
Novel Learning-Based Task Schedulers for Domain-Specific SoCs

by

Conrad Mestres Holt

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved July 2020 by the
Graduate Supervisory Committee:

Umit Ogras, Chair
Chaitali Chakrabarti

Ali Akoglu

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

This Master’s thesis includes the design, integration on-chip, and evaluation of a

set of imitation learning (IL)-based scheduling policies: deep neural network (DNN)

and decision tree (DT). We first developed IL-based scheduling policies for heteroge-

neous systems-on-chips (SoCs). Then, we tested these policies using a system-level

domain-specific system-on-chip simulation framework [11]. Finally, we transformed

them into efficient code using a cloud engine [1], and implemented on a user-space

emulation framework [61] on a Unix-based SoC. IL is one area of machine learning

(ML) and a useful method to train artificial intelligence (AI) models by imitating

the decisions of an expert or Oracle that knows the optimal solution. This thesis’s

primary focus is to adapt an ML model to work on-chip and optimize the resource

allocation for a set of domain-specific wireless and radar systems applications. Eval-

uation results with four streaming applications from wireless communications and

radar domains show how the proposed IL-based scheduler approximates an offline

Oracle expert with more than 97% accuracy and 1.20× faster execution time. The

models have been implemented as an add-on, making it easy to port to other SoCs.

i

To my parents, Cristina and Perry, because without your love and support I wouldn’t

be where I am today.

ii

ACKNOWLEDGEMENTS

The present Master’s thesis is part of the Defense Advanced Research Projects

Agency (DARPA) Domain-Focused Advanced Software Heterogeneous SoC (DASH)

program. I was part of the intelligent scheduler team at eLab at Arizona State Univer-

sity lead by Dr. Umit Ogras, collaborating with the Center for Wireless Information

Systems and Computational Architecture (WISCA). First, I would like to thank pro-

fessor Dr.Umit Ogras and the department for giving me the opportunity to work in

such a groundbreaking project. I want to thank Anish NK for sharing his work and

supporting through all my way at the eLab. I also thank Nirmal Kumbhare and

Joshua Mack from the University of Arizona, and Khyati Mardia from Arizona State

University for getting involved and for the time spent helping me finish this thesis.

Lastly, this work would not have been possible without the knowledge, patience, and

help of all my peers at ASU.

This material is based on research sponsored by Air Force Research Laboratory

(AFRL) and Defense Advanced Research Projects Agency (DARPA) under agree-

ment number FA8650-18-2-7960. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes notwithstanding any copyright no-

tation thereon. The views and conclusion contained herein are those of the authors

and should not be interpreted as necessarily representing the official policies or en-

dorsements, either expressed or implied, of Air Force Research Laboratory (AFRL)

and Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 4

1.1.1 Novelty . 4

1.1.2 Implementing IL Policies on Hardware . 4

1.2 Problem Statement . 4

1.3 Main Contributions . 5

1.4 Organization of the Thesis . 7

2 RELATED WORK . 8

3 TASK-SCHEDULING BACKGROUND . 11

3.1 Linux Process Fundamentals . 11

3.1.1 Linux Processes . 12

3.1.2 The Linux Scheduler: Data Structures . 13

3.2 A New Paradigm for Scheduling . 14

4 HEURISTIC SCHEDULING ALGORITHMS. 17

4.1 First-In First-Out (FIFO) . 17

4.2 Earliest Finish Time (EFT) . 18

4.3 Heterogeneous Earliest Finish Time (HEFT) . 19

4.4 Earliest Task First (ETF) . 21

4.5 Completely Fair Scheduler (CFS) . 22

5 DATA-DRIVEN SCHEDULING ALGORITHMS . 24

5.1 Genetic Algorithms . 25

iv

CHAPTER Page

5.2 Decision Tree Algorithms . 26

5.3 Artificial Neural Networks . 28

6 IL-BASED SCHEDULING FRAMEWORK . 31

6.1 Building the Oracle . 32

6.2 Describing the Architecture of the ML Model . 34

6.3 Summary of Training Results . 35

6.3.1 Training the Deep Neural Network . 36

6.3.2 Training the Decision Tree . 39

6.4 Converting the ML Model to a Low Abstraction Language 41

6.5 Extending the User-Space Emulation Framework (USEF) 42

6.6 The System: Zynq UltraScale+ MPSoC ZCU102 44

7 EXPERIMENTAL RESULTS . 46

7.1 Domain-Specific Applications . 46

7.2 Evaluation of the IL Policies on USEF . 48

7.3 Comparison of Scheduling Policies . 50

7.4 Algorithm Complexity Analysis . 52

8 Conclusion and Direction for Future Works . 54

REFERENCES . 56

APPENDIX

A EXCLUDING PULSE DOPPLER FROM EVALUATIONS 65

v

LIST OF TABLES

Table Page

I Table of Static and Dynamic Features of the ML Models From Task

Ti’s Point of View . 34

II Summary of the Features Inputs of the Proposed IL Policies 34

III Accuracy Comparison of the ML Models Based on Test Data. 35

IV Execution Time Profiles of Domain-Specific Applications on Arm Cortex-

A53 Core and FFT Accelerator [11] . 47

V Characteristics of the Target Domain-Specific Applications and the

Workload Used for Evaluation . 49

VI Scheduling Overhead Cost and Memory Comparison of The Proposed

IL Policies on Single Pulse Doppler Frame . 49

vi

LIST OF FIGURES

Figure Page

1 Scheduling Structures Used in the Real-Time Linux Kernel Scheduler . . 14

2 Example of Decision Trees Used for Classification . 26

3 Perceptron Model Minski-Papert 1969 [71] . 28

4 Example of Multiple Layers Stacked Forming a Neural Network 30

5 Overview of the Proposed Imitation Learning Scheduling Framework . . 31

6 (Left) Representation of the Fully-Connected DNN. (Right) Table Sum-

marizing Architecture Insight . 37

7 (Left) Plot of Model Accuracy Using the Training and Validation Datasets.

(Right) Plot of Model Loss Function Using the Training and Validation

Datasets . 38

8 DNN Confusion Matrix Showing Accuracy and Error per Class 39

9 Weka Software GUI: Example of Training Data Used for the J48 Al-

gorithm . 40

10 DT Confusion Matrix Showing Accuracy and Error per Class 41

11 Extending the User-Space Emulation framework. The Proposed Ap-

proach has Five Worker Threads (WT), one Overlay Processor (OP)

and Two FFT Accelerators . 43

12 Overhead Study of the Different Scheduling Policies 50

13 Comparison of the Average Job Execution Time for Varying Through-

put Across Different Scheduling Policies . 52

14 Overhead Study of the Different Scheduling Policies Excluding Pulse

Doppler Application. 66

15 Comparison of the Average Job Execution Time for Varying Through-

put Across Different Scheduling Policies . 67

vii

Chapter 1

INTRODUCTION

The continuous demand for performance and efficiency keeps computing systems

on constant improvement. Several years ago, distinct industry specialists observed

a trend in many-core systems [69]. Nowadays, multi-core architectures have become

more and more ubiquitous. This type of architecture benefits from Moore’s Law [83]

since speed-up on a system can be more significant than increasing the operating

frequency of a single core. Matthew Reilly, Co-founder of SiCortex, Inc., mentioned

that increasing the clock-speed has its limits [69]. The endless-growing demand for

power efficiency and performance pushed the industry to explore combinations of

multi-core architectures. Heterogeneous systems have several advantages over homo-

geneous counterparts. They offer a combination of low, mid, and high-performance

processing elements (PE) that can be utilized based on the power and performance

goals [54]. In contrast, homogeneous architectures use only one type of PE; hence

they optimize a smaller selection of applications [40]. Homogeneous architectures

do not benefit from domain knowledge, unlike heterogeneous architectures that can

potentially be optimized for specific application domains.

However, there is still a gap in performance and efficiency between homogeneous

systems and hardware-accelerated functions, such as computing a fast Fourier trans-

form (FFT) operation on a dedicated accelerator. For example, when FFT and matrix

multiplication tasks are computed on fixed-function accelerators, they achieve faster

execution time and better energy-efficiency than when computed on general-purpose

processors. Therefore, the acceleration of domain-specific tasks is becoming highly

crucial. Some of these emerging domains are machine learning, autonomous driving,

1

and communication protocols.

We want to explore the benefits of a multi-core heterogeneous system with cus-

tom fixed-function accelerators by developing learning-based task scheduling tech-

niques. The complexity of task scheduling is NP-complete, but some approaches can

solve the problems in pseudo-polynomial time [33]. Optimization-based schedulers

offer optimal solutions, but their complexity makes them infeasible. Therefore, most

scheduling algorithms are tailored to a particular set of applications or domains. The

proposed methods are evaluated using wireless communication and radar applications.

We implement the proposed intelligent scheduling techniques on a recent user-space

scheduling framework [61]. In our implementation, the process scheduling activity is

completed inside the process manager. It inserts new tasks to the ready task queues,

assigns the available tasks to PEs following our policies, and removes them after their

execution finishes. Process scheduling plays an essential role in multi-threaded pro-

gramming operating systems. This type of operating system enables loading more

than one process into the executable memory at a time. Consequently, the loaded

processes share the CPU and other PEs using time multiplexing.

Many runtime techniques, such as dynamic voltage and frequency scaling (DVFS),

dynamic thermal and power management (DTPM), and power-saving modes (idle,

sleep), have been proposed to lower the power consumption [98, 18, 74, 46, 25, 84,

19, 37, 88]. Readers interested in dynamic energy management can refer to a recent

survey by Pasricha et al. [77]. The effectiveness of these techniques depends critically

on how the tasks are scheduled to the PEs since computation and communication

schedules determine the slack that can be exploited by dynamic power management

techniques [42, 75, 31]. Hence, application mapping and scheduling have a significant

impact on performance as well as in power [12, 43, 94]. Operating systems man-

age task scheduling in SoCs, i.e., they control the mapping of tasks to the various

2

processing elements. For example, servers have scheduling policies that allow many

programs to run, which means that the CPU is continuously switching from one pro-

gram to another. Emergency applications like nuclear reactors alarms, on the other

hand, will probably give priority to the application of managing those alarms. The

future of heterogeneous systems, a novel machine learning scheduler, and a combina-

tion of multiple scheduling policies that ideally switch dynamically depending on the

system’s current or future situation will lead to faster and more efficient performance.

This study implements the machine learning techniques of deep neural network

and decision trees to address the following problems: task allocation and task accel-

eration. Artificial intelligence models can be used to schedule policies and predict

the optimal schedule for incoming jobs. However, models need to be trained un-

der different injection rates and application characteristics, like task dependencies,

communication time, and estimated runtimes. AI models are integrated with the

scheduling framework [5] to schedule tasks to resources. Full-system simulators, like

Gem5 [20], perform detailed instruction-level simulations. Precise cycle-accurate sim-

ulations can lead to very high simulation times. Moreover, Gem5 offers details beyond

the requirements of this study and is not suited for this particular work. Instruction-

level simulations lead to significant execution times and make rapid design tedious

and time-consuming. In this work, we use DS3 [11], a Python-based system-level

simulator that supports runtime scheduling algorithm development, and rapid design

space exploration. DS3 is instrumented to generate AI models for task scheduling.

The policies developed with DS3 are then implemented in user-space emulation frame-

work [61] to schedule tasks in streaming applications. All the policies are evaluated

on a quad-core Xilinx Ultrascale+ ZCU102 field-programmable gate array (FPGA)

with two custom FFT/IFFT fixed-function hardware accelerators.

3

1.1 Motivation

1.1.1 Novelty

There are several publications regarding job scheduling designed and tested on

simulators, with approximated values, but little work is performed on real hardware

systems. Process scheduling using imitation learning techniques [82] is a new con-

cept [53].

1.1.2 Implementing IL Policies on Hardware

Scheduling a new process on a monolithic kernel [68] is extremely costly compared

to micro-kernels or hybrid-kernels. Each time a new process is created in the appli-

cation layer, a system call to the operating system needs to be done. Switching from

user-space to kernel back and forth is known as context switching. Unfortunately,

context switching is extremely costly. We implement a machine learning framework

that schedules wireless and radar applications using imitation learning. The machine

learning-based scheduling framework [53] is implemented as an extension of the user-

space emulation framework [61]. The scheduler schedules tasks to general-purpose

cores and custom accelerators using the concept of worker threads. The scheduling

is managed in user-space and thereby, helps in reducing the context switches.

1.2 Problem Statement

The performance of highly optimized schedulers may be satisfactory under ide-

alized conditions, such as theoretical analysis and high-level simulators. However,

implementation overheads can diminish the potential benefits and make them imprac-

tical to use in real applications. In contrast, commonly used low-overhead heuristics,

like first-in-first-out (FIFO) [49], round-robin (RR) [78] schedulers, minimum execu-

4

tion time (MET) [27] and earliest task first (ETF) [44], give up optimality in exchange

for lower overhead and broader applicability. The gap between these two solutions

can be filled for domain-specific systems-on-chip (DSSoC) by exploiting the domain

knowledge [95]. More specifically, the applications that belong to a particular do-

main, such as wireless communications and radar, are represented by directed acyclic

graphs (DAGs), whose nodes represent the tasks that compromise the domain ap-

plications. One can identify the most commonly used set of tasks or kernels in the

target domain through an ontological inference process [97, 105]. Finally, this knowl-

edge is used to determine the optimal composition of general-purpose and specialized

processors (a.k.a., hardware accelerators), as well as the affinity between the tasks

and PEs [11, 97]. We note that these steps are necessary but not sufficient to maxi-

mize the performance and energy-efficiency. The designers must also ensure that the

schedulers use the available hardware resources optimally while running the domain

applications.

This thesis seeks to answer the following question: Can we achieve a performance

similar to optimal scheduling algorithms for a set of domain-specific applications with

negligible overhead on hardware platforms? While answering this question, we also

consider two practical constraints. First, the proposed methodologies should easily

generalize to new applications, which are not known at design-time, and to new SoC

configurations with new PEs. Second, the proposed methodologies should not place

all the optimization burden on the application developers. The application developer

should not be required to know the intrinsic details of the hardware [95].

1.3 Main Contributions

This work implements new scheduling policies using a recent IL-based scheduling

technique [53]. It evaluates them on a quad-core Xilinx Ultrascale+ ZCU102 FPGA

5

using applications from wireless communications and radar domains. The FPGA

integrates four Arm Cortex-A53 cores, two custom FFT/IFFT custom hardware ac-

celerators, direct memory access (DMA) interfaces, and fourth-generation advanced

extensible interface (AXI). The SoC runs on a Linux operating system with kernel

version 4.9.0-Xilinx-v2017.2.

This work proposes a machine learning scheduling framework using a system-

level simulator DS3 [11] to create an Oracle and train imitation learning models that

perform similar to an expert, with minimal error. The proposed approach overcomes

the limitations of the Linux scheduler, which is not optimized for domain-specific, real-

time applications, and lacks accelerator-awareness. This work proposes to evaluate

the IL scheduling policies by extending the user-space emulation framework [61] that

provides accelerator-awareness and user-space scheduling support.

Furthermore, creating new processes in Linux is an expensive task as it is memory-

and latency-intensive, and it does not scale adequately with the number of processes

(Chapter 3 discusses the limitations of the Linux real-time scheduler).

The scheduling policies are integrated with the extended emulation scheduling

framework, as detailed in Chapter 6. Moreover, we customized the kernel such that

specific kernel functionalities are exposed in the user-space through system calls and

boot configurations.

The primary contributions of this thesis are:

1. Efficient integration of a recent IL-based scheduler [53] into a runtime environ-

ment [61],

2. Extensive evaluation of the proposed approach with domain-specific applica-

tions, showing that the IL policies incur an error of only 2.7% with respect to

Oracle, and

6

3. Techniques to minimize the scheduling overheads, resulting in a speedup of 1.2×

in execution time with respect to the Oracle.

1.4 Organization of the Thesis

The organization of this thesis is as follows. Chapter 2 introduces the related

work, with projects and recent publications that inspired this work.

Chapter 3 provides a brief background on task scheduling and introduces the

Linux scheduler, the structures used for process scheduling, and the limitations of the

Linux scheduler.

Chapter 4 and Chapter 5 highlight different heuristic and machine learning algo-

rithms used for task scheduling. In these chapters, we explain the functionality of the

algorithms.

Chapter 6 introduces our proposed approach of the imitation learning framework

in detail. We describe all the elements that form the proposed scheduling framework

and present a summary of the machine learning training results.

Chapter 7, we evaluate the performance of the imitation learning-based scheduling

policies on a commercial SoC. We also give a summary of this thesis, and we discuss

future work. Last, Appendix A contains all the evaluations from Chapter 7, excluding

the pulse-Doppler application.

7

Chapter 2

RELATED WORK

The scheduling problem in domain-specific SoCs, which are heterogeneous multi-

core systems, is NP-complete. Conventional optimization-based approaches, such as

integer linear programming (ILP), mixed-integer programming (MIP), provide opti-

mal solutions to the scheduling problem. However, the overheads involved in such

approaches are very high [53] and limit its practical use in runtime systems. Heuristics

are commonly used as alternatives for scheduling and widely deployed in commercial

systems. For example, the completely fair scheduler (CFS) is the default scheduler in

Linux-based operating systems [103, 9]. It was introduced in late 2007 and evolved

from the O(1) scheduler. The primary focus of CFS is to maximize CPU fairness

among the running processes. This heuristic scheduler uses red-black trees and sorts

the processes by a fairness metric, enabling O(1) to fetch a task to be scheduled.

Although the time complexity to retrieve a task from the tree structure is O(1), the

complexity to insert a task into the tree is significantly high. Hence, there is sig-

nificant scope in improving the scheduling overhead in the Linux based operating

systems.

CFS was originally developed for homogeneous architectures i.e., all cores on the

computing platform are identical. Several works have focused on improving various as-

pects of CFS, such as support for heterogeneity, minimizing scheduling overheads, im-

proving energy-efficiency, and load balancing. With the advent of heterogeneous archi-

tectures to improve performance, power and energy-efficiency [35, 69, 41, 65, 90], the

following research has addressed the integration of heterogeneity in CFS [17, 16, 32].

The authors in [73] introduce a new load-aware metric to improve the performance

8

of CFS. A sensing-based load balancing technique for Linux to improve the energy

efficiency of heterogeneous MPSoCs is described in [87]. Although several additions

have been proposed to CFS, the primary goal is to provide CPU fairness to the differ-

ent executing processes. Another class of scheduling techniques, called list scheduling

techniques, focuses on different objectives, e.g., performance, power, energy, and se-

curity.

List scheduling approaches [85, 55] organize the running tasks (processes) into a

list. Scheduling at design time is a function of the position of the task in the list and a

target optimization metric. A widely popular heuristic, heterogeneous earliest finish

time (HEFT) [96] defines a metric called the upward rank. The upward rank is a

function of the communication and computation times of the tasks in an application,

which is modeled as a directed acyclic graph (DAG). This metric is then used to assign

the processing elements (PE) to the different tasks, at design time. The techniques

in [21] and [10] refine the approach proposed in [96] to improve the execution time

of applications. The lookahead based approach in [21] suffers from fourth-order com-

plexity on the number of tasks, whereas [10] incurs second-order complexity. Several

other heuristics approaches have focused on energy [15, 92, 110, 22, 112], security [106]

and fairness [107]. However, the drawbacks of heuristic techniques are: (1) tailored

to specific objectives, (2) lack of generalization for multiple optimization objectives

and simultaneous applications, and (3) high scheduling overheads for runtime appli-

cations.

Recently, machine learning (ML) has emerged as an efficient technique for resource

management in multi-core SoCs [24, 65, 50, 77]. More specifically, DeepRM [66],

DECIMA [67] and [57] focus on the use of ML techniques for the scheduling problem.

DeepRM [66] and DECIMA [67] use Reinforcement Learning (RL) to schedule DAGs.

While RL is highly suitable to enable lifelong learning, it suffers from major draw-

9

backs. First, the convergence of the RL-based scheduling technique critically depends

on the reward function. The design of the reward function is very complex [50]. Sec-

ond, the complexity of the scheduling problem results in a high number of episodes

for convergence [53].

Imitation Learning (IL), a sequential decision-making strategy, has emerged as a

powerful approach that overcomes the drawbacks of RL [89]. The IL-based approach

involves the construction of an Oracle (expert) and generation of supervised learning

techniques to mimic the Oracle. IL has been successfully used for runtime resource

management, both offline [65, 88] and online [64]. Moreover, IL has been successfully

applied to the runtime task scheduling problem in [53]. In this work, we develop a

highly efficient framework that integrated an IL-based scheduler for implementation

in a real heterogeneous SoC. The implementation of custom schedulers in a hetero-

geneous environment typically requires a simulation framework for Oracle generation

and a runtime framework for scheduler implementation. The authors in [105] pro-

pose a simulation framework that integrates four other tools for scheduling, power,

energy, and interconnect modeling. We use DS3 [11], which is an integrated solution

and is well validated against commercial heterogeneous SoCs. StarPU [13] is a promi-

nent runtime framework used for desktop and HPC design space exploration. For the

implementation of the proposed IL-based scheduling approach, we choose [61] as it

integrates a compilation and a runtime framework for effective scheduling of stream-

ing DAGs in heterogeneous many-core SoCs. To the best of our knowledge, this is

the first work that implements an IL-based scheduler in heterogeneous SoC (Xilinx

Zynq Ultrascale+ ZCU102) comprising general-purpose cores and fixed-function ac-

celerators. We evaluate both regression tree (RT) and deep neural network (DNN)

based machine learning classifiers.

10

Chapter 3

TASK-SCHEDULING BACKGROUND

In essence, task-scheduling is the process of fetching and mapping tasks to re-

sources satisfying target metrics, e.g., execution time, power efficiency, utilization.

Operating systems (OS) like Windows, Mac, or Linux manage the scheduler of many

computers, including embedded systems. In specific, the Linux scheduler manages

processes like opening a browser, editing a file, accessing some media, that the sys-

tem tries to execute based on a priority value, within a rigid period or time-slice.

Despite being broadly used, it has some limitations [80] discussed in this chapter.

For example, processes are executed exclusively on the CPU. However, the scheduler

must also consider fixed-function accelerators as processing elements to exploit the

heterogeneity of domain-specific architectures.

If the reader wishes to dive deeper into the Linux kernel, or needs clarification with

process scheduling, system calls, and related topics. We suggest Wolgangs Mauerer’s

book - Professional Linux Kernel Architecture [70], the 3rd edition of Daniel P. Bovet,

Marco Cesati’s book - Understanding the Linux Kernel [26], or Robert Love’s 3rd

edition of the book - Linux Kernel Development [60] since they all give an initial

understanding of the extensive Linux system.

3.1 Linux Process Fundamentals

Linux is an example of a monolithic kernel, a system architecture that allows

the operating system to run exclusively outside the user-space (i.e., the core of the

operating system) [81]. The OS is composed of many blocks, one of which is the

scheduler that runs entirely inside the kernel. The scheduler uses an algorithm that

11

must fulfill several objectives, such as fast response time, selecting the process with

the highest priority, and avoiding starvation. The scheduler assigns tasks to resources

following a set of rules. The set of rules used to determine where a new process

executes is called a scheduling policy.

In Linux, processes are considered either a standard process or light-weight process

(LWPs) [60]. The main difference between LWP and a standard process is that all

LWPs share the same address space [2]. In computer science, threads are a small

sequence of instructions that can be managed by a scheduler. A multi-threaded

process is an application that contains multiple parallel execution flows. Threads

represent processes in Linux [60, 2].

3.1.1 Linux Processes

In our study, we use graph theory to define a process. Graph theory describes

graphs as G = (V, E). A graph is a structure representing the relationships of the

objects [101]. Objects are called vertices, nodes, or points. The relationship between

the pair of objects is called an edge, link, or line. Conventionally, direct acyclic

graphs (DAGs) describe applications [63], where the nodes represent tasks, and the

edges symbolize the communication cost. Provided a multi-thread environment, each

node in the DAG gets created as a thread. The scheduler will treat the threads as

individual processes [111].

The Linux process creation can be thought of as a computer program that utilizes

numerous system resources to create a single process [3]. Unfortunately, every appli-

cation represented through a DAG most likely will have system calls invoking threads

that travel from the user-space to the kernel-space. System calls are a collection of

application programming interface (API) calls that allow the user-space to request

services from the kernel. Whenever a new process is invoked, a set of system calls

12

occur, introducing overhead. For these precise reasons, provided an N to N mapping

between threads and the tasks composing a DAG, the scheduler will under-perform

when the number of streamed applications is too large. In this study, given the na-

ture of a DAG, every application that is represented through a DAG most likely will

have system calls invoking threads that travel from the user-space to the kernel-space.

System calls are a collection of application programming interfaces (APIs) that al-

low the user-space to request services from the kernel. Whenever a new process is

invoked, a set of system calls occur, introducing overhead. Therefore, provided an N

to N mapping between threads and the tasks composing a DAG, the scheduler will

under-perform when the number of streamed applications is too large.

With these considerations in mind, we can now explain the limitations of the

Linux scheduler in detail and our proposed approach in Section 3.2.

3.1.2 The Linux Scheduler: Data Structures

In this section, we describe the structures used by the real-time scheduler. The

Linux scheduler uses a general run-queue that embeds other run-queues that manage

jobs from policies other than CFS. Figure 1, captures this relationship. The primarily

per-CPU run-queue data structure referred to as struct rq, has a structure struct

rt_rq that embeds information about the real-time tasks placed on the per-CPU

run-queue. Linux will organize processes based on their priority. A priority-indexed

array of type struct rt_prio_array. Priorities range from 0-99, where priority levels

“0” and “99” represent the lowest priority and the highest priorities a process can

have, respectively.

An rt_prio_array consists of an array of sub-queues. There is one sub-queue per

priority level for a total of one-hundred, and each queue contains the runnable real-

time tasks. There is also a bitmask corresponding to the array. It is used to determine

13

Figure 1: Scheduling Structures Used in the Real-Time Linux Kernel Scheduler

the highest-priority task effectively on the run-queue. The bitmask contains one bit

per potential processor on the system. By default, all bits are set and, therefore, a

process is potentially runnable on any processor. The priority array is mapped into

a matrix structure, embedded into a scheduling entity; these are at a much lower

level than task_struct. Linux uses this structure actually to schedule tasks. The

mechanics for task allocation by SCHED_FIFO are not that complex. It will start

from CPU0 and will try and find the first CPU that’s idle. The RT load balancer

ensures that the rt_rq is not saturated with jobs and will try and distribute the tasks

with highest resources across all CPUs so that tasks are not hogging a CPU, and if

necessary it will trigger the RT throttling, a safety mechanism that will try and avoid

non-RT tasks from starving.

3.2 A New Paradigm for Scheduling

To bridge the gap between real-time scheduling theory and practice, we propose

a scheduling framework that uses concepts from Mollison et al. [72] and Sanchez et

14

al. [86] where they propose a user-space application to manage scheduling. In other

words, the task scheduling is decoupled from the Linux kernel, thereby providing

a real-time runtime scheduler. In this study, we follow the implementation of the

user-space emulation framework (USEF) [61] to overcome some of the limitations of

the Linux scheduler. Using the user-space scheduling framework, we program the

scheduling policies and stream domain-specific applications. The extended version of

USEF manages, controls, and monitors the process scheduling on a target SoC. The

emulation framework is capable of dynamically switching between different scheduling

policies. It uses the real-time Linux thread policy [60] to guarantee the complete

execution of a task from start to finish without preemption. The procedure limits the

number of threads to be equal to the number of processing elements. The user-space

scheduler has one dedicated processor, core 0 (main thread), that will submit tasks

wrapped as function pointers to those worker threads corresponding to core 1, core

2, core 3, FFT 0, and FFT 1.

As stated before, the Linux RT scheduler has two policies first-in-first-out (FIFO)

[56] and round robin (RR) [78]. The first policy chooses the task with the highest

priority among all tasks in the priority array. It attempts to execute this task until

completion without yielding the CPU voluntarily 1 . The second policy, RR, works

similarly to the FIFO policy, but it voluntarily yields the CPU. After every quantum

of time (time-slice), the operating system will execute the next RT task with the

highest priority until that task completes or the quantum is expired.

To implement a real-time runtime scheduler free of preemption, we must allow

the RT threads to run indefinitely. In the proposed framework, the total number

of threads is equal to the number of processing elements. Executing one RT thread

per processing element indefinitely will stall all other processes, including system
1Note that two RT tasks with equal priority do not preempt each other.

15

processes. This is unsafe, as system processes must be executed for safe operation

of the operating system. The scheduler in Linux uses a safety mechanism to en-

sure that system processes are not permanently stalled. The scheduler parameter

sched_rt_runtime_us defines the number of microseconds in a second that is allo-

cated to execute RT threads. By default, Linux executes RT threads for 95% of the

time in a second and system processes for the remaining 5% (the value of the param-

eter is 950000). We tweak this parameter to increase the priority of the user-space

worker threads, by setting the value of sched_rt_runtime_us parameter to 999999.

Consequently, Linux executes RT threads for 99.99% of the time and reserves 1µs to

perform other system tasks.

By setting sched_rt_runtime_us parameter to 999999 (each digit has µs gran-

ularity), Linux executes the RT threads for 99.9% of the time and reserves 1µs to

perform other system tasks that are not RT.

Assuming that the framework has RT threads that run without getting preempted,

the approach suggested in this is work uses as many worker threads as resources

are available (resources like CPU and accelerators) using the concept discussed by

Sanchez et al. [86]. In our approach, one core is in charge of orchestrating the RT

worker threads. DAGs will provide the inputs of tasks that an overlay processor will

schedule (according to the scheduling policy) to an available resource. This approach

is much more flexible than the existing kernel scheduler since we can easily use libraries

that are capable of working outside the kernel. Moreover, our proposed framework can

dynamically switch scheduling policies at runtime and enables user-space scheduling.

This framework avoids using more and more memory for every newly forked process

because instead, it will submit jobs to the worker threads already created awaiting for

new jobs. Some security challenges are definitely prone to appear while selecting this

hybrid-framework approach, but this is beyond the research of this master’s thesis.

16

Chapter 4

HEURISTIC SCHEDULING ALGORITHMS

The meaning of heuristic derives from an ancient Greek word that means to dis-

cover. Heuristic-based schedulers can be used in scheduling to find a solution, it

might not be optimal, but it is done in a simple and relatively short time. It is an

approximation algorithm because it tends to find an optimal schedule, although not

always succeed. Most heuristic schedulers are useful when having to reorder a large

number of tasks.

This section introduces examples of the commonly known heuristics algorithms

used in scheduling (Chapter 5 describes the machine learning algorithms), some of

them being developed and used as part of this Master’s thesis. To precisely explain

the algorithms, and to enhance a better understanding, the algorithm pseudo-code is

added to the description.

Some heuristic schedulers might be considered simple in concept. However, some

of them have proven to perform better than complex algorithms, making them lighter

and faster. The fact that simple schedulers sometimes perform better than sophis-

ticated schedulers becomes a challenge for the proposed IL solution. Schedulers are

organized in increasing order of complexity.

4.1 First-In First-Out (FIFO)

First-in-first-out [49] is a very simplistic algorithm, which is also known as first

come first serve (FCFS). It is perhaps one of the most well-known algorithms. FIFO

will take the first task that is ready and will assign it to the first available resource.

This algorithm can be handy when (1) the tasks do not interleave with each other,

17

and (2) the number of simultaneous tasks does not exceed the maximum number

of available PEs. Nonetheless, FIFO scheduling does not take task deadlines into

account; hence, it fails at meeting time constraints.

Algorithm 1 FIFO Pseudo-Code Algorithm
1: procedure Compute FIFO

2: for each resource do

3: if resource = free then

4: fifo_idx = index of resource

5: break ;

6: end if

7: end for

8: map task to fifo_idx

9: end procedure

4.2 Earliest Finish Time (EFT)

Earliest finish time [91] is a heuristic algorithm that compares the execution time

of the current tasks across all processing elements and tries to schedule the tasks

to a free resource that will result in the earliest finish time. Hence, this scheduling

algorithm will allocate tasks to available processing elements, but it will not re-order

tasks.

The EFT algorithm needs to know the execution time of tasks, which might

differ for different PEs. To guarantee an accurate estimation of task execution times,

one has to run the tasks on each target PE multiple times and profile the average

execution times. The EFT algorithm first traverses all the available resources to find

the processing elements on which the finish time is the lowest. The algorithm will

18

assign the resource in round-robin fashion if multiple of them have the same finish

time.

Algorithm 2 EFT Pseudo-Code Algorithm
1: procedure Compute EFT

2: for each task in ready queue do

3: for each resource do

4: if task execution on resource(i) ≤ availability of resource(i) then

5: eft_idx = index of resource

6: update resource availability(i)

7: end if

8: end for

9: map task to eft_idx

10: end for

11: end procedure

4.3 Heterogeneous Earliest Finish Time (HEFT)

Heterogeneous earliest finish time is a list scheduling algorithm [96]. This algo-

rithm is inspired by EFT, although it is far more complex. The goal of HEFT is

to schedule a set of dependent tasks to a network of heterogeneous workers taking

communication time into account. HEFT will use as inputs a set of tasks represented

by a DAG, a collection of workers, the cost to execute tasks on different workers, and

the times to transfer data from each job to each of its predecessors. It descends from

list scheduling algorithms.

Many scheduling policies treat tasks in the natural spawning order as they arrive

at the scheduler code. HEFT is capable of two things: 1) Determining from a set of

19

Algorithm 3 HEFT Pseudo-Code Algorithm
1: procedure Calculate the rank

2: for each task in DAG calculate average exec.time on all PEs do

3: if task is last task then

4: rank of task = average of task

5: else

6: rank of task = average of task + max(rank(predecessors))

7: end if

8: end for

9: end procedure

10: procedure Map Task to Resources

11: for each task in list of ranked tasks do

12: if task is first task in the list then

13: map task to processor with minimum execution time

14: end if

15: if task and its predecessor on the same processor Pj then

16: comm_time = 0

17: else

18: comm_time = communication time between two nodes

19: end if

20: for each processor do

21: task_execution_time = execution_time of task

22: on processor + comm_time + predecessor_execution time

23: end for

24: end for

25: end procedure

20

tasks T=T1, T2, T3, the order in which the whole scheduling will finish the earliest.

2) Allocating tasks to the resource on which the expected execution time is minimum.

Keep in mind that HEFT is a greedy algorithm, and greedy algorithms are known

to not converge for all cases. However, HEFT has a simple enough implementation

in terms of memory and overhead, making this policy a conventional implementation

for many scheduling policies.

The characterization of the HEFT algorithm has been adapted from the work [5]

focused on dynamic task scheduling. The core concept is that all the nodes that

represent tasks are scheduled based on a computed value called ranking. First, the

algorithm tries to rank all the tasks respecting the DAG’s dependencies, starting

with the end-most task (the graph is traversed upwards). Secondly, it computes

the dependencies and communication costs for each node. Since the first task will

have the highest rank, and the last task that requires all the other nodes to be done

will have the smallest rank. Next, the ranked tasks are arranged in descending order

according to their rank value. Finally, tasks are scheduled for that processing element

that guarantees the earliest finish time.

4.4 Earliest Task First (ETF)

The earliest task first algorithm [91] is a list scheduling algorithm because it

compares the execution time of all tasks across all PEs mapping tasks to free resources

resulting in the overall earliest finish time. Therefore, this algorithm can alter the

order on which tasks are executed in pursuit of the combination that will satisfy

minimum execution time.

ETF (not to confuse with EFT) has a higher computational cost than previously

mentioned heuristic schedulers. By re-ordering tasks, this algorithm must traverse

twice the pool of ready tasks. When all the resources are free, this algorithm behaves

21

Algorithm 4 ETF Pseudo-Code Algorithm
1: procedure Compute ETF

2: for each task in ready queue do

3: for each task in ready queue do

4: for each resource do

5: if task execution on resource(i) ≤ availability of resource(i) then

6: etf_idx = index of resource

7: update resource availability(i)

8: end if

9: end for

10: map task to etf_idx

11: end for

12: set etf_idx to -1

13: end for

14: end procedure

like EFT. Although this algorithm might not compute solutions as fast as other

schedulers in real-world applications, in a simulated environment, ETF has shown

similar reliability to more complex algorithms with less convergence time [11]. Thus,

making this scheduler a great candidate to be used as the Oracle.

4.5 Completely Fair Scheduler (CFS)

Completely fair scheduler [51], the default Linux scheduler, is the primary desktop

scheduler built in any Linux system. It tries to emulate the ideal behavior of a multi-

tasking CPU by guaranteeing the fair execution of all tasks. To do so, it keeps track

(using a virtual run-time) of tasks that are not running so that it estimates how much

22

should those tasks run for, to maintain a fair balance across the system.

The CFS is not based on queues; instead, it uses a red-black tree [70, 26, 60]

structure acts as a timeline for future task execution. One of the structures is used

for active processes, and the other one keeps track of expired processes. The expired

red-black tree contains tasks that either have finished or got preempted. Hence, this

scheduler can be preempted by any task in the system (tasks that are not I/O bound

because those use a different scheduler). Besides, there are also priority levels that

allow tasks to run for a more extended period.

To maintain fairness across the system, the Linux CFS utilizes expensive com-

putational algorithms and re-balance functions that mainly migrate tasks from one

queue (corresponding to a CPU) to another queue (corresponding to another CPU).

In this way, it attempts to maintain fairness and avoid processes from starvation (Not

enough CPU time). Unfortunately, the CFS is limited. This scheduling algorithm

lacks support for accelerator awareness. Currently, it will consider only CPUs as

processing elements, as well as the amount of storage involved required to run the

completely fair scheduler.

Algorithm 5 CFS Pseudo-Code Algorithm
1: procedure Compute CFS

2: the left-most node of the scheduling tree is chosen

3: If the process completes execution, it is removed from the structure

4: If the process expires its time-slice, it is reinserted into the structure based on

remaining execution time

5: The new left-most node is chosen

6: end procedure

23

Chapter 5

DATA-DRIVEN SCHEDULING ALGORITHMS

Machine learning is useful in identifying patterns in scheduling. Moreover, schedul-

ing can be considered a classification problem rather than an optimization prob-

lem [99, 53]. There are multiple techniques in machine learning that could be po-

tentially applied to scheduling to solve classification problems. After designing and

training a model using a simulator like DS3 [11], the model is exported and inte-

grated with the proposed IL scheduler framework (it uses the model’s weights after

training to re-construct a model and run the inference). The models are compared

with some of the conventional heuristic schedulers introduced in Chapter 4. This

section introduces different ML-based techniques to solve scheduling, but the scope

of this thesis focuses on imitation learning scheduling policies, not Reinforcement

Learning (RL). Formulating the reward function for the reinforcement learning is not

trivial [88, 38, 65, 64] and not practical. IL is a more straightforward approach. For

an in-depth discussion of alternative data-driven algorithms, we suggest Peter’s Flach

book on machine learning [34].

Knowing that ML can potentially benefit scheduling, we need to answer the follow-

ing question: How can machine learning be applied to optimize scheduling? Assuming

that the domain applications are known at design-time, we make two observations.

First, we build an expert, i.e., an Oracle that stored the optimal decisions, to train

the ML model. Second, we ensure that the framework can imitate Oracle’s behavior

at run-time without adding too much overhead.

24

5.1 Genetic Algorithms

The process of natural selection inspires genetic algorithms (GA) [102]. GAs reflect

the evolution of life, i.e., the survival of the fittest of beings. GAs use techniques and

concepts extracted from the theory of evolutionary biology concepts like inheritance,

mutation, crossover, and selection. In computer science, GAs are defined as a search

technique to find a set of approximate solutions for optimization and classification

problems.

The approximations are ranked according to the score of their fitness function.

The best candidates are grouped and combined using genetic operators, creating new

solutions. This process is also known as recombination; the rest of the solutions

are removed. Each new solution contains traces and similarities to its parent. This

process repeats until a solution exceeds a minimum threshold on the fitness value.

The process is also known as evolution, and it usually starts from a population of

randomly selected individuals, the groups or pairs are known as generations. In

contrast to some machine learning techniques, GA will not iterate until convergence

because the algorithm does not have a convergence rule. Instead, the algorithm

will terminate when several pairs (or generations) of solutions are produced, or a

satisfactory fitness level is reached.

Genetic algorithms are useful in solving NP-hard problems [8]. In particular, it

offers a solution to solve one of the most notorious scheduling problems: the traveling

salesman problem (TSP). The problem consists of a salesman that is given a set of

cities. The salesman has to find the shortest route to visit each city exactly once and

return to the starting city. The traveling salesman problem is described as follows:

TSP = (G, f , t):

G = (V, E) a complete graph,

25

G is a graph that contains a traveling salesman tour with cost not exceeding t,

f is a function of V × V → Z,

t ∈ Z

Though Genetic algorithms have proved to be a fast and powerful problem-solving

approach, we distinguish some limitations. Repeating the fitness calculation is ex-

tremely costly; a single function evaluation might compel several hours or days of

training. For this precise cause, although this algorithm is proven effective (It tra-

verses almost all possible scenarios), other algorithms (decision trees, neural networks)

might be more efficient, achieving similar results with faster convergence time. For

this study, speed in convergence is mandatory, since we do not want to add an exces-

sive overhead when computing a scheduling policy.

5.2 Decision Tree Algorithms

Figure 2: Example of Decision Trees Used for Classification

Decision trees [52] are another example of data-driven and structural algorithms

used through supervised learning for regression and classification of single and multi-

ple targets. Similarly to heuristics, they learn from the data and try and approximate

26

a solution to a threshold or a curve through an if-then-else set of rules. The complex-

ity of decision trees is not measured in layers but in depth. The deeper the tree, the

more complex.

Decision trees build their models in the form of a tree structure. A single decision

tree is also known as a white box. Each level is associated with a hierarchy f.e the

root node sits at the top of the tree where the depth is equal to zero. Every individual

node from the decision tree corresponds to a question; the objective of this question is

to divide the data into a smaller subset that corresponds to a class. The reader might

notice the importance of selecting the question. To choose a question that splits the

data, the model chooses an input feature and does the split. The Gini score represents

the impurity of the class. Choosing a question and calculating the Gini score for all

the features in the set. Finally, the root node is determined by the feature with the

lowest Gini score.

Pruning is the process of reducing the size of the tree by turning not-relevant

branch nodes into leaf nodes. Commonly the process of pruning is done to prevent

data from overfitting. Overfitting is a problem of having excellent training accuracy

but mispredictions upon new data. Overfitting will affect the performance of the

model when fed new data to classify. Finally, fitting the tree is the process of finding

the smallest tree that could fit the data. Typically, the dimensions of the tree are

determined by choosing the tree with the lowest cross-validation error.

Decision Trees are an attractive candidate. At first glance, they seem to appear

as a faster alternative to artificial neural networks [53]. Once the model is trained,

through a set of simple rules (if-else statements), the policy predicts an output. How-

ever, in complex classification problems, the size of decision trees can be larger than

small deep neural networks (less than 2000 weights).

27

5.3 Artificial Neural Networks

Figure 3: Perceptron Model Minski-Papert 1969 [71]

An artificial neural network (ANN) [36] is an algorithm designed to simulate how

the human brain processes information, is inspired after the human brain and is

proficient at recognizing patterns. The architecture uses multiple layers that extract

features from the input. A typical example is image processing, where layers closer to

the input represent edges. The layers closer to the output typically represent concepts

more relevant to a human (f.e faces, shapes, and objects). Neural networks are

considered a universal approximation theorem since the model tries to correlate and

approximate inputs-to-outputs using continuous functions. Some examples for these

continuous functions are TanH, Sigmoid, ReLU and Softmax [34, 7, 59]. Usually, these

are called activation functions, and they determine the output a node will generate,

based on some inputs.

Deep neural networks (DNN) [58] evolve from single neuron perceptron - the lowest

unit belonging to a network. Figure 3 is an example of the original Minski-Paper

model proposed in 1969. Figure 3 is described as follows:

ŷ = Σn
i=1ωi ∗ χi

multi-layer perceptron (MLP) [93] or deep neural networks are networks of percep-

trons and linear classifiers [34] where the architecture of an MLP consists of an input

28

layer, some hidden layers, and an output layer. These layers are composed of single

perceptrons. The depth of the network is determined by the number of stacked lay-

ers. According to the number of layers, some architectures will be more shallow (less

number of stacked layers), and some others will go more in-depth (a higher number

of stacked layers).

Neural networks are prevalent and well-known for classification problems, consid-

ering scheduling as a classification problem; it makes neural networks a candidate for

this thesis. To train a model, the user should specify the target. Targets are usually

identified by labeling data. The methodology is known as supervised learning, which

differentiates from unsupervised learning precisely because of the labels. Examples

of supervised learning are speech recognition, image recognition, and bioinformatics,

to list a few. While scheduling is traditionally studied as an optimization problem,

we consider scheduling as a classification problem by envisioning processing elements

as classes in this work. Optimization problems have static solutions that can only

be satisfied when evaluated under the same circumstances; in any other situation, it

fails to be optimal. On the other hand, classification can be primarily trained offline

under supervised learning to approximate the model to an optimal solution. Theoret-

ically, the model can continue learning while deployed [104] by continually adjusting

its weights (This is far beyond the scope of this thesis), making classification using

DNN a much more generalizable approach to address the scheduling paradigm.

First, the system should be able to classify and map tasks-to-resources depend-

ing on real-time system alterations dynamically. The input parameters in the neural

network represent these variables that affect the system state. Before training, the

neural network with a customized architecture is generated. The neural network is

initially naive, and its weights have default values. By training the neural network

with sufficient imitation learning data and a large number of epochs, the model weight

29

Figure 4: Example of Multiple Layers Stacked Forming a Neural Network

converge to stable values. Otherwise, a threshold is specified, and the training will

complete once the training reaches that threshold. Depending on the dimensions of

the imitation data file, the training process can last up to several hours. However,

performance issues can arise with a poorly trained DNN. Similarly to decision trees,

overfitting and underfitting are the two critical reasons why DNNs have poor perfor-

mance. Typically, overfitting is related to deep architectures, and a weak or limited

training data-set. It leads to situations where training will have a deficient error, but

a high testing error. In contrast, underfitting is analogous to small architectures and

a reduced training data-set. The model is unable to learn the relationship between x

and y. High training and testing error is the synonym of underfitting.

30

Chapter 6

IL-BASED SCHEDULING FRAMEWORK

This Chapter presents an in-depth explanation of the IL-based scheduling policy

used in this work. We cover its design, integration to the user-space scheduling frame-

work, and evaluation on the Xilinx Zynq Ultrascale+ ZCU102. Starting from the

highest level of abstraction, we introduce the Python/Weka [39] neural network/de-

cision tree models. Then, we describe the conversion of the proposed IL models to

C/C++. Finally, we present the framework used to deploy the ML policies and the

deployment process. Figure 5 depicts a high-level representation of the IL scheduling

framework’s integration and its components.

Figure 5: Overview of the Proposed Imitation Learning Scheduling Framework

The rest of this Chapter is organized as follows. First, Section 6.1 describes the

Oracle, which acts as the expert to train the IL-based schedulers. Then, Section 6.2

details the architecture of the deep neural network and decision tree model. Sec-

tion 6.3 summarizes the training results of the machine learning models. Section 6.4

describes the software AI Transformer [1] and Weka2c [47], conversion engines that

will transform a high-level programmed ML model into a faster and more efficient

31

code. Next, we discuss the architecture of the user-space scheduler to adapt the IL

policies using the pre-trained weights in Section 6.5. Finally, Section 6.6 describes the

target SoC on which the framework with the new scheduling policy will be deployed.

This approach can be extended to other IL policies since the only difference is

the estimation function computed to predict a resource. Furthermore, it can be

generalized for different platforms by updating the features.

Algorithm 6 Algorithm for the proposed IL Models
1: procedure Compute IL Model

2: for each task in ready queue do

3: for each resource do

4: prepare the inputs for IL models

5: using features run prediction for any IL model

6: if task supports predicted resource then

7: map task to resource

8: end if

9: end for

10: end for

11: end procedure

6.1 Building the Oracle

An Oracle is a collection of all system states and the corresponding scheduling

decisions [30]. A dataset contains the features and labels for corresponding states

and decisions in the Oracle. Some examples of system variables are PE availability

times, the situation of the scheduling queues, system utilization, and system load.

The most relevant variables are often chosen as input features to the models.

32

The Oracle uses a scheduling policy π that makes optimal scheduling decisions.

The policy that the Oracle uses makes optimal scheduling decisions by traversing

the pool of ready tasks to compute the best execution placement. According to the

experimental results carried through [11, 61], earliest task first (ETF) is a compu-

tational expensive heuristic scheduling policy that is proven to perform similarly to

Integer Linear Programming [6], a mathematical approach for optimization. Gen-

erating data is accomplished using a domain-specific simulator DS3. The simulator

allows for different SoC configurations for a variety of Arm processors (Cortex-A53,

Cortex-A7, and Cortex-A15) and general-purpose hardware accelerators (FFT, IFFT,

and scrambler). The simulator provides different scheduling algorithms. The user can

select a scheduling algorithm for the expert through the configuration file, some of

the currently available policies are ETF, minimum execution time (MET), shortest

task first (STF) and other table-based schedulers.

ETF iterates over all ready-to-run tasks and finds the combination of location and

order that satisfies the earliest possible finish time; this heuristic also, if necessary, can

account for the communication overheads (inter-memory, PE to PE). However, the

overhead (cost of time that the computation introduces) that ETF generates, provided

that outside the simulator, we can not decouple the overhead from the execution

time, EFT will not perform as simulated. Compared to other optimal schedulers, for

instance, integer-linear-programming (ILP) and constraint programming (CP) [14],

ETF achieves similar results and is a more straightforward approach to implement.

For this study, ETF is the scheduling policy used to generate the Oracle. The Oracle

generation is followed by the generation of a dataset which includes features for each

system state and the corresponding label to train ML models.

33

6.2 Describing the Architecture of the ML Model

We introduce two ML scheduling models: IL-DNN and IL-DT. Both share the

same architecture (features, attributes) and are trained using the same data previously

generated by the Oracle; however, the approach to build and train each model is

different.

Table I: Table of Static and Dynamic Features of the ML Models From Task Ti’s

Point of View

Feature Feature Feature Number of

Type Description Category Features

Static
Execution time of task Ti in the DAG Task 2

Predecessor ID(s) of task Ti Application 5

Dynamic
Earliest time when PE is ready for task execution PE 5

Predecessor ID(s) assigned PE of task Ti Application 5

Total 17

The proposed ML models receive 17 inputs, a combination of static and dynamic

system parameters and task attributes, as seen in Table I. Extracting attributes from

applications is possible since this study considers applications that are well-defined

and are characterized using DAGs. Therefore, expected execution time, predeces-

sor(s), and communication costs are known parameters before scheduling. Table I

below summarizes the input features organized by index:

Table II: Summary of the Features Inputs of the Proposed IL Policies

1 2 3 4 5 6 7 8 ... 12 13 ... 17

RA1 RA2 RA3 RA4 RA5 ETcore ETaccel PID1 PIDn PID5 PAID1 PAIDn PAID5

34

The resource availability (RAi) for each PE: core Ci = PE1,2,3 accel Ai = PE4,5

and the expected execution time (ET) of task Ti on core Ci and accelerator Ai. The

predecessor(s) id (PIDi) of task Ti, up to a maximum of five predecessors, and the

predecessor assigned id (PAIDi) of task Ti, up to a maximum of five predecessors.

6.3 Summary of Training Results

The dataset that contains the features and labels for corresponding states and

decisions in the Oracle is used to train the IL models. Typically in machine learning,

the dataset containing the features is split into the original dataset’s subsets. The

training is performed, utilizing 80% of the data for training and the remaining for

testing. Furthermore, the larger dataset containing the training data is split into 80%

of the data for training and 20% of the data for validation. The dataset is composed

of approximately 220,000 entries of features and labels, and it is used throughout this

study.

The model will train for several epochs in batches of data. Once the model

has completed training, the model is tested using the validation dataset (a small

portion of the data previously not exposed to the model) to reveal an estimate of the

performance. Finally, the data is tested with the test dataset (larger than validation)

to reveal the final accuracy. We calculate the final accuracy value is by averaging the

results over multiple runs to achieve a reliable prediction score.

Table III: Accuracy Comparison of the ML Models Based on Test Data

Scheduling Accuracy (%) Mean Absolute Error

IL-DNN 97.31 0.02

IL-DT 89.92 0.05

35

We use a 12-core Intel(R) Xeon(R) CPU E5-2630 server (@ 2.60GHz) for training.

Table I compares the classification performance (accuracy and MAE) between the IL-

DNN and the IL-DT. Although there is a significant drop in the prediction accuracy,

IL-DT results in lower overhead and a much simpler model to export for hardware

integration as compared to IL-DNN. Several metrics describe the statistical behavior,

e.g., mean absolute error (MAE) measures the average magnitude of the errors in

a set of predictions. In general, we summarize and assess the quality of a machine

learning model by computing the MAE. When a model is trained, the MAE indicates

the average error of our predictions over a set of data.

6.3.1 Training the Deep Neural Network

Neural networks are effective for predictive modeling, but many configuration

parameters should be tuned thoroughly through experience and trial & error. Using

Keras [36] public set of libraries engineered for Python, the DNN is built from scratch.

Keras developed a set of high-level APIs for building and training deep learning

models. Keras has a sequential model builder that allows the user to stack layers

with different configurations (e.g., number of neurons, and activation function). Once

the model is compiled, a naive, fully connected neural network model is constructed.

Figure 6 shows the configuration of the neural network used for the IL-DNN policy.

The following equation: ŷ = Σn
i=1ωi ∗ χi, where ŷ is the approximated output, χi

are the inputs and ωi the weights. During the training phase, the model will process

inputs generated by the Oracle, and will adjust its weights ωi in steps specified by the

learning rate (lr), the lr of the compiled model used in the evaluations is lr = 0.001,

the Keras compiled model iterated for 400 epochs and trained for over two hours.

ReLU [7] is the activation function for the neurons in the inner-layers. It has

shown higher accuracy percentages during testing and validation than Sigmoid or

36

Figure 6: (Left) Representation of the Fully-Connected DNN. (Right) Table Summa-

rizing Architecture Insight

Linear (Since the final implementation is going to be in C, we want a small and simple

function). ReLU is linear for all positives values and zeroes for all negative values.

There are many reasons to pick ReLU as the activation function. ReLU is cheap

to compute, converges fast, and is sparsely activated. Sparsely activated meaning

that, since negatives inputs are treated as zero, it is likely for some neurons to not

activate at all, emulating the behavior of biological neural networks. Softmax [59]

is used as the activation function for the output layer. Softmax is used to ensure

that the neurons’ output values are in the range of [0,1], representing the predicted

probabilities. Therefore the neuron containing the highest probability will correspond

to the predicted PE.

The IL-DNN machine learning model achieves a maximum of 97.7% accuracy.

Many multi-class classification problems use tools like confusion matrices and loss/ac-

37

Figure 7: (Left) Plot of Model Accuracy Using the Training and Validation Datasets.

(Right) Plot of Model Loss Function Using the Training and Validation Datasets

curacy function to illustrate the performance and have a better understanding of the

fine-tuning. Figure 7 shows the accuracy and the loss function development over 400

epochs of the IL-DNN model. The figure in the left corresponds to the accuracy

of the training (blue) and the validation (orange) dataset. Similarly, the rightmost

figure corresponds to the cross-entropy loss function of the training (blue) and the

validation (orange) dataset. Both cross-entropy and accuracy are showing good con-

vergence behavior. Despite some irregularities, after 150 epochs, the neural network

converges. Given the shoulder-shaped figure that appears on both graphs, it might

suggest that the model is overfitted. To verify this, we introduced random tasks to

the model and added noise to the feature values for the predictions on the real system.

We conclude that tasks that can be executed on a fixed-function accelerator should

always be predicted in such a resource. When performed the evaluations, we observed

how the tasks that should be accelerated were getting assigned to such resources.

The classification model’s performance over a set of known valid values is described

using a confusion matrix. Figure 8 depicts the summary of the class prediction results

38

Figure 8: DNN Confusion Matrix Showing Accuracy and Error per Class

for this particular classification problem. Confusion matrices are useful to determine

the classification probabilities across the different classes, the accuracy per class,

and the precision. Testing the model with unseen data illustrates how the model

guarantees, at least, 93% accuracy for any class.

6.3.2 Training the Decision Tree

Decision trees have two key steps: Induction and Pruning. During the Induction

step, the DT structure is built. That is, the set of hierarchical decisions are established

at each node using the model’s input features. Pruning is the process of removing

unnecessary parts of the structure, making the model less prone to overfitting and

simplifying its complexity. Decision trees can be easily ported to another platform.

Once the model is trained, it is used in the emulation framework [61] by converting

the hierarchical questions at each node into if-else statements.

C4.5 (J48) is an algorithm used to generate a decision tree developed by Ross

Quinlan in his book [79]. C4.5 is an extension of Quinlan’s earlier ID3 (Iterative

39

Figure 9: Weka Software GUI: Example of Training Data Used for the J48 Algorithm

Dichotomiser 3 [45]) algorithm. The decision trees generated by C4.5 is used for

classification; for this reason, C4.5 is often referred to as a statistical classifier. At

each decision of the tree, C4.5 chooses the attribute of the data that most effectively

splits its set of samples into subsets corresponding to the different classes.

J48 is an open source java implementation of the decision tree algorithm C4.5 [79],

developed by a research team at the University of Waikato, through their data mining

software: Weka [39]. Weka provides a comprehensive collection of machine learning

algorithms, data preprocessing tools, and a user interface to build and test ML models.

Weka is recognized as a landmark system in the machine learning community. It can

40

be downloaded through GitHub [100].

Figure 10: DT Confusion Matrix Showing Accuracy and Error per Class

Similarly to the previous section, IL-DT uses the same dataset for its training.

Figure 9 is an example of the interface that Weka provides, from left to right, each

bar graph corresponds to a label: the blue graph represents core 0, the red is fft 1,

the cyan is fft 2, the green is core 1 and the pink represents core 2. Note how the

classes are equally distributed amongst all the different processing elements, meaning

that the dataset is not heavily targeted to a specific PE. The IL-DT machine learning

model achieves a maximum of 89.9% accuracy, as shown in Figure 10.

6.4 Converting the ML Model to a Low Abstraction Language

At this point, the machine learning models are trained and have their weights

tuned. New ML models are instantly deployed using the trained weights. The ob-

jective is to port the trained model from high-level abstraction language to C so

that it is embedded in the emulation framework. Since Python and Java (used by

Weka) are high abstraction programming languages, they are typically outperformed

41

by lower abstraction languages like C [28]. The drawback of a lower abstraction lan-

guage is the increased complexity. For instance, coding neural networks in Python

is straightforward in comparison with C. A code-generator transforms Python to

C/C++ while maintaining the functional equivalence. For example, AI Transformer

reads the weights previously-stored from Keras and creates a library with a set of API

that communicates with the model. The software AI Transformer is a cloud-based

code generator (under MIT License) for deep neural network models. Given a DNN

model, it generates C code optimized for embedded systems and edge computing de-

vices. Similarly, there is a software tool to convert decision trees into a hierarchical

set of if-else statements. Given a model built through Weka, Weka2c [47] converts a

decision tree, similar to AI Transformer (set of API), to communicate with the ML

model.

6.5 Extending the User-Space Emulation Framework (USEF)

Chapter 3 introduced a discussion between kernel and user-space schedulers. The

work published with the new generation emulation framework [61] has proven better

performance than CFS for discretized applications. This framework enables the ex-

ecution of applications modeled as DAGs. Version 1.0 of the emulation framework

(the version is coded in C) offers a user-space emulation framework structured the

following way: one processor, core 0, will be designated the overlay processor (OP),

the key to this approach is that the processor has the particular task of fetching the

next task, assign that task to a particular resource while the rest of the cores are

waiting to receive jobs, the remaining cores act as worker threads (WT) and are re-

sponsible for executing a specific function of a job. To generalize this approach: it is

possible to have as many as N-1 cores individually assigned as WT with one core as

the OP. Worker threads are either CPUs or custom accelerators, ideally mapping one-

42

to-one processing elements with threads should produce better results. However, this

approach is limited. To communicate with custom accelerators, we require a CPU.

For example, Xilinx uses direct memory address with protocol AXI (DMA-AXI) to

communicate with internal blocks or peripherals. Having accelerator awareness is of

interest to this thesis. Hence it was decided to time-share a resource between a worker

thread corresponding to a CPU, and a worker thread corresponding to an accelerator.

Figure 11: Extending the User-Space Emulation framework. The Proposed Approach

has Five Worker Threads (WT), one Overlay Processor (OP) and Two FFT Acceler-

ators

Figure 11 depicts how this customized version of the user-space emulation frame-

work uses one Arm Cortex-A53 processor as the OP, three Arm Cortex-A53 processor

43

as WT (WT0, WT1, WT2, and WT3) and two FFT fixed-function accelerators also

as WT (WT4 and WT5). WT are treated as individual Linux processes. Since the

OS is Linux-based, we rely on its default scheduler to maximize the run-time of the

USEF. The framework will hoard 99% of the CPU. Previously mentioned in Chap-

ter 3, the scheduling policy FIFO will execute until completion or until the CPU is

yield. Assigning the WT to be scheduled in the OS as RT-FIFO thread with priority

equal to 99, ensures the total completion of the task.

Four wireless and radar streaming applications (Chapter 7 introduces the domain-

specific applications) that are used to evaluate the model’s performance. Naturally,

the same applications (similar task structure and expected execution times) are used

for the Oracle. These applications are coded in C and used in several studies [11, 53,

61, 88].

6.6 The System: Zynq UltraScale+ MPSoC ZCU102

The scheduling policies integrated with the extended USEF are evaluated on

a popular commercial heterogeneous platform: Xilinx Zynq Ultrascale+ MPSoC

ZCU102 [4]. This SoC features a quad-core Arm Cortex-A53 running up to 1.5GHz.

Besides, this SoC has 16nm FInFET+ programmable logic. The device utilizes spe-

cialized processing elements to excel in wireless and communication applications.

The SoC is capable of running an entire Linux operating system. Using PetaL-

inux [109], the OS is customized so that the system is ready to execute programs

and other functionalities. PetaLinux will generate a custom Board Support Package

(BSP), including drivers and IP Cores [108], that allow for fast development. The

hardware accelerators are implemented using programmable logic. Using memory-

mapped streaming interfaces, the SoC communicates with the custom FFT acceler-

ators. Direct Memory Address (DMA) enables the transmissions between the accel-

44

erator’s buffers and the application user-space. Linux OS treats it as a module and

will be able to perform read or write operations. Linux OS requires a driver to read-

/write from the FFT accelerator, the user-space direct memory address driver [48],

allocates contiguous memory blocks in the kernel space as DMA buffers and makes

them available from the user-space.

45

Chapter 7

EXPERIMENTAL RESULTS

This Chapter presents the experimental setup and results of the proposed schedul-

ing framework. First, we introduce the domain applications used for evaluation of

the proposed approach in Section 7.1. Then, Section 7.2 and Section 7.3 evaluate the

performance of the proposed IL-based scheduling approach. We compare deep neural

network (IL-DNN) and decision tree (IL-DT, based on J48 [79] algorithm) with multi-

ple heuristics and list-scheduling algorithms: MET (minimum execution time), EFT

(earliest finish time) and the Oracle (ETF, earliest task first). Finally, Section 7.3

describes the study of the computational complexity of the proposed algorithms.

7.1 Domain-Specific Applications

This section presents the domain-specific applications that are used for the eval-

uation of the proposed IL-based scheduling approach. More specifically, we choose

applications from the wireless communication and radar system domains. From wire-

less communications, we choose the popular WiFi protocol based transmitter and

receiver applications [23, 11, 53]. Pulse Doppler and range detection are applications

from radar systems chosen for evaluation [62, 29, 11, 53]. The pulse Doppler technique

is used to calculate the speed of a moving object. In contrast, the range detection

technique calculates the distance of a moving object with respect to a stationary ob-

ject. The tasks in all these four applications, along with their execution times on Arm

Cortex-A53 and hardware accelerator (wherever supported) are detailed in Table IV.

The target applications are modeled as directed acyclic graphs (DAGs) in both DS3

and USEF.

46

Table IV: Execution Time Profiles of Domain-Specific Applications on Arm Cortex-

A53 Core and FFT Accelerator [11]

Application Task Execution time (µs)

Arm Cortex-A53 FFT Acc.

WiFi-Tx

Scrambler 2

Encoder 20

Interleaver 8

QPSK Modulation 15

Pilot Insertion 4

Inverse-FFT 225 16

CRC 5

WiFi-Rx

Match Filter 15

Payload Extraction 5

FFT 218 12

Pilot Extraction 5

QPSK Demodulation 79

Deinterleaver 10

Decoder 1983

Descrambler 2

RangDet

FFT 68 30

Vector Multiplication 52

Inverse-FFT 68 30

Max Detection 10

PD

FFT 30 6

Vector Multiplication 30

Inverse-FFT 30 6

Magnitude Computation 25

FFT Shift 6

47

The four applications (WiFi-TX and WiFi-RX from wireless communications, and

Pulse Doppler and Range Detection from radar systems) are used to construct work-

loads for evaluation of our approach. The target applications significantly differ from

each other in terms of the number of tasks, types of kernels, individual task execution

times, application execution time and number of tasks that are supported on hard-

ware accelerators. For example, WiFi-TX and WiFi-RX applications contain 8, and

10 tasks respectively, with one task in each application supported on a hardware ac-

celerator (Table V). Pulse Doppler and range detection applications are decomposed

into 515 and 7 tasks, respectively (Table V). There are 256 tasks in pulse Doppler

supported by hardware accelerators and one task in the range detection application

can be accelerated in hardware

This rich mixture of applications with widely varying characteristics are useful

in representing a large corpus of applications in the chosen domains. The proposed

IL-based scheduler aims to schedule simultaneous streaming domain-specific applica-

tions. In this context, we construct workloads that are a random mixture of the four

target applications, parameterized by different injection rates. The characteristics of

one of the workloads used for evaluation is presented in Table V. The injection rates

of the applications are varied, as indicated by the number of frames in the workload

in the table.

7.2 Evaluation of the IL Policies on USEF

We evaluate the proposed IL scheduling policies using the user-space emulation

framework [61]. The emulation framework is cross-compiled to work on a commercial

SoC, the Xilinx Ultrascale+ ZCU102. To create a mix of workloads combining stream-

ing applications, USEF provides a set of control knobs that inject jobs at a specified

rate with a particular probability. The framework will generate logs of information,

48

Table V: Characteristics of the Target Domain-Specific Applications and the Work-

load Used for Evaluation

Application # of tasks Appearances in workload Avg. generation time

in application # frames # tasks of data frame (µs)

WiFi-Tx 8 199 1592 42.5

WiFi-Rx 10 199 1990 1230.0

RangeDet 7 99 693 542.0

PD 515 49 25235 2200.0

collecting execution time, and scheduling decisions for the analysis.

Table VI compares the overhead and storage of the proposed policies. IL-DNN

utilizes lower storage memory, and IL-DT has a lower over-head.

Table VI: Scheduling Overhead Cost and Memory Comparison of The Proposed IL

Policies on Single Pulse Doppler Frame

Policy Avg. Overhead(µs) on Arm Cortex-A53 Size (KB)

IL-DNN 2.7 3.4

IL-DT 0.7 27.7

Computing the inference of a DNN on a single Arm Cortex-A53 is not the most

efficient solution in terms of power and execution time. We have explored implement-

ing the computation of the deep neural network on a custom accelerator. Preliminary

studies indicate that the DNN computation is completed in 99 cycles on a custom ac-

celerator. A single calculation could be completed in 100 ns, assuming a 1 GHz target

frequency. Figure 12 shows how the IL-DNN(Acc) implementation decreases by 98%

the overhead compared to the IL-DNN(Arm). Moreover, IL-DNN(Acc) computes

49

with the lowest overhead amongst the rest of the schedulers.

The workload used in Figure 12 contains a mix of 500+ frames of four interleaved

wireless applications: WiFi-Tx, WiFi-Rx, RangeDet, and PD. The workload has an

average injection rate of 5 jobs/msec. This workload is just a representation of a

wireless scenario where different communication systems transmit and receive data

simultaneously over time. Table VII contains a summary of the number of frames,

the number of tasks, and the number of applications injected during this evaluation.

M
ET

IL
-D
NN

(A
rm
)

IL
-D
NN

(A
cc)

IL
-D
T

EF
T

Or
ac
le(
ET
F)

CF
S

0

1

2

3

4

5

6

0.34

5.3

0.1

1.1
0.83

1.49
1.2

A
vg

.
O

ve
rh

ea
d
(µ

s)
p
er

sc
h
ed

u
li
n
g

d
ec

is
io

n Workload Mix

Figure 12: Overhead Study of the Different Scheduling Policies

7.3 Comparison of Scheduling Policies

Execution time is one of the most compelling features when evaluating the per-

formance of a scheduler. Figure 13 represents the average throughput for several

50

scheduling policies. Each point of the graph corresponds to a different workload.

Each workload varies in the number of frames injected from each application. The X-

axis represents the normalized throughput that ranges from 1 job/ms to 15 jobs/ms.

To keep a similar behavior when varying the throughput, we established an injection

ratio. 4:2:1, for every four WiFi-Tx and WiFi-Rx applications, two range detection,

and one pulse Doppler application are injected.

The proposed IL-DNN performs within 5% of the Oracle and the rest policies

for lower throughput. In contrast, IL-DT performs better than the Oracle for all

injection rates. However, these results are while computing the scheduling policy

on Arm Cortex-A53. When the DNN is implemented on a custom accelerator, we

estimate that IL-DNN achieves larger speed-ups than IL-DT. Therefore, although

these are experimental results, the DNN running on a custom accelerator executes

jobs faster than the rest of the scheduling policies.

Overall, the IL-DT and IL-DNN regularly assign accelerator-supported tasks to

the accelerator when the resource is free. Pulse Doppler contains more than 200

tasks that can be accelerated. With jobs like pulse Doppler, the system must ensure

accurate task-accelerated decisions. This SoC has two custom accelerators and four

homogeneous cores. Figure 13 compares the execution performance of the scheduling

policies to the ETF/Oracle. IL-DT performs better than the Oracle because IL-DT

matches within 10% the accuracy of the Oracle, and computes a solution faster than

ETF. The 10% error does not affect task-accelerated decisions. As the injection rate

increases, IL-DT seems to perform better than the Oracle. IL-DT has an average job

speed-up of 1.17× from the Oracle. IL-DNN(Arm) is estimated to have an average

speed-up of 1.21× from the Oracle.

51

Figure 13: Comparison of the Average Job Execution Time for Varying Throughput

Across Different Scheduling Policies

7.4 Algorithm Complexity Analysis

This section compares the computational complexity of the algorithm used for

the Oracle/ETF with the complexity introduced by the proposed IL solutions. The

function describing the performance represents an upper bound, determined by the

algorithm’s worst-case performance. As discussed in Chapter 3, ETF performs task

re-ordering. The algorithm traverses the list of ready queues twice, and for each task,

it compares the execution on each PEs. Considering n as the number of tasks inside

the ready queue, and m, the number of processing elements in a platform. ETF has a

52

time complexity of O(n2m). On the other hand, the IL policies only need to compute -

in constant time - a single output (for each of the tasks inside the ready queue) based

on the feature inputs. Because of this algorithm’s time complexity, the IL-DNN

achieves higher speed-ups than Oracle, when the DNN inference is implemented on

the accelerator. Both IL policies have a time complexity of O(nm).

53

Chapter 8

CONCLUSION AND DIRECTION FOR FUTURE WORKS

This Chapter summarizes the work performed in this study and concludes the the-

sis. In this study, we explored the challenge of task scheduling and task acceleration

in radio and wireless networks. Our proposed framework is capable of building, de-

ploying, and evaluating machine learning models on embedded systems. We proposed

two machine learning-based algorithms integrated with decision trees and deep neural

network techniques to solve the problem. The results collected through this study

show how machine learning benefits scheduling. IL policies are capable of replicating

the decisions of an Oracle with more than 97% accuracy. Results demonstrate how

the IL-DT performs faster than the Oracle when computed on a core. In contrast,

IL-DNN occupies less memory space and has the potential to perform better than

the other policies when computed on a custom accelerator [76], a trade-off between

latency and memory. The proposed IL-based scheduling approach provides significant

potential for future research in this space. For instance, as applications and comput-

ing platforms evolve rapidly, a methodology to update the weights of the machine

learning model online is an interesting topic of future study. This methodology will

enable the design of a lifelong-learning scheduler.

Several studies, tests, and evaluations can be addressed by future work. For

example, scheduling policies could be dynamically switched, if we determine ranges

of operations where other scheduling policies outperform the rest; math-intensive and

floating-point operations are computed faster in customized resources rather than in

basic processing units. We are also planning to integrate the hardware accelerators

that executes the scheduling policy with the user-space scheduling framework. Finally,

54

The idea of a generic approach where custom fixed-point accelerators help improve

the performance and reduce the scheduling policy overhead is perhaps the way to

make machine learning in scheduling a reality.

55

REFERENCES

[1] AI Transformer. [Online] http://www.aitransformer.com/, accessed 8 Jul.
2020.

[2] Linux processes, threads and LWPs. [Online] https://www.thegeekstuff.
com/2013/11/linux-process-and-threads/, accessed 7 Feb 2020 , au-
thor=Himanshu Arora, year=2013.

[3] Process Creation in Linux. [Online] https://www.tldp.org/LDP/tlk/kernel/
processes.html, accessed 12 July 2020, author=David A Rusling, year=1999.

[4] ZCU102 Evaluation Board. https://www.xilinx.com/support/
documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf, Ac-
cessed 3 Mar. 2019.

[5] D. M. Abdelkader and F. Omara. Dynamic task scheduling algorithm with load
balancing for heterogeneous computing system. Egyptian Informatics Journal,
13(2):135–145, 2012.

[6] I. Adler, M. G. Resende, G. Veiga, and N. Karmarkar. An implementation
of karmarkar’s algorithm for linear programming. Mathematical programming,
44(1-3):297–335, 1989.

[7] A. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[8] Z. H. Ahmed. Genetic algorithm for the traveling salesman problem using
sequential constructive crossover operator. International Journal of Biometrics
& Bioinformatics (IJBB), 3(6):96, 2010.

[9] Ankita Garg. Real Time Kernel Scheduler, 2009. [Online] https://www.
linuxjournal.com/article/10165, accessed 15 Aug. 2019.

[10] H. Arabnejad and J. G. Barbosa. List Scheduling Algorithm for Heterogeneous
Systems by an Optimistic Cost Table. IEEE Trans. on Parallel and Distributed
Systems, 25(3):682–694, 2013.

[11] S. E. Arda, A. Krishnakumar, A. A. Goksoy, N. Kumbhare, J. Mack, A. L.
Sartor, A. Akoglu, R. Marculescu, and U. Y. Ogras. Ds3: A system-level
domain-specific system-on-chip simulation framework. IEEE Transactions on
Computers, 69(8):1248–1262, 2020.

[12] O. Arnold and G. Fettweis. On the impact of dynamic task scheduling in het-
erogeneous mpsocs. In 2011 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, pages 17–24. IEEE, 2011.

[13] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. Starpu: a unified
platform for task scheduling on heterogeneous multicore architectures. Concur-
rency and Computation: Practice and Experience, 23(2):187–198, 2011.

56

[14] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling: applying
constraint programming to scheduling problems, volume 39. 2012.

[15] S. Baskiyar and K. K. Palli. Low Power Scheduling of DAGs to Minimize Finish
Times. In Y. Robert, M. Parashar, R. Badrinath, and V. K. Prasanna, editors,
High Performance Computing - HiPC 2006, Lecture Notes in Computer Science,
pages 353–362. Springer Berlin Heidelberg, 2006.

[16] T. Beisel, T. Wiersema, C. Plessl, and A. Brinkmann. Cooperative multitasking
for heterogeneous accelerators in the linux completely fair scheduler. In ASAP
2011-22nd IEEE International Conference on Application-specific Systems, Ar-
chitectures and Processors, pages 223–226. IEEE, 2011.

[17] T. Beisel, T. Wiersema, C. Plessl, and A. Brinkmann. Programming and
scheduling model for supporting heterogeneous accelerators in linux. In Work-
shop on Computer Architecture and Operating System Co-design (CAOS), 2012.

[18] L. Benini and G. DeMicheli. Dynamic power management: design techniques
and CAD tools. Springer Science & Business Media, 2012.

[19] G. Bhat, G. Singla, A. K. Unver, and U. Y. Ogras. Algorithmic optimization
of thermal and power management for heterogeneous mobile platforms. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26(3):544–557,
2017.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM
SIGARCH computer architecture news, 39(2):1–7, 2011.

[21] L. F. Bittencourt, R. Sakellariou, and E. R. Madeira. DAG Scheduling Using
a Lookahead Variant of the Heterogeneous Earliest Finish Time Algorithm. In
Euromicro Conference on Parallel, Distributed and Network-based Processing,
pages 27–34, 2010.

[22] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira. DAG scheduling
using a lookahead variant of the heterogeneous earliest finish time algorithm.
In 2010 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing, pages 27–34, Feb 2010.

[23] D. W. Bliss and S. Govindasamy. Adaptive Wireless Communications: MIMO
Channels and Networks. Cambridge University Press, 2013.

[24] P. Bogdan, F. Chen, A. Deshwal, J. R. Doppa, B. K. Joardar, H. Li, S. Nazarian,
L. Song, and Y. Xiao. Taming extreme heterogeneity via machine learning based
design of autonomous manycore systems. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis Companion,
pages 1–10, 2019.

57

[25] P. Bogdan, R. Marculescu, and S. Jain. Dynamic power management for mul-
tidomain system-on-chip platforms: An optimal control approach. ACM Trans-
actions on Design Automation of Electronic Systems (TODAES), 18(4):1–20,
2013.

[26] D. P. Bovet and M. Cesati. Understanding the Linux Kernel: from I/O ports
to process management. 2005.

[27] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, et al. A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. Journal of Parallel and Distributed computing,
61(6):810–837, 2001.

[28] J. M. Bull, L. A. Smith, C. Ball, L. Pottage, and R. Freeman. Benchmarking
java against c and fortran for scientific applications. Concurrency and Compu-
tation: Practice and Experience, 15(3-5):417–430, 2003.

[29] A. R. Chiriyath, B. Paul, and D. W. Bliss. Radar-communications convergence:
Coexistence, cooperation, and co-design. IEEE Transactions on Cognitive Com-
munications and Networking, 3(1):1–12, 2017.

[30] S. Choudhury, A. Kapoor, G. Ranade, and D. Dey. Learning to gather infor-
mation via imitation. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 908–915. IEEE, 2017.

[31] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Rosing. Evaluating the
impact of job scheduling and power management on processor lifetime for chip
multiprocessors. In Proceedings of the eleventh international joint conference
on Measurement and modeling of computer systems, pages 169–180, 2009.

[32] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. SPARTA: Runtime task
allocation for energy efficient heterogeneous manycores. In 2016 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+
ISSS), pages 1–10. IEEE, 2016.

[33] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task systems.
SIAM Journal on Discrete Mathematics, 2(4):473–487, 1989.

[34] P. Flach. Machine learning: the art and science of algorithms that make sense
of data. 2012.

[35] D. Green et al. Heterogeneous Integration at DARPA: Pathfinding and Progress
in Assembly Approaches. ECTC, May, 2018.

[36] A. Gulli and S. Pal. Deep learning with Keras. 2017.

[37] U. Gupta, R. Ayoub, M. Kishinevsky, D. Kadjo, N. Soundararajan, U. Tursun,
and U. Y. Ogras. Dynamic power budgeting for mobile systems running graphics
workloads. IEEE Transactions on Multi-Scale Computing Systems, 4(1):30–40,
2017.

58

[38] U. Gupta, S. K. Mandal, M. Mao, C. Chakrabarti, and U. Y. Ogras. A deep q-
learning approach for dynamic management of heterogeneous processors. IEEE
Computer Architecture Letters, 18(1):14–17, 2019.

[39] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The weka data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[40] H. P. Hofstee. Power efficient processor architecture and the cell processor.
In 11th International Symposium on High-Performance Computer Architecture,
pages 258–262. IEEE, 2005.

[41] C. Hsieh, A. A. Sani, and N. Dutt. SURF: Self-aware Unified Runtime Frame-
work for Parallel Programs on Heterogeneous Mobile Architectures. In 2019
IFIP/IEEE 27th International Conference on Very Large Scale Integration
(VLSI-SoC), pages 136–141, 2019.

[42] J. Hu and R. Marculescu. Communication and task scheduling of application-
specific networks-on-chip. IEE Proceedings-Computers and Digital Techniques,
152(5):643–651, 2005.

[43] J. Hu and R. Marculescu. Energy-and performance-aware mapping for regular
noc architectures. IEEE Transactions on computer-aided design of integrated
circuits and systems, 24(4):551–562, 2005.

[44] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling precedence
graphs in systems with interprocessor communication times. SIAM Journal on
Computing, 18(2):244–257, 1989.

[45] Jack Park. Iterative Dichotomiser 3, 2017. [Online] https://golden.com/
wiki/Iterative_Dichotomiser_3, accessed 5 Feb. 2020.

[46] A. Jantsch, N. Dutt, and A. M. Rahmani. Self-awareness in systems on chip—a
survey. IEEE Design & Test, 34(6):8–26, 2017.

[47] Josh R. Weka to C, 2011. [Online] https://github.com/raddy/weka2c, ac-
cessed 7 Feb. 2020.

[48] Kawazome Ichiro. User DMA Buffer, 2016. [Online] https://github.com/
ikwzm/udmabuf, accessed 5 Nov. 2019.

[49] A. S. Khot and R. K. Mishra. Learning Functional Data Structures and Algo-
rithms. Packt Publishing Ltd, 2017.

[50] R. G. Kim et al. Imitation Learning for Dynamic VFI Control in Large-Scale
Manycore Systems. IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, 25(9):2458–2471, 2017.

[51] J. Kobus and R. Szklarski. Completely fair scheduler and its tuning. draft on
Internet, 2009.

59

[52] R. Kohavi and J. R. Quinlan. Data mining tasks and methods: Classification:
decision-tree discovery. In Handbook of data mining and knowledge discovery,
pages 267–276. 2002.

[53] A. Krishnakumar, S. E. Arda, A. A. Goksoy, S. K. Mandal, U. Y. Ogras, A. L.
Sartor, and R. Marculescu. Runtime task scheduling using imitation learning
for heterogeneous many-core systems. arXiv preprint arXiv:2007.09361, 2020.

[54] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-isa heterogeneous multi-core architectures: The potential for processor
power reduction. In Proceedings. 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2003. MICRO-36., pages 81–92. IEEE, 2003.

[55] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors. IEEE Trans. on Parallel
and Distributed Systems, 7(5):506–521, 1996.

[56] H. Leontyev and J. H. Anderson. Tardiness bounds for fifo scheduling on multi-
processors. In 19th Euromicro Conference on Real-Time Systems (ECRTS’07),
pages 71–71. IEEE, 2007.

[57] J. Li, X. Ma, K. Singh, M. Schulz, B. R. de Supinski, and S. A. McKee. Ma-
chine learning based online performance prediction for runtime parallelization
and task scheduling. In 2009 IEEE international symposium on performance
analysis of systems and software, pages 89–100. IEEE, 2009.

[58] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A survey of deep
neural network architectures and their applications. Neurocomputing, 234:11–
26, 2017.

[59] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolu-
tional neural networks. In ICML, volume 2, page 7, 2016.

[60] R. Love. Linux kernel development. 2010.

[61] J. Mack, N. Kumbhare, U. Y. Ogras, and A. Akoglu. User-space emulation
framework for domain-specific soc design. arXiv preprint arXiv:2004.01636,
2020.

[62] P. R. Mahapatra and D. S. Zrnic. Practical algorithms for mean velocity esti-
mation in pulse doppler weather radars using a small number of samples. IEEE
transactions on geoscience and remote sensing, (4):491–501, 1983.

[63] G. Malewicz, A. L. Rosenberg, and M. Yurkewych. Toward a theory for
scheduling dags in internet-based computing. IEEE Transactions on Comput-
ers, 55(6):757–768, 2006.

[64] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, and U. Y. Ogras. An energy-
aware online learning framework for resource management in heterogeneous
platforms. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 25(3):1–26, 2020.

60

[65] S. K. Mandal, G. Bhat, C. A. Patil, J. R. Doppa, P. P. Pande, and U. Y. Ogras.
Dynamic resource management of heterogeneous mobile platforms via imitation
learning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(12):2842–2854, 2019.

[66] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource Management with
Deep Reinforcement Learning. In ACM Workshop on Hot Topics in Networks,
pages 50–56, 2016.

[67] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh.
Learning Scheduling Algorithms for Data Processing Clusters. In ACM Special
Interest Group on Data Communication, pages 270–288. 2019.

[68] Mark Twain. Monolithic Kernels, 2020. [Online] https://hackinbits.com/
articles/linux-kernel-explained-i, accessed 2 Feb. 2020.

[69] Matthew Reilly. Trends in Multicore, 2020. [Online] https:
//archive.ll.mit.edu/HPEC/agendas/proc08/Day1/16-Day1-Session2-
Reilly-abstract.pdf, accessed 10 Jan. 2020.

[70] W. Mauerer. Linux R© Kernel Architecture. 2008.

[71] M. Minsky and S. A. Papert. Perceptrons: An introduction to computational
geometry. MIT press, 2017.

[72] M. S. Mollison and J. H. Anderson. Bringing theory into practice: A userspace
library for multicore real-time scheduling. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 283–292.
IEEE, 2013.

[73] M. Nabelsee, A. Busse, H. Parzyjegla, and G. Mühl. Load-aware scheduling
for heterogeneous multi-core systems. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 1844–1851, 2016.

[74] U. Y. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive feed-
back control for networks-on-chip with multiple clock domains. In 2008 45th
ACM/IEEE Design Automation Conference, pages 614–619, 2008.

[75] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung. Design and
management of voltage-frequency island partitioned networks-on-chip. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 17(3):330–341,
2009.

[76] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer. Timeloop: A sys-
tematic approach to dnn accelerator evaluation. In 2019 IEEE international
symposium on performance analysis of systems and software (ISPASS), pages
304–315. IEEE, 2019.

61

[77] S. Pasricha, R. Ayoub, M. Kishinevsky, S. K. Mandal, and U. Y. Ogras. A
survey on energy management for mobile and iot devices. IEEE Design & Test,
2020.

[78] M. Pinedo. Scheduling, volume 29. 2012.

[79] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[80] A. Roca, S. Rodriguez, A. Segura, K. Marquet, and V. Beltran. A linux kernel
scheduler extension for multi-core systems. In 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC),
pages 353–362. IEEE, 2019.

[81] B. Roch. Monolithic kernel vs. microkernel. TU Wien, 2004.

[82] S. Ross, G. Gordon, and D. Bagnell. A Reduction of Imitation Learning and
Structured Prediction To No-Regret Online Learning. In Proc. of the Int. Conf.
on Art. Intel. and Stat., pages 627–635, 2011.

[83] K. Roy, B. Jung, D. Peroulis, and A. Raghunathan. Integrated systems in the
more-than-moore era: designing low-cost energy-efficient systems using hetero-
geneous components. IEEE Design & Test, 33(3):56–65, 2013.

[84] O. Sahin, L. Thiele, and A. K. Coskun. Maestro: Autonomous qos manage-
ment for mobile applications under thermal constraints. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(8):1557–1570,
2018.

[85] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on hetero-
geneous systems. In Int. Parallel and Distributed Processing Symposium, page
111. IEEE, 2004.

[86] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis. Dynamic fine-
grain scheduling of pipeline parallelism. In 2011 International Conference on
Parallel Architectures and Compilation Techniques, pages 22–32. IEEE, 2011.

[87] S. Sarma et al. Smartbalance: Sensing-driven linux load balancer for energy
efficiency of heterogeneous mpsocs. In 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2015.

[88] A. L. Sartor, A. Krishnakumar, S. E. Arda, U. Y. Ogras, and R. Marculescu.
Hilite: Hierarchical and lightweight imitation learning for power management
of embedded socs. IEEE Computer Architecture Letters, 19(1):63–67, 2020.

[89] S. Schaal. Is Imitation Learning the Route To Humanoid Robots? Trends in
Cognitive Sciences, 3(6):233–242, 1999.

[90] A. K. Singh, A. Kumar, and T. Srikanthan. Accelerating throughput-aware
runtime mapping for heterogeneous mpsocs. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES), 18(1):1–29, 2013.

62

[91] S. S. Skiena. The algorithm design manual: Text, volume 1. Springer Science
& Business Media, 1998.

[92] J. Song, G. Xie, R. Li, and X. Chen. An Efficient Scheduling Algorithm for
Energy Consumption Constrained Parallel Applications on Heterogeneous Dis-
tributed Systems. In 2017 IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications and 2017 IEEE International Conference
on Ubiquitous Computing and Communications (ISPA/IUCC), pages 32–39,
Dec. 2017.

[93] H. Taud and J. Mas. Multilayer perceptron (mlp). In Geomatic Approaches for
Modeling Land Change Scenarios, pages 451–455. Springer, 2018.

[94] R. Teodorescu and J. Torrellas. Variation-aware application scheduling and
power management for chip multiprocessors. ACM SIGARCH computer archi-
tecture news, 36(3):363–374, 2008.

[95] Tom Rondeau. Domain-Specific System on Chip (DSSoC), 2020. [On-
line] https://www.darpa.mil/program/domain-specific-system-on-chip,
https://eri-summit.darpa.mil/docs/20180725_1100_DSSoC.pdf, accessed
25 July 2020.

[96] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans. on
Parallel and Distrib. Syst., 13(3):260–274, 2002.

[97] R. Uhrie, D. W. Bliss, C. Chakrabarti, U. Y. Ogras, and J. Brunhaver. Machine
Understanding of Domain Computation for Domain-Specific System-on-Chips
(DSSoC). In Open Architecture/Open Business Model Net-Centric Systems and
Defense Transformation 2018, volume 11015, page 110150O. International So-
ciety for Optics and Photonics, 2019.

[98] G. Von Laszewski, L. Wang, A. J. Younge, and X. He. Power-aware schedul-
ing of virtual machines in dvfs-enabled clusters. In 2009 IEEE International
Conference on Cluster Computing and Workshops, pages 1–10. IEEE, 2009.

[99] L. Wang and H. Sahbi. Directed Acyclic Graph Kernels for Action Recognition.
In Proceedings of the IEEE International Conference on Computer Vision, pages
3168–3175, 2013.

[100] Weka. Weka Software, 2009. [Online] https://waikato.github.io/weka-
wiki/downloading_weka/, accessed 4 Feb. 2020.

[101] D. B. West et al. Introduction to graph theory, volume 2. 1996.

[102] D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,
1994.

[103] C. Wong, I. Tan, R. Kumari, J. Lam, and W. Fun. Fairness and interactive
performance of O (1) and CFS Linux kernel schedulers. In 2008 International
Symposium on Information Technology, volume 4, pages 1–8, 2008.

63

[104] L. Wu, G. Kaiser, D. Solomon, R. Winter, A. Boulanger, and R. Anderson. Im-
proving efficiency and reliability of building systems using machine learning and
automated online evaluation. In 2012 IEEE Long Island Systems, Applications
and Technology Conference (LISAT), pages 1–6. IEEE, 2012.

[105] Y. Xiao, S. Nazarian, and P. Bogdan. Self-Optimizing and Self-Programming
Computing Systems: A Combined Compiler, Complex Networks, and Machine
Learning Approach. IEEE Trans. on Very Large Scale Integration (VLSI) Sys-
tems, pages 1–12, 2019.

[106] T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli. A Novel Security-Driven
Scheduling Algorithm for Precedence-Constrained Tasks in Heterogeneous Dis-
tributed Systems. IEEE Transactions on Computers, 60(7):1017–1029, 2010.

[107] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li. Mixed Real-Time Scheduling of Mul-
tiple DAGs-based Applications on Heterogeneous Multi-core Processors. Mi-
croprocessors and Microsystems, 47:93–103, 2016.

[108] Xilinx. Intellectual property and cores, 2009. [Online] https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx11/ise_c_
intellectual_property_cores.htm, accessed 11 Dec. 2019.

[109] Xilinx. PetaLinux Software, 2020. [Online] https://www.xilinx.
com/support/download/index.html/content/xilinx/en/downloadNav/
embedded-design-tools.html, accessed 10 Dec. 2019.

[110] L. Zhang, K. Li, C. Li, and K. Li. Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems. Information
Sciences, 379:241–256, 2017.

[111] Y. Zhang, K. Ootsu, T. Yokota, and T. Baba. Automatic thread decomposition
for pipelined multithreading. In 2010 IEEE 16th International Conference on
Parallel and Distributed Systems, pages 91–98. IEEE, 2010.

[112] N. Zhou, D. Qi, X. Wang, Z. Zheng, and W. Lin. A list scheduling algorithm for
heterogeneous systems based on a critical node cost table and pessimistic cost
table. Concurrency and Computation: Practice and Experience, 29(5):e3944,
2017.

64

APPENDIX A

EXCLUDING PULSE DOPPLER FROM EVALUATIONS

65

This section excludes the application pulse Doppler from the evaluations reducing
the complexity of the benchmark. Figure 14 shows how by excluding pulse Doppler
from evaluations, there is a reduction in the policy overhead. Due to the amount of
FFT-alike tasks that the PD contains, we developed an optimization that reduced the
IL policies overhead. This optimization was based on change detection. Hence the
array of inputs from the current scheduling decision is compared with the previous
one. If there is no change, we will use the same predicted PE, avoiding running the
deep neural network again and thus shortening the latency. Because we are excluding
PD from the evaluations, there are fewer changes detected, leading to higher latency.

M
ET

IL
-D
NN

(A
rm
)

IL
-D
NN

(A
cc)

IL
-D
T

EF
T

Or
ac
le

CF
S

0

2

4

6

8

10

0.55

8.89

0.1
0.93 0.59 0.61

1.2

Av
g.

O
ve
rh
ea
d(
µ
s)

pe
r
sc
he
du

lin
g
de
ci
si
on

Workload Mix

Figure 14: Overhead Study of the Different Scheduling Policies Excluding Pulse
Doppler Application

In Figure 15, we observe how IL-DNN(Arm) still performs poorly compared to
the rest of the scheduling policies. However, MET, IL-DT, and EFT seem to perform
close to the Oracle, although IL-DT, like previously, outperforms the rest of the
scheduling policies across different injection rates achieving an average job speedup
of 1.07× from the Oracle. The IL-DNN(Acc) achieves a speed up of 1.11× from the
Oracle.

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

25

50

75

100

125

150

175

Normalized Throughput

Av
g.

jo
b
ex
ec
ut
io
n
ti
m
e
(m

s)

MET EFT IL-DNN(ARM) IL-DNN(Acc) IL-DT Oracle

Figure 15: Comparison of the Average Job Execution Time for Varying Throughput
Across Different Scheduling Policies

67

