
FPGA Acceleration of CNNs Using OpenCL

by

Pravin Kumar Ravi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2020 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Baoxin Li

Fengbo Ren

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

Convolutional Neural Network (CNN) has achieved state-of-the-art performance in

numerous applications like computer vision, natural language processing, robotics etc.

The advancement of High-Performance Computing systems equipped with dedicated

hardware accelerators has also paved the way towards the success of compute intensive

CNNs. Graphics Processing Units (GPUs), with massive processing capability, have

been of general interest for the acceleration of CNNs. Recently, Field Programmable

Gate Arrays (FPGAs) have been promising in CNN acceleration since they offer

high performance while also being re-configurable to support the evolution of CNNs.

This work focuses on a design methodology to accelerate CNNs on FPGA with low

inference latency and high-throughput which are crucial for scenarios like self-driving

cars, video surveillance etc. It also includes optimizations which reduce the resource

utilization by a large margin with a small degradation in performance thus making

the design suitable for low-end FPGA devices as well.

FPGA accelerators often suffer due to the limited main memory bandwidth. Also,

highly parallel designs with large resource utilization often end up achieving low op-

erating frequency due to poor routing. This work employs data fetch and buffer

mechanisms, designed specifically for the memory access pattern of CNNs, that over-

lap computation with memory access. This work proposes a novel arrangement of the

systolic processing element array to achieve high frequency and consume less resources

than the existing works. Also, support has been extended to more complicated CNNs

to do video processing. On Intel Arria 10 GX1150, the design operates at a frequency

as high as 258MHz and performs single inference of VGG-16 and C3D in 23.5ms and

45.6ms respectively. For VGG-16 and C3D the design offers a throughput of 66.1 and

23.98 inferences/s respectively. This design can outperform other FPGA 2D CNN

accelerators by up to 9.7 times and 3D CNN accelerators by up to 2.7 times.

i

ACKNOWLEDGEMENT

I would love to thank my advisor Dr. Ming Zhao for the opportunity, encour-

agement and support he extended to me. My Masters would not have been possible

without his valuable advice. I would love to thank Dr. Fengbo Ren for his support

throughout the time by granting me access to the hardware resources which were very

crucial for this project. I would love to thank Dr. Baoxin Li for being a part of the

committee and reviewing my work. I would love to thank Saman Biookaghazadeh for

educating me the perks of research and for providing constant guidance on my work.

His directions helped me move in the right direction.

This work is in honor of the incomprehensible superpower, God, for He is my

strength and shield who surrounds me with shouts of deliverance. To me, Masters

program was a period of spiritual growth, needless to say, the massive growth in

technical knowledge. I owe my deepest gratitude to my father, mother and sister for

their unconditional love, support, motivation, and for showering me with valuable

advice and guidance. I would love to thank my friends, who are like my family in a

foreign country, for making this journey a memorable one.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Convolutional Neural Network . 3

2.2 Winograd Transformation . 6

2.3 Related Works . 6

3 DESIGN . 9

3.1 Host Application . 9

3.1.1 Input Data Arrangement for Efficient DDR Access 9

3.2 CNN Accelerator Architecture . 11

3.2.1 Controller . 12

3.2.2 MemReadData . 12

3.2.3 MemReadWeight . 13

3.2.4 Systolic Array . 13

3.2.5 MemWrite . 15

3.2.6 Winograd and Inverse Winograd Transformation 15

4 3D CNN ACCELERATOR . 16

4.1 Data Reuse Opportunity Along Frame Dimension 17

4.2 Order of Execution of Dimensions . 17

4.3 Large Weight Filters . 18

5 OPTIMIZATIONS. 20

5.1 Area Optimization . 20

iii

CHAPTER Page

5.1.1 Semi-1D Systolic Array . 21

5.1.2 Timeshared Channels . 22

5.2 Memory Optimization . 24

5.2.1 Double Data Buffer . 25

5.2.2 Double Weight Buffer . 30

5.2.3 Number of #PEs . 31

5.2.4 Convolution Layer Split . 32

5.3 Frequency Optimization . 33

5.3.1 Systolic Weight Channels . 33

5.4 Fully Connected Layers . 34

6 RESULTS . 38

7 CONCLUSION . 42

REFERENCES . 43

iv

LIST OF TABLES

Table Page

2.1 Contribution of VGG-16 Layers to Total Arithmetic Operations and

Input/Weight Parameters . 3

2.2 Contribution of C3D Layers to Total Arithmetic Operations and In-

put/Weight Parameters . 4

5.1 Comparison of Latency on 32 PEs, 1 PE and Theoretical 35

6.1 Performance Comparison of Baseline Architecture and Optimized Ar-

chitecture . 39

6.2 Performance Comparison of State-of-the-art 2D CNN Accelerators 40

6.3 Performance Comparison of State-of-the-art 3D CNN Accelerators 41

v

LIST OF FIGURES

Figure Page

2.1 Convolution Layer . 5

2.2 F(2,3) Transformation of Winograd Algorithm . 6

3.1 Data Rearrangement . 11

3.2 Architecture of CNN Accelerator . 12

3.3 Architecture of PE . 14

4.1 Performance Evaluation of Frame-major and Output Channel-major

Designs . 19

5.1 Semi-1D Systolic Array . 23

5.2 Timeshared Channels . 24

5.3 Double Data Buffer . 27

5.4 Double Data Buffer with DDR Read Isolation . 29

5.5 Impact of Number of PEs on Latency . 32

5.6 Systolic Weight Channels . 34

5.7 Dedicated PE for Fully Connected Layers . 36

vi

Chapter 1

INTRODUCTION

Neural Networks, inspired by the working of the brain, are used to model patterns

and form predictions. Neural networks have leveled up the accuracy of predictions

in applications like image processing, video understanding, forecasting etc. Convolu-

tional Neural Network is a multilayer network where each neuron is connected with

the neurons in a particular local region of previous layer. This local connectivity

makes CNNs suitable for applications like computer vision, robotics etc. CNN is

highly compute-intensive due to convolution operation which are their basic building

blocks.

Multi-core CPUs and GPUs were extensively used to meet the tremendous com-

putation needs of CNNs. However, the high power consumption of CPUs and GPUs

makes them unsuitable for energy-constrained systems such as edge-computing Biook-

aghazadeh et al. (2018). Also, they cannot promise low single inference latency. While

ASICs can provide energy-efficient, low latency inferences, they are not suitable for

the evolving nature of CNNs. Recently, FPGAs have gained attraction in CNN ac-

celeration since they are power efficient and provide high throughput than CPUs and

GPUs while also being reconfigurable to support the evolution of CNNs.

CNNs learn new information during training phase and apply the knowledge dur-

ing inference phase to make a prediction in real-time. In applications like self-driving

cars, video surveillance etc. only inferences are performed by the accelerator. In such

real-time scenarios, low inference latency is very crucial and failure to meet the latency

constraint might be disastrous. This work is focused on building a low-latency CNN

processor on FPGA which is generic to support a wide range of CNN architectures.

1

In this thesis, we present a novel design methodology that can leverage the parallel

power of an FPGA. We implemented this work in OpenCL that allows easy integration

with deep learning frameworks like Tensorflow Abadi et al. (2016) and Caffe Jia

et al. (2014). We adopted the systolic array of processing elements and studied

various inefficiencies that exist. Using a novel arrangement of processing elements we

reduced the resource consumption with no loss of performance. We further explored

optimizations that significantly reduced the resource consumption with a small loss

in performance. We performed optimizations that improved the operating frequency

by a large margin. Also, we extended the systolic array to support 3D convolutions to

accelerate CNN applications that perform complex operations like video processing.

To demonstrate the performance of our framework, we performed experiments

on different 2D CNNs like VGG-16, Alexnet, Resnet and the 3D CNN C3D. Our

implementation shows superior performance compared with existing works.

2

Chapter 2

BACKGROUND

2.1 Convolutional Neural Network

Convolutional Neural Network is the backbone in applications like image classifi-

cation Litjens et al. (2017), reinforcement learning Arulkumaran et al. (2017), natural

language processing etc. CNN performs a sequence of operations, each considered as

a layer. Each layer accepts an input from previous layer, performs the computation

and produces output which becomes the input for the next layer. CNN comprises of

layers such as convolution, pooling, fully-connected, ReLU etc. The neurons in each

layer is activated based on the neurons in a particular local region of the previous

layer. This local connection makes CNN suitable for learning the information in a

local area along the spatial dimensions of the input.

CNNs are compute-intensive due to the arithmetic complexity involved in con-

volution layers and fully connected layers. The size of parameters is also large only

for these two layers. Table 2.1 represents the percentage of operations and size of

Layer Operations Data size

Convolution 99.20% 8.61%

Fully connected 00.79% 91.38%

Pooling 00.00% 00.00%

Table 2.1: Contribution of VGG-16 Layers to Total Arithmetic Operations and

Input/Weight Parameters

3

Layer Operations Data size

Convolution 99.96% 26.72%

Fully connected 00.03% 73.28%

Pooling 00.00% 00.00%

Table 2.2: Contribution of C3D Layers to Total Arithmetic Operations and

Input/Weight Parameters

input/weight parameters contributed to the whole network by convolution and fully

connected layers. In VGG-16, around 99.20% of the operations is performed in con-

volution layers while 0.79% is performed in fully-connected layers. The size of param-

eters contributed by convolution layers is 8.61% and fully-connected layers is 91.38%.

Table 2.2 shows the similar information for C3D. Based on this observation, we focus

mainly on accelerating convolution and fully-connected layers. Other layers do not

pose a bottleneck and do not affect the latency because of which we skip explanation

for them.

Figure 2.1 demonstrates a convolution layer. The input feature map consists of 3

channels, represented as red, green and blue. Each channel is a 2D array of dimension

Iw × Ih. There are m weight filters each of which has Kw width, Kh height, and the

same number of channels as the input. In CNNs, a convolution operation involves

performing dot-product of a weight filter and an input region to produce an output

data element, as shown in the figure. The weight filter slides over the input along

width and height dimensions to produce output data elements along those dimensions

for a particular channel. Performing convolution with m weight filters produces m

output channels. In a 3D convolution operation, input feature maps, output feature

maps, and weight consists of an additional dimension often referred as frames. In

4

Figure 2.1: Convolution Layer

3D CNNs, each weight filter slides along frame dimension of the input in addition to

width and height dimension.

Equation 2.1 and 2.2 represent 2D and 3D convolution operation respectively.

O[m][w][h] =
Ic∑

n=0

Kw∑
i=0

Kh∑
j=0

I[n][stride× w + i][stride× h + j]×W [m][n][i][j] (2.1)

O[m][f][w][h] =
Ic∑

n=0

Kf∑
k=0

Kw∑
i=0

Kh∑
j=0

I[n][stride× f + k][stride× w + i][stride× h + j]

×W [m][n][f][i][j]

(2.2)

where m represents the output channel; f represents frame; w and h represent

width and height; Ic represents the number of input channels; Kw, Kh and Kf repre-

sent the dimensions of weight filter along width, height and frame dimension; n, k, i,

and j represent the iterator along input channels, frames, width and height.

5

Figure 2.2: F(2,3) Transformation of Winograd Algorithm

2.2 Winograd Transformation

Winograd transformation Lavin and Gray (2016) is a popular technique to reduce

the arithmetic complexity involved in convolution operation. Winograd algorithm is

practical for small filters because of which it is suitable for CNN models like VGG-16

and C3D which use 3× 3 weight filters.

Winograd transformation is usually represented as F(m, r) where m represents

the output size and r represents the convolution kernel size. Consider the convolution

operation of data d and weight filter g, given by d = [d0 d1 d2 d3] and g = [g0 g1 g2].

The Winograd transformations for this convolution, F(2,3), is shown in Figure 2.2.

The usual convolution takes 6 multiplications, while the F(2, 3) transformed equa-

tion requires only 4 multiplications. In our design, we have implemented F(6, 3) which

reduced the number of multiplications by 58%.

2.3 Related Works

Since FPGAs are gaining attraction in CNN acceleration, there are several works

which studied its acceleration using Hardware Description Language (HDL). However,

OpenCL based acceleration is understudied. Moreover, these works do not support

3D CNNs to do video processing. PipeCNN Wang et al. (2017) is an OpenCL based

6

implementation flexible enough to support various CNNs. It includes a complete

design required to perform the inference phase fully on FPGA. It supports vector-

ization factors to explore the design space to find the optimal configuration. There

are components to move data on/off the chip which are optimized enough to reduce

the idle time of the processing elements. These components are connected using Intel

channels. Moreover, it is the only related work which is open source. The design

suffers from high fan-out due to which resource utilization is poor and also the design

ends up achieving low frequency. Boutros et al. (2018) made a comparison between

widely known CNN accelerators and showed that Deep Learning Accelerator (DLA)

Aydonat et al. (2017) provides state-of-the-art performance. DLA adopts a systolic

array of processing elements intended to simplify the routing and hence achieve high

frequency. Systolic array achieves high DSP utilization which is crucial for a compute

intensive application like CNN. We propose a novel arrangement of systolic array

which consumes less resources than the trivial 1D systolic array. DLA caches the

intermediate feature maps in the onchip buffers which is not possible for large net-

works. Moreover, DLA batches multiple inputs for fully-connected layers to enable

weight reuse. This is not suitable for latency-critical applications. To reduce the

overhead of fully connected layers we adopted a FC-processor alongside the convolu-

tion processor. Also we support 3D convolutions. Caffeine Zhang et al. (2018) uses

a 2D systolic array for accelerating convolutions. It maps the fully connected layer

computation onto the 2D systolic array. It also supports Caffe framework for deploy-

ment of the model onto the FPGA and performs batching to achieve weight reuse in

fully-connected layers. However, the performance and frequency of Caffeine is low.

Zhang et al. (2015) focuses much on exploring the design space and performs design

optimizations to find the best performance with low FPGA resource consumption.

It’s design space exploration also aims to maximize throughput. Suda et al. (2016)

7

also performs design space exploration to achieve high throughput like the previous

work. But these related works do not support 3D convolutions and also provide low

performance.

There are several works that have studied the acceleration of 3D CNNs on FP-

GAs. Shen et al. (2018) and Liu et al. (2019) explore the uniform acceleration of

2D and 3D convolutions on FPGA with the same design methodology. Further, they

explore the design space efficiently through a uniform analytical model for 2D and

3D CNNs. Hegde et al. (2018) provides acceleration specifically for 3D CNNs. They

discuss various tiling and loop ordering techniques to optimize the computation of 3D

convolution. Our design can achieve higher frequency and performance by extending

the systolic array to support 3D convolutions.

8

Chapter 3

DESIGN

This chapter explains in detail the baseline architecture that we replicated from

cutting-edge related works. The design was built using the source code of Wang et al.

(2017), and so the format of PipeCNN are predominant in our design. The following

sections explain the architecture of the host application running on the CPU and the

device application programmed on the FPGA.

3.1 Host Application

The host process validates the configurations of each layer by performing condition

checks on the dimensions of features and weights. Then the host process rearranges

the input data into a format which allows efficient memory access on the FPGA,

as explained in section 3.1.1. The host and device can operate concurrently, hence,

while an inference is being made on the FPGA the host can rearrange the input for

next inference. Then the host invokes the various kernels on the device explained in

section 3.2.

3.1.1 Input Data Arrangement for Efficient DDR Access

Since FPGAs have significantly less DDR bandwidth than GPUs, optimal ways to

access the DDR have been explored much in FPGA acceleration of CNNs. To utilize

the DDR memory bandwidth efficiently each memory request should be wide enough

and multiple memory accesses should be coalesced together so that the bus width is

fully utilized. This can be achieved by rearranging the input, intermediate and output

feature maps and weights of each layer in a suitable way. Weights are rearranged and

9

loaded in the FPGA DDR memory only once during initialization of the device. The

host application rearranges every input during run time before transferring it to the

FPGA accelerator. The data is rearranged based on the access pattern of CNNs. In

CNNs, a weight is convoluted with a region of input data, after which the weight

slides along the width, and height of the input. A single convolution operation needs

all the channels of a region of input data along width and height dimensions. Due

to this, a partial channel-width major data arrangement as shown in 3.1, and as

followed by Wang et al. (2017), is adopted to achieve high DDR efficiency. In this

arrangement, the input channels are grouped together with each group consisting of

V EC SIZE number of channels, which is a compile time configuration parameter.

The pixels which lie in the same width and height coordinate in all the V EC SIZE

input channels of one group are stored in consecutive memory addresses. This is called

a lane of data and is shaded with dark red. The lanes which occur consecutively along

width dimension are stored in consecutive memory addresses. Each consecutive row

in a particular group is stored in consecutive memory addresses. This is followed

by the group of channels which is behind the current group. The design accesses

the memory in bursts of W VEC (Winograd vectorization factor) requests which is

determined by the Winograd transformation as explained in 3.2.6. Each DDR access

on the device requests V EC SIZE×W VEC bytes of data which should be sufficient

to fully utilize the bandwidth. The pixels shaded with dark red and light red form

a V EC SIZE ×W VEC volume called as plate. The pixels indicated in dark red,

light red, and dark green form a W VEC × Kh × Kc volume called as brick. Due

to Winograd transformation, the size of weight filter is also W VEC × Kh × Kc.

Performing a convolution of a brick of data and weight produces INV V EC output

pixels, where INV V EC = W VEC − Kw + 1. A brick is accessed from DDR by

reading each plate separately.

10

Figure 3.1: Data Rearrangement

3.2 CNN Accelerator Architecture

The accelerator consists of several modules each designated to perform a particular

operation such as data movement, data transformation, processing etc. Each of these

modules, implemented in OpenCL as individual kernels, form a separate stage in the

pipeline and hence run concurrently. Communication between modules is enabled

through Intel channels. Figure 3.2 shows an overview of the accelerator. At the core

of the design is a systolic array of Processing Elements (PEs). To reduce the idle

time of PEs, the design consists of data movement modules to move input features

and weights from DDR to the PE array and the output produced by PE the array to

DDR. Also, the design includes modules to perform the input/output transformation.

The following sections explain the different OpenCL kernels.

11

Figure 3.2: Architecture of CNN Accelerator

3.2.1 Controller

Controller initiates of the execution of a particular layer. Controller reads the con-

figurations for every layer and communicates with every other kernel the dimensions

of the input, output and weight. It is based on this information that the data move-

ment kernels and PEs calculate the number of iterations that needs to be performed

for a corresponding layer.

3.2.2 MemReadData

MemReadData module moves the data from DDR to PEs. MemReadData is

optimized to operate on data which has been rearranged as explained in section 3.1.1.

In every iteration, MemReadData reads a plate of feature from DDR and transfers

to the PEs. Each lane of feature is read with an individual memory request because

of which W VEC number of DDR accesses are issued in one burst to read a plate.

Intel OpenCL SDK implements a burst-coalesced cached LSU and coalesces W VEC

12

reads into single burst thus reducing the number of requests and also utilizing the

DDR bus width effectively. Also, the default cache enables data reuse and reduces

the number of DDR read request.

3.2.3 MemReadWeight

MemReadWeight connects with every PE through dedicated channels and feeds

the weight by transferring one plate of weight to one PE at a time. Each PE has a

local weight buffer to store the weight filter and enable weight reuse by using them

multiple times. Since the weight filters are read only once from DDR and are cached

inside PE, MemReadWeight does not have a dedicated cache.

3.2.4 Systolic Array

Input feature reuse is possible along the output channel dimension, because of

which the same feature plate needs to be transferred to all the PEs to be convoluted

with different weight filters. Several accelerators follow a design where the memory

module is connected to all the PEs. However, this design is inefficient due to the high

fan-out which results in poor routing and low operating frequency.

At the core of this architecture is a systolic array which is an array of PEs. Figure

3.3 shows the architecture of a PE. Each PE in the systolic array performs I/O

through interconnection with its neighbor PEs. This eases up the routing and the

design achieves high frequency. Systolic arrays form the backbone of accelerators

like TPU Abadi et al. (2016) and Intel DLA Aydonat et al. (2017). The array is

made of LANE NUM identical PEs, where LANE NUM is the vectorization factor

along output channels. Each PE handles one output channel, and hence uses one

weight filter. PEn receives input from PEn−1, the PE immediately preceding it in

the array, and passes it to PEn+1, the PE following it in the array through Intel

13

Figure 3.3: Architecture of PE

channels. PE0 receives input data from MemReadData. Since the data channels

should accommodate the transfer of a data plate every clock cycle, the data channels

between any two subsequent PE is of width V EC SIZE x W VEC. Similarly, the

output is also transferred in a systolic fashion. Each PE receives the output data from

its previous PE, appends its output and forwards to the next PE. The last PE forwards

the output to MemWrite. Each PE produces an output of dimension 1×W VEC. To

make the design fully pipeline, the output channels between any two subsequent PE

should be wide enough to accommodate the output from all its previous PEs. Each

PE is fed with weights through dedicated channels from MemReadWeight. The weight

channel from MemReadWeight to any PE is of dimension V EC SIZE×W VEC to

transfer a plate of weight every clock cycle.

14

3.2.5 MemWrite

MemWrite block transfers the output produced by PEs to DDR. The output

channel of only the last PE in the systolic array is connected with MemWrite kernel.

MemWrite rearranges the output data in an order as explained in section 3.1.1 and

writes it to the DDR. The output data is in an arranged format as expected by

MemReadData for next layer.

3.2.6 Winograd and Inverse Winograd Transformation

MemReadData transfers the data plates to a module which applies Winograd

transformation on the data before feeding it to the PEs. The module takes data with

W VEC lanes and produces data with W VEC lanes. The last PE in the systolic

array transfer the output to a module which applies inverse Winograd transformation

on the output before transferring it to the MemWrite block. The inverse module

accepts Winograd output data with W VEC lanes and produces inverse transformed

output data with INV W V EC lanes, where INV W V EC = W VEC −Kw + 1

15

Chapter 4

3D CNN ACCELERATOR

3D CNNs are used in several video understanding applications (Hegde et al.

(2018), Ji et al. (2012), Maturana and Scherer (2015), Sun et al. (2015), Tran et al.

(2015)). While many works have studied the acceleration of CNNs, studies on 3D

CNNs is limited. 3D CNNs consists of 3D convolution operations which employ an ad-

ditional dimension in the feature maps and weights. In video processing, this dimen-

sion is used to learn the temporal information in the frames of video i.e. action or mo-

tion of the object. The input and intermediate feature maps have multiple frames and

each frame has multiple channels. The weight filter, which also has multiple frames,

slides over the frames of input to capture the temporal information. For instance, the

first layer of C3D accepts an input of dimension 112×112×3×16 (Iw×Ih×Ich×If)

and comprises weight filters of dimension 3× 3× 3× 3 (Kw ×Kh ×Kch ×Kf). The

frames of weight filter slides along the frames of input feature map to capture the

temporal information. This makes 3D convolutions more compute-intensive than 2D

convolutions. The systolic array of processing elements can be extended to support

these computationally complex operations. The challenges involved in extending a

2D CNN accelerator to support 3D CNN is entirely dependant on the underlying ar-

chitecture. This chapter discuss the opportunities and challenges that are introduced

by 3D CNNs while extending them support in our 2D CNN accelerator. First, the

data reuse opportunity along the temporal dimension need to be exploited. Second,

the order of computation of frames and output channels need to be studied since they

can have an impact on performance and the amount of data read from main memory.

Third, since 3D weights are large, we need techniques to alleviate the large weight

16

buffer requirement.

4.1 Data Reuse Opportunity Along Frame Dimension

The temporal dimension introduces an additional reuse opportunity which needs

to be exploited in order to minimize the number of main memory requests. The

double data buffer, as explained in section 5.2.1, has been extended to cache multiple

frames. The input feature map is partitioned into tiles along width, height and frame

dimension. Each input tile of dimension W × H × F can produce an output tile of

dimension (W − Kw + 1) × (H − Kh + 1) × (F − Kf + 1), where Kw, Kh and Kf

represents the dimensions of weight along width, height and frame. For a constant

onchip data buffer, caching along 3 dimensions allows higher data reuse, and hence

lower main memory access, than caching along only 2 dimensions.

4.2 Order of Execution of Dimensions

The systolic array follows the optimal order of computation along width, height

and channels for a 2D convolution. With the introduction of frame dimension, we

explored how order of computation of frame dimension can be accommodated. The

computation order of tiles and output channel dimension can affect the number of

main memory access and computation time. In a output-channel major approach, all

the output channels of a tile are computed before moving on to the next tile. The

MemReadWeight loads each PE with a weight filter - total of n weight filters for a

systolic array with n number of PEs. The MemReadData caches a tile of input block

and streams to the PEs thus producing a n output channels for the particular tile.

The weights are reloaded into the PEs to compute next n output channels for the

same tile. This approach requires all weights to be loaded from main memory to

compute each tile and hence increases the total amount of weights moved from DDR.

17

However, the input feature map is moved only once from main memory. In the early

layers of C3D where the size of input is large and weight is small, output-channel

major approach reduces the amount of data moved. In a tile-major approach, a set of

output channels for all the tiles is computed before moving on to next set of output

channels. In this approach, each PE is loaded with a weight filter. MemReadData

streams all the input tiles and produces n output channels for all the output tiles.

Then the PEs are reloaded with next set of weight filters and MemReadData streams

all the input tiles again. This approach moves weights only once, but loads input

features multiple times. Hence, this approach is suitable for later layers where weight

is large and input feature map is small.

Figure 4.1 compares the latency of the convolution layers of C3D using the above

two approaches. In comparison, the tile major approach outperforms the output-

channel major approach by up to 1.3 times. We have adopted the tile major approach

since low latency is our motive.

4.3 Large Weight Filters

The size of weight filters is larger in 3D convolutions, compared with 2D convo-

lutions, due to the existence of additional dimension. The weight buffer in each PE

should be large enough to accommodate the largest weight filter among all the layers.

Hence, the weight buffer requirement for performing 3D convolutions is usually high.

We performed experiments to alleviate this high memory requirement. First, we can

follow a convolution layer split approach where each layer is split into as many sublayer

layers as necessary such that the weight of each sublayer fits in the weight buffer. This

technique, as explained in section 5.2.4, is also followed by Liu et al. (2019). However,

this approach increases the amount of data moved from/to the main memory. Second,

we can change the number of PEs to change the amount of onchip memory consumed.

18

Figure 4.1: Performance Evaluation of Frame-major and Output Channel-major

Designs

Since the weight buffer in each PE is constant for a given CNN architecture, total

onchip memory consumed is given by NUMPEs ×WEIGHTBUFSIZE. Changing

the number of PEs, as explained in section 5.2.3, does not have a significant impact on

the performance, given that the total number of DSPs utilized is the same. However,

reducing the number of PEs increases the number of times input feature maps are

loaded from the main memory. We can use a combination of these two approaches to

minimize the amount of data loaded

19

Chapter 5

OPTIMIZATIONS

This chapter explains various optimizations which improve the latency of the design

and also reduce the resource consumption. Section 5.1 explains techniques used to

reduce the FF consumption of the design. Section 5.2 explains the onchip memory

implementations to minimize offchip memory access and also to improve the latency.

Section 5.3 provides an alternative design technique that achieves high operating

frequency. Finally, section 5.4 provides an efficient mapping of fully connected layers

and explains how a dedicated processor can increase the throughput of the accelerator.

5.1 Area Optimization

This section discusses the components which consume most resources and how

performance can be traded-off for these resources. On Arria 10 GX 1150, the design

consumes more than 500K FFs which is 30% of total FFs. Intel channels consume

more than 300K FFs which is 18% of total FFs available and 60% of the total FFs con-

sumed by the design. Our design extensively uses channels to (1) move configurations

to all the kernels for every layer (2) move input feature, and weight to each PE and

(3) move output feature from each PE. First, we propose a novel design which reduces

the number of channels used while maintaining the performance. Second, we discuss

an optimization which provides significant reduction in the number of channels with

an insignificant increase in latency.

20

5.1.1 Semi-1D Systolic Array

We propose a novel arrangement of the systolic array where PEs are arranged in

a 2D grid. The motive of this arrangement is to achieve a different output forwarding

method which reduces the number of output channels required. Although the ar-

rangement is 2D, the functionality of the systolic array resembles a 1D systolic array

and hence we call it semi-1D systolic array.

In a 1D systolic array, each PE receives a block of output from its previous PE,

appends its block of output and transfers the entire block to the next PE. The size

of output block produced by each PE is of size W VEC. For the systolic array to be

fully pipelined, the output channel between any two neighbor PEs should be wide

enough to transfer the output from all its previous PEs. In a systolic array with

n PEs, the number of output channels between PE0 and PE1 is 1, PE1 and PE2 is

2, and PEn-1 and MemWrite is n. The total number of output channels is given by

W VEC ∗ (1 + 2 + ... + n), or W VEC ∗ n ∗ (n + 1)/2, which becomes significantly

large as the number of PEs increase. Designs with 16, 32 and 48 PEs consume 1088,

4224 and 9408 output channels respectively.

In the semi-1D systolic array, the PEs are arranged in a grid as shown in 5.1. In this

arrangement, each PErow,col receives feature plates from PErow-1,col and forwards them

to PErow+1,col. Each PE in the first row, PE0,col, receives feature plates from PE0,col-1,

and forwards them to PE0,col+1 and and also to PE1,col. PE0,0 receives feature plates

from memReadData. Each PE has a dedicated weight channel to receive weight plates

from memReadWeight. Each PErow,col receives a block of output from PErow-1,col,

appends its output block and transfers the entire block to PErow+1,col. Each PE in the

last row PEnrow, col transfers the entire block of output data to PErow,col+1 which is the

PE in the last row of the next column. The total number of output channels required

21

now is given by W VEC ∗ (ncol ∗ (nrow− 1) ∗ nrow/2 + (nrow ∗ ncol ∗ (ncol + 1)/2)

where nrow = ncol = ceil(sqrt(n)). Using semi-1D systolic array, designs with 16,

32 and 48 PEs consume 512, 1600 and 2744 output channels respectively, which is

53%, 62% and 71% reduction in output channels. The performance of this method is

same as a 1D systolic array.

5.1.2 Timeshared Channels

Each PE loads into its weight buffer a weight filter to compute an output channel.

Since weights are loaded plate by plate, it takes as many iterations as the number

of weight plates to load an entire weight filter. Then, each PE reads a feature plate

from its preceding PE, writes the feature plate to its subsequent PE, and starts

computation on the feature plate. When PE 1 reads plate 3 from PE 0, it is also

writing plate 2 to PE 2 and performing computation with plate 1. However, when

weight plates are being loaded into a particular PE, the feature plate read/write of all

the PEs preceding it in systolic array gets stalled. By profiling we observed that the

PEs at the beginning of the systolic array stall more on feature channel write while

PEs at the end of the systolic array stall more on weight channel read. This inability

to concurrently utilize weight channels and feature channels can be alleviated by a

double weight buffer which allows concurrent execution of computation of particular

output channel and weight load for next output channel. Section 5.2.2 describes this

more in detail. A design without double weight buffers can eliminate weight channels

entirely and use the same channels to feed PEs with features and weight.

Output channels are greatly underutilized in the systolic PE array. A PE generates

one output for every K hxK c/V EC SIZE number of feature plates. On average,

in VGG-16 and C3D respectively, each PE generates an output for every 122 and 316

input feature plate. This shows that eliminating output channels and utilizing the

22

Figure 5.1: Semi-1D Systolic Array

23

Figure 5.2: Timeshared Channels

same channels to transfer feature and output might reduce FFs usage significantly

while having insignificant effects on performance.

These factors motivated us to implement a systolic array without weight channels

and output channels. Figure 5.2 shows the architecture with timeshared channels.

Each PE has a dedicated channel from/to its preceding/succeeding PE. This channel

is used to transfer features, weights and outputs. In this approach MemReadWeight

transfers weights only to the first PE 0. First, the weights are loaded into the PEs.

Each PE in the systolic array either stores the weight plate in its buffer if it is the

recipient or forwards the weight plate to its succeeding PE. Second, feature plates are

transferred through the same channels. Each PE receives a feature plate, forwards

it to the succeeding PE and also performs computation with it. Third, the output

produced by PEs are transferred through the same channels. This approach resulted

in an increase in single inference latency by 4% for C3D. However, the number of

channels were reduced by 83% and the total FFs consumed by the design were reduced

by 49%. The loss of performance is very small which makes this optimization a

suitable candidate for area-performance trade-off.

5.2 Memory Optimization

CNNs involve data reuse due to which an onchip cache implementation can sig-

nificantly reduce the number of DDR accesses. However, the number of BRAMs

available in current FPGAs is not sufficient to hold the entire input feature or weight.

24

An optimal caching technique achieves maximum data reuse while consuming small

amount of onchip memory. This section explains the double buffering implementa-

tions for feature maps and weights which enable reuse and hide DDR read time. Also,

this section discusses optimizations to reduce the onchip memory consumption.

5.2.1 Double Data Buffer

Input features are reused when weights are moved across their width, height and

frame dimensions. When a weight filter with width K w is moved by conv stride steps

along input width, K w− conv stride number of pixels overlap. An efficient memory

module in MemReadData can cache the overlapping feature pixels and decrease the

number of redundant accesses to DDR. Ma et al. (2018) implements shift register

to enable reuse of features. Shift registers shift the current pixels conv stride times

and loads new pixels from DDR to produce the next chunk of data to be fed to the

PE. DLA Aydonat et al. (2017) includes a fully on-chip implementation which might

be suitable only for small networks like Alexnet. PipeCNN Wang et al. (2017) has

implemented a double buffer policy which buffers a tile of input feature map and

enables reuse inside the tile. Double buffer comprises a load-compute buffer pair to

overlap loading of next tile with computation on current tile. First, we analyze the

effectiveness of the default cache implemented along with LSU. Second, we implement

double buffer policy as followed by PipeCNN and evaluate its inefficiency. Third, we

optimize it for high performance.

The OpenCL SDK for Intel generates a burst-coalesced cached LSU for the global

memory read in memReadData. MemReadData reads each feature plate as W VEC

separate lanes. Since the data is rearranged such that every adjacent lane is stored in

subsequent memory addresses, W VEC number of DDR read requests are coalesced.

Size of the associated cache is 64KB with size of the cache line being 64 bytes and

25

number of cache lines is 1024. Since this is a generic cache implementation, it is

not very optimal for the data access pattern used in CNN. Moreover, there is no

prefetching in this LSU cache. Since we know the data access pattern of CNN,

applying this knowledge into the fetching logic can improve the performance of the

LSU further.

We implement a load-compute buffer pair in MemReadData as shown in 5.3. The

input feature map is split into tiles along width, height and frame dimension. Each

tile can be used to compute multiple output pixels along width, height and frame

dimension. For ex. an input tile of dimension W x H x F produces an output tile

(W - K w + 1) x (H - K h +1) x (F - K f +1) which is also the reuse factor of

the inputs. The dimension of the tile is chosen such that there is maximum reuse

while also ensuring it fits entirely in the onchip buffer. The load-compute buffer pair

overlaps data load time from DDR and computation to a certain extent. While the

current data tile in compute-buffer is used to feed PEs, the next data tile is loaded

from DDR into load-buffer. Once this is completed, the buffers swap their purpose.

PipeCNN implements double buffer using a loop as follows:

int loop_limit = max(compute_loop_limit, load_loop_limit)

for(int i = 0; i <loop_limit; i++) {

if(i < load_loop_limit)

1: \\ read next input feature plate from DDR and load in buffer[0]

if i $<$ compute_loop_limit:

2: \\ read next input feature plate from buffer[1] and send to PE

}

Each iteration of the loop (1) reads a feature plate from DDR for the next data tile

and stores it in load-buffer (2) reads a feature plate from compute buffer and writes

26

Figure 5.3: Double Data Buffer

27

to feature channel connected to PE 0. Instruction (1) is executed load loop limit

number of times which represents the number of plates read from DDR. Instruction

(2) is executed compute loop limit number of times which represents the number of

plates sent to PE. Since DDR read is the high latency operation, the performance of

the loop is bound by the DDR read.

Usually, load loop limit and compute loop limit are not the same because of the

reuse factor, and compute loop limit is generally greater than the load loop limit.

The loop performs as many iterations as compute loop limit in most cases where

DDR read access is made only during the first load loop limit iterations. We isolated

high latency DDR read and low latency channel write by splitting these operations

into separate kernels.

We implemented a kernel MemReadData DDR which reads feature plates from

the DDR and writes to a channel memreaddata channel as shown in 5.4. The loop

in memReadData reads features plate from memreaddata channel, instead of DDR.

Since the loop performs only channel read and write both of which are low latency

operations, the overall performance of the loop improved. The loops in MemRead-

Data DDR and MemReadData are as follows:

// MemReadData_DDR

for(int i = 0; i < load_loop_limit; i++) {

if(i < load_loop_limit)

1: \\ read next input feature plate from DDR and write to

memreaddata_channel

}

// MemReadData

int loop_limit = max(compute_loop_limit, load_loop_limit)

28

Figure 5.4: Double Data Buffer with DDR Read Isolation

29

for(int i = 0; i <loop_limit; i++) {

if(i < load_loop_limit)

1: \\ read next input feature plate from memreaddata_channel and

load in buffer[0]

if i $<$ compute_loop_limit:

2: \\ read next input feature plate from buffer[1] and send to PE

}

The DDR reads in memReadWeight and memReadData, which have variable la-

tency based on the availability in cache, create stalls in the PE. To alleviate this

problem we implemented a prefetching logic in memReadData with deep channel.

We increased the depth of (1) data channel from memReadData to PE0, (2) weight

channel from memReadWeight to PE0. This design improved the frequency of the

design, and hence reduced the latency, by 7%.

5.2.2 Double Weight Buffer

The baseline architecture does not overlap weight loads with computation. Since

the amount of weights in convolution layers is typically small for a network like VGG-

16, the baseline architecture’s performance does not suffer much for these networks.

For a network like C3D, the convolution layer involves huge weights and hence the

performance suffers by a large margin. To overlap weight loading and computation,

we implemented double buffering policy for weights. While each PE is performing

computation for a particular set of output channels using one weight buffer, weight

for the next set of output channels is loaded into the other weight buffer. Every clock

cycle each PE (1) reads a data plate to perform MAC operation with a weight plate

from compute weight buffer for computing current output channel (2) reads a weight

30

plate to either store in the load weight buffer for computing next output channel or

forwards it to the next PE. Double weight buffers enabled the design to hide weight

load time.

The above design performs multiple if..else condition checks on different variables

inside the critical loop of PE. For a particular data plate and weight plate, the if..else

clause in all the PEs will evaluate to the same result. Hence we perform all the if..else

condition checks in PE0, store the boolean results in a 32-bit word where each bit

represents a if..else result, and attach this condition-word to the data and weight

plate. Each PE operates based on this bit value. This has increased the performance

by appx. 5% (3ms for C3D).

5.2.3 Number of #PEs

The size of weight buffer inside each PE is kept large enough to accommodate

the largest weight filter of the CNN model. CNNs with huge weight filters place a

large requirement on the onchip memory. The total amount of memory consumed by

weight buffers is given by the product of the number of PEs and the size of largest

weight filter of the CNN. Reducing the number of PEs can lead into a design which

consumes low onchip memory. However, as the number of PEs go down, the number

of times entire data is read from DDR increases. For instance, if number of output

channels is 64, a #PEs=32 design will take two rounds to compute. In each round, it

loads all the PEs with weights, streams the entire data from DDR memory to perform

computation. Whereas, a #PEs=16 design will perform 4 rounds and hence the input

feature map is read 4 times from the DDR.

We evaluated designs with 4, 8, 16 and 32 PEs (VEC SIZE adjusted accordingly to

utilize same number of DSPs) and observed no significant difference in performance.

Figure 5.5 shows the performance comparison of designs with different number of

31

Figure 5.5: Impact of Number of PEs on Latency

PEs. To reduce onchip memory consumption, the number of PEs can be modified.

5.2.4 Convolution Layer Split

For CNNs with large weight filters, a smaller buffer can be allocated for each PE

and the convolution layer (and also the weight) can be split into as many sub-layers

as needed so that every sub-layer’s weight fits completely inside the PE weight buffer.

When Kc is the number of input channels and weight channels, and when weight

doesn’t fit in the on-chip memory of size WBS, the convolution layer is split into

sub-layers each with Icsub = Ic/ceil((Kh × Kw × Kc) /WBS) number of channels

and the number of sub-layers will be Ic/Icsub. Each of these sub-layers will produce

output with the same dimension as the original convolution layer. The updated new

32

dimension of input is Iw× Ih× Icsub, weight is Kw×Kh×Kcsub×m. Ic/Icsub− 1 sum

layers will be needed to accumulate the output results of all the sub-layers. Sum layer

takes two volumes of data with the same dimension as the input and accumulates the

corresponding elements to produce an output with the same dimension. The logic for

sum layer is implemented in MemWrite while writing each sub-layer output to DDR.

Why split along channel dimension?: The amount of data read from DDR will be

the same as usual convolution layer without splitting. The first set of Icsub channels

of data and weight will be read for the first sub-layer, second set of Icsub channels

for the second sub-layer and so on. If the weights are split along other dimensions,

we have to access the data as many times as the number of sublayers.

In C3D, 2 layers were split into 2 sublayers each and 3 layers were split into 3

sublayers each, (totally 19 layers) the execution time increased by less than 5%

5.3 Frequency Optimization

5.3.1 Systolic Weight Channels

Convolution layers involve great opportunity for data and weight reuse. Our CNN

accelerator exploits data reuse by transferring the same data plate to each PE. Each

PE works on a single weight to produce a particular output channel and hence there is

no sharing of weights between PEs. Weight reuse is exploited by storing weight in the

local weight buffer inside each PE. Connecting memReadData and memReadWeight

modules to each PE results in a high fan-out design with low frequency. We adopted

a systolic array of PEs, as shown in 5.6, where the memReadData transfers data

only to the first PE in the array, and every PE in the array uses the data and

forwards it to the next PE. Since PEs do not share weights with each other, we

connected memReadWeight module individually to every PE. However this led to

33

Figure 5.6: Systolic Weight Channels

a low frequency design. The design achieves 17% increase in frequency when the

weights are also forwarded in systolic manner. In this approach, memReadWeight

transfers NUM WEIGHT PLATES×NUM PEs weight plates to PE0. Each PE

stores its corresponding NUM WEIGHT PLATES number of weight plates in its

buffer and forwards the rest to subsequent PE.

5.4 Fully Connected Layers

In fully connected layers (FC) the dimensions of input data and weight are the

same. This calls for a different approach to execute FC layers. First, we map the

FC layers onto the existing convolution systolic PE array. Second, we add logic to

the existing PE array to improve the efficiency of FC layers. Third, we discuss the

necessity of pipelined architecture.

A fully-connected (FC) layer differs from a convolution layer in few aspects like

data reuse, computation to memory ratio. FC layers can be run on the convolution

PE with only a few modifications to the logic. FC layers do not need Winograd trans-

formation and hence the input data being fed to the PEs will bypass the Winograd’s

transformation module. The PEs are designed with W VEC number of MAC units,

where each MAC unit accepts VEC SIZE number of input pixels. For a 1x1 FC layer

to fully utilize all the MAC units, we consider the dimension of FC layer input and

weight as W VEC x 1 x (inp ch/W VEC) and W VEC x 1 x (inp ch/W VEC) x

outp ch respectively, where usual dimensions are 1 x 1 x inp ch and 1 x 1 x inp ch

x outp ch. This does not need any rearrangement of input feature or weight since

34

ip/op 256 512 1024 2048 4096

2048 0.27|0.34|0.04 0.26|0.39|0.08 0.42|0.46|0.17 0.58|0.65|0.33 0.94|1.06|0.67

4096 0.3|0.4|0.08 0.36|0.47|0.17 0.58|0.69|0.33 0.93|0.95|0.67 1.51|1.63|1.33

8192 0.43|0.54|0.17 0.51|0.65|0.33 0.94|0.96|0.67 1.56|1.63|1.33 2.89|2.94|2.67

16384 0.53|0.64|0.33 0.86|0.94|0.67 1.52|1.6|1.33 2.94|2.91|2.67 5.57|5.65|5.33

25088 0.77|0.78|0.51 1.24|1.42|1.02 2.27|2.29|2.04 4.36|4.3|4.08 8.46|8.3|8.12

32768 0.9|0.94|0.67 1.56|1.64|1.33 2.86|2.98|2.66 5.57|5.49|5.28 10.9|10.7|10.6

Table 5.1: Comparison of Latency on 32 PEs, 1 PE and Theoretical

both these dimensions have the same storage representation on physical memory. The

weight is loaded into the PE buffer and data is streamed through systolic channel.

In a convolution layer, a single weight being loaded into PE buffer is reused several

times to compute output pixels across the input width, height and frame. There is no

such reuse in FC layers which makes loading weights into PE buffer as an unnecessary

step. DLA Aydonat et al. (2017) has worked around this by loading input features

in the buffer inside PE, which is usually used to store weight for convolution layers.

To enable weight reuse, DLA batches multiple input images to execute FC layer on

them. The buffer in each PE stores a different input while weights are being streamed

through PEs in systolic channel. This enables weight reuse since all the PEs are using

the same weight to compute the output of a different input image. However, since

our design is focused on minimizing the latency of single inference we do not perform

batching. The same input is loaded into the buffer inside each PE. memReadWeight

module streams weight to all the PEs with which MAC operations are performed.

These weights are dropped after computation since there is no reuse.

For a given FC layer, it takes insignificant time to load input features into the PE

buffers. Streaming the weights from memReadWeight to PE is entirely overlapped

35

Figure 5.7: Dedicated PE for Fully Connected Layers

with the computation. Because of this, we observe that the FC layer is memory

bound. Since memReadWeight loads only one PE at a time, the rest of the PEs are

idle which results in poor PE utilization. We conducted an experiment with only

one PE. This design provided almost the same performance as the systolic PE array,

which again proves that, for FC layers, only one PE is being utilized at a time in

systolic PE array. Table 5.1 shows how a single PE design and 32 PE design achieve

almost same performance as the theoretical maximum.

It is viable to overlap compute-bound convolution layers and memory-bound FC

layers to efficiently utilize the DDR bandwidth and reduce PE idle cycles. While

36

the FC layers of an inference are being carried out, convolution layers of the next

inference can be performed concurrently. We designed a dedicated FC module, as

shown in 5.7 which consists of (1) one PE, FC PE, whose structure is similar to the

PE in systolic array (2) FC memRead kernel to stream weights to the FC PE. FC PE

has a buffer to store the input feature. It performs MAC operations on the weight

being streamed from FC memRead kernel. The convolution module and FC module

are independent of each other. While the latency of a single inference remains the

same, the number of inferences per second increases from 30 to 43, and 15 to 16 for

VGG-16 and C3D respectively.

37

Chapter 6

RESULTS

To prove the flexibility of the design with different neural networks and also per-

form comparisons with related works, we executed the 2D CNNs VGG-16, Alexnet,

Resnet, and the 3D CNN C3D on our design. All the experiments were run on

a set of Intel Fog Reference Design units , each equipped with 2 Nallatech p385a

FPGA acceleration cards. Each FPGA card has an Intel Arria 10 FPGA and DDR3

SDRAM of size 8GB. The host machines have an Intel Xeon CPU E5-1275 and DDR

memory of size 32GB. The OpenCL kernels were compiled using Intel FPGA SDK

for OpenCL (version 19.1) with Nallatech p385a sch ax115 board support packages

(BSP). We report the single inference latency, which is the time taken to process all

the layers of the CNN model. We report input latency, which is the time taken by

the convolution-fc processor pipeline to accept a new input. Throughput, which is

a measure of the input latency, is reported as the number of inferences per second

(inference/s) that the accelerator can perform.

Table 6.1 compares the performance of baseline architecture and the improvements

made by this thesis. Due to the contributions of this work, the design achieves 27%

increase in operating frequency resulting in 24% and 31% reduction in single inference

latency, and 105% and 58% increase in throughput (inferences per second) for VGG-16

and C3D respectively. Table 6.2 compares our resource utilization and performance

with the related works. Our design achieves 23.5ms single inference latency for VGG-

16 which is better than the related works on FPGA (Ma et al. (2018), Suda et al.

(2016), Wang et al. (2017), Zhang et al. (2018)), and on CPU and GPU Zhang et al.

(2018). DLA Aydonat et al. (2017) caches the intermediate feature maps fully onchip

38

Design Baseline This thesis

CNN Model VGG-16 C3D VGG-16 C3D

FPGA Arria 10 Arria 10

Clock Frq (MHz) 203 258

Precision (bits) 8 8

Latency/Inference(ms) 31.2 66.6 23.52 45.6

Input latency (ms) 31.2 66.6 15.1 41.7

Throughput (GOPS) 831 1056

Throughput (Inferences/s) 32.02 15.01 66.2 23.98

DSP Util. (Used /Total) 1.1K / 1.5K 1.2K / 1.5K

BRAM Util. (Used / Total) 1.4K / 2.7K 1.7K / 2.7K

LUT Util. (Used /Total) 328K / 854K 330K / 854K

FF Util. (Used /Total) 733K / 1708K 743K / 1708K

Table 6.1: Performance Comparison of Baseline Architecture and Optimized

Architecture

and batches multiple inferences in fully-connected layers. Since our goal is low latency

single inference, we do not perform batch processing. And our design does not cache

intermediate feature maps in the onchip memory since our design is targeted for large

networks. Due to these reasons our design has higher latency than DLA for Alexnet.

Table 6.3 presents the effectiveness of our accelerator for the 3D CNN C3D and

compares the resource utilization and performance with related works. We achieve

from 2.1 to 2.7 times improvement in throughput compared with related works.

39

Design Zhang Ma Ma Suda Zhang Wang Aydonat Ours

CNN

Model

Alex

Net

VGG-

16
ResNet-5

VGG-

16

VGG-

16

Alex

Net
|
VGG-

16

Alex

Net
|
VGG-

16

VGG-

16
|
Alex

Net
|
Res

Net

FPGA
Virtex

480t

Arria

10

Arria

10

Stratix

V
KU060 Arria 10 Arria 10 Arria 10

Clock

Frq (MHz)
100 200 150 120 200 190 303|215 258

Precision

(bits)
32 16 16 16 16|8 8 8|8 8

Latency

/Img(ms)
43.23 43.2 27.2 117.8 101.15|25.3 74.3|225 1|37 23.52|6.9|16.44

Throughput

(GOPS)
61.62 715.9 285.07 262.9 266|1.17K N/A|N/A 1300|990 1056

Throughput

(Img/s)
23.13 23.14 36.7 8.48 9.88|39.52 4.44|13.45 1000|27 66.2|282.43|21

DSP Util.

(Used /Total)

2.2K /

2.8K

1.5K /

1.5K

1K /

1.5K

0.8K /

1.9K

1K /

2.7K | 0.1K /

2.7K

0.5K /

1.5K | 0.5K /

1.5K

1.5K /

1.5K | 1.5K /

1.5K

1.2K /

1.5K

BRAM Util.

(Used / Total)

1K /

2K

1.5K /

2.7K

2.1K /

2.7K

1.6K /

2.5K

0.7K /

2.1K | 0.7K /

2.1K

N/A | N/A

2.4K /

2.7K | 1K /

2.7K

1.7K /

2.7K

LUT Util.

(Used /Total)

186K /

303K
N/A N/A N/A

100K/

320K | 200K/

320K

N/A | N/A
N/A | 278K/

854K

330K /

854K

FF Util.

(Used /Total)

205K /

607K
N/A N/A N/A

80K /

727K | 140K/

700K

N/A | N/A
N/A | 725K/

1708K

743K /

1708K

Table 6.2: Performance Comparison of State-of-the-art 2D CNN Accelerators

40

Design Shen et al. (2018) Liu et al. (2019) Ours

CNN Model C3D C3D C3D

FPGA VC709 VC709 VC709

Clock Frq (MHz) N/A 120 258

Precision (bits) N/A N/A 8

Latency/Inference(ms) 89.4 115.5 45.6

Input latency (ms) 89.4 115.5 41.7

Throughput (GOPS) 427.5 667.7 1056

Throughput (Inferences/s) 11.18 8.65 23.98

DSP Util. (Used /Total) 2.2K / 2.8K 1.5K / 1.5K 1.2K / 1.5K

BRAM Util. (Used / Total) 1K / 2K 1.5K / 2.7K 1.7K / 2.7K

LUT Util. (Used /Total) 186K / 303K 278K/ 854K 330K / 854K

FF Util. (Used /Total) 205K / 607K 80K / 727K 743K / 1708K

Table 6.3: Performance Comparison of State-of-the-art 3D CNN Accelerators

41

Chapter 7

CONCLUSION

CNNs are extensively finding applications in latency-constrained environments

with power restrictions, due to which FPGA acceleration is gaining attraction. We

present a low-latency FPGA acceleration solution generic enough to support different

CNN models. First, we designed an architecture in OpenCL to perform the entire in-

ference phase on FPGA. Then, the limitations posed by high fan-out while scaling-up

were identified and addressed using a systolic array of processing elements. Improve-

ments were made to reduce the resource consumption of the systolic array without

sacrificing performance. Optimizations were performed for further reduction in re-

source consumption with an acceptable loss of performance. Optimizations were per-

formed to overlap memory accesses and computation to achieve better performance.

Then, the arithmetic complexity was reduced by using Winograd transformation. The

performance-area trade-off and the performance-memory trade-off were studied. The

throughput of the accelerator was significantly improved by a pipeline of convolution

processors and a dedicated FC processor. Further extensions were added to the de-

sign to support 3D convolutions and perform video processing. These optimizations

synergistically helped our design achieve high performance.

42

REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning”,
in “12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16)”, pp. 265–283 (2016).

Arulkumaran, K., M. P. Deisenroth, M. Brundage and A. A. Bharath, “Deep rein-
forcement learning: A brief survey”, IEEE Signal Processing Magazine 34, 6, 26–38
(2017).

Aydonat, U., S. O’Connell, D. Capalija, A. C. Ling and G. R. Chiu, “An openclTM

deep learning accelerator on arria 10”, in “Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays”, pp. 55–64 (2017).

Biookaghazadeh, S., M. Zhao and F. Ren, “Are fpgas suitable for edge computing?”,
in “{USENIX}Workshop on Hot Topics in Edge Computing (HotEdge 18)”, (2018).

Boutros, A., S. Yazdanshenas and V. Betz, “You cannot improve what you do not
measure: Fpga vs. asic efficiency gaps for convolutional neural network inference”,
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 11, 3,
1–23 (2018).

Hegde, K., R. Agrawal, Y. Yao and C. W. Fletcher, “Morph: Flexible acceleration
for 3d cnn-based video understanding”, in “2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO)”, pp. 933–946 (IEEE, 2018).

Ji, S., W. Xu, M. Yang and K. Yu, “3d convolutional neural networks for human action
recognition”, IEEE transactions on pattern analysis and machine intelligence 35,
1, 221–231 (2012).

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding”,
in “Proceedings of the 22nd ACM international conference on Multimedia”, pp.
675–678 (2014).

Lavin, A. and S. Gray, “Fast algorithms for convolutional neural networks”, in “Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition”,
pp. 4013–4021 (2016).

Litjens, G., T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
Van Der Laak, B. Van Ginneken and C. I. Sánchez, “A survey on deep learning in
medical image analysis”, Medical image analysis 42, 60–88 (2017).

Liu, Z., P. Chow, J. Xu, J. Jiang, Y. Dou and J. Zhou, “A uniform architecture design
for accelerating 2d and 3d cnns on fpgas”, Electronics 8, 1, 65 (2019).

Ma, Y., Y. Cao, S. Vrudhula and J.-s. Seo, “Optimizing the convolution operation to
accelerate deep neural networks on fpga”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 26, 7, 1354–1367 (2018).

43

Maturana, D. and S. Scherer, “Voxnet: A 3d convolutional neural network for real-
time object recognition”, in “2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS)”, pp. 922–928 (IEEE, 2015).

Shen, J., Y. Huang, Z. Wang, Y. Qiao, M. Wen and C. Zhang, “Towards a uniform
template-based architecture for accelerating 2d and 3d cnns on fpga”, in “Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays”, pp. 97–106 (2018).

Suda, N., V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo and
Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale convo-
lutional neural networks”, in “Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays”, pp. 16–25 (2016).

Sun, L., K. Jia, D.-Y. Yeung and B. E. Shi, “Human action recognition using factor-
ized spatio-temporal convolutional networks”, in “Proceedings of the IEEE inter-
national conference on computer vision”, pp. 4597–4605 (2015).

Tran, D., L. Bourdev, R. Fergus, L. Torresani and M. Paluri, “Learning spatiotem-
poral features with 3d convolutional networks”, in “Proceedings of the IEEE inter-
national conference on computer vision”, pp. 4489–4497 (2015).

Wang, D., K. Xu and D. Jiang, “Pipecnn: An opencl-based open-source fpga acceler-
ator for convolution neural networks”, in “2017 International Conference on Field
Programmable Technology (ICFPT)”, pp. 279–282 (IEEE, 2017).

Zhang, C., P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, “Optimizing fpga-based
accelerator design for deep convolutional neural networks”, in “Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate arrays”,
pp. 161–170 (2015).

Zhang, C., G. Sun, Z. Fang, P. Zhou, P. Pan and J. Cong, “Caffeine: Toward uni-
formed representation and acceleration for deep convolutional neural networks”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
38, 11, 2072–2085 (2018).

44

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Convolutional Neural Network
	Winograd Transformation
	Related Works

	DESIGN
	Host Application
	Input Data Arrangement for Efficient DDR Access

	CNN Accelerator Architecture
	Controller
	MemReadData
	MemReadWeight
	Systolic Array
	MemWrite
	Winograd and Inverse Winograd Transformation

	3D CNN ACCELERATOR
	Data Reuse Opportunity Along Frame Dimension
	Order of Execution of Dimensions
	Large Weight Filters

	OPTIMIZATIONS
	Area Optimization
	Semi-1D Systolic Array
	Timeshared Channels

	Memory Optimization
	Double Data Buffer
	Double Weight Buffer
	Number of #PEs
	Convolution Layer Split

	Frequency Optimization
	Systolic Weight Channels

	Fully Connected Layers

	RESULTS
	CONCLUSION

	REFERENCES

