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ABSTRACT

Recent advances in manufacturing system, such as advanced embedded sensing, big

data analytics and IoT and robotics, are promising a paradigm shift in the manu-

facturing industry towards smart manufacturing systems. Typically, real-time data

is available in many industries, such as automotive, semiconductor, and food pro-

duction, which can reflect the machine conditions and production systems operation

performance. However, a major research gap still exists in terms of how to utilize

these real-time data information to evaluate and predict production system perfor-

mance and to further facilitate timely decision making and production control on

the factory floor. To tackle these challenges, this dissertation takes on an integrated

analytical approach by hybridizing data analytics, stochastic modeling and decision

making under uncertainty methodology to solve practical manufacturing problems.

Specifically, in this research, the machine degradation process is considered. It

has been shown that machines working at different operating states may break down

in different probabilistic manners. In addition, machines working in worse operating

stage are more likely to fail, thus causing more frequent down period and reduc-

ing the system throughput. However, there is still a lack of analytical methods to

quantify the potential impact of machine condition degradation on the overall system

performance to facilitate operation decision making on the factory floor. To address

these issues, this dissertation considers a serial production line with finite buffers and

multiple machines following Markovian degradation process. An integrated model

based on the aggregation method is built to quantify the overall system performance

and its interactions with machine condition process. Moreover, system properties are

investigated to analyze the influence of system parameters on system performance.

In addition, three types of bottlenecks are defined and their corresponding indicators

are derived to provide guidelines on improving system performance. These meth-

i



ods provide quantitative tools for modeling, analyzing, and improving manufacturing

systems with the coupling between machine condition degradation and productivity

given the real-time signals.
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Chapter 1

INTRODUCTION

1.1 Motivation

During the past several centuries, three major industrial revolutions have been

observed, moving the manufacturing systems from equipment-level empowerment,

via mass production, to system-level automation. Currently, in the awareness of

the fourth generation of industrial revolution, emerging concepts and technologies

are involved, such as Internet of Things (IoT), cloud computing, and cyber physical

systems, which makes the manufacturing systems towards intelligence, and bring both

challenges and opportunities.

When mentioning industrial 4.0, it is commonly referred as smart manufacturing

system. Such types of system create a connected and data-enriched environment.

The manufacturing system therefore does not only produce parts, assemblies and fi-

nal products. At the same time, it creates huge amount of real-time information.

Moreover, the flow of the information is not bounded by the physical structure of

the production system. The upper layers of the systems can collect and store the

information in a centralized platform, through which all the component for the man-

ufacturing processes can be monitored, analytics can be performed to evaluate the

system performance and actions can be taken to solve the problems.

Furthermore, the smartness of the manufacturing system under the concept of

Industrial 4.0 can be observed in three folds. First, the sensor-enabled equipment

can achieve smart information processing. On one hand, real-time information can

be collected with regards to the conditions and performance of the machines. Such

1



information, with the help of data analytics tools, can be used the evaluate the health

conditions of the equipment. On the other hand, actions can be sent out to the equip-

ment so that it can automatically execute the instructions of the operators, either

manually or automatically. The second level of smartness the system performance

assessment. Since all the equipment are connected and can communicate with each

other, the overall system performance can be evaluated and projected, based on the

information collected from each process and unit of the system. The third level is

the smart decision. The system under this level knows not only how the system is

performed, but also enables suggesting actions that can further project and improve

the performance.

To achieve the highest level of the smartness, many efforts should be made. Specif-

ically, system level performance analytics approaches are needed, which can make full

use of the real-time information of the system for better system performance evalu-

ations. Furthermore, based on the system conditions, advanced models are required

to make the best decisions on system performance improvements. This motivates my

research.

Specifically, in this research, machine condition degradation, a gradual and ac-

cumulative process on physical conditions that can be observed in numeric manu-

facturing assets and impact the manufacturing system operation and performance

significantly, is utilized in the system modeling. It is well known that a machine

working at different operating states may break down in different probabilistic man-

ners. It has also been investigated that machines working in worse operating stage

are more likely to fail, thus causing more frequent down period and reducing the sys-

tem throughput (Lee and Ni (2013)). In addition, different health status of machines

could result in various quality yields, thus impacting product quality directly (Inman

et al. (2013); Ju et al. (2015)). In practice, the health status of a machine can be
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identified and described using multiple states based on the features of the machines

(Heng et al. (2009); Teti et al. (2010)). Some research has considered such multi-

state models to analyze performance of production lines (e.g., Colledani and Tolio

(2012); Cholette and Djurdjanovic (2014); Sloan and Shanthikumar (2002); Bian and

Gebraeel (2014)). However, systematic approaches to uncover the potential impact

of machine degradation on system performance are still in great demand.

Furthermore, many industrial systems, such as transportation devices, manufac-

turing systems, energy generation systems and oil pipeline networks, suffer from in-

evitable failures due to complex degradation processes and environmental conditions.

In production systems, these unexpected failures may result in severe consequences,

including massive production losses, high corrective replacement (repair) costs and

safety hazards to workers and the environment. For this reason, preventive main-

tenance (PM), which emphasizes effectively avoiding the occurrence of unexpected

severe failures, becomes a preferred maintenance choice for practitioners. In fact,

maintenance has a great impact on production capacity, product quality and pro-

duction profitability. On average, 28 % of the total production cost is attributed to

maintenance activities in the modern industry (Wang (2012)). For some industries,

such as marine, the number can be as high as 40% (Eruguz et al. (2017)). Therefore,

how to develop effective maintenance policies is of critical importance.

Specifically as the manufacturing process becomes more complicated (e.g., additive

manufacturing, composite material manufacturing, renewable energy manufacturing),

there is a pressing need to understand the relationship between machine condition

degradation and the overall system performance to make better maintenance and

product dispatch decisions. Traditionally, much of the throughput analysis of pro-

duction system research has been carried out based on aggregated machines, assuming

machine up or down according to certain distributions and typically ignoring the ma-
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chine degradation process (Kimemia and Gershwin (1983); Groenevelt et al. (1992);

Lin and Gong (2006); Chakraborty et al. (2008); Li and Meerkov (2008)). However,

as machine conditions impact the performance of production systems in various ways,

it is critical to understand their interactions and to study the implication of their in-

tegration, which has been a significant gap between the two fields. Some early work

has attempted to address this problem. For instance, Lee and Ni (2013) considers

different machine condition status during operation and investigates its impact on the

overall system performance. Nevertheless, it is based on numerical approach without

providing much insight about the system properties. Indeed, the lack of analytical

methods and high fidelity models are still the major barrier to prevent full exploitation

of the integration of machine condition degradation and system performance.

Besides, due to limited resources such as budget, space, and technicians, it is im-

portant to identify the machines or states that are most critical to system performance

to guide maintenance and system improvement activities. To this end, bottleneck

analysis can serve as an effective tool. For instance, if a machine is in a state that has

significant influence on the overall performance of the system, most likely this machine

is in an unhealthy state. Thus, to improve the system performance and minimize the

chance of encountering catastrophic failures, maintenance and other improvement ac-

tivities need to be scheduled before its health condition further deteriorates (Fitouhi

et al. (2017)). Moreover, since for most factories, limited resources can be devoted

to the system improvement activities, bottleneck analysis enables finding the most

critical component and maximizing the reward of investments. Therefore, systemic

and theoretic analysis of system bottlenecks with machine condition degradation is

of significant importance and needs to be conducted rigorously.

In this work, a novel integrated approach to answer these questions are introduced.

Specifically, this dissertation extends the existing research work (Li, 2008) by con-
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sidering multiple machine operating states. It enables modeling machines following

different condition degradation process. Analytical solutions are derived to estimate

the system performance and system-theoretical properties are investigated to provide

insights on how system parameters affect the overall system performance. In addi-

tion, bottleneck machines and states are defined, and new novel indicators are created

to facilitate bottleneck identification. These methods provide quantitative tools for

modeling, analyzing, and improving manufacturing systems with the coupling be-

tween machine condition degradation and overall system productivity performance.

Furthermore, the research roadmap is provided, which is shown in Table ?. This

research begins with the system analytics on production systems. The structure and

product flow information are analyzed. With the help of sensors and other measure-

ment tools, the real-time information, such as the sensor signals of the equipment

and the quality information of the products can be collected. Using the data analyt-

ics tools, the machine health conditions can be evaluated. Till this stage, the asset

smartness is achieved. Then, by integrating the information of each component in the

manufacturing system, together with the system information, such as the production

flow information, a system-level model can be built to evaluate the performance of

the entire production systems, achieving the system level smartness. Finally, using

the results of the system performance and through analyzing the conditions of each

component, decisions can be made on the operational actions, which help identify

the potential problems and further improve the system performance. Such actions

are sent back to the local process controllers and with smart assets, these actions

can be executed on-time and thus smart decisions are made. Furthermore, one point

worth mentioning that this is a continuous learning and recursive approach. Since the

system is dynamic, evaluations and decisions should be made following the change of

the system conditions to maintain the best possible evaluation accuracy and system
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Table 1.1: The Roadmap of the Dissertation Research

performance.

1.2 Outline

This research, therefore, build up bridges from the equipment-level health mon-

itoring to the system level performance evaluation. Furthermore, the conditional

based system improvement approaches are also made to better improve the system

performance. To summarize, this research develops effective system analytics and

decision tools, to monitor, evaluate, improve and control the manufacturing system

given real-time machine information.

The rest of this dissertation is organized as follows:

Chapter 2 is devoted to literature review of related research. The current state

of the art on degradation modeling, system analytics, conditional-based preventative
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maintenance, and the real-time degradation monitoring on production systems are

reviewed and discussed.

In Chapter 3, the research problem is formulated and an analytical model is

provided to estimate the performance of the serial production lines given machine

degradation process. The exact two-machine closed-form expressions are used and

aggregation approaches are developed for the serial production lines. The analytical

results are the fundamentals for system performance improvements. Then, bottle-

neck identification tools, derived from the system performance evaluation models,

are developed to identify the most critical component that can improve the system

performance the most.

In Chapter 4, based on the system performance evaluation models developed in

Chapter 3, system improvement tactics are developed. Specifically, the maintenance

activities, which can recover the machine conditions suffered from the degradation

process, is considered. New models are therefore developed and a Markovian decision

process is formulated to find the best maintenance policies that can maximize the

overall system production performance for small systems. Furthermore, for general

serial production system, an aggregation approach is developed to obtain effective

maintenance policies. Numerical experiments are also performed to compare the

proposed method with state-of-the-art.

In Chapter 5, the degradation processes are further extended, considering the

dynamics on the degradation signals. This work present the algorithm to incorporate

the real-time degradation signals of each individual machines to best estimate the

production system performance. This is the under-work chapter of the dissertation.

In Chapter 6, the degradation processes under multiple operating conditions are

considered, integrating the real-time the dynamics on the degradation signals. This

work propose an framework which generate the optimal operating condition control
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and maintenance scheduling utilizing the degradation signals. of the machines and

parts in the production systems.

Finally, conclusions and future work are presented in Chapter 7. Particularly, the

research timeline to complete the entire dissertation work is presented. All the proofs

are shown in the Appendix.
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Chapter 2

LITERATURE REVIEW

2.1 Modeling of Degradation Process

Machine degradation problem has received significant attention in the recent two

decades. To model machine degradation, various physical, statistical, and stochastic

models have been developed (Colledani and Tolio (2012); Lee and Ni (2013); Gorjian

et al. (2010)). Moreover, modern manufacturing systems enable diagnosing condi-

tions of each machine and further classifying them into different operating states

(Teti et al. (2010)). In literature, mounting research has been devoted to incorporat-

ing machine degradation factors into investigating the best maintenance schedule to

best utilize resources and achieve optimal system performance from the long run per-

spectives (Cholette and Djurdjanovic (2014); Sloan and Shanthikumar (2002); Icten

et al. (2013)). Besides productivity, the coupling of machine degradation process

with product quality has also been studied extensively (Tambe and Kulkarni (2014);

Kouki et al. (2014); Gouiaa-Mtibaa et al. (2015)). Some recent research considers

additional issues related to machine condition degradation. For example, Colledani

and Tolio (2012) considers productivity, quality, maintenance, and logistics issues in

an integrated and systematic way. Sloan and Shanthikumar (2002) focuses on the

machine degradation in a single stage among the wafer manufacturing process in the

semiconductor manufacturing systems. Tambe and Kulkarni (2014) discusses main-

tenance strategies for a single machine system with continuous machine degradation

process. These research typically focuses on single process and ignores the interac-

tion between multiple machines and storage devices. It is thus still unclear how the

9



degradation process of a single machine could influence the performance of the whole

production system.

For serial production lines with multiple machines and limited buffers, the model-

ing and throughput analysis have been developed in recent years (Ju et al. (2013a)).

In general, Bernoulli machines (Jacobs and Meerkov (1995a)), geometric machines

(Li and Meerkov (2000)), and exponential machines (Jacobs and Meerkov (1995b))

are the typical reliability models developed in the literature. Li and Meerkov (2005)

also discusses modeling methods for non-exponential machines cases. The common

characteristics of these papers are that they develop systematic approaches to investi-

gate system properties of serial production lines. Using these research as the building

block, researchers further apply these theories in different scenarios, solving problems

such as quality flow in automobile paint shops (Ju et al. (2013b)) and producing per-

ishable products in food factory (Kang et al. (2017)). Technically, for analyzing the

serial production lines, closed form formulas could be derived only in systems with one

or two machines due to the complexity of the problems. For longer lines, approxima-

tion algorithms have been derived, typically based on aggregation approach (Chiang

et al. (2000)), decomposition methods (Le Bihan and Dallery (2000)), and numerical

approaches for short lines (Yang et al. (2000)). Nevertheless, they simply assume

that each machine has only one operating state and one failure state, and ignore

machine’s condition degradation. Some research work (Tan and Gershwin (2011);

Gebennini and Gershwin (2013); Matta and Simone (2016)) have considered multiple

operation states in their model. However, they limited the scope of the problems

into two machines and one buffer models. Some researchers (Tolio et al. (1998)) even

realized the meaningfulness of their work when extended to longer lines; nevertheless,

they did not provide systematic studies on longer lines nor further discussions on

bottleneck identifications.
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2.2 Bottleneck Identifications

In addition, bottleneck analysis is regarded as an effective tool in analyzing system

properties. Early research tends to focus on machines with lower isolated efficiency

or high work in progress in front for performance improvements (Goldratt (1990)).

Chiang et al. (2000, 2001) provide systematic and theoretic approaches to detect the

bottlenecks with regards to system production rate and machine uptime and down-

time using blockage and starvation of machines. Furthermore, generalized methods

are designed on the basis of Chiang’s methods for complex systems, such as produc-

tion lines with due time (Li (2000)), multiple products (Zhao and Li (2015)), and

rework (Biller et al. (2010)). In terms of bottlenecks, multiple types of definitions

have been extended. Wang et al. (2013) discusses machine bottlenecks with respect

to the quality of products. Brundage et al. (2016) defines the energy bottleneck as

the machine with lowest energy efficiency. In addition, Zhou et al. (2015) and Guner

et al. (2016) introduce bottleneck identification methods related to preventative or

opportunistic maintenance. However, all these bottleneck related research does not

explicitly consider the potential impact of machine condition degradation on the bot-

tleneck identification and mitigation.

2.3 Maintenance Activities in Production Lines

Mounting research has been developed for maintenance in the production systems,

starting from the analysis on system performance considering degradation processes

using methods such as machine aggregation (Belmansour and Nourelfath (2010); Kang

and Ju (2018)). The maintenance strategies are developed primarily focusing on im-

proving system reliability and associated profits. For system reliability, maintenance

policies are generated to improve the system performance such as average operating
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time (Klutke and Yang (2002)) and machine cycle time in a certain period (Liao

et al. (2006)). While in another line of research, cost-oriented maintenance policies

are developed to minimize the maintenance cost (Alaswad and Xiang (2017)). Specif-

ically, value based maintenance policies have been introduced, focusing on improving

the profit of the whole production system (Liyanage and Kumar (2003); Liu et al.

(2014)). Apart from these efforts, there are also case-specific problems. For exam-

ple, in aircraft systems, some researchers consider minimizing the risk of violating the

aviation laws and regulations (Joo (2009)); in microchip production systems, some re-

search considers minimizing the energy consumptions and wastage caused by machine

failure (Luo et al. (2015)). Furthermore, there are also works considering multiple

objectives together, such as minimizing costs and improving machine availabilities

(Liu et al. (2013b)). Alaswad and Xiang (2017) delivers the most recent review on

developing condition-based maintenance optimization models for stochastic deterio-

rating systems. Reviews for models that consider replacement, repair, and inspection

policies can also be found in Jardine et al. (2006) and Wang (2002).

PM is a coherent set of actions that can be applied when the system is still op-

erating, aiming at retaining the system or specified components in certain conditions

(Alaswad and Xiang (2017)). Among the mounting efforts on developing system

maintenance for serial production lines with buffers, PM has been an emerging issue,

drawing significant attention in the past two decades. Following earlier works such

as Barlow and Hunter (1960), many models are developed to supervise the decision

making procedures, such as determining proper maintenance intervention intervals,

optimizing consumption on the spare parts, and minimizing related operating costs

(Wang (2012)). Developing PM policies on a single machine system has been well

studied (Douer and Yechiali (1994)). However, in recent years, due to the increasing

complexity of production systems, more attention has been paid to designing poli-
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cies on systems with multiple machines and complex structures (Keizer et al. (2017)).

Specifically, de Jonge et al. (2017) discusses the benefit of conditional-based PM based

on surveys on multiple industries.

For serial production systems, several system-level condition-based PM models

are developed recently, with primary focus on small scale serial production systems,

typically two machines and one buffer systems. For example, Lee et al. (2013b) de-

velop optimal policies for two machine systems with continuous time flows. Fitouhi

et al. (2017) have built an analytical model to find the threshold states for PM. How-

ever, they typically do not consider the complex interactions among machines and

buffers in the system and merely focus on the performance of individual machines.

Gu (2016) considers the information from the system perspective and proposes a PM

model utilizing all the information of machine states and buffer levels. However, they

assume deterministic PM in terms of both the time it takes to perform PM and its

resulting machine status. Such a method has relatively strong requirements on main-

tenance, thus losing generality and may not be the optimal. Moreover, it is difficult

to be generalized for systems with larger scale. Ambani et al. (2010) investigates the

PM policies for general serial production lines with exponential machines. However,

this work simply models the degradation machine process through assuming an ex-

ponential distribution on the machine operating time, which is rare supported by the

real cases and thus limits the applicability in the real-world scenarios. Therefore,

a more general condition-based maintenance model is needed for serial production

lines considering the machine degradation process and imperfect maintenance, which

motivates the proposed work.
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2.4 Real-time Production Performance Including Degradation Signals

The use of real-time sensing information to predict the degrading machine per-

formance are commonly observed in the reliability and prognostics research. The

primary focus is to use degradation signals to understand equipment’s health condi-

tion so as to assess its reliability. In the literature, different degradation modeling

such as degradation path models Lu and Meeker (1993), random process models Ge-

braeel et al. (2005), and state space models Zuo et al. (1999) have been developed.

There is also research on estimating the degradation signals from a single sensor Ge-

braeel et al. (2005); Zhang et al. (2015) and multiple sensors Liu et al. (2013a); Yan

et al. (2016). However, such research mainly focuses on individual machines, without

further extension to complex manufacturing systems. The closest research related

to the problem under investigation in this dissertation is Hao et al. (2017), who de-

velops a degradation model for parallel machines to adjust the workloads. However,

such model only considers a single stage of the production system, and ignores the

complication involved with multiple machines and buffers in the real systems.

2.5 Optimizing Multiple Condition Policy Based on Real-time Degradation Signals

For the work considering degradation process with multiple operating conditions,

Yang et al. (2007) jointly considers maintenance scheduling and adjustable through-

put in their model. However, the operating time are assumed to follow the exponential

distribution, which is not true in many cases. The work Hao et al. (2015) and Li and

Parlikad (2017) consider the real-time degradation signals when making decisions for

capacity adjustment. Nevertheless, the maintenance are simply performed after the

machine failure, and no preventative maintenance options are discussed. For the

POMDP framework, Byon and Ding (2010) develops a condition based maintenance
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model to generate the the most cost-effective policy that can be adapted to the wind

farm operations, considering the seasonal impact on turbine capacities. However,

their model treats the alternating capacities as non-controllable parameters and au-

tomatically switched throughout the year, which limits its application scenarios. The

work by AlDurgam and Duffuaa (2013) considers the multiple capacity problems, but

they assume that all the parameters in the POMDP models are typically provided.

They provide no guidelines on utilizing the real-time degradation signals into the

framework, which leads to practical concerns.
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Chapter 3

INTEGRATED ANALYSIS OF PRODUCTIVITY AND MACHINE CONDITION

DEGRADATION: PERFORMANCE EVALUATION AND BOTTLENECK

IDENTIFICATION

3.1 Introduction

In this chapter, a novel PM framework is proposed to provide effective PM policies

on serial production systems considering machine degradation. The PM plan is for-

mulated based on the failure characteristics of the system considered. Specifically, a

new inspection and repair policy is proposed to deal with both internal deterioration

and external shock damages. A Markov decision model can be formulated to generate

PM policies in small systems with two machines. In particular, three types of ma-

chine maintenance actions are included in the work, perfect, minimal, and imperfect

repairs. Minimal repair recovers the machine from a failure state while retains the

machine degradation status. Imperfect repair refers to the better conditions between

the perfect repair and the minimal repair (Pham and Wang (1996); Kouedeu et al.

(2014)). Such consideration increases the flexibility and adaptability for different sys-

tems in real practice (Zhang and Jardine (1998), Wu and Zuo (2010) and Liu and

Huang (2010)). Furthermore, this dissertation designs an effective PM policy gen-

erating algorithm for general serial production systems using a machine aggregation

approach. Such a method extends the systematic decision-making process from two

machine systems to large systems.

The main contribution of this chapter is in two folds. First, a systematic approach

is developed to generate PM policies for production systems with degrading machines
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and finite buffers. Specifically, for machine behaviors, minor repair, full repair, and

imperfect PM are considered, which covers a wide scope of practical scenarios. Nu-

merical results show that the proposed method outperforms the state-of-the-art. Sec-

ond, a novel aggregation-based iterative algorithm is designed to generate optimal

PM policies for large scale systems. The algorithm results in a decentralized control

approach, where the PM policy for each machine only contains local information from

itself and the immediate upstream machine and buffer. Such a method can provide

significant performance improvement while keeping the policy simple and easy to

implement.

3.2 Problem Formulation

In this chapter, a serial production system is considered, as shown in Figure 3.1.

The circles represent machines and the rectangles represent buffers. The direction of

arrows represents the flow of working parts through the system. Each machine follows

a certain condition degradation process and is subject to failure. Their probability

of breaking down varies with respect to different operating conditions. The following

assumptions address the characteristics of machines, buffers, and their interactions.

Figure 3.1: Illustration of a Serial Production Line

1. The production system consists of M machines (m1, . . . ,mM) and M−1 buffers

(B1, . . . , BM−1) separating them.
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2. All machines have constant and identical processing time (cycle time). The

time frame is thus slotted with cycle time.

3. For machine k, k = 1, . . . ,M , there is one failure state F and Wk operating

states 1, 2, . . . ,Wk, which are ordered from the best operating state 1 to the

worst one Wk. The machine is subject to state change after finishing each job.

4. All machines could operate normally in any operating state. When the machine

is operating at state i, i = 1, 2, · · · ,Wk and k = 1, . . . ,M , it can remain at the

same state i, transfer to the next worse state i + 1, or break down during the

next cycle with probabilities pi,i, pi,i+1, and pi,F , respectively. It is assumed that

the machine operating at the worse state is more likely to fail, i.e., pi+1,F ≥ pi,F ,

i = 1, 2, . . . ,Wk − 1 and k = 1, . . . ,M .

5. When a machine is under repair, it can transfer back to the best operating

state 1 with probability PF,1 at the beginning of the next cycle, or remain being

repaired with probability PF,F . Clearly, PF,F +PF,1 = 1. It is also assumed that

the machine will be as good as new after repair.

6. The degradation processes of all machines are independent.

7. Buffer Bk has finite capacity Nk, k = 1, 2, · · · ,M − 1. First-in-first out (FIFO)

principle is assumed regarding the buffer outflow process. The buffer occupancy

changes at the end of each cycle.

8. Machine mk is blocked if it is up and the buffer is full at the beginning of a

time slot, k = 1, 2, · · · ,M − 1. Machine mM will never be blocked.

9. Machine mk is starved if it is up and the buffer is empty at the beginning of a

time slot, k = 2, 3, · · · ,M . Machine m1 will never be starved.
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Note that in practice, the machine condition degradation process can also be

characterized by the continuous state space. However, not every single state in the

continuous state space necessarily corresponds to different breaking down behaviors

(Colledani and Tolio (2012)). Therefore, the continuous state space can be discretized

according to the machine’s failure behavior and the level of state resolution needed. In

addition, assumption 4 shows that machine condition degradation is a non-increasing

process and transitions among operating states can only happen between two consec-

utive ones.

Under assumptions 1-9, the problems to be addressed in this dissertation are as

follows:

• Develop analytical methods to evaluate the performance of production systems

with machine condition degradation;

• Investigate the system properties. In particular, analyze the effect of single

machine condition degradation on the overall system performance;

• Develop bottleneck identification methods to detect the bottleneck machine and

operating state.

Solutions to these problems are developed in Sections 3.3-3.4.

3.3 Integrated Model of Machine Condition Degradation and Productivity

The degradation processes for each machine can be generalized into a universal

model since it is assumed that they follow similar behaviors, even though the proba-

bilities in different operating conditions might be different. Therefore, the impact of

condition degradation process is started first on a single machine and then extended

it to analyzing the interactions among multiple machines within the longer lines.
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3.3.1 Single Machine Condition Degradation

Figure 3.2: Transition Diagram of the Degradation Process for a Single Machine

For the single machine case, the degradation process is described by a discrete time

Markov model according to assumptions 3 and 7, as shown in Figure 3.2. The system

state represents the machine condition, including W operating states {1, 2, · · · ,W}

and one failure state F . The transition of states, as shown in Figure 3.2, is described

as follows: for any operating state i, it can remain in the same state i, transfer to

its next worse state i+ 1, or directly to the failure state F with probability pi,i, pi+1,

and pi,F , respectively, i ∈ {1, 2, · · · ,W − 1}. The worst operating state W can either

remain in the same state or transfer to the failure state. Note that in the degradation

process, no reverse transfer is allowed for any operating state i, i = 1, 2, . . . ,W .

However, a machine can be recovered from the failure state F to state 1 after the

repair. Given the above model formulation, a matrix X can be utilized to express the

transition probability:
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X =



p1,1 p1,2 0 · · · 0 p1,F

0 p2,2 p2,3 · · · 0 p2,F

...
...

. . .
...

...
...

0 0 · · · pW − 1,W − 1 pW−1,W pW−1,F

0 0 · · · 0 pW,W pW,F

pF,1 0 · · · 0 0 pF,F


.

The above model enables quantifying system performance with machine condition

degradation. In this dissertation, long-run performance of a given system is of inter-

est. Specifically, this dissertation focuses on investigating the relationship between

steady state system performance and the parameters of the single machine degra-

dation process. To fill the gap between the steady state performance and system

parameters, the steady state failure probability πF is first derived as follows.

Theorem 1 Given a single machine system defined by assumptions 1-4, the steady

state failure probability πF is obtained as

πF =
1

1 + 1
1−p1,1 +

W∑
i=2

i−1∏
j=1

αj

, (3.1)

where

αj =


pj,j+1

1−pj,j , j = 1, . . . ,W − 1,

1, j = W.

(3.2)

Proof: Immediately follows by solving balance equations.

It is obvious that the failure probability πF can be expressed as a function of the

degradation model parameters in the matrix X. In addition, a machine’s efficiency e

can be obtained from Theorem 1, i.e.,

e = 1− πF .
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3.3.2 State Aggregation

The degradation model depicted above could capture the dynamics of the ma-

chine’s status change. Then the question arises that how such degradation process

for each individual machine would impact the performance of larger systems, specifi-

cally with multiple machines and buffers. In the following subsections, the answer to

this question is attempted by starting from a simple system with two machines and

one buffer in between. First, the operating states for each machine are aggregated

while the system uncertainty and degradation dynamics are preserved. Then the ag-

gregated machines are modeled using a Markov chain incorporating their interaction

with the buffer.

The idea of state aggregation is that one operating state, denoted as U , is used

to represent the aggregated outcome of all the operating states, instead of having

multiple operating states in a single machine. Figure 3.3 illustrates the state transi-

tion after aggregation, with P representing the aggregated failure probability and R

representing the repairing probability. It is worth to mention that R is the same as

pF,1 in the original transition matrix X. As a result of state aggregation, geometric

reliability model is essentially adaptable into the serial production line with machine

condition degradation process. The status of each machine can be represented using

a set S = {U, F}, where U is the aggregated operating state and F remains to be the

failure state. The transition matrix Q for the aggregated machine can be expressed

as

Q =

1− P P

R 1−R

 .

In the aggregated model, the failure state still remains the same as in the original

degradation model, with its associated parameters pF,F and pF,1 unchanged. However,

since all the operating states from the original degradation process are combined
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Figure 3.3: State Transition After Aggregation of Condition Degradation Process

together, the aggregated failure probability needs to be reevaluated. Note that in

the steady state, πF derived in Equation (3.1) remains the same in the aggregated

model so that it can preserve the original machine degradation characteristics. The

resulting failure probability P is shown as follows,

P =
pF,1πF
1− πF

= pF,1 +
pF,1

W∑
i=1

1
1−pi,i

i−1∏
j=1

αj

, (3.3)

where αj is defined in Equation (3.2). It can be found from Equation (3.3) that

the aggregated failure probability is a function of all the parameters of the machine

condition degradation process.

3.3.3 Two-machine Case (M = 2)

A discrete time Markov chain is utilized to model the two-machine system with

machine state aggregation. The state space is defined as Ω = {S1, n, S2}, where S1

and S2 are the status (either up or down) of machine m1 and m2, respectively, and n is

the number of parts in the buffer. To incorporate the machine condition degradation

model into the two-machine system, a geometric model is adopted. To make the model

more general, each machine is assumed to follows a unique condition degradation

process as defined in the one-machine case. Specifically, machine m1 has W1 operating
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states with probability matrix X1, while machine m2 has W2 operating states with

probability matrix X2. Using Equation (3.3), the aggregated failure probability for

each machine, denoted as P1 and P2, respectively, could be obtained.

The system performance measures of interest include production rate PR, machine

m1’s blockage probability BL, machine m2’s starvation probability ST , and the work-

in-process (WIP) WIP . They could be obtained as follows.

Theorem 2 Given a two-machine system defined by assumptions 1-4,

P̂R =
R2

P2 +R2

[
1− Φ(P1, R1, P2, R2, N)

]
,

ŜT =
R2

P2 +R2

Φ(P1, R1, P2, R2, N),

B̂L =
R1

P1 +R1

Φ(P2, R2, P1, R1, N),

Ŵ IP =
N∑
h=1

hPr[n = h],

(3.4)

where

Φ(P1, R1, P2, R2, N) =


P1θ2(

R1+R2−R1R2

)(
P1+R1

) , if N = 1,

P1η1η2θ22

(
P2+R2

)
D1+D2+D3+D4

, if N > 1,

(3.5)
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and

η1 = P1 + P2 − P1P2 − P2R1,

η2 = P1 + P2 − P1P2 − P1R2,

θ1 = R1 +R2 −R1R2 − P1R2,

θ2 = R1 +R2 −R1R2 − P2R1,

ρ =
η2θ1

η1θ2

,

D1 = P1R2η1η2θ2(P2 + θ2),

D2 = P1R1R2η2[θ2
2 + P (η1 + θ1)(η2 + 2θ2)],

D3 =
N−1∑
j=2

P1P2R1R2(η2 + θ2)3ρj−1,

D4 = P2R1η1θ2[R2(η1 + θ1) + η2(P1 +R1)]ρN−1.

(3.6)

Proof: Immediate follows by combining Equation (3.3) with the results from Li

and Meerkov (2008).

Using the above theorem, the system performance measures, such as production

rate, blockage, and starvation, can be evaluated in closed forms. Specifically, these

formulas quantify the impact of machine condition degradation on system perfor-

mance and enable further investigation on system-theoretic properties.

To investigate the accuracy of performance evaluation obtained from the analyt-

ical model, simulation experiments have been conducted. Specifically, the general

production setting is considered, where machine m1 and m2 can have different num-

bers of operating states, denoted as W1 and W2, respectively. In each simulation run,

3000 time slots are designed as warm-up time and 20,000 following time slots are used

to assess the steady state performance. For each set of parameters, 50 replications

are conducted. The system parameters are randomly generated using the following

criteria:
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Procedure 1

(i) For k = 1, 2, generate Wk ∈ {2, 3, . . . , 10}.

(ii) For i = 1, . . . ,W1, j = 1, . . . ,W2, generate p
(1)
i,F , p

(2)
j,F ∈ (0, 0.3). Each set of p

(1)
i,F

and p
(2)
j,F follows an increasing order, respectively, as described in assumption 3.

(iii) For i = 1, . . . ,W1 − 1, j = 1, . . . ,W2 − 1, generate p
(1)
i,i+1 ∈ (0, 1 − p

(1)
i,F ), and

p
(2)
j,j+1 ∈ (0, 1− p(2)

j,F ).

(iv) For i = 1, . . . ,W1 − 1, j = 1, . . . ,W2 − 1, assign p
(1)
i,i = 1 − p(1)

i,F − p
(1)
i,i+1, and

p
(2)
j,j = 1− p(2)

j,F − p
(2)
j,j+1.

(v) Assign p
(1)
W1,W1

= 1− p(1)
W1,F

and p
(2)
W2,W2

= 1− p(2)
W2,F

.

(vi) For k = 1, 2, generate p
(k)
F,F ∈ (0, 1), and assign p

(k)
F,1 = 1− p(k)

F,F .

(vii) Generate N ∈ {1, 2, . . . , 10}.

Let PRsim, ST sim, BLsim, denote the mean value of the simulation results. Then

accuracy metrics for different performance measurements are defined as follows:

δPR =
|P̂R− PRsim|

PRsim
× 100%,

δWIP =
|Ŵ IP −WIP sim|

WIP sim
× 100%,

δST = |ŜT − ST sim|,

δBL = |B̂L−BLsim|.

(3.7)

The accuracy of PR estimation is shown in Figure 3.4. It can be found that in most

cases, the analytical solution falls in the 95% confidence interval of the correspond-

ing simulation trials. Even though in some cases, the analytical solution is on the

boundary of the interval, the relative error for PR estimation is small, typically less
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Figure 3.4a: Accuracy for Production Rate Estimation in Serial Lines

Figure 3.4b: Analytical Results and Simulation Results with Confidence Interval

than 3%. Therefore, it can be concluded that the proposed analytical method could

provide enough accuracy for performance evaluation.

3.3.4 General Line (M > 2) Case

For a production line with more than two machines, a closed form expression

for production rate cannot be found. In order to measure the performance of such

systems, a aggregation based recursive procedure can be adopted. To facilitate the
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presentation of the procedure, new notations P b
i (n), Rb

i(n), P f
i (n), and Rf

i (n), is in-

troduced, representing the failure and repair probabilities in the nth backward and

forward aggregation iteration, respectively. The detailed aggregation procedure is

shown as follows.

Procedure 2

P b
i (n+ 1) = Pi +RiQ(P b

i+1(n+ 1), Rb
i+1(n+ 1), P f

i (n), P f
i (n), Ni), i = 1, . . . ,M − 1,

Rb
i(n+ 1) = Ri −RiQ(P b

i+1(n+ 1), Rb
i+1(n+ 1), P f

i (n), P f
i (n), Ni), i = 1, . . . ,M − 1,

P f
i (n+ 1) = Pi +RiQ(P f

i−1(n+ 1), Rf
i−1(n+ 1), P b

i (n+ 1), P b
i (n+ 1), Ni−1),

i = 2, . . . ,M,

Rf
i (n+ 1) = Ri −RiQ(P f

i−1(n+ 1), Rf
i−1(n+ 1), P b

i (n+ 1), P b
i (n+ 1), Ni−1),

i = 2, . . . ,M.

(3.8)

The initial conditions for the procedure are

P f
i (0) = Pi, R

f
i (0) = Ri, i = 2, . . . ,M − 1, (3.9)

with boundary conditions being

P f
1 (n) = P1, R

f
1(n) = R1, P

b
M(n) = P1, R

b
M(n) = R1, n = 0, 1, . . . (3.10)

It has been proved that the procedure will converge to a unique solution (Li and

Meerkov (2008)).

Theorem 3

P f
i

∆
= lim

n→∞
P f
i (n), P b

i
∆
= lim

n→∞
P b
i (n), Rf

i
∆
= lim

n→∞
Rf
i (n), Rb

i
∆
= lim

n→∞
Rb
i(n), i = 1, 2, . . . ,M.

(3.11)
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Therefore, the production rate could be obtained as follows:

P̂R =
Rf
M

P f
M +Rf

M

=
Rb

1

P b
1 +Rb

1

. (3.12)

Similar to the two machine case, the expressions of blockage and starvation could

also be extended as follows.

B̂Li = PiΦ(P b
i+1, R

b
i+1, P

f
i , R

f
i , Ni), i = 1, . . . ,M − 1,

ŜT i = PiΦ(P f
i−1, R

f
i−1, P

b
i , R

b
i , Ni−1), i = 2, . . . ,M.

(3.13)

To test the accuracy of the aggregation method, simulation experiments have been

conducted. The total number of machines are randomly selected between integer 3

to 10, and the remaining parameter selection strategy follows Procedure 1. Similar

to the two-machine case, 5,000 time slots are selected as warm-up time, and 20,000

time slots are used to calculate the steady state performance. For each simulation

setting, 50 replications are conducted. The relative error δPR formulated in Equation

(3.7) is utilized to illustrate the estimation accuracy. As shown in Figure 3.5, results

from 35 cases are reported. The relative errors on production rate estimations are

typically below 6%. The WIP difference is within 5%, with the maximum one as

8%. For blockage and estimation, the average difference is within 0.01, and the

95% interval is less than 6% of its mean value. When the system performance is

low, typically below 0.45, the production rate estimation error can be higher, i.e.,

around 5%. However, for most cases, taking the experiments results in Figure 4

as an example, the estimated results fall within the 95% confidence interval of the

simulation results. Furthermore, the absolute difference of production rate between

the analytical and simulation results is typically within 0.02. The result implies that

the proposed method can deliver enough accuracy in system performance estimation.
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Figure 3.5a: Accuracy for Production Rate Estimation in Serial Lines

Figure 3.5b: Analytical Results and Simulation Results with Confidence Interval

3.3.5 Structural Properties

In this section, the mathematical model and analytical expressions derived in the

previous sections are used to investigate the system-theoretic properties of the produc-

tion system subject to machine condition degradation. Specifically, this dissertation

studies how the parameters of the machine condition degradation process affect the

system performance with an emphasis on production rate. To investigate system’s

structural properties, a two-step approach is undertaken: first study the impact of
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machine condition degradation on a single machine, and then extend the result to the

two-machine-one-buffer system.

Single Machine System Properties

Corollary 1 Given a single machine system defined by assumptions 1-4, it follows

that

P ≥ p1,F , (3.14)

where P is the aggregated probability, obtained by Equation (3.3).

Proof: See the Appendix.

Corollary 1 provides a relationship between aggregated failure probability and

failure probability for the best operating state. Since machine operating at worse

state is more likely to fail, the failure probability given that the machine is currently

in any one of the operating states P is no smaller than the failure probability given

that the machine is always in the best operating state p1,F .

Corollary 2 Given a single machine system defined by assumptions 1-9, P is

non-increasing as pk,k increases, k = 1, 2, . . . ,W .

Proof: See the Appendix.

Corollary 2 states that if a machine could maintain in one operating state for

longer time, then the machine is less likely to fail. This is true because the machine

operating at worse state is more likely to fail. An extreme case is that the machine

keeps in an operating state k forever, or pkk increases to one, then the machine will

never fail, so that P will become zero.
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Two-machine System Properties

Corollary 3 Given a system defined by assumptions 1-4 with buffer size N = 1,

production rate (PR) is monotonically decreasing w.r.t. P1 and P2 and increasing

w.r.t. R1 and R2.

Proof: See the Appendix.

Corollary 3 reflects the relationship between aggregated probabilities and produc-

tion rate given a fixed buffer size. This is valid in the real production that if machines

break down more frequently (i.e., P1 or P2 increases), production rate will be lower.

On the other hand, if machines are repaired in a more timely manner (i.e, R1 or R2

increases), production rate will also increase.

Corollary 4 Given a system defined by assumptions 1-9, production rate (PR)

is monotonically decreasing w.r.t. p
(i)
k,k+1 and increasing w.r.t. p

(i)
k,k, k = 1, 2, · · · ,Wi,

i = 1, 2.

Proof: See the Appendix.

Corollary 4 combines Corollaries 2 and 3. It implies the impact of machine con-

dition degradation on the system performance. Specifically, when either machine’s

condition deteriorates faster, it will be more likely to fail, thus leading to lower pro-

duction rate. Such property provides insights on how degradation parameters affect

the overall system performance, and lays the foundation for further bottleneck iden-

tification and continuous improvement for production systems subject to machine

condition degradation.
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3.4 Bottleneck Analysis

3.4.1 Bottleneck Definitions

The bottleneck machine of a system refers to the machine that has the biggest

impact on the system performance. In a real production line, people focus heavily on

the average amount of time that a machine is operating or a machine is needed from

failure to fully repaired. For a geometric machine, the average uptime and downtime

for machine i could be expressed respectively as follows:

Tui =
1

Pi
, Tdi =

1

Ri

, i = 1, 2, . . . ,M. (3.15)

In this section, definitions for three types of bottlenecks are provided. The first

type of bottleneck is the uptime bottleneck (U-BN). It refers to the machine which

has the biggest improvement on production rate when the average uptime of this

machine is increased.

Definition 1 Machine mi is the uptime bottleneck (U-BN) if for any j 6= i,∣∣∣∣∣∂PR∂Tui

∣∣∣∣∣ >
∣∣∣∣∣∂PR∂Tuj

∣∣∣∣∣. (3.16)

Another type of bottleneck is the downtime bottleneck (D-BN). It refers to the

machine which has the biggest improvement on production rate when the average

repair time of this machine is decreased.

Definition 2 Machine mi is the downtime bottleneck (D-BN) if for any j 6= i,∣∣∣∣∣∂PR∂Tdi

∣∣∣∣∣ >
∣∣∣∣∣∂PR∂Tdj

∣∣∣∣∣. (3.17)

The third type of bottleneck is the state bottleneck (S-BN). It refers to the most

sensitive transition probability in an operating state (for example, pkk for operating

state k), which has the biggest improvement on production rate of the production

line than any other state in the same machine and any state in other machines.
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Definition 3 Operating state k in Machine mi is the state bottleneck (S-BN) if

for any machine j and any different operating state l,∣∣∣∣∣∂PR∂p
(i)
k,k

∣∣∣∣∣ >
∣∣∣∣∣∂PR∂p

(j)
l,l

∣∣∣∣∣. (3.18)

Even though the definitions above provide rigorous ways of identifying bottle-

neck machines, these formulas cannot be directly applied in practice since the partial

derivatives involved cannot be evaluated analytically and are difficult to obtain from

factory floor measurements. Therefore, indirect methods need to be pursued. Specif-

ically, indicators are derived for each type of bottlenecks. Using these indicators,

identification rules based on arrow assignment rules are formulated to detect bottle-

necks. The details are laid out as follows.

3.4.2 U-BN Identification

Two-machine Case

To derive indicators for the U-BN, this work starts with the simplest case where there

are only two machines and one buffer with buffer size N = 1. Based on the analytical

expression of production rate in this simplest case, a closed form indicator could be

formulated as follows.

Theorem 4 In a two-machine-one-buffer system with buffer size N = 1, machine

m2 is the uptime bottleneck if and only if

ST2e1P1 < BL1e2P2. (3.19)

Proof: See the Appendix.

Theorem 4 provides rigorous indicators to compare the severity of uptime of two

machines. It implies that uptime bottleneck is influenced by not only machine effi-

ciency, but also by other factors such as blockage and starvation, which capture the
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inherent interactions between machines and the buffer. For example, if the second

machine is more likely to be starved, then the first machine is more likely to be the

uptime bottleneck, because the uptime of the upstream machine might not be long

enough to produce enough parts. Therefore, each individual term is not sufficient

enough to quantify the severity of each machine, but rather the combined multipli-

cation results need to be considered as a whole to detect the bottleneck.

General Case

However, for the two-machine case with N > 1 and longer lines, it is impossible

to obtain a closed form expression for production rate and its partial derivative.

Instead, the bottleneck indicator derived for two-machine case with N = 1 is applied.

In addition, an arrow assignment rule is designed to identify the uptime bottleneck

for multiple machine systems. The detailed rule is shown as follows.

Arrow Assignment Rule for U-BN: If BLiei+1Pi+1 > STi+1eiPi, assign an arrow

from mi to mi+1; otherwise, assign an arrow from machine i + 1 to machine i, i =

1, . . . ,M − 1.

Following the assigned arrows, one can trace upward or downward to find the

bottleneck. However, since the arrow assignment rule only compares two consecutive

machines, it is likely to end up with multiple “bottlenecks” being identified, namely

local bottlenecks. In order to find the real bottleneck of the system (global bot-

tleneck), a heuristic severity index is introduced, which quantified the likelihood of

the identified local bottleneck being the global bottleneck. Specifically, bottleneck

severity for mi is denoted as Sui and is formulated as below.
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Su1 = |ST2e1P1 −BL1e2P2|,

Sui = |STi+1eiPi −BLiei+1Pi+1|+ |STiei−1Pi−1 −BLi−1eiPi|, i = 2, . . . ,M − 1,

SuM = |STMeM−1PM−1 −BLM−1eMPM |.

(3.20)

According to the arrow assignment rule for U-BN, if one machine has no emanating

arrow from it, then it is the bottleneck machine. If multiple machines have such

behavior, then the one with the largest severity value is the bottleneck.

An example is provided in Figure 3.6 to illustrate how the U-BN is identified. All

system parameters are randomly picked and shown on the figure. First, arrows are

assigned from the larger indicator value to the smaller one. For example, BL1P2e2

is 0.0339 while ST2P1e1 is 0.0004. Therefore, an arrow points from machine 1 to

machine 2. Once the arrows are assigned for each consecutive machine pair, it is

obvious that there is no arrow emanating from machine 3 or machine 5. Thus they

form the candidates for machine bottleneck. By calculating their severity values using

Equation (3.20), machine 5 has larger severity value 0.0303 compared to 0.0095 for

machine 3. Therefore, machine 5 is identified to be the primary uptime bottleneck.

Further, to validate that the identified bottleneck is the real bottleneck, simula-

tion experiments are conducted, with 1000 replications per experiment and 100,000

time-slot simulation length. The partial derivatives are estimated using parameter

sensitivity study by changing the corresponding parameters in the derivatives with

the rate ∆ = 0.1. Then the derivative values can be expressed in the format of

P̃R−PR
∆(·) , where P̃R is the after the parameter change and PR is the one with the

original parameter settings. The real bottleneck is target with the largest derivative

value. Moreover, the 95% confidence interval for all the derivative values are provided.

These settings are followed throughout the remaining experiments in the dissertation.
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In Figure 6, it can be found that the bottleneck identified by the indicators matches

the results by performing parameter sensitivity study on the corresponding partial

derivatives. For example, the partial derivative obtained numerically for machine 5

is the largest with the mean value 0.0161. Furthermore, the 95% confidence interval

of machine 5 is overwhelmingly larger than the values of the other machines, with

no overlaps. Therefore, the indicator is an effective approach to identify the real

bottleneck.

Figure 3.6: An Illustrative Example for Detecting U-BN

3.4.3 D-BN Identification

Two-machine Case

To identify the D-BN, the similar idea is followed as illustrated in the previous section.

Indicators for D-BN in the two-machine case when buffer size N = 1 is first rigorously

derived. Then the obtained bottleneck indicator from the simplest case is extended

to more general systems. Based on the D-BN’s definition, the indicator for D-BN is

formulated as follows.
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Theorem 5 In the two machines and one buffer system with buffer size N = 1,

machine m2 is the D-BN bottleneck if and only if

ST2e1R1 < BL1e2R2. (3.21)

Proof: See the Appendix.

Similar to the indicators for U-BN, efficiency and blockage/starvation also appear

in the indicators for D-BN, inferring that these terms have significant influence on the

downtime of machines. For example, if one machine is more likely to be starved, then

more time might be needed to repair the failure machine ahead of it. It is also observed

that the repairing probabilities are included in the indicators. Intuitively, if a machine

is more likely to be repaired once it fails, then its downtime has little influence on

the overall production rate. Besides, it should also be noted that the whole indicator

has the strongest explanation power to the bottleneck identifications; a single term

in the indicator might have straightforward meaning but not necessarily lead to the

true bottleneck. Therefore, a systematic approach integrating the conditions of all

the machines is necessary.

General Case

For M-machine serial production lines, we can identify the bottleneck using similar

analytical techniques. an arrow assignment rule will be established similar to that in

the U-BN identifications.

Arrow Assignment Rule for D-BN: If BLiei+1Ri+1 > STi+1eiRi, assign an arrow

from mi to mi+1; otherwise, assign an arrow from machine i + 1 to machine i, i =

1, . . . ,M − 1.
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In addition, similar bottleneck severity for mi, denoted as Sdi , is developed as

follows:

Sd1 = |ST2e1R1 −BL1e2R2|,

Sdi = |STi+1eiRi −BLiei+1Ri+1|+ |STiei−1Ri−1 −BLi−1eiRi|, i = 2, . . . ,M − 1,

SdM = |STMeM−1RM−1 −BLM−1eMRM |.

(3.22)

Figure 3.7: An Illustrative Example for Detecting D-BN

An example is provided in Figure 3.7 to illustrate how the D-BN is identified. The

production system consists of seven machines and six buffers. System parameters are

shown in the figure. The estimation of partial derivatives followed the same numerical

method as in the U-BN identification. By applying the arrow assignment rule for D-

BN and following the arrow directions, machine 1 and 4 are identified to be the

downtime bottleneck. Using the severity index derived in Equation (3.22), machine

4 is determined to be the primary bottleneck, which delivers the same result as what

the partial derivative implies.
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3.4.4 S-BN Identification

The state bottleneck is different from the previous two types of bottlenecks in the

sense that it not only specifies the bottleneck machine but also targets on a specific

bottleneck operating state of that machine. According to the definition, S-BN is

quantified using the following partial derivative,∣∣∣∣∣∂PR∂p
(i)
k,k

∣∣∣∣∣ =

∣∣∣∣∣∂PR∂Pi

∣∣∣∣∣ ·
∣∣∣∣∣ ∂Pi∂p

(i)
k,k

∣∣∣∣∣. (3.23)

Using the chain rule, the derivative on the left hand-side can be divided into

two components with one for the inter-machine level and one for the intra-machine

level. Therefore, to identify the state bottleneck for a system, a two-step approach

is conducted. First, the state bottleneck for each individual machine is determined.

Then the severity of these state bottlenecks will be compared relative to all machines

within the system.

One-machine Case

For a single machine line, the S-BN could be obtained according to the definition,

and Theorem 6 shows the findings.

Theorem 6 Operating state l in a machine is the state bottleneck if for any other

operating state h, ∣∣∣∣∣ ∂P∂pl,l
∣∣∣∣∣ >

∣∣∣∣∣ ∂P∂ph,h

∣∣∣∣∣, (3.24)

where

∂P

∂pk,k
= − P 2

(1− pk,k)2

k−1∏
j=1

αj

(
1−

W∑
i=k+1

pk,F
1− pi,i

i−1∏
j=k+1

αj

)
, k = 1, 2, . . . ,W. (3.25)

Proof: See the Appendix.
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Using this theorem, the severity of each operating state for an arbitrary machine

can be easily determined, thus solving the problem of identifying intra-machine level

state bottlenecks. Since all machines have independent degradation process, such

expression can be readily extended to longer lines with multiple machines.

General Case

In large systems with multiple machines, the impact of operating states in both

intra- and inter-machine levels needs to be considered. Specifically, the bottleneck

indicators for U-BN are combined with the single machine state bottleneck indicators

to incorporate the influence of operating states on both levels. Therefore, a two-step

approach is formulated as follows.

Procedure 3 Step 1: Find the state bottleneck Oi for each machine i using the

following severity index wi.

wi = max
{ ∂Pi
∂p

(i)
k,k

|k = 1, 2, . . . ,Wi

}
, i = 1, . . . ,M,

Oi = argk max
{ ∂Pi
∂p

(i)
k,k

|k = 1, 2, . . . ,Wi

}
, i = 1, . . . ,M,

(3.26)

where ∂Pi

∂p
(i)
k,k

is defined in Equation (3.25).

Step 2: Multiple single machine severity index wi with U-BN indicators for each

machine. Follow the arrow assignment rule below to detect the overall state bottleneck.

Arrow Assignment Rule for S-BN: If wiBLiei+1Pi+1 > wi+1STi+1eiPi, assign an

arrow from mi to mi+1; otherwise, assign an arrow from machine i+ 1 to machine i,

i = 1, . . . ,M − 1.

Using the above rule, if only one machine has no emanating arrow, then it is the

machine that contains the overall state bottleneck. If multiple “bottleneck” machines
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Figure 3.8: An Example for Detecting S-BN

are identified, the following severity index Ssi for machine i is utilized to determine

the machine which contains the primary bottleneck state (true bottleneck state).

Ss1 = |w2ST2e1P1 − w1BL1e2P2|,

Ssi = |wi+1STi+1eiPi − wiBLiei+1Pi+1|+ |wiSTiei−1Pi−1 − wi−1BLi−1eiPi|,

i = 2, . . . ,M − 1,

SsM = |wMSTMeM−1PM−1 − wi−1BLM−1eMPM |.

(3.27)

In the indicator of the arrow assignment rule, wi reflects the level of influences that

the increase of probability p
(i)
k,k could influence the aggregated failure probability of a

certain machine, namely intra-machine level influence. Indicators for U-BN are used

to evaluate how aggregated probability could impact the overall system performance,

which characterizes the inter-machine level influence.

Figure 3.8 illustrates how the S-BN is identified using the two-step procedure.

Following step 1, the bottleneck state for each machine can be found and shown

in row Oi. For example, state 1 is the bottleneck state for machine 3 in this case.

Then, following the arrow assignment rule, machine 4 is the machine containing the

bottleneck state since it has no emanating arrow and also possesses larger severity
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value compared with machine 6. Therefore, state 3 of machine 4 is the bottleneck

state for the whole production line. It meets with the result using the numerical

estimation on partial derivatives, of which state 3 of machine 4 has the largest value,

0.0481, identified as the bottleneck.

3.4.5 Accuracy of Bottleneck Identification Rules

To evaluate the accuracy of these bottleneck identification rules, 1000 sets of

experiments have been conducted. The system parameters are randomly generated

using the following procedure:

Procedure 4

1. Generate machine number M ∈ {2, . . . , 8}.

2. Generate buffer size Bi ∈ {1, . . . , 10}, i = 1, . . . ,M − 1.

3. Use Procedure 1 step (i) to (v) to generate the operating states transferring

probabilities in matrix Xi, i = 1, . . . ,M .

4. Generate machine efficiency ei ∈ (0.5, 1), i = 1, . . . ,M . Then Ri could be

calculated using formula ei = Ri

Pi+Ri
, where Pi is obtained by aggregating the

probabilities in matrix Xi, i = 1, . . . ,M .

5. For matrix Xi, assign p
(i)
F,1 = Ri, and p

(i)
F,F = 1−Ri, i = 1, . . . ,M .

For each experimental case, the partial derivatives are estimated using parameter

sensitivity study by changing the corresponding parameters in the derivatives with

the rate of 0.1. The real bottleneck is target with the largest derivative value and then

compared with the one obtained using the corresponding indicator. To provide more

clarification on numerical experiments, an additional table with several representative
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cases is provided. In Figure 9, the bottlenecks identified using indicators and the

true bottlenecks are reported, together with their associated derivative values. For

example, in case one, the indicator finds the true uptime bottleneck (machine 2), with

the derivative value of 0.0212. It implies that if a slightly improvement (1%) can be

achieved on the uptime of machine 2, the production rate for the overall system will

increase roughly by 0.212%. For the S-BN cases, in case 1, the expression [3,2] means

that operating state 2 in machine 3 is the bottleneck. Other cases follow the same

expression.

As shown in Figure 3.9, the accuracy for three bottleneck identification methods

are typically above 80%, suggesting that the derived indicators for U-BN, D-BN, and

S-BN could efficiently identify the real bottlenecks in practice. For those cases in

which the bottleneck indicators could not identify the correct bottleneck, the deriva-

tives of the real bottleneck and the misidentified bottleneck by indicators are typically

close to each other. For example, in Table 1, the misidentified cases, marked in bold

letters, imply that the differences of the derivatives between the true bottleneck and

the identified one are below 0.005, or 0.5%. Furthermore, it can be found out that

over 65% of the mis-identification cases, the indicators detect the machine which has

the second largest derivative values (named as ”second bottleneck”). Considering the

correct cases and the cases with the second bottleneck together, the total accuracy

for all the three types of bottlenecks could be over 90%. This implies that even

though the bottleneck indicators cannot guarantee to identify the true bottleneck in

some cases, they still can provide useful guidance on effective improvement strategies,

which is near optimal and practically useful.

In practice, the bottleneck identification method provides guidelines on system

maintenance and improvements, especially in complex manufacturing systems. Us-

ing such a method, practitioners can devote their limited resources (like maintenance
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Case

#

System parameters
BN-type

Indicator results True results

M N W BN ∂PR/∂(·) BN ∂PR/∂(·)

1 3 [2,3] [4,4,3]

U-BN 2 0.0212 2 0.0212

D-BN 2 -0.0347 2 -0.0347

S-BN [3,2] 0.0385 [3,2] 0.0385

2 4 [5,2,5] [4,3,3,4]

U-BN 3 0.0323 3 0.0323

D-BN 3 -0.0440 2 -0.0478

S-BN [3,2] 0.0646 [3,2] 0.0646

3 5 [8,3,4,9] [8,5,6,7,8]

U-BN 5 0.0088 4 0.0099

D-BN 4 -0.0264 4 -0.0264

S-BN [4,1] 0.0204 [4,1] 0.0204

4 5 [4,5,10,5] [5,4,5,5,4]

U-BN 1 0.0319 1 0.0319

D-BN 1 -0.0572 1 -0.0572

S-BN [1,4] 0.0617 [1,4] 0.0617

5 6 [5,5,2,9,3] [6,6,8,6,3,8]

U-BN 6 0.0071 6 0.0071

D-BN 2 -0.0272 2 -0.0272

S-BN [5,2] 0.0214 [4,1] 0.0236

Table 3.1: Illustrative Numerical Examples of Bottleneck Identifications

staffs and tools) to the bottleneck machines so as to improve the system performance

more effectively. Specifically, the state bottleneck is a critical indication for preven-

tative maintenance. For example, the case 4 in Table 1 shows that operating state 4

in machine 1 is the S-BN. It implies that the system production rate has the largest

improvement if the machine can stay in this state longer by preventative mainte-

nance. Therefore, practitioners can consider improving machine 1s condition when it

reaches to state 4. In other words, the bottleneck operating state can be treated as a
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Figure 3.9: Accuracy of Bottleneck Identifications

threshold policy for preventative maintenance. The practitioners can further consider

the maintenance plans for the best system improvements.

3.5 Conclusions and Future Work

In this chapter, a serial production system with machine condition degradation

process is introduced and analyzed. Analytical formulas and approximation algo-

rithms are developed to quantify system’s overall performance considering machine

condition degradation. As validated by simulation experiments, the developed meth-

ods provide an robust way to evaluate system performance. In addition, structural

properties are provided to investigate the effect of machine degradation parameters

on system performance. Finally, three types of bottlenecks are presented and their

associated indicators and arrow assignment rules are developed to find the machine

and the state that have the most influence on overall system performance. Such

methods can provide practitioners comprehensive and quantitative tools to uncover

the dynamics of serial production systems with machine condition degradation.
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To extend the research, the following topics can be addressed in future work.

• Extend the model to more complicated manufacturing systems, such as assem-

bly systems and parallel machine networks;

• Generalize the machine degradation model, such as Wiener degradation process

and the hidden Markov model;

• Investigate quality issues associated with the degradation process to evaluate

the performance of a production system;

• Develop real-time decision making and control strategies to improve the system

performance;

• Incorporate the on-line data thread into the model to study the transient per-

formance of production systems with machine condition degradation.
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Chapter 4

FLEXIBLE PREVENTATIVE MAINTENANCE FOR SERIAL PRODUCTION

LINES WITH MULTI-STAGE DEGRADING MACHINES AND FINITE

BUFFERS

In this chapter, a serial production system is considered and illustrated in Figure

5.1. The circles and the rectangles represent the machines and buffers respectively.

The flow of the working parts within the manufacturing line is directed using arrows.

For each machine, a specific degradation model is followed, with transition proba-

bilities depending on the operating states. The following assumptions describe the

characteristics of the machines, buffers, and their interactions.

Figure 4.1: Illustration of a Serial Production Line

1. There are in total M machines in the line. The processing time, or the cycle

time for each machine is identical (sychrounous production lines). So the time

could be slotted by the processing time.

2. The capacity of the buffer Bk is finite, denoted as Nk.

3. Machine mk is blocked if it is up and the buffer Bk is full at the beginning of a

time slot, k = 1, 2, · · · ,M − 1. The last machine mM will never be blocked.
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4. Machine mk is starved if it is up and the buffer Bk is empty at the beginning

of a time slot, k = 2, 3, · · · ,M . The first machine m1 will never be starved.

5. There are Wk operating states for machine k, k = 1, . . . ,M . The states are

ordered from the best operating state 1 to the worst one Wk. Th machine state

changes at the end of each cycle. The degradation processes among different

machines are independent.

6. For any operating state, a machine can produce one part in each cycle. The

transition rules among the machine states are as follows (shown in Figure 4.2). If

no maintenance is performed (as the solid arrow shows), for a machine working

at state i, i = 1, 2, · · · ,Wk and k = 1, . . . ,M , it can remain at the same state

i, transfer to the next worse state i + 1, or break down to state iF during

the next cycle with probabilities pi,i, pi,i+1, and pi,iF , respectively. The failure

probability is assmued to be higher for a machine working in worse states, i.e.,

pi+1,(i+1)F ≥ pi,iF , i = 1, 2, . . . ,Wk − 1 and k = 1, . . . ,M .

Figure 4.2: Machine State Transition Diagram with PM Actions

49



7. Given that PM is not performed and machine mk is in state {1, 2, . . . ,Wk− 1},

k = 1, . . . ,M , a random failure may occur. Such failure is treated as minor

failure, without influencing the machine degradation stage. At this time, a

minimal repair is considered to handle the failure, restoring the machine state

right to the state it fails from. Such minimal repair is independent of machine

state and one unit time is required for any minimal repair.

Remark: Minimal repair is commonly observed in multi-component machines,

such as milling machines, drilling machines, and grinding machines (Ja et al.

(2001)). The random failures in the assumption refers to some minor failures

that are independent of the machine degradation stages. For example, in a

drilling machine, the burn-out of a fuse or the falling of the drill can cause

the stop of a machine. However, these failures may not necessarily lead to full

maintenance service (i.e., replace the drill with a brand-new one). Instead, in

practice, engineers can replace the fuse or install the drill back to the machine

in short time and restart the machine. Such an operation has minimal impact

on the degradation level of the machine.

8. When machine mk fails from state Wk, k = 1, . . . ,M , the failure is considered

critical and full maintenance (i.e., repair) should be performed. At this time,

the machine will be fully repaired and restored to the best operating state (state

1, or the “brand new” state). The repairing probability for machine mk is pwF
k ,1

.

9. When machine mk is in any imperfect operating state (2, . . . ,Wk) at the begin-

ning of a time slot, the decision maker can choose whether to perform PM or

not (as the dashed lines suggest in Figure 4.2).

10. If PM is performed, then imperfect PM is allowed to recovery the machine state

to any better operating states. The transition probabilities for PM are state
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dependent, with notation pPMi,j representing that a machine is recovered to

state j when it is under PM state at state PMi. The PM recovery probabilities

is assumed to be lower for better operating states. For example, performing PM

from state 4, the recovering probability to state 3 is higher than that to state

1.

Under the above assumptions, the problem to be studied in this chapter is:

• Provide an analytical approach for performance evaluation and PM decision

making for the two machine and one buffer systems;

• Investigate an effective and computationally efficient algorithm for developing

the optimal PM policies for general serial production systems.

Solutions to these problems are developed in the following sections.

4.1 A Markov Decision Process Approach for a 2M1B System

The research starts first with the simplest system with two machines and one buffer

(2M1B). Based on the system descriptions illustrated above, the optimal maintenance

scheduling problem can be formulated as a Markov decision process for a 2M1B

system. The system states, action spaces, transition probabilities, and rewards are

defined and modeled as follows.

4.1.1 State and Action Space

A 2M1B system can be modeled as a discrete time Markov chain based on the

assumptions. The state space of the system composes contains the buffer level and the

status of both individual machines. The states of the system at time t can be expressed

as S(t) = {h(t), S1(t), S2(t)}, where S1(t) is the state of the first machine, S2(t) is
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the state of the second machine, and h(t) denotes the buffer level. Through this way,

the state variation of both machines and the buffer are tracked and considered for

the PM actions.

The structure of the single machine state Sk(t) for machine mk, k = 1, 2 can be

further categorized into three types: operating states, failure states, and PM states.

For operating states, there are two components: K1 = {1, 2, . . . , (Wk−1)} andWk. K1

is a set of intermediate operating states characterizing a machine’s degradation stage,

with further degradation to worse operating states. State Wk is the boundary state

for the degradation process and no further degradation is allowed beyond this state.

Similarly, for the failure states, there are two corresponding components matching

with the operating states, K2 = {1F , 2F , . . . , (Wk − 1)F} and W F
k . They represent

the two types of failure modes and the corresponding repairing approaches. State

jF in K2 is the state that a machine fails from state j and minimal repair will

be performed. State W F
k means that the machine fails and major repair has to

be performed at that state. For the preventative maintenance, set Γk denotes all

possible combinations of the maintenance actions for machine mk. When the machine

approaches to state i, i ∈ {2, . . . ,Wk}, the maintenance can recovers the machine to

state j, j ∈ {1, . . . , i− 1}. Since PM could recover a machine to any better operating

states, the total number of PM states is Wk(Wk−1)
2

. Therefore, the set of machine

states for machine k can be expressed as Sk(t) = {K1, K2,Wk,Γk,W
F
k }.

The action space A is a collection of all possible PM actions given the system state

S(t). PM actions refer to all the possible actions to recover the machine conditions.

In this work, each action will match a state in PM set of S(t) because PM set denotes

the transition results of PM actions. Moreover, for both machines, since they act

independently (following the assumptions), there are two independent action sets to

control the behavior of each individual machine respectively. Define ωk(S(t)) as the
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decision variable for machine mk under the system state S(t), then the PM actions

can be expressed in the equation as follows:

ωk(S(t)) =


j, if PM recovers state Sk(t) to j,

0, do nothing.

(4.1)

Notice that since the system state collects the behaviors of both machines and the

buffer level, the actions of a single machine is determined by not only the state of the

machine itself, but also the buffer level and the state of the other machine.

Let (ωi1, ωi2) denote action i for the entire system, which is the combination of

actions on two individual machines. The collection of all the actions on the system

is the set:

A = {(ω11, ω12), (ω21, ω22), . . .}.

Notice that the number of all the possible actions is finite, since it is the permutation

of all the possible actions on both machines, which is also finite. Besides, the number

of all the possible actions is also state dependent.

4.1.2 Transition Probabilities Matrix and rewards

The state transition probability matrix, denoted as B, contains all the system state

and the corresponding transition probabilities. In order to construct the matrix, a

function, η(h, S1, S2), representing the state number of the system containing two

machines and one buffer, is firstly assigned to match the location of system state

{h, S1, S2}. To determine the transition of the system state, the transition dynamics

for both the machine states and buffer levels should be considered. Note that given the

current system state S(t) at time t, the transition of the buffer level is deterministic.

Therefore, the transition rules for buffer level can be determined based on machine

states and summarized in Table 4.1. ”U” represents that the machine is operating,
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h(t) 0 h N S1(t),S2(t) φ(h(t), h(t+ 1))

h(t+ 1)

1 h+ 1 N U, F/PM

1
1 h N U, U

0 h− 1 N-1 F/PM, U

0 h N F/PM, F/PM

Other values 0

Table 4.1: Buffer Level Transition under Different Machine State Combinations

”F” means the machine is in failure, and ”PM” means that the machine is under

maintenance. The first row lists all possible values of the buffer level at time t: 0, N ,

or a value h in between. Such classification considers possible blockage and starvation

when the buffer level is at the boundary. Then, at time (t+1), the transition of buffer

level is determined by machine states S1(t) and S2(t). For example, in row 2, machine

1 is in operating states and machine 2 is not. Then the buffer level at time (t + 1)

will be (h + 1) if h(t) < N because machine 1 will add a part while machine 2 will

not take a part from the buffer. However, if h(t) = N , machine 1 will be blocked,

thus the buffer level remains N in the next period. Following the similar idea, all

the scenarios in Table 2 can be determined. Further, in the last column, a indicating

φ function is assigned. If the transition from h(t) to h(t + 1) exceeds the situation

beyond the four situations above the last row, then the φ value will be zero.

In terms of the machine states transitions, the two machines can be considered

separately according to the independence assumption. Since PM could influence

machine state transitions, an indicator function is introduces first for machine mk to

check if PM is performed at time t:
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Ik(S(t)) =


1, if ωk(S(t)) > 0, i.e., PM is performed,

0, otherwise.

(4.2)

Generally, when maintenance is performed under the system, the indicating function

value will be one, forcing the system state to transfer to the corresponding main-

tenance state. If no maintenance is needed, then the value is zero and the system

degrades in normal path. For a single machine mk, the transition probabilities can

be calculated as follows:

Pr[Sk(t+ 1) = v|Sk(t) = u] =



pu,v(1− Ik(S(t))) u ∈ K1 and v ∈ {u, u+ 1, uF},

pu,vIk(S(t)), u ∈ K1 and v = Γk,

pu,vIk(S(t)) u ∈ Γk, v = ωk(S(t)),

1 u ∈ K2, v
F = u,

pu,v u ∈ {W,W F}, v ∈ {1,W F},

0, Otherwise.

(4.3)

For example, when the machine state u at time t is in the operating state set K1

(u ∈ K1), then the transition probability that the machine will be in same state u is

pu,u(1− Ik(S(t))). The indicator function ensures that if PM is performed, then the

machine will be sent for PM and will not be retained in the same state. This example

explains the first line on the right-hand side of Equation (4). The rest of the equation

is the mathematical expression obtained using the rules described in assumptions 6 -

8 in Section 3.
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Therefore, the transition matrix B can be built and calculated as follows:

B(η(h, S1, S2), η(h′, S ′1, S
′
2)) = Pr[S1(t+ 1) = S ′1|S1(t) = S1]×

Pr[S2(t+ 1) = S ′2|S2(t) = S2]× φ(h, h′).

(4.4)

For the reward function, the purpose is to find the output of the system under

each state. Based on the assumptions given in Section 2, the system produces a part

at the end of slot t if and only if the system state S(t) meets with three requirements:

1) m2 is in any operating state; 2) the buffer is not empty (h(t) > 0) to ensure no

starvation; 3) No PM is performed in time slot t under action i (Ii2(S(t)) = 0) to

ensure the machine can work normally during the period. Therefore, let C(S(t))

denote the reward function, then it can be expressed as follows:

C(S(t)) =


1, if S2(t) ∈ K1 ∪W2, h(t) > 0, ωik(S(t)) = 0,

0, otherwise,

(4.5)

which represents that the reward will be 1 for each part produced. If no part is

produced, the reward for the state is 0.

4.1.3 Solution Method

The action space includes all the decisions to determine whether a machine will

perform PM when it is in an operating state state given the state of the other machine

and the current buffer level. Let 0 < λ < 1 be a discount factor, and let Vt(S1, S2, h)

denote the expected total achievable reward for the period t to the infinite horizon

when the system in state (S1, S2, h) at time t, then

Vt(S1, S2, h) = C1(S1, S2, h)+λ
∑

(S′1,S
′
2,h
′)∈S,I

Pr(S ′1, S
′
2, h
′|S1, S2, h, I)E[Vt+1(S ′1, S

′
2, h
′)].

(4.6)
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On the right hand side of Equation (4.6), it explicitly describes the two components

of the reward: the reward for the current state at time t, and the discounted reward

of reaching all the possible system states starting from the next time period, weighted

by the corresponding transition probabilities. Then the optimal policies starting from

time 0 can be calculated by using the value iteration approach (Puterman (2005)).

Following the discussion in Sections 4.1 and 4.2, a generator T P1 can be defined

to express the processes of PM policy generation for the two machine systems as

follows:

[I1, I2] = T P1(Q1,Q2,PM1,PM2, N), (4.7)

where I1, I2 are obtained through Equations (1) − (7). The input of the generators

are the machine state transition matrices Q1,Q2, PM recovery matrices PM1,PM2,

and the buffer level N . The output is the PM policies for both machines.

4.1.4 An Illustrative Example

The example considered is a 2M1B system, with the buffer capacity N = 3. The

state transition matrices and preventative maintenance recovery matrices for both

machines are shown in Table 4.2. For the state transition matrix, the rows represent

the operating states and the major failure state (W F ). The columns represents the

operating states and the last column represents that the system state moves from the

state labeled in the row to the corresponding failure states. For example, Q1(1,4) =

0.05 represents that the probability that machine 1 fails from state 1 to the minor

failure state 1F is 0.05. Q1(4,4) = 0.9 represents the probability that the system

remains in the major failure state 3F (transit from 3F to 3F ) is 0.9.

By solving the MDP problem introduced above, one can obtain the optimal policy.

The structure of the optimal PM policy is shown in Table 4.3 for both machines
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State Transition Matrix PM Recovery Matrix

Q1 =



1 2 3 FS

1 0.8 0.15 0 0.05

2 0 0.7 0.2 0.1

3 0 0 0.6 0.4

3F 0.1 0 0 0.9


PM1 =



1 2 3

1 0 0 0

2 0.9 0 0

3 0.75 0.8 0



Q2 =



1 2 3 FS

1 0.9 0.05 0 0.05

2 0 0.8 0.1 0.1

3 0 0 0.7 0.3

3F 0.1 0 0 0.9


PM2 =



1 2 3

1 0 0 0

2 0.6 0 0

3 0.6 0.75 0



Table 4.2: Machine State Transition Matrix and Preventative Maintenance Recovery

Matrix

under different buffer levels. The rows and columns represent the state of m1 and

m2 respectively. The cells with bracketed numbers indicates that PM policies are

performed under the associated states. For example, (1, 1) means that both machines

will perform PM to recover the machine states to 1. If a number is only shown on the

first of the paired numbers, with a star (*) on the second, then PM is performed on

machine m1 and no PM is performed on the second machine. Similarly, (∗, 1) means

that PM is performed only on machine m2. The states with blank mean that no PM

is performed on either machine.

The results indicate that the optimal policy varies under different buffer levels.

When the buffer level is low, for example, h = 0 or h = 1, m2 tends to perform PM
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Table 4.3: The Optimal Policy for the Illustrative Example

when it is in the imperfect operating states. The reason is that at that time, m2 is

more likely to be starved and few parts are produced. Therefore, the policy suggests

to perform PM without having heavy influence on the system performance. On the

other hand, when the buffer level is high, i.e., h = 2 or h = 3, m2 tends to perform

less PM when it is in the imperfect operating states. Especially comparing with the

case when h = 2, m2 will not perform PM when it is state 2. The higher buffer level

”forces” m2 to work longer to produce more parts.

In addition, the state to which the PM recovers the machine is determined by the

PM probabilities. In this illustrative case, specifically, PM is performed under state

3 for both machines. The reason is that the reward of performing PM, based on the

MDP algorithm, is more than the reward of possible failure and recovery from state

3. Furthermore, the algorithm compares the recovery path from state 3 to state 2
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and the one from state 3 to state 1 and decides to recovery the system operating

state to 2. It can be shown that the condition based maintenance policy proposed in

this work further considers the benefit of imperfect PM to all the possible operating

states and provides the best action.

Notice that when both machines are under unhealthy operating states, i.e., oper-

ating state 3, the optimal policy suggests both machines should perform PM at the

same time, regardless of the buffer level. The reason is that the influence of inferior

machine operating states is more severe than the variation of buffer level such that

PM is always needed. From Table 4.2, it can be observed that the recovering prob-

ability is much smaller for system failure than adopting PM. For example, for m2,

the repairing probability is 0.1 while performing PM is at least 0.6. Therefore, the

average repairing time, using Geometric model, is 10, while the average PM time is

1.67. Given the probability that the machine will fail in the next period is 0.3, the

expected non-operating time without PM is 3, which is higher than the average time

that PM will take. Similar situations also apply to m1. Therefore, the policy suggests

that both machines should perform PM, even though with no parts produced for a

short time, to benefit the system performance from the long run.

4.2 An Aggregation-based Recursive Approach for Longer Lines

4.2.1 Machine and State Aggregation for 2M1B Systems

In this section, using the 2M1B system as the building block and the result can be

extended to the longer lines. Specifically, the machine states and buffer information

within the first 2M1B system are considered to find the optimal PM policies for

the two machine cases, by applying the approach developed in Section 4.1. Then,

all the components within the 2M1B system are aggregated into one single virtual
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machine. It will further form a 2M1B system with the immediate downstream buffer

and machine, and the similar decision model and aggregation approach will be applied.

The same method can be repeated until all the machines and buffers are visited.

Using this approach can significantly reduce the total number of system states and

the computation overhead as well.

To facilitate such an aggregation approach, state aggregation will be applied. The

idea of the system state aggregation is that one operating state and one repairing state,

denoted as U and F respectively, are used to represent the aggregated performance of

the 2M1B block, instead of using the original complicated model. Such an approach is

applicable because once the PM policies are obtained, all the state transition paths are

fixed and the probabilities are completely known. As a result of state aggregation,

a geometric reliability model is essentially applicable to model the 2M1B system

with machine condition degradation processes. The status of each machine can be

represented using a set S = {U, F}, where U is the aggregated system operating state

and F is the aggregated repairing state. A probability p thereafter will represent the

aggregated failure probability and r represent the repairing probability.

Using such aggregation, the 2M1B system can be modeled using geometric relia-

bility models with transition matrix Qa expressed as follows:

Qa =

1− p p

r 1− r

 .

An illustration for the procedure can be found in Figure 4.3.

Following the notation in Section 4.1, transition probabilities p, r and the blockage

probability for the first machine Bl1 can be calculated as follows:
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Figure 4.3: Aggregate a 2M1B Model into a Single Geometric Model

p =

∑
u1

∑
v1

x(v1) ∗B(v1, u1)∑
v1

x(v1)
,

r =

∑
u2

∑
v2

x(v2) ∗B(v2, u2)∑
v2

x(v2)
,

Bl1 =
∑
u3

∑
v3

x(v3) ∗B(v3, u3),

(4.8)

u1 = η(·, ·, S2), S2 ∈ K2 ∪ PM ∪W F ; v1 = η(·, ·, S2), S2 ∈ K1 ∪Wk;

u2 = η(·, ·, S2), S2 ∈ K1 ∪Wk; v2 = η(·, ·, S2), S2 ∈ K2 ∪ PM ∪W F ;

u3 = η(·, ·, S2), S2 ∈ K2 ∪ PM ∪W F ; v3 = η(h, ·, S2), S2 ∈ K1 ∪Wk;h = N,

(4.9)

where η(h, S1, S2) is the state number of the systems when machine m1 in state S1, m2

in state S2, the buffer level is h and x(·) represents the steady state probability when

the two machines system is in the given state, the value of which can be obtained

immediately by solving balance equations. The matrix B, defined in Equation (4.4),

is the system state transition matrix. The transition probability p in matrix Qa is

obtained by adding up all the conditional probabilities that the system will fail to
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produce a part in the next cycle given that the system is producing a part in the

current cycle. Similarly, the transition probability r can be found out by summing

up all the probabilities that the system fails in the current cycle and will be repaired

in the next cycle. The blockage probability is expressed as the summation of the

probabilities that machine 1 will be operating, machine 2 will fail and the buffer is

full in the next cycle.

Aggregating a 2M1B system into a single virtual unit enables us to continue finding

the PM policies for the adjacent machine in the serial production line. Through

moving the block forward, more machines are aggregated into the single virtual units

and the transition matrices should be determined. Initially, a block is established

on machine m1, machine m2 and buffer B1. Given the policies I1, I2, together with

the machine state transition matrices Q1,Q2, PM recovery matrices PM1,PM2,

and buffer size N1, the transition matrix Qa
2 for the virtual unit can be obtained,

representing the first block, labeled as mv
2. The performance of such virtual unit

equals to the performance of the 2M1B subsystem operating under the optimal PM

policy. Then, this virtual unit is used together with the adjacent buffer and machine

m3 to form a new 2M1B system and use the similar MDP method to find the PM

policies for machine m3. Therefore, for a machine i, i ≥ 3, given the PM policy

denoted as Ii, the transition matrix for the virtual unit mv
i can be obtained by using

parameters Qa
i−1 from the virtual machine mv

i−1; Qi,PMi from machine mi; and

buffer information Ni−1. Besides, the blockage probability Bli−1 for the virtual unit

mv
i−1 can also be calculated.

Using the procedure defined above, generators AG1 and AG2 can be defined for

the virtual machine generating process, where the Qa
i matrix and blockage probability

Bli−1 for the virtual block mv
i are generated using the results from Equation (4.8):
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
Qa

2 = AG1(Q1,Q2,PM1,PM2, I1, I2, N1),

[Qa
i , Bli−1] = AG2(Qa

i−1,Qi, PMi, Ii, Ni−1), i ≥ 3.

(4.10)

For the virtual unit mv
i , there is only one operating and one failure state. In

practice, these states refer to the output of the aggregated subsystem containing

m1, . . . ,mi−1. For example, the event that a part is produced and comes out of

machine mi−1 indicates that the virtual unit mv
i is in the operating state. Such

information can be readily obtained through the sensors monitoring the production

flows.

4.2.2 Generating Initial Policies Based on Aggregation

The machine and state aggregation allows us to simplify the system and reduce

the computation overhead to generate the PM policies. By applying the approach

for the 2M1B system as discussed in Section 4.1, PM policies for all the machines

therefore can be determined through repeating the aggregation procedure along the

serial line. For the first subsystem with machines m1, m2 and buffer B1, the approach

in Section 4.1 is followed to obtain PM policies I1 and I2 for machine m1 and m2 using

the predefined transition matrices and PM recovery matrices Q1,Q2,PM1,PM2,

and N1. Furthermore, for subsystems containing a virtual unit, no PM action is

considered on the virtual unit since it already incorporates the optimal PM decisions

from the aggregation procedure. The optimal PM policy is thus developed only for

the original machines within the subsystem. However, since the subsystem with

aggregated virtual unit has different states and actions, the approach in Section 4.1

needs to be modified for the 2M1B system with the first machine being a virtual one

and the second machine kept the same. Specifically, given the transition matrix Qa
i−1

for the virtual unit mv
i , Qi,PMi from machine mi, and buffer capacity Ni−1, the PM
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policy Ii for machine i, i ≥ 3, can be obtained using the similar solution approach as

illustrated in Section 4.1.

Following these procedures, together with generator T P1, another generator T P2

can be defined for the PM policy generating process using machines and the aggre-

gated virtual unit, where the PM policy Ii for machine mi are generated using the

results from Equation (4.8):


[I1, I2] = T P1(Q1,Q2,PM1,PM2, N1) ,

Ii = T P2(Qa
i−1,Qi,PMi, Ni−1), i ≥ 3 .

(4.11)

Figure 4.4: Demonstration on Updating PM Policies Using Blockage Probability

An illustrative example explaining how the algorithm generates initial policies for

all the machines can be found in Figure 4.4, with the following steps:
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• In step 1 , policies I1 and I2 are generated for machine m1 and m2 considering

only the two machine system, with T P1(Q1,Q2,PM1,PM2, N1). Then the

first building block is merged to obtain the virtual machine mv
2, with transition

matrix Qa
2, using the generator AG1(Q1,Q2,PM1,PM2, I1, I2, N1).

• In step 2 , using the two machine approach on mv
2, B2, and m3, the PM policy

for m3 is obtained, denoted as I3(j) with generator T P2(Qa
2,Q3,PM3, N2).

• Then such procedures are repeated, but using the generator AG2, to obtain the

virtual machine mv
3 with transition matrix Qa

3 and blockage probability Bl2.

The PM policy for m4 is obtained as denoted in step 3 .

• For the last machine, the policy I5 is found out for machine m5 in step 4 and

the blockage probability for m4 is calculated as well.

For machines m1 and m2, since no state aggregation is applied, the PM policy enumer-

ates all the combinations of machine operating states for both machines. Therefore,

for machine m2, the PM policy is related to the state of machine m1. For the ma-

chines afterwards, the PM policy contains all the state information for the machine

in the block alone, together with the state of the virtual unit in the upstream. Thus,

for machine mi, i ≥ 3, its PM policy is related to the output of the subsystems from

machine m1, . . . ,mi−1, not the state of machine mi−1 alone. For example, a sample

policy for m5 therefore can be read as “machine m5 will perform PM back to state 1

if it is under operating state 4, buffer 2 has no inventory, and there is no part coming

out from subsystem m1, . . . ,m4 at the beginning of a time slot”. In this way, the

approach considers the influence of all the machines ahead, including but not limited

to the immediate upstream machine.
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4.2.3 Updating Transition Probabilities Considering Buffer Blockage

By aggregating states and machines and applying the results from 2M1B systems,

a set of initial PM policies for all the machines in the production line can be obtained.

However, since only the forward aggregation is applied, PM policies are generated

based on the assumptions that there is no blockage from the downstream system,

which is practically not true. As a result, the generated PM policies may not be

optimal. Therefore, an updating procedure is developed to refine the initial policy by

incorporating the influence from blockage.

The idea is to modify a machine’s state transition probabilities using its blockage

probability. Note that when a machine is blocked, no parts will be produced; and

when the blockage is eliminated, the machine will get back to the same operating

state when the blockage occurs. Therefore, the failure probability is revised for state

k on machine mi, i = 2, · · · ,M − 1 with transition matrix Qi using the equations as

follows:

p′k,k = pk,k(1−Bli),

p′k,k+1 = pk,k+1,

p′k,kF = 1− p′k,k − p′k,k+1.

(4.12)

Referring to Figure 4.2, the probability that a machine is in state k, pk,k is revised

into p′k,k, through multiplying by the probability that the machine is not blocked.

The probability that the machine will be transferred to the next operating state in

the next cycle, or pk,k+1, remains the same. The adjusted machine failure probability,

p′k,kF is then calculated using p′k,kF = 1− p′k,k − pk,k+1 to ensure that the probability

matrix is valid (the summation of all the transition probabilities out of state k equals

to one).
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Notice that no adjustment is needed for machine m1 and machine mM . The

reason is that for machine m1, the blockage effect is automatically considered when

generating PM policies together with machine m2 in the first building block. For

machine mM , it is never blocked according to the assumptions. In other words,

Qv
1 = Q1 and Qv

M = QM. Using such a procedure, a function BK is defined for

the original Qi matrix for machine mi, given the blockage probability Bli, where the

adjusted transition matrix Qv
i is generated using the results from Equation (4.12):

Qv
i = BK(Qi, Bli), i ≥ 2. (4.13)

4.2.4 A Recursive Approach

Following the above approach, the influence of blockage could be effectively incor-

porated into the PM decision making in isolated machines. However, these blockage

probabilities are initially calculated based on the PM policy with the assumption of

no blockage on the second machine. The PM policy may be further changed when

the blockage is incorporated, resulting new values of the blockage probability. There-

fore, an iterative approach should be pursued to update the PM policy and blockage

probability. Eventually the values of the blockage probability and optimal PM policy

will converge to a unique solution. The illustration of such an iteration algorithm is

shown in Figure 4.5.

Initially, there is no blockage information available and thus the value of the initial

blockage is set to be zero, as shown in line 2. The iteration is numbered using j and

for all the notations defined in Section 5.1− 5.3, the meanings are the same with one

additional bracket script added to the right to indicate the iteration number. For

example, Bl2(j) has the same meaning with the notation Bl2 defined in Section 5.1,

but it represents the results for iteration j. For machine m2, the state transition
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Input : Qi,PMi for all machine mi, buffer level N, threshold ε

Output: PM policies matrix I

1 % Initial conditions

2 Bl(0) = zeros(1,M); j = 1; Check = FALSE;

3 while Check = FALSE do

4 Qv
2(j) = BK(Q2, Bl2(j − 1));

5 [I1(j), I2(j)]= T P1(Q1,Q
v
2(j),PM1,PM2, N1);

6 Qa
2(j)= AG1(Q1,Q

v
2(j),PM1,PM2, I1(j), I2(j), N1);

7 BlM(j) = 0;

8 for i = 3 to M do

9 Qv
i (j) = BK(Qi, Bli(j − 1));

10 Ii(j)= T P2(Qa
i−1(j),Qv

i (j),PMi, Ni−1);

11 [Qa
i (j), Bli−1(j)]= AG2(Qa

i−1(j),Qv
i (j),PMi, Ii(j), Ni−1);

12 end

13 % Check if stopping criteria is met

14 Check = TRUE;

15 for i = 2 to M do

16 if Bli(j)−Bli(j − 1) > ε then

17 Check = FALSE;

18 j = j + 1;

19 break;

20 end

21 end

22 end

Figure 4.5: Algorithms to Generate PM Policies for Serial Production Systems

69



matrix is updated first using operator BK in line 4. Then PM policies will be found

in line 5, with the adjusted matrix obtained in line 4. Then the building block is

aggregated into a single virtual unit in line 6. Then the block moves forward to ma-

chine m3 and other machines onward, following the similar idea as used in the initial

block. In the algorithm, line 9−11 indicate the procedure to generate policies for ma-

chine m3, . . . ,mM . Besides, since the last machine will never be blocked, the blockage

probability is manually set to zero for the last machine mM in line 7. Line 15 − 21

discuss the stopping criteria for the algorithm. If for all the machines, the change

of the blockage probability between two iterations is smaller than a predetermined

threshold, then the algorithm can stop; otherwise, new iterations are needed.

4.2.5 Numerical Experiments

In this subsection, two types of experiments are conducted. One illustrative ex-

ample is provided first, followed by the general numerical experiments.

A case with six machines is studied and the structure of the optimal policies are

obtained using the proposed algorithm. An illustrative picture can be found in Figure

4.6. The sensors, labeled as κ’s, are installed to detect if a part is coming out of a

machine in real time. All the parameters describing the machine degradation and

PM behaviors can be found in Table 4.4 and 4.5 . Using the proposed approach, the

PM policy for each machine can be effectively obtained, as illustrated in Table 4.6.

The production rate for the system without PM policies is 0.52, comparing to the

PM-implemented system, with the production rate of 0.62. Thus the suggested PM

policy contributes to an 19% improvement on system production performance.

In terms of the structure of the PM policies, first, for machine m1 and m2, the

format and the structure is the same as the two machines and one buffer system.

Since they are the first two machines, there is no state aggregation and thus the
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State Transition Matrix PM Recovery Matrix

Q1 =



1 2 3 FS

1 0.32 0.66 0 0.02

2 0 0.14 0.55 0.31

3 0 0 0.62 0.38

3F 0.23 0 0 0.77


PM1 =



1 2 3

1 0 0 0

2 0.77 0 0

3 0.58 0.69 0



Q2 =



1 2 3 FS

1 0.58 0.33 0 0.09

2 0 0.42 0.44 0.14

3 0 0 0.81 0.19

3F 0.34 0 0 0.66


PM2 =



1 2 3

1 0 0 0

2 0.7 0 0

3 0.63 0.92 0



Q3 =



1 2 3 FS

1 0.27 0.53 0 0.2

2 0 0.41 0.31 0.28

3 0 0 0.61 0.39

3F 0.82 0 0 0.18


PM3 =



1 2 3

1 0 0 0

2 0.66 0 0

3 0.66 0.92 0



Table 4.4: Machine State Transition Matrix and Preventative Maintenance Recovery

Matrix (Machine 1− 3)

policies are specified to each operating state. In this case, the structure of the PM

policies for m1 and m2 is similar to the one introduced for the two-machine case

in Table 4.3 and the entire policy is not listed out part of due to space limit. For

the machines afterwards, the PM policies can only separate all the operating states

for the certain machine and the sensor information. For example, the first line PM
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of machine m3 is (h2 = 1, S2′ = 0, S3 = 2, I3(S) = 1). This can be interpreted

as ”Perform PM on machine m3 and recover machine state to 1 when there is one

spare part in buffer h2, no parting coming from machine m2, and machine m3 is in

state 2”. For the PM policies of machine m3 to m6, it can be observed that PM

are performed when the machine is inferior operating states, and the buffer level is

low. For example, for machine m3, PM are performed when it is in operating state

2 or 3 and the buffer level is h2 = 1. Furthermore, the algorithm compares the path

to conduct the PM, whether recover the machine state from state 3 to 2 or from 3

to state 1, and decides to recover the system operating state to 2 considering the

parameters of the aggregated subsystems ahead of the machine. It can be shown

that the condition based maintenance policy proposed in this work further considers

the benefit of imperfect PM to all the possible operating states and provide the best

action in the blocked two machines and one buffer system.

Besides, immediately following each machine, there is a sensor collecting the infor-

mation whether there is a part produced at the end of a cycle time. The information

provided by the sensors can facilitate actualizing the proposed policies in the real

production practice. For example, when there is a part coming out of machine 3,

sensor κ will notice and send the information to decision makers instantly.

Figure 4.6: An Illustrative Production Lines with Six Machines

Furthermore, the blockage updates for machine 2 to 5 are shown in Figure 4.7.

In the first iteration, no blockage is considered and thus the blockage probabilities
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for all the machines are zero. For iteration 2, the blockage probability values for all

the machines are obtained and used to revise the model and update the initial policy.

For example, the blockage probability for machine 2 during iteration 2 is 0.0629. It

is further updated based on the new model and PM policy during iteration 3 and

remains unchanged in the following iterations. From Figure 4.7, it can be observed

that the iterative procedure converges typically within five iterations.
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Figure 4.7: Machine Blockage Updates under Each Iteration

To validate the analytical performance results of the optimal policy generated by

the MDP, 100 sets of experiments have been conducted. The system parameters are

randomly generated using Procedure 5:

Procedure 5

1. Set up machine numbers in the system M ∈ {3, . . . , 10}.

2. Determine buffer level Bi ∈ {1, . . . , 6}, i = 1, . . . ,M − 1.

3. Randomly select operating state numbers for each machine Wi ∈ {2, . . . , 5}, for

i = 1, . . . ,M .

4. Generate the state transition matrix Qi for all machines, i = 1, . . . ,M .
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5. Generate the PM recovery matrix PMi for all machines, i = 1, . . . ,M .

6. For each simulation case, using the proposed algorithm to find the optimal PM

policies, and apply the policies into the simulation. The simulation is conducted

with replication number of 50 and length of 20,000 cycles per replication.

The performance measurement adopted, denoted as δgen, is the relative error on

production performance of the proposed method comparing with the simulation re-

sults:

δgen =
PRsim − P̂R

P̂R
× 100%,

where PRsim is the simulation result and P̂R is the production performance provided

by the proposed method. In Table 4.7, the numerical results of 30 cases are provided.

It can be found that on average, the deviation of the production performance from

the model is within 15% of that from the simulation results. For the cases with large

percentage deviation, for example in Case 10, the absolute deviation of the two results

is typically small, i.e., within 0.1. These results show that the proposed method is

valid.
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State Transition Matrix PM Recovery Matrix

Q4 =



1 2 3 4 FS

1 0.03 0.94 0 0 0.03

2 0 0.21 0.64 0 0.15

3 0 0 0.05 0.73 0.22

4 0 0 0 0.66 0.34

4F 0.48 0 0 0 0.52


PM4 =



1 2 3 4

1 0 0 0 0

2 0.95 0 0 0

3 0.98 0.99 0 0

4 0.88 0.9 0.97 0



Q5 =



1 2 3 4 FS

1 0.32 0.66 0 0 0.02

2 0 0.22 0.63 0 0.14

3 0 0 0.32 0.5 0.18

4 0 0 0 0.61 0.39

4F 0.55 0 0 0 0.45


PM5 =



1 2 3 4

1 0 0 0 0

2 0.95 0 0 0

3 0.84 0.84 0 0

4 0.63 0.73 0.92 0



Q6 =



1 2 3 4 FS

1 0.45 0.46 0 0 0.09

2 0 0.74 0.13 0 0.13

3 0 0 0.05 0.59 0.36

4 0 0 0 0.45 0.55

4F 0.36 0 0 0 0.64


PM6 =



1 2 3 4

1 0 0 0 0

2 0.95 0 0 0

3 0.84 0.84 0 0

4 0.63 0.73 0.92 0



Table 4.5: Machine State Transition Matrix and Preventative Maintenance Recovery

Matrix (Machine 4− 6)
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S
ω1(S)

h1 S1 S2

m1

Policy

3 3 1 1

3 3F 2 1

4 3 2 1

4 3 3 1

4 3 3F 1

. . . . . .

S
ω2(S)

h1 S1 S2

m2

Policy

0 3 3 2

0 2F 2 1

0 2F 3 2

0 3F 2 1

0 3F 3 2

. . . . . .

S
ω3(S)

h2 S2′ S3

m3

Policy

1 0 2 1

1 0 3 2

S
ω4(S)

h3 S3′ S4

m4

Policy

0 0 4 1

1 0 2 1

1 0 3 1

1 0 4 1

S
ω5(S)

h4 S4′ S4

m5

Policy

1 0 2 1

1 0 3 1

1 0 4 1

S
ω6(S)

h5 S5′ S6

m6

Policy

0 1 3 1

0 1 4 2

1 0 2 1

1 0 3 1

1 0 4 2

Table 4.6: Structural Policy for the Illustrative Example

76



C
as
e

P̂
R

P
R
si
m

δ g
en

C
as
e

P̂
R

P
R
si
m

δ g
en

C
as
e

P̂
R

P
R
si
m

δ g
en

1
0.
53

56
0.
48

47
10

.5
1%

11
0.
59

77
0.
54

05
10

.5
9%

21
0.
62

85
0.
68

33
-8
.0
2
%

2
0.
53

43
0.
62

06
-1
3.
90

%
12

0.
56

97
0.
55

60
2.
46

%
22

0.
64

88
0.
63

50
2
.1
7
%

3
0.
46

24
0.
52

62
-1
2.
13

%
13

0.
52

01
0.
46

97
10

.7
4%

23
0.
61

84
0.
66

42
-6
.8
9
%

4
0.
54

86
0.
55

20
-0
.6
1%

14
0.
62

36
0.
63

40
-1
.6
4%

24
0.
58

26
0.
60

18
-3
.1
8
%

5
0.
49

21
0.
56

87
-1
3.
46

%
15

0.
56

66
0.
61

60
-8
.0
2%

25
0.
66

01
0.
63

61
3
.7
8
%

6
0.
59

24
0.
53

95
9.
81

%
16

0.
56

05
0.
62

09
-9
.7
3%

26
0.
60

36
0.
58

66
2
.9
1
%

7
0.
64

71
0.
60

32
7.
28

%
17

0.
51

28
0.
49

89
2.
79

%
27

0.
55

32
0.
60

52
-8
.5
9
%

8
0.
53

10
0.
63

34
-5
.0
0%

18
0.
59

97
0.
64

17
-6
.5
5%

28
0.
59

77
0.
54

05
1
0
.5
9
%

9
0.
48

35
0.
54

23
-1
0.
84

%
19

0.
53

06
0.
54

67
-2
.9
5%

29
0.
50

56
0.
58

00
-1
2
.8
3
%

10
0.
35

29
0.
43

68
-1
9.
21

%
20

0.
55

63
0.
55

17
0.
83

%
30

0.
54

12
0.
53

39
1
.3
8
%

T
ab

le
4.

7:
M

o
d
el

V
al

id
at

io
n

fo
r

G
en

er
al

S
er

ia
l

P
ro

d
u
ct

io
n

S
y
st

em
C

as
es

77



4.2.6 Comparison with State-of-the-art

To further illustrate the effectiveness of the proposed method, two methods are

compared, which are relevant to the system under consideration . Approach one

is to maximize the long term machine efficiency (Lu et al. (2015); Fitouhi et al.

(2017)). Approach two is to find the best maintenance opportunity window, which is

determined by the buffer levels (Xia et al. (2015); Gu (2016); Lee et al. (2013a)).

Approach 1: The idea is to maximize the long term steady state performance

through adopting appropriate PM policies. The goal of this approach is to ensure

that at any time the machine is working, it is of the highest efficiency. To achieve

such a goal with the implementation of PM policies, methods are developed to find

the threshold operating state in this approach. Therefore, the machine can operate

only on states ahead of the threshold state and will perform PM immediately when

reaching the threshold state. In this dissertation, the method by Fitouhi et al. (2017)

is used for comparison purpose.

Approach 2: The goal is to find the best maintenance opportunity time window by

setting up two buffer thresholds, hup and hdown. All PM will be performed if and only

if the buffer level is above hup or below hdown. For example, in a 2M1B system, if the

buffer level is larger than hup, then m2 is unlikely to be starved for the next few time

slots, while the probability that m1 will be blocked will be higher. In this scenario,

PM could be applied on machine m1 if it is currently operating on an imperfect state.

Similarly, if the buffer level is below hdown, PM can be performed on m2 and the

buffer level will be higher. The goal of such an approach is to maintain a medium

size of buffer level and make use of the time to improve the machine status: when

m1 is highly likely to be blocked due to high buffer level and m2 to be starved due

to low buffer level. An analytical approach to determine the optimal buffer threshold
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for PM in the serial production systems is developed in Gu (2016), and is used for

comparison purpose in this chapter.

Procedure 1 is used to conduct the simulation experiments and obtain the produc-

tion performance of systems with no PM policy (denotes as PRnl), PM policy with

our proposed method (PRp),PM policy with benchmark one (PRb1), and PM policy

with benchmark two (PRb2). The performance measurement adopted, denoted as δ·,

is the relative difference of the production rate between the proposed approach and

the existing approach:

δ· =
PRp − PR·

PRp

× 100% (4.14)

where PRp represents the production rate performance using our proposed method,

and PR· is the production rate with no PM policy or using either of the benchmark

approach. Therefore, the measurements is obtained to find the relative difference

for the cases with no policy (denotes as δnl), using benchmark 1 (denoted as δb1),

and using benchmark 2 (denoted as δb2). Furthermore, 15 cases are listed out for

comparison, shown in Table 4.8.

From Table 4.8, it can be found out that the performance of our proposed method

is better than approach 1 in most of cases. The improvement typically ranges from

10% to 30%. There are also cases where the improvement margin is close to 0. That

is because both the two methods generated similar policies and the difference mainly

comes from the simulation error. Further, for the results of benchmark 2, or δb2, it

suggests that the performance of our proposed method outperforms approach 2 in

most of the cases as well, with improvement mostly between 2% to 20%. There are a

few cases with negative improvement. However, the values are typically below 10%,

which are acceptable considering the simulation error.

The main reason our method outperforms the two comparing approaches is that

our proposed method systematically considers all the combinations of machine status
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Case
Production Rate Performance Measurement

PRp PRnl PRb1 PRb2 δnl δb1 δb2

1 0.3970 0.3247 0.3762 0.3755 22.27% 5.53% 5.73%

2 0.6767 0.6121 0.6805 0.6511 10.55% -0.56% 3.93%

3 0.4774 0.3426 0.4053 0.4020 39.35% 17.79% 18.76%

4 0.5882 0.5575 0.5163 0.5756 5.51% 13.93% 2.19%

5 0.4585 0.3859 0.4584 0.4080 18.81% 0.02% 12.38%

6 0.6216 0.5538 0.5487 0.6155 12.24% 13.29% 0.99%

7 0.5409 0.4771 0.5197 0.5163 13.37% 4.08% 4.76%

8 0.5943 0.5398 0.5394 0.5713 10.10% 10.18% 4.03%

9 0.5933 0.5816 0.5306 0.6056 2.01% 11.82% -2.03%

10 0.4774 0.3426 0.4053 0.4020 39.35% 17.79% 18.76%

11 0.5940 0.5743 0.5642 0.5908 12.50% 28.15% 3.44%

12 0.5075 0.4617 0.4520 0.4855 3.43% 5.28% 0.54%

13 0.4411 0.3447 0.4563 0.4293 27.97% -3.33% 2.75%

14 0.4876 0.4744 0.4046 0.4894 2.78% 20.51% -0.37%

15 0.5126 0.4363 0.5114 0.4380 17.49% 0.23% 17.03%

Table 4.8: Comparison Results With State-of-the-art

and buffer level. For approach one, the policy focuses on improving the efficiency of

each individual machine, while considering neither the state of other machines nor

the buffer level. For approach two, the machines are forced to perform PM when the

threshold buffer level is reached, regardless of the machine conditions. These actions

could potentially lead to production loss over the long term. The proposed method,

on the other hand, further specifies different PM actions by considering the machine

states and buffer levels in an integrated way.
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4.3 Conclusions

In this work, preventative maintenance policies are developed for the general serial

production systems, with finite buffers and machines subject to multi-stage degrada-

tion. The solution approach begins with the two machines and one buffer system.

Condition-based maintenance decisions are made for such systems, considering ma-

chine degradation stages and the buffer level. Moreover, imperfect maintenance is

considered in this work such that a machine can be recovered to any better operating

state. The optimal maintenance policy in infinite production runs can be obtained

using Markov decision models. Furthermore, for general production lines, an ap-

proximation method is developed. The two-machine case is used as a building block

and machine aggregation approaches are used to generate the PM policies for all

the machines. An iterative approach is further designed to incorporate the interac-

tions among all the machines and buffers within the system. The comparisons with

the state-of-the-art and numerical experiments demonstrate the effectiveness of the

proposed method.

In the future, the research will be extended to more general assembly systems,

with complicated structures. Different common types of degradation processes will

be utilized to make the method more generic, such as Wiener process. In addition,

the real-time signal information will be incorporated to more accurately characterize

the machine degradation process, and computationally efficient algorithms will be

developed to generate the PM decisions in real time.
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Chapter 5

PERFORMANCE EVALUATION OF PRODUCTION SYSTEMS USING

REAL-TIME MACHINE DEGRADATION SIGNALS

An illustration of a two-machine-and-one-buffer system is shown in Figure 5.1. The

circles and the rectangle are used to represent the machines and the buffer, respec-

tively. The arrows in the graph indicates the flow of working parts within the line. The

degradation path for each machine is independent from the other machines. Based

on the characteristics of machines, buffers, and their interactions, the assumptions

are addressed as follows.

Figure 5.1: A Two-machine-and-one-buffer System

1. The two machines in the system are denoted as m1 and m2. The buffer B has

finite capacity N .

2. The two machines operate independently. The processing time (cycle time)

for one part at machine k is τk, k = 1, 2. Similarly, the processing speed (or

capacity) for machine mk is ck, where ck = 1/τk, k = 1, 2. It is assumed that

the two machines operate in different processing speeds.
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3. Machine m2 is starved if it is up and the buffer is empty at the beginning of a

time slot. Machine m1 is never starved.

4. Machine m1 is blocked if it is up and the buffer is full at the beginning of a time

slot. Machine m2 is never blocked.

5. For each machine mk, the real-time degradation signal zk(t) is observable or can

be estimated in real-time to quantify the machine health condition. Further-

more, a parametric form is assumed on the degradation signal zk(t) = η(βk, ε(t)).

Here, η(·, ·) is the parameric model of the degradation signal; βk is the degra-

dation rate; and ε(t) is the noise of the degradation signal.

6. The failure of machine mk is assumed to occur when the corresponding degra-

dation signal zk first passes a predefined failure threshold Dk. At each time, the

remaining life Rk is defined as the time from now until machine mk fails.

7. The repairing time for machine mk follows an exponential distribution with

parameter µk, k = 1, 2.

To evaluate the production performance, system throughput, the number of parts

produced per unit of time, is considered. The problem to be studied in this chapter is:

Given the real-time machine degradation signals, develop a approach to continuously

evaluate and predict the long-term production performance of two-machine-and-one-

buffer systems.

5.1 Remaining Life Distribution for Single Machine

5.1.1 Derivation of the Remaining Life Distribution

To model the evolution of the general degradation signal, the degradation signals

is built following the Brownian motion model by Hao et al. (2017) for each machine k
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in the system using the arithmetic Brownian motion at time t as shown in Equation

(5.1):

dzk(t) = βkdt+ dWk(t), k = 1, 2, (5.1)

where Wk(t) is a Brownian motion with variance σ2t.

Given the real-time degradation signal for each machine k, the remaining life dis-

tribution (RLD) of machine k can be estimated based on such model. Using Equation

(5.1), the cumulative distribution function (CDF) of the estimated remaining life Rk

can be obtained by the Inverse Gaussian (IG) distribution Doksum and Hbyland

(1992) as follow:

Rk|zk(t), βk, t ∼ IG(t;µk(t), λk(t)), (5.2)

where IG(t; ·, ·) represents the CDF of an IG distribution, with µk(t) = (Dk−zk(t))/βk

and λk(t) = (Dk − zk(t))
2/σ2

k are the mean parameter and the shape parameter,

respectively. Here, the RLD only depends on the the most recent degradation signal

zk(t) and the failure coefficient βk due to the Markov property of the Brownian motion.

It is worth noting that although the conditional distribution of Rk has been de-

rived, there is no explicit expression of the unconditional RLD, since the integral of βk

doesn’t yield a close-form solution. For simplicity, the same techniques are adoped in

Hao et al. (2017), where the Maximum-A-Posteriori point estimator of βk at time t, de-

noted by β̂k(t), is used in estimating the mean parameter as µk(t) = (Dk−zk(t))/β̂k(t).

Besides, the mean and variance of the IG distribution can be computed analytically,

as E(Rk) = µk(t), V ar(Rk) = µk(t)3

λk(t)
. Furthermore, the other moments can also be

calculated using numerical methods. For other types of degradation signals, the RLD

can be similarly derived.
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5.1.2 Approximation of RLD Using Phase-type Distributions

Integrating the real-time degradation signal to the system-level modeling is very

challenging due to the non-Markovian property of the machine remaining life distri-

bution. To address this, a new method is proposed in this section by estimating the

machine remaining life distributions using phase-type (PH) distributions. PH distri-

butions are defined as the time from any of the transient states to the one absorbing

state, which connects with the Markovian models Okamura et al. (2011). With such

transformation, the system performance modeling based on the Markovian model can

be thereafter utilized to estimate the system performance. To do this, a two-phase

PH distribution is adapted by introducing two virtual operating states, denoted as

state 1 and state 2, and one failure state, denoted as F, for each machine, as shown

in Figure 5.2.

When machine mk fails, it can be recovered either to state 1 or state 2, with

probability pkµk and (1− pk)µk correspondingly. When the machine is in state 1, it

can transfer to state 2 with rate λk1. When the machine is in state 2, it can transfer

to state 2 with rate λk2.

Figure 5.2: Modeling Machine RLD Using PH Distributions

Furthermore, in order to find a PH distribution which has the similar behavior

as the IG distribution estimated from the real-time degradation signal, a moment
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matching approach is introduced. The idea is to match the three moments of the IG

distribution and the PH distribution, thus determining the three unknown parameters

in the PH distribution. The symbolic expression is shown in the following proposition.

Proposition 1 Given an IG distribution IG(α, β), a corresponding PH distri-

bution, which has the exact format as shown in Figure 5.2, can be generated, with

parameters as follows:

• When α
β
> 1

p =
6ακ1 +

√
κ4 − κ2

κ2 +
√
κ4

, λ1 =
κ2 +

√
κ4

κ3

,

λ2 =
κ2 −

√
κ4

κ3

,

(5.3)

where

κ1 =
α2(α− β)

β
, κ2 =

α3(3α2 − 2β2)

β2
,

κ3 =
α4(3α2 − β2)

β2
,

κ4 =
α6(9α4 − 18α3β + 6α2β2 + 6αβ3 − 2β4)

β4

.

(5.4)

• When α
β

= 1

p = 0, λ1 = 0, λ2 = α. (5.5)

• When α
β
< 1

p = min(1,
κ5 +

√
κ2

5 + κ5

κ6

), λ1 = λ2 =
1 + p

α
. (5.6)

where

κ5 =
α2(β − α)

β
, κ6 =

α2(β + α)

β

.

(5.7)
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Proof: See Appendix.

Therefore, the equations generated can be solved by the moment matching, thus

constructing the PH distribution for a machine’s remaining life. It is worth noting

that the Proposition 1 can be generalized to other RLDs derived from other types of

degradation signals as well.

5.2 Modeling for Two-machine-one-buffer System

5.2.1 Two-machine System Perform Analysis

Using the derived PH distributions for machines’ remaining life, a continuous-time

and mixed-state Markovian model is developed to estimate the system performance.

The state space for the system is defined as the combination of machine states (s1, s2),

s1, s2 ∈ {1, 2, F} and the buffer level h, h ∈ [0, N ], at time t.

To facilitate the derivation, the following notations are introduced:

• Xs1s2(h, t): the probability density that machine m1 in state s1 and machine m2

in state s2, when the buffer occupancy is at h. The buffer level is h ∈ (0, N),

at time t.

• Ys1s2(N, t): the probability density that machine m1 in state s1 and machine

m2 in state s2, when the buffer is full at time t.

• Ys1s2(0, t): the probability density that machine m1 in state s1 and machine m2

in state s2, when the buffer is zero at time t.

The dynamic transition equations of the probability density functions Xs1s2(h, t)

can be obtained through the integral equations. Taking X11(·) as an example, the

probability density function at time t + ∆t has a summation format with four com-

ponents as follows:
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• The system stays in the same state from time t to t + ∆t, with probability

X11(h+ (c2 − c1)∆t, t)e−(λ11+λ21)∆t;

• Machine m2 remains in the operating state 1 and machine m1 turns up from

down state at time t+τ . The probability can be expressed as: e−λ21∆t
∫ ∆t

0
Xd1(h+

c2∆t− c1(∆t− τ), t)p1µ1e
−µ1τdτ .

• Machine m1 remains in the operating state 1 and machine m2 turns up from

down state at time t+τ . The probability can be expressed as: e−λ12∆t
∫ ∆t

0
X1d(h+

c2(∆t− τ)− c1∆t, t)p2µ2e
−µ2τdτ .

• A miscellaneous term representing the deviation of estimation with orderO(∆t2).

Furthermore, at most one transition could happen within ∆t when it is small enough.

Therefore,

X11(h, t+ ∆t) = X11(h+ (c2 − c1)∆t, t)e−(λ11+λ21)∆t

+ e−λ21∆t

∫ ∆t

0

Xd1(h+ c2∆t− c1(∆t− τ), t)p1µ1

e−µ1τdτ + e−λ12∆t

∫ ∆t

0

X1d(h+ c2(∆t− τ)− c1∆t, t)

p2µ2e
−µ2τdτ +O(∆t2).

(5.8)

Following the similar idea, all the other Xs1s2(h, t)’s can be expressed, which are

shown in the appendix.

By simplifying the right hand side of Equation (5.8) using Taylor expansion with

an accuracy of O(∆t), the simplified expression can be obtained as:

X11(h, t+ ∆t)−X11(h, t)

∆t
= −(λ11 + λ21)X11(h, t)

+ (c2 − c1)
∂X11(h, t)

∂h
+ p1µ1Xd1 + p2µ2X1d +O(∆t2).

(5.9)
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When t approaches to zero (∆t → 0), an differential equation can be obtained by

taking the limit of t as:

∂X11(h, t)

∂t
+ (c1 − c2)

∂X11(h, t)

∂h
= −(λ11 + λ21)X11(h, t) + p1µ1Xd1 + p2µ2X1d.

(5.10)

Furthermore, since the Markov process is irreducible, it can be found out that the

limiting distributions with regards to t exist. Introduce the following notation:

Xs1s2(h) = lim
t→∞

Xs1s2(h, t). (5.11)

Then Equation (5.10) can be transformed into the steady state equation as shown

below:

(c1 − c2)
∂X11(h, t)

∂h
= −(λ11 + λ21)X11(h, t) + p1µ1Xd1 + p2µ2X1d. (5.12)

Following the similar idea, all the rest steady state equations can be obtained for all

the remaining system states, as illustrated in the Appendix. Then, a matrix form can

be generated to express all the steady state differential equations, as shown in matrix

A1.

In order to find the steady state distribution X(h), the following equation has to

be solved:

c ∗X(h)′ = A1X(h), (5.13)
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where

c =

[
c1 − c2 c1 − c2 c1 c1 − c2 c1 − c2 c1 −c2 −c2 0

]T
,

X(h) =

[
X11(h) X12(h) X1d(h) X21(h) X22(h) X2d(h) Xd1(h) Xd2(h) Xdd(h)

]T
.

(5.14)

The operator (∗) in Equation (5.13) represents element-wise multiplication of two

vectors. The general solution of the differential equation systems has the following

format:

X(h) =
9∑
i=1

kiνie
γih, (5.15)

where γi’s are the eigenvalues, νi’s are the eigenvectors and ki’s are constants yet to

be determined.

The boundary state transition probabilities can be determined following the sim-

ilarly idea. For boundary probability Y11(0, t+ ∆t), it can be determined as follows:

Y11(0, t+ ∆t) =Y11(0, t)e−(λ11+λ21)∆t +

∫ (c2−c1)∆t

0

X11(h, t)e−(λ11+λ21)∆tdh

+

∫ ∆t

0

Yd1(0, t)p1µ1e
−µ1τdτ +O(∆t2)

(5.16)

Similar equations for other states are shown in the Appendix. Therefore,these

equations can be simplified and put into matrix A2. The values of all entries in Y(0)

can be obtained by solving the matrix equation:

A2Y(0) = c2 ∗X(0), (5.17)

where

c2 =

[
c1 − c2 c1 − c2 c1 − c2 c1 − c2 −c2 −c2 0

]T
,

Y(0) =

[
Y11(0) Y12(0) Y21(0) Y22(0) Yd1(0) Yd2(0) Ydd(0)

]T
X(0) =

[
X11(0) X12(0) X21(0) X22(0) Xd1(0) Xd2(0) Xdd(0)

]T
.

(5.18)
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Similarly, the boundary condition is obtained when the buffer is full.

Y11(N, t+ ∆t) =Y11(N, t)e−(λ11+λ21)∆t +

∫ (c1−c2)∆t

0

X11(N − h, t)e−(λ11+λ21)∆tdh

+

∫ ∆t

0

Y1d(N, t)p2µ2e
−µ2τdτ +O(∆t2)

(5.19)

Simplifications for other states when the buffer is full are also shown in the Appendix.

Similarly, matrix A3 can be used to represent the parameters in the equations con-

taining Y(N).

A3 =

−(λ11 + λ21) 0 p2µ2 0 0 0 0

λ21 −(λ11 + λ22) (1− p2)µ2 0 0 0 0

0 λ22 −(λ11 + µ2) 0 0 0 p1µ1

λ11 0 0 −(λ12 + λ21) 0 p2µ2 0

0 λ11 0 λ21 −(λ12 + λ22) (1− p2)µ2 0

0 0 λ11 0 λ22 −(λ12 + µ2) (1− p1)µ1

0 0 0 0 0 λ12 −(µ1 + µ2)


(5.20)

Therefore, the values of all entries in Y(N) can be obtained by solving the matrix

equation:

A3Y(N) = −c3 ∗X(N), (5.21)
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where

c3 = [c1 − c2 c1 − c2 c1c1 − c2 c1 − c2 c1 0]T ,

Y(N) =

[
Y11(N) Y12(N) Y1d(N) Y21(N) Y22(N) Yd2(N) Ydd(N)

]T
,

X(N) =

[
X11(N) X12(N) X1d(N) X21(N) X22(N) Xd2(N) Xdd(N)

]T
.

(5.22)

Notice that the values in X(0) and X(N) are the special solutions in Equation

(5.15) when h = 0 and h = N respectively.

In order to find the values of all k’s in Equation (5.15), the particular solution

of the Equations in (5.17) and (5.21) will be found. First of all, notice that the

summation of all the probabilities should be equal to one.

N∫
0

X·(h)dh+ Y·(0) + Y·(N) = 1. (5.23)

Furthermore, in the long run, when the first machine is faster, and both machines are

operating, the buffer level cannot always be zero. On the other hand, if the second

machine is faster, the buffer level cannot always be full. Therefore, the following

conditions are obtained:

• If c1 > c2

Y11(0) = 0, Y12(0) = 0, Y21(0) = 0, Y22(0) = 0. (5.24)

• If c1 < c2

Y11(N) = 0, Y12(N) = 0, Y21(N) = 0, Y22(N) = 0. (5.25)

Following the procedures mentioned above, the steady state distribution for all the

states can be determined, and the system throughput can be determined as follows:

TP = c2

∑
s1∈{1,2}

∑
s2∈{1,2}

(

N∫
0

(Xs1s2(h) +Xds2(h))dh+ c1Ys1s2(0) + c2Ys1s2(N)). (5.26)
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The system throughput is calculated with the summation of the throughput of

given the system state times the probability that the system in that state. In Equation

(5.26), the throughput is expressed with three situations: when the buffer is between

0 and N , when the buffer is empty and machine 2 is faster, and when the buffer is

full and machine 1 is faster.

5.2.2 Bayesian Updating

After the RLD and the system throughput is estimated, the real-time update is

needed on the machine remaining life Rk, k = 1, 2 and the system throughput TP

with real-time data.

Before the online Bayesian updating, the offline analysis are conducted. To do so,

the degradation signals are collected over the different cycles i = 1, · · · , n for each ma-

chine k using the historical information. Then the mean and covariance of the degra-

dation coefficient βk can be estimated, based on the n time points as sample mean

κk,0 = 1
n

∑n
i=1 βk,i and sample variance τ 2

k,0 = 1
n

∑n
i=1(βk,i − κk,0)2. When collecting

the real-time sensing data for machine condition zk(t), the increment of the degrada-

tion signal is known to follow the Gaussian distribution as δzk(t)|βk ∼ N(βkδt, σ
2
kδt)

by the property of Brownian motion. By the Markov property, it is known that all the

non-overlapping incremental of the degradation signals δzk(1), · · · , δzk(t) are statisti-

cal independent. Therefore the likelihood can be derived as p(δzk(1), · · · , δzk(t)|βk) =∏t
i=1 p(δzk(i)|βk). Finally, the posterior distribution can be derived as βk|δzk(t) ∼

N(κk(t), τ
2
k (t)), with the posterior mean κk(t) =

τ2k
∑t

i=1 δzk(i)+κk,0σ
2
k

τ2k t+σ
2
k

, and posterior

variance τ 2
k (t) =

σ2
kτk,0

τ2k,0t+σ
2
k
, where the κk,0 and τ 2

k,0 are the prior mean and variance.
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Case
m1 m2

N P̂R PRsim ∆
β1 σ1 z1 r1 c1 β2 σ2 z2 r2 c2

1 0.47 0.64 4.58 1.08 1.50 0.61 0.24 6.11 1.42 0.98 5 0.4831 0.4881 -1.02%

2 0.42 0.20 4.90 1.33 1.96 0.63 0.84 4.04 1.35 0.88 2 0.5857 0.5850 -0.11%

3 0.29 0.30 6.29 0.76 1.19 1.12 0.60 2.63 1.12 1.86 3 0.9581 0.9520 0.64%

4 0.97 0.60 4.31 1.18 1.60 0.39 0.57 5.01 1.44 0.83 8 0.7556 0.7556 0.00%

5 0.21 0.02 6.54 0.95 1.36 0.28 0.04 6.54 0.66 1.75 3 0.9600 0.9358 -2.52%

6 0.92 0.44 4.12 0.64 1.46 0.77 0.59 3.72 0.32 1.16 8 0.7003 0.6831 2.52%

7 0.73 0.20 3.59 0.36 1.83 0.65 0.39 3.69 0.30 1.53 4 0.8455 0.8346 1.30%

8 0.61 0.78 5.34 1.37 1.39 0.37 0.30 5.98 1.41 0.93 7 0.5950 0.5892 -0.98%

9 0.79 0.39 3.33 1.38 1.63 0.72 0.10 5.04 0.45 1.45 6 0.9378 0.9296 0.88%

10 0.47 0.17 5.88 1.45 0.85 0.58 0.78 5.15 1.28 1.58 6 0.6201 0.6052 -2.40%

11 0.64 0.43 5.04 1.34 1.44 0.44 0.07 6.67 0.27 1.16 7 0.5155 0.5168 -0.26%

12 0.20 0.07 6.71 1.24 1.50 0.42 0.53 6.01 0.85 1.22 3 0.9711 0.9630 0.84%

13 0.60 0.20 5.07 0.80 1.72 0.64 0.98 3.18 0.62 1.64 8 1.2128 1.1935 1.62%

14 0.59 0.27 4.53 0.75 1.48 0.58 0.34 4.43 0.39 1.69 2 1.0055 0.9897 1.59%

15 0.25 0.06 6.31 1.34 1.45 0.62 0.32 4.29 1.31 1.02 3 0.8973 0.8968 0.05%

16 0.30 0.27 6.11 1.37 1.94 0.53 0.03 5.86 0.64 1.67 5 0.9329 0.9225 -1.11%

17 0.21 0.06 7.03 0.25 1.66 0.44 0.12 5.89 0.68 1.42 6 0.7305 0.7173 1.83%

18 0.58 0.05 4.28 0.22 1.56 0.76 0.89 4.05 1.13 1.37 6 0.8328 0.8130 2.44%

19 0.33 0.39 6.93 0.53 1.13 0.51 0.10 5.47 0.30 1.14 8 0.6539 0.6689 -2.25%

20 0.52 0.40 5.00 0.54 1.46 0.54 0.49 4.39 0.76 1.61 7 1.0442 1.0358 0.81%

Table 5.1: Numerical Results
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5.2.3 Validation

In order to evaluate the system performance of the model, simulation experiments

have been conducted. The system parameters are randomly generated using the

following procedure:

Procedure 6

1. Set up machine capacity ck ∈ (0.5, 2), k = 1, 2, and buffer level N ∈ {2, . . . , 8}.

2. Set up machine repair rate rk ∈ (0.2, 1.8), k = 1, 2.

3. Set up the pre-defined degradation threshold Dk = 8, k = 1, 2.

4. Set up machine degradation level zk ∈ (0, 5), k = 1, 2.

5. Set up degradation rate βk ∈ (0, 1) and noise standard deviation σk ∈ (0, 1),

k = 1, 2.

All the simulation cases are conducted with 50 replications and 20,000 simulation

length. The performance measurement adopted is the relative production perfor-

mance difference between the analytical model and the simulation experiments:

∆ =
P̂R− PRsim

PRsim

× 100%,

where PRsim is the simulation results, and P̂R is the analytical solution to the model.

Numerical examples are shown in Table 5.1.

Furthermore, 500 simulation experiments are conducted to test the performance

of the analytical comparing to the simulation results. For most of the cases, the

∆-measure is below 1%. For the cases with production rate under 0.7, the average

relative difference is below 5%. There are extreme rare cases (under 1% of the total

experiments) that the ∆-measure is over 10%. They occur when the degradation
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level of a machine is very close to the pre-defined threshold. Under these scenarios,

the throughput is very low, i.e., less than 0.2. However, for these cases, the absolute

difference between the simulation and the analytical results is within 0.03. These

results can show that our method can effectively evaluate the system performance.

5.3 Case Study

To demonstrate the effectiveness of the method, a case study is provided to eval-

uate a two-machine-one-buffer system’s performance with real machine degradation

signals. To ensure the confidentiality of the data, all the data and parameters intro-

duced below have been modified and are used for illustration purpose only.

The dataset used for the real-time degradation signals includes 21 bearing samples.

These degradation signals are calculated from the original vibration signals, captured

by an accelerometer, to track the evolution of the vibration level with respect to time

Gebraeel et al. (2005). A failure threshold of the degradation signals is set according

to the industrial standard Blake and Mitchell (1972). Even though the experiments

are conducted on a set of identical thrust ball bearings in an accelerated testing,

the time-to-failure for all samples are quite different, ranging from 100 cycles to 300

cycles, with sampling interval of 2 minutes per cycle. The differences are mainly due

to the sample-to-sample variation and the environmental uncertainty.

The remaining life prediction can be estimated and updated online using the real-

time degradation signal. Figure 5.3 is an illustration of the predicted remaining life

distribution, with the range of the estimated lige distribution with different level

of observed degradation signals. From Figure 5.3, it can be observed that initially,

the remaining life distribution has large variance. After observing more degradation

signals, the updated remaining life presents much smaller variance, which shows the

power of observing more real-time degradation signals.
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Figure 5.3: Degradation Signals and Predicted Remaining Life Prediction

Finally, the system throughput at different stages of machine health status is

discussed. Figure 5.4 shows the system status at initial stages (e.g. the system

operates less than 50 cycles), where both machines are in good operating states, with

low degradation level. The average of remaining time for both machines are large,

according to the RLD. Therefore, the system throughput is high. Theoretically, over

the long run, the throughput cannot be larger than the minimum capacity in the

system, which is known as the bottleneck. In this case, the minimum capacity is 0.9

for machine m2. Since the machine is less likely to fail in short time, the estimated

system throughput is very close to the theoretical upper bound 0.9. When machine

2 approaches to the threshold (e.g. shown in Figure 5.5 at t = 95), the estimated

system performance drops significantly. Since the single machine degradation process

is not monotone, it can be observed that throughput ramps up when the status of a

machine recovers in a short period of time. For example, between time 90 and 100 as
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shown in Figure 5.5, there is a decrease on the degradation level of machine 1. The

system throughput, similarly, shows an increase between time 90 and 95 due to the

recovery of machine status. However, when either the machine fails, over the long

run, the estimated production rate is zero, even though for short time, there might be

output due to the remaining parts in the buffer. The throughput will be zero when

the failed machine is under repair and then ramps up when both machines are under

operations.

5.4 Conclusions

In this chapter, a novel analytical model is developed to evaluate the system per-

formance of a two-machine-and-one-buffer line given real-time machine degradation

signals. Specifically, PH distributions are generated to mimic the RLD of each ma-

chine and a continuous time Markovian model is formulated to estimate the system

throughput. A case study is included to demonstrate the effectiveness of the proposed

method. Future work can be dedicated to extending such a model to more compli-

cated manufacturing systems, such as longer lines or assembly systems. Furthermore,

the developed approach can be easily generalized to other types of degradation sig-

nals, modeled by stochastic processes other than Brownian motion, to enhance the

model’s efficacy in a variety of practical systems.

In practice, the method can be applied for system performance monitor, projec-

tion, and control. Practitioners can obtain the real-time evaluations and predictions

of the system production performance. They can have better understanding on indi-

vidual machines, such as degradation level and the remaining useful life, as further

explore the possible impact on overall system performances. These analytics can pro-

vide guidelines and contribute to the other operational activities, such as production

scheduling and maintenance.
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The degradation signal plots record the degradation level read from the signals. Machine

remaining life plots depict probability density function of the distribution given the current

degradation level estimated using Equation (2). The system performance chart plots the

throughput obtained using the method in Section V.

Figure 5.4: System Performance Evaluation When Two Machines in Good Operating

State
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The degradation signal plots record the degradation level read from the signals. Machine

remaining life plots depict probability density function of the distribution given the current

degradation level estimated using Equation (2). The system performance chart plots the

throughput obtained using the method in Section V.

Figure 5.5: System Performance Evaluation When Machine m2 in Inferior Operating

State
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In the future, the work can be extended in the following possible directions. First,

in terms of the real-time degradation signals, the data from multiple sensors can be

implemented into the model, which can provide additional information and therefore

possibly improve the quality of machine condition monitoring. Second, for the system

structure, the work can be extended to more complicated while common system struc-

tures, such as the serial production lines, assembly lines and production networks.

Besides, the current research problem can be further extended to obtained system

improvement and control policies. Indeed, to achieve these goals, a comprehensive

understanding on system structures, especially in complex manufacturing systems,

together with utilizing the data from multiple source and in multiple attributes is

needed.
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Chapter 6

OPTIMIZING MULTIPLE CONDITION POLICY BASED ON REAL-TIME

DEGRADATION SIGNALS VIA MODEL-BASED REINFORCEMENT

LEARNING

6.1 Introduction

The degradation process of a unit is directly influenced by different operating con-

ditions. Controllable factors such as the level of usage, speed, force, load, operating

time, etc., have been examined to tie closely to the degradation process a machine.

For example, in a battery pack, lighter workload usually results in slower increase in

the temperature in the battery cells, resulting in longer time in good using condi-

tions and less frequent (preventative) maintenance. On the other hand, the lighter

workload can also result in less capacity, which triggers the long time production

performance, and can make existing replacement policies cost-ineffective. The wind

turbine gearboxes and generators deteriorate faster at higher speeds, conveyor belts

fail more often when used at higher rotational speeds and cutting tools wear faster at

higher speeds. Furthermore, the optimal conditions should also be determined by the

current machine states, which can be inferred from the real-time degradation signals.

In many engineering systems, proper predictive maintenance and operational con-

trol should be jointly considered to increase a unit’s effectiveness and reduce the time

and cost of repairing. Typically for such systems, multiple sensors are normally used

to monitor performance, which create difficulties for system state identification. In

this chapter, a systematic decision making framework is proposed to improve the

system performance in manufacturing practice considering the real-time degradation
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signals generated by multiple sensors. Specifically, we propose a partially observed

Markov decision process (POMDP) model to generate the optimal capacity and PM

policies, given the fact that the observation on the system state is imperfect. To the

best of the knowledge, this is the first work to provide a systematic approach that

focuses on jointly controlling the operating conditions and preventative maintenance

utilizing the real-time machine deterioration signals by incorporating the degradation

constraint and non-observable states.

6.2 Methodology Development

6.2.1 Problem Formulation

In this chapter, we would like to first introduce our problem definition and as-

sumptions in Section 6.2.2. We would like to discuss then how to use POMDP to

decide the optimal operation condition in Section 6.2.3, by assuming the system dy-

namics (i.e., the degradation process is given). Finally, we would like to discuss how

to estimate unknown system dynamics under multiple operation conditions.

6.2.2 Problem Definition and Assumptions

In this chapter, we build up a discrete model to depict the operation and degrada-

tion process of the machine. The time epochs are denoted as n = 1, 2, . . . , T . These

time intervals within two time epochs are set as the machine cycle time, which is

assumed to be the time that is required to finish processing the assigned units of

product. Meanwhile, all the decision, i.e., the capacity adjustment and maintenance

options, are made and execute only at the beginning of each time epoch. Here is the

definition and assumptions of our studied system.
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• Machine degradation process: we assume the state X = {1, 2, . . . , K, F} with K

operating states and one failure states (denoted by F ). The transition matrix

X between the states are assumed to be static and unknown. For the operating

states, they fall into the increasing order that state 1 represents best operating

state (”brand new”) and state K is the worst operating state before the system

fails. Furthermore, state F denotes the failure state, which is the last and non-

operating state in the degradation process. The transitions of machine states in

the degradation process is assumed to occur at the beginning of a time epoch.

We assume that the condition of the machine is retaining or decreasing from

time to time. For the machine at an operating state k at time t, it can retain

at state k or transfer to any inferior state at time t + 1. In other words, no

condition reverse is allowed in the machine degradation process. The machine

degradation process is expressed with the solid lines as shown in Figure 6.1.

It is worth noting that we use discrete state representation of the degradation

process compared to the continuous state representation. One main reason is

that the discrete state is good to model the non-continuous degradation process

with discrete physical state, which appears in the study of many systems (Gu,

2016).

• Control actions 1: Maintenance decision. When the machine is failed, the oper-

ation must be stopped, and the maintenance must be performed, replacing the

failed component and recovering the machine conditions thoroughly (usually

known as ”corrective maintenance”). We assume that such replacement and
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repair can be finished within one production cycle, and the machine condition

will be recovered to the best state (state 1). Apart from the passive corrective

maintenance, the decision maker has the option choose to conduct preventa-

tive maintenance (PM), when the machine is in any of the operating states

(1, . . . , K) at the beginning of a time slot. If PM is selected, then the machine

is stopped immediately and the the degrading component in the machine will

be replaced. The selection of PM will lead to the early retirement and discard

of the component. We also assume that the replacement is conducted within

one cycle. The newly installed component is ”brand new”, which recovers the

machine condition to the best, or state 1. The transitions of machine states

with PM conducted is expressed with the dashed lines as shown in Figure 6.1.

We further assume that preventative maintenance will incur a small cost and

machine break down will incur a large cost. More definition will be discussed

in Section 6.2.3.

• Control actions 2: Capacity adjustment. The machine is also assumed able to

operate under different conditions throughout the lifetime, i.e., with different

operating capacities, and the operator can switch the capacity when needed at

the beginning of a production cycle. Let C = {c1, . . . , cm} denote the set of all

speed options for the machine. We assume that the speed adjustment options

are finite, i.e., the different levels on switchers or gears. Correspondingly, the

degradation process under each condition varies. However, we assume that

the degradation process can be represented using the same set of states S and

may follow different state transition probabilities for different capacities. We

denote Ac as the state transition probability matrix when the machine is under

condition c.
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Figure 6.1: The Original System State Transitions

The overall solution scheme is summarized as shown in Figure 6.2. For the offline

training, as shown on the left side, historical data sets are collected to abstract the

features and thereafter used to obtain the parameters for the HMM model and the

POMDP model, which will ultimately return the vectors for decision making given

different observations. When the model is conducted for real-time control, the signal

is abstracted into the features, which will be classified as the belief vectors on the

discrete observations. The belief vector, together with the alpha vectors generated

from the training stage, will be used to determine the ultimate control action at the

exact time.

6.2.3 A Partially Observed Markov Decision Process Approach to Optimize

Multiple Operating Conditions

In practice, the states of the system are non-observable and thus cannot be eval-

uated directly. Instead, it can be estimated from the signals which monitor the

conditions of the machines in real-time. To model and solve the problem, we develop

a Partial Observable Markov Decision Process (POMDP) model to solve the optimize

the operating condition problem. We will first start with the definition and how to
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Figure 6.2: The Structure of the Algorithms

map our decision optimization problem into the POMDP utilizing the observations

from the degradation signals.

Model the multiple operating conditions control problem using POMDP

A POMDP is a generalization of a Markov decision process (MDP), which models

an agent decision process in which the system dynamic is modeled by an MDP,

but the agent cannot directly observe the underlying state space. A discrete time

Markov model can be built based on the problem descriptions. The state space of

the system contains all the states in the machine. In literature POMDP is a 7-tuple
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(S,A,X,R,Ω, O, γ), where

• S is a set of states, the non-observable health state of the machine.

• A is a set of actions, which refers to the change of operating conditions or

maintenance decision.

• X is a set of conditional transition probabilities between states, which models

the dynamics of the degradation process.

• R : S × A→ R is the reward function, which refers to the maintenance cost.

• Ω is a set of observations, which is corresponding to the degradation signals

observed by single or multiple sensors.

• O is a set of conditional observation probabilities, which models the data gen-

erative process given the observation and state.

• γ ∈ [0, 1] is the discount factor, which models how the reward function degrades

over time.

The performance of the machine denoted as r(S, a), is condition-base cost metric

determined by the machine condition S and the action a. When the machine is

under operating conditions (S ∈ S), the production reward evaluated by the capacity

that the machine posits. When the machine fails, the corrective maintenance cost

is occurred, which is denoted as cd. For the preventative maintenance, the cost is

uniform for all the states and is expressed as cp. Then the system reward can be

expressed using the equation as follows:
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r(S, a) =



ca, if S ∈ {1, . . . , K},

cd, if S ∈ F,

cp, if S ∈ PM,

0, otherwise,

(6.1)

Furthermore, we have the notations for the observations and transition matrices,

which are specified under different operating conditions:

• Let zt represent the signal observations collected in the period [t− 1, t]. Intro-

duce Ti, the life time of unit i. Furthermore, let O = [o1(zt), o2(zt), . . . , o|O|(zt)]

denote the vector of features, which are transformed from the observing seg-

ments of the signals during time period t− 1 to t.

• We denote Sci,t ∈ X as the system state at time t for unit i ∈ {1, · · · , n} under

condition c ∈ {1, · · · ,M}.

• A transition probability matrix is defined as Xc = {pckk′}, in which pckk′ is the

transition probability that the system state is changed from state k to state k′

under condition c, k, k′ ∈ {1, . . . , K} at time t,

pckk′ = P (Sci,t+1 = k|Sci,t = k′), 1 ≤ k, k′ ≤ K. (6.2)

• An emission probability is defined on multi-variate response Oc
i,t by two sets of

matrix B = {µc
k,Σ

c
k}, in which µc

k is the mean value of multiple sensors in state

k under condition c, and Σc
k denote the covariance matrix of multiple sensing

measurement. In another word,

(Oc
i,t|Sci,t = k) ∼ N(µc

k,Σ
c
k),

where i = 1, · · · , n, k = 1, · · · , K, c = 1, · · · ,M.

(6.3)
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Figure 6.3: The State Transition Diagram of POMDP

• An initial state vector Πc
i = {πci,k} is defined to express the distribution of the

system states for unit i at state k at t = 1 under condition c.

6.2.4 Parameter Estimation with Hidden Markov Model

POMDP can be treated as HMM with controllable action. In the training phase,

we assume that all control actions are given (i.e., the system have recorded which

action to use). However, the dynamics under each condition is unknown. In this

subsection, we will study how to estimate the parameters in transition matrix T .

It is worth noting that this problem is similar to estimate the transition matrix and

emission matrix in the hidden Markov Model (HMM). In Section 6.2.4, we will discuss

how to extend HMM into the semi-supervised settings with multi-channel signals and

multiple operation conditions with the left-to-right degradation dynamic constraint in

Section 6.2.4. Then we will discuss the parameter estimation of the proposed model

in Section 6.2.4.
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Semi-supervised Left-to-right Constrained Multiple Condition HMM for

Prognostics Modeling

HMM is a probabilistic model which describes the transitions of a finite number

of states over time. These states characterize two stochastic processes: the hidden

state transition in discrete time and an observed process. In addition, three sets of

probability distributions are utilized to characterize the system dynamics: the initial

probabilities for all the hidden states; the transition probabilities between two hidden

states and the emission probabilities of an observation from a hidden state. The

elements of an HMM are defined as follows: With the descriptions shown above, for

the simplicity and clarification, the full HMM model is given by Λ = {Q,X,B,Π}.

To model the system degradation, we assume that the system can only degrade

to worse states over time, which means that the transition is only one-directional.

Therefore, we assume that the transition matrix is left-to-right only. Finally, we

assume that the failure state is the only absorbing state in the system.

Commonly, EM algorithm is used for finding the maximum likelihood estimate

of the parameters of a hidden Markov model given a set of observed feature vectors.

However, the traditional EM algorithm is not able to provide the transition matrix

with left-to-right constraint. Furthermore, the naive implementation of constraint

such as mask out the transition matrix does not lead to robust estimation of the

transition matrix and emission parameters. Here we propose to modify the EM

algorithm of the HMM learning based on the left-to-right constraint. Due to the fact

that the signal is mostly monotone, in each iteration, we rank the posterior mean

µ1 < · · · < µk, where k is the number of state.

111



Estimation of the Constrained Hidden Markov Model

In this section, we will introduce the notation and framework of the HMM. The

random variable Oc
i,t denotes the ith signal observation at time t under condition c

and Sci,t is the hidden state which denotes the health condition for the systems under

consideration. The following is the joint likelihood of the problem.

P ({Oc
i,t}ci,t) =

M∑
c=1

N∑
i=1

∑
s1,··· ,sT

P ({Oc
i,t}

Ti
t=1, {Sci,t}

Ti
t=1)

=
M∑
c=1

N∑
i=1

∑
s1,··· ,sTi

P (Sci,1)

Ti∏
t=2

P (Sci,t|Sci,t−1)
T∏
t=1

P (Oc
i,t|Sci,t)

(6.4)

However, the joint likelihood is not tractable. The inference can be broken down into

the forward-backward algorithm and the Baum-Welch Algorithm.

The goal of the forward-backward algorithm is to decode the system state given the

degradation signals in (6.5). The step of Forward-backward algorithm of the proposed

method is the same with ordinary HMM. For more details, please see Rabiner (1989).

γkt = P (St = k|{Ot}Tit=1) (6.5)

However, the original Baum-Welch algorithm cannot be used for the semi-supervised

setting with the monotonicity constraint. Therefore, we proposed to modify the

Baum-Welch algorithm to address the semi-supervised challenge, multiple sensors

challenge, and the monotonicity state constraint as follows:

1) Addressing the challenges of semi-supervised state and multiple sensors The

starting state and failure state are typically observable. For these states, we can

directly estimate the mean and covariance matrix from the multiple sensor measure-

ments. The mean µc,k and covariance matrix Σc,k of observed state k under condition
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c can be estimated as:

µc
k =

1

N c
k

n∑
i=1

Ti∑
t=1

1(Sci,t = k)Oc
i,t

Σc
k =

1

N c
k

n∑
i=1

Ti∑
t=1

1(Sci,t = k)(Oc
i,t − µc

k)(O
c
i,t − µc

k)
Ti

where, N c
k =

n∑
i=1

Ti∑
t=1

1(Sci,t = k).

(6.6)

For the unobserved system states, we first use the forward-backward algorithm to

estimate the posterior probability of unit i under condition c in state k and time t

as γi,c,k(t) = P (Sci,t = k|{Oc
i,t}

Ti
t=1). The mean and covariance matrix for each state k

under condition c can be estimated as follows:

µc
k =

1

N c
k

n∑
i=1

Ti∑
t=1

γci,k(t)O
c
i,t

Σc
k =

1

N c
k

n∑
i=1

Ti∑
t=1

γci,k(t)(O
c
i,t − µk)(O

c
i,t − µc

k)
Ti

where, N c
k =

n∑
i=1

Ti∑
t=1

γci,k(t).

(6.7)

2) Addressing the challenges of left-to-right state transition and monotone degra-

dation signals We have the prior knowledge that µk′j > µkj should be larger for sys-

tem state k′ > k for some sensor j, and µk′j < µkj should be smaller for system state

k′ > k for the other sensor j. We propose to sort the (µ1, · · · ,µk) = sort(µ1, · · · ,µk)

according to the majority voting procedures.

Furthermore, the initial probability is πcik = γcik(1) and the state transition matrix

can be estimated in the following:

p̃ckk′ =

∑T−1
t=1 ξ

c
kk′(t)∑Ti−1

t=1 γck(t)

where, ξckk′(t) = P (St−1 = k, St = k′|Oc; θc)

(6.8)
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However, the estimated pckk′ are without any constraint. To impose the left-to-right

constraint, we propose to perform the following update steps.

pckk′ =


0 k < k′∑K

k=k′ p̃
c
kk′ k ≥ k′

(6.9)

(µ1, · · · ,µk) = sort(µ1, · · · ,µk) (6.10)

Through our simulation study, the combined sorting (6.10) and projection (6.9) to

lower triangular matrix could dramatically increase the robust of the training proce-

dure than using the projection (6.9) alone.

3) Estimating the parameters under multiple condition assumption. The esti-

mation process is based on the assumption that different conditions will share same

emission matrix but different transition matrix. The same emission matrix means

that all machines will degrade through similar hidden states and the measurements

under same hidden states but different conditions have same distributions. Different

transition matrix means that the degradation speed under different conditions will

be different. Under those two assumptions, we can compute the common emission

matrix by first estimating the posterior probability of unit i under condition c in state

k and time t as γi,c,k(t) = P (Ski,c,t = 1|{Oi,c,t}Tt=1). The mean and covariance matrix

for each state k can be estimated as follows:

µk =
1

Nk

M∑
c=1

n∑
i=1

Ti∑
t=1

γci,k(t)O
c
i,t

Σk =
1

Nk

M∑
c=1

n∑
i=1

Ti∑
t=1

γci,k(t)(O
c
i,t − µc

k)(O
c
i,t − µc

k)
Ti

where, Nk =
M∑
c=1

n∑
i=1

Ti∑
t=1

γci,k(t).

(6.11)

A remark is that discrete observation already provide enough resolution to derive

the maintenance policy and to further refine the resolution to continuous is not nec-
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Input: Number of state K, Multi-sensor observation Oi,c,t

Output: Transition P c
ij, emission µk,Σk

1 Function Constained HMM():

2 µck,Σ
c
k ←− Sci,t,O

c
i,t; //Estimate observed state emission using (6.6)

3 while Not converged do

4 µck,Σ
c
k ←− γci,k,O

c
i,t; //Estimate unobserved state emission using (6.7)

5 p̃ckk′ ←− µc,k,Σ
c
k,O

c
i,t; //Estimate transition (6.8)

6 P c
ij ←− p̃ckk′ ; //Projection and sorting using (6.10)

7 µk,Σk ←−

µck,Σ
c
k,O

c
i,t; //Computing shared emission matrix using (6.11)

8 end

9 end

Algorithm 1: Constrained HMM Fitting

essary but can also lead to the large computational burden in the POMDP model.

An algorithm therefore should transform the continuous features O to the discrete

observations o. We utilize Gaussian Mixture Model to discretize the observations as

arg maxi p(oi|O). The probability can be calculated as following where φ, µ, σ rep-

resent weight, mean and variance. The model parameters can be estimated through

expectation maximization:

p(oi|O) =
p(oi,O)

p(O)
=

p(oi)p(O|oi)∑k
j=1 p(oj)p(O|oj)

=
φiN (O|µi, σi)∑k
j=1 φjN (O|µj, σj)

(6.12)

Solve POMDP

In order to generate the optimal control policy, we use Point-Based Value Iteration

(PBVI) algorithm (Pineau et al., 2005). Specifically, we would like to estimate the

actions at at time t of the POMDP problem defined in Section 6.2.3 assuming that
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Input: Observing signal z, φ, µ, σ

Output: Belief space b

1 Function GMM():

2 O ←−

{Xrms(z), . . . , Xe(z)}; //Abstract features from signals using expressions in Table 2

3 b(o|z)←− φiN (O|µi,σi)∑k
j=1 φjN (O|µj ,σj)

; // Obtain the belief on the continuous

observation over the discrete observations

4 end

Algorithm 2: GMM Classifier

parameters of the transition probability matrix T are given. We will discuss how to

estimate these parameters in Section 6.2.4.

To do so, we need to introduce a definition, named the belief state, denoted as

b = b(S) ∈ B, which represents the likelihood that the system is in latent state S

under a set of belief B. First, define

Z(S ′, a, O′) = Pr(Ot+1 = O′|St+1 = S ′, a) (6.13)

as the distribution that the an observation will be captured when the engine is in state

S ′ and action at was conducted. Notice that this is the decoding problem (as discussed

in Section 2.1), which can be solved by the HMM using the historical observations.

Then the transformation of the belief state to S ′ given action a and observation O

can be further expressed in the transition expression as follows:

bao(S
′) =

Z(S ′, a, O)
∑
S∈S

X(S, a, S ′)b(S)∑
S′∈S

{
Z(S ′, a, O)

∑
S∈S

X(S, a, S ′)b(S)
} (6.14)

Let Jπ(b0) denote the expected total discounted reward given b0 under policy

π ∈ π; that is

Maximize
π

Jπ(b) = E[
∞∑
t=1

ηtR(b, π)|b0], (6.15)
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where

R(b, a) =
∑
S∈S

b(S)r(S, a),

0 < η < 1 is a discount factor and π includes all the decisions to determine the PM

policies.

Let Vt(b) denote the expected total achievable reward for the period t to the

infinite horizon given our belief at time t, with V0(·) = 0, then

Vt(b) = min
a∈π

{
R(b, a) + η

∑
b′

Pr(O|a, b)Vt+1(bao)
}
, (6.16)

in which

Pr(O|a, b) =
∑
S′∈S

{
Z(S ′, a, O)

∑
S∈S

X(S, a, S ′)b(S)
}
.

On the right hand side of Equation (6.16), it explicitly describes the two compo-

nents of the reward: the reward for the current state at time t, and the discounted

reward of reaching all the possible system states starting from the next time period.

Then the optimal policies starting from time zero can be calculated by using the

value iteration approach (Puterman, 2005). In order to attain the optimal policy and

optimal value, we use Point-Based Value Iteration (PBVI) algorithm (Pineau et al.,

2005), which generates set of alpha-vectors with a set of belief points, which enables

generating the optimal solutions.

6.2.5 Obtain the Actions for Observing Signals

By integrating the results of the POMDP and the GMM algorithms, finally we

can obtain the actions for all the given degradation signals.

For a given set of observing signals, it will first be transformed to a set of discrete

observations using the feature abstraction approach as discussed in Section 4.2. Then

the GMM algorithm will deliver the set of estimated probabilities, which represents

that the belief that the observation matches with the predefined observations in the
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Input: A POMDP tuple (hS, A, tr, R,Ω, O, b0)

Output: α, B

1 Function PBVI():

2 B ←− {b0};

3 while Not converged do

4 Improve(V,B)

5 B ←− Expand(B)

6 end

7 end

8 Function Improve(V,B):

9 while Not converged do

10 foreach b ∈ B do

11 α←− Backup(b,V)

12 V ←− V ∪ {α}

13 end

14 end

15 end

16 Function Expand(B):

17 B′ ←− B;

18 foreach b ∈ B do

19 Γ(b)←− {ba,o|Pr(o|b, a) > 0}

20 B′ ←− B′ ∪ argmaxb′∈Γ(b) ‖B, b′‖2

21 end

22 return B’

23 end

24 Function Backup(b, V ):

25 foreach b0 ∈ b do

26 βa,O ←− argmaxα∈V αbao

27 βa(s)←− R(s, a) + η
∑
S

∑
S′
Z(S ′, a, O)X(S, a, S ′)βa,O

28 β ←− argmaxβa βab

29 end

30 return β

31 end

Algorithm 3: PBVI Algorithm to Solve POMDP
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POMDP framework, i.e., B(o) = {B(o1), B(o2), , . . . , B(oJ)}. Then the belief on

the hidden states of this observation can be obtained usin the expressing b̄(o) =

B(o)bT(s). The action that the machine should taken under the observation o then

will be the one associated to the α vector that brings the maximum reward, which is

expressed as:

a = arg minai:i∈{1,2,... |α|} αib(o)BT(o). (6.17)

Input: Observing signal z, Λ,a, emission matrix B

Output: Action a

1 Function Decision():

2 b′(o|z)←− GMM(z); // Obtain the belief on the discrete observations using

GMM algorithms

3 b(s|z)←− Bb′(o|z);// Get the hidden state belief

4 a←− arg minal:l∈{1,2,... |α|} bT(s|z)αl.

5 end

Algorithm 4: Algorithm to Obtain the Action for Observing Signals

The overall algorithm is summarized as shown in Figure 6.2. For the offline

training, as shown on the left side, historical data sets are collected to abstract the

features and thereafter used to obtain the parameters for the HMM model and the

POMDP model, which will ultimately return the vectors for decision making given

different observations. When the model is conducted for real-time control, the signal

is abstracted into the features, which will be classified as the belief vectors on the

discrete observations. The belief vector, together with the alpha vectors generated

from the training stage, will be used to determine the ultimate control action at the

exact time.
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6.3 Case Studies

In this section, we aim to evaluate the proposed algorithm using a real bearing

dataset from a laboratory experimental platform (Wang et al. (2018)) with multiple

operating conditions. We will first give a brief introduction of the dataset in Section

6.3.1 and how to extract useful features in Section 6.3.2. We then like to show how

the degradation dynamics and states can be estimated in Section 6.3.3. Finally, we

will discuss how to optimize the preventative maintenance and multiple operating

conditions in Section 6.3.4.

6.3.1 Introduction to Dataset

To validate the effectiveness of the proposed framework, we use the XJTU-SY

bearing dataset developed from a laboratory experimental platform (Wang et al.

(2018)). Accelerated degradation tests of bearings conducted on the platform, which

provides data that characterizes the bearing degradation process during the entire

operating lifetime. The testing bed of bearing degradation experiments is shown in

Figure 6.4, which consists an alternating current (AC) induction motor, a support

shaft, two support roller bearings, a hydraulic loading system and a motor speed

controller. The acceleration degradation test is conducted for bearings under different

operation conditions, typically different rotating speed and radial force, which can

be controlled by the hydraulic loading system and the speed controller of the AC

induction motor. The experimental operating conditions are listed out as in Table 6.1,

as well as the performance of each condition, such as the lifetime and the Maximum

Amplitude (MA).

The vibration signals from the horizontal direction, which also matches the loading

direction, is captured to track the degradation process. The signals are collected with
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Figure 6.4: The Testbed of the Experiments

ID Operating Condition Bearing Lifetime Max MA

1 35Hz/12kN 158 min 28 g

2 37.5Hz/11kN 339 min 45 g

3 40Hz/10kN 114 min 45 g

Table 6.1: Information on the Bearing Degradation Dataset

sampling frequency 25.6 kHz (32768 data points per minute). The degradation process

is therefore monitored and forced to stop when the MA values of the signal reaches

out of the predetermined safety threshold, which is considered as machine failure.

Also, the degradation plot to the dataset under different operating conditions are

shown in Figure 6.5. Overall, it can be found out that an increasing trend is presented

on the amplitudes of the vibration signals throughout the entire operating time. For

some operating conditions, i.e., as shown on sub-figure (a) and (b), a fluctuation on

the signal values occurs before the fast increase of the amplitudes.
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Figure 6.5: The Plot of Vibration Signals under Different Operating Conditions

6.3.2 Feature Extraction from the Raw Signals

For the process to derive the degradation signals from the raw degradation data

(i.e., the vibration data), the following consecutive steps are commonly applied.

Eleven statistical features are extracted from the vibration signals, i.e., root mean

square, mean value, standard deviation, skewness, kurtosis, shape factor, peak to

peak, energy, etc. The expressions of the features are listed out as shown in Table

6.2, in which xi is the ith sample of the timed signal, and N is the total number of

the samples. These features indicate the amplitude and reflect the distribution of a

signal over the time domain.

6.3.3 Parameter Estimation

We then apply the proposed constrained-HMM models to classify the original

signal into six hidden unobserable states, with the last state representing the failure

observable state. In Figure 6.6, four representing features are selected under the three

operating conditions. The values of these features are plotted under each operation

condition, with the colored bars representing the level of the mean values under

different hidden states. It can be found out that the value of all these features indicate
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an upward trend overwhelmingly, which is consistent with the trend of the original

signal as well. Such behaviour is also adaptive to the left and right constraint in the

HMM model. Besides, the range of these features are also different under different

conditions. For example, under the feature ”Std”, the signal value is below 10 for

condition 0 (lower capacity) while it surpasses 15 for condition 3 (higher capacity).

Therefore, for the lower capacity case, the system has less probability to retain on

the inferior hidden states than the other conditions before the failure of the machine

is observed. Furthermore, the posterior probabilities for the hidden states are shown

as in Figure 6.7. From the results, we can see that the system is changing states

gradually. The first state and last state are able to capture the initial and failure

signal pretty clear. However, there are much more noise and in the middle states.

For example, state 4 is related to signals close to both start and end. The reason is

that we assume that multiple conditions will share the same emission matrix. Thus,

one state might be corresponding to signals from different time.

6.3.4 Multiple Condition Preventative Maintenance Policy

We then consider the control of preventative maintenance and optimize the three

operating conditions. Based on the estimated six latent states, we can generate the

PM policies for the engine. The objective is to find best of the combination of the

capacities and PM such that the total long-term production cost is the minimum. The
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Figure 6.6: State Estimation for All Conditions
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Figure 6.7: Posterior Probability for the Hidden States
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state transition matrix for all the operating conditions can be expressed as follows:

A1 =



1 2 3 4 5 F

1 0.9330 0.0670 0 0 0 0

2 0 0.8735 0.1265 0 0 0

3 0 0 0.4639 0.5361 0 0

4 0 0 0 0.0844 0.9156 0

5 0 0 0 0 0.1091 0.8909

F 0 0 0 0 0 1



A2 =



1 2 3 4 5 F

1 0.8119 0.1881 0 0 0 0

2 0 0.0428 0.9572 0 0 0

3 0 0 0.9048 0.0952 0 0

4 0 0 0 0.7707 0.2293 0

5 0 0 0 0 0.6425 0.3575

F 0 0 0 0 0 1



A3 =



1 2 3 4 5 F

1 0.5606 0.4394 0 0 0 0

2 0 0.4445 0.5555 0 0 0

3 0 0 0.8823 0.1177 0 0

4 0 0 0 0.5407 0.4593 0

5 0 0 0 0 0.7195 0.2805

F 0 0 0 0 0 1


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The emission matrix is listed out as follows:

B =



1 2 3 4 5

1 0.1983 0.0000 0.8013 0.0000 0.0003

2 0.0025 0.0098 0.5522 0.0000 0.4355

3 0.0000 0.2810 0.1381 0.0000 0.5809

4 0.0000 0.7224 0.0279 0.0014 0.2359

5 0.0000 0.7531 0.0001 0.1630 0.0838

F 0.0000 0.7651 0.0000 0.1907 0.0442


Besides, the cost matrix can be found out as follows:

c =



Action/State 1 2 3 4 5 F

1 1.2 1.2 1.2 1.2 1.2 −25

2 1.3 1.3 1.3 1.3 1.3 −25

3 1.5 1.5 1.5 1.5 1.5 −25

PM −6 −6 −6 −6 −6 −25


By solving the POMDP problem, we can obtain the collection of belief vectors

(The α vectors in the algorithm) and the corresponding actions (a). These belief

vectors are the sampled points which partitioned the entire belief space. Figure 6.4

lists out 5 of the belief vectors obtained by the PBVI algorithm.

Furthermore, in Figure 6.4, we list out five sample beliefs, and the generated

actions obtained by the algorithm. It can be found out that when the system in the

better operating conditions, i.e., higher belief on state 1 and 2, the algorithm would

suggest lower capacities. For the belief with larger values intermediate states, a larger

capacity is suggested. For the system approaching to failure while still on operation,

the algorithm will recommend conducting PM. Besides, in Figure 6.8, the change of

the actions and system states as time elapses are presented. It can be found out that
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Figure 6.8: Illustrative Examples on System States and Corresponding Actions

when the system is in good operating states, i.e., state 1 and state 2, the system

is tended to maintain lower capacity. However, when the system is approaching to

inferior states, i.e., state 3, 4, and 5, larger capacities are suggested. The system

then is recovered to the best operating activities through the maintenance when it is

almost to failure. As it is indicated from the transition matrices, when the system is

in state 1 or 2, the probability that the system retains in the same operating state

is significantly higher under the operating condition c = 1.2 is higher than the other

two conditions (i.e., 0.9330 in state 1 of A1 comparing to 0.5606 for condition c = 1.5

in matrix A3). By using the lower capacity, the degradation process is slower enough

to generate more rewards than the other two operating conditions. For state 4 and

5, however, condition c = 1.5 has larger transition probabilities than c = 1.2. The

algorithm jointly considers the degradation process and the instant capacity rewards,

which results in the decision for adapting the condition with the largest capacity.

We then conduct simulation experiments to compare the performance of the

POMDP policies with the other policies, i.e., simply following the single condition.
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500 simulation experiments are conducted, with 50,000 cycle time in each simulation.

The results are shown as in Table 6.5. It can be found out that the POMDP is an

effective framework on maintaining high performance of the manufacturing system

with different operating capacities and maintenance options.

To implement the model in real-time with the degradation signals, at the beginning

of a cycle, by collecting and transforming the real-time degradation signals, features

can be abstracted and are used as the observation input. Then by using the α-vectors,

the matching belief states can be identified and the corresponding actions can be

obtained. If PM is needed, then the bearing replacement is conducted. Otherwise,

if capacity switch is needed, then the operator will change the machine capacity

following the obtained action. After the action, new signals will be captured and the

above procedures will be repeated.

6.4 Conclusion

In this chapter, we develop a systematic framework to generate the optimal ca-

pacity and PM policies, given the fact that the observation on the system state is

imperfect. A semi-supervised left-to-right constrained HMM model is built up to

estimate the parameters of degrading unit under different operating conditions. The

information from multiple sensors is utilized to identify the system state. Further-

more, we propose a POMDP method based on the developed HMM to determine

the optimal preventative maintenance strategy for the system under consideration.

In the case study, We utilize the bearing degradation data set to demonstrate the

effectiveness of the proposed method. The results show that the proposed method is

effective in identifying the progression of the system states and capture the system

dynamics with details. In addition, the generated policy is effective in optimizing

engine performance in the long term.
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In the future, this work can be extended to more complicated systems with mul-

tiple degrading units, the behaviors of which are tightly coupled. One typical exam-

ple is a manufacturing system with multiple machines where each machine exhibits

similar degrading dynamics. Analyzing such complicated systems will expose great

challenges on system modeling and computational efficiency. Second, the structure of

the models can be further extended, i.e., the HMM model can be extended to Hidden

Semi-Markov Model (HSMM) with multiple layers. Such an extension enables better

estimation on different time and observation frequency of the degradation process.

Besides, new system improvement and control methods will be needed to incorporate

the additional complexity these modeling extensions will bring.

129



Feature Expression

RMS Xrms = ( 1
N

N∑
i=1

x2
i )

1
2

Mean Xm = 1
N

N∑
i=1

xi

Standard deviation (Std) Xstd = ( 1
N

N∑
i=1

(xi −Xm)2)
1
2

Skewness Xss = 1
X3

rms

N∑
i=1

(xi −Xm)3

Kurtosis Xks = 1
X4

rms

N∑
i=1

(xi −Xm)4

Peak to peak (P-P) Xpp = xmax − xmin

Crest factor Xcf = xmax

Xrms

Shape factor Xsf = xrms

1
N

N∑
i=1
|xi|

Impulse factor Xif = xmax

1
N

N∑
i=1
|xi|

Margin factor Xmf = xmax

( 1
N

N∑
i=1
|xi|)2

Energy Xe =
N∑
i=1

x2
i

Table 6.2: Feature Descriptions of the Dataset
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Belief Action
Value function

State 1 State 2 State 3 State 4 State 5 F

1 C=1.2 6.32 5.58 4.24 -8.79 -27.3 -84.16

2 C=1.2 6.02 4.52 4.26 1.08 -11.7 -55.55

3 C=1.5 5.27 2.8 2.68 1.21 -10.89 -54.56

4 C=1.5 5.87 4.1 3.02 0.85 -3.87 -41.73

5 PM -0.95 -0.95 -0.95 -0.95 -0.95 -19.95

. . .(200+) . . . . . . . . . . . . . . . . . . . . .

Table 6.3: A list of Belief Vectors and Actions

Sample ID Action
Belief

State 1 State 2 State 3 State 4 State 5 F

1 C=1.2 0.8185 0.0888 0.0927 0 0 0

2 C=1.5 0 0.2227 0.6484 0.0931 0.0146 0.0213

3 C=1.5 0 0 0.3551 0.2606 0.3169 0.0674

4 PM 0 0 0 0.3373 0.1655 0.4972

5 PM 0 0 0 0 0.6291 0.3709

Table 6.4: Sample Belief Values and Its Corresponding Actions

Proposed Method C1 C2 C3

Mean 14617.09 11127.31 5846.04 -9213.23

Std 630.71 653.41 616.38 774.27

Table 6.5: Performance Comparisons
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, analytical approaches are conducted to evaluate the perfor-

mance of the manufacturing systems, considering the machine degradation process.

Specifically, for the serial production systems, models are developed to evaluate the

overall system performance. Bottleneck identification tools are created to find the

machines and states that has the biggest influence on the up-time, and down-time,

if a slight improvement is achievable. Furthermore, flexible maintenance options are

considered to further improve the system performance, through recovering the system

states from any of the non-perfect operating state. A system conditional-based policy

generating tool is developed to include all possible conditions of the two machine and

one buffer system, and an aggregation method is developed to find applicable poli-

cies for the general serial production lines. Besides, for the flexible systems with the

options on production capacity controls, we generate an efficient framework, which

integrate the real-time degradation signals to optimally control the production rate

and PM actions to maximize the long-term system performance. Numerical experi-

ments have shown that the method is effective and better than the current state of

the art.

In the future, the work can be extended through the following directions:

First, in terms of the degradation process, different types of degradation can be

considered, not limited to the degradation of the machine conditions. For example,

the position accuracy of the tools can also lead to the performance deviation from

the target, which can also be considered. Furthermore, such multiple factors can

impact the degradation process, such as the temperature, workload, speed,etc. These
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information should also be considered. Moreover, in terms of the channels to collect

the real-time information, multiple signals will be considered.

Second, in terms of the structure of the manufacturing systems, more complicated

structures can be considered. Beyond the structure, the serial production system

considered in this work, other types of production systems, such as the assembly lines

and production networks are expected to discussed. Besides, since the two machines

and one buffer case, and also the serial production lines are the typical structures

in the large production systems, the results and findings discussed in this work is

expected to extend. Meanwhile, considering the complexity in the large networks,

approximation methods are also expected to develop.

Third, for production controls, to make full use of the real-time information, it

is expected that more systematic control strategies are developed on the basis of the

real-time system performance evaluation model. Besides, for the complex systems, a

hybrid modeling and optimization approach is expected. Typically analytical models

are fast to run but can have reduced accuracy. On the other hand simulation models

can achieve high accuracy, but only at the cost of large simulation time and number

of replications. Traditionally, the research has been focusing on the development of

models able to achieve a satisfactory trade off between accuracy and computational

effort. Nevertheless, such an approach implies the choice of a single model to ap-

proximate the system behavior. The lack of a generic model that can deliver high

accuracy and low computational cost for production systems should be addressed.
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A.1 Proof of Corollary 1

Induction is used to prove this corollary. First, if only one operating state exists
for the machine, then P = p1,F .

For a machine with two operating states, the failure state follows p1,F ≤ p2,F .
Denote P in this case as P (2), where the numerical value represents the number of
operating states. According to Equation (3.3),

P (2) =
1

2∑
i=1

1
1−pi,i

i−1∏
j=1

αj

=
1

1
1−p1,1 + 1

1−p1,1
p1,2

1−p2,2

=
(1− p1,1)(1− p2,2)

1− p2,2 + p1,2

=
(p1,F + p1,2)p2,F

p2,F + p1,2

=
p1,2(p2,F − p1,F )

p2,F + p1,2

+ p1,F

≥ p1,F .

(A.1)

Assume that the above relationship holds for machines with k operating states. Then
the task is to prove that for machine with k + 1 states, such relationship still holds.
The idea is that the first operating state is kept while the remaining k operating
states are aggregated into one state U and P (k) could be obtained accordingly. It is
assumed that for a machine with k operating states, p2,F ≤ P (k). Then we aggregate
state U and state 1, and obtain P (k + 1). Since p1,F ≤ p2,F , by using the results for
P (2), it follows that p1,F = min{p1,F , P (k)} ≤ P (k+ 1). Thus the relationship holds
for machine with k + 1 operating states.

In order to complete the argument, it is necessary to prove that P (k+1) obtained
by the above strategy is the same as the one derived using the aggregated probability
formula (Equation (3.3))in the integrated model. In other words, P (k+ 1) = P when
there are k + 1 operating states. Let p2,2 = 1− P (k), then it follows that

P (k + 1) =
1

2∑
i=1

1
1−pi,i

i−1∏
j=1

αj

=
1

1
1−p1,1 + 1

1−p1,1
p1,2
P (k)

=
1

1
1−p1,1 + p1,2

1−p1,1

k+1∑
i=2

1
1−pi,i

i−1∏
j=2

αj

=
1

1
1−p1,1 + α1

k+1∑
i=2

1
1−pi,i

i−1∏
j=2

αj

=
1

k+1∑
i=1

1
1−pi,i

i−1∏
j=2

αj

.

(A.2)
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It can be found that the above equation is equivalent to Equation (3.3), which con-
cludes the proof.

A.2 Proof of Corollary 2

Let Y denote the denominator of P in Equation (3.3). It could be rewritten as
follows:

Y =
W∑
i=1

1

1− pi,i

i−1∏
j=1

αj

=
k−1∑
i=1

1

1− pi,i

i−1∏
j=1

αj +
1

1− pk,k

k−1∏
j=1

αj + αk

k−1∏
j=1

αj

M∑
i=k+1

1

1− pi,i

i−1∏
j=k+1

αj

=
k−1∑
i=1

1

1− pi,i

i−1∏
j=1

αj +
1

1− pk,k

k−1∏
j=1

αj + αk

k−1∏
j=1

αj
p∗k+1

=
k−1∑
i=1

1

1− pi,i

i−1∏
j=1

αj +
k−1∏
j=1

αj

( 1

1− pk,k
+

αk
p∗k+1

)
=

k−1∑
i=1

1

1− pi,i

i−1∏
j=1

αj +
k−1∏
j=1

αj
p∗k+1

+
k−1∏
j=1

αj

(
1− pk,F

p∗k+1

) 1

1− pk,k
.

(A.3)

The notation of p∗k+1 refers to the aggregated failure probability for states k +
1, k+2, . . . ,W . Therefore, derivatives of Y and P with respect to pk,k could be found
in the following equations:

∂Y

∂pk,k
=

k−1∏
j=1

αj

(
1− pk,F

p∗k+1

) 1

(1− pk,k)2
,

∂P

∂pk,k
= − 1

Y 2

∂Y

∂pk,k
= − 1

Y 2

k−1∏
j=1

αj

(
1− pk,F

p∗k+1

) 1

(1− pk,k)2
,

k = 1, 2, . . . ,W.

(A.4)

Based on the proof of Corollary 1, pk,F ≤ p∗k+1. Therefore, ∂P
∂pk,k

≤ 0, which concludes

the proof.

A.3 Proof of Corollary 3

Based on the closed formula derived in Equation (3.4), Corollary 3 can be proved
by taking derivatives of the production rate based on the corresponding probability.
For N = 1 case, the results can be expressed in the following closed formula explicitly.
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∂PR

∂P2

= −K1

(
(1−R2)R1 + (1− P1)R2

)
, (A.5)

where K1 = R1R2

(P1+R1)(P2+R2)2(R1+R2−R1R2)
> 0.

It has been shown that ∂PR
∂P2
≤ 0. Therefore, for N = 1, production rate PR is

monotonically decreasing with respect to P2.
Similarly,

∂PR

∂R2

=K2

[
(1− P1)R2

2 + (1−R2)2R2
1 + P1R

2
2(P2 +R2

2) +R1R2(1−R2)(2 + P2)
]
,

(A.6)
where K2 = P2

(P1+R1)(P2+R2)2(R1+R2−R1R2)2
> 0.

Since ∂PR
∂R2
≥ 0, production rate PR is monotonically increasing with respect to

R2, when N = 1.
As for the monotonicity of PR with respect to R1 and P1, the problem could be

transformed to analyzing the Φ function, according to Equation (3.4). The mono-
tonicity of the Φ function with respect to R1 and P1 have been discussed in Li and
Meerkov (2008). It shows that for N = 1, production rate PR is monotonically de-
creasing with respect to P1 and increasing with respect to R1.

A.4 Proof of Corollary 4

For each individual machine, when pk,k increases, P is non-increasing, according
to Corollary 2. In the two-machine-one-buffer model, according to Corollary 3, the
decrease of either P1 or P2 will lead to the increase of production rate. Therefore,

production rate PR is monotonically increasing with respect to p
(i)
k,k, k = 1, 2, . . . ,Wi,

i = 1, 2.

It is also assumed that p
(i)
k,F remains constant. Since p

(i)
k,F+p

(i)
k,k+1+p

(i)
k,k = 1, produc-

tion rate (PR) is monotonically decreasing with respect to p
(i)
k,k+1, k = 1, 2, . . . ,Wi−1,

i = 1, 2.

A.5 Proof of Theorem 4

First, the following notations are introduced to facilitate the proof.

γ1 = R1 +R2 −R1R2,

γ2 = P1 +R1,

γ3 = P2 +R2,

(A.7)

144



Then, according to Equations (3.4), (3.5), and (3.6),

ST2 =
P1R2θ2

γ1γ2γ3

,

BL1 =
P2R1θ1

γ1γ2γ3

.

(A.8)

The proof of the theorem could be done by merging the terms in the derivatives
into the expressions of desired probabilities, blockage and starvation.

∂PR

∂Tu1
= e2(

P1θ2

γ2
2γ1

+
θ2

γ2γ1

)(−P 2
1 )

=
R2

γ3

(
γ3

γ2R2

ST2 −
γ3

P1R2

ST2)(−P 2
1 )

= −P1(1− e1)ST2 + P1ST2

= P1e1ST2.

(A.9)

The derivative with respect to the second machine can be obtained as follows:

∂PR

∂Tu2
= (

e2

γ3

(
P1θ2

γ2γ1

− 1) +
P1R1R2

γ1γ2γ3

)(−P 2
2 )

= (
e2

γ3

(
P1(γ1 − P2R1)− (P1 +R1)γ1

γ2γ1

) +
P1P2R2

γ1γ2γ3

)(−P 2
2 )

= (
e2R1

γ3

(
γ1 + P1P2

γ2γ1

)− P1R1R2

γ1γ2γ3

)P 2
2

= (
e2R1

γ3

(
θ1 + P1R2 + P1P2

γ2γ1

)− P1R1R2

γ1γ2γ3

)P 2
2

= e2
R1P2θ1

γ1γ2γ3

P2 + (
e2R1

γ3

(
P1R2 + P1P2

γ2γ1

)− P1R1R2

γ1γ2γ3

)P 2
2

= P2e2BL1.

(A.10)

Therefore, it is equivalent to compare the value of P1e1ST2 and P2e2BL1 in contrast
to comparing ∂PR

∂Tu1
and ∂PR

∂Tu2
.
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A.6 Proof of Theorem 5

The proof follows the similar idea and uses the same notations as in the proof of
Theorem 4. First, we derive the partial derivative of PR with respect to machine 1.

−∂PR
∂Td1

= e2R
2
1(
P1θ2

γ1γ2
2

+
P1(γ3 − 1)θ2

γ1γ2

− P1θ2(R2 − 1)

γ2
1γ2

)

= R1
R1

γ2

(e2
P1θ2

γ1γ2

) + e2R
2
1(
P1[P2 + (R2 − 1)]

γ1γ2

− P1(γ1 − P2R1)(R2 − 1)

γ2
1γ2

)

= R1e1ST2 + e2R
2
1[
P1P2

γ1γ2

+
P1P2R1(R2 − 1)

γ2
1γ2

]

= R1e1ST2 +
e2P1P2R1

γ2
1γ2

[R1γ1 +R2
1(R2 − 1)]

= R1e1ST2 +
e2P1P2R1

γ2
1γ2

[R1(R1 +R2 −R1R2) +R2
1(R2 − 1)]

= R1e1ST2 +
e2P1P2R

2
1R2

γ2
1γ2

.

(A.11)

The derivative with respect to the second machine can be obtained as follows:

−∂PR
∂Td2

= R2
2{e2[

P1(R1 − 1)

γ1γ2

− P1(R1 − 1)θ2

γ2
1

γ2]−
P1θ2
γ2γ1
− 1

γ3

+
R2(P1θ2

γ2γ1
− 1)

γ2
3

}

= R2
2{e2[

P1(R1 − 1)

γ1γ2

− P1(R1 − 1)(γ1 − P2R1)

γ2γ2
1

] + (
P1θ2

γ2γ1

− 1)(
R2

γ2
3

− 1

γ3

)}

= e2R
2
2(
P1P2R1(R1 − 1)

γ2
1γ2

) + (
P1(γ1 − P2R1)− (P1 +R1)γ1

γ1γ2

)(
R2 − (P2 +R2)

γ2
3

)R2
2

= e2R
2
2(
P1P2R1(R1 − 1)

γ2
1γ2

) + (
(P1P2R1 +R1γ1)P2

γ1γ2γ2
3

)R2
2

= e2R
2
2(
P1P2R1(R1 − 1)

γ2γ2
1

) + (
(P1P2 + (θ1 + P1R2)

γ2γ1γ2
3

)P2R1R
2
2

= e2R
2
2(
P1P2R1(R1 − 1)

γ2γ2
1

) + (
P1

γ2γ1γ3

+
θ1

γ2γ1γ2
3

)P2R1R
2
2

= e2R
2
2(
P1P2R1(R1 − 1)

γ2γ2
1

) + e2
P1P2R1R2

γ2γ1

+
P2R1θ1

γ2γ1γ3

R2

γ3

R2

= e2(
P1P2R1R

2
2(R1 − 1)

γ2γ2
1

+
P1P2R1R2

γ1γ2

) +R2e2BL1

=
e2P1P2R1R2

γ2γ2
1

[R2(R1 − 1) + γ1] +R2e2BL1

=
e2P1P2R

2
1R2

γ2γ2
1

+R2e2BL1.

(A.12)
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Therefore, it is equivalent to compare the value of R1e1ST2 and R2e2BL1 in con-
trast to comparing ∂PR

∂Td1
and ∂PR

∂Td2
directly, which concludes the proof.

A.7 Proof of Theorem 6

The chain rule shows that:∣∣∣∣∣∂PR∂pkk

∣∣∣∣∣ =

∣∣∣∣∣∂PR∂P
· ∂P
∂pk,k

∣∣∣∣∣. (A.13)

For each machine, |∂PR
∂P
| is the same for all states. Therefore, the derivatives to iden-

tify the state bottleneck can be simplified by using | ∂P
∂pk,k
|. Its closed form expression

can be obtained directly from Equation (3.3).
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PROOFS OF CHAPTER 5
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B.1 Proof of Proposition 1

Let Y denote a random variable, presenting the time staying in the system. Then
the moment generating function of this variable, noted as MY (t), can be expressed
as follows:

MY (t) = E(etY ) =

∫ ∞
−∞

etyf(y)dy

= p

∫ ∞
0

ety1e−λ1y1dy1

∫ ∞
0

λ2e
−λ2y2dy2

+ (1− p)
∫ ∞

0

ety2λ2e
−λ2y2dy2

= p
λ1

λ1 − t
λ2

λ2 − t
+ (1− p) λ2

λ2 − t
.

(B.1)

Therefore, we can get the three moments of Y as follows:

m1 =
dMY (t)

dt
|t=0 =

p

λ1

+
1

λ2

,

m2 =
d2MY (t)

dt2
|t=0 =

2p

λ2
1

+
2p

λ1λ2

+
2

λ2
2

,

m3 =
d3MY (t)

dt3
|t=0 =

6p

λ3
1

+
6p

λ2
1λ2

+
6p

λ1λ2
2

+
6

λ3
2

.

(B.2)

Let φ1,φ2 and φ3 be the first three moment of the IG distribution IG(α, β). By
using the moment generating function of IG distributions, we can find the value of
the φ’s as follows:

φ1 = α,

φ2 =
α2(α + β)

β
,

φ3 =
α3(β2 + 3βα + 3α2)

β2
.

(B.3)

Therefore, we can solve the equations generated by matching the moments of the IG
distribution and the PH distribution, thus determining the three unknown parameters
in the PH distribution.

It can be verified that real solutions exist if and only if when α ≥ β. Specifically,
when α = β and p = 0, the phase type distribution obtained is an exponential
distribution.

When α < β, matching three moments is not possible because no feasible solution
exists. Rather, we match two moments for the distribution. In this case, three vari-
ables are in the PH distribution while only two moment functions are available for the
moment matching. In other words, it is possible to have multiple feasible parameter
settings to match an IG distribution into the PH distribution. In this section, we
only provide one special solution to find the parameters in the PH distribution.
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κ5 = 2m2
1 −m2,

p = min(1,
κ5 +

√
κ2

5 + κ5

m2

),

λ1 = λ2 =
1 + p

m1

.

(B.4)

It can be verified that the λ and p values are feasible for all the situations when α < β.
This finishes the proof.

B.2 Dynamic and Steady State Equations

Following the similar idea as in Equation (5.8), we can derive the dynamic equa-
tions for all the other Xs1s2(h, t) as follows:

X12(h, t+ ∆t) =X12(h+ (c2 − c1)∆t, t)e−(λ11+λ22)∆t

+ e−λ22∆t

∫ ∆t

0

Xd2(h+ c2∆t− c1(∆t− τ), t)p1µ1

× e−µ1τdτ + e−λ11∆t

∫ ∆t

0

X1d(h+ c2(∆t− τ)

− c1∆t, t)(1− p2)µ2e
−µ2τdτ + e−λ11∆t

∫ ∆t

0

X11(h

+ (c2 − c1)∆t, t)λ11e
−λ11τdτ +O(∆t2).

(B.5)

X1d(h, t+ ∆t) =X1d(h− c1∆t, t)e−(λ11+µ2)∆t

+ e−µ2∆t

∫ ∆t

0

Xdd(h− c1(∆t− τ), t)p1µ1e
−µ1τdτ

+ e−λ11∆t

∫ ∆t

0

X12(h+ c2(∆t− τ)− c1∆t, t)λ22

e−λ22τdτ +O(∆t2).

(B.6)

X21(h, t+ ∆t) =X21(h+ (c2 − c1)∆t, t)e−(λ12+λ21)∆t

+ e−λ11∆t

∫ ∆t

0

Xd1(h+ c2∆t− c1(∆t− τ), t)(1− p1)

× µ1e
−µ1τdτ + e−λ11∆t

∫ ∆t

0

X11(h+ (c2 − c1)∆t, t)

× λ11e
−λ11τdτ + e−λ12∆t

∫ ∆t

0

X2d(h− c1∆t+

c2(∆t− τ), t)p2µ2e
−µ2τdτ +O(∆t2).

(B.7)
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X22(h, t+ ∆t) =X22(h+ (c2 − c1)∆t, t)×

e−(λ12+λ21)∆t + e−λ22∆t

∫ ∆t

0

X12(h+ (c2 − c1)∆t, t)

× p1λ11e
−λ11τdτ + e−λ22∆t

∫ ∆t

0

Xd2(h+ c2∆t− c1

× (∆t− τ), t)(1− p1)µ1e
−µ1τdτ + e−λ12∆t

∫ ∆t

0

X21

× (h+ (c2 − c1)∆t, t)p1λ21e
−λ21τdτ + e−λ12∆t

×
∫ ∆t

0

X2d(h+ c2(∆t− τ)− c1∆t, t)(1− p2)µ2e
−µ2τdτ.

(B.8)

The simplified steady state dynamic equation, following the idea of Equation
(5.11) and (5.12), is shown as follows:

(c1 − c2)
∂X12(h)

∂h
= −(λ11 + λ22)X12(h) + p1µ1Xd2(h) + (1− p2)µ2X1d(h). (B.9)

c1
∂X1d(h)

∂h
= −(λ11 + µ2)X1d(h) + p1µ1Xdd(h) + λ12X12(h). (B.10)

(c1 − c2)
∂X21(h)

∂h
=− (λ12 + λ21)X12(h)+

λ11X11(h) + p2µ2X2d(h) + (1− p1)µ1Xd1(h).
(B.11)

(c1 − c2)
∂X22(h)

∂h
=− (λ12 + λ22)X12(h) + λ11X12(h)

+ λ21X21(h) + (1− p2)µ2X2d(h) + (1− p1)µ1Xd2(h).
(B.12)

c1
∂X2d(h)

∂h
= −(λ12 + µ2)X12(h) + λ11Xd2(h) + λ22X22(h) + (1− p1)µ1Xdd(h).

(B.13)

−c2
∂Xd1(h)

∂h
= −(µ1 + λ21)Xd1(h) + λ12X21(h) + p2µ2Xdd(h). (B.14)

−c2
∂Xd2(h)

∂h
= −(µ1 + λ22)Xd2(h) + λ12X22(h) + λ21Xd1(h) + (1− p2)µ2Xdd(h).

(B.15)

0 = −(µ1 + µ2)Xdd(h) + λ12X2d(h) + λ22Xd2(h). (B.16)

The following equations determine the boundary conditions.

Y12(0, t+ ∆t) =Y12(0, t)e−(λ11+λ22)∆t +

∫ (c2−c1)∆t

0

X12(h, t)e−(λ11+λ22)∆tdh

+

∫ ∆t

0

Yd2(0, t)p1µ1e
−µ1τdτ +

∫ ∆t

0

Y11(0, t)λ21e
−λ21τdτ +O(∆t2).

(B.17)
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Y1d(0, t) = 0 (B.18)

Y21(0, t+ ∆t) = Y21(0, t)e−(λ12+λ21)∆t +

∫ (c2−c1)∆t

0

X21(h, t)e−(λ12+λ21)∆tdh

+

∫ ∆t

0

Y11(0, t)λ11e
−λ11τdτ +

∫ ∆t

0

Yd1(0, t)(1− p1)µ1e
−µ1τdτ +O(∆t2).

(B.19)

Y22(0, t+ ∆t) =Y22(0, t)e−(λ12+λ22)∆t +

∫ (c2−c1)∆t

0

X22(h, t)e−(λ12+λ22)∆tdh

+

∫ ∆t

0

Y12(0, t)λ11e
−λ11τdτ +

∫ ∆t

0

Yd2(0, t)(1− p1)µ1e
−µ1τdτ

+

∫ ∆t

0

Y21(0, t)λ21e
−λ21τdτ +O(∆t2).

(B.20)

Y2d(0, t) = 0. (B.21)

Yd1(0, t+ ∆t) =Yd1(0, t)e−(µ1+λ21)∆t +

∫ c2∆t

0

Xd1(h, t)e−(µ1+λ21)∆tdh+∫ ∆t

0

Y21(0, t)λ12e
−λ12τdτ +

∫ ∆t

0

Ydd(0, t)p2µ2e
−µ2τdτ +O(∆t2).

(B.22)

Yd2(0, t+ ∆t) =Yd2(0, t)e−(µ1+λ22)∆t +

∫ c2∆t

0

X22(h, t)e−(µ1+λ22)∆tdh+∫ ∆t

0

Y22(0, t)λ12e
−λ12τdτ +

∫ ∆t

0

Yd1(0, t)λ21e
−λ21τdτ

+

∫ ∆t

0

Ydd(0, t)(1− p2)µ2e
−µ2τdτ +O(∆t2).

(B.23)

Ydd(0, t+ ∆t) = Ydd(0, t)e
−(µ1+µ2)∆t +

∫ ∆t

0

Yd2(0, t)λ22e
−λ22τdτ +O(∆t2). (B.24)

The simplified steady state dynamic equation, following the idea of Equation
(5.11) and (5.12), is shown as follows:

(λ11 + λ21)Y11(0) = (c2 − c1)X11(0) + p1µ1Yd1(0). (B.25)

(λ11 + λ22)Y12(0) = (c2 − c1)X12(0) + λ21Y11(0) + p1µ1Yd2(0). (B.26)

(λ12 + λ21)Y21(0) = (c2 − c1)X21(0) + λ11Y11(0) + (1− p1)µ1Yd1(0). (B.27)

(λ12 + λ22)Y22(0) = (c2 − c1)X22(0) + λ11Y12(0) + λ21Y21(0) + (1− p1)µ1Yd2(0).
(B.28)

(µ1 + λ21)Yd1(0) = −c1Xd1(0) + λ12Y21(0) + p2µ2Ydd(0). (B.29)
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(µ1 + λ22)Yd2(0) = −c1Xd2(0) + λ12Y22(0)+

λ21Yd1(0) + (1− p2)µ2Ydd(0).
(B.30)

(µ1 + µ2)Ydd(0) = λ22Yd2(0). (B.31)

The following equations determines the boundary conditions when buffer level is full.

Y12(N, t+ ∆t) =Y12(N, t)e−(λ11+λ22)∆t +

∫ (c1−c2)∆t

0

X12(N − h, t)e−(λ11+λ22)∆tdh+∫ ∆t

0

Y2d(N, t)p1µ1e
−µ1τdτ +

∫ ∆t

0

Y11(N, t)λ21e
−λ21τdτ +O(∆t2).

(B.32)

Y1d(N, t+ ∆t) =Y1d(N, t)e
−(µ2+λ11)∆t +

∫ c2∆t

0

X1d(N, t)e
−(µ2+λ11)∆tdh+∫ ∆t

0

Y12(N, t)λ22e
−λ22τdτ +

∫ ∆t

0

Ydd(N, t)p1µ1e
−µ1τdτ +O(∆t2).

(B.33)

Y21(N, t+ ∆t) =Y21(N, t)e−(λ12+λ21)∆t +

∫ (c1−c2)∆t

0

X21(N − h, t)e−(λ12+λ21)∆tdh

+

∫ ∆t

0

Y11(N, t)λ11e
−λ11τdτ +

∫ ∆t

0

Yd2(N, t)p2µ2e
−µ2τdτ +O(∆t2).

(B.34)

Y22(N, t+ ∆t) =Y22(N, t)e−(λ12+λ22)∆t +

∫ (c2−c1)∆t

0

X22(N − h, t)e−(λ12+λ22)∆tdh

+

∫ ∆t

0

Y12(N, t)λ11e
−λ11τdτ +

∫ ∆t

0

Y2d(N, t)(1− p2)

× µ2e
−µ2τdτ +

∫ ∆t

0

Y21(N, t)λ21e
−λ21τdτ +O(∆t2).

(B.35)

Y2d(N, t+ ∆t) =Y2d(N, t)e
−(µ2+λ22)∆t +

∫ c2∆t

0

X22(N − h, t)e−(µ1+λ22)∆tdh

+

∫ ∆t

0

Y1d(N, t)× λ11e
−λ11τdτ +

∫ ∆t

0

Y22(N, t)λ22e
−λ22τdτ

+

∫ ∆t

0

Ydd(N, t)(1− p1)µ1e
−µ1τdτ +O(∆t2).

(B.36)

Yd1(N, t) = 0. (B.37)

Yd2(N, t) = 0. (B.38)

153



Ydd(N, t+ ∆t) = Ydd(N, t)e
−(µ1+µ2)∆t +

∫ ∆t

0

Y2d(N, t)λ22e
−λ22τdτ +O(∆t2). (B.39)

The simplified steady state dynamic equation, following the idea of Equation (5.11)
and (5.12), is shown as follows:

(λ11 + λ21)Y11(N) = (c1 − c2)X11(N) + p2µ2Y1d(N). (B.40)

(λ11 + λ22)Y12(N) = (c1 − c2)X12(N) + λ21Y11(N) + (1− p2)µ2Y1d(N). (B.41)

(λ11 + µ2)Y1d(N) = c1X1d(N) + λ22Y12(N) + p1µ1Ydd(N). (B.42)

(λ12 + λ21)Y21(N) = (c1 − c2)X21(N) + λ22Y12(N) + p1µ1Ydd(N). (B.43)

(λ12 + λ22)Y22(N) = (c1 − c2)X22(N) + λ11Y12(N) + λ21Y21(N) + (1− p2)µ2Y2d(N).
(B.44)

(λ12 + λ22)Y2d(N) = c1X2d(N) + λ22Y22(N) + (1− p1)µ1Ydd(N). (B.45)

(µ1 + µ2)Ydd(N) = λ12Y2d(N). (B.46)
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