
Efficient and Secure Deep Learning Inference System

A Software and Hardware Co-design Perspective

by

Zhezhi He

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2020 by the
Graduate Supervisory Committee:

Deliang Fan, Chair
Chaitali Chakrabarti

Yu Cao
Jae-sun Seo

ARIZONA STATE UNIVERSITY

August 2020

©2020 Zhezhi He

All Rights Reserved

ABSTRACT

The advances of Deep Learning (DL) achieved recently have successfully demon-

strated its great potential of surpassing or close to human-level performance across

multiple domains. Consequently, there exists a rising demand to deploy state-of-the-

art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications

to release labors from repetitive work. On the one hand, the impressive performance

achieved by the DNN normally accompanies with the drawbacks of intensive memory

and power usage due to enormous model size and high computation workload, which

significantly hampers their deployment on the resource-limited cyber-physical systems

or edge devices. Thus, the urgent demand for enhancing the inference efficiency of

DNN has also great research interests across various communities. On the other hand,

scientists and engineers still have insufficient knowledge about the principles of DNN

which makes it mostly be treated as a black-box. Under such circumstance, DNN is like

“the sword of Damocles” where its security or fault-tolerance capability is an essential

concern which cannot be circumvented.

Motivated by the aforementioned concerns, this dissertation comprehensively inves-

tigates the emerging efficiency and security issues of DNNs, from both software and

hardware design perspectives. From the efficiency perspective, as the foundation tech-

nique for efficient inference of target DNN, the model compression via quantization is

elaborated. In order to maximize the inference performance boost, the deployment of

quantized DNN on the revolutionary Computing-in-Memory based neural accelerator

is presented in a cross-layer (device/circuit/system) fashion. From the security perspec-

tive, the well known adversarial attack is investigated spanning from its original input

attack form (aka. Adversarial example generation) to its parameter attack variant.

i

To my mother

To my father

In memory of my beloved paternal grandmother and maternal grandfather, who passed

away during my graduate study

ii

ACKNOWLEDGMENTS

First and foremost, my deepest gratitude goes first to my committee chair, Prof.

Deliang Fan, who expertly mentored me through my Ph.D. study and makes this dis-

sertation possible. Back in 2015, Prof. Fan kindly offered me the opportunity to work

with him, when I still have no clue of conducting research. Under his guidance, I got

my first conference and journal publication in the first term right after I joined the

research group. Later on, Prof. Fan has given me the incredible trust to formulate the

research project based on my interests, and enlightened me to explore the challenging

research topics. There were so many times, Prof. Fan and I work together all night

long on revising paper. His persistent guidance leads to all the achievements I acquired

during my Ph.D. study.

To my committee members, Prof. Chaitali Chakrabarti, Prof. Yu Cao, and Prof.

Jae-sun Seo, I would like to express my heartfelt acknowledgment for all the suggestions

and help in this dissertation, and the guidance to my future career path in academia.

Besides, I appreciate all the help from my laboratory colleagues Shaahin Angizi, Jie Lin,

Adnan Siraj Rakin, Li Yang, and Farhana Parveen. I would like to extend my sincere

acknowledgments to all the personnel who give me encouragement, help, and guidance,

which support me to achieve this milestone.

I gratefully acknowledge the funding support by nanoelectronics COmputing RE-

search (nCORE) program that jointly funded by the national science foundation and

semiconductor research corporation, and cyber Florida collaborative seed award pro-

gram. The fellowships provided by the Arizona State University also financially support

me in my last term of pursuing the Ph.D. degree.

Last but most importantly, I would like to express my greatest appreciation to my

families and girlfriend for their unconditional love and support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Statement of the Main Problems . 4

1.2.1 Efficiency . 4

1.2.2 Security . 5

1.3 Contributions . 6

1.3.1 Contribution 1: Optimized Neural Network Ternariza-

tion Scheme. 6

1.3.2 Contribution 2: Countermeasures to Non-ideal Effects of

ReRAM Crossbar . 7

1.3.3 Contribution 3: Improve DNN Resistance Against Ad-

versarial Example. 8

1.3.4 Contribution 4: Adversarial Attack on DNN Quantized

Weight via Bit-flips and Its Defense . 9

1.4 Organization . 10

2 NEURAL NETWORK MODEL COMPRESSION VIA QUANTI-

ZATION . 12

2.1 Basics of Neural Network Quantization . 12

2.1.1 Quantizer . 13

2.1.1.1 Uniform Quantizer . 14

iv

CHAPTER Page

2.1.1.2 Non-Uniform Quantization . 16

2.1.2 Neural Network Quantization Scheme 17

2.1.2.1 Quantization-aware Training . 17

2.1.2.1.1 Gradient Approximation of Staircase

Quantization Function. 17

2.1.2.1.2 Quantization on Weight 19

2.1.2.1.3 Quantization on Activation 20

2.1.2.2 Post-training Quantization . 20

2.2 Preliminaries of Low Bit-width Weight Quantization. 21

2.3 Weight Ternarization Training Method . 22

2.3.1 Ternarization With Iterative Statistical Scaling 22

2.3.2 Residual Expansion to Improve Accuracy 25

2.4 Experiments . 27

2.4.1 CIFAR-10 . 27

2.4.2 ImageNet . 28

2.4.2.1 AlexNet . 29

2.4.2.2 ResNet . 31

2.4.2.3 Improve Accuracy on ResNet With REL 33

2.5 Ablation Study and Discussion . 36

2.5.1 Ablation Study . 36

2.5.2 Deep CNN Density Examination. 37

2.5.3 REL Versus Multi-bit Weight . 39

2.5.4 Hardware Resource Utilization Efficiency 40

2.6 Summary . 41

v

CHAPTER Page

3 EFFICIENT NEURAL INFERENCE VIA ANALOG IN-MEMORY

COMPUTING . 43

3.1 Preliminaries . 43

3.2 Non-Ideal Effects and Modeling of ReRAM Crossbar 45

3.2.1 Deterministic Noise Modeling. 45

3.2.1.1 Device Defects . 45

3.2.2 Stochastic Noise Modeling . 46

3.2.2.1 Wire Resistance. 46

3.2.2.2 Thermal Noise and Shot Noise 46

3.2.2.3 Random Telegraph Noise . 47

3.3 Crossbar based NN-accelerator . 48

3.3.1 Single Array as Dot-product Engine . 48

3.3.2 Network Partition on Matrix Arrays . 51

3.4 End-to-End Network Adaption . 52

3.4.1 Simulation Framework and Configurations 52

3.4.2 Error Correction for SAF . 53

3.4.3 Noise Injection Adaption for IR-drop 55

3.4.4 System Configuration for Other Stochastic Non-ideal Ef-

fects . 57

3.5 Summary . 61

4 INPUT SECURITY OF NEURAL NETWORK . 62

4.1 Preliminaries . 62

4.1.1 Prior Adversarial Attacks . 62

4.1.2 Prior Defenses . 64

vi

CHAPTER Page

4.2 Parametric Noise Injection . 66

4.2.1 Definition . 66

4.2.2 Optimization . 68

4.2.3 Robust Optimization . 68

4.3 Experiment . 70

4.3.1 Experiment Setup . 70

4.3.1.1 Datasets and Network Architectures 70

4.3.1.2 Adversarial Attacks . 71

4.3.1.3 Competing Methods for Adversarial Defense 71

4.3.2 PNI for Adversarial Attacks . 72

4.3.2.1 PNI Against White-box Attacks 72

4.3.2.2 PNI Against Black-box Attacks 78

4.3.2.3 Comparison to Competing Methods 79

4.4 Discussion . 81

4.5 Summary . 83

5 WEIGHT SECURITY OF NEURAL NETWORK 84

5.1 Preliminaries . 84

5.2 Bit-Flip Based Adversarial Weight Attack . 86

5.2.1 Problem Definition of BFA . 87

5.2.2 Weight Quantization and Encoding . 88

5.2.3 Algorithm of BFA . 89

5.2.4 Progressive Bit Search . 90

5.3 Experiments of BFA . 93

5.3.1 Experiment Setup . 93

vii

CHAPTER Page

5.3.2 BFA on CIFAR-10 . 94

5.3.3 BFA on ImageNet . 96

5.3.4 Ablation Study . 99

5.3.5 Comparison to Other Methods . 102

5.4 Observations of BFA . 102

5.5 Defense against BFA . 106

5.5.1 Binarization-aware Training . 106

5.5.2 Clustering as Relaxation of Binarization 108

5.6 Experiments of BFA Defense . 110

5.6.1 Experiment Setup . 110

5.6.2 Result Evaluation . 112

5.6.3 Comparison of Alternative Defense Methods 114

5.7 Summary . 116

6 CONCLUSIONS AND OUTLOOK . 118

REFERENCES . 120

BIOGRAPHICAL SKETCH . 133

viii

LIST OF TABLES

Table Page

1. Deep Convolution Neural Networks for Image Classification Tasks, Using

ImageNet Dataset. FLOP Is the Abbreviation of Floating-Point Operations.

MB Is the Abbreviation of MegaByte. 2

2. Operation Energy in 45nm CMOS Process. The Relative Energy Cost of

the Off-Chip DRAM Access Is Significantly Higher than Other Operations. 2

3. Overview of Neural Network Quantization with Various Configuration. 13

4. Inference Accuracy of ResNet on CIFAR-10 Dataset . 28

5. Validation Accuracy of AlexNet on ImageNet Using Various Model Quanti-

zation Methods. FP, Bin., Tern. Denote Full-Precision, Binary and Ternary

Respectively. 30

6. Validation Accuracy (Top1/top5 %) of ResNet-18b on ImageNet Using

Various Model Quantization Methods. 32

7. Inference Accuracy (Top1/Top5 %) of Ternarized ResNets on ImageNet

Dataset . 33

8. Validation Accuracy (Top1/top5 %) of ResNet-18b on ImageNet

With/without Residual Expansion Layer (REL). 34

9. Validation Accuracy of ResNet-18b on ImageNet. 37

10. Density Variation of First and Last Layer Before/after Fine-Tuning 37

11. Inference Accuracy of ResNet-18 on ImageNet with Multi-Bit Weight or

REL. 39

12. FPGA Resource Utilization (Kintex-7 XC7K480T) for AlexNet Last Layer . 40

13. Parameters of ReRAM Crossbar System. 53

ix

Table Page

14. Test Accuracy on MNIST with Various Crossbar Dimensions and Our Pro-

posed Methods . 58

15. Convergence of Parametric Noise Injection (PNI): ResNet-20 with Layer-

wise Weight PNI on CIFAR-10 Dataset. (Top) The Converged Layer-Wise

Noise Scaling Coefficient α under Various Training Scheme. (Bottom) Test

Accuracy for Clean- and Perturbed-Data under PGD and FGSM Attack. . . . 73

16. Effect of PNI Location: The ResNet-20 Clean- and Perturbed-Data (un-

der PGD and FGSM Attack) Accuracy (Mean±std%) on CIFAR-10 Test-

Set, with PNI Technique on Different Network Location. Baseline Is the

ResNet-20 with Vanilla Adversarial Training, and All the PNI Combina-

tions Are Optimized through Adversarial Training by Default. 74

17. C & W Attack L2-Norm Comparison . 76

18. Effect of Network Depth and Width: The Clean- and Perturbed-Data (un-

der PGD and FGSM Attack) Accuracy (Mean±std%) on CIFAR-10 Test-

Set, Utilizing Different Robust Optimization Configurations. For Net-

work Depth, the Classical ResNet-20/32/44/56 with Increasing Depth Is

Reported. For Network Width, the ResNet-20 (1×) Is Adopted as the Base-

line, Then We Compare the Wide ResNet-20 with the Input and Output

Channel Scaled by 1.5×/2×/4×. Capacity Denotes the Number of Train-

able Parameters in the Model. 77

x

Table Page

19. PNI against Black-Box Attacks: On CIFAR-10 Test Subset, (Left)

Perturbed-Data Accuracy under Transferable PGD Attack, and (Right)

the Attack Success Rate for ZOO Attack. Model-A Is a ResNet-18 Trained

by Vanilla Adversarial Training, and Model-B Is a ResNet-18 Trained by

PNI-W/A-A/W+A-A with Adversarial Training. 79

20. Comparison of State-Of-The-Art Adversarial Defense Methods with Clean-

and Perturbed-Data Accuracy on CIFAR-10 under PGD Attack. 80

21. Checklist of Examining the Characteristic Behaviors Caused by Obfuscated

and Masked Gradient for PNI. 81

22. Threat Model of Bit-Flip Attack (BFA).. 88

23. Truth Table of Bit-Flip Attack (BFA). bi Is the Clean Bit and b̂i Is the Per-

turbed Bit by BFA.m Indicates Whether There Exist Value Change between

bi and b̂i. The Positive and Negative of ∂L/∂bi Are Represented by 1 and 0

Respectively. 90

24. BFA on CIFAR-10 with ResNet-20/32/44/56, under Various Quantization

Bit-Width (NQ=4/6/8). NFlip Is the Number of Bit-Flips Required (5 Trials)

to Degrade the Top-1 Accuracy below 11% with BFA, regardless Whether

There Exists Bits Flipped back to Their Original States. For CIFAR-10,

Top-1 Accuracy with Random Guess Is 10%. DB Is the Hamming Distance

between Clean- and Perturbed- Binary Weight (DB =
∑

i = 1LD(B̂L,Bl)).

The Bold Number with Underline Highlight the Mismatch between Two

Corresponding NFlip and DB, Which Indicates There Exist Even Bit-Flips

on the Identical Bit/bits. 95

xi

Table Page

25. BFA on ImageNet with Various Network Architecture, under Direct 8-

Bit Weight Quantization (without Retraining). Accuracy (Acc.) Is in

Top1/top5 Format. NFlip Is the Median Number of Bit-Flips (out of 5 Tri-

als) Required to Degrade the Top-1 Accuracy below 0.2%. For ImageNet,

Top-1 Accuracy with Random Guess Is 0.1%. DB Is the Corresponding

Hamming Distance. Capacity Is the Number of Bits Used for Weight Stor-

age (# of Weights × 8). 97

26. Alternative Methods Comparison. In This Table, We Report the Prior- and

Post-Attack Test Accuracy (%) and NBF of BFA. The 8-Bit Quantization

Is Chosen as the Baseline; Binary and PC-8bit Is the Proposed Method.

Moreover, Comparison with Lasso-Based Pruning and Adversarial Weight

Training (Adv. Training) Is Included as Well. 114

xii

LIST OF FIGURES

Figure Page

1. Illustration of Adversarial Example. The (a) Natural Image of Giant Panda

Is Applied with (B) Additive Noise to Generate (C) Adversarial Example,

Then the Giant Panda in the Adversarial Example Is Recognized as Indri

by Inception-V3. Note that, the Adversarial Example Is Generated via Fast

Gradient Sign Method (FGSM). 3

2. In-Memory Computing (IMC) to Reduce the Data Communication and

Increase the Computation Parallelism. 5

3. Quantization Function with Quantization Threshold t and Quantized

Value v. 15

4. Normalized Quantization Noise versus Clamping Bound, for Uniform

Quantizer W.r.t Different Quantization Bit-Width NB Configuration. The

Data to Be Quantized Are 10000 Samples from Gaussian Distribution

N (0, 1) I.i.d. 16

5. Analysis about the Straight-Through-Estimator (STE) Design for rO =

Sign(RI). STE Actually Approximate the Gradient of Stair-Case Function

(Black) W.r.t the ro = ri (Red). 18

6. The Training Scheme of Ternarized CNN Model. (1)-(3) Steps in the Figure

Are Iteratively Operated during the Training. 23

7. The Block Diagram of (Top) Original Network Topology and (Bottom)

the Network with Residual Expansion to Further Compensate the Accuracy

Degradation. In This Figure, the Expansion Factor TEx Is 2. 25

8. Train and Validation (Top-1) Accuracy of AlexNet on ImageNet 29

xiii

Figure Page

9. The Accuracy Evolution Curve of Ternarized ResNet-18b on ImageNet with

Residual Expansion. 34

10. Kernel Visualization for the First Layer (Channel 0) of ResNet18 before and

after Ternarization. 35

11. Density Distribution of Convolution and Fully-Connected Layers in (a)

AlexNet and (B) ResNet-18 Structure. The Weight Density of the Pre-

Trained Model Is When the Network Just Loads the Parameters from the

Pre-Trained Model without Fine-Tuning. Ternarized Model: Fl=FP, Ll=FP

Refers to the Density Distribution of the Ternarized Model with the First

and Last Layer in Full Precision. Ternarized Model: Fl=Tern., Ll=Tern. De-

notes that the Density Distribution of the Ternarized Model with First and

Last Layer in Ternary Representation. 38

12. Hardware Implementation of Single M ×M ReRAM Crossbar Array Pair

(Positive and Negative Array) as Analog Dot-Product Engine. ReRAM Se-

lector Is Modeled as Gon Cascaded with ReRAM Conductance GR. 50

13. Test Accuracy versus SA0/SA1 Rate, W/o or W/ Error Correction (EC).

(Top) LeNet-5 on MNIST Dataset; (Bottom) ResNet-20 on CIFAR-10

Dataset. Error-Bar Denotes Mean±std with 100 Trials, and Crossbar Size

Is 64. Regions with Blue Shadow Are Regions of Interest. 54

14. Distribution of Voltage Drop of Crossbar with Different Dimensions. Sur-

faces from Top down Are 32× 32, 64× 64 and 128× 128 Size Respectively.

(Left) Is Worst Case, (Right) Is Normal Case . 56

15. Test Accuracy on MNIST and CIFAR-10 Dataset versus Operating Fre-

quency f . 59

xiv

Figure Page

16. Monte Carlo Simulation of the GAct under f = 1GHz, 100MHz, 10MHz,

with 10000 Trials. The Solid Line Indicate the Ideal Conductance (GMin

in This Simulation), and Dashed Line Is the Quantization Boundary. 60

17. The Flowchart of Parametric Noise Injection (PNI) on the Weight Matrix

Wl of a 5 × 5 Fully-Connected Layer (I.e., PNI-W). For Each Inference,

the Process of PNI on Wl Can Be Divided into Three Sequential Steps: 1)

Statistically Calculate the Standard Deviation σl of Wl; 2) Sample the Ad-

ditive Weight Noise (I.i.d) from N (0, σ2
l); 3) Scale the Run-Time Sampled

Weight Noise with a Trainable αl, Then the Noise Weight Is Obtained via

Applying the Additive Weight Noise upon the Clean Weight. 67

18. The Evolution Curve of Trainable Noise Scaling Coefficient α for Layerwise

PNI on Weight (PNI-W). Only Front 5 Layers of ResNet-20 Are Shown.

The Learning Rate of SGD Optimizer Is Reduced at 80 and 120 Epoch.

Best Viewed in Color. 74

19. On CIFAR-10 Test Set, the Perturbed-Data Accuracy of ResNet-18 under

PGD Attack (Top) versus Attack Bound ϵ, and (Bottom) versus Number of

Attack Steps NStep . 82

20. Concept Illustration of Quantized DNN under BFA. 87

21. Flowchart to Perform Progressive Bit Search (PBS) with In-Layer and Cross-

Layer Search. 91

xv

Figure Page

22. The Accuracy (Top1/Top5) and Loss Evolution Curve versus the Number

of Bit-Flips (NFlip) under BFA, for AlexNet/ResNet-18/ResNet-50 on Im-

ageNet Dataset. The Sample Size for Performing BFA Is 256. On Each

Network Architecture, We Run 5 Experiments and the Region in Shadow

Indicate the Error-Band. For All Experiments in This Figure, There Exists

No Bit Flipped Multiple Times during the Attack (I.e., NFlip = DB). 98

23. The BFA Performance of ResNet-18 with Various Attack Sample Size

(16/32/64/128/256) on ImageNet Dataset. Regions in Shadow Indicates

the Error Band W.r.t 5 Trials. 100

24. Randomly Flipping Bits of a ResNet-18 Architecture on ImageNet. Even

after Flipping 100 Random Bits the Network’s Both Top-1 and Top-5 Ac-

curacy Does Not Degrade Significantly. 101

25. Weight Shift Caused by BFA for (a) ResNet-20 and (B) VGG-11 on CIFAR-

10 Dataset. For Both Architectures, 5 Trials Are Executed with Different

Random Seeds. Each Colored Dot Depicts the Weight Shift (X-Axis: Prior-

Attack Weight, Y-Axis: Post-Attack Weight) W.r.t One Iteration of BFA.

The Color Bar Indicates the Corresponding Accuracy (%) on the CIFAR-

10 Test Data. The Vertical Distance between Dot and the Diagonal Dashed

Line (I.e., y = x) Represents the Weight Shift Magnitude. Moreover, Re-

sults Reported in This Figure Use 8-Bit Post-Training Weight Quantization.

. 103

26. Normalized Histogram and Kernel Density Estimation (KDE) of Bit-

Flips versus Module Index in (Top) ResNet-20 and (Bottom) VGG-11 on

CIFAR-10. 105

xvi

Figure Page

27. The Evolution of ResNet-20 Output Classification Histogram across 10

Categories under BFA, on 10k Test Samples of CIFAR-10. The Attack Sam-

ple Size Is 128. 106

28. The Evolution of Weight Distribution of ResNet-20 (First Layer, l = 1), un-

der Various Training Configurations. X-Axis: Weight Magnitude, Y-Axis:

Training Epoch. 107

29. Average #Bit-Flips (Y-Axis) per Weight Update Iteration of Binarization-

Aware Training vs. Epochs (X-Axis), with ResNet-20 on CIFAR10. 109

30. The BFA-Free Test Accuracy, Mean and Standard Deviation of NBF for 5-

Trials under Different Quantization Bit-Width NQ ∈ {8, 6, 4, 1} and Clus-

tering Penalty Coefficient λ ∈ {0, 1e − 4, 5e − 4, 1e − 3, 5e − 3}, with (left

Column) ResNet-20 and (right Column) VGG-11 on CIFAR-10. 111

xvii

Chapter 1

INTRODUCTION

1.1 Overview

In the last few years, deep learning technique (i.e., Deep Neural Network,

DNN) [1] has achieved great success in multiple domains, such as image recogni-

tion [2], object tracking/detection [3], [4], machine translation [5] and etc [6]–[8].

Meanwhile, the number of edge devices (e.g., personal computers, smartphones, tablets,

Internet-of-Things, etc) is increasing rapidly, which might be doubled in the next 5

years [9]. Rather than performing the DNN inference on the cloud, executing DNN

inference on the edge devices is becoming more and more preferable, as it could reduce

the inference latency1, avoid bandwidth competition, enhance user privacy, cut the

long-term cloud computing, and etc [10], [11].

Taken the classic image classification [12] as an example, the DNNs with higher

accuracy normally accompany the larger model size and higher computing workload

correspondingly, as shown in Table 1. Meanwhile, due to the memory capacity con-

straint of on-chip cache (normally < 10 MegaByte) in the edge-device system, such

a high-performance model has to reside in the off-chip main memory, i.e., Dynamic

Random-Access-Memory (DRAM). Nevertheless, for the conventional Von-Neumann

architecture, the long-distance data communication (i.e., DRAM access) is emerging as

the computation bottleneck, which is known as the “memory wall” [13]. As depicted

1Edge computing is faster than the cloud computing, since the long-distance data communication
between edge and cloud is avoided.

1

Table 1: Deep convolution neural networks for image classification tasks, using Im-
ageNet dataset. FLOP is the abbreviation of floating-point operations. MB is the
abbreviation of MegaByte.

Model Total
Parameters

Parameter
size (MB)

FLOP
(Giga)

Accuracy
Top-1 (%)

Accuracy
Top-5 (%)

AlexNet [12] 61,100,840 223.08 1.43 56.55 79.09
VGG-16 [14] 138,357,544 527.79 30.96 71.59 90.38
ResNet-50 [2] 25,557,032 97.49 8.21 76.15 92.87

DenseNet-201 [15] 7,978,856 30.44 8.7 77.20 93.57
Inception-v3 [16] 23,834,568 90.92 11.45 77.45 93.56

Wide ResNet-101-2 [17] 126,886,696 484.03 45.58 78.84 94.28
ResNeXt-101-32x8d [18] 88,791,336 338.71 32.93 79.31 94.53

Table 2: Operation energy in 45nm CMOS process [19]. The relative energy cost of
the off-chip DRAM access is significantly higher than other operations.

Operations Energy (pJ) Relative Cost
32-bit integer addition 0.1 1
32-bit floating-point addition 0.9 9
32-bit integer multiplication 3.1 31
32-bit floating-point multiplication 3.7 37
32-bit SRAM Access 5 50
32-bit DRAM Access 640 6400

in Table 2, the off-chip DRAM access owns orders higher energy-cost, in comparison

to the on-chip operations.

Taken the aforementioned concerns into consideration, the researchers and engi-

neers have formed a general flow for DNN Deployment on the resource-constrained

edge device, where the steps can be sequentially described:

1. Model compression: Given a target pretrained DNN, model compression is

emerging as a must-have step to significantly shrink the size of model parameters

2

and computation complexity. The popular model compression techniques in-

clude quantization [20]–[22], pruning [23], [24], operator fusion [25], etc [26].

2. Model deployment: Thanks to the model compression techniques, massive

DNN-friendly computing architectures are proposed to mainly address the mem-

ory wall issue of compressed neural network inference, with low-precision pro-

cessing elements [27]–[29].

Due to the hardware platform (i.e., accelerator) that DNN running on is highly rely-

ing on the model compression scheme (e.g., model quantization), the neural network

compression and deployment on the edge device could be viewed as a software and

hardware co-design problem.

0 50 100 150 200 250

0

50

100

150

200

250

(a) Natural Data

0 50 100 150 200 250

0

50

100

150

200

250

(b) Additive Noise

0 50 100 150 200 250

0

50

100

150

200

250

(c) Adversarial Example

Figure 1: Illustration of adversarial example. The (a) natural image of giant panda [30]
is applied with (b) additive noise to generate (c) adversarial example, then the giant
panda in the adversarial example is recognized as indri by Inception-v3 [16]. Note that,
the adversarial example is generated via Fast Gradient Sign Method (FGSM) [31].

Beyond the efforts for enhancing the efficiency of DNN inference discussed above,

another perspective of deployed DNN should not be neglected is the security (or re-

liability in other words). Recent investigations [32]–[34] have gradually shown that

DNNs are vulnerable to specially crafted adversarial attack (i.e., adversarial example).

3

The adversarial example is the DNN input maliciously perturbed by the human imper-

ceptible noise, but can lead to the erroneous prediction of the target DNN, as shown

in Fig. 1. Such vulnerability of DNN w.r.t the adversarial example has been demon-

strated in many real-world scenarios as well, such as adversarial t-shirt [35] or tag [36]

fooling the person detection surveillance system, and adversarial attack on road-signs

(e.g., stop sign or speed limit sign) [37].

1.2 Statement of the Main Problems

Based on the discussion above, the current problems of the neural network running

on hardware could be generally summarized into two categories: efficiency and security,

which are specified as follows.

1.2.1 Efficiency

The model compression is an important step to empower the efficient inference

to the target DNN running on hardware, where model quantization is one of the

most popular techniques. Ideally, we are expecting a model quantization scheme could

achieve significant model size reduction (i.e., weights compressed into lower bit-width

representation), with negligible accuracy degradation. Such an objective has been pur-

sued by many prior works [38]–[41], but drastic accuracy drop is still observed.

Beyond that, considering the hardware that DNN to be deployed, the conventional

Von-Neumann architecture is countering the expensive long-distance data communica-

tion between processor and memory, which significantly hampers the computation effi-

ciency. The In-Memory Computing (IMC) is an emerging computing paradigm con-

4

ducting low-precision computation within memory, thus avoiding the long-distance

data access, as shown in Fig. 2. Thanks to the emerging resistive nonvolatile memory

devices, for example, Resistive Random-Access-Memory (ReRAM), their utilization

of constructing the IMC-based DNN accelerator can potentially enhance the speed-

efficiency product by 3 ∼ 4 orders [42] compared to a custom digital ASIC. As the

popular IMC-based dot-product engine, ReRAM crossbar [42], [43] could accelerate

the dominant Multiplication-and-Accumulation (MAC) operations in the DNN infer-

ence, via leveraging its in-situ current-mode weighted summation operation. However,

such an analog computing approach using ReRAM crossbar still counter great challenge

in its real-world realization, due to various non-ideal effects [43].

Memory Processor

Data storage ComputationHeavy data
communication

Memory Processor

High-precsion
Computation

light data
communication

Data
storage

Low-precison
computation

R
ed

u
ce

 d
a

ta

co
m

m
u

n
ic

at
io

n

&

Figure 2: In-Memory Computing (IMC) to reduce the data communication and in-
crease the computation parallelism.

1.2.2 Security

In terms of the neural network security, one of the main concerns is the vulnerability

of DNN w.r.t the adversarial input attack (aka. adversarial example). There are various

adversarial example generation methods proposed in prior works [32], [33], [44]–[47],

while methods that can effectively enhance the resistance against adversarial example

5

are quite a few [33], [48]–[50]. By far, adversarial training [33] is still the most effective

method to defend the adversarial attack. Therefore, it is an urgent demand to further

push the state-of-the-art result of adversarial example resistance.

Furthermore, as the concept of adversarial attack is mainly focusing on attacking the

natural input data fed to DNNs, the investigations of attacking the DNN parameters

are not well explored yet. There exist prior works [51], [52] in an attempt to attack the

model with full-precision parameters. However, our conducted simulation shows that

randomly flipping the exponent part of floating-point weight could easily overwhelm

the functionality of DNN [53]. Thus, more studies of adversarial attack upon DNN

parameters are expected, in order to build reliable DNNs against adversarial attack

variants.

1.3 Contributions

In this dissertation, we will focus on addressing several sub-problems under the

framework specified above, where our contributions are highlighted in the following

subsections.

1.3.1 Contribution 1: Optimized Neural Network Ternarization Scheme.

The first sub-problem we propose to address is the low bit-width neural network

quantization scheme that leads to accuracy degradation. As a well-known low bit-width

neural network quantization method, weight ternarization (-1, 0, +1) [41], [54], [55]

is taken as a study case in this dissertation. The weight ternarization scheme not only

reduces the model size by 16× but also simplifies the dominant MAC operations into

6

addition and subtraction. However, many prior works [41], [54], [55] still show drastic

accuracy degradation when weights are converted into ternary levels.

To mitigate such accuracy degradation, several optimized techniques are proposed

by us [21], including iterative statistical weight ternarization and residual expansion

methods. Using the image classification as benchmark, we test our iterative statisti-

cal weight ternarization method with AlexNet [12] and ResNet-18 [2] on ImageNet

dataset [30], which both achieve the best top-1 accuracy compared to prior works [41],

[54], [55]. If further incorporating our residual expansion method, compared to the

full-precision counterpart, our ternarized ResNet-18 even improves the top-5 accuracy

by 0.61% and merely degrades the top-1 accuracy only by 0.42% for ImageNet dataset,

with 8× model compression rate.

1.3.2 Contribution 2: Countermeasures to Non-ideal Effects of ReRAM Crossbar

As we highlighted in the problem statement, the deployment of DNNs on the

ReRAM crossbar based accelerator is hampered by various non-ideal effects, includ-

ing Stuck-At-Fault (SAF) [56], [57], IR-drop [58], thermal noise, shot noise [59] and

random telegraph noise [60], [61], etc. Prior works [62]–[65] have adopted different

methods that all require retraining the target neural network’s weight to be mapped in a

crossbar array w.r.t various non-ideal effects for the specific device. However, the main

drawback of such a method is that compute-intensive additional network retraining is

required for each specific crossbar accelerator, which is not cost-efficient and not prac-

tical for future deep neural network deployment into different crossbar accelerators.

To examine the impacts of those non-ideal effects, we first develop a comprehensive

framework called PytorX [43] based on main-stream DNN PyTorch framework [66].

7

PytorX could perform end-to-end training, mapping, and evaluation for a crossbar-

based neural network accelerator, considering all the above discussed non-ideal effects

of the ReRAM crossbar together. Our experiments based on PytorX show that directly

mapping the trained large scale DNN into crossbar without considering these non-

ideal effects could lead to a complete system malfunction (i.e., equal to random guess)

when the neural network goes deeper and wider. In particular, to address SAF side

effects, we propose a digital SAF error correction algorithm [21] to compensate for

crossbar output errors, which only needs one-time profiling to achieve almost no system

accuracy degradation. Then, to overcome IR drop effects, we propose a Noise Injection

Adaption (NIA) methodology [43] by incorporating statistics of current shift caused

by IR drop in each crossbar as stochastic noise to DNN training algorithm, which

could efficiently regularize DNN model to make it intrinsically adaptive to non-ideal

ReRAM crossbar. It is a one-time training method without the need for retraining for

every specific crossbar. Optimizing system operating frequency could easily take care of

rest non-ideal effects. Various experiments on different DNNs using image recognition

applications are conducted to show the efficacy of our proposed methodology.

1.3.3 Contribution 3: Improve DNN Resistance Against Adversarial Example

Another contribution we made in this dissertation is to address the DNN vulnera-

bility w.r.t the adversarial input attack (aka. adversarial attack). Taken the prediction

accuracy without and with the adversarial attack as the evaluation metric (i.e., clean

accuracy and attack accuracy respectively), adversarial training [33] is still the most ef-

fective method to defend the adversarial attack. Other defense methods [48]–[50] are

achieving higher attack accuracy via the trade-off of clean accuracy.

8

Our solution is to utilize the regularization characteristic of noise injection to im-

prove DNN’s resistance against adversarial attacks. As the countermeasure against ad-

versarial example, we propose Parametric-Noise-Injection (PNI) which involves train-

able Gaussian noise injection at each layer on either activation or weights through solv-

ing the Min-Max optimization problem, embedded with adversarial training. These

parameters are trained explicitly to achieve improved robustness. The extensive results

show that our proposed PNI technique effectively improves the robustness against a

variety of powerful white-box and black-box attacks such as PGD [33], C&W [45],

FGSM [31], transferable attack [45], and ZOO attack [44]. Note that, PNI method

improves both clean- and perturbed-data accuracy in comparison to the state-of-the-

art defense methods, which outperforms current unbroken PGD defense by 1.1% and

6.8% on clean- and perturbed- test data respectively, using ResNet-20 architecture.

1.3.4 Contribution 4: Adversarial Attack on DNN Quantized Weight via Bit-flips

and Its Defense

Last but not the least, our fourth contribution is to explore the new paradigm of

the adversarial attack on neural network parameters. Instead of attacking DNN with

extremely vulnerable full-precision weights as in [51], [52], our target is DNNs with

quantized weights, whose weight magnitude is intrinsically constrained owing to the

fixed-point representation.

To conduct an efficient bit-flip attack on weights, for the first time, we propose

a Bit-Flip Attack (BFA) [53] together with Progressive Bit Search (PBS) technique,

that can totally crush a fully functional quantized DNN and convert it to a random

output generator with several bit-flips. With the aid of PBS, we can successfully at-

9

tack a ResNet-18 [2] fully malfunction (i.e., top-1 accuracy degrade from 69.8% to

0.1%) only through 13 bit-flips out of 93 million bits, while randomly flipping 100

bits merely degrades the accuracy by less than 1%. Beyond that, we conduct com-

prehensive investigations on BFA and propose to leverage binarization-aware training

and its relaxation – piece-wise clustering as simple and effective countermeasures to

BFA [67]. The experiments show that, for BFA to achieve the identical prediction

accuracy degradation (e.g., below 11% on CIFAR-10), it requires 19.3× and 480.1×

more effective malicious bit-flips on ResNet-20 and VGG-11 respectively, compared

to defend-free counterparts.

1.4 Organization

The organization of this dissertation is summarized as follows:

• In Chapter 2, the neural network quantization will be elaborated, which is the

main technique in neural network compression and the basics for the neural

network acceleration via in-memory computing (Chapter 3) and neural net-

work weight security (Chapter 5). Moreover, an optimized weight ternarization

scheme is discussed as a study case of neural network quantization.

• In Chapter 3, the ReRAM crossbar based in-memory computing accelerator

is elaborated, where its various non-ideal effects are modeled and investigated.

Those non-ideal effects are modeled as deterministic and stochastic noise which

are considered during model training, called Noise Injection Adaption (NIA), to

improve the fault-tolerant ability when adopted the crossbar based accelerator for

model serving.

10

• In Chapter 4, one of the most important security concern of deployed neural

network – adversarial input attack (aka. adversarial example) is discussed. A

novel defense method called Parametric Noise Injection (PNI) is proposed to

improve the DNN resistance against the adversarial input attack. The PNI can

be considered as a trainable variant w.r.t the NIA discussed in chapter 3.

• In Chapter 5, we explore a brand-new paradigm of the adversarial attack on DNN

weights, where the deployed DNN with quantized weights can be fooled by sev-

eral bit-flips on the weight parameters. Such an attack is named as Bit-Flip Attack

(BFA). Moreover, effective defense techniques are developed as well to improve

the BFA resistance of target DNNs.

11

Chapter 2

NEURAL NETWORK MODEL COMPRESSION VIA QUANTIZATION

Neural Network (NN) compression has gradually emerged as a common tech-

nique to achieve the hardware-efficient inference of the target NN. The most popu-

lar NN compression techniques can be enumerated as quantization [20]–[22], [68],

pruning [24], [69], [70], knowledge distillation [26], compact kernels [71]–[74], etc.

Thereinto, neural network quantization has caught plentiful research interests and been

widely discussed in literature [20]–[22], [39], [40], as it is a indispensable process

of NN deployment on various edge devices (e.g., FPGA [28], [29], crossbar acceler-

ator [43], [75]–[79]). This chapter provides an overview of the major neural network

quantization techniques. Furthermore, an optimized weight ternarization scheme [21]

is discussed as a study case of model quantization.

2.1 Basics of Neural Network Quantization

NN quantization normally refers to the process that constrains the in-

puts/weights/activation of the target NN from the continuous value to a discrete

set (e.g., a codebook or integers). The main benefits resulting from the NN quantiza-

tion can be summarized in twofold:

• Memory Usage Reduction. As the quantization converts the weights from the

full-precision (i.e., 32-bit floating-point) [20] to multiple discrete levels, the

weights can be encoded into a binary representation with reduced bit-width. It

12

could reduce memory usage for model storage, thus avoid expensive off-chip data

access.

• Computation Simplification. With a specific quantizer, the dominant Multiply–

ACcumulate (MAC) operation of NN inference can be significantly simplified.

For example, the floating-point MAC can be simplified into a fixed-point coun-

terpart with a uniform quantizer.

In the following subsections, the NN quantization will be elaborated from the perspec-

tives of the quantizer (uniform/non-uniform), training scheme (post-training/training-

aware), and quantization location (weight/activation).

Table 3: Overview of neural network quantization with various configuration.

Accuracy
degradation

Compression
rate

Computation
complexity

Training
cost

Quantizer Uniform High Low Low -
non-uniform Low High High -

quantization
scheme

post-training
quantization High - - Low

quantization-aware
training Low - - High

2.1.1 Quantizer

The quantizer design is not a brand-new topic, which was specified decades ago

in the domain of signal processing [80]. Given a quantization function Q(·, t,v), it

partition a set of continuous value x (∀i,xi ∈ R) into quantized value v, based on the

quantization thresholds t. Thus, the quantized version of x can be written as:

x̂ = Q(x, t,v); ∀i, x̂i ∈ v (2.1)

13

which is illustrated in Fig. 3 To quantitatively measure the noise introduced by the

quantization process, the mean-square error of x and x̂ (i.e. ne = E(x − x̂)2) is nor-

mally adopted as the evaluation metric, which is known as quantization noise. In addi-

tion, the Signal-to-Quantization-Noise Ratio (SQNR) and Normalized Quantization

Noise (NQN) can be expressed as:

SQNR =
E(x)2

ne

=
E(x)2

E(x− x̂)2
=

1

NQN (2.2)

Thus, the design objective of quantizer is to select optimal quantization threshold and

value for NQN minimization (i.e., SQNR maximization).

Depending on the distribution of data to be quantized, the quantizer can be gener-

ally divided into two corresponding categories: the uniform one and its non-uniform

counterpart. Owing to the presence of regularization effect of weight decay (i.e.,

L2 norm) and batch normalization [81] in the modern deep neural network, both

the weights and intermediate feature map to be quantized are tending to follow the

Gaussian-like distribution. Thus, we will focus on quantizing the non-uniform dis-

tributed data with both uniform and non-uniform quantizer in the following subsec-

tions.

2.1.1.1 Uniform Quantizer

Quantization with uniform quantizer is commonly adopted for the data/signal fol-

lowing the uniform distribution (i.e., x ∼ U) [80], for quantization noise minimization.

The uniform quantization function can be written as [53]:

Qu(x) = ∆x · round(clamp(x)/∆x)

clamp(x) = max
(
−∆x · (2Nb−1 − 1),min

(
x,+∆x · (2Nb−1 − 1)

)) (2.3)

14

t1 t2 t3 t4

v1

v2

v3

v4

v5

x

x̂

Figure 3: Quantization function with quantization threshold t and quantized value v.

where ∆x denotes the quantization resolution chosen w.r.t x. Nb is the bit-width used

to encode the quantized values. clamp() is the clamping function with the upper-bound

+∆x · (2Nb−1 − 1) and lower-bound −∆x · (2Nb−1 − 1). To obtain the quantization

functionQu with ideal quantization threshold and quantized values, the only parameter

to be chosen is ∆x:

min
∆x

NQN (2.4)

There are two methods can be leveraged for Eq. (2.4) optimization: exhaustive search

and iterative projection, which are discussed as follows.

Exhaustive Search. The exhaustive search is a numerical method to choose ∆x for

quantizer optimization. It uses the brute-force to examine all the candidates spanning

from 0 to >max(x) in the small granularity of δ, then select one out of it (i.e., ∆x ∈

{i · δ}, i ∈ Z+). For better visualization, the relation between normalized quantization

noise and clamping bound (i.e., ∆x · (2Nb−1 − 1)) is illustrated in Fig. 4.

15

0 1 2 3 4 5 6

10−4

10−3

10−2

10−1

100

Clamping Bound

N
or

m
al

ize
d

Q
ua

nt
iza

tio
n

N
oi

se

Nb=2
Nb=3
Nb=4
Nb=5
Nb=6
Nb=7
Nb=8

Figure 4: Normalized quantization noise versus clamping bound, for uniform quantizer
w.r.t different quantization bit-width Nb configuration. The data to be quantized are
10000 samples from Gaussian distribution N (0, 1) i.i.d.

Iterative projection. Another method for uniform quantizer optimization is lever-

aging the iterative projection [41], [82], which can be described by iteratively applying

the following equations:

Projection: x̂int =
Qu(x)

∆x
= round(clamp(x)/∆x) (2.5)

Update: ∆x =
x̂T

int · x
x̂T

int · x̂int
(2.6)

Based on the description in [41], such iterative projection is convergence-guaranteed

to the local minimum thanks to the decreasing loss in each iterative update. The quan-

tization resolution can be initialized from ∆x = max(|x|)/(2Nb−1 − 1).

2.1.1.2 Non-Uniform Quantization

To quantize the data of non-uniform distribution (e.g., Gaussian), the non-uniform

quantizer normally can achieve lower quantization noise with smaller quantization bit-

16

width Nb. The most well-known approach for non-uniform quantizer optimization

is the Lloyd-Max method [80] (i.e., K-means), which is adopted in the famous deep

compression in [20]. Since the non-uniform quantization is not the main quantization

method adopted chapters, it is not specified here. However, a ternary weight quantiza-

tion (i.e., low bit-width non-uniform quantization) scheme will be treated as a study

case discussed in the next section.

2.1.2 Neural Network Quantization Scheme

2.1.2.1 Quantization-aware Training

In this subsection, the quantization with uniform quantizer is mainly discussed.

2.1.2.1.1 Gradient Approximation of Staircase Quantization Function

Almost for any quantization function which maps the continuous values into dis-

crete space, it has encountered the same problem that such stair-case function is non-

differentiable. Thus, a widely adopted countermeasure is using the so-called Straight-

Through-Estimator (STE) [83] to manually assign an approximated gradient to the

quantization function. We take the STE adopted in famous binarized neural network

[84] as an example to perform the analysis, which is defined as:

Forward : ro = Sign(ri) (2.7)

Backward :
∂L
∂ro

STE
=

∂L
∂ri

∣∣∣∣
|ri|≤1

=⇒ ∂ro
∂ri

∣∣∣∣
|ri|≤1

= 1 (2.8)

where L is the defined loss function. The rule behind such STE setup is that the

output of quantization function ro can effectively represent the full-precision input

17

value ri. Thus, Sign(·) performs the similar function as f(ri) = ri whose derivative is

∂f(ri)/∂ri = 1. However, the rough approximation in Eq. (2.7) and Eq. (2.8) leads

to significant quantization error and hamper the network training when ri << 1 or

ri >> 1. For example, given the Gaussian-sampled data to be quantized owning small

variance (Var << 1), applying the quantization in Eq. (2.7) will result in significant

weight distribution shift which slows down the convergence speed.

+1

-1

+1-1 ir

or
io rr 

Figure 5: Analysis about the Straight-Through-Estimator (STE) design for ro =
Sign(ri). STE actually approximate the gradient of stair-case function (black) w.r.t
the ro = ri (red).

To encounter the drawback of naive STE design discussed above, a method called

gradient correctness for better gradient approximation is proposed by us in [22]. For the

uniform quantization function in Eq. (2.7), we follow the STE design rule which leads

to the following expression:

∂Qu(x)

∂x
= ∆x · ∂round(clamp(x)/∆x)

∂x
≈ 1 (2.9)

Thus, the STE for round(·) function can be derived as:

∂round(clamp(x)/∆x)

∂x
≈ 1

∆x
(2.10)

18

As depicted in Eq. (2.10), instead of simply assigning the gradient of round function

as 1, we scale it w.r.t the value of ∆x on-the-fly. Such STE with gradient correctness

could effectively improve the inference accuracy of weight-quantized DNN, which is

supported by the experiments in [22].

2.1.2.1.2 Quantization on Weight

Since the weight is stationary w.r.t the input, to quantize the weight, the weight

quantizer is normally applied in a layer-wise fashion. For l-th layer (l ∈ {1, ..., L}), the

quantization process from the floating-point base Wfp
l to its fixed-point (signed integer)

counterpart Wl can be described as:

∆wl = max(Wfp
l)/(2

Nq−1 − 1); Wfp
l ∈ Rd (2.11)

Wl = Qu(Wfp
l) = round(Wfp

l /∆wl) ·∆wl (2.12)

Then, the quantized weights {Wl}Ll=1 is used to perform the DNN inference and the

inference loss function L (e.g., cross-entropy loss) can be described as:

L
(
f({Wl},x), t

)
(2.13)

were x and t are the vectorized input samples and the ground-truth labels respectively.

To update the weight via back-propagation, the weight update is conducted upon the

full-precision base, where its gradient can be computed via chain-rule:

∂L
∂wfp =

∂L
∂w

∂w

∂wfp ≈
∂L
∂w

; wfp ∈ {Wfp
l } (2.14)

Then, the updated full-precision weight base is quantized using Eq. (2.12) and used

for the inference loss computation, in the next training iteration.

19

2.1.2.1.3 Quantization on Activation

In comparison to the weight quantization, applying the quantizer upon the acti-

vation (i.e., intermediate feature map) is always the difficult task, as the activation is

dynamically varying w.r.t the DNN input samples. One of the most famous activa-

tion quantization methods [39], [85], [86] is the PArameterized Clipping acTivation

(PACT) [85], which makes the quantizer clamping bound as a trainable parameter lever-

aging a modified straight-through-estimator. As the following chapters mainly utilize

the weight quantization, details of activation quantization are not specified here.

2.1.2.2 Post-training Quantization

Owing to the NN training process is time-consuming (i.e., GPU hours) and the

access to the entire training data is mandatory, post-training quantization is the most

widely used NN quantization scheme in the industry as it is training-free. Such post-

training quantization has been widely integrated into various deep learning frameworks,

such as TensorRT2, Pytorch3, Tensorflow4 and TVM5.

For weight quantization, the quantizer is directly applied to the weight as

in Eq. (2.12), but there is no training involved at all. For activation quantization

in post-training quantization, the most popular approach is the entropy minimization
2https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

3https://pytorch.org/docs/stable/quantization.html

4https://www.tensorflow.org/lite/performance/post_training_quantization

5https://tvm.apache.org/docs/tutorials/frontend/deploy_quantized.html

20

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://pytorch.org/docs/stable/quantization.html
https://www.tensorflow.org/lite/performance/post_training_quantization
https://tvm.apache.org/docs/tutorials/frontend/deploy_quantized.html

method introduced in [87]. Note that, although the idea of post-training quantiza-

tion is to directly quantize the model without updating its parameters, we can still

allow the statistical part of batch-normalization layer [81] to be updated by feeding

several sample batches. Such a trick can improve ∼ 0.2% top-1 prediction accuracy

on the ImageNet dataset, based on the experiments conducted upon AlexNet and

ResNet-18/34/50.

In the following sections, we will present an optimized weight ternarization method

as a case study of neural network model compression.

2.2 Preliminaries of Low Bit-width Weight Quantization

Recently, model compression on the deep convolutional neural network has

emerged as one hot topic in the hardware deployment of artificial intelligence. As

the most popular technique, weight quantization techniques are widely explored in

many related works which can significantly shrink the model size and reduce the com-

putation complexity. Among all those works, DCNN with binary weight is the most

discussed scheme, since it leads to 32× model compression rate. More importantly, it

also converts the original floating-point multiplication (i.e. mul) operations into ad-

dition/subtraction (i.e. add/sub), which could greatly reduce computational hardware

resources and further dramatically lowers the existing barrier to deploy powerful deep

neural network algorithm into low power resource-limited embedded system. Bina-

ryConnect [38] is the first work of binary CNN which can get close to the state-of-the-

art accuracy on CIFAR-10, whose most effective technique is to introduce the gradient

clipping. After that, both BWN in [40] and DoreFa-Net [39] show better or close

validation accuracy on ImageNet dataset. In order to reduce the computation com-

21

plexity to the bone, XNOR-Net [40] binarize the input tensor of the convolution layer

which further converts the add/sub operations into bit-wise xnor and bit-count opera-

tions. Besides weight binarization, there are also recent works proposing to ternarize

the weights of neural networks using trained scaling factors [54]. Leng et. al. employ

the Alternating Direction Method of Multipliers (ADMM) to optimize neural network

weights in configurable discrete levels to tradeoff between accuracy and model size [41].

ABC-Net in [88] proposes multiple parallel binary convolution layers to improve the

network model capacity and accuracy, while maintaining binary kernel. All the above

discussed aggressive neural network binarization or ternarization methodologies sacri-

fice the inference accuracy in comparison with the full precision counterpart to achieve

large model compression rate and computation cost reduction.

2.3 Weight Ternarization Training Method

2.3.1 Ternarization With Iterative Statistical Scaling

As shown in Fig. 6, our training methodology to obtain accurate deep Convolu-

tional Neural Network (CNN)6 with ternarized weights can be divided into two main

steps: Initialization and iterative weight ternarization training. We first train a desig-

nated neural network model with full precision weights to act as the initial model for

the future ternarized neural network model. After model initialization, we retrain the

ternarized model with iterative inference (including statistical weight scaling, weight
6In this work, all the convolution kernels and fully-connected layers do not have bias term, excluding

the last layer.

22

(1)Weight
Initialization

(2) Iterative weight ternarization training

+0.37 +0.53 -0.07

+0.13 -0.82 -0.42

+0.33 +1.21 -0.98 Loss

+0.37 +0.53 -0.07

+0.13 -0.82 -0.42

+0.33 +1.21 -0.98

+α +α 0

0 -α -α

0 +α -α

One-time Weight
initialization from
pretrained model

Ternarize
full-precison
weight for
inference

Back-propagate the gradient to
update the full-precision weight

Batch

Update α each intera.

1

2

3

2

Figure 6: The training scheme of ternarized CNN model. (1)-(3) steps in the figure
are iteratively operated during the training.

ternarization, and ternary weight based inference for computing loss function) and

back-propagation to update full precision weights.

Initialization: The reason that we use a pre-trained model with full precision

weights as the initial model comes in twofold: 1) Fine-tuning from the pre-trained

model normally gives higher accuracy for the quantized neural network. 2) Our ternar-

ized model with the initialized weights from the pre-trained model converges faster in

comparison to ternarization training from scratch. For practical applications, engineers

will use a full-precision model to estimate the ideal upper-bound accuracy. Afterward,

various model compression techniques are applied to the full precision model to com-

press model size while trying to mitigate accuracy loss as well.

Iterative weight ternarization training: After loading the full-precision weights

as initialization state, we start to fine-tune the ternarized CNN model. As described

in Fig. 6, there are three iterative steps for the following training, namely, 1⃝-statistical

weight scaling and weight ternarization, 2⃝-ternary weight based inference for loss func-

tion computation and 3⃝-back propagation to update full precision weights.

23

1⃝ will first ternarize current full precision weights and compute the correspond-

ing scaling factor based on current statistical distribution of full precision weight. For

weight ternarization (i.e. -1, 0, +1), we adopt the variant staircase ternarization func-

tion, which compares the full precision weight with the symmetric threshold±∆th [55].

Such weight ternarization function in the forward path for inference can be mathemat-

ically described as:

Forward : w′
l =


α× Sign(wl,i) |wl,i| ≥ ∆th

0 |wl,i| < ∆th

(2.15)

where wl denotes the full precision weight tensor of layer l, w′
l is the weight after

ternarization. We set the scaling factor as:

α = E(|wl,i|), ∀{i
∣∣|wl,i| ≥ ∆th} (2.16)

which statistically calculates the mean of absolute value of designated layer’s full pre-

cision weights that are greater than the threshold ∆th. Unlike TWN uses ∆th =

0.7 × E(wl) as threshold, we set ∆th = β × max(|wl|) as threshold [54], [55]. The

reason is that, for each training iteration, the weight update causes large value drifting

of E(wl), which correspondingly leads to unstable ∆th. In this work, we employ single

scaling factor for both positive and negative weights, since such symmetric weight scal-

ing factor can be easily extracted and integrated into following Batch Normalization

layer or ReLU activation function (i.e., both perform element-wise function on input

tensor) for the hardware implementation.

Then, in 2⃝, the input mini-batch takes the ternarized model for inference and

calculates loss w.r.t targets. In this step, since all of the weights are in ternary values, all

the dot-product operations in layer l can be expressed as:

xT
l ·w′

l = xT
l · (α · Tern(wl)) = α · (xT

l · Tern(wl)) (2.17)

24

wherexl is the vectorized input of layer l. Since Tern(wl,i) ∈ {−1, 0,+1}, xT
l ·Tern(wl)

can be easily realized through addition/subtraction without multi-bit or floating point

multiplier in the hardware, which greatly reduces the computational complexity.

In 3⃝, the full precision weights will be updated during back-propagation. Then,

the next iteration begins to re-compute weight scaling factor and ternarize weights as

described in step- 1⃝. Meanwhile, since the ternarization function owns zero derivatives

almost everywhere, which makes it impossible to calculate the gradient using chain

rule in backward path. Thus, the Straight-Through Estimator (STE) [83][39] of such

ternarization function in the back-propagation is applied to calculate the gradient as

follow:

Backward :
∂g

∂w
=


∂g
∂w′ if |w| ≤ 1

0 otherwise

(2.18)

where the gradient clipping prevents the full precision weight growing too large and

stabilize the threshold β×max(|wl|) during training (i.e., fine-tuning), thus leading to

higher inference accuracy ultimately.

2.3.2 Residual Expansion to Improve Accuracy

Conv1 BN1 ReLU Conv2 BN2 ReLU... ...

Conv1 BN 1 ReLU Conv2 BN2 ReLU... ...

Conv1r Conv2r

FC

FC

...

...

FCr

Figure 7: The block diagram of (top) original network topology and (bottom) the
network with residual expansion to further compensate the accuracy degradation. In
this figure, the expansion factor Tex is 2.

25

As the aforementioned discussion in the introduction, works like DoreFa-net [20],

[39] adopt the multilevel quantization scheme to preserve the model capacity and avoid

the accuracy degradation caused by extremely aggressive (i.e. binary/ternary) weight

quantization. Since our main objective is to remove floating-point multiplication and

only use addition/subtraction to implement the whole deep CNN, while minimizing

accuracy degradation caused by weight ternarization. We propose a Residual Expanded

Layer (REL) as the remediation method to reduce accuracy degradation. As depicted

in Fig. 7, we append one REL over the convolution layers and fully-connected layers

in the original network structure, where the expansion factor Tex is 2 in this case. We

use Conv and Convr to denote the original layer and the added REL respectively. Both

Conv and Convr are ternarized from the identical full precision parameters. During

training, the network structure with RELs follow the same procedures as discussed in

Fig. 6. The only difference is that Conv and Convr has two different threshold factors

(e.g., β = {0.05, 0.1} are in this work for Tex = 2). We could append more RELs for

compact CNN with low network redundancy.

The appended REL equivalently introduces more number of levels to each kernel.

Assuming two threshold factors a, b for Conv and Convr layers, where a > b, then we

can formulate their computation as:

xT ·w′ + xT ·w′
r = xT · (α · Tern

β=a
(w) + αr · Tern

β=b
(wr)) (2.19)

where the function α ·Tern
β=a

(w)+αr ·Tern
β=b

(wr) is equivalent to a multi-threshold func-

tion that divides the element in w into levels of γ = {−α− αr,−α, 0, α, α+ αr}, with

thresholds {−b,−a, a, b}. Enlarging the expansion factor Tex will equivalently intro-

duce more number of levels for the weights and recover the ternarized model capacity

towards its full-precision baseline. However, compared to the case that directly use a

26

multi-bit kernels, the actual convolution kernel is still in ternary format and thus no

multi-bit multiplication is needed (see more discussions in Section 2.5.3).

2.4 Experiments

In this work, all experiments are performed under the framework of Pytorch. The

performance of our neural network ternarization methodology is examined using two

datasets: CIFAR-10 and ImageNet. Other small datasets like MNIST and SVHN are

not studied here since other related work [39], [55] can already obtain close or even no

accuracy loss.

2.4.1 CIFAR-10

To impartially compare our ternarization method with [54], we choose the same

ResNet-20, 32, 44, 50 (type-A parameter-free residual connection) [2] as the testing

neural network architecture on CIFAR-10 dataset. CIFAR-10 contains 50 thousand

training samples and 10 thousand test samples with 32 × 32 image size. The data

augmentation method is identical as used in [2]. For fine-tuning, we set the initial

learning rate as 0.1, which is scheduled to scale by 0.1 at epoch 80, 120, and 160

respectively. Note that, both the first and last layers are ternarized during the training

and test stage.

we report the CIFAR-10 inference accuracy as listed in Table 4. It can be seen

that only ternarized ResNet-20 gets minor (0.64%) accuracy degradation, while all the

other deeper networks like ResNet-32, 44, 56 outperform the full precision baseline

with 0.12%, 0.24%, and 0.18%, respectively. It shows that a more compact neural

27

network, like ResNet20, is more likely to encounter accuracy loss, owing to the net-

work capacity is hampered by this aggressive model compression. A similar trend is

also reported in TTN [54]. Meanwhile, except for ResNet56, other accuracy improve-

ments of our method are higher. Note that, the improvement is computed as the

accuracy gap between pre-trained full precision model and corresponding ternarized

model. Our pre-trained full precision model accuracy is slightly different even with

the same configurations.

Table 4: Inference accuracy of ResNet on CIFAR-10 dataset

ResNet20 ResNet32 ResNet44 ResNet56

TTN [54] FP 91.77 92.33 92.82 93.2
Tern 91.13 92.37 92.98 93.56
Gap -0.64 +0.04 +0.16 +0.36

our work
FP 91.7 92.36 92.47 92.68

Tern 91.65 92.48 92.71 92.86
Gap -0.05 +0.12 +0.24 +0.18

2.4.2 ImageNet

To provide more comprehensive experimental results on a large dataset, we ex-

amine our model ternarization techniques on image classification tasks with the Im-

ageNet [30] (ILSVRC2012) dataset. ImageNet contains 1.2 million training images

and 50 thousand validation images, which are labeled with 1000 categories. For the

data pre-processing, we choose the scheme adopted by ResNet [2]. Augmentations

applied to the training images can be sequentially enumerated as 224× 224 randomly

resized crop, random horizontal flip, pixel-wise normalization. All the reported classifi-

cation accuracy on the validation dataset is a single-crop result. Beyond that, similar to

28

0 20 40
Number of Epochs

30

40

50

60

70

A
cc

ur
ac

y

Train
Val

(a) First&last layers are Full-precision.

0 20 40
Number of Epochs

30

40

50

60

70

A
cc

ur
ac

y

Train
Val

(b) First&last layers are Ternarized.

Figure 8: Train and validation (top-1) accuracy of AlexNet on ImageNet

other popular model quantization works, such as XNOR-Net [40], DoreFa-Net [39],

and TTN [54], we first keep the first and last layer in full precision (i.e., 32-bit float)

and ternarize the remaining layers for a fair comparison. Besides that, we also con-

duct experiments to fully ternarize the whole network. Thus, in this case, the weight

parameters of the whole network are in ternary format.

2.4.2.1 AlexNet

We first present the experimental results and its analysis on AlexNet, which is similar

to the variant AlexNet model used by DoreFa-Net [39] and TTN citezhu2016trained.

The AlexNet in this work does not include Local-Response-Normalization (LRN) [12].

We apply a batch normalization layer after each convolution and fully-connected layer.

The dropout layer is removed, since we find that it actually hampers the performance of

fine-tuning of ternarized model from its full precision counterpart. A possible reason is

29

that the dropout method randomly deactivates some weighted connections. However,

our kernel scaling factor is calculated with respect to the weight distribution of the

entire layer.

We first train the full precision AlexNet with the aforementioned data augmentation

method. SGD with momentum = 0.9 is taken as the optimizer. The initial learning

rate is 0.1 which is scheduled with a decay rate of 0.1 at epoch 45 and 65. Batch size

is set to 256, and weight decay is 1e-4. For fine-tuning ternarized AlexNet from the

pre-trained full-precision model, we alter the optimizer to Adam. The initial learning

rate is set to 1e-4 and scaled by 0.2, 0.2, and 0.5 at epoch 30, 40, and 45 respectively.

The batch size is 256 as the full-precision model. Since low-bit quantization could also

be considered as a strong regularization technique, weight decay is expected to be at a

small value or even zero. Here we set the weight decay as 5e-6.

Table 5: Validation accuracy of AlexNet on ImageNet using various model quantization
methods. FP, Bin., Tern. denote full-precision, binary and ternary respectively.

Quantize
scheme

First
layer

Last
layer

Accuracy
(top1/top5)

Comp.
rate

DoreFa-Net[39], [54] Bin. FP FP 53.9/76.3 ∼32×
BWN[40] Bin. FP FP 56.8/79.4 ∼32×

ADMM[41] Bin. FP* FP* 57.0/79.7 ∼32×
TWN[41], [55] Tern. FP FP 57.5/79.8 ∼16×

ADMM[41] Tern. FP* FP* 58.2/80.6 ∼16×
TTN[54] Tern. FP FP 57.5/79.7 ∼16×

Full precision - FP FP 61.78/82.87 1×
this work Tern. FP FP 58.59/80.44 ∼16×
this work Tern. Tern Tern 57.15/79.42 ∼16×

We here report the accuracy on ImageNet validation set including our work and

other recently published works with state-of-the-art performance in Table 5. Note that,

30

we mark out the quantization state of the first layer and last layer for various methods.

For works without such discussion in the paper and no released code, we consider

that they configure the first and last layer in full precision (marked with *). We are

confident in such an assumption since we double-checked the works they compared

in their published papers are with first- and last-layer in full precision. The results

show that our work achieves the best accuracy compared to the most recent works. In

comparison to the previous best result reported by ADMM [41], our work improves

the ADMM binary scheme and ternary scheme by 1.59% and 0.39% respectively.

Furthermore, different from previous works that all preserve the weights of the

first and last layer in full-precision, we also conduct experiments to fully ternarize the

whole network. Such ternarization leads to a further 1.44% top-1 accuracy drop. For

a general-purpose processor, like CPU/GPU, the performance improvement by ternar-

izing the whole network is not quite huge since the parameter size reduction and com-

putation cost reduction are relatively small. However, for a domain-specific neural

network accelerator, like ASIC and FPGA, ternarizing the entire network means no

specific convolution cores are needed to perform Multiplication and Accumulation

(MAC) operations [89]. It will save a large amount of power, area, and other on-chip

hardware resources, which further improve the system performance. We will provide a

more quantitative analysis of this issue in the later discussion section.

2.4.2.2 ResNet

Various works [54], [90] have drawn a similar conclusion that, under the circum-

stance of using identical model compression technique, accuracy degradation of the

compressed model w.r.t its full-precision baseline will be enlarged when the model

31

topology becomes more compact. In other words, the neural network with a smaller

model size is more likely to encounter accuracy degradation in weight compression.

Meanwhile, since neural network with residual connections is the mainstream of deep

neural network structure, we also employ the compact ResNet-18 (type-b residual con-

nection in [2]) as another benchmark to demonstrate that our ternarization method

could achieve the best state-of-the-art performance. The full-precision ResNet18 model
7 released by PyTorch framework is used as the baseline and pre-trained model in this

work. The data augmentation method is the same as we introduced in Section 2.4.2.1

for AlexNet.

Table 6: Validation accuracy (top1/top5 %) of ResNet-18b [2] on ImageNet using
various model quantization methods.

Quan.
scheme

First
layer

Last
layer

Accuracy
(top1/top5)

Comp.
rate

BWN[40] Bin. FP FP 60.8/83.0 ∼32×
ABC-Net[88] Bin. FP* FP* 68.3/87.9 ∼6.4×
ADMM[41] Bin. FP* FP* 64.8/86.2 ∼32×

TWN[41], [55] Tern. FP FP 61.8/84.2 ∼16×
TTN[54] Tern. FP FP 66.6/87.2 ∼16×

ADMM[41] Tern. FP* FP* 67.0/87.5 ∼16×
Full precision - FP FP 69.75/89.07 1×

this work Tern. FP FP 67.95/88.0 ∼16×
this work Tern. Tern Tern 66.01/86.78 ∼16×

As the simulation results listed in Table 6, ResNet-18b [2] with our ternarization

scheme shows 0.95% and 0.5% higher top-1 and top-5 accuracy, respectively, com-

pared to previous best result of ADMM [41] with equal compression rate (16×). ABC-

Net [88] has ∼ 0.3% higher top-1 accuracy over our work, but with a cost of 2.5 times
7https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

32

larger model size. Moreover, our work saves ∼60% computation owing to the sparse

kernel after ternarization. Similar as in AlexNet, if we further ternarize the first and last

layer, both the top-1 and top-5 accuracy of ResNet-18 degrades.

Table 7: Inference accuracy (Top1/Top5 %) of ternarized ResNets on ImageNet dataset

ResNet18 ResNet34 ResNet50 ResNet101
FP 69.75/89.07 73.31/91.42 76.13/92.86 77.37/93.55

Tern 66.01/86.78 70.95/89.89 74.00/91.77 75.63/92.49
Gap -3.74/-2.29 -2.36/-1.53 -2.13/-1.09 -1.74/-1.06

Moreover, we conduct a series of deeper residual networks (ResNet-34, 50, 101) in

addition to the ResNet-18. As listed in Table 7, the accuracy gap between a ternarized

model and its full-precision counterpart is reduced when the network goes deeper. Such

observation is consistent with the experiments on the CIFAR-10 dataset.

2.4.2.3 Improve Accuracy on ResNet With REL

We introduce the Residual Expansion Layer (REL) technique to compensate for the

accuracy loss, which can still benefit from the weight ternarization in model size and

computation reduction, and the multiplication elimination for convolution and fully-

connected layers. In order to show that such residual expansion can effectively reduce

the accuracy gap between the ternarized model and full-precision baseline, we report

the validation accuracy of expanded residual ResNet18 on ImageNet in Table 8. When

expansion factor Tex is 2 and two thresholds β = {0.05, 0.1} are used, we succeeded

to further shrink the accuracy gap to -1.7%/-1.03%. When the Tex is increased to 4

(β = {0.05, 0.1, 0.15, 0.2}), the accuracy gap is almost negligible.

33

Table 8: Validation accuracy (top1/top5 %) of ResNet-18b on ImageNet with/without
residual expansion layer (REL).

First
layer

Last
layer

Accuracy
(top1/top5)

Accuracy
gap

Comp.
rate

Full precision FP FP 69.75/89.07 -/- 1×
Tex=1 FP FP 67.95/88.0 -1.8/-1.0 ∼ 16×
Tex=1 Tern Tern 66.01/86.78 -3.74/-2.29 ∼ 16×

Tex=2 FP FP 69.33/89.68 -0.42/+0.61 ∼ 8×
Tex=2 Tern Tern 68.05/88.04 -1.70/-1.03 ∼ 8×

Tex=4 Tern Tern 69.44/88.91 -0.31/-0.16 ∼ 4×

0 20 40
Number of Epochs

40

50

60

70

A
cc

ur
ac

y

Tex =1, Train
Tex =1, Val

Tex =2, Train
Tex =2, Val

(a) First and last layer in full-precision

0 20 40
Number of Epochs

40

50

60

70

A
cc

ur
ac

y

Tex =1, Train
Tex =1, Val

Tex =2, Train
Tex =2, Val

(b) First and last layer are ternarized

Figure 9: The accuracy evolution curve of ternarized ResNet-18b on ImageNet with
residual expansion.

The training and test accuracy evolution accuracy of ResNet18 with all the con-

figurations listed in Table 8 are plotted in Fig. 9. Based on our observation, whether

implementing ternarization of the first and last layer does have a significant effect on

the training process and accuracy. Ternarizing the first and last layer of ResNet18 (Sec-

tion 2.4.2.3) causes large validation accuracy fluctuation during training compared to

34

the experiments that keep the first and last layer in full precision (Section 2.4.2.3). As

shown in Section 2.4.2.3, the validation accuracy curve with residual expansion allevi-

ates the fluctuation and smooth the curve.

(a) Full-precision kernel before fine-
tuning

(b) Full-precision kernel after fine-tuning

(c) Ternarized kernel with threshold fac-
tor β = 0.05.

(d) Ternarized kernel with threshold fac-
tor β = 0.1.

Figure 10: Kernel visualization for the first layer (channel 0) of ResNet18 before and
after ternarization.

35

Beyond that, we further explore the effect of the ternarization process of the neu-

ral network with the assistance of kernel visualization. Since we also ternarize the first

convolution layer of ResNet18, the input channel-0 is used as an example to study the

weight transformation during weight ternarization as shown in Fig. 10. Kernels plot-

ted in Section 2.4.2.3 are from the full-precision pre-trained model, which are taken

as the initial weights. After fine-tuning the model for weight ternarization, the full-

precision weights (i.e., the full precision weight is kept for back-propagation) shown

in Section 2.4.2.3 still keep the similar patterns as in the pre-trained model. During in-

ference in validation stage, kernels in Section 2.4.2.3 are ternarized with two different

threshold factors, β = 0.05 and β = 0.1 for the original layer Conv and its REL Convr

respectively. As seen in Section 2.4.2.3 and Section 2.4.2.3, both ternarized kernels, to

some extent, preserve the features from full precision model. Ternarized kernels with

a larger threshold factor only keep the connection with higher weight intensity. Thus,

the residual expansion layer with a higher threshold factor will lead to higher layer spar-

sity, and only a very small portion weights (i.e., non-zero value) will use the computing

resources to perform network inference.

2.5 Ablation Study and Discussion

2.5.1 Ablation Study

To show the effectiveness of the proposed methods, we present a fair ablation study

(Table 9) that isolates multiple factors which are listed as follow: 1) TW: directly train-

ing the Ternarized Weight (TW) from scratch without Iteratively Calculated Scaling

factors (ICS); 2) TW+ICS: Training the ternarized network from scratch with the vary-

36

Table 9: Validation accuracy of ResNet-18b on ImageNet.

Accuracy Comp. rate
Baseline: Full precision 69.75/89.07 1×

TW 57.48/81.15 ∼16×
TW+ICS (β = 0.05) 65.08/86.06 ∼16×
TW+ICS (β = 0.1) 64.78/86.06 ∼16×
TW+ICS (β = 0.2) 57.09/81.01 ∼16×

TW+FT 64.94/86.13 ∼16×
TW+ICS+FT (β = 0.05) 66.01/86.78 ∼16×

TW+ICS+FT+REL (β = {0.05, 0.1}) 68.05/88.04 ∼8×

ing scaling factor (β=0.05, 0.1 and 0.2); 3) TW+FT: Fine-Tuning (FT) the ternarized

weight. It shows that using ICS and training from scratch is close to the performance

of fine-tuning the model without ICS. 4) TW+ICS+FT: Fine-tuning the model with

ICS further improves the accuracy. 5) TW+ICS+FT+REL: incorporating our proposed

REL techniques leads to almost no accuracy loss.

2.5.2 Deep CNN Density Examination

Table 10: Density variation of first and last layer before/after fine-tuning

First layer Last layer Average
densityBefore After Before After

AlexNet 36.3% 53.6% 62.8% 67.5% 41.1%
ResNet18 41.7% 52.2% 54.8% 68.3% 40.1%

Let us assume the trained sparsity (sparsity=1-density) of the designated layer is

correlated to its redundancy. Fig. 11 depicts the weight density distribution of all the

convolution and fully-connected layers in AlexNet and ResNet for the cases before and

37

Con
v1

Con
v2

Con
v3

Con
v4

Con
v5 fc1 fc2 fc3

Layers

0

50

100

D
en

si
ty

 (%
)

Pretrained model
Ternarized model: fl=FP, ll=FP
Ternarized model: fl=Tern., ll=Tern.

(a) AlexNet

Con
v1
Con

v2
Con

v3
Con

v4
Con

v5
Con

v6
Con

v7
Con

v8
Con

v9

Con
v1

0

Con
v1

1

Con
v1

2

Con
v1

3

Con
v1

4

Con
v1

5

Con
v1

6

Con
v1

7 fc

Layers

0

50

100

D
en

si
ty

 (%
)

Pretrained model
Ternarized model: fl=FP, ll=FP
Ternarized model: fl=Tern., ll=Tern.

(b) ResNet-18

Figure 11: Density distribution of convolution and fully-connected layers in (a)
AlexNet and (b) ResNet-18 structure. The weight density of the pre-trained model is
when the network just loads the parameters from the pre-trained model without fine-
tuning. Ternarized model: fl=FP, ll=FP refers to the density distribution of the ternar-
ized model with the first and last layer in full precision. Ternarized model: fl=Tern.,
ll=Tern. denotes that the density distribution of the ternarized model with first and
last layer in ternary representation.

38

after the model ternarization. As shown in both Section 2.5.2 and Section 2.5.2, the

weight density of the first and last layer is raised to a higher level after ternarization in

comparison to their initial density. Here the density on the pre-trained model refers

to the neural network that initialized from the full-precision pre-trained model, then

we directly apply our ternarization method as introduced in Section 2.3 without fine-

tuning the weights. We calculate the average density of all the convolution and fully-

connected layers, which are reported in Table 10. It shows that after ternarization, the

density of the first and last layer is much higher than the average density and other

layers. A potential method to further compress the network model is to use density as

an indicator to choose different expansion factors for each layer.

2.5.3 REL Versus Multi-bit Weight

Table 11: Inference accuracy of ResNet-18 on ImageNet with multi-bit [39] weight or
REL.

Multi-bit [39] REL (this work)
Config. 3-bit tex=1 tex=2
Accuracy 65.70/86.82 66.01/86.78 68.05/88.04

Comp. rate 10.7× 16× 8×

In comparison to directly using multiple bits (multi-bit) weight, using REL is ad-

vantageous in terms of both accuracy and hardware implementations. First, REL shows

better performance over the multi-bit method adopted from Dorefa-Net [39] on Im-

ageNet. Second, from the hardware perspective, REL preserves all network weights

in the ternary format (i.e. -1, 0, +1), enabling the implementation of convolutions

through sparse addition operations without multiplication. Increasing the number of

39

expansion layers (tex) merely requires more convolution kernels when one deploys the

network in FPGA/ASIC. It is noteworthy that the REL with a larger threshold factor

owns higher sparsity, which requires less computational resources. On the contrary,

when more bits are added in multi-bit, the convolution computation goes back to mul-

tiplication and addition operations, consuming more energy and chip area. Finally,

both our work (Section 2.5.2) and the deep compression [20] show that a deep neural

network has different redundancies from layer to layer. If one employs the multi-bit

scheme, we have to re-design the computing hardware with different bit-widths for the

layers. Beyond that, since zero-value weights in REL with a smaller threshold will be

staying in zero in REL with a larger threshold (as shown in Section 2.4.2.3 and Sec-

tion 2.4.2.3), the model compression rate can be further improved with proper weight

sparse encoding method.

2.5.4 Hardware Resource Utilization Efficiency

Table 12: FPGA resource utilization (Kintex-7 XC7K480T) for AlexNet last layer

Weight
type

MACs LUT (slices) DSP (slices)
Multiplier Adder required available required available

FP 100 100 49600 74650 200 1920
Tern. 0 90 23490 74650 0 1920

As we discussed in section 2.4.2.1, fully ternarizing the first and last layer is greatly

beneficial for developing the corresponding hardware accelerator on FPGA or ASIC,

owing to the elimination of floating-point convolution computing core. Here in this

work, we analyze the deployment of the last fully connected layer of AlexNet into a

XILINX high-end FPGA (Kintex-7 XC7K480T) as an example. As reported by [91],

40

floating-point adder cost 261 LUT slices on Kintex-7, while the floating-point mul-

tiplier takes 235 LUT slices with additional 2 DSP48Es. The weights of last fully-

connected layer in AlexNet is in the dimension of 4096 × 1000, which requires 1000

MACs [92] if performing the computation in the extreme parallel manner. However,

due to the FPGA resource limitation, we consider the design scheme that allows 100

MACs for floating-point weight convolution, while the rest resources can only accom-

modate 90 MACs for ternary weight convolution. For the neural network with both

ternary and full precision weights, balancing the hardware resources to build MAC

cores for ternary and full precision weight becomes extremely difficult. Increasing

the number of ternary weight MAC cores does improve hardware resource utilization.

However, it has to reduce the allocated floating-point MACs, which at the same time

reduces the computation parallelism and thus increases whole system latency. On the

contrary, if we keep the current hardware resource allocation plan, the hardware uti-

lization efficiency will be extremely low especially when the networks are going deeper.

Then, it can be seen that fully ternarizing the whole network is extremely important for

algorithm deployment in a resource-limited embedded system although the theoretical

model compression rate does not increase too much.

2.6 Summary

In this chapter, we first briefly go through the basics of neural network quantiza-

tion. Then, we have explicitly optimized the current DNN ternarization scheme with

techniques like statistical weight scaling and REL. On the image classification task, a se-

ries of comprehensive experiments are conducted to show that our method can achieve

state-of-the-art accuracy on both small dataset like CIFAR-10, and large dataset like

41

ImageNet. Beyond that, we examined the accuracy with/without the first&last layer

ternarization. Owing to that the statistical weight scaling is used through the entire

network, our ternarized network does not encounter serious accuracy degradation even

with ternarized weight for the first&last layer.

42

Chapter 3

EFFICIENT NEURAL INFERENCE VIA ANALOG IN-MEMORY

COMPUTING

In the prior chapter, we have covered the basics of neural network compression

leveraging the weight and activation quantization. Neural networks severing on the

general-purpose computing hardware (e.g., Graphics Processing Unit, GPU) could sig-

nificantly benefit from the performance boost resulting from the model quantization.

In order to further enhance the inference efficiency, accelerating the neural network

inference with the Resistive Random-Access-Memory (ReRAM) crossbar is a promis-

ing direction [42], [43], [93], since computations are performed in memory without

expensive long-distance data communication. Nevertheless, various non-ideal effects

of the ReRAM crossbar are hampering the inference accuracy of the deployed neural

network in the practical scenario. In this chapter, we will focus on developing effective

countermeasures to mitigate the ReRAM crossbar non-ideal effects.

3.1 Preliminaries

Resistive crossbar memory, as one the most popular memory array structure, has

drawn great research interest owing to its high memory accessing bandwidth and in-situ

computing ability [43], [94]. More importantly, its current-mode weighted summa-

tion operation intrinsically matches the dominant Multiplication-and-Accumulation

(MAC) in an artificial neural network, making it one of the most promising can-

didates as the basic computing unit for neural network accelerator design. Various

43

crossbar-based neural network accelerator designs with different technologies, such as

SRAM [95], DRAM [96], ReRAM [97] and MRAM [77], have been proposed recently,

which show significant performance improvement for neural network inference. Resis-

tive Random-Access-Memory (ReRAM) is a two-terminal device with programmable

resistance, which is taken as the target device in this work. However, many non-ideal

effects, such as wire resistance, Stuck-At-Fault (SAF), thermal noise, shot noise, ran-

dom telegraph noise, and etc. [65], are hampering the progress of real hardware im-

plementation of large-scale deep neural network (DNN) on ReRAM crossbar-based

accelerator. Many recent works [62]–[65] have investigated such issues and proposed

various solutions from either hardware or software perspectives, which are summarized

as follows.

Hardware Approach. In [98], Xu et al. investigate the impact of different re-

sistance allocation schemes, programming strategies, peripheral designs, and material

selections on the area, latency, power, and reliability of ReRAM crossbar. The IR-drop

caused by the wire resistance of the crossbar is modeled by Liu et al. in [58].

Software Approach. Other recent works [62]–[65] have adopted different meth-

ods that all require retraining the target neural network’s weight to be mapped in a

crossbar array w.r.t various non-ideal effects for a specific device. However, the main

drawback of such a method is that compute-intensive additional network retraining

is required for each specific crossbar accelerator, which is definitely not cost-efficient

and not practical for future deep neural network deployment into different crossbar

accelerators. Moreover, typical network retraining to get reconstructed weights only

considers and adapts the deterministic non-ideal effect (e.g., SAF defects). While, in-

corporation of many other non-ideal effects (e.g., thermal noise) with stochastic be-

havior or IR-drop still remains unsolved. Therefore, rather than network retraining to

44

get reconstructed weights every time for a new crossbar accelerator as discussed above,

we propose different techniques for each type of non-ideal effect, which only needs

one-time optimization for target DNN.

3.2 Non-Ideal Effects and Modeling of ReRAM Crossbar

Generally, the non-ideal effects of ReRAM crossbar can be divided into two cate-

gories and modeled as deterministic noise nd and stochastic noise ns, respectively. In

this work, we consider Stuck-At-Fault (SAF) as the deterministic non-ideal effect, while

the stochastic non-ideal effects include effects of crossbar wire resistance (i.e., IR-drop),

thermal noise, shot noise and Random Telegraph Noise (RTN). All the aforementioned

non-ideal effects are explicitly discussed in the following subsections.

3.2.1 Deterministic Noise Modeling

3.2.1.1 Device Defects

There are two kinds of Stuck-At-Fault (SAF) defects, which are Stuck-At-zero (SA0)

and Stuck-At-one (SA1) respectively [56], [57]. The SA0 defect is normally caused by

short defects, which makes parts of the ReRAM cells always at high conductance state

(i.e., Gmax). The SA1 defect is resulting from the cell permanent damage and broken

selector or wire, which makes parts of the ReRAM cells stuck at low conductance state

(i.e., Gmin). The ReRAM fabrication results in [99] show 1.75% and 9.04% defect rate

for SA0 and SA1 respectively. The SA0/SA1 defect rates around the 1.75%/9.04% are

taken as the region of interest in this work.

45

3.2.2 Stochastic Noise Modeling

3.2.2.1 Wire Resistance

In this work, the reason we consider the wire resistance as a stochastic noise term

is that the crossbar output current degradation is highly correlated with both input

voltage and ReRAM conductance distribution. Modeling it as a deterministic term is

extremely computing expensive and not feasible for large scale DNN mapping. For

example, in [58], Liu et al. employ a gradient search method to compensate for the

weight matrix for IR-drop. However, the process needs to be repeated whenever the

inputs of crossbar changes, which require massive computing resources and training

time. While in this work, we propose to leverage the statistics of IR drop caused current

drift of each crossbar from PytorX as a stochastic noise source in the training of DNN.

Such an approximate method is fast and could eventually regularize the trained network

to adapt to the IR drop of the crossbar. The details of our proposed IR drop modeling

methods are shown later in Section 3.4.3.

3.2.2.2 Thermal Noise and Shot Noise

Thermal noise is normally caused by thermal agitation of the electrical carriers,

while the shot noise is induced by the random arrival of the carriers [59]. Both of

them can be modeled with random current source following zero mean Gaussian dis-

tribution. Thus we merge them together as a single current source presented in parallel

with ReRAM and the Root-Mean-Square (RMS) current, which can be expressed as:

irms =
√
Gf(4KBT + 2qV) (3.1)

46

where G is the ReRAM conductance, f is the operating frequency of the crossbar, KB

is Boltzmann constant, T is the temperature in Kelvin, q is electron charge, V is the

voltage drop across the ReRAM two terminals. Furthermore, we also include the pro-

gramming variation of ReRAM in our noise model. We consider the programming

variation follows Gaussian distribution N (0, σ2), where σ = ∆G/3 and ∆G is the

ReRAM conductance resolution. Then, the equivalent standard deviation of ReRAM

conductance can be described as:

grms =
irms

V
=

√
Gf(4KBT + 2qV)

V 2
+

(
∆G

3

)2

(3.2)

3.2.2.3 Random Telegraph Noise

Random Telegraph Noise (RTN) constitutes a major cause of the errors in non-

volatile resistive devices by temporarily and randomly reducing the resistance of the

ReRAMs [61]. In this work, we adopt the RTN model proposed by Ielmini et al.

in [60], where the average ReRAM resistance change (Rrtn) strongly depends on the cur-

rent resistance state of ReRAM (R). The relation can be described as Rrtn/R = aR+ b,

where a and b are fitting parameters. Converting the resistance into conductance, we

can obtain Grtn/G = bG+a
G−(bG+a)

. We extract a = 1.662e − 7 and b = 0.0015 from the

data reported by [60], then model the RTN as a Poisson process [61]. Thus, the actual

ReRAM conductance value under RTN (Gact) can be mathematically written as:

Gact =


G+Grtn τ < 0.5

G otherwise

(3.3)

where τ is a random number that uniformly distributed between (0,1) (data from [61]).

47

3.3 Crossbar based NN-accelerator

In this section, we will first introduce the single ReRAM crossbar design as a dot-

product engine. Then, the network partition method we adopted for mapping the large

scale network on multiple arrays is introduced in the following subsection. Note that,

we consider there exists a digital arithmetic unit as the co-processor within the ReRAM

crossbar-based accelerator, for signal scaling, addition with bias and other computations

like Batch-Normalization layers.

3.3.1 Single Array as Dot-product Engine

The primary computation of convolution and fully connected layer in deep con-

volution neural network is the weighted summation with bias offset, which can be

rewritten as the element-wise dot-product format:

y = wT · x+ b =

wT

1

 · [x b

]
(3.4)

where w and x are vectorized weights and inputs respectively, and b is the bias term.

For hardware mapping purpose, both weight (w ∈ Z ·∆x) and input (x ∈ Z ·∆w) are

quantized into fixed-point representation, where ∆x and ∆w are the fixed-point quan-

tization step size. In this work, we choose 8-bit for both the inputs and the weights, and

we emit the bias term where the computation is performed by the digital co-processor.

Thus, the above equation can be rewritten as:

y = (∆w ·∆x)
∑
i

ŵi · x̂i (3.5)

The ReRAM crossbar is taken as the analog dot-product engine to accelerate the com-

putation of Eq. (3.5) as shown in Fig. 12. Owing to the weights can be either positive

48

or negative, each weight is represented by two ReRAM cells (i.e., G+
i,j and G−

i,j) allo-

cated in positive and negative array. As shown in Fig. 12, the input xi is encoded as

binary bit-strings ini[n] for crossbar input, where each one has 8-bit digits (n = 8) in 2’s

complement format. Such binary encoded inputs are converted by the DACs, where

the output voltage of the DAC on i-th row can be expressed as:

VDAC,i = Vref +∆VDAC · x̂i (3.6)

where Vref = VDD/2 is the reference voltage, and ∆VDAC is the minimum voltage stage

of the DAC. Therefore, the current forward into the differential ADC for j-th column

pair (i.e., two corresponding columns in positive and negative array) can be described

as:

IADC,j =
M∑
i=1

(
(VDAC,i − Vref) · (G+

i,j −G−
i,j)

)
(3.7)

For ReRAM crossbar programming, there exist two mapping schemes which are

equal-∆R and equal-∆G respective. Hereby we adopt the more straight-forward equal-

∆Gmapping scheme, since the equal-∆R introduces an undesired device-oriented non-

uniform quantization. In order to properly mapping the Eq. (3.5) onto the Eq. (3.7),

we rewrite the function as follows:

G+
i,j −G−

i,j = ∆G · ŵ (3.8)

G+, G− =


∆G · ŵ +Gmin, Gmin if ŵ ≥ 0

Gmin,∆G · |ŵ|+Gmin if ŵ < 0

(3.9)

where ∆G is the conductance step size of the programmable ReRAM cell. Note that

here the conductance G+/G− is the series combination of the on-conductance of the se-

lector Gon and the ReRAM programmed value Gi,j. Thus, Eq. (3.7) can be reformatted

49

...

...

...

...

...

...

D
IF

F
A

D
C

outj[n]

Positive Array Negative Array

G11+ G12+ G1j+

G21+ G22+ G2j+

Gi1+ Gi2+ Gij+

G11- G12-
G1j-

G21- G22- G2j-

Gi1- Gi2- Gij-

i X j Crossbar

Positive
Current

Negative
Current

i X j Crossbar

TIA TIA

Vref

V1 V1

V2 V2

...

Vi Vi

DAC

DAC

DAC

in1[n]

in2[n]

ini[n]

V1

V2

Vi

DAC array

Gon

Gr

Figure 12: Hardware implementation of single M × M ReRAM crossbar array pair
(positive and negative array) as analog dot-product engine. ReRAM selector is modeled
as Gon cascaded with ReRAM conductance Gr.

as:

IADC,j = (∆VDAC ·∆G)
M∑
i=1

x̂ · ŵ (3.10)

Then, with the ADC at the output-end for performing current sensing and quantization

function8, where the LSB current of ADC is configured as ∆IADC = k ·∆VDAC ·∆G ,

the final output is:

ŷ = round(IADC,j

∆IADC
) = round(1

k

M∑
i=1

x̂ · ŵ) (3.11)

In this work, we consider ∆VDAC and ∆G are fixed by hardware, while ∆IADC is

configurable through tuning the reference current source of ADC. To prevent the ac-
8In this work, we use the Eq. (3.11) for simplicity. For a more commonly used ADC quantization,

ŷ = round(IADC,j/∆IADC − 0.5) + 0.5 is also an option.

50

Algorithm 1 DNN quantization training scheme.
Require: Layer-wise quantization step of input ∆x, weight ∆w and ADC ∆IADC. Res-

olution of input, weight, ADC are inNdac
B ,N rram

B andN adc
B bits. Number of training

batches Ntrain.
Ensure: Minimize the loss and obtain fixed ∆x, ∆w and ∆IADC.

{1. Training phase of l-th layer in epoch t}
1: Initialization: Sx ← 0; SI ← SI +∆IADC
2: for i := 1 to Ntrain do
3: Update wl through back-propagation
4: ∆wl ← max(|wl|)/2N

rram
B

5: ∆xl ← max(|xl|)/2(N
dac
B −1)

6: Compute IADC ▷ Eq. (3.10)
7: ∆IADC ← max(|IADC|)/2(N

adc
B −1)

8: Sx ← Sx +∆xl; SI ← SI +∆IADC
9: end for

{2. Test phase}
10: ∆xl ← Sx/Ntrain; ∆IADC ← SI/Ntrain

curacy degradation caused by the quantization error, we also propose a crossbar-aware

network quantization method as described in Algorithm 1. Rather than minimizing

the quantization error w.r.t each input, our method optimizes the layer-wise ∆w, ∆x,

and k, then return them as a fixed value. Thus, the computation workload on digital

co-processor is minimized.

3.3.2 Network Partition on Matrix Arrays

Nowadays, the parametric layers of the state-of-the-art DNN normally contain a

large number of weights which exceeds the size of a single crossbar. Thus, each DNN

layer may require multiple crossbar arrays for weight accommodation. A network parti-

tion technique is necessary here for efficient weight mapping and network computation.

For simplicity, we adopt the naive network partition method similar as introduced in

[100], which converts the weight tensor of each convolution/fully-connected layer into

51

two 4-D Matrix Arrays with shape {Nrow,Ncol,Csize,Csize} as G+ and G− respectively,

where Nrow×Ncol is the number of crossbar arrays used for one layer.

3.4 End-to-End Network Adaption

In this section, we will explicitly discuss the impacts of different non-ideal effects

on ReRAM crossbar based Deep Neural Network acceleration, and the effectiveness of

our proposed countermeasures for preventing accuracy degradation.

3.4.1 Simulation Framework and Configurations

We divide the experimental setup into hardware and software parts for the clarifi-

cation of the tool-chain and models used in this work.

Hardware: The state-of-the-art fabrication result has shown the 6-bit [101] to 7-

bit [102] ReRAM programmable resistance level. In this work, we choose a moderate

resolutions for ADC, DAC and ReRAM (i.e., 8-8-7 bit), other chosen parameters are

tabulated in Table 13. Partial of the parameters chosen for the non-ideal effects setup

are provided in Section 3.2. The ReRAM crossbar-based neural network accelerator is

operating as introduced in Section 3.3.

Software: To perform a comprehensive investigation on the ReRAM crossbar based

neural network accelerator under various non-ideal effects, we build a comprehensive

simulation framework called PytorX, which is implemented in Python and based on

PyTorch, a mainstream DNN training and evaluation platform. It models the cross-

bar computation based on the discussion and equations in Section 3.3, including sig-

nal/unit conversion (i.e., DAC, ADC, and weight mapping), weight partition on mul-

52

Table 13: Parameters of ReRAM crossbar system.

Symbol Description Value
f Operating frequency 0.01∼1 GHz

Vdd/Vref Supply/reference voltage 3.3/1.67 V
Gmin/Gmax ReRAM min/max conductance 333/0.33 µS

∆G Conductance step size 2.601 µS
N

{adc,dac}
B Resolution of ADC/DAC 8/8 bit
T Temperature 300∼350 K

Csize Crossbar Dimension 32, 64, 128

tiple arrays, etc. PytorX is a GPU-favored framework and fully relies on the tensor

operation, thanks to the rich APIs provided by PyTorch. To demonstrate the effec-

tiveness of our proposed method, we take the classical object recognition task as an

example. A variety of network structures (LeNet-5 variant 9 and ResNet-20 [2]) on dif-

ferent scales datasets (MNIST [103] and CIFAR-10 [104]) are studied in the following

sections. Hyper-parameters configuration and image argumentation methods adopted

in this work are identical to what used in the network’s original paper, which will not

be explicitly listed here.

3.4.2 Error Correction for SAF

Many previous studies [57], [64] only discuss the effect of SAF on network infer-

ence using a simple 2-layers fully-connected network, where the results show that SAF

indeed affects the accuracy but with relatively low degradation. However, what we

found in our experiments is that such accuracy degradation drastically increases with

a wider and deeper network structure on a larger dataset. Fig. 13 depicts the test ac-
9https://github.com/pytorch/examples/blob/master/mnist/main.py

53

https://github.com/pytorch/examples/blob/master/mnist/main.py

0.0 2.5 5.0 7.5
0

50

100
MNIST acc. under SA0

0 20 40

60

80

100
MNIST acc. under SA1
w/o EC w/ EC

0 1 2
0

50

100
CIFAR-10 acc. under SA0

0 5 10 15

50

100
CIFAR-10 acc. under SA1

Te
st

 A
cc

ur
ac

y
(%

)

SAF Defect Rate (%)
Figure 13: Test accuracy versus SA0/SA1 rate, w/o or w/ Error Correction (EC). (Top)
LeNet-5 on MNIST dataset; (Bottom) ResNet-20 on CIFAR-10 dataset. Error-bar
denotes mean±std with 100 trials, and crossbar size is 64. Regions with blue shadow
are regions of interest.

curacy on MNIST and CIFAR-10 dataset using LeNet-5 and ResNet-20 respectively,

where the blue shadows indicate accuracy degradation caused by SAF in the deep neu-

ral network. Note that, the SAF rate we used in is 1.75% for SA0 and 9% for SA1,

respectively. As shown in Fig. 13, when directly mapping the network into a crossbar

system without any error correction technique, only 1% SA0 defect rate can lead to a

complete system malfunction on CIFAR-10 dataset with ResNet-20.

As the countermeasure to both SA0 and SA1, in this work, we propose a digital SAF

Error Correction (EC) solution to compensate the computation error in the digital-end.

Such method can be generally described into steps: 1) Profiling the current SAF status

of ReRAM crossbar system, then indexing the ReRAM cells with SA0/SA1 defects

using binary tensor isa0/isa1; 2) Calculating the crossbar output difference yec caused

54

by SAF w.r.t the outputs in the ideal case, where the detail is elaborated in Algorithm 2;

3) Adding the yield yec at the crossbar output utilizing the digital units. Normally,

the addition operation in last step can integrate with the following Batch-Norm layer

(i.e., Affine function). For CIFAR-10 test accuracy reported in Fig. 13, the SAF-free

accuracy is 92.39%. With our error correction method, the worst-case accuracy we

obtain is 92.23 ± 0.08%, where the accuracy gap is negligible. Moreover, the binary

SAF indexing tensor can use the sparse encoding for efficient storage and computation.

Note that, only one-time profiling is needed for each crossbar, instead of compute-

intensive whole DNN re-training as discussed in previous works.

Algorithm 2 Error Correction (EC) for Stuck-At-Fault (SA0/SA1).
Require: input voltage tensor V , ideal weight conductance tensor w/o SAF G+ and

G−, non-ideal weight conductance tensor w/ SAF Gsaf
+ and Gsaf

− . SA0 indexing
tensor isa0+ and isa0− , SA1 indexing tenor isa1+ and isa1− . SA0 and SA1 leads to Gmax
and Gmin respectively. ADC current-to-digital conversion fadc(·).

Ensure: for the given input V , the output of ReRAM crossbar is corrected using error
compensation w.r.t the profiled SA0 and SA1 information.

1: y ← fadc(V ×Gsaf
+ − V ×Gsaf

−) ▷ Crossbar output
2: Gdiff

+ ← (G+ −Gmax) · isa0+ + (G+ −Gmin) · isa1+

3: Gdiff
− ← (G− −Gmax) · isa0− + (G− −Gmin) · isa1−

4: yec ← fadc(V ×Gdiff
+ − V ×Gdiff

−) ▷ output diff. w.r.t SAF
return yout ← y + yec ▷ Digital error compensation

3.4.3 Noise Injection Adaption for IR-drop

The IR-drop caused by wire resistance is another dominant factor which may cause

the system malfunction. With a specific wire technology, the IR-drop is not only de-

termined by the crossbar dimension, but strongly correlated to both input voltage mag-

nitudes and conductance distribution of ReRAM cells. To visualize the impact of the

55

Normalized row number

0.0 0.4 0.8

Normalized column number

0.0
0.4

0.8

No
rm

al
ize

d
vo

lta
ge

0.2
0.4
0.6
0.8

Normalized row number

0.0 0.4 0.8

Normalized column number

0.0
0.4

0.8

No
rm

al
ize

d
vo

lta
ge

0.0
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0
Normalized voltage distribution

Figure 14: Distribution of Voltage drop of crossbar with different dimensions. Surfaces
from top down are 32× 32, 64× 64 and 128× 128 size respectively. (Left) is worst case,
(Right) is normal case

crossbar dimension, we plot the distribution of normalized voltage drop (V ′/V) across

ReRAM cells in Fig. 14, where V ′ is the voltage drop considering IR-drop, while V is

the ideal case without IR-drop. Fig. 14 indicates that choosing 128 × 128 as crossbar

size is impractical for an accelerator design due to a huge IR drop.

To study the impact of IR-drop on DNN inference accuracy, we integrate a dy-

namic crossbar solver into our PytorX simulation framework, based on the simplified

Modified Nodal Analysis [105]. The test accuracy on MNIST and CIFAR-10 with

IR-drop considered is reported in Table 14, where directly mapping the network on

64× 64 crossbar results in more than 65% accuracy degradation. For mitigating such

significant accuracy loss, we propose to optimize DNN training considering such IR-

drop effects, by compensating real-time current shift for each crossbar to tune DNN

weights and make it adaptive to existing IR drop effect. However, the biggest problem

is that the existing crossbar IR drop solver requires massive computation resources to

get real-time shifted current based on current inputs, which also grows exponentially

56

with larger crossbar size. In our experiment, a simple LeNet5 training takes all of the

64GB main memory and costs days to converge in a 4 NVIDIA TitanX GPU work-

station, which is too computing-intensive if considering such accurate IR-drop effects.

Note that, it will become even worse if the network becomes deeper and wider.

Thus, we propose a Noise Injection Adaption (NIA) method which can statistically

approximate the effect of IR-drop and incorporate it into network training, for bal-

ancing computation resources and the accuracy of the trained model. Taking LetNet5

on MNIST as an example, our NIA can be divided into three steps: (1) we first train

a LetNet5 without considering IR-drop during training. Then, with the trained Let-

Net5 mapped on the crossbar matrix arrays in our PytorX, we can collect the crossbar

output current shift with or without IR-drop for all of the testing data; (2) we approxi-

mate the effect of IR-drop as a Gaussian noise source at each crossbar output end, with

crossbar-wise mean and standard deviation extracted from the collected statistics; (3)

we train the network again with such approximated additive IR drop noise applied at

each output of crossbar arrays. The only overhead of our NIA method is a network

optimization step which has similar timing cost as a typical DNN training. After the

network optimization with NIA, accuracy degradation is significantly reduced as re-

ported in Table 14.

3.4.4 System Configuration for Other Stochastic Non-ideal Effects

As discussed in Section 3.2.2, we categorize the thermal noise, shot noise and ran-

dom telegraph noise as ReRAM stochastic noise to study in this work, where the actual

57

Table 14: Test accuracy on MNIST with various crossbar dimensions and our proposed
methods

Dataset
(crossbar size)

MINIST
(32×32)

MNIST
(64×64)

Software 99.04% 99.1%
Direct Mapping with EC 96.2% 32%

Optimized with NIA 99.1% 98.3%

Optimized with NIA
+ EC + frequency tuning 99.0% 98.1%

ReRAM conductance with additive ensemble stochastic noise can be modeled as:

Gact = G+Gg +Gp (3.12)

where Gg ∼ N (0, g2rms) is the Gaussian term as in Eq. (3.2), and Poisson term is

Gp = Grtn under the Poisson process as discussed in Eq. (3.3). It is noteworthy that the

Gaussian term is highly correlated with both the ReRAM programmed conductance

and crossbar input voltages, which makes the conductance variation of ReRAM cells

differs w.r.t each input, which is considered in the simulation. We first try to apply

the NIA technique to retrain the neural network for adapting those stochastic terms

described in Eq. (3.12). However, our simulation turns out injecting a Gaussian noise

N (0,∆G) to the weight equivalent conductance G does not reduce the accuracy degra-

dation. On the contrary, it reduces the inference accuracy. Our explanation to such

observation is that injecting Gaussian noise on the weight performs L-2 norm regu-

larization, which leads to entire ReRAM arrays have smaller conductance. However,

according to RTN modeling discussed in Section 3.2.2.3, ReRAM cell with smaller G

owns larger RTN variation which leads to incorrect inference results.

Therefore, in this subsection, rather than trying to adapt the neural network to the

stochastic noise terms in Eq. (3.12), we attempt to mitigate thermal noise, shot noise

58

80

90

100

Ac
cu

ra
cy

 (%
) MNIST test acc.

300K
350K

10 2 10 1 100

Frequency (GHz)

80

90

100

Ac
cu

ra
cy

 (%
) CIFAR-10 test acc.

300K
350K

Figure 15: Test accuracy on MNIST and CIFAR-10 dataset versus operating frequency
f .

and RTN side effects simultaneously through optimizing system operating frequency.

The examination of the inference accuracy of the crossbar system under varying operat-

ing frequency (f) and temperature (T) is shown in Section 3.4.4. It shows that lowering

the operating frequency can effectively reduce the thermal noise and shot noise caused

accuracy degradation. Then, the left-over terms of programming variation and RTN

do not show significant impacts on the inference accuracy when f is reduced. We

also perform a Monte Carlo simulation with 10000 trails to observe ReRAM conduc-

tance variation when G = Gmin. As shown in Section 3.5, when the f is lowered to

10MHz, the conductance variation is almost located within the quantization boundary

(−∆G,+∆G).

59

Samples
0 5000 10000

C
o
n
d
u
c
ta

n
c
e
 (

S
)

×10
-6

-2

0

2

4

6

Freq = 1 GHz

+0.5 ∆G

G
min

-0.5 ∆G

Samples
0 5000 10000

C
o
n
d
u
c
ta

n
c
e
 (

S
)

×10
-6

0

2

4

Freq = 100 MHz

+0.5 ∆G

G
min

-0.5 ∆G

Samples
0 5000 10000

C
o

n
d

u
c
ta

n
c
e

 (
S

)

×10
-6

0

1

2

3

Freq = 10 MHz

+0.5 ∆G

G
min

-0.5 ∆G

Figure 16: Monte Carlo simulation of the Gact under f = 1GHz, 100MHz, 10MHz,
with 10000 trials. The solid line indicate the ideal conductance (Gmin in this simula-
tion), and dashed line is the quantization boundary.

60

3.5 Summary

Through PytorX, we can perform a comprehensive and accurate simulation of large-

scale DNN that mapped to the ReRAM crossbar-based accelerator. To overcome SAF

effects, we proposed a digital SAF error correction algorithm to achieve almost no ac-

curacy degradation in DNN mapping without the need for network retraining. To

overcome the IR drop effect, we proposed a noise injection adaption method to model

IR drop as a stochastic noise source in DNN training to regularize the DNN model,

thus making it adaptive to such non-ideal effect. As for thermal, shot, and random

telegraph noise, we investigated to optimize system frequency to eliminate its accuracy

degradation. Our proposed comprehensive methods together could effectively miti-

gate the non-ideal effects of the ReRAM crossbar and provide great potential for future

large scale accurate DNN crossbar based accelerator.

61

Chapter 4

INPUT SECURITY OF NEURAL NETWORK

In addition to the efficiency perspective elaborated in the prior chapters, the

security-related issues of the neural network serving are non-trivial, which should be

carefully handled as well. One of the emerging topics called adversarial attack [33] has

attracted a significant amount of research efforts, owing to the damage it could poten-

tially cause. Adversarial attack normally refers to adversary maliciously perturbs the

DNN input natural data with human imperceptible noise, but causes the malfunction

of neural network with erroneous prediction. In contrast to the plentiful investigations

of the adversarial attack, there are still demanding more effective adversarial defense

techniques, to improve DNN resistance against adversarial attacks. In this chapter,

we will focus on developing an effective adversarial defense method via leveraging the

trainable noise injection. Note that, to distinguish an adversarial attack variant from

the following chapter, all the adversarial attacks discussed in the chapter are adversarial

attacks on input data.

4.1 Preliminaries

4.1.1 Prior Adversarial Attacks

Recently, various powerful adversarial attack methods have been proposed to fool a

trained DNN through introducing barely visible perturbation upon input data. Several

state-of-the-art white-box (i.e., PGD [33], FGSM [31] and C&W [45]) and black-

62

box (i.e., Substitute [47] and ZOO [44]) adversarial attack methods, which will be

investigated in this work, are briefly introduced as follows.

FGSM Attack. Fast Gradient Sign Method (FGSM) [31], [32] is an efficient single-

step adversarial attack method. Given vectorized input x and corresponding target

label t, FGSM alters each element x of x along the direction of its gradient w.r.t the

inference loss ∂L/∂x. The generation of adversarial example x̂ (i.e., perturbed input)

can be described as:

x̂ = x+ ϵ · Sign
(
∇xL(g(x;θ), t)

)
(4.1)

where ϵ is the perturbation constraint that determines the attack strength. g(x;θ) com-

putes the output of DNN paramterized by θ. Sign(·) is the sign function. Note that,

the attack is followed by a clipping operation to ensure the x̂ ∈ [0, 1].

PGD Attack. Projected Gradient Descent (PGD) [33] is a multi-step variant of

FGSM, which is one of the strongest L∞ adversarial example generation algorithm.

With x̂k=1 = x as the initialization, the iterative update of perturbed data x̂ in k-th

step can be expressed as:

x̂k = ΠPϵ(x)

(
x̂k−1 + a · Sign

(
∇xL(g(x̂k−1;θ), t)

))
(4.2)

where Pϵ(x) is the projection space which is bounded by x ± ϵ, and a is the step size.

Madry et al. [33] also propose that PGD is a universal adversary among all the first-

order adversaries (i.e., attacks only rely on first-order information).

C&W Attack. Carlini and Wagner propose an attack method called C&W at-

tack [45]. C&W attack considers the generation of adversarial example as a problem

of optimizing the Lp-norm of distance metric δ w.r.t the given input data x, which can

be described as:

||δ||p =
(n∑

i=1

|δi|p
)1/p

; δi = x̂i − xi (4.3)

63

minimize||δ||p + c · L(x+ δ) s.t. x+ δ ∈ [0, 1]n (4.4)

where δ is taken as the perturbation added upon the inputx, and a specific loss function

L is chosen in [45] to solve the optimization problem via gradient descent. c is a

constant set by the attacker. In this work, we use L2-norm based C&W attack and take

||δ||p=2 as the evaluation metric to measure the robustness of DNN, where a greater

value of ||δ||p=2 normally indicates a DNN possesses higher robustness against potential

adversarial attacks.

Black-box Attacks. The most popular black-box attack is conducted using a sub-

stitute model [47], which is trained using the output of the target model as the label,

to mimic the functionality of the target model. Then, the adversarial example gener-

ated from the substitute model is used to perform the attack on the target model. In

this work, we specifically investigate the transferable adversarial attack [46], which is

a variant of substitute model attack [47]. In the transferable adversarial attack, the ad-

versarial example is generated from one source model to attack another target model.

The source model and target can own a totally different structure but trained with the

real training data. Beyond that, Zero-th Order Optimization (ZOO) attack [44] is

investigated in this work as well. Rather than using the substitute model to approxi-

mate the gradients of the target model to perform an attack, the ZOO attack directly

approximates the gradient based on the input data and output scores using a stochastic

gradient coordinate.

4.1.2 Prior Defenses

Improving network robustness via adversarial training [32], [33] is by far the most

popular and unbroken defense approach. The key idea of adversarial training is to

64

take the adversarial example as the training data, which trains the DNN against the

adversarial attack. Most of the later works [106], [107] have followed this path to

supplement their defense with adversarial training. The initial and important step in

adversarial training is to choose an attack model for adversarial example generation.

Adopting Projected Gradient Descent (PGD) [33] as an attack model for adversarial

training is becoming popular, since it is considered to be capable of generating universal

adversarial examples among the first-order approaches [33]. Additionally, among many

recent defense methods, only PGD based adversarial training can sustain the state-of-

the-art accuracy under various other attacks [32], [45], [108].

Recent work [109] has merged the concept of improving model robustness through

regularization to defend adversarial examples. A well-known method for model regu-

larization is noise injection, which is a variant of dropout on weights [110] or activa-

tion [111]. For further improving the performance of DNN under attack, there are

works attempt to introducing randomness into DNN for adversarial defense, such as

randomly pruning some activation during the inference [112], randomizing the in-

put layer [113], inserting a noise-layer right before the convolution layers [49], [50].

However, the performance improvement (i.e., perturbed-data accuracy) mainly comes

from the stochastic gradient instead of regularizing the DNN for better robustness,

which is considered as the broken defense method according to the criterion of gra-

dient obfuscations [108]. An alternative and straight-forward approach to evaluating

adversarial defense about the gradient obfuscation is to examine the clean- (attack free)

and perturbed-data (under attack) accuracy. If the adopted method mainly performs

the model regularization, it is expected to improve the perturbed-data accuracy without

sacrificing the clean-data accuracy.

65

Last but not least, we also notice that recent work Adv-BNN [48] also combines

the adversarial training and noise injection on weight (i.e., Bayesian neural network

equivalently). In comparison to our proposed PNI, Adv-BNN [48] mainly has the

following drawbacks: 1) Significant computational and storage overhead owing to the

used weight posterior (double model size) and output ensemble (>10 times), and 2)

potential gradient obfuscation (trade the clean-data accuracy with perturbed-data ac-

curacy). The key factor that our PNI outperforms Adv-BNN is the layer-wise noise

injection (Eq. (4.5)) and ensemble loss function (Eq. (4.10)), which will be explicitly

introduced in the following sections.

4.2 Parametric Noise Injection

In this section, we first introduce the proposed Parametric Noise Injection (PNI)

function and will investigate the impact of noise injection on input/weight/activation.

4.2.1 Definition

The method proposed here to inject Gaussian noise to different components or

locations within DNN can be mathematically described as:

ṽl,i = fPNI(vl,i) = vl,i + αl · ηl,i; ηl,i ∼ N (0, σ2
l) (4.5)

where vl,i is the element of noise-free tensor vl in l-th layer of DNN, and such vl can

be input/weight/inter-layer (i.e., activation) tensor in this work. ηl,i is the noise term

which samples from Gaussian distribution with zero mean and variance σ2
l , for each

inference. αi is the coefficient that scales the magnitude of injected noise ηl. Note that,

66

Figure 17: The flowchart of Parametric Noise Injection (PNI) on the weight matrix
Wl of a 5 × 5 fully-connected layer (i.e., PNI-W). For each inference, the process of
PNI on Wl can be divided into three sequential steps: 1) Statistically calculate the
standard deviation σl of Wl; 2) Sample the additive weight noise (i.i.d) from N (0, σ2

l);
3) Scale the run-time sampled weight noise with a trainable αl, then the noise weight
is obtained via applying the additive weight noise upon the clean weight.

we adopt the scheme that ηl shares the identical variance with v as in Eq. (4.5), thus

the injected additive noise relies on αl and the distribution of vl simultaneously.

In this work, rather than manually configuring αl to restrict the noise level, we set

αl as a learnable parameter that can be optimized for network robustness improvement.

We name such a method as Parametric Noise Injection (PNI). Assuming we perform the

proposed PNI on the weight tensors of convolution/fully-connected layers throughout

the entire DNN, for each parametric layer there is only one layer-wise noise scaling

coefficient (αl) to be optimized. We take such layer-wise PNI configuration as default

in this work. An example of PNI on weight (i.e., PNI-W) is depicted in Fig. 17.

67

4.2.2 Optimization

In this work, we treat the noise scaling coefficient as a model parameter which can

be optimized through the back-propagation. For fPNI(·) that shares the noise scaling

coefficient layer-wise, the gradient computation can be described as:

∂L
∂αl

=
∑
i

∂L
∂fPNI(vl,i)

∂fPNI(vl,i)

∂αl

(4.6)

where the
∑

i takes the summation over the entire tensor vl,i, and ∂L/∂fPNI(vl,i) is

the gradient back-propagated from the followed layers. The gradient calculation of the

PNI function is:
∂fPNI(vl,i)

∂αl

= ηl,i (4.7)

It is noteworthy that the random sampled ηl,i will be taken as a constant during the back-

propagation. Using the gradient descent optimizer with momentum, the optimization

of α at step j can be written as:

V j
l = m · V j−1

l +
∂Lj−1

∂αl

; αj
l = αj−1

l − ϵ · V j
l (4.8)

where m is the momentum, ϵ is the learning rate, and Vl is the updating velocity. More-

over, since weight decay tends to make the learned noise scaling coefficient converge

to zero, there is no weight decay term on the α during the parameter updating in this

work. We set αl = 0.25 as default initialization.

4.2.3 Robust Optimization

We expect to utilize the aforementioned PNI technique to improve the network’s

robustness. However, directly optimizing the noise scaling coefficient normally leads

αl to converge at a small close-to-zero value (vanilla training in Table 15), owing to the

68

gradient-descent optimizer tends to make the weights to be noise-free thus to over-fit

the training data.

In order to succeed in adversarial defense, we jointly use the PNI method with ro-

bust optimization (a.k.a. Adversarial Training) which can boost the inference accuracy

for the perturbed data under attack. Given inputs- x and target labels- t, the adversar-

ial training is to obtain the optimal solution of network parameter θ for the following

min-max problem:

min
θ

{
max

x′∈Pϵ(x)
L
(
g(x̂; fPNI(θ)), t

)}
(4.9)

where the inner maximization tends to acquire the perturbed data x̂, and Pϵ(x) is the

input data perturb set constrained by ϵ. While the outer minimization is optimized

through gradient descent method as regular network training. L∞ PGD attack [33] is

adopted as the default inner maximization solver (i.e., generating x̂).

Moreover, in order to balance the clean data accuracy and perturbed data accuracy

for practical application, rather than performing the outer minimization solely on the

loss of perturbed data as in Eq. (4.9), we minimize the ensemble loss L′ which is the

weighted sum of losses for clean- and perturbed-data. The ensemble loss Lens is de-

scribed as:

Lens = wc · L(g(x; fPNI(θ)), t) + wa · L(g(x̂; fPNI(θ)), t) (4.10)

where wc and wa are the weights for clean data loss term and adversarial data loss term,

respectively. wc = wa = 0.5 is the default configuration in this work.

Optimizing the ensemble loss Lens is the key to the successful training of both the

model’s inherent parameter (e.g. weight, bias) and the add-on noise scaling coefficient

αl from PNI. The intuition behind is that the gradient-descent optimizer attempt to

find an equilibrium point of αl when minimizing Lens. If αl is too large, PNI will

introduce significant noise into the inference path which will definitely hamper the

69

accuracy for both clean- and perturbed-data. If αl is too small, PNI will not perform

any regularization.

4.3 Experiment

4.3.1 Experiment Setup

4.3.1.1 Datasets and Network Architectures

Two visual datasets for object recognition task is considered in this work, which

is MNIST and CIFAR-10. The MNIST [103] dataset is a set of handwritten digit

28×28 gray-scale images with 60K training examples and 10K test examples. The

CIFAR-10 [104] dataset is composed of 50K training samples and 10K test samples of

32×32 color image. There is no data augmentation used for MNIST, while CIFAR-

10 uses the same augmentation method as in [2]. Although we test our method on

both CIFAR-10 and MNIST, we mainly present results on CIFAR-10 to validate our

method. Since the results on MNIST cannot provide much insight, we put the MNIST

results in the appendix.

For MNIST, we test the performance using the variant LetNet510. For CIFAR-10,

the classical Residual Networks [2] (ResNet-20/32/44/56) architecture are used, and

ResNet-20 is taken as the baseline for most of the comparative experiments and ablation

studies. A redundant network ResNet-18 is also used to report the performance for

CIFAR-10, since large network capacity is helpful for adversarial defense. Moreover,

rather than including the input normalization within the data augmentation, we place
10https://github.com/pytorch/examples/blob/master/mnist/

70

a non-trainable data normalization layer in front of the DNN to perform the identical

function, thus an attacker can directly add the perturbation on the natural image. Note

that, since both PNI and PGD attack [33] include randomness, we report the accuracy

in the format of mean±std% with 5 trials to alleviate error.

4.3.1.2 Adversarial Attacks

To evaluate the performance of our proposed PNI technique, we employ multiple

powerful white-box and black-box attacks as introduced in Section 4.1.1. For PGD

attack on MNIST and CIFAR-10, ϵ is set to 0.3/1 and 8/255, and Nstep is set to 40 and

7 respectively. FGSM attack adopts the same ϵ setup as PGD. The attack configurations

of PGD and FGSM are identical as the setup in [33], [106]. For the C&W attack, we

set the constant c as 0.01. ADAM [114] is used to optimize the Eq. (4.4) with learning

rate as 5e−4. We choose 0 for the confidence coefficient of k, which is defined in the

loss function used by the C&W L2 attack in [45]. The binary search steps for the attack

is 9, while the number of iteration to perform the gradient descent is 10. Moreover,

we also conduct the PNI defense against several state-of-the-art black-box attacks (i.e.

substitute [47], ZOO [44] and transferable [46] attack) in Section 4.3.2.2 to examine

the robustness improvement resulted from the proposed PNI technique.

4.3.1.3 Competing Methods for Adversarial Defense

As far as we know, the adversarial training with PGD [33] is the only unbroken

defense method [108], which is labeled as vanilla adversarial training and taken as the

baseline in this work. Beyond that, several recent works utilizing a similar concept as

71

ours in their defense method are discussed as well, including certified robustness [49],

random self-ensemble [50], and Adv-BNN [48].

4.3.2 PNI for Adversarial Attacks

4.3.2.1 PNI Against White-box Attacks

Optimization method of PNI. As the discussion at the end of Section 4.2.3, the

noise scaling coefficient will not be properly trained without utilizing the adversarial

training and ensemble loss. We conduct the experiments for training the layer-wise

PNI on weight (PNI-W) of ResNet-20, to compare the convergence of trained noise.

As tabulated in Table 15, simply performing the vanilla training using momentum

SGD optimizer fails the adversarial defense, where the noise scaling coefficients α are

converged to the negligible values. On the contrary, with the aid of adversarial training

(i.e., optimization of Eq. (4.10)), convolution layers in the network’s front-end have

obtained relatively large α which are the bold values in Table 15, and the corresponding

evolution curve are shown in Fig. 18.

Since the PGD attack [33] is taken as the inner maximization solver, the generation

of adversarial example x̂ in Eq. (4.2) is reformatted as:

x̂t+1 = ΠPϵ(x)

(
x̂t + a · sgn

(
∇xL(g(x̂t; fPNI(θ)), t)

))
(4.11)

where the difference between Eq. (4.2) and Eq. (4.11) is with/without PNI in x̂ gener-

ation. It is noteworthy that, keeping the noise term in the model for both adversarial

example generation (Eq. (4.11)) and model parameter update is also the critical factor

for the PNI optimization with adversarial training. Increasing noise level enhances the

72

Table 15: Convergence of Parametric Noise Injection (PNI): ResNet-20 with Layer-
wise weight PNI on CIFAR-10 dataset. (Top) The converged layer-wise noise scaling
coefficient α under various training scheme. (Bottom) Test accuracy for clean- and
perturbed-data under PGD and FGSM attack.

Layer
Index

Vanilla
Training

PNI-W+Adv. Train.
(without PNI in
x̂ generation)

PNI-W+Adv. Train.
(with PNI in
x̂ generation)

Conv0 0.003 0.004 0.146

Conv1.0 0.002 0.005 0.081
Conv1.1 0.004 0.004 0.049
Conv1.2 0.002 0.001 0.097
Conv1.3 0.004 5.856 0.771
Conv1.4 0.005 0.005 0.004
Conv1.5 0.002 0.001 0.006
Conv2.0 0.004 0.000 0.006
Conv2.1 0.006 0.003 0.004
Conv2.2 0.004 0.003 0.030
Conv2.3 0.001 0.006 0.003
Conv2.4 0.003 0.001 0.033
Conv2.5 0.002 0.001 0.023
Conv3.0 0.007 0.001 0.008
Conv3.1 0.003 0.001 0.006
Conv3.2 0.007 0.002 0.001
Conv3.3 0.006 0.001 0.002
Conv3.4 0.009 0.002 0.001
Conv3.5 0.005 0.000 0.001

FC 0.002 0.002 0.001

Clean 92.11% 71.00% 84.89±0.11%
PGD 0.00±0.00% 18.11% 45.94±0.11%
FGSM 14.08% 26.34% 54.48±0.44%

defense strength, but hampers the network inference accuracy for natural clean image.

Lowering α, however, makes the network vulnerable to adversarial attack. As listed in

Table 15, not incorporating the PNI-W in x̂ generation indeed leads to the failure of

73

Table 16: Effect of PNI location: The ResNet-20 clean- and perturbed-data (under
PGD and FGSM attack) accuracy (mean±std%) on CIFAR-10 test-set, with PNI tech-
nique on different network location. Baseline is the ResNet-20 with vanilla adversarial
training, and all the PNI combinations are optimized through adversarial training by
default.

Test with PNI Test without PNI
Clean PGD FGSM Clean PGD FGSM

Vanilla adv. train - - - 83.84 39.14±0.05 46.55
PNI-W 84.89±0.11 45.94±0.11 54.48±0.44 85.48 31.45±0.07 42.55
PNI-I 85.10±0.08 43.25±0.16 50.78±0.16 84.82 34.87±0.05 44.07

PNI-A-a 85.22±0.18 43.83±0.10 51.41±0.08 85.20 33.93±0.05 44.32
PNI-A-b 84.66±0.16 43.63±0.20 51.26±0.09 83.97 33.53±0.05 43.37

PNI-W+A-a 85.12±0.10 43.57±0.12 51.15±0.21 84.88 33.23±0.05 43.59
PNI-W+A-b 84.33±0.11 43.80±0.19 51.14±0.07 84.42 33.30±0.05 43.43

PNI optimization, and the large value (α = 5.856 in Table 15) is not converged due to

the probable gradient explosion.

0 20 40 60 80 100 120 140 160
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

 o
f l

ay
er

wi
se

 P
NI

-W

Conv0 Conv1.0 Conv1.1 Conv1.2 Conv1.3

Figure 18: The evolution curve of trainable noise scaling coefficient α for layerwise PNI
on weight (PNI-W). Only front 5 layers of ResNet-20 are shown. The learning rate of
SGD optimizer is reduced at 80 and 120 epoch. Best viewed in color.

74

Effect of PNI on weight, activation and input. In this work, even though

the scheme of injecting noise on the weight (PNI-W) is taken as the default PNI

setup, more results about PNI on activation (PNI-A-a/b), input (PNI-I) and hybrid-

mode (e.g. PNI-W+A) are provided in Table 16 for a comprehensive study. PNI-A-

a/PNI-A-b denotes injecting noise on the output/input tensor of the convolution/fully-

connected layer respectively. Moreover, PNI-A-b scheme intrinsically includes the

PNI-I, since PNI-I is applying the noise on the input tensor of the first layer. Note that,

all models with PNI variants are jointly trained with PGD-based adversarial training

[33] as discussed above. Then, with the same trained model, we report the accuracy

with/without the trained noise term (left/right in Table 16) during the test phase. As

shown in Table 16, with the noise term enabled during the test phase, PNI-W on

ResNet-20 gives the best performance to defend PGD and FGSM attack, in compari-

son to PNI on other locations. Although it is elusive to fully understand the mechanism

that PNI-W outperforms other counterparts, the intuition is that PNI-W is the general-

ization of PNI-A in each connection instead of each output unit, similar as the relation

between the regularization technique DropConnect [110] and Dropout [111].

Furthermore, we also observe that disabling PNI during the test phase leads to sig-

nificant accuracy drop for defending PGD and FGSM attack, while the clean-data

accuracy maintains the same level as PNI enabled. Such observation raises two con-

cerns about our PNI techniques: 1) Does the improvement of clean-/perturbed-data

accuracy with PNI mainly comes from the attack strength reduction caused by the ran-

domness (potential gradient obfuscation [108])? 2) Is PNI just a negligible trick or it

performs the model regularization to construct a more robust model? Our answers to

both questions are negative, where the explanations are elaborated under Section 4.4.

75

Effect of network capacity. In order to investigate the relation between network ca-

pacity (i.e., number of trainable parameters) and robustness improvement by PNI, we

examine various network architectures in terms of both depth and width. For different

network depths, experiments on ResNet-20/32/44/56 [2] are conducted under vanilla

adversarial training [33] and our proposed PNI robust optimization method. For dif-

ferent network widths, we adopt the original ResNet-20 as a baseline and expand its

input&output channel of each layer by 1.5×/2×/4× respectively. Same as Table 16,

we report clean- and perturbed-data accuracy with/without PNI term during the test

phase. The results in Table 18 indicates that increasing the model’s capacity indeed

improves network robustness against white-box adversarial attacks, and our proposed

PNI outperforms vanilla adversary training in terms of both clean-data accuracy and

perturbed data accuracy for PGD and FGSM attack. Such observation demonstrates

that the perturbed-data accuracy improvement does not come from trading off clean-

data accuracy as reported in [106], [115]. Through increasing the network capacity,

the robustness improvement results from the proposed PNI becomes less significant.

Although both adversarial training and PNI techniques perform regularization, the

network structure still needs careful construction to prevent over-fitting resulted from

over-parameterization.

Table 17: C & W attack L2-norm comparison

C&W L2-norm
Model capacity No defense Vanilla adv. train PNI-W

ResNet-20 (4×) 4,286,026 0.12 1.97 1.95±0.02
ResNet-18 11,173,962 0.12 2.39 2.62±0.04

Robustness evaluation with C&W attack. Improved robustness does not nec-

essarily mean improving the test data accuracy against any particular attack method.

76

Table 18: Effect of network depth and width: The clean- and perturbed-data (under PGD and FGSM attack) accuracy

(mean±std%) on CIFAR-10 test-set, utilizing different robust optimization configurations. For network depth, the

classical ResNet-20/32/44/56 with increasing depth is reported. For network width, the ResNet-20 (1×) is adopted as

the baseline, then we compare the wide ResNet-20 with the input and output channel scaled by 1.5×/2×/4×. Capacity

denotes the number of trainable parameters in the model.

No defense Vanilla adv. train
PNI-W+adv. train

(Test with PNI)

PNI-W+adv. train

(Test without PNI)

Model Capacity Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM

Net20 269,722 92.1 0.0±0.0 14.1 83.8 39.1±0.1 46.6 84.9±0.1 45.9±0.1 54.5±0.4 85.5 31.6±0.1 42.6

Net32 464,154 92.8 0.0±0.0 17.8 85.6 42.1±0.0 50.3 85.9±0.1 43.5±0.3 51.5±0.1 86.4 35.3±0.1 45.5

Net44 658,586 93.1 0.0±0.0 23.9 85.9 40.8±0.1 48.2 84.7±0.2 48.5±0.2 55.8±0.1 86.0 39.6±0.1 49.9

Net56 853,018 93.3 0.0±0.0 24.2 86.5 40.1±0.1 48.8 86.8±0.2 46.3±0.3 53.9±0.1 87.3 41.6±0.1 51.1

Net20(1.5×) 605,026 93.5 0.0±0.0 15.9 85.8 42.0±0.0 49.6 86.0±0.1 46.7±0.2 54.5±0.2 87.0 38.4±0.1 49.1

Net20(2×) 1,073,962 94.0 0.0±0.0 13.0 86.3 43.1±0.1 52.6 86.2±0.1 46.1±0.2 54.6±0.2 86.8 39.1±0.0 50.3

Net20(4×) 4,286,026 94.0 0.0±0.0 14.2 87.5 46.1±0.1 54.1 87.7±0.1 49.1±0.3 57.0±0.2 88.1 43.8±0.1 54.2

77

Typically L2-norm based C & W attack [45] should reach 100 % success rate against

any defense. Thus average L2 norm required to fool the network gives more insight

about a network’s robustness in general [45]. The result presented in Table 17 repre-

sents the overall performance of our model against C&W attack. Our method of train-

ing the noise parameter becomes more effective for a more redundant network. We

demonstrate this phenomenon by performing a comparison study between ResNet-20

and ResNet-18 architecture. Clearly, ResNet-18 shows the improvement in robustness

from Vanilla adv. training much more than ResNet-20 against C&W attack.

4.3.2.2 PNI Against Black-box Attacks

In this section, we test our proposed PNI technique against the transferable adver-

sarial attack [46] and ZOO attack. Following the transferable adversarial attack [46],

two trained neural network is taken as the source model (S) and target model (T).

The adversarial examples x̂s is generated from the source model then attack the target

model using x̂s, which is denoted as S ⇒ T . We take ResNet-18 on CIFAR-10 as

an example. We train two ResNet-18 model (model-A and B) on CIFAR-10 dataset

to attack each other, where model-A is optimized through vanilla adversarial training,

while model-B is trained using our proposed PNI variants (i.e., PNI-W/A-a/W+A-a)

robust optimization method. Table 19 shows almost equal perturbed-data accuracy for

A ⇒ B and B ⇒ A under various PNI scenarios, which indicates that the presence of

PNI during the inference has a negligible effect on the attack strength of PGD.

For ZOO attack [44], we test our defense on 200 randomly selected test samples

for an untargeted attack. The Attack success rate denotes the percentage of test sample

change their classification to the wrong class after the attack. ZOO attack success

78

Table 19: PNI against black-box attacks: On CIFAR-10 test subset, (Left) perturbed-
data accuracy under transferable PGD attack, and (Right) the attack success rate for
ZOO attack. Model-A is a ResNet-18 trained by vanilla adversarial training, and
Model-B is a ResNet-18 trained by PNI-W/A-a/W+A-a with adversarial training.

Transferable attack ZOO attack
Train. scheme of B A⇒ B B⇒ A success rate

PNI-W 75.13±0.17 75.23±0.18 57.72
PNI-A-a 74.67±0.11 75.86±0.13 69.61

PNI-W+A-a 75.14±0.10 74.92±0.13 50.00

rate for vanilla ResNet-18 with adversarial training is close to 80 %. The robustness

of PNI is more evident from Table 19 as the attack success rate drops significantly for

PNI-W+A-a and PNI-W. However, PNI-A-a fails to resist the ZOO attack even though

it still maintains a lower success rate than the baseline. The failure of PNI-A-a shows

that just adding noise in-front of the activation does not necessarily achieve the desired

robustness as claimed by some of the previous defenses [49], [50].

4.3.2.3 Comparison to Competing Methods

As discussed in Section 4.1.2, a large number of adversarial defense works have

been proposed recently, however, most of them are already broken by stronger attacks

proposed in [108], [116]. As a result, in this work we choose to compare with the

most effective one to date - PGD based adversarial training [33]. Additionally, we

compare with other randomness-based works [48]–[50] in Table 20 for examining the

effectiveness of PNI.

Previous defense works [106], [115] have shown a trade-off between clean-data ac-

curacy and perturbed-data accuracy, where the perturbed-data accuracy improvement

79

Table 20: Comparison of state-of-the-art adversarial defense methods with clean- and
perturbed-data accuracy on CIFAR-10 under PGD attack.

Defense method model Clean PGD
PGD adv. train [33] ResNet-20 (4×) 87 46.1±0.1

DP [49] 28-10 Wide ResNet
(L=0.1) 87.0 25

RSE [50] ResNext 87.5 40
Adv-BNN [48] VGG-16 79.7 45.4

PNI-W (this work) ResNet-20 (4×) 87.7±0.1 49.1±0.3

achieved at the cost of lowering the clean-data accuracy. It is worthy to highlight that

the proposed PNI improves both clean- and perturbed data accuracy under the

white-box attack, in comparison to PGD-based adversarial training [33]. Differen-

tial Privacy (DP) [49] is a similar method of utilizing noise injection at various locations

in the network. Although their defense guarantees a certified defense, it does not per-

form well againstL∞-norm based attacks (e.g., PGD and FGSM). Moreover, to achieve

a higher level of certified defense, DP significantly sacrifices the clean-data accuracy

as well. Another randomness-based approach is Random Self-ensemble (RSE) [50],

which inserts noise-layer before all the convolution layer. Even though their defense

performs well against the C&W attack but poor against strong PGD attack. Beyond

that, both DP and RSE manually configure the noise level which is extremely difficult

to find the optimal setup. Whereas, in our proposed PNI method, the noise level is de-

termined by a trainable layer-wise noise scaling coefficient and distribution of weight at

noise injected location. For Adv-BNN [48], besides the computational overhead and

model size (> 20 times), our PNI also outperforms it in terms of performance on both

clean- and perturbed-data.

80

4.4 Discussion

The defense performance improvement led by our proposed PNI does not come

from the stochastic gradients. The stochastic gradient is considered to incorrectly ap-

proximate the true gradient based on a single sample. We try to show that PNI is not

relying on the gradient obfuscation from two perspectives:

• Our proposed PNI method passes each inspection item proposed by [108] to

identify gradient obfuscation.

• Under PGD attack, through increasing the attack steps, our PNI robust opti-

mization method still outperforms vanilla adversarial training (certified as non-

obfuscated gradients in [108]).

Table 21: Checklist of examining the characteristic behaviors caused by obfuscated and
masked gradient for PNI.

Characteristics to identify gradient obfuscation [108] Pass Fail
1. One-step attack performs better than iterative attacks ✓
2. Black-box attacks are better than white-box attacks ✓
3. Unbounded attacks do not reach 100% success ✓
4. Random sampling finds adversarial examples ✓
5. Increasing distortion bound doesn’t increase success ✓

Inspections of gradient obfuscation. The famous gradient obfuscation work [108]

enumerates several characteristic behaviors as listed in Table 21 which can be observed

when the defense method owns gradient obfuscation. Our experiments show that PNI

passes each inspection item in Table 21.

For item.1, all the experiments in Table 16 and Table 18 report that FGSM attack

(one-step) performs worse than PGD attack (iterative). For item.2, our black-box at-

81

0.0 0.2 0.4 0.6 0.8 1.0
 for PGD attack, when Nstep = 7

0

50

Ac
cu

ra
cy

 (%
)

Vanilla Adv. Training
PNI W+A-a

PNI W
PNI A-a

20 40 60 80 100
Number of Attack Step Nstep, when = 0.031

40

50

Ac
cu

ra
cy

 (%
)

Figure 19: On CIFAR-10 test set, the perturbed-data accuracy of ResNet-18 under
PGD attack (Top) versus attack bound ϵ, and (Bottom) versus number of attack steps
Nstep

tack experiment in Table 19 shows that the black-box attack strength is worse than

a white-box attack. For items.3, as plotted in Fig. 19, we run experiments through

increasing the distortion bound-ϵ. The result shows that the unbounded attacks do

lead to 0% accuracy under attack. For item.4, the prerequisite is the gradient-based at-

tack (e.g., PGD and FGSM) cannot find the adversarial examples, but the experiments

in Fig. 19 reveals that our method still can be broken when increasing the distortion

bound. It just increases the resistance against the adversarial attacks, in comparison to

the vanilla adversarial training. For item.5, again as shown in Fig. 19, increasing the

distortion bound increases the attack success rate.

PNI does not rely on stochastic gradients. As shown in Fig. 19, gradually increas-

ing the PGD attack steps Nstep raises the attack strength [33], thus leading to perturbed-

data accuracy degradation for both vanilla adversary training and our PNI technique.

However, for both cases, the perturbed-data accuracy starts saturating and does not

82

degrade any further when Nstep=40. If our PNI’s success comes from the stochastic gra-

dient which gives incorrect gradient owing to the single sample, increasing the attack

steps suppose to eventually break the PNI defense which is not observed here. Our PNI

method still outperforms vanilla adversarial training even when Nstep is increased up to

100. Therefore, we can draw the conclusion that, even if PNI does include gradient

obfuscation, the stochastic gradient is not the dominant role in PNI for the robustness

improvement.

4.5 Summary

In this chapter, the parametric noise injection technique is presented, where the

noise intensity can be trained through solving the min-max optimization problem dur-

ing adversarial training. Through extensive experiments, the proposed PNI method can

outperform the state-of-the-art defense method in terms of both clean-data accuracy

and perturbed-data accuracy.

83

Chapter 5

WEIGHT SECURITY OF NEURAL NETWORK

In the prior chapter, we have specifically discussed the adversarial attack and de-

fense aspects with respect to the neural network input. As the DNN already shows

vulnerability to the input, it inspires us to further explore the vulnerability of another

DNN dimension – model parameters, especially model weights. Taken a compressed

DNN with quantized weight into consideration, in this chapter, we will first conduct

an investigation of adversarial attack upon weights, where a new adversarial weight at-

tack is proposed. Followed by that, corresponding defense methods are proposed by

us as well, to effectively enhance the resistance against the adversarial weight attack by

a significant margin.

5.1 Preliminaries

Memory bit-flip in real-world. Flipping a memory cell bit within the memory

system is a realistic and demonstrated threat model in existing computer systems. Re-

cently, Kim et al., [117] have demonstrated a method to cause memory bit-flip in

DRAM merely through the frequent data accessing, which is now popularly known as

Row-Hammer Attack (RHA). A malicious user can use RHA to modify the data stored

in the DRAM memory cell by just flipping one bit at a time. [118] showed that by creat-

ing a profile for the bit flips in a DRAM, row hammer attack can effectively flip a single

bit at any address in the software stack. According to the state-of-the-art investigations,

common error detection and correction techniques, such as Error-Correcting Code

84

(ECC) [119] and Intel SGX [120], are broken defense mechanism to RHA. Such ex-

isting memory bit-flip attack (i.e., row-hammer attack) model brings a huge challenge

to the security of DNN powered computing system since its parameters are normally

stored in the main memory, i.e. DRAM, for maximizing the computation throughput,

which is directly exposed to the adversarial attacker. Moreover, such a challenge be-

comes more severe because DNN powered applications are widely deployed in many

resource-limited (e.g., smart IoT devices, mobile systems, edge devices, etc.) system

that lacks the necessary data integrity check mechanism.

Prior neural network parameter attack. The adversarial example attack has been

widely explored [121] to evaluate the robustness of DNN. However, we are still at

the rudimentary stage towards investigating the effect of network parameter attack on

neural network accuracy. Neural network parameters have been attacked using dif-

ferent levels of hardware Trojans, which require a specific pattern of input to trigger

the Trojan inside the network [122], [123]. Moreover, such a Trojan attack requires

hardware-level modifications, which may not be feasible in many practical applications.

As a result, fault injection attacks could become a suitable alternative to attack DNN

parameters [51]. For example, a Single Bias Attack (SBA) attacks a certain bias term

of a neuron to change the classification of DNN to a different class [51]. Other works

have injected faults into the activation function of the neural network to miss classify

a target input [52].

Limitations of Prior Works. However, these previous attack algorithms are de-

veloped based on a full-precision model (i.e., network parameters are floating-point

numbers stored in memory in the format of the IEEE standard for floating-point arith-

metic [124]), where we believe such attack algorithms may not be efficient. Since

it is extremely easy to cause DNN malfunction by just flipping the most significant

85

exponent bits of any random floating-point weight parameters. Through this simple

method, it mainly causes DNN malfunction by exponentially increasing the magni-

tude of particular weight parameters by just several bit-flips. We conducted such an

experiment to prove its efficiency in section 5.3.4. Based on our simulation results, it

shows just 1 bit-flip of the most significant exponent bit of a random floating-point

number weight could cause ResNet-18 network completely malfunction on the Ima-

geNet dataset.

Why we need a bit search algorithm? On the other side, most of recent deep

neural network applications are performed in a quantized platform such as google’s

Tensor Processing Unit (TPU) [125], that uses 8-bit operations for the quantized net-

work. Such fixed precision models are more robust to network parameter perturbation.

Similarly, we conducted another experiment to randomly choose a quantized weight

for bit-flip attack using RHA. The simulation results in Fig. 24 show that 100 bit-flip

in a quantized ResNet-18 could only cause 0.6% accuracy degradation in ImageNet,

which indicates that random selection of quantized weight parameters to be attacked

is not efficient and feasible. Thus, an efficient algorithm is required to search for the

most vulnerable weights/bits in a quantized DNN.

5.2 Bit-Flip Based Adversarial Weight Attack

In this section, we present a novel Bit-Flip Attack (BFA) method to maliciously

cause a DNN system malfunction through flipping an extremely small amount of vul-

nerable bits of weights. Our proposed algorithm, called Progressive Bit Search (PBS), is

to identify those vulnerable DNN weight parameters (stored in terms of memory bits

in DRAM) that could maximize the accuracy degradation with the minimum num-

86

ber of bit-flips. It is worth noting that this work focuses on BFA on a more robust

DNN with quantized weight parameters instead of floating-point number weights as

discussed earlier.

∙

BatchNorm
Bias and etc.

Weight

Sensitive
Low Volume

Insensitive
High Volume

∙

DRAM
RHA

Core
On

Chip

Off
Chip

DNN

Figure 20: Concept illustration of quantized DNN under BFA.

5.2.1 Problem Definition of BFA

Given a quantized DNN contains L convolutional/fully-connected layers, the origi-

nal weights in floating-point are symmetrically quantized into 2Nq−1 levels withNq-bits

uniform quantizer. The quantized weights W are arithmetically represented in Nq-bits

signed integer. In the computing memory system, W is stored in the format of twos

complement11, which is denoted as B in this chapter. More details of weights quan-

tization are described in Section 5.2.2. The goal of this work is to find the optimal

combination of vulnerable weight bits to perform BFA, thus maximizing the infer-

ence loss of DNN parameterized by the perturbed weights whose twos complement

representation is B̂. Such vulnerable bit searching problem can be formulated as an
11All the binary weight mentioned hereinafter referred to as the weights in twos complement.

87

Table 22: Threat model of Bit-Flip Attack (BFA).

Access Required 3 Access NOT Required 7

Model topology & parameters Hyper-parameters and other training configurations.
A mini-batch of sample data Complete train/test datasets.

optimization problem as:

max
{B̂l}
L
(
f
(
x; {B̂l}Ll=1

)
, t
)
− L

(
f
(
x; {Bl}Ll=1

)
, t
)

s.t.
L∑
l=1

D(B̂l,Bl) ∈ {0, 1, ..., Nb}
(5.1)

where x and t are the vectorized input and target output12. Taken x as the input, the in-

ference computation of network parameterized by {B̂l}Ll=1 is expressed as f(x; {B̂l}Ll=1).

Note that L(·, ·) calculates the loss between DNN output and target. D(B̂l,Bl) com-

putes the Hamming distance between clean- and perturbed-binary weight tensor, and

Nb is maximum Hamming distance allowed through the entire DNN.

5.2.2 Weight Quantization and Encoding

Weight Quantization. in this chapter, we adopt a layer-wiseNq-bits uniform quan-

tizer for weight quantization. For l-th layer, the quantization process from the floating-

point base Wfp
l to its fixed-point (signed integer) counterpart Wl can be described as:

∆wl = max(Wfp
l)/(2

Nq−1 − 1); Wfp
l ∈ Rd (5.2)

Wl = round(Wfp
l /∆wl) ·∆wl (5.3)

12Note that, all the targets t in this chapter are not the ground-truth labels, but the outputs of the
clean DNN w.r.t the input data.

88

where d is the dimension of weight tensor, ∆wl is the step size of weight quantizer. For

training the quantized DNN with non-differential stair-case function (in Eq. (5.3)), we

use the straight-through estimator [83] as other works [39]. Note that, since ∆wl ∈ R

is the coefficient shared by all the weights in l-th layer, we only store its fixed-point part

(Wl/∆wl) ∈ {−2Nq−1, ..., 2Nq−1}d, rather than Wl.

Weight Encoding. The computing system normally stores the signed integer in

two’s complement representation, owing to its efficiency in arithmetic operations (e.g.,

mul). Given one weight elementw ∈Wl, the conversion from its binary representation

(b = [bNq−1, ..., b0] ∈ {0, 1}Nq) in two’s complement can be expressed as:

w/∆w = g(b) = −2Nq−1 · bNq−1 +

Nq−2∑
i=0

2i · bi (5.4)

With the conversion relation described by g(·) in Eq. (5.4), we can inversely obtain the

binary representation of weights B from its fixed-point counterpart as well.

5.2.3 Algorithm of BFA

In this chapter, we perform the BFA utilizing the similar mechanism as FGSM [31],

which was used to generate adversarial example. The key idea of BFA is to flip the bits

along its gradient ascending direction w.r.t the loss of DNN. We take the binary vector

b in Eq. (5.4) as an example and attempt to perform BFA upon b. We first calculates

the gradients of b w.r.t loss as:

∇bL = [
∂L

∂bNq−1

, ...,
∂L
∂b0

] (5.5)

where L is the inference loss of DNN parametrized by b. The naive operation is to

directly perform the bit-flip using the gradients obtained in Eq. (5.5) and get perturbed

89

Table 23: Truth table of Bit-Flip Attack (BFA). bi is the clean bit and b̂i is the perturbed
bit by BFA.m indicates whether there exist value change between bi and b̂i. The positive
and negative of ∂L/∂bi are represented by 1 and 0 respectively.

bi sign(∂L/∂bi) b̂i m

0 1 (+) 1 1
0 0 (-) 0 0
1 1 (+) 1 0
1 0 (-) 0 1

bits as:

b̂ = b+ sign(∇bL) (5.6)

where sign(∇bL) ∈ {−1,+1}Nq . However, since the bit value is constrained between
0 and 1 (b ∈ {0, 1}Nq), flipping the bit as Eq. (5.6) could lead to data overflow. Ideally,
the BFA is supposed to follow the truth table in Table 23. Thus, we mathematically
redefine the BFA as follows:

m = b⊕
(
sign(∇bL)/2 + 0.5

)
(5.7)

b̂ = b⊕m (5.8)

where⊕ is the bit-wise xor operator. m is the mask which indicates whether to perform

the bit-flip operation.

5.2.4 Progressive Bit Search

Rather than performing the BFA upon each bit throughout the entire network, our

goal is to perform BFA in a more precise and effective fashion. In this subsection, we

propose a method called Progressive Bit Search (PBS) which combines the gradient

ranking and progressive search. The proposed PBS method attempts to identify and

flip nb most vulnerable bits per BFA iteration (nb = 1 by default), thus progressively

90

Convolution Layer

Linear Layer

Scheme IIFine modeCoarse mode

Off-chip DRAM

On-chip

SRAM

Neural network Engine

PEs

Fine modeCoarse mode

Off-chip DRAM

On-chip SRAM

Neural network Engine

PEs

IoT node system

Fine modeCoarse mode

Off-chip DRAM

On-chip

SRAM

Neural network Engine

PEs

IoT node system

Scheme I

Data communication Fine mode inference flow

Coarse mode inference flow

On-chip params.

Off-chip params.

On-chip params.

Off-chip params.

1st 2nd…. lth…. Lth
Layer index:

In-layer Search

Start k-th iteration End k-th iteration

Enter next layer

Is this last
layer?

No

Find vulnerable bits
in current layer

Perform BFA and get
the DNN loss

Restore the bits to the
status before BFA

data profile for
k-th iteration:

Layerwise
vulnerable bits

and loss

Enter the layer
with maximum

loss

Perform BFA on
vulnerable bits

YES

Access data profile

Store

In
-l

a
y

e
r

S
ea

rc
h

C
ro

ss
-l

a
y
e
r

S
ea

rc
h

Figure 21: Flowchart to perform Progressive Bit Search (PBS) with in-layer and cross-
layer search.

degrading the performance of DNN until it reaches the minimum accuracy or the

preset number of iteration. As the flowchart of performing PBS depicted in Fig. 21,

for each attack iteration, the process of bit searching can be generally divided into two

successive steps: 1) In-layer Search: the in-layer search is performed through electing

the nb most vulnerable bits in the selected layer, then record the inference loss if those

elected bits are flipped. 2) Cross-layer Search: with the in-layer search conducted

upon each layer of the network independently, the cross-layer search is to evaluate the

recorded loss increment caused by BFA with in-layer search, thus identify the top nb

vulnerable bits across different layers. The details of each step are described as follows.

In-layer Search. For the PBS in k-th iteration, in-layer searching of the nb most

vulnerable bits from B̂
k

l in l-th layer is performed through gradient ranking. With the

91

given vectored input x and target t, the inference and back-propagation are performed

successively to calculate the gradients of bits w.r.t the inference loss. Then, we descend-

ingly rank the vulnerability of bits by the absolute value of their gradients ∂L/∂b and

elect the bits whose gradients are top-nb, such process can be written as:

b̂k−1
l = Top

nb

∣∣∣∣∇B̂
k−1
l
L
(
f(x; {B̂

k−1

l }Ll=1), t
)∣∣∣∣ (5.9)

where {Topnb
} function returns the pointer pointing at the storage of those elected nb

vulnerable bits. Then, we apply the BFA on those elected bits as:

b̂kl = b̂k−1
l ⊕m (5.10)

where the mask m is generated following Eq. (5.7). Now, with the in-layer search and

BFA performed on the l-th layer, we have to evaluate the loss increment caused by BFA

in Eq. (5.10), which can be written as:

Lk
l = L

(
f(x; {B̂

k

l }Ll=1), t
)

(5.11)

where the only difference between {B̂
k

l }Ll=1 and {B̂
k−1

l }Ll=1 are the bits flipped in

Eq. (5.10). Note that, those bits flipped to b̂kl in Eq. (5.10) will be restored back

to b̂k−1
l after the loss evaluation is finished.

Cross-layer Search. As the aforementioned in-layer search can perform the layer-

wise vulnerable bits election and BFA evaluation, the cross-layer search evaluates the

BFA across the entire network. For the PBS in k-th iteration, the cross-layer search

first independently conduct the in-layer search on each layer, and generate the loss

set as {Lk
1,Lk

2, · · ·,Lk
L}. Then, we could identify the layer-j with maximum loss and

re-perform the BFA (without restore) on the bits elected in j-th layer, which can be

expressed as:

b̂kj = b̂k−1
j ⊕m

s.t.j = argmax
l
{Lk

l }Ll=1

(5.12)

92

After that, PBS is entered into k + 1 iteration.

5.3 Experiments of BFA

5.3.1 Experiment Setup

Datasets. We take two visual datasets: CIFAR-10 [126] and ImageNet [30] for

object classification task. CIFAR-10 contains 60K RGB images in size of 32× 32. Fol-

lowing the standard practice, 50K examples are used for training and the remaining

10K for testing. The images are drawn evenly from 10 classes. ImageNet dataset con-

tains 1.2M training images divided into 1000 distinct classes. The data augmentation

used in this chapter is identical to methods in [2]. Note that, the proposed BFA is per-

formed through randomly draw a sample of input images x from the test/validation set,

where the default sample size is 128 and 256 for CIFAR-10 and ImageNet respectively.

Then, only the sample input x is used to perform BFA, where the rest data and ground-

truth labels are isolated from the attacker. Moreover, each experimental configuration

is run with 5 trials to alleviate error caused by the randomness of sampling input x.

Network Architectures and quantization: For CIFAR-10, experiments are con-

ducted on a series of the residual networks (ResNet-20/32/44/56)[2], where the weights

are quantized into 4/6/8 bit-width with retraining. For ImageNet, we choose a vari-

ety of famous network structures, including AlexNet, ResNet-18/34/50. Based on our

observation, with high bit-width quantizer (e.g., Nq=8), directly quantizing the pre-

trained full-precision DNN without retraining (i.e., fine-tuning) only shows negligible

accuracy degradation. Therefore, for a fast evaluation of our proposed BFA on the

93

ImageNet dataset and its various network structures, we directly perform the weight

quantization without retraining before conducting the BFA.

Attack Formulation: Traditional attacks mostly focus on attacking DNN by feed-

ing perturbed inputs [31] to the network. Such adversarial attack can be grouped into

two major categories: 1) white-box attack [31], [33], where the adversary has full access

to the network architecture and parameters, and 2) black-box attack [44], [47], where

the adversary can only access the input and output of a DNN without its internal con-

figurations. For our proposed BFA, it demands full access to the DNN’s weights and

gradients. Thus BFA can be considered as a white-box attack. However, we assume that

even under the white-box attack setup, the attacker has no access to the training dataset,

training algorithm, and hyperparameters used during the training of the network.

5.3.2 BFA on CIFAR-10

Our bit-flip attack is evaluated across different architectures (i.e., ResNet-

20/32/44/56) using varying quantized bit-widths (i.e., Nq=4/6/8) on CIFAR-10

dataset in Table 24. Without BFA, the quantized models show negligible accuracy

degradation or even higher accuracy in comparison to their full-precision counterpart.

The quantization noise introduced by the weight quantization is considered as a regu-

larization method, which might contribute to the accuracy improvement when model

training is over-fitting.

Since the CIFAR-10 dataset has 10 different classes of objects, degrading the

model’s accuracy down to 10% is equivalent to make the model as a random output

generator. In contrast to adversarial example (e.g., PGD attack [33]), our proposed

BFA is unable to degrade the network accuracy to 0%. The reason is the adversarial

94

Table 24: BFA on CIFAR-10 with ResNet-20/32/44/56, under various quantization bit-width (Nq=4/6/8). Nflip is the

number of bit-flips required (5 trials) to degrade the top-1 accuracy below 11% with BFA, regardless whether there exists

bits flipped back to their original states. For CIFAR-10, top-1 accuracy with random guess is 10%. DB is the hamming

distance between clean- and perturbed- binary weight (DB =
∑L

i=1D(B̂l,Bl)). The bold number with underline highlight

the mismatch between two corresponding Nflip and DB, which indicates there exist even bit-flips on the identical bit/bits.

Baseline

Acc.

Nq = 8 Nq = 6 Nq = 4

Acc. Nflip DB Acc. Nflip DB Acc. Nflip DB

Net20 92.11 92.28 [7,10,10,12,17] [7,10,10,12,17] 91.89 [8,8,11,12,13] [8,8,11,12,13] 91.85 [7,7,7,8,12] [7,7,7,8,12]

Net32 92.77 92.32 [8,9,12,13,31] [8,9,12,13,31] 93.09 [9,10,12,14,23] [9,10,12,14,23] 92.31 [10,12,14,14,17] [10,12,14,14,17]

Net44 93.10 93.60 [6,10,11,13,22] [6,10,11,13,22] 93.39 [13,13,15,16,17] [13,13,15,16,17] 91.52 [14,14,15,16,50] [14,14,15,16,50]

Net56 92.59 93.14 [16,17,18,22,22] [16,17,18,22,22] 93.56 [16,16,17,20,21] [16,16,17,20,21] 92.53 [9,21,21,23,24] [9,21,21,21,24]

95

input attack is an input-specific attack that is designed to misclassify each input sep-

arately, while our proposed BFA attempts to misclassify the images from each object

category using the identical attacked model. Consequently, the measurable success of

BFA would be making the DNN generate output randomly. Therefore, we report the

number of bit-flips Nflip required to cause the DNN’s test accuracy to go below 11%

as the measurable indicator of BFA performance, for CIFAR-10 dataset.

As the experimental result listed in Table 24, for all the ResNet architecture with

varying quantization bit-width, the required number of bit-flipsNflip to make the DNN

malfunction is most likely below 20. Besides Nflip, we take the hamming distance DB

between clean- and perturbed-model as another measurable indicator. The intuition

behind this is our proposed BFA attempts to flip the selected bits without considering

its original status. Thus, it exists the probability that some of the bits might be flipped

repeatedly with even times. However, the reality is that such back and forth bit-flips

rarely happen throughout all the experiments. Under varying quantization configura-

tions, there is no obvious relation between the quantization bit-width and the required

number of bit-flips (i.e., the resistance against BFA).

5.3.3 BFA on ImageNet

The evaluation of our attack on the ImageNet dataset is presented in Table 25.

We report both baseline and 8-bit quantized network accuracy for four popular image

classification architectures on ImageNet. We observe roughly 0.1-0.4 % reduction in

Top-1 classification accuracy after quantizing the network’s weights to 8-bits. Since the

ImageNet dataset has 1000 different classes of objects, a classification accuracy of 0.1%

can be considered as random output. Thus reporting only the number of bit flips Nflip

96

Table 25: BFA on ImageNet with various network architecture, under direct 8-bit
weight quantization (without retraining). Accuracy (Acc.) is in top1/top5 format. Nflip
is the median number of bit-flips (out of 5 trials) required to degrade the top-1 accu-
racy below 0.2%. For ImageNet, top-1 accuracy with random guess is 0.1%. DB is
the corresponding hamming distance. Capacity is the number of bits used for weight
storage (# of weights × 8).

Model
(Capacity)

Baseline
Acc. %

Quantized
Acc. % Nflip DB

AlexNet [12]
(488,806,720) 56.55/79.08 56.13/78.94 17 17

ResNet-18 [2]
(93,516,096) 69.76/89.08 69.50/88.98 13 13

ResNet-34 [2]
(174,381,376) 73.30/91.42 73.13/91.38 11 11

ResNet-50 [2]
(204,456,256) 76.15/92.87 75.84/92.82 11 11

MobileNet-v2 [73]
(27,758,080) 71.88/90.29 71.14/90.01 1 1

97

0 5 10 15
Number of bits flipped Nflip

0

20

40

60

80

Ac
cu

ra
cy

AlexNet
Top-1 Acc.
Top-5 Acc.

0 5 10 15
Number of bits flipped Nflip

0

100

200

Lo
ss

AlexNet
Sample loss
Validation loss

0 5 10 15
Number of bits flipped Nflip

0
20
40
60
80

Ac
cu

ra
cy

ResNet-18
Top-1 Acc.
Top-5 Acc.

0 5 10 15
Number of bits flipped Nflip

0

100

200
Lo

ss

ResNet-18
Sample loss
Validation loss

0 5 10 15
Number of bits flipped Nflip

0

25

50

75

Ac
cu

ra
cy

ResNet-50
Top-1 Acc.
Top-5 Acc.

0 5 10 15
Number of bits flipped Nflip

0

200

400

Lo
ss

ResNet-50
Sample loss
Validation loss

Figure 22: The accuracy (Top1/Top5) and loss evolution curve versus the number of
bit-flips (Nflip) under BFA, for AlexNet/ResNet-18/ResNet-50 on ImageNet dataset.
The sample size for performing BFA is 256. On each network architecture, we run 5
experiments and the region in shadow indicate the error-band. For all experiments in
this figure, there exists no bit flipped multiple times during the attack (i.e., Nflip = DB).

98

required to cause the accuracy to degrade to below 0.2% would be sufficient to prove

the attack’s effectiveness.

For ImageNet, BFA with PBS attack requires only 17 (median of 5 trials) bit flips

out of 480 Million bits to crush AlexNet. However, Nflip decreases even more as we

perform the attack on ResNet architectures. Fig. 22 shows accuracy degradation for

ResNet models, which has a much steeper slope than AlexNet. As AlexNet does not

have residual connections, which may result in a different response to such gradient-

based attacks. For ResNet networks, as the network parameters keep increasing, it

requires a lesser number of Nflip to attack the network. Finally, Our attack makes

a ResNet-50 architecture dysfunctional by flipping 11 out of 200 Million bits only.

The attack achieves such success by modifying roughly 0.000003% of the bits to de-

stroy the fully functional DNN. Thus the gravity of the DNN parameter’s security

concern can be summarized as two identical models with 50M similar weights but

only a 0.000003% error in the parameters can generate completely different output

values causing a 63% degradation in test accuracy.

5.3.4 Ablation Study

PBS with various sample size. In our experiment, we randomly sample a set of

input images from the test/validation subset to perform the BFA, which we define as

attack sample. Then, we evaluate the effectiveness of the attack on the whole test data

set which works as a validation. We opted to perform the validation on the whole test

dataset including the random batch that was originally selected for the attack because

the sample size is too small compared to the whole test dataset for both ImageNet and

CIFAR-10. In this section, we perform an ablation study on the attack sample size.

99

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

20

40

60

To
p-

1
Ac

cu
ra

cy
 (%

)

256
128
64
32
16

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

20
40
60
80

To
p-

5
Ac

cu
ra

cy
 (%

)

256
128
64
32
16

2.5 5.0 7.5 10.0 12.5 15.0
0

100

200

300

Sa
m

pl
e

lo
ss

256
128
64
32
16

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of bit-flips Nflip

0

200

400

600

800

Va
lid

at
io

n
lo

ss 256
128
64
32
16

Figure 23: The BFA performance of ResNet-18 with various attack sample size
(16/32/64/128/256) on ImageNet dataset. Regions in shadow indicates the error band
w.r.t 5 trials.

100

In Fig. 23, We configure the sample size from 16-256 and plotted Top-1 validation

accuracy, Top-5 validation accuracy, Sample loss and validation loss respectively.

The performance of the attack based on attack sample size can be ranked as:

S(128) > S(32) > S(256) > S(64) > S(16). The observation confirms that with

even small input sample size, PBS still works with very small bit-flips.

PBS versus random bit-flips. In this section, we perform an ablation study on

randomly flipping any bits of a random weight in the network. First, we test random

bit-flips on a full-precision weight(i.e, floating-point) of the ResNet-18 model. For

floating-point weights represented in standard IEEE format, if we change the most sig-

nificant bits of the exponent section, then the floating-point weight value would change

by a huge amount. As a result, the trained ResNet-18 Network starts malfunctioning

even after just one random bit flip.

0 50 100
Number of bit-flips Nflip

68.8

69.0

69.2

69.4

Ac
cu

ra
cy

 (%
)

Top-1 Acc.

0 50 100
Number of bit-flips Nflip

88.6

88.7

88.8

88.9

Top-5 Acc.

Figure 24: Randomly flipping bits of a ResNet-18 architecture on ImageNet. Even
after flipping 100 random bits the network’s both Top-1 and Top-5 accuracy does not
degrade significantly.

Then, we implement the random bit flip on 8-bit Quantized ResNet-18 architecture

as shown in Fig. 24. It shows that by flipping even 100 random bits, the Top-1 accuracy

101

on the ImageNet dataset does not degrade more than 1%. It demonstrates the need

for an efficient bit search algorithm to identify the most vulnerable bits as randomly

flipping any bit does not hamper the neural network too much. In comparison, our

attack algorithm requires just 13 bits out of 93M for ResNet-18 to completely cause

the network to malfunction on the ImageNet dataset.

5.3.5 Comparison to Other Methods

Progressive bit search is the very first attack bit searching algorithm developed to

malfunction a quantized neural network through perturbation of stored model param-

eters using row hammer attack. We already showed in the previous section that the

previous attack algorithms [51], [52] on floating-point model parameters are not effi-

cient. They do not consider that attacking the floating-point DNN model is as easy as

flipping the most significant exponent bits of any random weights. Our developed BFA

with PBS is the first work that emphasizes the need for developing attack algorithms

to properly scrutinize the security of DNN model parameters. Our attack can crush

a DNN model to demonstrate DNN’s vulnerability to intentional malicious bit flips.

Further, our algorithm would encourage more future work on both attack and defense

front in an attempt to make the neural networks more resilient and robust.

5.4 Observations of BFA

To first understand, then to defend and harness the bit-flip based adversarial weight

attack, we conducted some preliminary investigations, along with several important

observations as described below.

102

100 0 100
weight before attack

100

0

100

we
ig

ht
 a

fte
r a

tta
ck

trial seed = 63

100 0 100
weight before attack

trial seed = 922

100 0 100
weight before attack

trial seed = 1764

100 0 100
weight before attack

trial seed = 2802

100 0 100
weight before attack

trial seed = 3665

20
30
40
50
60
70
80
90

(a) ResNet-20 [2] with 8-bit weight. Bit-flips NBF for BFA (mean±std):11.2± 1.9, total number of bits of weights: 2 millions.

100 0 100
weight before attack

100

0

100

we
ig

ht
 a

fte
r a

tta
ck

trial seed = 176

100 0 100
weight before attack

trial seed = 1946

100 0 100
weight before attack

trial seed = 3569

100 0 100
weight before attack

trial seed = 7778

100 0 100
weight before attack

trial seed = 9264

20
30
40
50
60
70
80
90

(b) VGG-11 [14] with 8-bit weight. Bit-flips NBF for BFA (mean±std):56.6± 35.2, total number of bits of weights: 78 millions.

Figure 25: Weight shift caused by BFA for (a) ResNet-20 and (b) VGG-11 on CIFAR-10 dataset. For both architectures,
5 trials are executed with different random seeds. Each colored dot depicts the weight shift (x-axis: prior-attack weight,
y-axis: post-attack weight) w.r.t one iteration of BFA. The color bar indicates the corresponding accuracy (%) on the
CIFAR-10 test data. The vertical distance between dot and the diagonal dashed line (i.e., y = x) represents the weight
shift magnitude. Moreover, results reported in this figure use 8-bit post-training weight quantization.

103

Observation 1 BFA is prone to flip bits of close-to-zero weights, and cause large weight

shift.

As depicted in Fig. 25, the progressive bit search proposed in BFA is prone to identify

vulnerable bit in the weight whose absolute value has a small magnitude (i.e., |w| → 0)

then modify it to be a large value (explained in the caption of Fig. 25). Since the

BFA performs the attack on the quantized weight encoded in two’s complement, the

possible weight magnitude shift is discretized as 2i, i ∈ {0, 1, ..., nq}. Moreover, Fig. 25

also shows the model with larger capacity possesses higher resistance against BFA (i.e.,

require more bit-flips for same accuracy degradation).

Observation 2 BFA is prone to flip the weight bits in the front-end layers of the target

neural network.

Fig. 26 shows the histogram of bit-flips across different modules13 of DNN under BFA.

All the trials show that most of the bits found by BFA are mostly in the front-end,

along the forward propagation path. Such an observation can be explained as the error

introduced by the bit-flips in the front-end can be easily accumulated and amplified

during the forward propagation, which is similar to the linear explanation of adversarial

example discussed in [31].

Observation 3 BFA forces almost all the inputs to be classified into one particular output

group.

Fig. 27 depicts the top-1 categorization output of DNN on CIFAR-10 test data, at dif-

ferent BFA iterations. The CIFAR-10 test subset includes 1000 samples on 10 output
13module index includes all modules within DNN, where small to large index denotes the location

from front to rear along the inference path.

104

0 10 20 30 40 50
module idx

0.00

0.02

0.04

0.06

0.08

0.10
trial seed: 1764
trial seed: 3665
trial seed: 2802
trial seed: 922
trial seed: 63

0 5 10 15 20 25
module idx

0.00

0.05

0.10

0.15
trial seed: 7778
trial seed: 9264
trial seed: 3569
trial seed: 176
trial seed: 1946

Figure 26: Normalized histogram and Kernel Density Estimation (KDE) of bit-flips
versus module index in (top) ResNet-20 and (bottom) VGG-11 on CIFAR-10.

categories (i.e., total 10k samples). The BFA-free clean model, at iteration 0, has almost

evenly distributed top-1 classification output predictions in each output category. It is

intriguing to notice that, with the evolution of BFA, it forces almost all inputs to be

classified into one output group. We also find that the dominant output group highly

depends on the given attack sample data.

105

0 1000

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck

iter = 0

0 1000

iter = 3

0 2500

iter = 6

0 5000

iter = 9

0 10000

iter = 12

Figure 27: The evolution of ResNet-20 output classification histogram across 10 cate-
gories under BFA, on 10k test samples of CIFAR-10. The attack sample size is 128.

5.5 Defense against BFA

To enhance the resistance of DNN against BFA, we propose and investigate two de-

fense techniques, i.e., Binarization-aware training and its relaxation – piece-wise weight

clustering, inspired by the observations in Section 5.4.

5.5.1 Binarization-aware Training

binarization-aware training is originally proposed as an extreme low bit-width

model compression technique, which converts the weights from 32-bit floating-point

to {-1,+1} binary format encoded by 1-bit [40]. Here, the binarization-aware training

is leveraged as a defense technique against BFA, which can be mathematically described

106

as:

Forward : wb
l,i = E(|Wfp

l |) · sgn(w
fp
l,i)

Backward :
∂L
∂wb

l,i

=
∂L
∂w

fp
l,i

(5.13)

where sgn() is the sign function. wb
l,i denotes the binarized weight from its floating-

point counterpart wfp
l,i. In general, weight binarization intrinsically achieves two goals:

1) reducing the bit-width to 1, and 2) clustering the weights to ±E(|Wfp
l |) as in

Eq. (5.13). The Straight Through Estimator (STE) [83] is adopted to address the non-
differential problem for the sign function as prior works [127]. Nevertheless, different
from STE in [127], the gradient clipping constraint is omitted from the backward path,
thanks to the presence of weight scaling coefficient E(|Wfp

l |).

(a) Vanilla training Wl=1. (b) Binarization Wfp
l=1.

(c) Binarization Wb
l=1.

(d) Piecewise Clustering Wl=1.

Figure 28: The evolution of weight distribution of ResNet-20 (first layer, l = 1), under
various training configurations. x-axis: weight magnitude, y-axis: training epoch.

Our interpretation of the BFA resistance enhancement through binarization-aware

training comes in twofold: 1) As discussed in observation-1, BFA is prone to attack the

107

close-to-zero weights and cause the large weight shift. The weight binarization elimi-

nates close-to-zero weights by forcing all the weights to ±E(|Wfp
l |), where the weight

distribution of sampled layer is illustrated in Fig. 28c. 2) Binarization-aware training

intrinsically acts as training the DNN with bit-flip noise injected. As described in

Eq. (5.13), the floating-point weight base {Wfp
l } are binarized on-the-fly during train-

ing. Recalling the optimization using SGD, the weight change ∆wfp can be expressed

as:

∆wfp = η · ∇wfpL(f(x, {Wfp}); t) (5.14)

where η is the learning rate. Due to the presence of Eq. (5.13), even small weight update

on wfp (i.e., wfp − ∆wfp) may directly change the corresponding binarized weight wb

from -1 to +1 or the opposite as a bit-flip, when the following condition is meet:

sgn(wfp −∆wfp) ̸= sgn(wfp) (5.15)

Therefore, the binarization-aware training involves massive bit-flips on the binarized

weight W fp, which mimics injecting the bit-flips noise on the weights during train-

ing. Fig. 29 depicts the average number of bit-flips caused by the weight update when

training a binarized ResNet-20, each iteration may cause around 300 bit-flips on the

binarized weights even when the learning rate is 0.001.

5.5.2 Clustering as Relaxation of Binarization

Since weight binarization normally suffers from significant prediction accuracy

degradation due to aggressive model capacity reduction, we propose a relaxation to

the weight binarization, called Piece-wise Clustering (PC), to emit the fixed single bit-

width constraint while retaining similar functionality of clustering, which we believe

108

Figure 29: Average #Bit-flips (y-axis) per weight update iteration of binarization-aware
training vs. epochs (x-axis), with ResNet-20 on CIFAR10.

play an important role in defending BFA. The piece-wise clustering introduces an addi-

tional weight penalty to the inference loss L (e.g., cross-entropy), and the optimization

can be formulated as:

min
{Wl}Ll=1

Ex L(f(x, {Wl}Ll=1), t)+

λ ·
L∑
l=1

(||W+
l − E(W+

l)||2 + ||W−
l − E(W−

l)||2)︸ ︷︷ ︸
piece-wise clustering penalty term

(5.16)

where λ is the clustering coefficient to tune the strength of the weight clustering penalty

term. W+
l and W−

l denote the positive and negative weight subset of l-th layer weight

tensor. The DNN model optimized as Eq. (5.16) leads to a bi-modal weight distri-

bution as depicted in Fig. 28d. The piece-wise clustering proposed above can also be

viewed as a variant of group Lasso, where the group is defined as the positive and neg-

ative weight subsets in each layer.

109

5.6 Experiments of BFA Defense

5.6.1 Experiment Setup

Dataset and Network Architectures in this chapter, experiments are focused on

visual dataset CIFAR-10 [126], which includes 60k 32×32RGB images evenly sampled

from 10 categories, with 50k and 10k samples for training and test respectively. The

data augmentation technique is identical as reported in [2]. The ResNet-20 [2] and

VGG-11 [14] are the two networks studied in the work. We use the momentum-based

stochastic gradient descent optimizer, with training batch-size and weigh decay as 128

and 3e-4 respectively. The initial learning rate is 0.1 that scaled by 0.1 at 80 and 120

epochs, and the total number of epochs is 160. Note that, all the experiments are

conducted using Pytorch [66], running on NVIDIA Titan-XP GPUs.

BFA Configuration. To evaluate the effectiveness of the proposed defense methods,

the code from [53] is utilized with further modification. The number of bit-flips NBF

that degrades the prediction accuracy below 11% is used as the metric to measure the

BFA resistance, for CIFAR-10 dataset. Moreover, since BFA requires a set of data to

perform the attack, we take 256 sample images from the training subset as the default

BFA configuration and report the mean±std of NBF with 5 BFA trials. Note that, all

the quantized DNN reported hereafter still uses the uniform quantizer as in [53], but

with quantization-aware training instead of post-training quantization.

110

0 0.0005 0.001 0.005

8
6

4
1

N
q

91.84 91.29 90.02 85.58

92.21 90.98 90.44 84.88

91.33 90.77 89.55 84.65

88.36

ResNet20, Top-1 test accuracy of Clean model

85.5

87.0

88.5

90.0

91.5

0 0.0001 0.0005 0.001

8
6

4
1

N
q

90.01 90.39 89.05 88.2

90.23 89.48 89.59 88.3

88.26 86.94 85.82 86.19

88

VGG11, Top-1 test accuracy of Clean model

86.4

87.2

88.0

88.8

89.6

0 0.0005 0.001 0.005

8
6

4
1

N
q

28 46.4 58.79 43.5

29.3 46.4 74.8 45.5

40.8 55.3 70.4 45.3

541.2

ResNet20, Mean of NBF

100

200

300

400

500

0 0.0001 0.0005 0.001

8
6

4
1

N
q

16.4 14.2 29.79 30

20.6 31.4 11.4 11.6

49.3 82.59 78 52.79

7874

VGG11, Mean of NBF

1500

3000

4500

6000

7500

0 0.0005 0.001 0.005

8
6

4
1

N
q

4.47 10.57 4.14 8.5

2.38 11.43 15.59 8.734

6.3 6.9 12.82 6.5

49.8

ResNet20, standard deviation of NBF

8

16

24

32

40

48

0 0.0001 0.0005 0.001

8
6

4
1

N
q

1.14 0.45 11.3 6

0.89 4.24 3.6 2.07

3.39 43.17 11.73 4.15

431.6

VGG11, standard deviation of NBF

80

160

240

320

400

Figure 30: The BFA-free test accuracy, mean and standard deviation of NBF for 5-
trials under different quantization bit-width Nq ∈ {8, 6, 4, 1} and clustering penalty
coefficient λ ∈ {0, 1e − 4, 5e − 4, 1e − 3, 5e − 3}, with (left column) ResNet-20 and
(right column) VGG-11 on CIFAR-10.

111

5.6.2 Result Evaluation

The experiment results with different quantization bit-width Nq and clustering co-

efficient λ of piecewise clustering are summarized in Fig. 30. It reports the BFA-free

test accuracy and number of bit-flips NBF required for BFA to succeed. Note that, for

weight binarization in Fig. 30, we exclude the Piece-wise Clustering (PC) term through

setting λ = 0, since binarization intrinsically performs the clustering as discussed in Sec-

tion 5.5.1.

Effect of quantization bit-width and clustering coefficient. Based on the results

reported in Fig. 30, training the DNN with binarized weights roughly degrade the test

accuracy by ∼ 4% and ∼ 2% in comparison to the 8-bit quantized counterpart, for

ResNet-20 and VGG-11. As discussed in Section 5.5.2, our intention of proposing

the piece-wise clustering as the relaxation to weight binarization is to mitigate such

accuracy drop. We do observe that using piece-wise clustering with proper λ can miti-

gate the accuracy degradation while improving the BFA resistance (i.e., requiring more

bit-flips NBF for the same accuracy degradation). For ResNet-20 and VGG-11, the

ideal configurations of λ are 0.001 and 0.0005 respectively, as the model with larger

capacity benefits from relatively smaller λ.

BFA resistance of ResNet-20. The 8-bit quantized ResNet-20 (baseline) requires

only an average of 28 bit-flips to hamper the functionality of an accurate DNN, while

the weight binarization significantly improves the BFA resistance compared to the base-

line. Binarization increases the average value of NBF to 541.2, which improve the BFA

resistance by ∼ 19×. Nevertheless, considering the inevitable accuracy drop due to the

drastic bit-width reduction (32-bit to 1-bit), as an alternative approach we explore the

performance of PC on other bit-width configurations as well. With λ = 1e − 3, the

112

average value of NBF was improved by 2.09×, 2.55× and 1.73× for 8, 6 and 4 bit-width

respectively. In conclusion, our proposed piece-wise clustering improves the resistance

to adversarial weight attack for all the cases of different bit-widths. Still, the binarized

network emerges as the most successful defense against BFA.

BFA resistance of VGG-11. For VGG-11, our observation follows a similar pat-

tern as described in the previous section. The baseline VGG-11 (e.g., Nq = 8) requires

an average NBF of 16.4. Again, weight binarization improves the network robustness

significantly, yielding an average NBF of 7874; which is ∼ 480× improvement in com-

parison to the baseline. In the case of VGG-11, the lower Bit-Width defends BFA

even better than ResNet-20; the main reason for this discrepancy can be the difference

between the size of the network. For a larger network such as VGG-11, low Bit-Width

and PC performs a proper regularization to successfully defend against BFA. The best

performance of PC for VGG-11 was achieved for a 4-bit network with λ = 1e − 4

achieving an average value of NBF of 82.59.

In summary, both the binarization-aware training and its piecewise clustering

relaxation can improve the BFA resistance of the target neural network, while the

binarization-aware training can push the NBF to an extremely large value (e.g., NBF >

7000 on over-parameterized VGG-11). The implication of such large value is note-

worthy, as a larger value of NBF indicates the significant increase in difficulty to carry

out a memory fault injection through the feasible cyber-physical attacks. For example,

when using the row-hammer attack to perform the fault injection, the increased attack

execution time might be detected by the operating system through the data integrity

check.

113

5.6.3 Comparison of Alternative Defense Methods

Adversarial weight attack [53] is a recently developed security threat model for mod-

ern DNN. Subsequently, the development of defensive approaches in this field has not

received much attention. Therefore, for the first time, we investigate an alarming pa-

rameter security concern – bit-flip based adversarial weight attack, with corresponding

defense method. Owing to the lack of competing methods in this research direction, we

attempt to transfer several conventional defense methods of adversarial examples [33],

[128], [129], for providing a comprehensive comparison.

Table 26: Alternative Methods Comparison. In this table, we report the prior- and
post-attack test accuracy (%) and NBF of BFA. The 8-bit quantization is chosen as the
baseline; Binary and PC-8bit is the proposed method. Moreover, comparison with
Lasso-based pruning and adversarial weight training (adv. training) is included as well.

Methods Prior-Attack
Accuracy (%)

Post-Attack
Accuracy (%) NBF

8-bit 91.84 10.45 28.0±4.47
PC-8bit 90.02 10.07 58.79±4.14
Binary 88.36 10.13 541.2 ± 49.8

Lasso Pruning 88.11 10.12 6.8±0.44
Adv. Training 87.72 10.09 9.6±6.58

Weight Pruning. Both the activation and weight pruning have been investigated

as the defense against adversarial example [128], [130]. Such pruning techniques in-

volve the stochastic process during the inference which suffers from gradient obfus-

cation [108] which is a common reason for the failure of adversarial input defenses.

Nevertheless, we investigate the effectiveness of network pruning to resist adversarial

weight attack as an alternative approach. To achieve this, we train a regular network

with Lasso loss function to shrink most of the weights to an extremely low value. Thus,

114

we can rewrite the loss function with additional L1-norm penalty as:

min
{W}
L(f(x, {Wl}); t) + β ·

L∑
l=1

||Wl||1 (5.17)

where β is the coefficient to tune the pruning strength. Through training

with Eq. (5.17), we expect the weight tenor to be in a highly sparse representation.

The intuition behind pruning working as an adversarial weight defense can be sum-

marized as: In a sparse network, we consider these zero-valued weights will not have

any physical connection (pruned) to conduct a bit-flip attack, thus making them im-

mune from BFA. As a result, the attacker is left with only a few portions of the weights

which he/she can alter to perform the BFA. Nevertheless, as shown in Table 26, such

a sparse regularized network is even more vulnerable to adversarial weight attack, re-

quiring on average just 6.8 bit-flips to hamper the functionality of target DNN. Since

a large portion of the weights was pruned, the remaining weights contain large signifi-

cance in maintaining accurate network performance. So altering any of the remaining

non-zero weights still manages to degrade network performance significantly.

Adversarial Weight Training. Inspired by the adversarial training [31], [33], we

attempt to adopt the same idea and create a BFA-based adversarial training as an alter-

native approach to compare with our proposed method. We modified the adversarial

training objective for adversarial example defense to serve the purpose of adversarial

weight training:

min
{B}
L(f(x; {B}), t) + αL(f(x; {B}+ {BBFA}), t)

s.t. {BBFA} = {B̂} − {B}
(5.18)

where {BBFA} is the different between BFA-perturbed weight bits {B̂} and its BFA-

free counterpart {B}. During the model training, {BBFA} is run-time generated as the

additive constant offset on the model weights.

115

The result of adversarial training is shown in Table 26, where it does not show the

improvement of BFA resistance from such adversarial weight training. Our interpre-

tation of the defense failure is summarized in the following. When performing the

adversarial training with the adversarial examples, each natural image owns similar ad-

versarial examples even with a different random seed. However, for the bit-flip based

adversarial weight attack, using a single natural image as the attack sample will lead

to massive different combinations of vulnerable weight bits, while BFA just provides

one combination in a greedy way. Thus, performing the adversarial weight training

with all the vulnerable weight bit combinations is not a feasible approach. In the end,

through the comparison of all the potential defense methods listed in Table 26, we con-

clude that the binarization-aware training and the piecewise clustering are the effective

defense methods.

5.7 Summary

Our proposed attack is the very first work for vulnerable bit search on quantized neu-

ral networks. BFA puts light on why the security analysis for neural network parameters

needs more attention. We demonstrate through extensive experiments and analysis that

the vulnerability of the DNN parameter to malicious bit-flips is extremely severe than

anticipated. We would encourage further investigation on both attack and defense

front to thrive towards developing a more resilient network for deep learning applica-

tions. Besides, we try to develop a comprehensive investigation of adversarial parameter

security enhancement and provide several insightful observations for the future strug-

gle against DNN parameter vulnerability. Based on those observations, we highlight

potential successful directions to develop adversarial weight defense. Finally, through

116

the comprehensive experiments, our proposed methods, especially binarization-aware

training, are proven to improve the resistance against the emerging bit-flip based adver-

sarial weight attack.

117

Chapter 6

CONCLUSIONS AND OUTLOOK

In this thesis, we have discussed my investigations on the topic of efficient and se-

cure neural network deep learning inference systems. In terms of efficiency, leveraging

the analog crossbar to perform the in-memory computing for DNN acceleration is a

promising direction. However, the various non-ideal effects cause the device-to-device

variation, still need extra efforts to overcome. Current crossbar accelerator simulation

involves behavior modeling of circuit and device level, which can easily consume all

the available memory on a 4-way GPU high-performance computing system. It still re-

quires more hardware-efficient modeling techniques to realize the accurate simulation

of large-scale neural networks and datasets. The hardware non-ideal effect is mathe-

matically modeled and treated as the noise to perform noise-injection training, thus

making the deployed neural network can tolerate those hardware non-ideal effects.

In terms of security, a noise injection variant is proposed to improve the DNN

resistance against the famous adversarial example, which indicates a proper amount of

the noise can helping to regularize the target DNN. Then, we extend the adversarial

attack concept to a barely investigated paradigm – adversarial weight attack, where a few

malicious bit-flips can fully destroy the functionality of the target DNN. Amazingly,

the most effective defense method we found is weight binarization, which can also be

viewed as a noise injection (i.e., bit-flip noise and quantization noise) training. all the

discussions above reveal the possibility that the DNN efficiency and security could be

achieved simultaneously.

118

The future research in this direction could be: 1) Automatic DNN generation

to produce high-accuracy binary neural network, thus compensating the accuracy

degradation result from the aggressive low-bit quantization (i.e., binarization); 2) The

general-purpose noise injection method to improve the DNN generalization and its cor-

responding theory. We believe this thesis will stimulate the research effort to develop

a deep learning inference system with higher efficiency and security performance.

119

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779–788.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision,
Springer, 2016, pp. 21–37.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without
human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[8] T. Gebru, J. Krause, Y. Wang, D. Chen, J. Deng, E. L. Aiden, and L. Fei-
Fei, “Using deep learning and google street view to estimate the demographic
makeup of neighborhoods across the united states,” Proceedings of the National
Academy of Sciences, vol. 114, no. 50, pp. 13 108–13 113, 2017.

[9] 2018. [Online]. Available: https://iot-analytics.com/state-of-the-iot-update-
q1-q2-2018-number-of-iot-devices-now-7b/.

[10] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, 2016.

[11] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceed-
ings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

120

https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information process-
ing systems, 2012, pp. 1097–1105.

[13] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–
24, 1995.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 4700–4708.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 2818–2826.

[17] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016.

[18] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual trans-
formations for deep neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1492–1500.

[19] M. Horowitz, “Energy table for 45nm process,” Stanford VLSI wiki,

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,” In-
ternational Conference on Learning Representations (ICLR), 2016.

[21] Z. He, B. Gong, and D. Fan, “Optimize deep convolutional neural network
with ternarized weights and high accuracy,” in 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV), IEEE, 2019, pp. 913–921.

[22] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer of ternary
neural network using truncated gaussian approximation,” in Proceedings of the
IEEEConference on Computer Vision and Pattern Recognition, 2019, pp. 11 438–
11 446.

121

[23] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” in Advances in neural information processing systems,
2016, pp. 2074–2082.

[24] L. Yang, Z. He, and D. Fan, “Harmonious coexistence of structured weight
pruning and ternarization for deep neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2020.

[25] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al., “Tvm: An automated end-to-end optimizing compiler
for deep learning,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 578–594.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[27] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-eye: A complete design flow for mapping cnn onto embedded fpga,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 1, pp. 35–47, 2018.

[28] L. Yang, Z. He, and D. Fan, “A fully onchip binarized convolutional neural
network fpga impelmentation with accurate inference,” in Proceedings of the
International Symposium on Low Power Electronics and Design, 2018, pp. 1–6.

[29] L. Yang, Z. He, and D. Fan, “Binarized depthwise separable neural network for
object tracking in fpga,” in Proceedings of the 2019 on Great Lakes Symposium
on VLSI, 2019, pp. 347–350.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision
and pattern recognition, IEEE, 2009, pp. 248–255.

[31] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” ICLR, 2015.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[33] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference on

122

Learning Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=rJzIBfZAb.

[34] Z. He, A. S. Rakin, and D. Fan, “Parametric noise injection: Trainable random-
ness to improve deep neural network robustness against adversarial attack,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 588–597.

[35] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang,
and X. Lin, “Adversarial t-shirt! evading person detectors in a physical world,”
arXiv, arXiv–1910, 2019.

[36] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance
cameras: Adversarial patches to attack person detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.

[37] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T.
Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1625–1634.

[38] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in Advances in neu-
ral information processing systems, 2015, pp. 3123–3131.

[39] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients,”
arXiv preprint arXiv:1606.06160, 2016.

[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European Confer-
ence on Computer Vision, Springer, 2016, pp. 525–542.

[41] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural net-
work: Squeeze the last bit out with admm,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[42] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam,
N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine for neuromorphic
computing: Programming 1t1m crossbar to accelerate matrix-vector multipli-
cation,” in 2016 53nd ACM/EDAC/IEEEDesign Automation Conference (DAC),
IEEE, 2016, pp. 1–6.

123

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

[43] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection adaption: End-
to-end reram crossbar non-ideal effect adaption for neural network mapping,”
in Proceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[44] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without train-
ing substitute models,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, ACM, 2017, pp. 15–26.

[45] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in Security and Privacy (SP), 2017 IEEE Symposium on, IEEE, 2017,
pp. 39–57.

[46] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial
examples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[47] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security,
ACM, 2017, pp. 506–519.

[48] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh, “Adv-bnn: Improved adversarial defense
through robust bayesian neural network,” International Conference on Learning
Representations (ICLR), 2019.

[49] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified robust-
ness to adversarial examples with differential privacy,” in 2019 IEEE Symposium
on Security and Privacy (SP), IEEE, 2019, pp. 656–672.

[50] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust neural net-
works via random self-ensemble,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 369–385.

[51] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural net-
work,” in 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, 2017, pp. 131–138.

[52] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Deeplaser: Practical
fault attack on deep neural networks,” arXiv preprint arXiv:1806.05859, 2018.

124

[53] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network with
progressive bit search,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 1211–1220.

[54] C. Zhu et al., “Trained ternary quantization,” International Conference on Learn-
ing Representations (ICLR), 2016.

[55] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[56] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and
Y. Xie, “Overcoming the challenges of crossbar resistive memory architectures,”
in 2015 IEEE 21st International Symposium on High Performance Computer Ar-
chitecture (HPCA), IEEE, 2015, pp. 476–488.

[57] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang, and H.
Yang, “Stuck-at fault tolerance in rram computing systems,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 102–115,
2018.

[58] B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q. Wu, and M. Barnell, “Reduc-
tion and ir-drop compensations techniques for reliable neuromorphic comput-
ing systems,” in Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, ser. ICCAD ’14, San Jose, California: IEEE Press,
2014, pp. 63–70. [Online]. Available: http://dl .acm.org/citation.cfm?id=
2691365.2691377.

[59] L. Kish and C. Granqvist, “Noise in nanotechnology,” Microelectronics Relia-
bility, vol. 40, no. 11, pp. 1833–1837, 2000.

[60] D. Ielmini, F. Nardi, and C. Cagli, “Resistance-dependent amplitude of ran-
dom telegraph-signal noise in resistive switching memories,” Applied Physics
Letters, vol. 96, no. 5, p. 053 503, 2010.

[61] F. M. Puglisi, L. Larcher, A. Padovani, and P. Pavan, “A complete statistical in-
vestigation of rtn in HfO2-based rram in high resistive state,” IEEE Transactions
on Electron Devices, vol. 62, no. 8, pp. 2606–2613, 2015.

[62] I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in memristive
neuromorphic systems based on non-ideal synaptic crossbars,” arXiv preprint
arXiv:1711.08889, 2017.

125

http://dl.acm.org/citation.cfm?id=2691365.2691377
http://dl.acm.org/citation.cfm?id=2691365.2691377

[63] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based neuro-
morphic design with high defects,” in Design Automation Conference (DAC),
2017 54th ACM/EDAC/IEEE, IEEE, 2017, pp. 1–6.

[64] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang, “Accelerator-
friendly neural-network training: Learning variations and defects in rram cross-
bar,” in Proceedings of the Conference on Design, Automation & Test in Europe,
European Design and Automation Association, 2017, pp. 19–24.

[65] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rx-caffe: Framework
for evaluating and training deep neural networks on resistive crossbars,” arXiv
preprint arXiv:1809.00072, 2018.

[66] P. Adam, G. Sam, C. Soumith, C. Gregory, Y. Edward, D. Zachary, L. Zeming,
D. Alban, A. Luca, and L. Adam, “Automatic differentiation in pytorch,” in
Proceedings of Neural Information Processing Systems, 2017.

[67] Z. He, A. S. Rakin, J. Li, C. Chakrabarti, and D. Fan, “Defending and har-
nessing the bit-flip based adversarial weight attack,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2020.

[68] Z. He, L. Yang, S. Angizi, A. S. Rakin, and D. Fan, “Sparse bd-net: A
multiplication-less dnn with sparse binarized depth-wise separable convolu-
tion,” ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 16, no. 2, pp. 1–24, 2020.

[69] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” in Advances in neural information processing
systems, 2015, pp. 1135–1143.

[70] X. Ma, S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. Huat Tan, Z. Li, D. Fan,
X. Qian, et al., “Non-structured dnn weight pruning–is it beneficial in any
platform?” arXiv, arXiv–1907, 2019.

[71] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size,” arXiv preprint arXiv:1602.07360, 2016.

[72] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

126

[73] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4510–4520.

[74] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 6848–6856.

[75] S. Angizi, Z. He, A. Awad, and D. Fan, “Mrima: An mram-based in-memory
accelerator,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 5, pp. 1123–1136, 2019.

[76] S. Angizi, Z. He, and D. Fan, “Parapim: A parallel processing-in-memory ac-
celerator for binary-weight deep neural networks,” in Proceedings of the 24th
Asia and South Pacific Design Automation Conference, 2019, pp. 127–132.

[77] S. Angizi, Z. He, and D. Fan, “Dima: A depthwise cnn in-memory accelerator,”
in Proceedings of the International Conference on Computer-Aided Design, ACM,
2018, p. 122.

[78] Z. He, S. Angizi, and D. Fan, “Accelerating low bit-width deep convolution
neural network in mram,” in 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), IEEE, 2018, pp. 533–538.

[79] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: An energy-efficient
comparator-based processing-in-memory neural network accelerator,” in Pro-
ceedings of the 55th Annual Design Automation Conference, 2018, pp. 1–6.

[80] J. G. Proakis, M. Salehi, N. Zhou, and X. Li, Communication systems engineer-
ing. Prentice Hall New Jersey, 1994, vol. 2.

[81] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[82] Z.-G. Liu and M. Mattina, “Learning low-precision neural networks without
straight-through estimator (ste),” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, AAAI Press, 2019, pp. 3066–3072.

[83] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

127

[84] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[85] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K.
Gopalakrishnan, “Pact: Parameterized clipping activation for quantized neural
networks,” arXiv preprint arXiv:1805.06085, 2018.

[86] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang, and
P. Chuang, “Accurate and efficient 2-bit quantized neural networks,” in Pro-
ceedings of the 2nd SysML Conference, 2019.

[87] S. Migacz, “8-bit inference with tensorrt,” in GPU technology conference, vol. 2,
2017, p. 5.

[88] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional neural
network,” in Advances in Neural Information Processing Systems, 2017, pp. 344–
352.

[89] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks,” in Solid-State
Circuits Conference (ISSCC), 2016 IEEE International, IEEE, 2016, pp. 262–
263.

[90] W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural net-
work with high accuracy?” In AAAI, 2017, pp. 2625–2631.

[91] A. Ehliar, “Area efficient floating-point adder and multiplier with ieee-754
compatible semantics,” in Field-Programmable Technology (FPT), 2014 Inter-
national Conference on, IEEE, 2014, pp. 131–138.

[92] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[93] Z. He and D. Fan, “A tunable magnetic skyrmion neuron cluster for energy
efficient artificial neural network,” in Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2017, IEEE, 2017, pp. 350–355.

[94] S. Angizi, Z. He, D. Reis, X. S. Hu, W. Tsai, S. J. Lin, and D. Fan, “Accel-
erating deep neural networks in processing-in-memory platforms: Analog or
digital approach?” In 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), IEEE, 2019, pp. 197–202.

128

[95] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, J. Kadomoto, T.
Miyata, M. Hamada, T. Kuroda, and M. Motomura, “Quest: A 7.49 tops
multi-purpose log-quantized dnn inference engine stacked on 96mb 3d sram
using inductive-coupling technology in 40nm cmos,” in Solid-State Circuits
Conference-(ISSCC), 2018 IEEE International, IEEE, 2018, pp. 216–218.

[96] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A
dram-based reconfigurable in-situ accelerator,” in Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2017,
pp. 288–301.

[97] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A
novel processing-in-memory architecture for neural network computation in
reram-based main memory,” in ACM SIGARCH Computer Architecture News,
IEEE Press, vol. 44, 2016, pp. 27–39.

[98] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Understanding
the trade-offs in multi-level cell reram memory design,” in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE, IEEE, 2013, pp. 1–6.

[99] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu, and F. T.
Chen, “Rram defect modeling and failure analysis based on march test and a
novel squeeze-search scheme,” IEEE Transactions on Computers, vol. 64, no. 1,
pp. 180–190, 2015.

[100] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on, IEEE, 2017, pp. 541–552.

[101] S. Yu, P. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up resistive
synaptic arrays for neuro-inspired architecture: Challenges and prospect,” in
2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 17.3.1–
17.3.4.

[102] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision tun-
ing of state for memristive devices by adaptable variation-tolerant algorithm,”
Nanotechnology, vol. 23, no. 7, p. 075 201, 2012.

[103] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

129

[104] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[105] L. T. Pillage, R. A. Rohrer, and C. Visweswariah, Electronic circuit and system
simulation methods. McGraw-Hill New York, 1995.

[106] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding:
One hot way to resist adversarial examples,” International Conference on Learn-
ing Representations, 2018. [Online]. Available: https://openreview.net/forum?
id=S18Su--CW.

[107] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting
classifiers against adversarial attacks using generative models,” in International
Conference on Learning Representations, 2018. [Online]. Available: https : / /
openreview.net/forum?id=BkJ3ibb0-.

[108] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” arXiv preprint
arXiv:1802.00420, 2018.

[109] A. Bietti, G. Mialon, and J. Mairal, “On regularization and robustness of deep
neural networks,” arXiv preprint arXiv:1810.00363, 2018.

[110] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in International Conference on Machine
Learning, 2013, pp. 1058–1066.

[111] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html.

[112] G. K. Santhanam and P. Grnarova, “Defending against adversarial attacks by
leveraging an entire gan,” arXiv preprint arXiv:1805.10652, 2018.

[113] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects
through randomization,” in International Conference on Learning Representa-
tions, 2018. [Online]. Available: https://openreview.net/forum?id=Sk9yuql0Z.

[114] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

130

https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=Sk9yuql0Z

[115] H. Qian and M. N. Wegman, “L2-nonexpansive neural networks,” arXiv
preprint arXiv:1802.07896, 2018.

[116] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-box
adversarial example defenses,” arXiv preprint arXiv:1804.03286, 2018.

[117] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors,” in ACM SIGARCH Computer Architecture
News, IEEE Press, vol. 42, 2014, pp. 361–372.

[118] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip feng
shui: Hammering a needle in the software stack,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 1–18.

[119] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting correcting codes:
On the effectiveness of ecc memory against rowhammer attacks,” in 2019 IEEE
Symposium on Security and Privacy (SP), IEEE, 2019, pp. 55–71.

[120] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W.
Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer defenses,” in
2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp. 245–261.

[121] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses
for deep learning,” IEEE transactions on neural networks and learning systems,
2019.

[122] J. Clements and Y. Lao, “Hardware trojan attacks on neural networks,” arXiv
preprint arXiv:1806.05768, 2018.

[123] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning
attack on neural networks,” inNetwork and Distributed Systems Security (NDSS)
Symposium 2018, 2018.

[124] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of
IEEE 754-2008), pp. 1–84, 2019.

[125] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.

131

[126] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for ad-
vanced research),” URL http://www. cs. toronto. edu/kriz/cifar. html, 2010.

[127] I. Hubara et al., “Binarized neural networks,” in Advances in neural information
processing systems, 2016, pp. 4107–4115.

[128] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi, A.
Khanna, and A. Anandkumar, “Stochastic activation pruning for robust adver-
sarial defense,” arXiv preprint arXiv:1803.01442, 2018.

[129] S. Wang, X. Wang, S. Ye, P. Zhao, and X. Lin, “Defending dnn adversarial
attacks with pruning and logits augmentation,” in 2018 IEEEGlobal Conference
on Signal and Information Processing (GlobalSIP), IEEE, 2018, pp. 1144–1148.

[130] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated
quantization with mixed precision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2019, pp. 8612–8620.

132

BIOGRAPHICAL SKETCH

Zhezhi He has been pursuing a Ph.D. degree in the School of Electrical, Com-
puter, and Energy Engineering at Arizona State University, under the supervision of
Dr. Deliang Fan. Before that, he received the M.Eng. degree in electrical and com-
puter engineering from Oregon State University, Corvallis, OR, USA, in 2015, and the
B.S. degree in Information Engineering from Southeast University, Nanjing, China, in
2012. His research interests are in the area of secure and efficient deep learning, brain-
inspired in-memory computing, and post-CMOS technologies. During his past four
and a half years of Ph.D. study, he has been the primary author of more than 50 pub-
lications on IEEE/ACM top-tier journal and conference (e.g., CVPR, ICCV, AAAI,
DAC, DATE, ICCAD, ISLPED, TCAD, TETC, etc) in the aforementioned areas.
His works also result in the receipt of multiple fellowships, scholarships, and 2 best
paper awards from IEEE ISVLSI 2017 and 2018, respectively. He is also serving as
the technical program committee and reviewer for various conferences (e.g., NeurIPS,
CVPR, HPCA, MICRO, DAC, DATE, ICCAD, etc.) and Journals (TNNLS, TPDS,
AI, TCAS-I, TED, JETCAS, etc.).

133

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Neural Network Model Compression via Quantization
	3 Efficient Neural Inference via Analog In-memory Computing
	4 Input security of neural network
	5 weight security of neural network
	6 Conclusions and Outlook

	References
	Biographical Sketch

