∣∣∣w−M1

n−1, τ
−M2

n−1

)
= (5.4.3)

f

(
τ [n]

∣∣∣∣w[n],w−M1

n−1, τ
−M2

n−1

)
f (wd[n]) (5.4.4)

Let the vectors of m steps ahead forecasts of τ [n] be

τ+m
n =

[
τ [n+m] · · · τ [n+1]

]T
, τ+0

n = τ −M2

n
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Probabilistic forecasts i.e. the joint distribution which following (5.4.3) and the prob-

ability chain rule can be written as,

f

(
w+m
n , τ+m

n

∣∣∣∣w−M1

n , τ −M2

n

)
= (5.4.5)

m∏

`=1

f

(
τ [n+`]

∣∣∣∣,w+m
n , τ+`−1

n ,w−M1

n ,τ −M2

n

)
f

(
w+m
n

∣∣∣∣w−M1

n

)

Each component in the product over ` is the conditional distribution of temperature

τ [n+`] given current and all past values of solar power, w+`
n ,w

−M1

n and past values of

temperature τ+`−1
n , τ −M2

n . This can be written using (5.4.1). The probabilistic forecast

of solar PV power for m steps ahead, f

(
w+m
n

∣∣∣∣w−M1

n

)
is given by (5.3.7).

Spatio-temporal model for solar power and temperature: Since the stochas-

tic parameters for solar power remain the same for a ZIP code based on the modeling

assumption, installations within a ZIP code have solar power from the same regime

for a certain period of time. Given the regime, the predicted distributions at different

locations come from the same family of distributions with the parameters of the dis-

tribution different due to solar sunny day power pattern s
ˆ̀
d and the filter h

ˆ̀
which are

not the same across locations. Analogous to the single location case, let w−M1

n,ˆ̀
,w+m

n,ˆ̀

be the power at ˆ̀-th location with sunny day solar power pattern s−M1

n,ˆ̀
. Then, the

predictive distribution of solar PV power for all locations can be written as

f



{
w+m

n,ˆ̀

}L
ˆ̀=1

∣∣∣∣∣∣∣

{
w−M1

n,ˆ̀

}L
ˆ̀=1


 = (5.4.6)





∏L
ˆ̀=1 fs(w

+m

n,ˆ̀

∣∣∣∣w−M1

n,ˆ̀
), sunny

∏L
ˆ̀=1 foc(w

+m

n,ˆ̀

∣∣∣∣w−M1

n,ˆ̀
), overcast

∏L
ˆ̀=1 fpc(w

+m

n,ˆ̀

∣∣∣∣w−M1

n,ˆ̀
), partly cloudy

The conditional distribution of temperature from (5.1.20) given solar power at all
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locations is

f


τ̃ [n]

∣∣∣∣∣∣∣

{
w+m

n,ˆ̀

}L
ˆ̀=1

, τ̃ −M2

n−1


=

µ̃

2
e
−µ̃

∣∣∣∣τ̃ [n]−g
({
w+m

n,ˆ̀

}L
ˆ̀=1

,τ̃−M2

n−1

)∣∣∣∣
,

where g

({
w+m

n,ˆ̀

}L
ˆ̀=1

, τ̃ −M2

n−1

)
= (5.4.7)

M2∑

q=1

γ̃[q]τ̃ [n−q] +

M1−1∑

k=0

M1−k∑

p=1

α̃[k]τ̃ [n−p]τ̃ [n−p−k]

+

M1−1∑

k=0

M1−k∑

p=1

β̃[k]
L∑

ˆ̀=1

w
ˆ̀

d[n−p+1]τ̃ [n−p−k]

The joint probabilistic distribution for m steps ahead can be written as,

f



{
w+m

n,ˆ̀

}L
ˆ̀=1

, τ̃+m
n

∣∣∣∣∣∣∣

{
w−M1

n,ˆ̀

}L
ˆ̀=1

, τ̃ −M2

n


 = (5.4.8)

m∏

`=1

f

(
τ̃ [n+`]

∣∣∣∣,
{
w+m

n,ˆ̀

}L
ˆ̀=1

, τ̃+`−1
n ,

{
w−M1

n,ˆ̀

}L
ˆ̀=1

,τ̃ −M2

n

)

f



{
w+m

n,ˆ̀

}L
ˆ̀=1

∣∣∣∣∣∣∣

{
w−M1

n,ˆ̀

}L
ˆ̀=1




5.5 Numerical Results

In this section, firstly the results for solar PV power forecasting alone are pre-

sented. A dataset of solar PV power from a rooftop installation in California is used

for this purpose. Then, the results for joint forecasting are presented using datasets

from multiple weather stations in California. In this dataset, solar irradiance is avail-

able and not solar power. Since the source of stochasticity remains the same, the

effect of the algorithm does not change.
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5.5.1 Solar PV Power Forecasting

The dataset used for this work was acquired from a rooftop panel installation

in Antioch, California and was provided by SolarCity. This dataset was also used

in authors’ prior work in [39]. The format of this solar power data consisted of

current (in A), voltage measurements (in V) and timestamps (in Hours) at the inverter

approximately every 15 minutes recorded for a duration of two years. Each panel had

a rating of 170 W and there were a total of 22 panels. Therefore, the nameplate

rating of all panels combined was 170× 22 = 3740 W.

5.5.1.1 Algorithm Settings

To solve (5.1.11), the alternating minimization algorithm is initialized with the filter h

being a scaled Hamming window of lengthM , h[q] = g×(0.54−0.46 cos (2πq/(M − 1))).

To address the scale ambiguity inherent in blind deconvolution problems, the scale

g is chosen such that h[q] and sd[n] have similar amplitudes. Prediction horizon was

m = 12 i.e. 3 hours and a filter, h[n], of length M = 5 was used for partly cloudy

conditions. The algorithm started with M1 = 6 samples (1.5 hour) for each day and

predicted for the next m samples. Then, the window was moved by one sample.

5.5.1.2 Metrics For Evaluation

The results are presented using probabilistic forecast metrics. In the probabilistic

setting at each m-step prediction there is a cumulative distribution function (CDF)

Fm(w[n]) , F

(
w[n+m]

∣∣∣∣w−M1

n

)
instead of a point forecast. The metrics used for

evaluation are continuous rank probability score (CRPS) [185], reliability metric and

score [186]. CRPS is defined for each m-step prediction as an average over all the
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samples,

CRPS(m)=(P̃ )−1
∑

n,d

∫ ∞

0

(Fm(y)− u(y − wd[n]))2 dy (5.5.1)

where u(.) is the Heaviside step function and P̃ is the total number of samples. The

CRPS evaluates to mean absolute error (MAE) when it is a point forecast.

Reliability of a probabilistic forecasting method is a useful metric in understanding

the proximity of the estimated CDF to the actual CDF of the data. Let a probability

interval (PI), Ibm, be defined such that the interval covers the observed value wd[n]

with probability (1− b). Then, to calculate the reliability, define

Rb(m) = (P̃ )−1
∑

n,d

I{wd[n]∈Ibm} (5.5.2)

as the estimated probability of coverage where I{.} is an indicator function with value

1 if the observed sample belongs to the probability interval. Now, the probabilistic

forecast is more reliable if the quantity ∆Rb is small,

∆Rb(m) , Rb(m)− (1− b). (5.5.3)

Another metric used for evaluation is the interval score [187]. This metric is helpful in

determining the sharpness of the forecast probability interval by imposing a penalty

when an observation is outside the interval, by a value proportional to the size of

the interval. If the upper and lower bounds of the PI are denoted as U b
m and Lbm

respectively then interval score is defined as

Scoremb [k]=





Db
m− 4

(
Lbm−wd[n]

)
, wd[n] <Lbm

Db
m, wd[n] ∈ Ibm

Db
m− 4 (wd[n]− Um) , wd[n] >Um

(5.5.4)

where Db
m , −2b

(
Um − Lbm

)
(5.5.5)
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Figure 5.5.1: Figure highlighting predictive density and the corresponding proba-
bility interval.

The average interval score is,

Scoreb(m) = (P̃ )−1
∑

n,d

Scoremb [k] (5.5.6)

Lower values of this score indicate sharper and more reliable forecasts. Fig.5.5.1

illustrates the predictive density Fm(w) and the corresponding probability interval

Ibm. Performance of the prediction methods is also analyzed using average reliability

and score defined as

Ravg
b =

χ∑

m=1

Rb(m)/χ, Scoreavg
b =

χ∑

m=1

Scoreb(m)/χ (5.5.7)

As representative examples, Fig. 5.5.2, 5.5.3 and 5.5.4 show the actual and predicted

power for different days with a multitude of weather conditions. This predicted power

is one-step prediction, m = 1. For days that are entirely overcast or sunny, predictions

have little error as can be seen in Fig. 5.5.2 and 5.5.3. These results highlight that the

stochasticity of power in both these regimes is minimal leading to better predictions

if the weather condition persists. However, there is higher error whenever there is a

change in regime, for example going from partly cloudy condition to overcast around

12 PM as seen in Fig. 5.5.4. It can be attributed to the delay in detecting the change

in model. This uncertainty cannot be avoided in days with sudden change in weather
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Figure 5.5.2: Plot of actual and predicted value with one-step prediction for day
that is overcast
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Figure 5.5.3: Plot of actual and predicted value with one-step prediction for day
that is sunny day

unless there is some additional information in the form of cloud motion information or

accurate weather forecasts. To summarize, prediction during partly cloudy conditions

is prone to larger errors than during overcast or sunny. This is in accordance with

the associated uncertainty in solar PV power for those periods.

5.5.1.3 Comparison With Reference Methods

Probabilistic smart persistence: It is assumed that the mean of predictive density

for the next m steps is given as the continued fraction of clear sky component at the
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Figure 5.5.4: Plot of actual and predicted value with one-step prediction for day
with variety of weather conditions. Time instants at which algorithm detected regime
change is shown in blue.

current time step,

ŵperd [n+m]=sd[n+m]

(
wd[n]

/
sd[n]

)
,m = 1, . . . , χ (5.5.8)

Variance is given by the sample variance of the power values in w−M1
n . The distribu-

tion is assumed to be Gaussian.

AR model: The power is expressed as the sum of a clear sky component and a

stochastic component, and it is assumed that the stochastic component follows an

autoregressive model:

wARd [n+m] = sd[n+m]− xARd [n+m], (5.5.9)

xARd [n+m] =

MAR∑

i=1

a[i]xARd [n+m− i] + εAR[n+m]

AR model with regime switching: It is assumed that each of the classes sunny,

partly cloudy and overcast have stochastic components with different coefficients for
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the AR model:

xARd [n+m] = (5.5.10)




MARs∑
i=1

as[i]x
AR
d [n+m−i] + εARs [n+m], sunny

MARpc∑
i=1

apc[i]x
AR
d [n+m−i] + εARpc [n+m], partly cloudy

MARoc∑
i=1

aoc[i]x
AR
d [n+m−i] + εARoc [n+m], overcast

Classification into different regimes for the AR model is done using the proposed

approach in subsection 5.3.1. In essence, it is the closest method to the proposed one

by design.

In both the AR model and the regime switching AR models, the point forecast

value is the mean and the variance of Gaussian noise, εAR is estimated along with the

coefficients.

Quantile regression (QR) Linear quantile regression (QR) [188] is used. bth

quantile of solar power, Qm(b) for predictive time step m, where b = 0.01, 0.02, . . . 0.99

is expressed as:

Qm(b) = xQRsd[n+m], xQR = βTm,bx,m = 1, . . . , χ (5.5.11)

bxci = wd[n−M1 + i]

/
sd[n−M1 + i], i = 1, . . .M1 (5.5.12)

where βm,b are vectors of parameters that were estimated using the procedure in [188].

5.5.1.4 Results: Probabilistic Forecast Of Solar Power

All the simulations were performed using one year of training data and one year of

testing data for validation. Most of the training for estimation of parameters of HMM

is done apriori making computational time of the proposed method very short since
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Figure 5.5.5: CRPS for m-step prediction using proposed model and other reference
models.
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Figure 5.5.6: Reliability prediction horizons using proposed model and few better
performing reference models.

the Viterbi algorithm, which is efficient [183] was used. The computational time

specifically depends on the acquisition time of samples in a real-time setting.

Comparison with CRPS as the metric is shown in Fig.5.5.5. The AR models beat

the smart persistence. For the QR method, CRPS cannot be calculated since the

predictive density is not continuous. CRPS is inversely proportional to the parame-

ters2 [189] which makes larger values of parameters better.

2Closed form expressions for CRPS in (5.5.1) can be computed. For Gaussian densities, it is
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Figure 5.5.7: Average reliability (over all prediction horizons ) using proposed model
and other reference models.
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Figure 5.5.8: Estimate of temperature, τ̂ [n] and corresponding irradiance w[n] for
May 2− 12, 2014 at NOAA weather station Merced, CA.
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Figure 5.5.9: Estimates, α̂[k], β̂[k], γ̂[q] for 3 NOAA weather stations in California.
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Figure 5.5.10: Reliability Rp̃ of joint probabilistic forecasts: 2 steps ahead for
Fallbrook, Merced and Redding, CA.
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Fig. 5.5.6 shows the reliability metric for prediction horizons mτ = 0.25, 1, 2, 3

hours only for certain better performing methods whereas Fig.5.5.7 shows the average

reliability metric, Ravg
b and comparison with the curve 1− b for all benchmarks. Both

figures are indicative of the probability of the actual occurrences of power being

well covered by the predicted intervals. The closer the metric to the curve 1 −

b, the more reliable the method. From Fig. 5.5.6, it is seen that at mτ = 0.25,

quantile regression performs the best. However, as the prediction horizon increases,

the performance of QR method deteriorates. This can be attributed to fewer samples

of data available for training as the prediction horizon increases. AR method with

regime-switching performs the closest to the proposed method. It even matches the

proposed method for lower quantiles across all prediction horizons but does not fare

well in higher quantiles. The key takeaway is that the proposed method consistently

(in all prediction horizons) does better than the benchmark methods considered.

The trend of under performance in higher quantiles by the proposed method can be

attributed to the choice of the values of λz, λ
b
a, λ

e
a and to classification error in the

regime i.e. error due to assumption of persistence in regime of sunny, partly cloudy,

overcast.

Using the same set of parameters, Table.5.1 shows the average interval score,

Scoreavg
b normalized by the nameplate capacity. In terms of interval score, the pro-

posed method outperforms all the other methods considered. This is indicative of the

fact that the proposed method of forecasting is sharp [185].

5.5.2 Joint Probabilistic Forecast

Experiments were run on a dataset of solar irradiance (in W/m2) and tempera-

ture (in ◦C) obtained from 3 NOAA weather stations: Fallbrook, Redding and Merced

inversely proportional to σ. For exponential densities, it is inversely proportional to λ.
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Figure 5.5.11: Fit of the Model for ZIP 94531, Antioch, CA.
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Figure 5.5.12: Estimate of temperature, ˆ̃τ [n] and corresponding average solar power

for L = 15 locations, w[n] = L−1
∑L

ˆ̀=1w
ˆ̀
d[n] for March 26-April 3, 2014 in ZIP 94531,

Antioch, CA.
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Table 5.1: Table with Average Score Normalized by the Nameplate Capacity

1− b Proposed QR AR (switching) Persistence AR

0.1 -0.214 -0.216 -0.229 -0.242 -0.223

0.2 -0.202 -0.209 -0.218 -0.232 -0.211

0.3 -0.196 -0.204 -0.212 -0.228 -0.208

0.4 -0.195 -0.202 -0.212 -0.231 -0.212

0.5 -0.199 -0.204 -0.218 -0.24 -0.224

0.6 -0.210 -0.215 -0.23 -0.256 -0.245

0.7 -0.232 -0.253 -0.25 -0.282 -0.276

0.8 -0.268 -0.349 -0.281 -0.32 -0.322

0.9 -0.334 -0.511 -0.331 -0.383 -0.394

0.99 -0.482 -0.994 -0.455 -0.503 -0.566
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Figure 5.5.13: NMSE for 15 Locations in ZIP 94531, Antioch, CA

in California (CA). Data is sampled at 15-minute intervals. For estimating the pa-

rameters of temperature model from (5.1.14), α[k], β[k], γ[q], it was assumed that

M2 = 12 i.e. 3 hours and M1 = 6 i.e. 1.5 hour. Temperature and irradiance data for

500 contiguous days were used for estimation of the parameter µ of the conditional

distribution in (5.4.1).

As an example, the fit of the model to the temperature data along with the

corresponding irradiance in Merced, CA is highlighted in Fig. 5.5.8 for a week in
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Figure 5.5.14: Laplacian Fit for ε[n] with µ = 1.5196

May 2014. In Fig.5.5.9, the estimated parameters α̂[k], β̂[k], γ̂[q] for all the weather

stations are plotted.

To highlight the efficacy of the probabilistic forecasts, m = 2 step ahead forecast,

i.e. 30 minutes ahead, was performed. The joint probability density takes the form

of (5.4.5) with m = 2. This gives a 4-D probability distribution (2-D for temperature

and 2-D for irradiance). The accuracy of the probabilistic forecast is evaluated in two

ways: Continuous ranked probability score (CRPS) for one observation,

CRPS(w+m
n , τ+m

n )=

∫

w̃+m
n ,τ̃+m

n

[
F

(
w̃+m
n , τ̃+m

n

∣∣∣∣w−M1

d , τ −M2

n

)
+

− u
(
w̃+m
n −w+m

n

)
u
(
τ̃+m
n − τ+m

n

)]2
dw̃+m

n dτ̃+m
n (5.5.13)

where (w+m
n , τ+m

n ) are the observed values and F

(
·
∣∣∣∣·
)

is the joint CDF (from (5.4.5))

and u (a) is the Heaviside function acting on a vector. CRPS in the point forecast

(single value) case reduces to mean absolute error (MAE) [185] after averaging over

all observed samples w+m
n , τ+m

n . Thus, the units of CRPS becomes (W/m2)2(◦C)2.

Forecasting experiments for 30 days and for 15 minute time-intervals within each day

were performed. To evaluate the metric of reliability for the joint distribution, let a

probability interval (PI), Ip̃, cover the observed values ξ = {w+m
n , τ+m

n }, ξ ∈ P with
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probability p̃. Then reliability Rp̃ is calculated as,

Rp̃ = |P|−1
∑

ξ∈P I(ξ∈Ip̃) (5.5.14)

where I is an indicator function with value 1 if the observed sample belongs to the

probability interval obtained using the joint CDF. Fig.5.5.10 shows the reliability of

prediction using the proposed forecasting technique for all three weather stations.

Ideally, it should be close to the diagonal line p̃. The reliability of the proposed

method closely matches the line as can be seen from the figure. Slight variation

across different locations is observed. Broadly, it is demonstrative of the fact that

the predictive distribution (CDF) provided is close to the observed CDF of real data.

CRPS values are reported in the table 5.2.

Table 5.2: CRPS for Joint Forecast (in (W/m2)2(◦C)2)

Fallbrook Merced Redding

489.5 440.02 443.80

5.5.3 Spatio-temporal Model for Solar Power and Temperature

To illustrate the efficacy of the modeling approach for solar power and temperature

from 15 installations within a ZIP code, data from SolarCity is used. Solar PV power

from rooftop installations in Antioch, CA, with ZIP code 94531 is used along with

hourly temperature information from the local weather station Concord Buchanan

Field, CA available online 3. The fit of the proposed model to solar power data for a

single day for all locations is highlighted in Fig. 5.5.11. Fig. 5.5.12 shows the average

solar power and the corresponding temperature. The corresponding normalized root-

3https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:23254/detail
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mean squared error (NMSE)

NMSE`
d =

∑

k

(w`d[k]− ŵ`d[k])2

/∑

k

(wd[k])2 (5.5.15)

for each day across all locations is plotted in 5.5.13. For cloudy days in the be-

ginning of the time-series, higher NMSE values are reported due to uncoordinated

spikes among different locations when local effects are present. For temperature, the

distribution of error is plotted in Fig. 5.5.14.

To evaluate the joint probabilistic forecasts, the CRPS measure is used with an

alternative definition [189] for a multi-dimensional quantity. Let X be the multi-

dimensional random variable,

XT ,
[(
w+m
n,1

)T (
w+m
n,2

)T · · ·
(
w+m
L,1

)T
(τ̃+m
n )

T

]

with the distribution f , f


X

∣∣∣∣∣∣∣

{
w−M1

n,ˆ̀

}L
ˆ̀=1

, τ̃ −M2

n


 and X

′
be also drawn from the

same distribution. Let y correspond to a certain realization or the observed values of

power and temperature. Then,

CRPS
({
w+m
n,`

}L
`=1

, τ̃+m
n

)
=Ef ‖X−y‖−

1

2
Ef
∥∥∥X−X ′

∥∥∥

This formulation is used in order to avoid computing the CDF since it is computa-

tionally intensive given the dimension of the distribution (16-D) even for a one-step

ahead forecast. For the same reason of computational complexity, reliability measure

is not calculated for the spatio-temporal solar power and temperature probabilistic

forecast. The CRPS for one-step ahead forecast was found to be 5785 (W/m2)15(◦C)

for the entire ZIP code.
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Chapter 6

FAULT DETECTION IN SOLAR PANELS

In this chapter, a distributed array processing algorithm to analyze the power output

of solar photo-voltaic (PV) installations is presented while leveraging the low-rank

structure inherent in the data to estimate possible faults. The proposed multi-agent

algorithm requires near-neighbor communications only and is also capable of jointly

estimating the common low rank cloud profile and local shading of panels. To il-

lustrate the workings of the algorithm, experiments to detect shading faults in solar

PV installations within a single ZIP code are performed. Additionally, a Bayesian

lower bound on the shading parameter’s mean squared estimation error (MSE) is also

derived. The results are promising and show that one can successfully estimate the

fraction of partial shading in solar installations that can usually go unnoticed. The

problem can be thought of as an instance of decentralized dictionary learning [190]

where the sparse coding step is replaced with a maximum aposteriori (MAP) estima-

tion of shading parameter. The Bayesian framework makes it also possible to provide

performance benchmarks. For this purpose an extension of Bayesian Cr̀amer Rao

lower bounds (BCRB) is derived for the partial shading parameter mean squared es-

timation error that, unlike the ones used in the context of Bayesian learning [191,192],

applies to parameters with a finite support prior distribution that may not satisfy cer-

tain regularity conditions [193].

The chapter first introduces the distributed algorithm more generally in Section

6.1 and then presents the application of the introduced framework for partial shading

estimation in solar PV panels in Section 6.2. Solar data from multiple residential
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Figure 6.0.1: Schematic showing the communication links between different solar
panel installations for distributed estimation.

rooftop PV panel installations within a ZIP code is used to test the efficacy of the

proposed algorithm and results are presented in Section 6.3.

6.1 System Model

Let a discrete set of data at time indices n = 1, 2, . . . N from locations ` = 1, 2, . . . L

be available. Stacking them column-wise matrix, Y ∈RN×L is obtained. It is postu-

lated that Y has a specific low-rank structure such that each column of the matrix is

a scaled version of the other by a certain attenuation coefficient, thereby giving the

following model:

Y =x(1−α)T +

[
η1 η2 · · · ηL

]
,η` ∼ N (0,Σ) (6.1.1)

where x ∈ RN and belongs to a convex constraint set C, 1 is a vector of ones with

dimension L and α ∈ RL×1. It is assumed that noise covariance matrix Σ is diagonal

and the scaling vector α is sparse with the support of non-zero entries being finite.

The goal is to estimate x,Σ and α using Y . The problem statement is,

min
x,α,Σ

1
2

∑L
`=1

∥∥∥Σ− 1
2 [y`−(1−α`)x]

∥∥∥
2

2
+ λ ‖α‖1

subject to x ∈ C, α ≤ α` ≤ α, ` = 1, 2, . . . L (6.1.2)

In our setup, there is no central entity to estimate x and Σ so the agents have to do

it in a decentralized fashion. From (6.1.2), the problem can be treated as a variant of
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decentralized matrix factorization problem where the rank of the matrix is exactly 1.

6.1.1 Solution Approach

An alternating minimization method is used since the cost is non-convex. Firstly,

given α and Σ, maximum likelihood (ML) estimate x̂ML, is computed in a distributed

manner. Then, given x̂ML and Σ, α` is updated at location ` with the maximum

aposteriori (MAP) estimate of α` by imposing as a prior a truncated exponential

distribution, with support between α and α:

p(α`)=C−1λe−λα` , C = e−λα − e−λα, α ≤ α` ≤ α. (6.1.3)

Lastly, given x andα, covariance matrix Σ is updated using residual error and average

consensus based method.

Decentralized ML estimate : Let the network of sensors be described by the

graph G = (V , E) where V is the set of vertices and E the set of edges/connections.

Then, cost for each agent at ` is,

f`(x, α`) =
1

2
(y` − (1− α`)x)T Σ−1 (y` − (1− α`)x)

and total cost is F (x,α) = 1
2

∑L
`=1 f`(x, α`). Decentralized Frank-Wolfe [194] method

is used(note that any distributed optimization algorithm is viable) to estimate x.

Assuming that the values of α` and Σ are fixed for this step, average consensus (AC) is

employed to update the estimate of vector x as well as the gradient,
∑L

`=1∇xf`(x, α`).

For AC, the Metropolis-Hasting update is used which provides the following weight

matrix:

W =I−M1+M , [M ]ij =





(max{di, dj})−1 ,(i, j) ∈ E

0,(i, j) /∈ E
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where di, dj are degrees of nodes i and j in the graph G and I is the identity matrix

of size L. The steps of the decentralized Frank-Wolfe method are as follows:

1. Begin with an estimate of x`(0) and α`(0) at each ` . Let

X(0) ,
[
x1(0) x2(0) . . . xL(0)

]
∈ RN×L (6.1.4)

2. A step of AC is carried out, X(t) = X(t− 1)W .

3. At sensor `, the gradient is calculated:

∇xf`(x`(t), α`)=(1−α`)Σ−1 (y`−(1−α`)x`(t)) .

The full gradient at time t, ∇xF (x(t),α), is unavailable. Hence the local

estimate of the gradient at ` is given by

∇xF t
` (x`(t)) = ∇xF t−1

` (x`(t− 1)) +∇xf`(x`(t), α`)

−∇xf`(x`(t− 1), α`). (6.1.5)

Then, the AC step is employed,

∇xF t+1
` (x`(t))=

∑
j[W ]`,j∇xF t

j (xj(t)) (6.1.6)

4. To perform the constrained optimization, Frank-Wolfe (FW) update [194] is

used which involves projection to the constraint space as a linear optimization

problem. General FW step is:

x`(t+ 1)← (1− τt)x`(t) + τtb
`
t (6.1.7)

where b`t := arg min
b∈C

〈b,∇xF t+1
` (x`(t))〉 (6.1.8)

where τt = 2/(t + 1) is the step size. From [194], it is known that the decentralized

optimization problem to estimate x converges to a stationary point since the original

problem is non-convex (bi-convex) with respect to both x and α.

119



Updating α: Consider the second step of alternating minimization, i.e. that of

estimating α`. From (6.1.1) (dropping time index t),

y` = (1− α`)x` + η`, η` ∼ N (0,Σ). (6.1.9)

Introduce a modified scalar measurement, ỹ`, by multiplying xT` Σ−1 on both sides of

(6.1.9) as ỹ` , 1−
(
xT` Σ−1y`

/
xT` Σ−1x`

)
. Then,

ỹ` = α` + η̃`, η̃` ∼ N
(
0, γ2

`

)
, γ2

` =
(
xT` Σ−1x`

)−1
. (6.1.10)

With prior on α` as in (6.1.3), MAP estimate of α` at iteration t is

α̂`(t) =





α, ỹ` ≤ α + λγ2
`

ỹ` − λγ2
` , α + λγ2

` ≤ ỹ` ≤ α + λγ2
`

α, ỹ` ≥ α + λγ2
`

(6.1.11)

Estimation of Σ: It is assumed that covariance matrix Σ is diagonal:

Σ = diag(σ)I, i = 1, 2, . . . , N (6.1.12)

Then, ML estimate of [σ]i at time t is,

[σ]i (t) = L−1
∑L

`=1 ([y`]i − α` [x`(t)]i)
2 . (6.1.13)

AC can be employed on the N variances by letting

[σ`]i (t) = ([y`]i − α` [x`(t)]i)
2 , ` = 1, 2, . . . L (6.1.14)

One iteration of AC is Q(t+ 1) = Q(t)W where

Q(t) ,
[
σ1(t) σ2(t) . . . σL(t)

]
. (6.1.15)

Algorithm 6.1 describes the steps of the proposed distributed Bayesian estimation

method. Next, a lower bound for estimation error of α` is presented given x and Σ.
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Theorem 1 (Bayesian CRB for finite support prior). A lower bound for the mean

squared error of the MAP estimator in (6.1.11) given x and Σ is

Eα`,ỹ`


(α̂` − α`)2

∣∣∣∣∣∣∣
x,Σ


 ≥ γ2

` (1− ν)2

λ2γ2
` + 1

(6.1.16)

where ν =(p(α)+p(α))
[
γ`φ(λγ`)+λγ2

`Φ(λγ`)
]
+Rp(α)

− p(α)

[
γ`φ

(
λγ`−

R

γ`

)
+ (λγ2

` −R)Φ

(
λγ`−

R

γ`

)]

− p(α)

[
γ`φ

(
λγ`+

R

γ`

)
+ (λγ2

` +R)Φ

(
λγ`+

R

γ`

)]
,

Φ(x)=

∫ x

−∞
e−

z2

2 dz, φ(x) = (
√

2π)−1e−x
2/2, R = α− α.

Proof given in the Appendix A. Since the bound applies to a case when x and Σ

are known exactly, it is not likely to be tight when the estimation error in x and Σ

are significant. This is seen in the numerical results.

6.2 Partial Shading Estimation in Solar Panels

The system model described in Section 6.1 can be applied to detect partial shading

type of faults.

Model for small utility-scale farm: If the area covered by the panels in a farm

is relatively small, one can assume that the cloud cover induced attenuation of solar

power is the same across each panel j at a given time instant n on day d. Assuming

that all the panels have uniform characteristics, the solar power data matrix Yd ∈

RN×P constructed using power measurements from panels j = 1, . . . , P for times

n = 1, 2, . . . N on a day d is

Yd = wd × (1−αd)T , wd ∈ RN , αd ∈ RP (6.2.1)
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Algorithm 6.1: Distributed Bayesian Estimation

Input: x`(0), α`(0),σ`(0) ∀`, T,M and W . ;

while iter ≤M do

for t = 0 : T − 1 do

X(t+ 1)←X(t)W ;

x`(t+ 1)← (1− τt)x`(t+ 1) + τtb
`
t ∀` (6.1.8) ;

Update α̂`(t) ∀` from (6.1.11) ;

for k = 1 : K do

[σ`]i (1) = ([y`]i − α`(T ) [x`(T )]i)
2 , ` ∈ Li;

Q(k + 1) = Q(k)W ;

x`(0)← x`(T ), α`(0)← α`(T ) , σ`(0)← σ`(K), ∀` ;

iter = iter+1 ;

Output: x`, α`,σ` ∀ `

where wd is the vector of power measurements on day d. Note that with the use of

irradiance sensors, it is possible to obtain approximately the common power measure-

ment wd by converting irradiance to power [166]. If the panels are operating normally

(without shading faults) then α = 0. If not, the support of α corresponds to panels

which are affected by shading/soiling. This means that if one had access to granular

information such as power measurement from each panel or a string of panels, it is

possible to localize the fault upto the level of a single panel.

Model for installations in a ZIP code: To detect faults among multiple instal-

lations within a ZIP code using solar power data w`,d[n] at location ` = 1, 2, . . . L,

time instant n = 1, 2, . . . N and day d, normalization by the sunny day solar power

pattern, s`,d[n], is necessary to assume the low-rank structure. In general this pattern

changes slowly with the season and can be estimated locally for day d [39]. In the
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absence of faults the data matrix Yd ∈ RN×L has entries [Yd]n,` = w`,d[n]

/
s`,d[n].

where x`,d[n] , w`,d[n]

/
s`,d[n] is interpreted as the attenuation due to cloud cover.

This attenuation is approximately the same within a ZIP code. Further evidence

is provided in Fig. 6.2.1 that shows the singular values of the matrix Yd. Due to

partial shading fault in the system, further attenuation of power is observed. It then

becomes important to distinguish the cause of attenuation which could be due to

cloud cover and/or partial shading. Let the common attenuation vector for a given

day be denoted as xd ∈ RN and fraction of shading at each location be α`,d. Then,

the problem of partial shading detection can be modeled similar to (6.1.1) where the

measured attenuation at location `, y`,d ∈ RN is the product of cloud cover induced

attenuation and partial shading fault,

y`,d = (1− α`,d)xd + η`,d, Yd = xd × (1−αd) (6.2.2)

Thus, the problem of fault detection is to estimate the common attenuation vector xd

in order to determine αd ∈ RL. Note that the model for Yd is same as in (6.1.1). It

is assumed that there are fewer locations with faulty panels than the total number of

locations. This promotes sparsity in αd. Also, attenuation by definition is less than

1. Therefore, 0 � αd � 1 and 0 � xd � 1.

The estimation algorithm starts with random initialization for all parameters. The

FW update for xd is from (6.1.7) and b`t is

[
b`t
]
i

=





1,
[
∇xF t+1

` (x`,d(t))
]
i
< 0

0,
[
∇xF t+1

` (x`,d(t))
]
i
≥ 0

. (6.2.3)

The update to α`,d is from (6.1.11) where α = 0, α = 1.
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Figure 6.2.1: Singular values of measurement matrix Yd: low rank with one domi-
nant singular value. Solar power data from PV panels at different locations within a
ZIP code.

6.3 Numerical Results

Simulations on synthetic data: Synthetic data is generated according (6.1.1).

Parameter α` is generated using (6.1.3) with α = 0, α = 1. The noise covariance

matrix is simulated as Σ = σ2I . Parameter x has each entry drawn at random,

[x]i ∼ U(0, 1) where U(.) is uniform distribution. Graph G = (V , E) is constructed as

a Erdos-Renyi graph with connectivity p = 0.3. Fig.6.2.2 shows lower bound on the

estimation error. As seen, the bound is not tight. This is due to the non-convexity

of the problem due to which it only converges to a stationary point [194] which

compounds the error in estimating α`.

−20 −15 −10 −5 0 5 10 15 20

10−3

10−2

10−1

σ2 (in dB)

E α
ỹ

{ (α
−
α̂

)2
}

Lower bound MSE

Figure 6.2.2: Comparison of lower bound with MSE for synthetic data when the
prior of α` is constrained to be between 0 and 1 which is what one requires in the
real-world example of fault detection in solar PV panels.
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Figure 6.3.1: Results for April 29 and April 16, 2014 when (a) no fault introduced
and (b) when faults are introduced according to (6.1.3) . In (c), attenuation vector
for all locations, x` is plotted prior to introduction of faults. The estimated x is
plotted in red after the introduction of faults.
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(b) λ = 0.01

Figure 6.3.2: Comparison of lower bound with mean squared error for every day d
for (a) λ = 3 and (b) λ = 0.01. Examples of cloudy, partly cloudy and sunny days
are marked on both plots.

Fault detection for solar panels: As in the previous chapter, solar power data

from SolarCity ordered by ZIP code is used. Faults (amount of partial shading) are

generated using the prior distribution on α`,d from (6.1.11) and introduced artificially

in the data. The proposed estimation technique is applied to identify installations

with partial shading faults within a ZIP code. The algorithm returns a value of α`,d

which is the fraction of soiling/ partial shading. Firstly, the results of estimation of

α` are shown for two days-one sunny with little attenuation and other with varying

cloud cover in Fig.6.3.1. As expected, the value of α`,d ≈ 0, ∀` for both the days when

no fault is introduced. Then, the estimated partial shading α̃` and the introduced

shading fault are plotted. The estimated attenuation vector for the day is also plotted.
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Lower bound on partial shading estimation error: Simulations are run

to test the Bayesian lower bound in (6.1.16) while estimating the partial shading

parameter α`,d. To compute the lower bound for each day, the common attenuation

vector, x is the average: x = L−1Y 1T assuming there is no fault in any panel.

This only serves as a benchmark to compute the lower bound on mean squared error

(MSE) of α`,d, ` = 1, 2, . . . , L and not used in the process of estimating α`,d. In

Fig. 6.3.2 different amount of faults are introduced with λ = 0.01 and λ = 3 for all

days to compare the proximity of the lower-bound to MSE with changing weather

conditions. As examples, cloudy, partly cloudy and sunny days are marked on the

plot to show that the error on partly cloudy and cloudy days is higher than on sunny

days in general. On partly cloudy days, the low rank structure is not exact due to the

presence of uncoordinated spikes in power at different locations due to attenuation

from local clouds.
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For the proof of Theorem 1, we first introduce few lemmas.
Let θ be the random parameter to be estimated with prior distribution p(θ). Let

y be the observation or measurement and p(y|θ) be the conditional distribution of
observation given the parameter. In this section, a general lower bound for any
estimator θ̂(y) is postulated.

The following regularity conditions are necessary for the lower bound to hold:

1. For the conditional distribution, p(y|θ), the following holds

∫

y

∂

∂θ
p(y|θ)dy = 0, (A.0.1)

and Fisher information [195],

J(θ) = Ey|θ

{(
∂

∂θ
log p(y|θ)

)2
}

(A.0.2)

is defined.
2. Prior distribution p(θ) has bounded support i.e. p(θ) = 0 if θ /∈ [θ, θ] and

θ, θ < ∞. In addition, p(θ) is differentiable in the interval θ ∈ [θ, θ], i.e.
∂
∂θ
p(θ) , p′(θ) is defined when θ ∈ [θ, θ].

Lemma 1 (A Bayesian Lower Bound). If conditions 1 and 2 are satisfied then

for an estimator θ̂(y) with bias function

β(θ) ,
∫ (

θ̂(y)−θ
)
p(y|θ)dy, (A.0.3)

a lower bound on the MSE is given by

Eθ,y
[(
θ̂(y)− θ

)2
]
≥
(
1 + β(θ)p(θ)− β(θ)p(θ)

)2

JP + JB
(A.0.4)

where JP , Eθ[J(θ)], JB,Eθ

[(
∂

∂θ
log p(θ)

)2
]

(A.0.5)

Proof: Lemma 1. From [193,196] the basic step is the application of Cauchy-Schwarz
inequality to the following integral,

ζ ,
[∫ (

θ̂(y)−θ
) ∂p(y|θ)p(θ)

∂θ
dθdy

]2

≤Eθ,y
[(
θ̂(y)− θ

)2
]

(JP + JB) (A.0.6)
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Now, to evaluate ζ consider

∫(
θ̂(y)−θ

) ∂
∂θ
p(y|θ)p(θ)dθdy=

∫ [(
θ̂(y)−θ

)
p(y|θ)p(θ)

]θ
θ
dy

−
∫

∂

∂θ

(
θ̂(y)−θ

)
p(y|θ)p(θ)dθdy

︸ ︷︷ ︸
=−1

(A.0.7)

First term in (A.0.7) is written using the bias function:

∫

y

[(
θ̂(y)−θ

)
p(y|θ)p(θ)

]θ
θ
dy = β(θ)p(θ)− β(θ)p(θ) (A.0.8)

So, ζ =
(
1 + β(θ)p(θ)− β(θ)p(θ)

)2
(A.0.9)

Eθ,y
[(
θ̂(y)− θ

)2
]
≥
(
1 + β(θ)p(θ)− β(θ)p(θ)

)2

JP + JB
(A.0.10)

Now, as consistent with the problem, consider a truncated exponential prior

p(θ) = (Cλ)
−1 λe−λθ, θ ≤ θ ≤ θ (A.0.11)

where Cλ = e−λθ − e−λθ. Compute the proposed lower bound for a MAP estimator
when the observed value of θ is corrupted with independent addition of Gaussian
noise ν,

y = θ + ν, ν ∼ N (0, σ2). (A.0.12)

Assume that only one sample y is available for estimation with y. The MAP estimator
is

θ̂MAP(y) =





θ, y < θ + λσ2

y − λσ2, λσ2 + θ ≤ y ≤ λσ2 + θ

θ, y > λσ2 + θ

(A.0.13)

Let a(θ) =
(
θ + λσ2 − θ

)
/σ, b(θ) =

(
θ + λσ2 − θ

)
/σ (A.0.14)

Lemma 2. For the MAP estimator in (A.0.13) where the prior distribution on θ is
given by (A.0.11), the bias function is

βMAP(θ) =θ−θ +
[
θ−θ+λσ2

]
Φ (a(θ))+

[
θ−θ−λσ2

]
Φ (b(θ))

+ σ [φ (a(θ))− φ (b(θ))] (A.0.15)
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a lower bound for the MAP estimator is

Eθ,y
[(
θ̂MAP(y)− θ

)2
]
≥ σ2(1− ν)2

λ2σ2 + 1
(A.0.16)

where ν =(p(θ)+p(θ))
[
σφ(λσ)+λσ2Φ(λσ)

]
+rp(θ) (A.0.17)

−p(θ)
[
σφ
(
λσ− r

σ

)
+ (λσ2 − r)Φ

(
λσ− r

σ

)]

−p(θ)
[
σφ
(
λσ+

r

σ

)
+(λσ2 + r)Φ

(
λσ+

r

σ

)]
(A.0.18)

Proof. Bias function (A.0.15) can be computed by evaluating (A.0.3). Subsequent
simplification after necessary substitution in (A.0.4) gives (A.0.18).

Direct application of lemma 2 to the problem proves Theorem 1.
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