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ABSTRACT  

   

   

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic 

processes including geomorphology and active tectonics. Fault zone evolution, fault slip 

rates, and earthquake timing are informed by examinations of discontinuities in the 

displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of 

fault zones fans, relay ramps, and double faults, as well as the surface process response to 

the deformation and can thus indicate the activity of the fault zone and its potential 

hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock 

and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural 

laboratory with an array of rocky fault scarps. Machine learning mask-Region 

Convolutional Neural Network segments an orthophoto to identify individual particles 

along a specific rocky fault scarp. The resulting rock traits for thousands of particles 

along the scarp are used to develop conceptual models for rocky scarp geomorphology 

and evolution. In addition to rocky scarp classification, these tools may be useful in many 

sedimentary and volcanological applications for particle mapping and characterization.  
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CHAPTER 1 

INTRODUCTION  

A fault scarp is a displacement in the earth’s surface due to faulting (e.g., Nicol et 

al., 2020). There are two end members of a fault scarp: bedrock and alluvial. A bedrock 

scarp usually exposes the actual fault plane (Figure 1a; Stewart and Hancock, 1988). On 

the other hand, an alluvial fault scarp is commonly developed in unconsolidated 

sedimentary materials (Figure 1b). There have been numerous studies that have idealized 

and analyzed the alluvial end member (e.g., Nash, 1984, Hanks et al., 1984, Arrowsmith 

et al., 1996, and many others). Alluvial fault scarps are the most frequently studied due to 

the relative ease in representation of the surface processes controlling their changing form 

over time (e.g., Hanks, 2000). Modeling the bedrock scarp end member is less common 

because of its physical resistance to change over time (e.g., Tucker, et al., 2011). These 

end members can be classified in terms of transport-limited versus production-limited 

scarps. The bedrock scarp in Figure 1a is production-limited, meaning its erodibility is 

limited by the availability of material for transport. Transportable material must be 

produced first by weathering (mechanical or chemical; e.g., Nash, 1980 and many 

others).  It is more difficult for processes operating on this bedrock scarp to break up and 

produce transportable particles, therefore it will erode more slowly. Transport-limited 

alluvial scarps, however, have available loose material and their modification is limited 

by the ability of surface processes to transport material. As you can see in Figure 1b, it is 
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smoother (in the upper and lower portions), there is unconsolidated material available for 

transport. It will change its form at a faster rate.   

This research is focused on rocky fault scarps, which have alluvial characteristics. 

Highly fractured bedrock is faulted which enables many particles (some quite large) to 

quickly form and cover the face of the fault scarp. It is a bedrock fault scarp in the sense 

of the large particles needed to be liberated and weathered prior to significant transport. 

Some gross characteristics of the change in form follow the behavior of an alluvial fault 

scarp.   

The geomorphic development of rocky fault scarps is not well explained by the 

end member erosion models of alluvial or bedrock scarps. The challenge is to 

characterize the formation, movement, and transformation of the rocks (particles) that 

comprise the fault scarp. Figure 2 illustrates a rocky scarp and idealizes the origin of the 

particles which form the scarp.  Fault scarps in the study area occur within the 0.76 Ma 

Bishop Tuff, which is welded ignimbrite deposit and characterized by pervasive vertical 

cooling fractures. These primary fractures have been taken advantage by subsequent 

tectonic and geomorphic processes, which has led to the formation of rocky fault scarps.  

Additional fractures are derived from tectonic and geomorphic processes.  The 

tectonic fracturing is produced from the growth and offset along the small normal faults 

cutting the tuff (see below). Subsequent fracturing by geomorphic processes of particle 

impacts and thermal cycling further breaks the particles. The dominance of geomorphic 

and tectonic fracturing can vary over time and position along the scarp.  Figure 2 shows 
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the projection of a normal fault that will cut through the columnar joint fractures, and/or 

run through the pre-existing fractures (see also Ferrill, et al., 2016).  In the geomorphic 

example, a rock, indicated by small arrows, that has been gravitationally transported 

down the scarp, and has broken into smaller fragments because of heating and cooling 

over the millennia.  

Machine learning (ML) is used for object detection and classification across 

various disciplines (e.g., Liu et al., 2018, Bergen et al., 2019). Image-based ML 

algorithms can take an image of assorted items and isolate and classify each one with 

training. We presumed that the same strategy is applicable for particle detection along 

rocky fault scarps from orthorectified aerial photography. Certain ML toolkits provide 

positional and geometric information about the object of interest by attaching a binary 

mask to each pixel. Below, I walk through how ML is applied, from setup to products, 

and discuss how this method helped us improve understanding and analysis of rocky fault 

scarps by using ML to extract numerical values for each particle trait. 

I have focused on simple geometric traits of the rocks comprising the fault scarp: 

grain size, eccentricity, and long axis orientation. I hypothesize that the distributions of 

rock traits along and across the scarp reflect the underlying processes and the relative 

roles of volcanic, tectonic, and geomorphic fracturing in the formation and evolution of 

the fault scarps. We test machine learning as a viable tool to accurately and efficiently 

collect traits for thousands of particles because manual data collection is tedious and time 

consuming (https://figshare.com/articles/dataset/scarp_c3_csv/12711947). Additionally, 

https://figshare.com/articles/dataset/scarp_c3_csv/12711947
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we look to improve conceptual fault models (see Figure 23, e.g. Stewart and Hancock, 

1990) by incorporating rocky scarps and particle transport into the geomorphic 

understanding. Landform and fault scarp models are used to assess relative rates of 

faulting for hazard applications. Particle transport is represented by expanding 

McCalpin’s (1993) alluvial trench model of particle classifications in which we identify 

additional particle types that characterize transport styles. We demonstrate how grain size 

represented as 𝜙 (-log2 of the diameter; e.g., Cas and Wright, 1988), differs along this 

rocky scarp and how that distribution reflects the formative processes.   
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Background/Location.  In Figure 3, the orange area shows the distribution of the 

Bishop Tuff in eastern California and the N-S-oriented black lines show the distribution 

of an active fault array within the Volcanic Tablelands (VT) which has cut the Bishop 

Tuff since its emplacement (e.g., Sheridan, 1970, Ferrill et al., 1993, Pinter, 1995).  The 

star marks the approximate location of the fault scarp examined in this study.  Previous 

studies conducted in the region have a larger extent or different research questions, such 

as fault linkage processes, fault block rotation, and relay ramp evolution (e.g., Dawers et 

al., 1993, Peacock, 2002, Ferrill et al., 2016, Kettermann et al., 2019).  The Bishop Tuff 

is ~150 m thick layer of a welded tuff erupted from the Long Valley Caldera ~760 ka.  

This area straddles a portion of the Eastern California Shear Zone (ECSZ), creating 

transtension and resulting in the formation and activity of the array of N-S trending 

normal faults. While the VT is an ideal natural laboratory for this research, the 

methodology presented is applicable in numerous settings where particles are detectable.  

 Figure 4 shows the specific images of the rocky fault scarps that I have 

investigated. The scarp faces are strewn with grains ranging from silt to boulder-sized 

particles of Bishop Tuff. Most of the scarps have a free face, or cliff forming face, at their 

tops.  This is where we locate evidence of secondary fault surfaces or in place, columnar 

joint surfaces that have yet to be broken up.  We rarely see the main fault surface and we 

can assume that between mid-scarp and the top, is the intersection of the main fault 

surface with the topographic surface. Most of the slope is littered with clastic debris.  We 

call this the “debris slope” (Wallace, 1977).  It gives way downhill to a lower slope area 
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that is primarily composed of wind-blown dust.  In this “wash slope,” the spatial density 

of the rocks (and grain size) decreases as they are transported, buried, and mixed with the 

eolian inputs. In an associated project with our French colleagues, we surveyed a scarp 

we call P13. A subset of P13 was used for this study (C3). See Figure 5 for the Digital 

Elevation Model we produced of P13 (see method explanation below). 
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CHAPTER 2 

METHODS 

Data Acquisition (Structure from Motion).  We made several drone flights over 

the scarp area to produce high-resolution topography and imagery using Structure from 

Motion (SfM) as the first steps in the methods workflow (Figure 6) (e.g., Westoby, et al., 

2012; James and Robson, 2012; Johnson, et al., 2014). Figure 7 shows the entire P13 

polygon which includes 933 total images.  The drone flight was approximately 75 m 

elevation.  The coverage of the P13 area was approximately 0.9 km2. Initially, the 

underlying images and the derived products for P13 used GPS positioning information 

from the Phantom drone which includes vertical and horizontal positioning errors. We 

also used 30-m SRTM data to correct vertical GPS errors (~4.74 m) and used tie-points in 

ArcMap basemap satellite imagery to update the georeferencing and reduce horizontal 

GPS errors (~2.75 m). We used UTM zone 11 throughout the processing.  The image 

centers and overlaps are shown in Figure 7.  The highest numbers of overlaps are in the 

south where C3 is located (our study area).  The products that we primarily used for the 

ML are our digital elevation model which gives us 8 cm/pixel resolution.  Most 

importantly, the orthomosaic, or our RGB or red, green, blue color values for this 

location, has a resolution of 2 cm/pixel.  The orthomosaic is derived from the textured 

mesh within SfM process.  The data will be published on the OpenTopography 

Community Dataspace (Scott, et al., 2020; https://doi.org/10.5069/G9SF2TC5). 

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.5069_G9SF2TC5&d=DwMFaQ&c=l45AxH-kUV29SRQusp9vYR0n1GycN4_2jInuKy6zbqQ&r=WEMrDCFJQuie4PgvGyOBhue3VDoOECo3RNv5m35KbzA&m=U6GNUkCycmstMY3yFTC8sIxE3pjsmEheMlnH2WUgJLc&s=9TAUe6SLnjPYUYWI-BjH6E6EhlnfmzZIo5fDkj5oO34&e=
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Figure 8a is the orthomosaic of P13 showing the RGB orthoimage.  The 

background of Figure 8b is the digital elevation model for the entire site, however, the 

green and purple colors represent the elevation model for where the ML analysis was 

done (C3).  The orthomosaic in Figure 8a was the basis for the machine learning 

segmentation and rock trait identification. 

Field Validation.  I visited the field site twice. The first time was in support of 

additional drone surveys. The purpose of the second visit was to collect field data to 

compare with the ML results. I measured the grain sizes, long axis orientation, and 

eccentricity of a subset of rocks on the P13 scarp.  Caution tape was used to mark off a 5-

m wide slot across the fault scarp (Figure 9).  The length of it stretched from the wash 

slope to above the scarp until I found no significant rocks. I conducted this process in two 

locations for a total of 680 particles (Figure 9c and 9d).  Only one of the sites overlapped 

with C3 or the ML results (see Results section; Figure 22).  I examined each rock within 

this taped area, considering the vertical perspective of the ML analysis on the 

orthophotos.  The key in this evaluation is to measure all of the rock traits from the top 

down view.  This is not the easiest or most precise method of measurement, but it is 

important so that the data sets were comparable.  I began by drawing a chalk line down 

the long axis and measured its length and orientation (Figure 9b).  I used a mobile app 

called “Field Move.”  I measured the horizontal projection of the long axis with a tape 

measure and its orientation using the built-in compass in Field Move.  The positions were 
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automatically measured and recorded from the mobile phone GPS. All information was 

stored digitally in a Field Move database and exported for plotting in ArcMap. 

Machine Learning.  Measuring the rocks in the field is time consuming, tedious, 

and there are also precariously stacked rocks.  Navigating in the field over the rough 

terrain can be risky and there are tens of thousands of particles along the scarp.  

Measuring and collecting large volumes of rock trait data is very labor intensive.  One of 

the key questions is: “if a Geologist can identify these rocks in the field or more 

specifically from an image on a computer in the office, than can this ML do it as well?” 

We used what is called a Mask – RCNN (He et al., 2017, Chen et al., 2020).  A 

Mask-RCNN or RCNN stands for is region-convolutional neural network.  Previous 

implementations would create a bounding box around an object and use linear regression 

to fit the box around the object. A Mask-RCNN integrates a fully convolutional neural 

network (Figure 10).  Each one of the gray circles represents a node, where there is the 

input, hidden and output.  The arrows define what a fully convolutional neural network 

means; in every proceeding layer, whether it is hidden or not, the output is influenced by 

each of the previous inputs.  Every node prior is linked to the following node.  They all 

communicate.  What happens in this hidden node is the ML of these meta algorithms, just 

one example, is they geometrically manipulate these images.  It could be in a square 

shape, but these algorithms may distort it and look at it from different angles and create a 

rectangular shape instead. The mask is not just the bounding box information, but now 

we have information for every pixel.  Each pixel within this bounding box gives it a value 
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of a 1 if it identifies it as a rock.  It then works outwards and can cluster each of these 

pixels and group them to form the complete identity of a SPECIFIC rock. It knows it has 

reached the edge of a rock based on color or texture variations of the pixels.  If it is not a 

rock, it gives it a value of 0, because there is no rock present.  This binary mask provides 

information for each pixel that composes each rock.   

To begin machine learning setup, we teach the computer what a rock is. Figure 11 

represents a tile from C3.  We broke up C3 into tiles with each tile having dimensions of 

400 x 400 pixels. The operator then clicks out a polygon or a bounding box around each 

rock using the “Label Me” tool (https://labelsnicheideas.netlify.app/label-me-

github.html) and assigns the polygon a classification.  For this study, there was only one 

classification: rock.  The application assumes that if you did not classify it, it is not a 

rock.  There were 45 tiles that were annotated out of 1755 tiles that made up C3.  After 

training the ML, then it is necessary to test.  This is not a full application of the ML. For 

example, if you annotate 45 tiles, and because you have annotated the rocks that you can 

assume that these annotations are perfect, you then out of that 45 withdraw possibly 10 of 

the annotated ones and you run this small subset of training as a validation test.  Run the 

small subset of rocks through ML. The ML output for those tiles is compared with the 

ML output. If the correspondence too low, more annotation is needed followed by 

additional testing.  

While doing my annotations, I found the occasional bush obscuring a rock (Figure 

11).  In this case, because there was a rock projecting under a bush, I would estimate the 

https://labelsnicheideas.netlify.app/label-me-github.html
https://labelsnicheideas.netlify.app/label-me-github.html
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rock boundary to the best of my ability.  If I could not see a rock, or it was a rock 

completely obscured by vegetation, there would be no rock mapped in that instance.  

Fortunately, the scarps are not heavily vegetated.   

After we annotated and tested, we trained.  The network was setup and run 

through the data set of C3 on all 1755 tiles (Figure 12).   

Post machine learning, significant processing was required to compute the rock 

positions and traits. First, the mask might have a hole (purple line, Figure 12a).  We 

generate contours or boundaries within the mask (green line; Figure 12b) (Chen et al., 

2020). We assume that there are no torus-shaped rocks.  The outer most contour defines 

the rock, completing the mask and uniquely separating the resulting rock polygon 

boundaries (Figure 12d).   

Secondly, when we created these tiles, the tile borders cut through some rocks.  

This would sometimes split one rock which should be connected, but because of the tiling 

strategy, it would then say that it was two rocks because it is two different tiles. The 

rocks were stitched together across the boundaries.  

Finally, we computed the rock traits (Figure 14, see Table 1 and Appendix 2). 

Because the computations were performed on the georeferenced orthophotograph, the 

ML mask provides us positional information for rock polygon. From them, we computed 

the upper left coordinates and used that as the rock position.  
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The area of the polygon defined the horizontal slice through the rock and was the 

direct measure of grain size in square meters. From that area, we computed a more 

traditionally used equivalent grain diameter in millimeters: 

𝑑 = 2√
𝑎𝑟𝑒𝑎

𝜋
1000       (1) 

 

and from that, the standard size scale (e.g., Cas and Wright, 1988, Appendix 1):  

 

𝜙 = −𝑙𝑜𝑔2𝑑.        (2) 

Grain size distributions are commonly analyzed for sedimentary and volcanic particles 

and provide information on characteristics of the depositional process (Visher, 1969, 

Cole et al., 2002). Varying 𝜙 values are associated with different grain size names. A 𝜙 

value less than -8 is a boulder and a 𝜙 value of -8 to -6 is a cobble. That grain size range 

is the most relevant for the C3 statistical analysis of grain size distribution. With the 𝜙 

value we can summarize the grain size statistics (Figure 15) to represent the median 

diameter (𝑀𝑑𝜙) for a given area, along with its standard deviation (𝜎𝜙), and the 

asymmetry of the distribution (𝛼𝜙).   

𝑀𝑑𝜙 =  𝜙50       (3) 

𝜎𝜙 =
𝜙84−𝜙16

2
       (4) 

𝛼𝜙 =
[(𝜙84+𝜙16)−𝑀𝑑𝜙]

𝜎𝜙
      (5) 

The median grain size for C3 is -8.77 (Figure 15c) which is consistent with boulder size 

classification. The histogram of 𝜙 in Figure 15d graphically spreads out the distribution 

and shows us the ML does not detect particles below the cobble classification bounded by 

𝜙 = -6. 
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We fit ellipses to the bounding rock masks (Figure 13). From that the principal axes (long 

a and short b) provide the eccentricity  

𝑒 = √(1 − 𝑎2/𝑏2)         (6) 

The ellipse long axis also has an orientation which is the final trait we analyzed. We note 

however, that the long axis orientation is not well defined for small eccentricities. 
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Table 1 

Rock traits from ML. These traits include the upper left (NW) location (UTM zone 11 

Easting and Northing in meters), horizontal area (m2), orientation of long axis (clockwise 

from north), and the eccentricity (equation 6). See the Appendix II for the entire 12682 

particle dataset. https://figshare.com/articles/dataset/scarp_c3_csv/12711947 

rock id 

UTM easting 

(m) 

UTM 

Northing (m) 

Particle 

horizontal 

area (m2) 

Orientation 

of long axis 

clockwise 

from north 

(degree) 

Eccentricity 

(eqn. 6) 

0 372441.6 4146069.4 0.110 128.3 0.69 

1 372441.1 4146063.8 0.038 83.3 0.17 

2 372441.1 4146064.0 0.032 90 0.02 

3 372441.0 4146063.6 0.046 72.2 0.78 

4 372441.5 4146063.1 0.060 91.8 0.71 

5 372440.7 4146063.2 0.030 81.2 0.62 

6 372441.2 4146066.5 0.192 83.9 0.71 

7 372442.0 4146068.4 0.141 160.7 0.46 

8 372441.9 4146069.6 0.092 81.3 0.64 

9 372440.1 4146064.2 0.056 81.6 0.79 

10 372438.4 4146063.8 0.025 97.3 0.66 

  

https://figshare.com/articles/dataset/scarp_c3_csv/12711947
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CHAPTER 3 

RESULTS 

C3 Statistics.  First, I present an initial analysis of the particle statistics for the 

entirety of C3. Within C3, the ML detected 12,682 rocks whereas when done manually, it 

took 1.5 – 2 days to measure 680 rocks (Figure 14).  Figure 14a is a representation of the 

scarp where there is a black dot for each particle.  The particle detection on its own can 

serve as a mapping technique for the scarp.  Figure 14b is a particle size distribution 

histogram.  We can see that there is a peak occurrence around 0.2 m2 for particle 

horizontal area (0.5 m equivalent diameter or 𝜙 = -8.98).  The rollover in frequency of 

the smallest particles does not indicate necessarily a lack of smaller grains, but rather 

suggests a decrease in sensitivity. As we start to get into the terrain of rocks that are too 

small, they are either undetectable by ML for training reasons, or the resolution of our 

imagery (2 cm/pixel) does not go down to the size of these rocks. The sensitivity to 

smaller particles remains a significant limitation with this dataset. 

The peak in eccentricity is ~0.7 (Figure 14c). On the left is an eccentricity value 

of zero, meaning a perfect circle (Figure 14c; eqn. 6).  On the right is a very elongate 

rock. For reference, an American National Football League football is 27.9 cm wide and 

55.8 cm long. That yields a cross-sectional area of 0.16 m2, an equivalent diameter of 

0.45 m, a 𝜙 of -8.8 and an aspect ratio of 0.5 (in other words, fairly similar to our modal 

detected grain size). 
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There is not a strong preferred particle long axis orientation (Figure 14d). The 

mode is about 0-030. The scarp in general has a N-NW trend.  Given the relatively 

elongate particles (0.7 eccentricity), we expect these particles to roll down the hill like a 

football, giving us an expected 350 degree trend for the long axis orientation. However, 

we do not see that for all of the particles but more of a uniform distribution suggesting 

that rolling transport is not controlling particle orientation. 

Granulometry (Figures 15 & 16) provides insight into grain distributions. As 

particle frequency increases along the scarp, we see an increase in 𝑀𝑑𝜙 and 𝜎𝜙. 

However, 𝛼𝜙 commonly decreases when these other 𝜙 values increase. The 4-meter 

sampling along the scarp (Figure 16a) mostly samples sufficient particles for reasonable 

statistics but also provides a detailed presentation of the variation of those particle traits 

(Figure 16b). 𝑀𝑑𝜙 and 𝜎𝜙 behave similarly with similar peaks in small particle 

abundance (Figure 16c, d). However, 𝛼𝜙 behaves inversely.  

Further analysis of the particle distributions along and across the scarp begins to 

show interpretable variation (Figure 17a). The illustration highlights the relay ramp 

around 310 where the northern linking scarp segment curves while the southern linking 

segment is straight. Figure 17b aligns the 4 m samples on the scarp center. 𝑡he majority 

of particles are near the center of the scarp (Figure 17 d, e). We see primarily small 𝜙 

particles at the top of the scarp (left) likely because the columnar joints are exposed but 

still in-tact which are not detected as particles. It is also possible that the steeper upper 

scarp rids large particles quickly. Small 𝜙 particles dominate the lower scarp. As particles 
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move down the scarp they smash into other particles and break into smaller pieces which 

is one input. Also, by the standard of particle sorting we expect the smaller particles to 

travel further. The smaller particles can fit through cracks and voids as they move down 

scarp while larger particle may hang up on one another. 𝜙 analysis on all C3 particles 

does not show a clear particle alignment preference even when eccentricity is greater than 

0.5 (Figure 18). Analyzing particles where 𝜙 is greater than -7.7 (smaller particles) shows 

that small particles are most frequently detected on the scarp perimeter (Figure 18f). This 

does not mean small particles are not present mid-scarp but possibly lie within the cracks 

between large particles and are therefore concealed. There is a clear preference in axis 

orientation for small particles at NNE and SE (Figure 18h, j). 
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Specific Sites.  I identified several representative locations along the C3 scarp to 

examine the map and statistical patterns of the rock traits (Figures 20, 21). We review 

two distinct scarp forms with the first example being a “typical rocky scarp”. This 

example does not have any outstanding geomorphic patterns relative to most of the scarp 

and for that reason it is typical. The typical scarp is the baseline for pattern comparison to 

other geomorphic examples (see Figure 19). The second is an example of a relay ramp 

(figure 21d). One of the most distinguishable geomorphic patterns we come across is the 

axis orientation discrepancy for the relay ramp.  

The rock trait diagrams for these sites show some pattern consistent with the 

different zones along the scarp.  In Figure 20a, the particle size distribution peaks at 0.2 

m2 and drops off quickly as particles get larger. In Figure 20g, in the red, the free face is 

characterized by a greater abundance of small clasts relative to larger clasts. Large clasts 

are seen farther down in the wash slope and small particles are less frequent. Smaller 

rocks are there but the sand has covered them. Figure 20d shows a scarp parallel 

preference of long axis orientation.   

The relay ramp defines the linking point of two normal faults and shows 

associated geomorphic properties (Figure 21). There is a 0.7 peak in eccentricity and 

another peak around 0.55 (Figure 21c).  The long axis orientations (Figure 21d) are 

unusual because there is northwest and a northeast preferred orientation, possibly due to 

the slope directions of the ramp versus slope directions of the fault scarps. Figure 21g 

shows the ramp in the blue where we can see a lack of larger rocks in the ramp compared 
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to the scarp faces.  It is possibly because this area has not been fractured as much and the 

free face has not breached the upper ramp. However, there is a line of large rocks across 

the upper ramp which might imply an early stage evolution of a breach.   
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CHAPTER 4 

DISCUSSION 

Field Validation.  Comparing field collected data with the ML results is essential. 

We need to have external control on the quality of the ML process.  However, our rather 

limited field validation is only able to support the ML results in a general sense. The 

frequency of particles detected differs in Figure 22 where n=177 for ML and n=225 for 

field. The increased count for field measurements is due to the human ability to measure 

smaller particles in the field that are not detectable in ML due to resolution limits. There 

is not a good correspondence between the orientations of the long axes (Figure 22a) 

which is likely from the discrepancy due to smaller particles potentially biased from 

increased roundness relative to that inferred from the ML. The particle locations scaled 

by their areas are shown in Figure 22b. The finer spatial scale here causes a problem 

because of a mismatch between the positioning of the orthophoto (with its 

georeferencing) relative to the mobile phone GPS that was used for the field positions. 

Not only do the individual particle locations mismatch, but the position relative to 

neighboring rocks do not align.   

I recommend a differential GPS system be deployed to acquire positions for rocks 

in the field with only decimeter errors compared to the meter errors we experience here. 

In addition, manual mapping of the particles on the orthoimagery would enable direct 

comparison with the ML results.  
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Conceptual Models.  We advance the block model concept from Stewart and 

Hancock (1990) to incorporate our rocky scarps (see Figure 1). Their models include a 

detailed piedmont scarp along with other complex evolutionary fault models such as 

splintered or multiple scarps with associated geomorphic implications. These models are 

useful for reference when trying to assess fault scarp processes and evolution of scarp 

form. 

I developed a series of models based on the patterns in the ML results and my 

field work (Figure 23). They range from predominantly production-limited on the left to 

transport-limited on the right.  There are scarp forms dominated by a free face (Figure 

23a).  There is minimal debris slope due to a lack of sediment production, which is 

indicated by the ML as an area where there is less rock detection. Figure 23b is our 

typical example for when we see the appearance of a free-face, a wash-slope, and a 

debris-slope.  Here we can map and better understand the particle evolution (Figure 20).  

There are areas where we have just a debris-slope (Figure 23c); the free-face is 

nonexistent. Particle sizes, possibly set by distributed volcanic or tectonic fracturing as 

well as eolian input, are diminished.  The ramp (Figure 23d) developed in a scarp 

segment of two merging faults with slightly different orientations. In Figure 23e, the 

lower portion of the scarp profile projects above the top of the scarp. This may be a two-

fault system in which this lower fault was active in the past. Later, the second, eastern 

fault was activated, following pre-existing volcanic fractures.  
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Particle Transport Modes.  Seminal work by McCalpin, et al. 1993 on particles 

in colluvium on alluvial scarps inspired me to modify their sedimentological model 

derived from epoxy castings along trenches in fault scarp colluvium, Borah Peak. They 

measured clasts and classified them with a name where each name implies the transport 

mode. The Stacker, the Herringbone, the Slider, and the Sideways Roller (Figure 24) are 

modes that McCalpin was able to observe in the Lost River Fault alluvial scarps (Table 

2). A Noob is a rock that has been fractured and slightly separated from its larger parent 

rock.  The Splitter is one rock that is now two.  Soon it will be mobilized.  The Shim is 

wedged between different rocks.  Its evolution is dependent upon what the rocks 

surrounding it do.  The particle orientations along C3 slightly favor a sideways roller, 

defined by McCalpin, where the long axis is scarp parallel. However, this assumption is 

based on orientation plots and is not yet visually confirmed across the map.  

Thermal cycling (McFadden et al., 2005) will change particle axis orientations 

without transport and may provide insight into the abundance of axis orientations that are 

not scarp parallel. McFadden’s work in the region showed a N-S trend because of 

insolation which is consistent with the orientation trait (as opposed to scarp parallel). The 

angularity and potential disruption signal from faulting events set a wider distribution of 

particle orientations. We can assume that an increased duration with only geomorphic 

influence will show dominance in the orientation signal. 
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Table 2 (New terms expanding McCalpin 1993) 

Particle transport clast types (See Figure 24) 

 

Name Geomorphic Meaning 

Noob Dislocated from in situ parent, not yet 

remobilized 

Shim Trapped by other particles, evolution is 

dependent on neighbors 

Splitter Mobilized particle that is split but not 

separate until mobilized 
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Machine Learning and Extension of the Interpretations of Fault Scarp 

Processes.  The Mask-RCNN tool is sufficient for detecting and isolating particles that 

are densely strewn along a fault scarp face. The ML application allowed us to isolate 

thousands of rocks and extract traits for each one. That result alone is not achievable with 

a field campaign. Additionally, the ability to manipulate the ML data for granulometry 

allows us to test ideas about scarp evolution. However, a geologist needs rigorous 

training or experience with ML algorithms along with various software tools and 

programming packages. The ML application in this thesis incorporates collaboration with 

robotics and computer scientists to develop and refine the method.  

The next step to advance ML in this scenario is to improve validation methods 

and consider a 3D application to understand the processes controlling the development. A 

controlled lab study would allow us to precisely measure, validate, and refine the current 

performance. An example is to build a model rocky scarp made of dice where the size 

and orientations are exact and lead to the exposure of specific ML flaws. Computer 

simulations (e.g. Tucker et al., 2018) and physics engines for gaming environments (e.g., 

https://www.ode.org/) are available for particle dynamics modelling. These computer 

modelling techniques will assist in working forwards or backwards on particle transport 

evolution modelling along with exposing statistical probabilities for particle locations. 

  

https://www.ode.org/
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CHAPTER 5 

CONCLUSION 

Rocky fault scarp geomorphology and evolution processes are better understood and 

easier to assess because of ML. We hypothesized that if we can identify these rock traits 

and use ML to detect them, can we then go back and use this information to apply to 

better understand rocky scarps?  Are we able to determine the difference between 

bedrock and alluvial scarp evolution? ML provided us with statistical information for 

particles that we can use for rocky scarp analysis. We have shown that ML allows us to 

take a seemingly chaotic assortment of thousands of particles and collect individual 

particle traits using granulometry and 𝜙 transform that lets us examine the spatial 

variation of particle size on the scarp. We were able to bridge the gap in alluvial and 

bedrock scarp studies to improve how transport-limited and production-limited processes 

coincide and advance upon previous scarp conceptual models. Application of the ML 

products shown in this thesis will advance hazard assessments in terms of semi-

autonomous mapping can unveil previously unmapped fault scarps. Additionally, we 

relate particle transport evolution to the geomorphic configuration of the rocky scarp 

enabling us to anticipate how current segments will evolve or move in upcoming 

earthquakes.
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Figure 1. Flow chart showing end member bedrock and alluvial fault scarps and other 

scarps within the hierarchy. Rocky scarps—the topic of this thesis—are an intermediate 

position conceptually. (a.) Bedrock scarp with fault place exposed.  (b.) Alluvial scarp.  

a. b. 
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Figure 2. Conceptual model of a typically observed normal fault scarp in the Volcanic 

Tablelands (Figure 3). In situ columnar joints may be further broken by faulting and then 

break into rocky particles and fall down slope. Dust blankets lower topography.  Three 

modes of fracturing control the production and traits of the particles on the scarp: 

volcanic cooling represented by columnar joints, tectonic represented by normal fault-

related deformation, and geomorphic represented by collisions and thermal cycling.   
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Figure 3. Mapped normal fault array (modified from Ferrill et. al, 2016) within Eastern 

California Shear Zone (ECSZ).  Thesis data location marked by a star within Volcanic 

Tableland (see Figure 4). 
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Figure 4. Field photographs of a normal fault scarp (in the C3 survey) that is 

approximately 5-12m high.  Commonly observed is a more resistant upper face 

transitioning to a moderately sloping mid scarp strewn with poorly sorted angular 

particles ranging in diameter from centimeters to two meters.  The lower slope is subdued 

due to an influx of windblown dust. Photo locations in Figure 7. 

 

b. a. 

c. d. 
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Figure 5. Satellite imagery basemap of Volcanic Tableland plateau including the entirety 

of P13 fault scarp DEM, C3 DEM used for machine learning analysis (ML), and 

proximity to the city of Bishop. 
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Figure 6. Methods workflow diagram (from Chen et al, 2020) with initial image 

acquisition from drone (left) leading to statistical analysis of numerical data for 

individual particles (right). 
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Figure 7. Coverage map of P13 from drone campaign where the dots represent camera 

locations and the heat map corresponds to image overlap, where blue is maximum 

overlap.  
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Figure 8. Structure from Motion products of identical locations (C3). Field photos 

location for field validation, Figure 9.  (a.) The orthomosaic (2cm/pix) which is 

composed of RGB values derived from the textured mesh (corrected for topography).  

(b.) The digital elevation model (8cm/pix) derived from the dense point cloud. 

  

a. b. 
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Figure 9. Field validation campaign represented by field photographs and digitally 

mapped features.  (a.) 5m wide swath across the scarp bounded by caution tape within 

which the rocks were measured.  (b.) Illustration of how the long axis of each particle 

was chalked to indicate the top down view for correspondence with the machine learning 

outputs. The chalk lines helped to avoid repeat measurements.  (c.) A map of digitally 

stored rock measurements with positions and axis orientations plotted.  This site lies 

within the machine learning area. Photo locations in Figure 7.  (d.) Same approach as (c.) 

however, lies outside the machine learning area.  

a. 

c. 

b. 

d. 



35 

 

 

Figure 10. A conceptual model of a fully convolutional neural network.  Each gray circle 

represents a node and each arrow represents node communication.  Each node has some 

path of communication with all other nodes.  The input nodes will be our image.  The 

hidden nodes are image manipulations conducted by meta algorithms and the output 

nodes are the mask. (DeepMind, 2018, https://fold.it/portal/node/2008706). 

  

https://fold.it/portal/node/2008706
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Figure 11. This is a tile cut from the orthomosaic that was used for machine learning 

training.  Each tile is 400 x 400 pixels wide (8x8m).   
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Figure 12. Machine learning post processing.  This figure shows how the machine 

learning inferred a rock with a hole and how the outer boundary was kept.  (a.) Mask of a 

rock with a hole in it.  (b.) Shows how the machine learning produced two sets of 

contours, therefore, two rocks.  (c.) Post processing resolve for contour error by removing 

the inner contour.  (d.) Accurate mask is fit to the correct outer contour (Chen, et al., 

2020). 

  

a. b. c. d. 
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Figure 13. Ellipse and long axis orientation extraction from post processing.  The green 

line shows the best fit ellipse boundary while the yellow line shows the corresponding 

long axis fit. These provide the rock area, eccentricity, and long axis orientation traits 

(Chen, et al., 2020). 

  

a. b. c. d. 
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Figure 14. Particle statistics for the entirety of C3.  (a.) Black dot in the location where a 

particle is detected.  (b.) Particle size histogram where particle size is on the x-axis, 

which was cut off at 2 meters for neatness, and frequency is on the y-axis.  (c.) 

Eccentricity histogram where eccentricity is on the x-axis.  A value of zero is a perfect 

circle and elongation increases towards 1.  (d.) Long axis orientation rose diagram where 

zero is North. 

a. b. 

c. 

d. 
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Figure 15. Analysis of particle size distribution for all of C3 where we transform the 

particle horizontal area to grain diameter expressed as 𝜙.  (a.) Black dots represent each 

particle location.  (b.) Particle size distribution histogram (in sq. m).  (c.) Grain diameter 

plotted against frequency where the red circles represent 𝜙16 and 𝜙84.  (d.) Frequency 

histogram of 𝜙 = -8 is the cobble-boulder transition (smaller 𝜙 are larger particles). 

a. 
b. 

c. d. 
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Figure 16. Sampling of grain size statistics along the scarp in C3 every 4 meters. 

Distance is measured along the scarp in meters and the origin is the same for all the plots.  

(a.) C3 rotated horizontally where gray dots represent particles, the blue crosses are in the 

center of each 4 m bin.  (b.) Number of particles along the transect. There are 100 

particles for most of the samples.  (c.) The median grain size (Md 𝜙 ) along the scarp.  

(d.) 𝜎𝜙 along the scarp.  (e.) 𝛼𝜙 along the scarp.

d

. 

c. 

b

. 

a

. 

a. 

b. 

c. 

d. 

e. 
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Figure 17. 𝜙 distribution and histogram derived from ML for C3 scarp segment.  (a.) 4 m 

scarp sampling intervals (blue) at true center relative to particle locations. (b.) scarp 

center is aligned showing scarp particle distribution from center (c.) 𝜙 distribution 

looking down the adjusted scarp center (d.) 𝜙 histogram (particle density) looking down 

the adjusted scarp center. 

a. b. 

c. 

d. 
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Figure 18. 𝜙 analysis for C3 particles (left) compared to only smaller particles where 

𝜙>-7.7 (right).   (a.) all particle locations on C3. (b.) 𝜙 for all C3 particles. (c.) long axis 

orientations for all C3 particles. (d.) eccentricity plot for C3 particles where e>0.5. (e.) 

long axis orientations for Ce particles where e>0.5. (f.) particle locations on C3 where 

𝜙>-7-7. (g.) 𝜙 histogram for only smaller particles. (h.) long axis orientations for C3 

particles where 𝜙>-7.7. (i.) eccentricity histogram for C3 particles where e>0.5 and 𝜙>-

7.7. (j.) long axis orientations for particles where e>0.5 and 𝜙>-7.7. 

 

  

a. 

b

. 

c. 

d. 

e. 

f. 

g. 

h. 

i. 

j. 
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a. c. 

b. d. 
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Figure 19. Visual and statistical information for a specific site within C3.  (a.) Shows the 

specific site location represented by a red polygon and the background image is the 

orthomosaic.  (b.) Machine learning mask outputs for each particle where color is for 

visual identification.  (c.) Each dot represents a particle detected by ML and the larger the 

dot, the larger the particle.  Additionally, the differently colored mapping units are 

defined by geomorphic characteristics.  (d.) Each line represents a particle.  The thickness 

of the line corresponds to the eccentricity value, where higher eccentricity produces a 

bolder line.  The orientation of each line corresponds to the long axis orientation of each 

particle. 
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d. 
c. 

b. 
a. 
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e. 

f. 

g. 

h. 
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Figure 20. Aforementioned (Fig. 14,19) statistical analysis applied to an example portion 

of the scarp.  This location we call a typical scarp because it is the most commonly 

observed geomorphic exposure of scarp segment.  The typical classification is best 

observed in Figure 20g. with an upper resistive free-face above a wide debris-slope and 

even lower wash-slope. See captions for figures 14 and 19 for additional explanation.  
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b. a. 

c. 
d. 
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e. g. 

f. h. 
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Figure 21. Aforementioned (Fig. 14,19) statistical analysis applied to a specific site 

chosen by geomorphic properties.  This site shows a ramp best seen in blue (Fig. 21g.) 

bounded by en echelon faults.  A statistical standout in this analysis is two dominant long 

axis orientations seen in Figure 21d.   
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Figure 22. Comparisons of the machine learning particle traits relative to the field 

measured traits.  (a.) Long axis orientations of particles.  (b.) Dots scaled by particle area 

with red GPS located field measurements and black are particle centroids in the same 

area from the machine learning operations on the orthophotos.  (c.) Rock area frequency 

histograms. 

a. 

b. 

c. 
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Figure 23. Conceptual models to describe rocky scarp geomorphology showing 

characteristics indicated by machine learning outputs and other observations from this 

study.  (a.) The free face is primarily in situ and large particles leading to a limited 

particle detection by machine learning.  The free-face model commonly lacks a debris 

slope.  (b.) Typical rocky scarp is geomorphically represented by columnar joints 

defining the free-face that transition into a wide and poorly sorted debris slope with a low 

sloped base covered by wind blown dust.  (c.) The debris slope exposure lacks a free-face 

and is composed of poorly sorted debris.  (d.) The ramp model is derived from two en 

echelon faults merging.  The merge point defines the ramp and is commonly more 

subdued and dust filled.  The subdued ramp is possible because of the increased 

fracturing caused by these merging faults.  (e.) This model geomorphically shows a 

double scarp system where the lower slope projects above the upper most exposure of the 

scarp.  In this model, we conclude the fault has migrated from a left to right position 

where the left fault is no longer active, and the right fault is newly developed. 
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Figure 24. Updated cartoon (McCalpin, 1993, see Table 2) showing how new particles 

develop and transport through geomorphic processes along a rocky scarp. Shim--

evolution dependent on movement of entrapping particles. Splitter--a single particle 

separated but not yet transported separately. Noob--a particle separated from in situ 

parent but not yet mobilized. 
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APPENDIX I 

 

MATLAB FUNCTION FOR ANALYZING GRAIN SIZE 
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Appendix I 

 

Matlab function for analyzing grain size 
function [phi, cumulative_phi_normalize, thebincenters, median_grain_size, 

phi16, phi84, sigma_phi, alpha_phi] = process_area_to_phi(arealist) 

%THis function takes an input vector of particle areas in sq. m and returns the 

phi 

%vector as well as the statistics on it 

%JRA, May 2020 

  

%convert the grain size to phi: 

equiv_dia = 2.*sqrt(arealist./pi).*1000; %assume the area of a circle and 

convert to mm 

phi = -log2(equiv_dia); 

 

%median diameter: 

median_grain_size = median(phi); 

  

h=histogram(phi,'Visible','off'); %h vector gives the bins of phi 

  

  

cumulative_phi = cumsum(h.BinCounts); 

cumulative_phi_normalize = cumulative_phi./cumulative_phi(h.NumBins); 

%normalize the cumulative phi 

  

A = h.BinEdges+(h.BinWidth/2); 

thebincenters=A(1:h.NumBins); 

  

%now we need phi84 and phi16 

tf=find(cumulative_phi_normalize<0.16); 

lower_node = tf(length(tf)); 

phi_lower = thebincenters(lower_node); 

cum_lower = cumulative_phi_normalize(lower_node); 

phi_upper = thebincenters(lower_node+1); 

cum_upper = cumulative_phi_normalize(lower_node+1); 

dx=(phi_upper-phi_lower); 

dy=(cum_upper-cum_lower); 

dphi=(0.16-cum_lower)*dx/dy; 

phi16=phi_lower+dphi; 

  

tf=find(cumulative_phi_normalize>0.84); 

lower_node = tf(1); 

phi_lower = thebincenters(lower_node-1); 

cum_lower = cumulative_phi_normalize(lower_node-1); 

phi_upper = thebincenters(lower_node); 

cum_upper = cumulative_phi_normalize(lower_node); 

dx=(phi_upper-phi_lower); 

dy=(cum_upper-cum_lower); 

dphi=(0.84-cum_lower)*dx/dy; 

phi84=phi_lower+dphi; 

  

sigma_phi = (phi84-phi16)/2; %graphical standard deviation 

alpha_phi = ((phi84-phi16)-median_grain_size)/sigma_phi; % first order skewness 

  

  

end 
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APPENDIX II 

 

MACHINE LEARNING OUTPUT DATA 
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Appendix II 

 

Rock traits from ML: https://figshare.com/articles/dataset/scarp_c3_csv/12711947 

rock id 

UTM easting 

(m) 

UTM 

Northing (m) 

Particle 

horizontal 

area (m2) 

Orientation 

of long axis 

clockwise 

from north 

(degree) 

Eccentricity 

(eqn. 6) 

0 372441.6 4146069.4 0.110 128.3 0.69 

1 372441.1 4146063.8 0.038 83.3 0.17 

2 372441.1 4146064.0 0.032 90 0.02 

3 372441.0 4146063.6 0.046 72.2 0.78 

4 372441.5 4146063.1 0.060 91.8 0.71 

5 372440.7 4146063.2 0.030 81.2 0.62 

6 372441.2 4146066.5 0.192 83.9 0.71 

7 372442.0 4146068.4 0.141 160.7 0.46 

8 372441.9 4146069.6 0.092 81.3 0.64 

9 372440.1 4146064.2 0.056 81.6 0.79 

10 372438.4 4146063.8 0.025 97.3 0.66 

 

https://figshare.com/articles/dataset/scarp_c3_csv/12711947

