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ABSTRACT  

   

The use of Red Blood Cells (RBCs) is a pillar of modern health care. Annually, 

the lives of hundreds of thousands of patients are saved through ready access to safe, 

fresh, blood-type compatible RBCs. Worldwide, hospitals have the common goal to 

better utilize available blood units by maximizing patients served and reducing blood 

wastage. Managing blood is challenging because blood is perishable, its supply is 

stochastic and its demand pattern is highly uncertain. Additionally, RBCs are typed and 

patient compatibility is required. 

This research focuses on improving blood inventory management at the hospital 

level. It explores the importance of hospital characteristics, such as demand rate and 

blood-type distribution in supply and demand, for improving RBC inventory 

management. Available inventory models make simplifying assumptions; they tend to be 

general and do not utilize available data that could improve blood delivery. This 

dissertation develops useful and realistic models that incorporate data characterizing the 

hospital inventory position, distribution of blood types of donors and the population 

being served.  

The dissertation contributions can be grouped into three areas. First, simulations 

are used to characterize the benefits of demand forecasting. In addition to forecast 

accuracy, it shows that characteristics such as forecast horizon, the age of replenishment 

units, and the percentage of demand that is forecastable influence the benefits resulting 

from demand variability reduction. 
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Second, it develops Markov decision models for improved allocation policies 

under emergency conditions, where only the units on the shelf are available for 

dispensing. In this situation the RBC perishability has no impact due to the short timeline 

for decision making. Improved location-specific policies are demonstrated via simulation 

models for two emergency event types: mass casualty events and pandemic influenza. 

Third, improved allocation policies under normal conditions are found using 

Markov decision models that incorporate temporal dynamics. In this case, hospitals 

receive replenishment and units age and outdate. The models are solved using 

Approximate Dynamic Programming with model-free approximate policy iteration, using 

machine learning algorithms to approximate value or policy functions. These are the first 

stock- and age-dependent allocation policies that engage substitution between blood type 

groups to improve inventory performance. 
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CHAPTER 1 

INTRODUCTION 

1.1.Motivation for the Research 

Blood is a critical weapon the arsenal of modern medicine. Each day thousands of 

patients around the world are saved by the transfusion of blood products. It is a vital 

product, but its availability is never assured and when the supply chain fails patients can 

die. It is estimated that 150,000 deaths from maternal hemorrhage alone could be 

prevented by access to safe blood (Schantz-Dunn & Nour, 2011). While in some areas 

blood is in constant shortage, in other areas units expire on the shelves. Five million 

patients in the US receive blood transfusions every year but its collection and distribution 

pose significant challenges. The supply of blood products is fraught with challenges both 

logistical and personal, both global and local. It is this intersection of human and 

technical problems that motivates this dissertation. 

1.2. Blood Supply Network 

 

Figure 1. Blood Supply Network Illustration 
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 Figure 1describes the blood supply chain and highlights some of the challenges 

found in it. The supply chain described here reflects the most common processes in the 

United States. Countries with well-established donation systems will have similar 

processes but outside of these countries it can look very different.  

1.2.1. Blood Supply Management 

 Every unit of blood product transfused must be collected from a donor, typed 

and screened for disease. Though some hospitals possess internal blood donor centers, 

typically these collection and processing functions are performed by centralized blood 

providing organizations like the Red Cross or America’s Blood Services. For safety 

reasons, the World Health Organization (WHO) recommends collecting blood from 

100% voluntary, unpaid donors. In the United States virtually all blood collected meets 

this description. The reliance on volunteer donors turning out to blood drives, 

bloodmobiles and local blood centers is a major supply-side source of uncertainty. Blood 

providers attempt to motivate blood donors of specific types through telephone calls or 

non-monetary renumeration (e.g. t-shirts) and must make decisions about where and 

when to schedule blood drives and bloodmobile appearances.  

 From a donation site, blood must be taken to a processing facility to be typed 

and screened for disease. For units of whole blood decisions must be made about whether 

to differentiate it into components (red cells, plasma, platelets etc.) or leave it as whole 

blood. Each of these blood components has different uses and different shelf lives.  

 The regional blood center, which may or may not be the same as the processing 

center, is responsible for distributing the blood to hospitals based on their orders. The 
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regional blood center responds to orders from the hospitals but chooses which units (e.g. 

of which age) to use to fulfill the orders. A regional blood center will work with hospitals 

across its region to provide blood for transfusion in that region. They may also rotate 

blood from smaller hospitals to larger, in order to increase the chances of it being used 

before it expires. The national demand for blood is met through such a network of 

regional systems.  

1.2.2. Blood Inventory Management 

 At the hospital, exactly matched or compatible blood is dispensed to patients 

that need it. Blood demand is largely stochastic. Some units will be used in the treatment 

of chronic diseases, some will be used in elective procedures and some will be used in 

emergent procedures. Decisions on what blood type to give a patient are made 

heuristically or ad hoc in the hospital setting based on availability of different blood types 

and other factors. Often hospitals performing elective procedures will perform 

crossmatch and reserve units for elective procedures. The units reserved become 

temporarily unavailable; however, if not used for that purpose they will be returned to 

inventory. Blood that reaches the maximum shelf life before use must be discarded. 

Currently the maximum shelf life for red cells is 42 days, with the oldest units being 

assigned first among compatible blood types. An exception to this rule is that neonates 

are given blood 7 days or younger whenever possible and some facilities will attempt to 

provide specific patient classes (e.g. cardiac patients) with fresh blood.   

The importance of blood in healthcare is indisputable. The many functional tasks 

required in the blood supply chain; collection, testing, distribution, rotation, 
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replenishment and allocation, combined with the features of substitutability, perishability 

and multiple sources of uncertainty result in an incredibly complex supply chain. 

Together they form fertile ground for use-inspired and technically challenging research.  

1.3. Preview of dissertation scope and contributions 

There are too many tasks and challenges inherent in the blood supply chain to 

tackle them all simultaneously. This dissertation addresses challenges surrounding the 

provision of red blood cells at the local (hospital) level that have not been adequately 

address in previous research. Throughout the focus is on more accurately approximating 

the complex reality of the blood supply chain, local perspectives, and the importance of 

context in inventory management. Having discussed the reality of the blood supply chain 

in Chapter 1, Chapter 2 gives an overview of existing modeling approaches to blood 

related logistics problems. Blood inventory management is by no means a new problem 

in operations research and Chapter 2 discusses the main approaches that have historically 

been used for the most studied blood related problems. It also highlights the need for 

multiple modeling approaches in the complex problems addressed in this dissertation.  

Figure 2 is a thematic map of the research addressed by this dissertation and how 

the chapters of the dissertation relate to each other. The use of data-backed simulation 

and the focus on hospital level issues are common elements found in each chapter. Not 

captured in the map is the lack of prior work on the selected research topics.  

 Chapter 3 discusses the potential benefits of demand forecasting improvement 

by hospitals and how facility characteristics and inventory management decisions interact 

with forecasting to increase or decrease the benefits of accurate forecasting. It is often 
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assumed that improved forecasting is always beneficial. However, through the use of 

detailed discrete event simulation models, this chapter shows that, in the complicated 

milieu of the real world, the benefit is highly dependent on the characteristics of the 

hospital environment.   

  

  

Figure 2. Dissertation Research Scope and Problems Addressed 

Chapter 4 is a major contribution of this dissertation. It addresses the problem of 

unit allocation under emergency scenarios. New stock level-dependent Markov Decision 

Process (MDP)-derived allocation policies that consider the substitutability of blood units 

are developed and tested extensively. The policies are tailored to the blood type 



  

6 

distribution of the patient population and the necessity of such local policies is shown. 

Monte Carlo simulations show the MDP-derived policies improve the utilization of 

existing inventories in the absence of perishability. They confirm the importance of 

location-specific polices. Further examination via discrete event simulations (DES) 

evaluates the benefits of the developed allocation policies over the default policy in a 

more complicated environment, during simulated influenza pandemics or mass casualty 

events, and over a longer time frame. These results confirm the Monte Carlo simulation 

results and indicate also the benefits of the MDP-based policies to daily (non-emergency) 

allocation.  

Chapter 5 develops another major contribution in this dissertation. It addresses the 

development of an age-sensitive, stock level-dependent, proactively substituting, 

allocation policy for daily use. As opposed to Chapter 4 where the MDP model featured a 

short time frame needed for emergencies and which excluded perishability and 

replenishment, the MDP-based policies developed in Chapter 5 include both perishability 

and replenishment. Large problem sizes necessitate an approximation; the development 

and solutions of the approximate MDP-based policies are discussed.  

This dissertation focuses on bringing an extended degree of realism to the 

problem of allocating red blood units. It focuses on a hospital perspective, and considers 

the traits of the hospital and the impact of those traits on its blood inventory management 

functions. Briefly, the dissertation contributes to the study of hospital level blood 

inventory management by increasing the understanding of how the benefits of demand 

forecasting based on surgical schedules are influenced by hospital characteristics and 
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policies. Additionally, it makes two significant contributions on policies of blood unit 

allocation, a highly understudied area.  It develops stock level-dependent emergency 

allocation policies that optimize substitution between blood types to increase the 

utilization of a limited stock of blood. It also develops stock age- and level-dependent red 

blood cell unit allocation policies for normal operating conditions. In addition to the 

novelty of the policies directing blood issuing versus the commonly studied blood 

replenishment, these policies are among the first to use stock age and stock levels to 

make substitution decisions, not as a recourse action, but as an active choice to reduce 

outdating and maximize service levels. 
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CHAPTER 2 

REVIEW OF RELEVANT MODELING APPROACHES 

2.1.Modeling Blood Inventory Management 

The blood supply chain was described in the last chapter. This chapter looks at the 

same system through the lens of potential model- and data-based inventory management. 

It describes how researchers are addressing various points of intervention, that is, what 

problems are being tackled and what tools are being used or considered. It then focuses 

on the specific problems and tools being used or designed in this dissertation. Discussion 

of the research topics is organized by whether the study/tools (1) increase knowledge 

about the existing uncertainties, (2) create interventions to directly influence sources of 

uncertainty, or (3) enable interventions to respond to effects of uncertainties.  

One of the goals of this dissertation is to maintain a high degree of fidelity 

between the modeling and reality, by avoiding unnecessary or unsupported 

simplifications and assumptions. In support of that goal, two major modeling approaches 

are used: simulation and Markov Decisions Processes (MDPs). These approaches 

accommodate the desired level of detail, while being adaptable to large problem sizes. In 

this chapter, there is a brief discussion of each of these approaches and how it is used in 

the reported literature. Finally, there is a recap of the detailed discrete event simulation 

model (DES) used in Chapters 3 and 4 of this dissertation.  

2.1.1. Clinical research supporting blood availability assumptions. 

Medically focused blood research can impact blood inventory management 

directly or it can improve quality of inputs to higher level modeling efforts. As an 
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example of direct effect, disease prevalence research guides regulations on which donors 

are permitted donate blood and which must be deferred. Epidemiologists survey disease 

prevalence in sub-populations (Tounkara et al., 2009; Tserenpuntsag et al., 2010) and 

monitor for emerging diseases like Zika virus  (Kuehnert, 2016). The work results in 

donor deferral regulations and guidance. This directly changes the size of the available 

donor pool. Disease prevalence information also serves as an input to models to develop 

disease screening procedures (see Xie, Bish, Bish, Slonim, & Stramer, 2012). In another 

example of direct effect, the RECESS study was a clinical trial in response to the growing 

belief (Flegel, Natanson, & Klein, 2014) that fresher blood results in better patient health 

outcomes, especially for cardiac patients. Results of the clinical trial (Steiner et al., 2015) 

did not confirm that hypothesis. If the trial outcome had been different or if decisions had 

been made without rigorous evidence, it could have resulted in regulation changes that 

would have made it more difficult to meet blood demand. This example also illustrates 

the importance of verifying assumptions before making changes to inventory control 

policies.  

2.1.2.  Interventions that directly impact supply and demand variability. 

Blood banks regularly attempt to reduce donation process variability by 

influencing donor behavior through outreach: phone calls, advertising and public appeals 

for donations (Flavelle, 2020; Garcia, 2016; Reuters News Services, 2000; Zabarenko, 

2014). These efforts are underlaid by research to understand potential impediments to 

donation (Asamoah-Akuoko, Hassall, Bates, & Ullum, 2017; Hawkins & Gillett, 2015; 

Suárez, Fernández-Montoya, Fernández, López-Berrio, & Cillero-Peñuela, 2004; 



  

10 

Titmuss, 1971). Much of the reported research focuses on cultural differences and beliefs 

which support or stigmatize blood donation.  

On the demand side there is ongoing research to optimize transfusion protocols to 

improve patient outcomes. Changes to transfusion protocols affect inventory management 

systems by altering demand patterns. This line of inquiry has already resulted in a 

number of hospitals instituting patient blood management programs which aim to reduce 

the overall use of blood products. These programs do not directly reduce demand 

variability, but they directly reduce demand and would result in more slack in the 

inventory. In another direction, there is ongoing research indicating that faster 

administration of red blood cells, or administration red cells instead of plasma faster 

trauma, may lead to better patient outcomes (Brown et al., 2015; Powell  Elizabeth et al., 

2016), suggesting that red blood cells should be stocked on life flight helicopters, a 

challenging logistics problem. 

Demand forecasting goes beyond examining current demand to attempt to predict 

future demand. This does not change demand but it does reduce uncertainty. Analogous 

to “preclinical” research, the direction of that research is to predict blood usage during 

specific procedures (Hayn et al., 2016) which rolls up into demand forecasting for a 

hospital, region or nation (Velindre NHS Trust, 2008). Forecasting is commonly 

perceived as a way to improve inventory performance (Fortsch & Khapalova, 2016); the 

research in the next chapter shows that that assumption is scenario dependent.  
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2.1.3. Inventory controls that respond to uncertainty 

Many blood supply chain operations research (OR) solutions involve creating 

policies to mitigate the effects of uncertainty, rather than attempting to alter the system’s 

stochastic inputs. This includes classic OR problems such as donor center process 

optimization, blood rotation optimization (Kendall & Lee, 1980), bloodmobile scheduling 

(Alfonso, Xie, Augusto, & Garraud, 2012; Cerveny, 1980), blood inventory routing 

(Hemmelmayr, Doerner, Hartl, & Savelsbergh, 2009, 2010) and, of course, classic 

inventory control. 

In blood inventory control, important subproblems are crossmatching of blood 

units, replenishment (aka ordering), and allocation (aka issuing, picking, dispensing). 

Crossmatching describes both the medical process by which a unit of blood is determined 

to be compatible for a specific patient; and also the larger crossmatch and reservation 

process that incorporate this function into inventory management.  Crossmatch and 

reserve policies have significant impacts on inventory control (Jagannathan & Sen, 1991; 

Perera, Hyam, Taylor, & Chapman, 2009). Optimal crossmatch procedures, both medical 

and operational, are ongoing research issues.  The advent of Type and Screen (TS) 

technology has eliminated the need for crossmatch and reserve for the majority of 

patients (see Dillon, Oliveira, & Abbasi, 2017) but the technology has not been 

universally implemented. 

Replenishment research is perhaps the most addressed inventory research topic. 

Replenishment policies are deeply tied to various inventory control issues including 

allocation policies. Allocation policies are addressed in Chapters 4 and 5 of this 
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dissertation. Both chapters utilize active substitution of compatible blood types to 

improve inventory performance. Chapter 4 finds optimal stock level-dependent issuing 

policies for emergency conditions including type-based substitution but not including 

perishability. Chapter 5 finds improved stock level and age-based allocation policies for 

normal operations including perishability factors, type-based substitution and 

replenishment units of variable age. None of the existing literature incorporates all of 

these features.  

2.2.Methods for Capturing System Complexity 

Blood inventory management is complex. The highly variable supply and demand 

processes, plus perishability, plus substitutability, plus the high stakes of a stockout 

differentiate the problem from standard inventory control. It is known that some standard 

inventory management practices,  such as JIT (“just in time”) policies, are not applicable 

to blood, mainly because of the high stakes of stockout and the complex interactions in 

blood supply chains (Chapman, Hyam, & Hick, 2004). Most perishable inventory 

research does not consider substitutability and perishability simultaneously but one (non-

blood) study which considered both found that use of standard perishable ordering 

policies could result in “pathological behavior” when used with substitutable goods 

(Deniz, Karaesmen, & Scheller-Wolf, 2010). Many common assumptions are incorrect 

and lead to suboptimal conclusions (Cattani, Jacobs, & Schoenfelder, 2011). 
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2.2.1. Simulation to model an existing process and see the effect of new 

policies 

Nahmias (1982) cautioned that “Although many of the existing theoretical 

perishable inventory models discussed in this review have been suggested by blood 

banking problems, the actual problem, even at the hospital level, seems too complex to be 

adequately described by any single mathematical model.” Simulation is a modeling 

approach which can capture complex interactions and large amount detail. In that 

capacity simulation has been used extensively in blood research to understand the effect 

of new inventory polices and to compare multiple existing policies. In conjunction with 

dynamic programming, it is also used to develop the policies themselves.  

Simulation allows understanding of large scale systems such as regional blood 

supply chains (Mustafee, Taylor, Katsaliaki, & Brailsford, 2009) or smaller scale but still 

complex systems. Simulation can be used to predict the effect of proposed system 

changes before they are implemented as in Blake and Hardy  (2013) which looked at the 

impact of the proposed consolidation of two blood centers in Canada’s maritime 

provinces. Simulation permits exploration of how policies interact such as in Baesler et 

al. (2014) which used simulation to analyze different combinations of inventory policies 

in a blood supply chain or Costantino et al. (2014) which used simulation to explore the 

interaction of collaboration with coordination in a supply chain. This is similar to how 

simulation is used in Chapter 3. Chapter 3 does not suggest new policies; it uses 

simulation to describe the potential impact of the integration of demand forecasting under 

a variety of scenarios.  
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Simulation can also be used to compare policies newly developed with other 

methods such as in Janssen et al. (2018) which used mathematical programming to find 

ordering policies for perishable goods but used simulation to compare the policies. Van 

Donselaar and Broekmeulen  used simulation to compare age dependent replenishment 

policies (2009).  This is similar to the way simulation is used in Chapters 4 and 5.  In the 

fourth chapter simulation is used to evaluate the efficacy of new policies. Simple Monte 

Carlo simulations as well as a more complex Arena simulation model are used. The 

simple simulations allow for speed while the increased detail of the Arena model adds 

confidence that the new policies would perform well in a real system. In the fifth chapter 

simulation is used both in the creation of new policies and in the testing of those policies. 

The original research that motivated this dissertation used a detailed discrete 

event simulation (DES) Arena model to find the effect of a proposed blood shelf life 

reduction. Model inputs were derived from real data. This model is used in chapters 3 and 

4 for the comparison of policies in an environment with more detail than is normally 

possible. An overview of the original project is also given later in this chapter.  

Simulation Optimization  

Simulation Optimization is a method for finding new policies that relies on 

simulation, enabling it to approximate complex systems and interactions but without 

guarantees of optimality. Duan and Liao used simulation optimization to get better 

replenishment ordering policies for a non-specific perishable product with a short lifetime 

(2013) and specifically for red blood cells (2014). Afshar and Haghani (2008) worked on 

a simulation-optimization framework for an emergency evacuation problem. The work by 



  

15 

Haijema et al. (2007)  on improved ordering polices for platelets in began as a dynamic 

programming problem but when the state space proved too large it was solved as a 

simulation optimization problem.  

2.2.2. Markov Decision Processes (MDP) and Approximate Dynamic 

Programming (ADP) 

MDPs mirror the sequential decision making of a real allocation process and 

allow for complex system dynamics to be captured. They permit significant flexibility in 

system representation and solution methods. Dynamic programming methods have been 

used to examine the management of blood inventory with multiple sources of supply 

(Puranam, Novak, Lucas, & Fung, 2017) and to develop state-dependent emergency 

blood order policies (Johansen & Thorstenson, 2014). Haijema (2011) is a well-known 

study which uses dynamic programming to find improved issuing policies for perishable 

inventory product with short maximal shelf life (platelets). 

Approximate Dynamic Programming (ADP) is used when exact dynamic 

programming becomes intractable, usually due to problem size. ADP has seen extensive 

use in operations research the last decade with applications including modeling a typical 

blood platelet bank (Abdulwahab & Wahab, 2014), multilocation inventory 

transshipment (Meissner & Senicheva, 2018) and multivehicle stochastic routing 

(Goodson, Ohlmann, & Thomas, 2013).  

There are many different approximate dynamic programming methods. When 

modeling extremely complex MDP, simulation can be used with ADP for model-free 

ADP. Model-free ADP was selected for application in Chapter 5 because the problem is 
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too large for exact dynamic programming and the transition probabilities are too complex 

to be captured directly.  This approach works because simulation is able to capture 

complex system dynamics and bring them into the ADP model. 

Simulation based ADP has not been used extensively in blood literature. One of 

the few healthcare related simulation based ADP models in the healthcare literature is 

Astaraky and Patrick (2015) on the scheduling of surgical suites. A broad overview of 

approximate dynamic programming can be found in Powell (W. Powell, 2011) and  

Bertsekas (2012, 2019b). 

The model-free ADP approach of Chapter 5 uses a machine learning 

approximation architecture. A review of some advanced approximate policy iteration 

methods including machine learning/artificial intelligence architectures can be seen in (D. 

Bertsekas, 2011; D. P. Bertsekas, 2018) and (W. B. Powell, 2010). 

Garbage in, garbage out 

Heeding the adage ‘garbage in, garbage out”, significant effort was made to find 

reliable data sources to support choice of model inputs instead of making assumptions. 

Examples of inputs include blood type distributions in Punjab (Chandra & Gupta, 2012) 

historical influenza infection rates (Britten, 1932; Sharrar, 1969), relevant time horizons 

of emergency blood transfusions (E. K. Powell et al., 2016) and the number of units 

typically required by a victim of gun violence (Demario et al., 2018) among others.  
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2.3.Simulation to Show Effect of Proposed Shelf Life Changes1 

 In response to concerns about a possible reduction in allowable red cell shelf life 

Mayo Clinic sponsored work to determine how a maximum shelf life reduction would 

affect the ability to provide for patients and how it would change the amount of blood 

required to do so. An Arena model was developed to represent the transfusion department 

blood inventory management process at the Rochester hospital as closely as possible. 

 All blood units that enter the transfusion center at Mayo are recorded. From 

these records, data on blood type, age at receipt, date of receipt and whether it was 

transfused or outdated were collected. Transfused unit records were matched with de-

identified patient records. From this information it was possible to identify the number of 

patients arriving each day and what their general characteristics (condition, gender, blood 

type, number of units transfused, time of stay) were. Analysis showed that the number of 

patient arrivals per day varies by day of the week. The historical number of units for each 

day was entered into Arena input analyzer which provided basic distribution definitions. 

Chi-square tests showed that the suggested distributions were sufficient. These 

distributions serve as the patient arrival distributions in the model.   

 In the simulation model each patient is assigned a blood type and membership in 

one of six condition categories depending on their age, gender and medical condition. 

This is necessary because, along with blood type, the patient’s condition determines 

which units of blood the patient is permitted to receive. At the time of the study a 

requirement of younger units for cardiac patients was being consider. In the model, blood 

 
1 This section summarizes (Dumkrieger et al., 2014) 
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types and patient conditions are assigned according to historical percentages. “Patient 

condition” also determines how many units of blood the patient requires. Records were 

analyzed to determine the number of units of blood that each patient requires. Including 

detail of patients and number of units needed over time is important because while the 

majority of patients will only require one or two units some will require many times that 

amount. These demand “shocks” may have a different effect on inventory and need to be 

considered. 

 Blood units arrive at the hospital either via a stochastic process representing 

Mayo’s internal donor center, or the units arrive deterministically as if ordered from the 

Red Cross. The only historical information specific to the Red Cross is the age of the 

units they provide. It is assumed that all blood requested is received. The complex age 

distribution of new units is a unique feature in this research. 

 The actual inventory policy in place at the time of the study was used as a 

baseline. That policy was a “periodic review and order up to” policy with two levels, one 

for regular orders which occur three times per week and another level for extra orders 

which occur as needed. Current inventory and anticipated arrivals from the internal 

donation center (undergoing processing when the order is placed) are considered when 

determining order quantity. Each order is received the day after it is placed. 

 After a patient has arrived and been assigned the appropriate characteristics the 

existing inventory is searched to find the oldest compatible blood according to the 

specified allocation policy. The pattern of blood substitutions is one of the key elements 

that makes simulation the most appropriate tool for analyzing blood inventory problems. 
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A randomly determined percentage of the total units demanded are used on each day until 

there is no outstanding demand.  

The model was internally validated. Producing the correct total number of units 

per year confirms that the patient generation function and the units/patient function are 

interacting correctly in the simulation model. Correct distributions of blood types, patient 

categories, age of donated units were also confirmed. One potential shortcoming of the 

model is that it did not consider temporary allocation of cross-matched blood in advance 

of a procedure. However, the advent of type and screen technology means that for 

patients without rare antigens crossmatch and temporary reserve is unnecessary (see 

Dillon, Oliveira, & Abbasi, 2017).   

 Seven scenarios were run. Each scenario has a different shelf-life ranging from 

the current 42 days down to 7 days. Scenario 6 has a 14-day shelf life limit for blood 

given to cardiac patients and a 42-day limit for blood given to other adults.  Results are 

summarized in the table below.  
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1 7 76200 5.79 41,273 5.5 95% 63,773 61% 42% 2.6 5.9 4.5 720 

2 14 54509 11.05 41,283 9 83% 42,072 50% 52% 2.5 12.4 7.2 1,374 

3 21 22958 14.48 41,283 8.3 49% 10,521 20% 76% 2.7 17.7 6.3 1,698 

4 28 13903 16.25 41,267 7.1 33% 1,482 3% 85% 2.7 20.9 5.5 1,767 

5 35 12809 17.14 41,268 7.1 31% 387 1% 92% 2.8 27.2 4.8 1,793 

6 mixed 12802 17.27 41,265 7.2 31% 384 1% 95% 2.8 20.6 3.6 1,813 

7 42 12581 17.29 41,271 7.1 30% 157 0% 98% 2.8 23.2 3.3 1,812 
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 The most important result of this work is that under a seven-day shelf life Mayo 

would need to request more than six times as much blood from the Red Cross as they 

currently do. The vast majority of these units would never be transfused and would go to 

waste.  Even a more moderate halving of the shelf life to 21 days would nearly double the 

amount of blood Mayo would need.  

 In this simulation model no limits were placed on quantity ordered from the Red 

Cross; in this case Mayo would be able to provide for all patients even with 7 days shelf 

life. However, if there was a limit on the quantity, as there surely would be in real life, a 

tradeoff would have to be made between the number of units being outdated and the 

number of patients who will not served  

 This research showed that while it may be possible for the Red Cross to provide 

for Mayo’s needs under a shelf-life reduction scenario, it would not be possible for the 

Red Cross to provide for all of the hospitals it serves without major system changes.  

 The Arena model used in this analysis was used with modifications in Chapter 3 

to compare the possible effects of demand forecasting and in Chapter 4 to compare the 

performance of issuing policies both under emergency conditions and under normal 

operations. The overall structure and level of detail of the model remain but some aspects 

were altered in some scenarios to allow for the comparisons to be made. Any changes are 

discussed in the appropriate section. 
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CHAPTER 3 

USE OF SIMULATION AND FORECASTING MODELS TO EVALUATE THE 

BENEFIT OF FORECAST IMPROVEMENT ON BLOOD INVENTORY 

MANAGEMENT 

3.1.Introduction 

Management of blood inventory is very complex. Part of the complexity is due to 

the perishable nature of the product. Further contributing to the complexity is the 

stochasticity of demand for blood products and that serving this demand is mortally 

important.  

Within the field of blood inventory management, one area that warrants further 

exploration is forecasting the demand for blood based on surgical schedules. It is not 

common practice for hospital blood banks to attempt to forecast demand based on 

surgical schedules or even to adjust their ordering based on the surgical schedule. It 

seems intuitive that by accurately forecasting demand, blood inventory management can 

be improved. This chapter evaluates whether forecasting improves inventory 

management and if it does, how much does the prediction accuracy impact the benefit.  

Red blood cells (RBCs) are of critical importance and the World Health 

Organization (WHO) recommends hospitals keep 7 days of inventory on hand. Hospitals 

try to balance having sufficient resources on the shelf to serve their patients while 

minimizing wastage and associated costs.  

Some blood units are required for critical emergency needs, such as for the 

treatment of trauma victims. The other portion is used in elective procedures which are 
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scheduled in advance. Elective demand presents an opportunity to reduce system 

uncertainty through forecasting. Reducing system uncertainty would be expected to 

improve inventory performance. However, forecasting blood unit demand from 

scheduled procedures is quite complex as there are many different medical procedures 

that require blood and many factors, such as patient body weight, that affect the quantity 

of blood required, even for the same procedure.  

Before undertaking arduous efforts to forecast blood usage based on surgical 

schedules it will be useful to know if the expected benefits will make these efforts 

worthwhile. This chapter uses detailed simulation models to clarify the effect of demand 

forecasting on inventory performance as measured by outdated units and unmet demand.  

3.2. Literature on Forecasting Perishable Demand 

3.2.1. Product Perishability. 

Perishable inventory control is a well-researched topic of study and blood (both 

red cells and platelets) inventory is frequently the subject product. There are two main 

objectives in blood management: (1) minimizing outdating, and (2) maintaining service 

level.  

Demand uncertainty is the most significant source of inventory inefficiency at the 

hospital level. Demand uncertainty can be attributed to the stochasticity and variability 

inherent in the demand stream. Reducing demand variability itself is impractical, but 

implementation of accurate forecasting may reduce the impact of the variability and 

produce better system performance (Fildes & Kingsman, 2011). 
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3.2.2. Demand Uncertainty and Forecasting Error.  

Several authors have studied the value of improved demand forecasting and/or the 

effect of demand uncertainty in manufacturing systems. Fildes and Kingman (2011) 

found that in a simulated two-level Material Requirements Planning (MRP) model with 

lot sizing, improved forecast accuracy could substantially reduce unit cost, particularly in 

the face of high demand uncertainty. Others have considered demand uncertainty and 

forecasting in conjunction with process uncertainty (Germain, Claycomb, & Dröge, 

2008) or environmental uncertainty (Wong, Boon-itt, & Wong, 2011) in the supply chain 

and found links between higher uncertainty and higher costs. Still others have studied the 

interaction of demand variability with transshipment and its spread and amplification 

through the supply chain (X. Chen, Hao, Li, & Yiu, 2012). 

The potential value of forecasting in blood inventory management is insufficiently 

explored. Much of the existing perishable (and blood) inventory literature assumes a 

heavily “stylized” environment (Broekmeulen & van Donselaar, 2009), often assuming 

single products, lack of substitution, no lead time, uniform age at arrival to inventory, or 

only a two period shelf life. While these assumptions are necessary for the development 

of tractable models, it is not clear how implications on the benefits of forecasting hold up 

in the complex environment found in practice. RBC management involves eight products 

with complicated substitution patterns, a 42-day shelf life, complex age distributions of 

current inventory, and other nuances.  

3.2.3. Prediction of blood demand. 

Forecasting blood demand is not unusual at the regional (Fortsch & Khapalova, 
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2016) or national (Lestari, Anwar, Nugraha, & Azwar, 2017) levels, but these forecasts 

have long horizons and do not include local schedules as input. In a detailed discussion of 

the current processes for prediction of blood needs by the National Blood Service of 

England and North Wales (Chapman et al., 2004) it was noted that demand forecasting 

occurs annually with quarterly adjustments. These regional long-horizon forecasts are 

akin to tactical level forecasts whereas this chapter is concerned with the short-horizon 

hospital level forecasts for operational-level decision making. 

The need for improved demand forecasting has been recognized by organizations 

responsible for such planning (Velindre NHS Trust, 2008, p. 117) but there is little 

evidence of operational level forecasting occurring in practice (W. P. Pierskalla, 2004, p. 

122; Stanger, Wilding, Yates, & Cotton, 2012). Many of the models that have been 

developed predict blood usage for only a single, specific procedure type, such as “Major 

Head and Neck Surgery with Free-Flap Reconstruction” (Shah et al., 2010) or total hip 

replacement (Hayn et al., 2016) or are retrospective reporting of blood requirements 

(Demario et al., 2018). Some models predict whether or not transfusion will be needed 

(Shah et al., 2010) while others attempt to predict the number of units needed (Hayn et 

al., 2016). Forecasts of demand quantities would be a more useful outcome for the 

purposes of the scenarios considered in this chapter.  

One notable reference, Guan et al. (2017), used historical data to develop a 

predictive demand and ordering model for platelets based on current patient data. The 

model estimated that the developed ordering policies could reduce outdating from 10.5% 

to 3.2 %.  Platelets have a much shorter shelf life; however, the approach could be 
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applicable to RBCs as well.  

While the approach may work for RBCs it’s not clear that the benefit will be 

worth the effort. Inghilleri (2010) defined three primary approaches to forecasting blood 

demand, with increasing complexity, and noted that more accurate methods require 

patient-specific information. Increased information collection comes with a cost. The 

following section describes a model of forecast error that will be used along with a 

detailed simulation model to investigate how various inventory characteristics and 

inventory management decisions interact with improvements in forecast accuracy. The 

detailed simulation model makes it possible to get a sense of the potential benefits of 

forecast improvement in a realistic environment.   

3.3. Forecast and Simulation Models  

3.3.1. Forecasting error and reorder quantities. 

In this approach, the patient arrival stream to the hospital is generated randomly. 

Some portion of patients   are deemed to be seeking elective procedures and therefore 

their demand is “forecastable”. Prior to their simulated arrival at the hospital the quantity 

of RBC units demanded by each elective patient is recorded and a forecast of their 

demand is calculated. Forecasted demands are recorded and used to set orders. Orders 

arrive prior to the patients’ arrivals. Note that units are not earmarked for specific 

patients, only the quantity is set. The forecasted demand is modeled by adding the 

forecast error term, 𝜖, to the actual demand quantity. Patient level forecast error 𝜖 is 

assumed normally distributed with mean 𝜇 and standard deviation 𝜎, i.e., 𝜖~ 𝑁(𝜇, 𝜎). For 

an unbiased forecast 𝜇 = 0. The equations (3.1) – (3.6) below describe the forecasting 
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model, using the following notation:  

𝐷𝑡: 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑑𝑝𝑡𝑥: 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 (𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒) 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑥 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑑𝑒𝑡𝑦: 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑡 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝐹𝑡: 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝜖: 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 

𝑝𝑐𝑡. 𝑝𝑟𝑒𝑑:% 𝑑𝑒𝑚𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒) 

𝑠𝑠𝑒 , 𝑠𝑠𝑝: 𝑠𝑎𝑓𝑒𝑡𝑦 𝑠𝑡𝑜𝑐𝑘 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠;  𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑡, 𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 

 

𝐷𝑡 = ∑ 𝑑𝑝𝑡𝑥𝑥 + ∑ 𝑑𝑒𝑡𝑦𝑦                                                      (3.1) 

𝐹𝑡 = ∑ max (𝑑𝑠𝑡𝑥 + 𝜖, 0)𝑥                                                 (3.2) 

  𝜖 ~ 𝑁(𝜇, 𝜎)                                                       (3.3) 

∑ 𝑑𝑝𝑡𝑥𝑥 = 𝐷𝑡 ∗ 𝑝𝑟𝑒𝑑. 𝑝𝑐𝑡                                               (3.4) 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 ∗ (1 − 𝑝𝑐𝑡. 𝑝𝑟𝑒𝑑) ∗ (1 + 𝑠𝑠𝑒)        (3.5) 

𝑂𝑟𝑑𝑒𝑟𝑇 =  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑇 + 𝑠𝑠𝑝 ∗ 𝛴𝑡∈(𝑇−1,𝑇]𝐹𝑡       

(3.6) 

where OrderT is the order quantity at period T, T=1, 2, … 

In practice, the proportion of blood requirements going towards emergency 

procedures vs. elective procedures varies across hospitals and the model accommodates 

this with the forecastable demand percentage variable (pred.pct). Inventory set points 

cover only the non-forecastable demand and remain constant throughout a single 

scenario. When non-forecastable demand is present, new inventory target levels are 

baseline setpoint quantities multiplied by the percentage of non-forecastable demand plus 
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a safety factor. Order quantities equal the forecasted quantity plus the order quantity from 

the non-forecastable portion along with any safety factors, (see equation 3.6). Safety 

stock multipliers are included separately for forecasted demand portion and for the 

unscheduled demand portion. Both positive and negative safety stock values are explored 

below.  

3.3.2. Hospital simulation model. 

The operations of a single hospital’s blood bank were modeled using Arena 

simulation software (Rockwell Automation, 2016) as described in Chapter 1. The model 

has been verified and validated with historical data. This model features random streams 

of adult patients of several disease categories. Each patient demands one or more blood 

units over one or more days. For the analysis in this chapter supply is provided entirely 

by the regional blood center, that is, there are no donations coming directly to the 

hospital.  

Baseline inventory target levels were set to meet the new demand with minimal 

outdating. In the preliminary scenarios (see Table 2 in next section) target inventory 

levels are constant and there is no demand forecasting.  

Three sets of analysis were done. In the first analysis all demand is presumed 

forecastable and the forecast is assumed to be “perfect” with error mean and standard 

deviation equal to zero. This analysis assesses characteristics of the environment that 

affect the ability of a perfect forecast to result in perfect inventory performance.  

The second set of analyses again assumes that all demand is predictable and that 

the forecast is unbiased but several error variances, along with several ordering safety 
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factors are considered for two different demand levels. This analysis illustrates the impact 

of the error variance in conjunction with the safety factor on unmet demand and 

outdating.  

The third analysis presents a designed experiment that seeks to evaluate jointly 

the impact of forecast error mean and variance, safety factors and percent of demand that 

is predictable for a single demand level. Total demand remains the same in each of the 

scenarios of the third analysis but some percentage of it is deemed to be from elective 

procedures.  

3.4. Simulation Experiments  

3.4.1. Preliminary experiments: Non-forecast related factors affecting 

forecast impact. 

Real-world blood inventory systems are comprised of numerous environmental 

features in combination with multiple management decisions. Even in the presence of a 

perfect forecast the following features can prevent perfect inventory performance:  

• Order timing and lead times 

• Age of received replenishment units 

• Forecast horizon  

• Internal age-based queues  

• Patient demand forecasted once, but demand extends over multiple days. 

These factors are interrelated. If the time between orders is longer than the 

forecast horizon then the orders will not be in inventory when the demand occurs. If the 

forecast horizon is long and the age of arriving replenishment units is high, then the units 

may outdate before the intended recipient arrives. If there are internal age-based queues 
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(such as set-aside of fresher units for pediatric patients) and there is substitution in the 

queues of older units before searching the queues of fresher units, the assignment of units 

to their “intended” patient may become suboptimal.  

Baseline (Perfect Performance). 

To establish a baseline with zero units outdating and zero unmet demand, the 

following assumptions were made: 

1) Age of replenishment units upon receipt was set to 2, the approximate time 

required for processing newly donated units.  

2) The forecasting horizon was set to 7 days; and 

3) Orders are permitted (and occur) each day.  

Under these conditions and with a perfect forecast, supply and demand match and there is 

no outdating and an average of 0.1 unit of unmet demand per simulated year (Table 2, 

row 1). Patient demand can occur across multiple days and that does not negatively 

impact the outcomes here, but under conditions of different distribution of replenishment 

unit ages or different forecast horizons, multiple-day patient demand could prevent 

perfect performance. 

Limited Order Frequency.  

Limiting order frequency to a scheduled three days per week results in 1.4 

patients per year with unmet demand if the orders are scheduled on days 2,4 and 5 

(Monday, Wednesday, Thursday) (see  Table 2, row 2),  but less than a single-patient 

unmet demand if the orders are schedule on days 2,4,6 (Table 2, row 3). Both these 

values are very small, but it illustrates the sensitivity of the problem to inventory 

management decisions.  



  

30 

Table 2  

Exploratory simulation results showing effect of reorder schedule and replenishment unit 

age at delivery on annual average unmet demand and outdating.  

Reorder 

Schedule, 

Day of Week 

Unit Age at 

Delivery 

Unmet demand 

(patients) 

Unmet demand 

(units) 
Outdated Units 

1-7 2 0.1 0.1 0 

2,4,5 2 1.4 4.1 0 

2,4,6 2 0.3 0.4 0 

2,4,6 28 0.3 0.4 0 

2,4,6 35 114 416 390 

2,4,6 
Complex* 

(mean 18.01) 
5 15.2 18.2 

 *Age distribution varies by blood type. For description of complex age distribution see 

(Dumkrieger, Huschka, & Stubbs, 2014). 

Increased Age of Supplied Units. 

Broekmeulen and van Donselaar (2009) addressed the stylized environments 

found in perishable inventory research and noted the importance of considering detailed 

age distributions. Rows 4, 5 and 6 of Table 2 show the results of adjusting the supply age. 

When the units delivered are 28 days (4 weeks) or younger, the unmet demand and 

outdating are not affected. A fixed age of 35 days (5 weeks) or younger results in a 

significant increase in outdating. When the supply has a complex, type-dependent age 

distribution, there is a mild increase in unmet demand and outdating compared to the 

scenario when the replenishment unit age is 28 days. This complex age distribution is 

from historical data and is used in subsequent experiments.  

3.4.2. Effect of error variability under 100% predictable demand. 

The second analysis also considers the case when the demand is entirely elective 

(i.e. it is forecastable) and tests combinations of the standard deviation of the forecast 
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error (error-SD) and safety factors at two different demand levels. The first case, the 

high-demand case, is where demand is very large (approx. 8,100 patients, 39,600 units 

per year), and the second, low-demand case, is much lower demand; it has 10% of the 

demand of the first case. The mean of the forecast error is held to be 0 in all scenarios of 

this analysis. As in the latter rows of Table 2, three orders are placed per week, on days 2, 

4, and 6. Lead time is 24 hours and forecast horizon is 7 days. The age of the units upon 

arrival are based on empirical data and vary by type. There are no neonate or pediatric 

patients. The mean units/patient is 4.88; with this value in mind a variety of error 

standard deviations between 0 and 4 were selected for testing. Several safety factors were 

tested: -1%, 0%,1%,10%; as a percent of forecasted demand and added to the forecast 

demand.  

The case where the error mean and standard deviation are 0 represents perfect 

forecasting (Table 3, row 9). Unmet demand and outdating in that scenario are the results 

of what may be called the “friction” of the system   
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Table 3  

Results of simulations for varying error-SD and forecastable demand safety factor (safety 

%). Row 9 shows results of simulation with 100% accurate forecast.  

 HIGH DEMAND LOW DEMAND 

 error 

-SD 

safety 

% 

outdated 

units 

unserved 

patients 

unmet 

units 

outdated 

units 

unserved 

patients 

unmet 

units 

1 0.0 -0.01 18.2 135.4 487.8 30.9 27.7 70.3 

2 0.01 -0.01 19.0 131.8 487.5 28.6 61.6 188.0 

3 0.1 -0.01 19.8 130.7 486.0 31.3 56.6 164.4 

4 0.25 -0.01 20.0 125.0 482.3 29.7 51.2 151.7 

5 0.5 -0.01 18.4 134.1 475.0 27.0 48.4 145.1 

6 1.0 -0.01 18.8 122.9 461.6 28.0 49.2 143.8 

7 2.0 -0.01 29.5 114.5 437.1 41.0 39.3 127.4 

8 4.0 -0.01 111.8 89.5 353.7 141.1 22.6 73.8 

9 0.0 0.00 17.2 4.8 15.9 36.3 16.8 38.5 

10 0.01 0.00 46.6 38.3 136.0 27.7 38.7 106.3 

11 0.1 0.00 39.3 36.8 131.5 27.5 39.2 106.0 

12 0.25 0.00 44.6 38.8 128.6 25.8 37.8 103.9 

13 0.5 0.00 49.4 36.3 131.9 29.2 38.4 106.7 

14 1.0 0.00 60.8 34.5 124.7 31.4 36.4 107.9 

15 2.0 0.00 77.2 26.1 95.5 45.9 31.8 96.4 

16 4.0 0.00 225.0 22.8 78.1 162.5 16.2 53.9 

17 0.0 0.01 293.6 0.0 0.0 31.6 14.5 33.3 

18 0.01 0.01 292.7 0.0 0.0 33.8 15.0 35.3 

19 0.1 0.01 276.7 0.0 0.0 32.1 23.5 58.1 

20 0.25 0.01 241.2 0.0 0.0 30.6 29.0 70.0 

21 0.5 0.01 247.9 0.0 0.0 32.3 26.6 72.8 

22 1.0 0.01 268.2 0.0 0.0 35.6 26.4 72.3 

23 2.0 0.01 310.1 0.1 0.1 52.6 20.3 63.5 

24 4.0 0.01 494.1 0.3 0.7 188.1 11.2 38.3 

25 0.0 0.10 3735.9 0.0 0.0 312.6 0.1 0.1 

26 0.01 0.10 3729.2 0.0 0.0 306.2 0.1 0.1 

27 0.1 0.10 3728.8 0.0 0.0 304.5 0.0 0.0 

28 0.25 0.10 3730.8 0.0 0.0 304.3 0.1 0.1 

29 0.5 0.10 3742.3 0.0 0.0 302.9 0.1 0.1 

30 1.0 0.10 3756.1 0.0 0.0 309.3 0.1 0.1 

31 2.0 0.10 3805.6 0.0 0.0 341.5 0.4 0.9 

32 4.0 0.10 4018.2 0.0 0.0 521.6 0.5 2.0 
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Figure 3. Plot of outcomes vs error SD for high demand case. Outdated units plot shows 

quadratic fit line. 

 

Figure 4. Plot of Outcomes Vs Error SD for Low Demand Case. Outdated units plot 

shows quadratic fit line. 
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There is a quadratic relationship between outdating units and forecast error-SD 

which is particularly strong in the low demand case (Figure 3 and Figure 4). In the low 

demand case, the R2 of a quadratic polynomial fit to the results is above 0.99 for all % 

safety stock. The relationship is less clear for the high demand case with R2 ranging from 

0.96 to 0.99.   

As seen in Table 2, Figure 3 and Figure 4, having high, unbiased forecast 

variability makes less difference in outcomes when demand is high. The effect is much 

greater for the lower demand case, as seen in the comparatively steep curves in Figure 4. 

Except for simulations with negative safety %, the low demand case has unmet demand 

equal to or greater in unmet demand than the high demand case. The increased “friction” 

in the lower demand case is seen in the proportionally higher unmet demand in the 

perfect forecast scenario (see Table 2, row 9).  

It is important to note that the scale of unmet demand is very different than of 

outdating units. In the high demand case, the maximum unmet demand is only 1.2% of 

units demanded (1.7% of total patients) , and occurs when the error-SD equals 0 and the 

safety factor equals -10% (Table 2, row 1). In the low demand case the maximum unmet 

demand is 4.7% of demanded units (7.6% of patients ) which occurs when the error-SD is 

0.01 and the safety factor is -1% (Table 2, row2). These shortages may be small enough 

that they could in practice be overcome by a few emergency orders, but emergency 

orders were not allowed in this model.   

Unmet demand initially increases with increasing error-SD but then decreases. 

The trend of decrease in unmet demand with increase in error SD may seem 
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counterintuitive. The effect appears to be due to a flattening out of under-estimated 

forecasts. When the forecast overestimates, the resultant excess supply remains in 

inventory for a significant period of time and is available to serve demand whenever the 

forecast underestimates. Pooling demand from multiple patients means the sample bias 

will tend toward zero but because the minimum order is 0 the bias shifts towards the 

positive, shifting the average ordered quantity higher than the forecasts would have 

recommended. Younger age of units at delivery would be expected to increase this effect.  

Units demanded per patient are drawn from the same distribution in the high and 

low demand cases, but because there are more patients in the high demand case, the 

overall demand variation is less. In the high demand case, the coefficient of variation for 

daily demand is 0.38 (weekly: 0.11). For the low demand case the coefficient of demand 

for daily demand is 0.71 (weekly 0.25). The distributions for the high demand case are 

more normal and symmetric (see Figure 5) while the demand is more skewed in the low 

demand case (see Figure 6). The higher demand variability in the low demand case 

translates to higher variability in order size (high demand order size coefficient of 

variation: 0.19 – 0.22; low demand coefficient of variation: 0.44-0.52) and the risk-

pooling effect is diminished in the low demand case. 
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Figure 5. Daily and Weekly Demand Distributions for High Demand Case 

 

 

Figure 6. Daily and Weekly Demand Distributions for Low Demand Case. 
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Further Discussion of the Simulation Results. 

High-demand hospitals will experience less variation in total demand even with 

the same unit-per-patient demand distribution. They will experience less negative impact 

from forecast error variance increase and less benefit from forecast improvement, when 

the forecast is unbiased.  

3.4.3. High demand case, designed experiment. 

Not all hospitals face entirely forecastable demand. In the experiment discussed in 

this section the demand quantity is fixed to the high demand level but the percentage of 

the demand, which is elective, and therefore forecastable, varies. Five variables in the 

experiment were that were allowed to fluctuate are: 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡 ∈ [0.1, .9] 

𝑠𝑠𝑝, 𝑠𝑠𝑒 ∈ [−1%, 1%] 

𝜇𝑒𝑟𝑟𝑜𝑟 ∈ [−1,1] 

𝜎𝑒𝑟𝑟𝑜𝑟 ∈ [0,4] 

Forecast.pct is the percent of demand that is forecastable, 𝑠𝑠𝑝 and 𝑠𝑠𝑒 are the 

safety factors of forecastable and emergency demand respectively, 𝜇𝑒𝑟𝑟𝑜𝑟 is the mean of 

the forecast error and 𝜎𝑒𝑟𝑟𝑜𝑟 is the standard deviation of the forecast error. 

A central composite design with two repeated center runs was created in JMP 

(SAS Institute Inc., 2018). Simulations were run according to the design matrix for ten 

simulated years. Results for responses of outdated units and unserved patients are shown 

in Table 4. 
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Table 4 

Coefficient estimates and variable significance from analysis of variance on results of 

experiment on effect of percent of demand that is predictable, forecast error mean and 

SD, and safety percentages on high demand case. Two analyses were performed, one with 

outdated units as the response variable and one with unserved patients as the response 

variable. Variables centered prior to Anova.  
 

Outdated Units Unserved Patients 

Intercept -465.4  -902.4  

forecast.pct (0.1,.9) 5867.9*  4367.6*  

𝜎𝑒𝑟𝑟𝑜𝑟(0,4) 280.5  -102.6  

𝑠𝑠𝑒 128.1  -1.2  

𝑠𝑠𝑝 1167.9  -180.2  

𝝁𝒆𝒓𝒓𝒐𝒓 7633.2*  -4353.4*  

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡 ∗ 𝜎𝑒𝑟𝑟𝑜𝑟 266.9  -115.4  

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡 ∗  𝑠𝑠𝑒 -50.1  -1.3  

𝜎𝑒𝑟𝑟𝑜𝑟 ∗  𝑠𝑠𝑒 -1313.9  -202.7  

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡 ∗  𝑠𝑠𝑝 1292.4  -202.7  

𝜎𝑒𝑟𝑟𝑜𝑟 ∗  𝑠𝑠𝑝 -44.2  -1.3  

𝑠𝑠𝑒 ∗ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡 -252.9  -115.4  

𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕. 𝒑𝒄𝒕 ∗ 𝝁𝒆𝒓𝒓𝒐𝒓 8518.3*  -4897.4*  

𝜎𝑒𝑟𝑟𝑜𝑟 ∗ 𝜇𝑒𝑟𝑟𝑜𝑟 282.9  115.4  

𝑠𝑠𝑒 ∗ 𝜇𝑒𝑟𝑟𝑜𝑟 37.2  1.3  

𝑠𝑠𝑝 ∗ 𝜇𝑒𝑟𝑟𝑜𝑟 1295.4  202.7  

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 𝑝𝑐𝑡2 2863.7  1256.6  

𝜎𝑒𝑟𝑟𝑜𝑟
2  2171.2  1128.6  

𝑠𝑠𝑒
2 1917.2  1128.6  

𝑠𝑠𝑝
2 1993.7  1128.6  

μerror
2 1974.7  1129.1  

R2 0.93  0.94  

‘*’ indicates significance p<=0.05 

Forecastable demand percent (forecast.pct), the forecast error mean, and the 

interaction of these two factors are the only significant terms (p<=0.05) in this analysis.  

Part of the difficulty in improving outdating and unmet demand when only part of 

the demand is forecastable stems from the problems in determining how to order for the 

forecastable and non-forecastable demand portions together. Most facilities operate with 

an order-up-to policy. When the entirety of the demand is forecastable the solution is 
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straightforward. In this analysis the order quantities were set according to equation 3.6 

when there was unforecastable demand, but a better method certainly exists. 

Because only one large hospital setup was considered in this section, the 

generalizability of the results of this section to other configurations is limited. As seen in 

subsection 3.4.2 a small hospital would be expected to be more strongly affected by 

forecast error. The model used in the experiment in this section s was of a large facility 

with many different patients’ demands per day. This results in less variability in total 

demand, which makes forecasting less valuable. 

3.5. Discussion of Simulation Findings 

There are many factors which impact the effect of forecasts on inventory 

performance. Beyond the accuracy of the forecast, other factors, such as forecast horizon, 

are within the control of the hospital, while others, such as age of units at delivery, may 

not be controlled by the hospital.  

A perfect forecast, under otherwise realistic conditions, allows near perfect 

inventory performance when the entire demand is forecastable, but application to 

scenarios where only part of the demand is forecastable is more difficult.  

The benefits of forecasting are muted when forecastable and emergency demand 

are present simultaneously and both demand types are served by the same hospital 

inventory and reordering is based on inventory on hand. The benefit of forecasting is 

greater for small hospitals and when the average age of units delivered is relatively older.  

These analyses do not include inventory and management costs as they are 

notoriously difficult to quantify in blood inventory management and are highly variable 



  

40 

across institutions. Individual facilities must consider these results based on their own 

individual costs.  

Another concern when considering forecasting demand based on surgical 

schedules is the uncertainty surrounding the feasibility of creating forecasts of sufficient 

quality. Reported procedure-specific forecasting efforts have not been of high accuracy 

(Hayn et al., 2016) but this may change if or new forecasting methods are developed. The 

cost of developing accurate forecasts can be expected to vary by facility, for example 

based on the availability of data on which to make prediction models or on the variety of 

procedures performed. As with the inventory management costs, facilities need to 

consider the potential costs of improved forecasting for their specific institution. 
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CHAPTER 4 

MDP MODEL TO FIND OPTIMAL ALLOCATION UNDER EMERGENCY 

4.1.Introduction and Problem Definition:  

The majority of studies on blood management assume the perspective of a robust 

blood supply system, such as found in the U.S., where the availability of blood for 

transfusion is taken as a given. Well-developed volunteer donor networks and supply 

chains mean that patients can reasonably expect that, should they need it, blood will be 

available, and the transfusion will be safe. Correspondingly, the analytic literature on 

blood management focuses on minimizing outdating while maintaining a satisfactory 

level of service. Common assumptions include the widespread availability of blood at a 

system level, that it can be reliably ordered and received, and that the costs of being 

unable to instantaneously meet the demand are not substantial. The ability to backorder 

demand is also frequently assumed. In places like the U.S., the assumption of the ability 

to delay demand without critical consequences is generally reasonable.  This is partially 

due to the prevalence of elective (non-emergency) procedures which can be rescheduled 

if supply runs short. However, particularly in the developing world, shortages are 

common and delayed satisfaction of demand can result in patient death. (Schantz-Dunn & 

Nour, 2011).  

Insufficient supply may be the result of chronic shortage or a temporary state due 

to an emergency such as a disaster that increases demand while reducing or eliminating 

supply.  It is this second condition under which the U.S. is most likely to face a shortage. 

A less frequently cited Red Cross statement is “the blood used in an emergency is already 
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on the shelves before the event occurs” (American Red Cross, 2016). When demand 

spikes because of an emergency, shortages can occur, and it is critical to allocate the units 

on the shelf in the most efficient way possible.  

This chapter exploits the substitutability of blood types to find the best issuing 

policy to assign blood units to patients for the optimal utilization of a limited supply. Red 

blood cells have types. Each patient is of a single blood type and will be able to safely 

receive units of their own type or of a subset of the other substitute types. Most studies of 

blood management, even if some acknowledge substitutable nature of blood units, fail to 

consider the opportunity substitutability represents. Embracing substitutability is an 

opportunity to improve utilization. 

Explicitly considering the substitutability of blood types, this chapter addresses 

the problem of how to best allocate the available blood units from the inventory at the 

beginning of an emergency event to a stream of patients arriving for treatment after the 

onset of the emergency. Because of the immediacy of the need, this chapter does not 

initially consider the perishability of blood products. However, it is demonstrated later in 

the chapter, through simulation tests, that the resultant policy is still effective in the face 

of perishability. In this problem, the blood type of the arriving patients is not known prior 

to arrival and patients are served as they arrive.  The number of patients arriving is not 

limited; the intent is to serve as many patients consecutively as possible before 

encountering a patient that cannot be matched with a compatible unit.  
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4.2.Literature Review on Blood Allocation and Emergency Response 

There are four general problems in inventory management:  ordering policy, 

issuing policy, disposal policy and pricing policy (Shen, Dessouky, & Ordonez, 2011). 

For a review of inventory management of blood products see Beliën & Forcé (2012), 

Chapman, Hyam & Hick (2004); Prastacos (1984), or for review of perishable inventory, 

which often includes blood, see Bakker, Riezebos & Teunter (2012), Goyal & Giri (2001) 

and Nahmias (1982). This chapter is focusses on policies for issuing units of blood by 

type from available inventories to arriving patients.  

4.2.1. Emergency Context 

The context most directly addressed in this chapter is that of a limited supply in 

an emergency response situation where additional supply is not immediately available. A 

study of  the effect of several manmade disasters (plane crashes, building collapse, 

terrorist attacks) on the U.S. blood supply indicated that in those events sufficient blood 

was available for emergency procedures and that public response to disaster leads to 

excess donations, most of which end up going to waste (Schmidt, 2002). However, the 

attacks studied occurred in densely populated areas with large standing inventories and 

ready access to additional supply. This research addresses the ability to utilize the blood 

on the shelves with greater efficiency, as would be necessary when increased demand is 

seen in an isolated area or where supply was already strained.  

New shortages can arise from changes to supply. Several authors have studied the 

potential for disease to decrease the blood supply. Semanza & Domanovic (2013) studied 

the effect on the blood supply of increased infectious disease prevalence due to global 
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warming. Others looked at the effect of pandemic influenza (Kamp, Heiden, Henseler, & 

Seitz, 2010; Zou, 2006) and dengue fever (Arellanos-Soto et al., 2015; Teo, Ng, & Lam, 

2009)  specifically. The above works focus on describing the effect of a disaster and not 

on coping with a disaster when it occurs. One exception to this was McQuilten et al. 

(2014) who looked at categorizing the urgency of procedures requiring blood under a 

prolonged shortage and the effect of withholding units to non-urgent procedures. 

In addition to vulnerability due to demand surges in isolated areas or supply 

decrease, recent consolidation of regional blood centers in the U.S. has led to a situation 

where the disruption of operations of a single blood center, via whatever mechanism, 

could have significant impact. Following 9/11, an interorganizational task force found 

that disruption of the blood supply chain, not lack of supply, posed the greatest risk 

following a disaster or terrorist attack (AABB, 2008). For regions already experiencing 

chronic shortage, without a robust blood supply network, no special circumstances are 

necessary to make this work relevant.  

4.2.2. Allocation Problems. 

The issuing, or allocation, problem for blood focuses on the allocation of blood to 

hospitals (Sapountzis, 1989) or from a hospital to an individual patient (Nahmias & 

Pierskalla, 1973). The allocation of blood units to individuals is in fact the major focus of 

this chapter.  

Blood research most often studies ordering (replenishment) policies and assumes 

a pre-specified issuing policy such as first-n-first-out (FIFO) or last-in-first-out (LIFO). 

When allocation policies are studied it is most often to compare several different FIFO or 
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LIFO allocation policies to each other or to compare the performance of one policy under 

multiple different circumstances. Pierskalla & Roach (1972) studied FIFO issuing polices 

for blood products. Goh, Greenberg & Matusuo (1993) compared two FIFO allocation 

policies for perishable goods. Parlar, Perry & Stadje (2010) considered FIFO and LIFO 

allocation policies for perishable inventory.  These efforts focused on issuing policies but 

did not include any substitution aspect. 

There are few allocation policies that take substitutability into account. Efforts to 

find allocation policies which include substitution most often allow substitution between 

demand classes, usually age-based, and not between the blood groups. Nahmias & 

Pierskalla (1973) studied LIFO and FIFO issuing polices under a problem where demand 

existed for units of a specific age. Units of younger age were allowed to be given to 

unfilled demand for units of older age. More recently, Deniz, Karaesmen & Scheller-

Wolf (2010) found that use of the standard replenishment policy may produce 

pathological results when used with an allocation policy that allows age-based 

substitution. One recent study that did focus on an allocation policy and allowed for 

substitution was by Civelek, Karaesmen & Scheller-Wolf (2015). Here an item of 

specific age was demanded and substitution with products of a different age was allowed. 

In this case substitution was a recourse action, meaning that it was undertaken only when 

units of desired age were not available.  

Substitution is not a recourse action in the policy formulated in this chapter; 

substitution is an active choice made to improve overall utilization of limited supply. 

Substitution among compatible blood types is mentioned as a concept in a few papers but 
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it is not allowed by the issuing policy used (Kopach, 2004; Kopach, Balcıoğlu, & Carter, 

2008) or no attempt was made to deliberately substitute or otherwise utilize substitution 

as a tool (Katsaliaki & Brailsford, 2006). Administering compatible but “mismatched” 

units that are compatible is medically sound and occurs frequently in practice 

(Yazdanbakhsh & Nandi, 2016).  

4.2.3. Other related research 

Netessine & Rudi (2003) derived a stocking policy for non-perishable goods 

under consumer driven substitution. Ishii & Nose (1996) studied replenishment policies 

under substitution between priority classes of demand, assuming a FIFO issuing policy. 

Sainathan (2013) studied pricing and order quantity for perishable good while allowing 

substitution between two age classed demand groups, but did not give an issuing policy. 

Kok & Fisher (2007)  and Mahajan & Van Ryszin (2001) studied substitution in 

assortment planning.  

4.3. Exact MDP Model Formulation 

A Markov Decision Process (MDP) model is developed in this section for 

allocating current inventory blood units to patients. The MDP determines the optimal 

type to administer to a patient if the patient’s own type is not available. In this model, 

patients arrive one by one and are served a single unit of compatible blood. Some 

previous studies have shown this assumption of dispensing only single units does not 

significantly degrade solution quality or generalizability (Sarhangian, Abouee-Mehrizi, 

Baron, & Berman, 2017).  The objective function in the model maximizes discounted 

total reward. Using a discount rate despite the short time horizon encourages the 
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allocation of units as soon as possible in an attempt to delay as long as possible the 

arrival of the first unserved patient while maintaining a 100% service level. This allows 

maximum time for replenishment since the restocking time may be unpredictable in an 

emergency.  

States of MDP 

Each (𝐼, 𝔅) state represents the combination of inventory position, 𝐼, and patient 

blood type, 𝔅. Using the most common blood type classification system (ABO/Rh) there 

would be eight common blood types (A+/-, B+/-, AB+/-, O+/-), when considering Rh-

positive and Rh-negative distinctions. Due to problem size, this model ignores the Rh 

factor and focuses only on matching ABO types, that is: 

𝔅 = {𝐴, 𝐵, 𝐴𝐵, 𝑂} 

For Rh-negative patients the four-type model allows all appropriate substitutions 

but for Rh-positive patients this assumption limits the possible substitutions since Rh-

positive patients can accept corresponding Rh-negative blood type. Later it is shown how 

these results can be applied for all Rh types. Some studies have shown that Rh 

positive/negative can be ignored in trauma response without significant adverse effect 

(Flommersfeld et al., 2018)  

The MDP formulation creates very large state spaces very quickly. The size of the 

state space depends on the starting inventory level of each type. Let 𝑀𝑏be the starting 

inventory of blood type 𝑏. Then the number of states is: 

|𝑆| = |𝔅| × ∏ (𝑀𝑏𝑏∈𝔅 + 1)                                           (4.1) 

For example, given a starting inventory of 20 units of each blood type there are over 
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700,000 states. Large hospital inventories can include hundreds of units of each type. 

Inclusion of patient blood type as part of the state definition prevents the existence of 

absorbing states in the MDP, but the zero-inventory states are an absorbing set.   

Decisions in MDP. 

When a patient arrives requiring a unit of compatible blood, the decision may be 

made to provide any of the available compatible units. If no unit is provided the patient 

becomes “unserved”.  The actions available in state 𝑠, 𝑎(𝑠) are: 

𝑎(𝑠) = {0} ∪ { 𝑏: 𝑏 ∈ 𝔅, 𝐼𝑏 > 0}                                           (4.2) 

where 𝐼𝑏 is the current inventory of type b available and 0 is the do-nothing action.   

Transition probabilities in the MDP Model. 

This model employs two categories of transition probabilities: transitions between 

inventory positions and transitions between patients’ blood types. Transition between 

inventory positions is deterministic based on the action chosen. In this model it is 

assumed each patient requires a single unit of blood. If the do-nothing action is chosen, 

the inventory position remains the same; otherwise inventory of the provided blood type 

decreases by 1. 

The blood type of an arriving patient is random, and the blood type of the next 

patient is independent of the blood type of the current patient. The probability of a new 

patient having a specific blood type is constant throughout and is based on the blood type 

distribution of the population under study.  

Rewards in the MDP Model. 

Allowable blood type substitutions are shown in Figure 7. Serving a patient with a 
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compatible unit results in a positive reward. This model assumes equal rewards. Not 

serving gives zero reward and serving an incompatible unit results in a negative equal 

reward. Rewards are denoted r(s, a). 

 

Figure 7. ABO Allowable Blood Type Substitution 

MDP Objective Function. 

The objective is to maximize the expected value of current and future rewards 

over all available actions. This value is computed via stochastic dynamic programming:  

𝑣𝑛(𝑠) = max
𝑎∈𝐴

{𝑟(𝑠, 𝑎) + 𝜆∑ 𝑝(𝑠′|(𝑆, 𝑎))𝑣𝑛−1(𝑠′)

𝑠′∈𝑆

}                                            (4.3) 

This function includes a discount factor, 𝜆, which makes providing a unit for the current 

patient now more important than providing a unit for a later patient. 

4.4. Computational Results and Analysis 

The initial solution to this problem was found using the Gauss-Seidel variation of 

the Value Iteration algorithm, programmed in Python. See Powell (W. Powell, 2011) for 

details on this approach. 
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4.4.1. Results: Optimal policy for U.S. blood type distribution 

The initial model sets transition probabilities according to the mean U.S. blood 

type distribution; see Table 5. At each transition the probability of moving to a state 

where the new patient blood type is A is 40% and the probability of moving to a state 

where the new patient blood type is B is 11% and so on.  

Table 5  

US Population ABO Type Distribution 

A B AB O 

40% 11% 4% 45% 

The initial 𝐼 included all potential inventory positions from zero to 20 units of 

each type on hand. The resultant policy recommends the unit type to be administered to 

the patient in each (𝐼, 𝔅) state 

As expected, the policy is to give each patient type its own blood type until it is 

exhausted, then a compatible alternative if one exits. The only option for O-type patients 

is to receive O-type blood; for A and B patients O is the only option once their respective 

inventories are depleted. In this model, the only non-obvious substitution choice is what 

to give to AB patients once AB is depleted. The answer depends on the inventory of A, B 

and O on hand. Figure 8 and Figure 9 show the recommended actions when the current 

patient is type AB and there are no AB units available.  
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Figure 8. Recommendations for AB Patients When There is No AB Inventory 

(Projection)*. 

*Note: Quantity of A inventory is on the vertical axis and B inventory quantity is on the 

horizontal axis. This plot is for all inventory levels of O. B is recommended in the black 

areas independent of O inventory. In the white areas A is recommended independent of O 

inventory. Gray areas indicate that the recommendation depends on O inventory. Darker 

gray areas indicate areas where B is given at lower levels of O inventory; lighter gray 

indicates where A is given at lower levels of O inventory. Levels of grey shades are given 

only for visualization; exact percentages are given in the results of the value iteration 

algorithm.   

Expounding on when to give A units and when to give B units in the gray areas in 

Figure 8 above, optimal decisions from the value iteration algorithm can also be 

represented in the 3-dimensional representation shown in Figure 9. Though relative 

proportions of A and B are important, in general B is recommended more frequently as O 

inventory increases. Note that the boundary between the “allocate A” region and the  

“allocate B” region is not linear, but close to linear. Later (in Figures 17–19) this 

boundary is approximated as a linear plane. 
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Figure 9. Serving AB Patient, Give A/Give B Boundary* 

* Note: Dots indicate inventory positions where A is recommended to AB patients when 

there is no AB blood in inventory. The other side of the dark plane is where B is given to 

AB patient. 

After the MDP was solved, a simple Python-based simulation was created to 

compare the “optimal” policy to a “standard” or “default” policy. The default policy is a 

fixed priority policy. In the “default” policy each patient receives a unit of its own type 

unless that type is out of stock. For AB patients, once AB inventory is exhausted, A is 

allocated until it is exhausted, then B is used.  

Given a specific starting inventory, a series of patients were generated and 

assigned blood types according to the U.S. average blood type distribution. In the control 

group, the simulated patients were allocated blood units via the default policy. For the 

comparison group, the same stream of patients was allocated blood via the optimal policy 

generated by the MDP model. 
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5,000 simulation runs were performed with initial inventory of 20 units of each 

type except AB. Initial inventory for AB was zero. The patient-by-patient unit allocations 

were very similar for the standard and optimal methods. This is as expected because AB 

is a small percentage of the US population and standard and optimal AB policies differ 

only slightly.  

The patient number of the first unserved patient was found in each simulation. 

Under the standard allocation policy an average of 42.87 patients were served before the 

first unserved patient while under the optimal AB policy an average of 43.78 were 

served. A paired t-test shows this difference (0.91 patients) is statistically significant 

(p<0.001). Bootstrapped mean confidence intervals are shown in Figure 10. 

  

Figure 10. First Unserved Patient: US policy and population. Patient number of the first 

unserved patient, optimal vs default AB policy, based on U.S. population average for 

initial inventory [20A, 20B,.0AB,20O] 

 The first unserved patient metric addresses the performance of a policy under a 

100% service level objective. For comparison purposes the patient number of the third 
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unserved patient was found.  The average patient number of the third unserved patient 

was 45.96 under the default policy and 47.12 under the optimal policy (p<0.001), a 

difference of 1.17. Bootstrapped confidence intervals on the mean are shown in Figure 

11. 

 

Figure 11. Third Unserved Patient. Patient number of the third unserved patient: optimal 

vs standard AB policy, based on U.S. population average for initial inventory  

[20 A, 20 B, 0 AB, 20 O] 

Another metric of interest is the utilization of inventory under a specific policy. In 

these simulations 60 units of inventory in total were available for the 80 patients that 

were generated. The percentage of the first 60 patients served is a measure of utilization. 

If units were perfectly matched each of the first 60 patients would be served and 

utilization of the 60 units of inventory would be 100%. Perfect allocation may not be 

possible. To find the theoretical minimum number of unserved patients in the first 60, 

given a specific inventory, patient types and unit types were assumed known a priori, 

before any patient is served, and  a maximum bipartite matching between patients and 
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unit types was made. Patients not part of a matching would be unserved. Across all 

simulations the average theoretical minimum number of unserved patients was 11.26.  On 

average 13.66 f the first 60 patients were unserved using the default policy and 12.00 

patients were unserved under the optimal policy (Figure 12). Thus, the optimal policy 

does utilize on-hand inventory more efficiently than the standard policy. 

 

Figure 12. Count of Unserved Patients in First 60 Patients; Comparisons with Theoretical 

Minimums 

4.4.2. Results: Effect of population distribution  

In the previous simulations the MDP transition probabilities matched the patient 

population of the simulations. Blood type distributions change with demographics and 

therefore vary by region. To investigate the sensitivity of the policy to the underlying 

recipient population, the MDP was solved using three additional sets of population data 

to estimate transition probabilities (Figure 13.). Each population-specific MDP policy 

was simulated on multiple patient populations.  A significant difference in performance 

would be a strong motivation to generate optimal policies based on the population served 
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by a given facility. It would also be an indicator of the sensitivity of the policies to 

misspecification of modeled transition probabilities. Such inaccuracies may arise from 

uncertainty about donor rates or local demographics or from different donation rates by 

blood type.  

Chicago Illinois, U.S. was chosen because of the increased prevalence of type O 

blood in the population but overall similarity to the U.S. average.  Hungary (Rex-Kiss, 

Szabó, Szabó, & Hartmann, 1973) and Lucknow, India (Chandra & Gupta, 2012) were 

chosen for comparison to the U.S. These two populations have larger percentages with 

AB blood. Hungary has a much lower O percentage and higher A percentage than the 

U.S. The India population has a much higher B percentage than the any of the other 

populations considered. The MDP was solved using each population’s transition 

probabilities resulting in a population-specific policy. Each population-specific policy 

was then applied in simulation to each population.   

 

Figure 13. Blood Type Distributions: U.S., Hungary, India, Chicago 
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Figure 13 and Table 6 show the results of sixteen simulations. Each location-

optimal policy was applied to each of the simulated populations. The patient stream was 

held constant across policies for each simulated population. Table 6 shows the average 

first unserved patient for each run. When the “Chicago optimal” and “U.S. Average 

optimal” policies were applied to the simulated Chicago population (or to the simulated 

U.S. Average population) the means are approximately equal. This is because the policies 

are only slightly different and the proportion of the population with AB is so small that 

the MDP states where the policies differ are rarely encountered.  

Each of the optimal policies performed better than the standard policy when 

applied to the population for which the policy was created. In most cases, any of the 

optimal policies is better than the standard policy, even if it was generated based on 

transition probabilities representing different populations. However, this is not true in the 

case of the India population. Only the “India optimal” policy performed better than the 

standard policy when applied to an India population distribution; the other policies do not 

perform as well as the standard policy. This is because the India blood type distribution 

features a much larger proportion of B blood type than the other blood type distributions. 

It is interesting that application to the simulated India population results in significant 

differences between the other polices. When applied to the simulated India population the 

Hungary optimal policy performed better than the Chicago optimal policy which 

performed better than the U.S. optimal policy. This ranking correlates with the ranking of 

the locations by percentage of B blood in the population (i.e. Hungary has the highest 

percentage of B blood of the three). 
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Table 6. 

First Unserved patient: Standard, U.S. Optimal, Hungary Optimal, India Optimal and 

Chicago Optimal Policies applied to U.S., Hungary, India and Chicago Average 

populations 

 Transition Population 
 Hungary India US Chicago 

P
O

LI
C

Y 

Standard 50.09 56.29 42.73 40.47 

Hungary 
Optimal 

53.70 53.84 43.63 40.76 

India Optimal 51.65 56.33 43.18 40.62 

US Optimal 53.70 53.31 43.63 40.76 

Chicago 
Optimal 

53.70 53.66 43.63 40.76 

 

 

Figure 14. Pairwise Comparison of Location-specific Polices with Simulated Patient 

Populations. Note: Vertical scales are not identical on the overall plot.  

(Inset shows all points on same scale, for reference.) 
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Large differences in the population blood distribution do benefit from having 

tailored polices, but when the blood distributions of the populations are similar the 

benefit from custom policies is minimal. The question of “how different” is different 

enough to require a custom policy is unanswered.  

4.4.3. Results: Effect of initial inventory.  

All previously discussed simulations started with an initial inventory of [20 A, 20 

B, 0 AB, 20 O].  Assuming zero AB inventory on hand is not unrealistic, as some 

hospitals do not order AB inventory. Nevertheless, it was worth further investigation to 

determine the effect of different starting inventories on the performance of the optimal 

policy and the interaction of starting inventories with the patient blood type distribution 

and policy population blood type distribution. In these simulations initial inventory was 

chosen so that the proportions of the types in initial inventory reflect the relative 

prevalence of the blood types in the population. The initial inventory for these 

simulations reflect the U.S. population average. There were 18 A; 5 B; 2 AB and 20 O 

units in initial inventory. 

Simulations were run for multiples of this initial inventory position and for the 

same inventory levels with and without any initial AB inventory. Interval plots for each 

of these are shown in Figure 15 and Figure 16 below. The effect of the optimal policy is 

much greater in the case where no AB inventory is initially present (as expected) and the 

benefit increases linearly with inventory volume. When proportional amount of AB 

inventory is present the effect is decreased, and the benefit does not follow a linear 

growth pattern. 
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Figure 15. Effect of Inventory Level on Policy Improvement. 

 

 

Figure 16. Effect of Inventory Level on Policy Improvement 
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4.4.4. Results: Effects of timing the application of optimal policy. 

The huge state space necessary for even moderate inventories is the primary 

challenge of this model. This prompted consideration of the effect of the timing of the 

application of the optimal policy. If the policy is primarily beneficial at low inventory 

levels,  perhaps determining optimal policies for larger inventory positions is 

unnecessary.  

To investigate this idea additional simulations were performed, starting the optimal 

policy either (1) at the beginning of the simulation or (2) when there were no more than 

10 units in inventory for any one type. Initial inventory was [20 A, 20 B, 0 AB, 20 O].  

Results are shown in Table 7 and Figure 17. Though both timings are superior to always 

using the standard policy, the effect of using the optimal policy earlier is greater than 

applying the optimal policy only when the maximum inventory for any blood type 

dropped to ten or fewer units. The size of the effect varies dramatically by population. 

For example, more patients are served in either Hungarian scenario than in either U.S. 

average scenario. 3.5 additional patients were served before the first unserved patient 

through earlier application of the optimal policy for the Hungary case. For the U.S. 

average case an additional 0.9 patients were served.  
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Table 7 

 Additional patients served through earlier application of optimal policy, compared to 

using standard policy until the inventory of any type reaches 10 or fewer units and then 

allocating according to optimal policy. (Note: sd = standard deviation.) 

Population 

specific 

Optimal 

Policy 

Optimal Policy Always 

Applied 

Optimal Policy 

Delayed 
Additional 

Patient 

Served by 

not 

delaying. 

First 

Unserved 
3rd Unserved 

First 

Unserved 
3rd Unserved 

mean sd mean sd mean sd mean sd 

Chicago 40.8 5.9 44.5 5.9 40.5 5.5 44.1 5.4 0.3 

Hungary 53.7 4.4 56.6 4.1 50.2 4.0 53.0 4.0 3.5 

India 56.3 4.0 59.1 3.5 56.3 4.0 59.1 3.5 0.0 

US 

Average 
43.6 5.1 47.0 4.7 42.7 4.4 45.9 4.0 0.9 

 

 

Figure 17. Timing of Optimal Policy. Additional patients served through earlier 

application of optimal policy, compared to allocating using standard policy until the 

inventory of any type reaches 10 or fewer, then allocating according to optimal policy 
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4.4.5. Results: Rh-type specific policies. 

In the policies described above the transition probabilities were calculated as the 

percentages of each ABO patient type, ignoring Rh type. This may skew results as it is 

overstating the availability of O, the universal donor type in this Rh-agnostic model.  

43% of the US population has blood type O (either O- or O+), however the true universal 

donor, O-, is found in only 8% of U.S. population. 

To determine impact of this simplification and to explore options for generating 

an 8-type policy, the MDP model was next solved using transition probabilities based on 

only Rh-negative types. Because such a large percentage of the population has Rh-

positive types, the overall ABO distribution and the ABO/Rh-positive distribution look 

very similar. However, Rh-negative distribution skews more toward A and less towards 

O. Blood type percentages by ABO type for US and Chicago overall average and Rh-

negative subset only are shown in Table 8. 

To visualize the differences between the policies an approximate separating 

hyperplane was fit to the set of boundary points between the inventory positions where A 

is recommended and the inventory positions where B is recommended when there is no 

AB inventory on hand and the patient is AB. These planes can be seen in Figure 18. The 

population that the policy is designed for impacts the plane more than the Rh factor. In 

both locations the Rh-positive policy is “steeper” than the Rh-agnostic policy, meaning 

the effect of O inventory levels is more pronounced.  
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Table 8 

US and Chicago type distribution, all and negative 

Population A B AB O 

Chicago Rh-Negative 34% 12% 5% 49% 

Chicago All 32% 14% 4% 50% 

US Rh-Negative 42% 11% 5% 42% 

US All 40% 11% 4% 45% 

 

 

Figure 18. Approximate Separating Planes Between Inventory Positions where A is 

Recommended (below the planes) and Areas Where B is Allocated (above the planes), 

for AB Patients When There is No AB Inventory On Hand. From top to bottom are the 

planes derived from Chicago Rh positive optimal policy, Chicago Rh negative optimal 

policy, US Rh positive optimal policy, US Rh negative optimal policy. 

 

The Chicago models also requires more B inventory on hand before B is 

recommended (areas above the planes). A visualization of the intersection of this plane 

with the Z = 0 plane is shown in Figure 19. Figure 20 shows the separating hyperplanes 

for the U.S., India and Hungarian average populations.  
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Figure 19. Policy Recommendation Boundary Planes Intersection with Zero O Inventory 

Plane 

 

 

Figure 20. Extended Projections of planes separating “Give A” and “Give B” areas for 

U.S., India and Hungary averages. A is given on the side of the plane  

where quantity of A >0. 
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4.5. Detailed Simulation Case Studies 

The preceding sections have analyzed the effectiveness of the MDP-derived 

policies using a simplified simulation and elucidated the necessity and benefits of 

tailoring the policies to the specific populations being served. This section presents two 

discrete event simulation (DES) case studies. In the first case study a single hospital faces 

a mass casualty incident which causes a demand spike. The second case study simulates 

the effect of a pandemic influenza outbreak, causing a moderately sustained reduction in 

the availability of new supply.  

The numerical analysis of the previous sections was developed to evaluate a 

specific situation wherein inventory replenishment was prevented for the duration of an 

emergency event. The duration of the event was not specified, and it was assumed that 

the time frame was short enough that outdating would not occur. The objective was to 

determine which of the considered polices would stave off unserved patients for the 

longest time.  

In this section the allocation policies are compared via simulation created in 

Arena (Rockwell Automation, 2016). See Chapter 2 for more detail on the simulation 

model. Unlike the previous analysis, this detailed simulation model includes blood units 

aging and outdating, replacement units arriving, and multiple units being demanded by 

some patients. It models the operations of a single hospital receiving supply units of 

varying age and using them to satisfy the demands of a stream of random patients. Now 

each patient demands one or more units over one or more days. There is no crossmatch 

reservation. There are no neonate or pediatric patients requiring partial units. Each unit 
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demanded is considered separately but all demand from a single patient in one day is 

addressed concurrently. The patient blood type distribution is based on the U.S. average. 

Eight blood types are included.  

The optimal policies previously discussed were based on only four blood types 

and solved over a limited range of inventory. To confront the inventory amount limitation 

separating hyperplanes were used to approximate the exact MDP recommendation. The 

planes allow the policy to be approximated at any inventory. Two optimal policies from 

the four-blood type approximation, the “U.S. negative” and the “U.S. positive” policies 

were used to address the eight blood types in the DES model. The U.S. negative 

approximation was used when satisfying demand by Rh-negative patients. Demand of 

Rh-positive patients was addressed by first attempting to satisfy demands with the U.S. 

positive policy approximation and if no compatible positive unit is available then the US 

negative policy approximation is used to select units. For the sake of brevity, this 

approach will be referred to as the “P1” policy. This is not an optimal overall policy but 

allows examination of the potential benefits of the approach. 

The MDP-derived optimal policies were developed to address emergency 

situations. The DES model allows emergency events to be created. In these simulations 

there are two emergencies per year to allow sufficient recovery time between events. The 

base demand and the timing of emergency events are held constant across each scenario 

and replication. Two separate detailed scenarios were conducted where the type of 

emergency event was either (1) Pandemic Flu, or (2) Mass Casualty Incident (MCI).  The 

event types are modeled separately and are discussed separately in the following sections. 
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4.5.1.  Scenario 1: Mass Casualty Incident (MCI) 

 Mass casualty incidents are becoming increasingly common. The World Health 

Organization defines a mass casualty incident as an event “which generates more patients 

at one time than locally available resources can manage using routine procedures” (World 

Health Organization, 2007) and notes that context is important. In large metropolitan 

areas only very large events (e.g. hurricanes, nuclear events) are disruptive enough to 

constitute a mass casualty incident whereas in smaller or more isolated communities the 

crash of a single bus may sufficiently tax local resources as to constitute a mass casualty 

incident.  

The hospital simulated in the MCI case study uses 96 units of RBC per day on 

average. This places the simulated hospital in the high demand category (Bloch, Cohn, 

Bruhn, Hirschler, & Nguyen, 2014). Like most U.S. hospitals supply is provided by a 

third party responding to orders placed by the hospital. Orders are placed three times per 

week and arrive 24 hours after the order is placed. When hospital inventory drops below 

70%, urgent orders are placed which arrive 23 hours later.  Total inventory is 7 days of 

supply as recommended by the AABB Disaster Operations Handbook (AABB, 2008) . 

In the MCI scenario simulated, the emergency event triggers the creation of a set 

number of emergency patients. These emergency patients arrive at the hospital and 

request blood over the 30 minutes to 1.5 hours following the start of the emergency 

event.  
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Six scenarios were simulated (See Table 9).  

• Scenario S-1: 0 emergency patients (Baseline) 

• Scenario S-2: 48 emergency patients, demanding 1 unit each 

• Scenario S-3: 96 emergency patients, demanding 1 unit each 

• Scenario S-4: 192 emergency patients, demanding 1 unit each 

• Scenario S-5: 238 emergency patients, demanding 1 unit each 

• Scenario S-6: 96 emergency patients, each demanding multiple units, with 

number of units distributed according to the Triangular distribution with mean of 

3 and range of 1 to 5.  

 

 In S-6, the expected number of units required per hospital admission is three 

based on expectations during a disaster (AABB Disaster Operations Handbook , 2008) 

and the reported average units required per gunshot victim at a trauma center (Demario et 

al., 2018).  

Each scenario was simulated using the default allocation policy and P1 for a total 

of 12 runs. Each run lasted for 20 simulated years with 2 emergency events per year 

resulting in 40 data points per simulation run.  
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4.5.1.1. MCI Case Results 

The results of the MCI simulations are shown in Table 9.  

Table 9 

 

Results of Mass Casualty Incident DES simulations. (Table shows the unserved demand 

(unserved patients and unserved units) and outdated units by scenario. % improvement: 

% improvement of P1 policy over standard policy for each scenario. “Emer” = 

emergency) 

 

Scenario 

Emer. 

patient 

per 

event 

Units per 

emer. 

patient 

Allocation 

Policy 

Unserved Patients Unserved Units Outdated Units 

Patients

/ year 

% 

improve 

Units/ 

year 

% 

improve 

Units/ 

year 

% 

impr

ove 

S-1 

(Baseline) 
0 NA 

Standard 13.15 
10% 

52.4 
5% 

106.25 
7% 

P1 11.8 49.8 98.7 

S-2 48 1 
Standard 12.4 

-2% 
52.95 

6% 
102.8 

1% 
P1 12.65 49.65 102.25 

S-3 96 1 
Standard 11.9 

5% 
53.3 

9% 
106.45 

8% 
P1 11.35 48.45 97.6 

S-4 192 1 
Standard 16.4 

12% 
67.3 

18% 
109.3 

8% 
P1 14.4 55.25 101 

S-5 288 1 
Standard 25.05 

-13% 
82.55 

-2% 
106.05 

5% 
P1 28.4 84.6 100.9 

S-6 96 
TRIANG 

[1,3,5] 

Standard 18 
13% 

70.8 
8% 

101.65 
5% 

P1 15.7 65.45 96.2 

Policy P1 policy resulted in fewer unserved units in each scenario except for S-5.  

P1 also resulted in fewer outdating units over the simulated time course. S-6 is of note as 

the only scenario where each emergency patient demanded multiple units. On average 

each emergency patient in S-6 demanded 2.5 units for a total average emergency demand 

of 240 units per event. P1 performed very well compared to the standard policy for this 

scenario in particular. In contrast, P1 failed to outperform the standard policy in S-5, 

which featured a similar total number of emergency units demanded but where each 

patient required only one unit. This suggests that the assumption of a single unit per 

person in the MDP model did not significantly diminish performance in realistic 

situations.  
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4.5.1.2. MCI Case Discussion 

Allocation policy P1 approximates an optimal allocation policy. It was not 

developed to cope with outdating, with possible demands of multiple units per person, or 

with resupply. Despite that, the simulation results show fewer unserved patients and 

outdated units during both the standard operations and during simulated Mass Casualty 

Incidents. The simulated hospital has very high demand, with high levels of on hand 

inventory, making it strong again sudden demand spikes. A policy like P1 would be 

expected to be more applicable and more beneficial in a low-demand scenario. The 

simulation results support the usefulness of this analytical approach and the resultant 

policies both during emergencies and during normal operations.  

The choices made for replenishment policy, lead time, unit age distribution, etc. 

represent a single hospital configuration. P1 may perform differently on other 

configurations.  

4.5.2. Scenario 2: Pandemic Influenza 

Pandemic influenza has been a common and deadly event throughout human 

history. The “Spanish flu” of 1918 killed 3-5% of the total world population. Pandemics 

have occurred repeatedly since that time and will almost assuredly happen again (Jester, 

Uyeki, & Jernigan, 2018). In fact, at the time of writing this dissertation, COVID-19 is a 

worldwide pandemic (Boseley, 2020). Pandemics are a concern for many emergency 

planning organizations including the World Health Organization (WHO), American 

Association of Blood Bankers (AABB) and the US Department of homeland Security 

(DHS). It is believed that the demand for blood may decrease during a pandemic due to 
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cancellation of elective procedures; however chronic (e.g. hemolytic disorder) and 

emergent needs (e.g. trauma, maternal hemorrhage) will persist. It is suggested that 

reductions in demand of 10-50 % (AABB Interorganizational Task Force on Pandemic 

Influenza and the Blood Supply, 2009) are possible but predicting the impact of 

pandemic influenza on the demand for blood is “is extremely difficult to quantify in 

advance (World Health Organization, 2011).”  

The unavailability of suitable donors and workforce absenteeism at the collection 

or processing sites represent a source of a serious impact on the blood supply during a 

pandemic. The Covid-19 pandemic has led to decrease in blood donations and 

“staggering” drop in blood supplies (American Red Cross, 2020; Bekiempis, 2020; 

Flavelle, 2020; Marks, 2020). The decrease in donations has been tempered by reduction 

in elective procedures but as of the time of this writing the effect of the ongoing 

pandemic in terms of blood availability remains to be seen (Flavelle, 2020; Lardieri, 

2020).   

Events such as biological or physical attacks on processing facilities can be 

expected to have similar effects and decrease supply rather than increase demand. In this 

pandemic influenza simulation case study, the simulation model assumes there is no 

regional blood center to fill orders. Supply comes directly from a population of donors 

which has the same blood type distribution as the population being served. This allows 

the simulated hospital to function as a proxy for a region experiencing a pandemic. 

A notable feature of pandemics is that their impact is not constant over time or 

geography. A pandemic may last for years and within that time regions will experience 
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“waves”: periods of increased severity and impact. These waves last for weeks or months 

(Jester et al., 2018; Laughland, 2020).  

In this simulation case, the emergency event triggers a reduction in the available 

supply by a specified percent. This reduction lasts for the length of the “wave” which was 

set to 28 days in this model. This duration would reflect a very local perspective or the 

height of severity in a community. 

The standard policy and the revised policy were used to determine unit allocation 

under 4 different scenarios: 

• Scenario F-1:0% supply reduction (baseline) 

• Scenario F-2: 30 % supply reduction 

• Scenario F-3: 50 % supply reduction 

• Scenario F-4: 70% supply reduction 

70% reduction in supply in scenario F-4 may seem high but during the autumn wave of 

the 1918 pandemic some communities reported incidence rates as high as 75% (Britten, 

1932) while the incidence over the larger region was lower. 

Each scenario was simulated using the default policy and policy P-1 for each 

scenario for a total of 8 runs.  

4.5.2.1. Pandemic Case Results. 

The results (Table 10) show reduced unmet demand and fewer outdating units 

using allocation policy P1 under each scenario. P-1 improves on the standard policy for 

unserved patients, unserved units and outdated units in all scenarios. 
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Table 10 

 Results of Pandemic Influenza DES simulations. Table shows average annual unmet 

demand (patients unserved and units unserved) and outdated units by scenario. Note: % 

improvement: P1 improvement over Standard policy for each scenario 

 

  As shown in Figure 21 the average number of patients with unmet demand 

increases throughout the duration of the pandemic and recovers quickly, but not 

immediately, after incoming supply quantities return to normal.  

Scenario 
% Reduction 

in Supply 
Policy 

Unserved Patients Unserved Units Outdated Units 

Patients/ 
year 

% 
improvem

ent 

Units/ 
year 

% 
improvem

ent 

Units/ 
year 

% 
improve

ment 

F-1 0 
(no emergency) 

Standard 2.2 
4.7% 

8.7 
0.6% 

2364.3 
0.0% 

P-1 2.1 8.7 2364.0 

F-2 30 
Standard 16.7 

9.9% 
65.0 

7.6% 
769.5 

0.8% 
P-1 15.1 60.0 763.3 

F-3 50 
Standard 152.1 

2.2% 
575.0 

2.7% 
218.8 

7.4% 
P-1 148.7 559.5 202.6 

F-4 70 
Standard 421.0 

0.5% 
1647.1 

1.3% 
131.8 

10.7% 
P-1 419.1 1625.9 117.8 
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Figure 21. Unmet Demand Over The Course of a Pandemic. Shows the average number 

of patients with unserved demand over the duration of the pandemic and in the days 

following. Day 0 is the last day of the pandemic (last day of reduced supply). 
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(a) 

 

(b) 

Figure 22: Unmet Demand and Outdated Units: (a) Unmet demand and outdated units for 

all scenarios; (b) closeup of unmet demand and outdated units, showing mass casualty 

scenarios only. 

4.5.2.2. Pandemic Case Discussion. 

The Pandemic Flu case study clearly illustrates the tradeoff between outdating 

unit and unmet demand, something that was not visible in the Mass Casualty case study 

(Figure 22). The Pandemic Flu results also illustrate the pattern of unmet demand over 

the duration of the influenza wave and the time required for operations to recover. In the 

simulation model, donor availability returned to 100% at the moment the emergency 

event ended but, as illustrated in Figure 21, recovery still took time.  
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4.5.3. Discussion of the Simulation Case Studies 

The results of the two simulation studies support the usefulness of the 

individualized, optimal MDP-derived allocation policies. Though the optimal policies 

were not derived to address eight blood types, outdating units or arrival of new units they 

still provide benefit both during the emergencies and during normal operations when 

these factors are simulated. In addition to reducing the number of unserved patients the 

approximate policy, P1, reduced the number of outdating units compared to the standard 

policy.   

The Pandemic simulation case study illustrates the clear tradeoff between 

outdating units and unmet supply and increasing unmet demand with increasing 

emergency severity (increasing reduction in supply availability). The MCI did not. This is 

likely due to the heterogeneously aged units arriving from the regional blood center and 

the ability to order additional units of specific type in the MCI study as opposed to the 

homogeneity of age and limitation on blood availability under the Pandemic Flu case 

study. It is a reminder of the importance of these variables in the study of perishable 

inventory.  

Transshipment is often proposed as a solution to a shortage and it is useful when 

geography and time permit. However, it is not obvious how long transfers take to 

organize or that they will always be possible. Furthermore, while movement of units 

between hospitals is organized by blood centers direct transshipment is not the norm in 

the U.S. or the UK. Regional blood centers which organize the movement of blood in a 

region may be located several hours from the hospital in question under the best of 
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condition. In moments of crisis the events that create additional demand (e.g., inclement 

weather leading to vehicular accidents and impassable roadways) may hamper new 

collection (Agnew, 2012) or resupply from other areas (Igarashi et al., 2018), as was the 

case following 2005 Hurricane Katrina in the United States (Stephan, 2008). When 

dealing with Red Blood units, time is of the essence. Half of RBC units given to trauma 

patients are administered in the first two hours (Stanworth et al., 2016)  and trauma 

patient mortality has been shown to increase for every ten minutes that blood transfusion 

is delayed (E. K. Powell et al., 2016). More broadly, RBCs are demanded most often in 

the first 24 hours following a disaster and 62-74% of the first day’s usage happens in the 

first 4 hours (Glasgow, Davenport, Perkins, Tai, & Brohi, 2013). Therefore, it is 

important to better utilize the supply on hand than rely on outside support. In the case of a 

pandemic or a mass casualty disaster with regional or national impact, resupply may 

simply not be available.  

4.6.Conclusions and Potential Future Research 

This research demonstrates that optimally using compatible blood units can 

increase the number of patients successfully served before the first unserved patient in 

emergencies. In such situations, this additional time may allow for more units to be 

delivered, preventing patients from going unserved and the attendant potential mortality. 

This chapter presents a method for finding such policies.  

Comparison of populations from several regional locations showed that location 

optimal policies increase the number of patients served before the first unserved patient 

compared to policies derived for locations with very different populations with different 
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blood type distributions (e.g. Hungary and India) but that location optimal policies for 

locations with similar populations (e.g., U.S. Average and Chicago) perform the same 

unless extreme events are encountered.   

The results of this chapter also show that greater benefit occurs when optimal 

policies are applied continuously rather than only at low inventory levels, suggesting 

there is motivation to extend these policies to higher inventory states.  

Though the improvements due to the optimal policies are small for the individual 

analyses presented here, the aggregate impact of implementing such policies in the 

thousands of hospitals across the U.S. would be much larger.  

This research presents an innovative computational approach for extending the 

MDP-generated policy. By approximating the policies by using the separating linear 

hyperplanes developed for low inventory levels, the MDP solution can be extended to 

higher inventory levels, overcoming the large state space size requirement. 

This is the first research to specifically address optimal allocation policies tailored 

to the demographics of the population being served. Inventory literature and disaster 

preparation focus on preparation at the regional level while the policy presented here is 

something that individual hospitals can use to support their own performance at no 

additional cost or taxing of outside resources. It should be noted that the few existing 

empirical studies of blood management during crisis usually apply to large medical 

centers in urban areas. It takes a much larger event to constitute a mass casualty incident 

in those situations, since large medical centers have the advantage of large standing 

inventories. This research is especially useful for small or isolated communalities. 
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4.6.1. Limitations and Potential Future Work 

In the development of the optimal policies it was assumed that each patient 

demands a single unit. Though that simplification is supported by prior studies, the 

developed model could be adapted to include multiple units per patient. It should be 

noted however that the MCI case study did show that the policies developed with the 

single-unit assumption performed well in a simulation where each emergency patient 

demanded one or more units.  

The policies discussed here were not developed for all eight blood types. The 

developed policies were compared with only one standard policy, and not every hospital 

uses the same allocation policy. The simulation case studies also describe only a single 

hospital configuration. The chosen “default” policy is typical of those used in American 

hospitals (Armstrong, Wilkinson, & Smart, 2008) but facilities in other locations may 

have other standard policies. Use of a single “standard” policy allowed for comparison 

among populations. More research is necessary to generalize the empirical findings from 

the simulations.  

Modeling positive and negative Rh-factor groups separately was a necessary 

simplification for computational tractability. Including them in future research could 

result in an improved policy for eight blood types. Also, due to the scope of the 

emergencies considered, the MDP policies did not consider blood perishability.  

Although the DES case studies did include perishability and the MDP policies performed 

well, enhanced MDP policies that consider perishability may perform even better.  

In the next chapter the model includes all eight blood types and includes 
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perishability. However, the goal in that chapter is to improve performance under normal 

operating conditions, not only emergencies where objective is to most effectively use 

available blood unit inventory. 
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CHAPTER 5 

APPROXIMATE MDP MODEL TO FIND OPTIMAL ALLOCATION UNDER 

NORMAL OPERATIONS 

5.1.Introduction and Problem Definition 

This chapter presents approximate dynamic programming (ADP) models that 

incorporate inventory age information to improve inventory performance under normal 

operations. In these models inventory ages, outdates, and is replenished. All eight 

ABO/Rh blood types are included. 

The model of Chapter 4 was created to find improved policies for short-term 

emergency situations. With that objective in mind, it was not necessary to include 

temporal dynamics in the model. In this chapter the objective is specifically to improve 

performance during normal operations. The models developed here extend the active 

substitution idea of Chapter 4 while incorporating temporal dynamics. Approximate 

dynamic programming (ADP) solution approaches are used to address the explosion in 

problem size resulting from inclusion of inventory age information.  

Several ADP models were tried. Rollout was successful only in the low demand 

case. Subsequently, approximate policy iteration (API) with Q-factor approximation was 

tried but it was also unsuccessful. Finally, API with policy improvement through rollout 

and approximation in policy space was used. In this chapter the process for finding 

improved policies is described for each ADP model. Performance is demonstrated for 

two hospital “scenarios” of vastly different daily demand, each based on real data. 

Results show statistically significant improvements, in comparison to the default policy, 
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using rollout approach for the low demand (Cobre Valley) scenario and the API approach 

for both the low demand and high demand (Mayo Clinic) scenarios. 

The following section provides a brief overview of literature related to blood 

inventory management with perishability and substitutability followed by background on 

the ADP methods used in this chapter. The chapter then describes the development of the 

rollout approach and its implementation followed by the development of the API policies. 

Presentation of results in this chapter begins with comparison of multiple alternate fixed 

priority policies to demonstrate that the default policy is a reasonable policy. None of the 

other fixed priority policies considered are shown to be significantly better than the 

default policy. Results for each of each API approach are presented for each scenario.  

Comparisons are made between the default and API generated policies under the base 

conditions and sensitivity analysis repeats the comparisons under altered demand and age 

of replenishment units distributions.   

5.2.Blood Inventory Management with Perishability and Substitutability 

Background 

A number of reviews of blood/perishable inventory management research have 

been published. The lack of allocation policy research is notable throughout.  

In Prastacos’ (1984) Blood inventory management: An Overview of Theory and 

Practice all issuing discussion is of FIFO or LIFO policies. Pierskalla (2004)  presented a 

review of supply chain management of blood banks. In that thorough overview the 

discussion of optimal issuing policies only includes FIFO or LIFO policies. Beliën & 

Forcé (2012) offered an updated review of blood supply chain management research. 
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Only 11 of the nearly 100 papers cover issuing polices and many of those only consider 

FIFO and LIFO policies. Osario et al. (2015) presented a taxonomic framework for 

quantitative blood models and noted that, with few exceptions, the articles listed use 

FIFO as the issuing policy. The more recent Janssen et al. (2016) review of deteriorating 

inventory from 2012 – 2015 only listed 3 papers on blood allocation. Overall, very little 

research has been done on allocation polices for blood beyond the consideration of FIFO 

or LIFO policies. Furthermore, most allocation research does not consider the potential 

for substitution and when substitution is considered it is most often between age-based 

groups. This dissertation research is predicated on the belief that substitution can be 

actively employed to outperform simple FIFO and simple LIFO allocation polices. 

Pierskalla & Roach (1972) did consider optimal issuing policies for a perishable 

blood product. In that study, stock was grouped according to age and substitution was 

permitted between age groups but there was no consideration of blood types.  

Nahmias (1977) presented an ordering policy for a perishable good (but excluding 

substitution possibilities) assuming a FIFO “depletion” policy. The replenishment units 

outdated in the same order that they entered inventory. This assumption about the age of 

the replenishment units, or an even more restrictive assumption that all replenishment 

units are new, is common. The frequent assumption of fixed lifetime was noted by 

Nahmias (1982) in his perishable inventory review which also noted that issuing is 

virtually ignored.  

Deniz et al. (2010) addressed joint replenishment and issuing policies for an 

unspecified perishable good with age-based demand classes. Substitution between age 
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classes was a potential recourse action. They studied four issuance policies defined by the 

type of substitution permitted (no substitution, upward substitution, downward 

substitution and full substitution). These types of substitution are typical. The substitution 

permitted between blood types is closest to upward or downward substitution although it 

branches in a way that age-based substitution does not. 

Haijema (2011) addressed the issuing policy for perishables with a short fixed 

life; specifically platelets. It was assumed that there were two events of issuing of batches 

per day. Substitution between age categories but not between blood types was allowed. 

All replenishment units were the same age upon arrival. The model in this chapter does 

not assume batch demand and does not restrict the age of the replenishment units other 

than requiring they be younger than the maximum shelf life.   

Haijema (2013) found a new stock level-dependent ordering policy for a 

perishable product with a short shelf life using dynamic programming and simulation. 

Stock level-dependent replenishment policies are common, but stock level-dependent 

allocation policies are much less common. Both the policy in Chapter 4 and in this 

chapter are stock level-dependent. The policies developed in this chapter are also 

dependent on the age of the stock.    

Haijema (2014) also describes stock age-dependent combination ordering, issuing 

and disposal policies found through stochastic dynamic programming. The MDP 

optimizes over the ordering and disposal policies; not over the issuing policy. That is, 

several issuing policies are considered in order to optimize the combination of policies 

but the issuing policies themselves may not be optimal themselves. The inventoried 
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products in the model have a fixed maximum shelf life. ABO/Rh type compatibility type 

is not considered. Though the policy is age-dependent, substitutions take place in order to 

maximize age-dependent utility, rather than using the age information to reduce outdating 

or maintain service level. Similarly, Coelho & Laporte (2014)  and Civelek et al. (2015)  

found replenishment policies for perishable goods in the presence of age-based demand 

preferences.  

Three of the models most directly related to the dissertation research are in Duan 

and Liao (2014), Abbasi & Hosseinifard (2014) and Dillon et al. (2017). 

Duan and Liao (2014) presented a model of red blood cell inventory control. They 

used a meta-heuristic to find optimal ordering policies for a two-echelon blood supply 

chain. The model included ABO/Rh substitution but only as a recourse action when the 

direct match was missing. The substitution pattern was fixed priority meaning that it was 

not age- or stock level-dependent.  The model permitted replenishment units of varying 

ages but did not permit “leapfrogging” units. Leapfrogging is permitted in the model in 

this chapter. Duan also assumed batch issuing. 

Abbasi & Hosseinifard presented a modified FIFO issuing policy for RBCs when 

replenishment is not controllable. The policy included age-based groups. Units were 

issued FIFO within groups and LIFO between groups. There was no consideration of 

blood type compatibility or blood type substitution. Uncontrolled replenishment would be 

the case when a blood bank only receives units directly from donors. A model with only 

uncontrolled replenishment could be used to approximate a region, as in the pandemic 

influenza case study of Chapter 4, but may not be representative of the majority of U.S. 
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hospitals; for example only 10.6% of (responding) U.S. hospitals reported collecting 

blood in 2011 (Whitaker, 2011). 

Dillon et al. (2017) critiqued queuing-based perishable inventory models that 

make strong assumptions about the supply and demand processes. They also developed a 

two-stage stochastic programming model for RBC replenishment and allocation 

decisions. One of the tested allocation policies permitted recourse substitution between 

blood types with a fixed priority. The model assumed batch demand and that all 

replenishment units were same age and new. 

The assumption that all units are new or the same age is inaccurate in reality. The 

consideration of accurate age information is critical for accurate modeling and its 

inclusion can lead to cost improvements (Broekmeulen & van Donselaar, 2009; Gürler & 

Özkaya, 2008). The models in this chapter use blood type-specific mixture distributions 

based on historical data to provide the age of replenishment units. See Appendix A for a 

discussion of this issue. 

The lack of reported research in substitution between blood type groups is likely 

due, at least partially, to the inventory research focus on platelets rather than red blood 

cells. Platelets do not require blood type match to be distributed. On the other hand, 

substitution between age-based classes is reportedly done to accommodate the belief that 

fresh blood is preferred either always or for certain patient classes. The benefits of fresher 

blood have not been conclusively established and one of the largest prospective clinical 

trials undertaken to resolve this question showed that fresher units did not improve 

patient outcomes after cardiac interventions (Steiner et al., 2015). The model in this 
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chapter does not implement age-based demand preferences, but it could be easily 

adjusted to accommodate such preferences.  

Finally, several of the models described above included batch issuance. That is 

not realistic. The model developed in this chapter considers each unit of demand 

sequentially. It assumes a single unit of demand per person but could easily be adapted to 

allow multiple units per person by making transition probabilities in the MDP dependent 

on the current patient blood type. 

5.3.Approximate Dynamic Programming Background 

There are nearly as many approximate dynamic approaches as there are policies. 

Bertsekas lays out a useful scheme for describing the anatomy of a dynamic 

programming algorithm in Dynamic Programming and Optimal Control  (2012). He 

describes many approaches as having a policy evaluation phase and a policy 

improvement phase. In the policy evaluation phase, the cost function of a policy is 

estimated. The policy improvement phase uses that information to attempt to find an 

improved policy. Each of these tasks can be addressed in a variety of ways. As with exact 

solution methods, approximate methods are generally described as either policy iteration 

(PI), value iteration (VI) or hybrid approaches, based whether they produce improved 

policies or improved value estimates at each iteration. In approximate methods, the 

distinction is made between approximation in policy space versus approximation in value 

space. Some methods contain both. Powell (W. Powell, 2011) similarly draws a 

distinction between the model for approximating a value function (lookup table, 

parametric models, and nonparametric models) and the process of learning the value 
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function approximation, that is, a method for computing the value estimate of a fixed 

policy.   

Solution methods abound but can be direct or iterative and model free or not. 

Altogether, the chosen approach should depend on the specifics of the problem; whether 

finite or infinite horizon, deterministic or stochastic, the sizes of the state and action 

spaces and whether they are discrete or continuous, the feasibility of calculating 

transition probabilities and the nature of the objective function. 

The problem in this chapter is formulated as an infinite horizon problem with a 

huge state space and limited action space. Despite the limited number of actions, the 

transitions are complicated and transition probabilities cannot be reasonably calculated. 

These characteristics necessitate an approach that does not require enumerating and 

recording the state space and does not require transition probabilities to be known. For 

example, methods requiring matrix inversion are unfeasible. Consequently, a model-free 

approach that can be solved iteratively is needed. 

All of the methods used in this chapter rely on simulation to make cost-to-go 

estimates. Simulation is frequently used for this purpose as it allows complex system 

dynamics to be captured and allows model-free analysis. ADP with simulation has been 

applied to traditional OR topics such as capacity allocation (Schütz & Kolisch, 2012), 

transshipment (Meissner & Senicheva, 2018) and surgical scheduling (Astaraky & 

Patrick, 2015). 
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5.3.1. Rollout Background. 

Rollout is part of the lookahead family of polices. This method is a natural analog 

to the process of sequential decision making. Say that the system is in state 𝑆0 (Figure 23) 

and a decision is needed about which action to take. For each action available at S0, the 

states reachable at the next step (𝑆1) are found. From each of those states some base 

policy is applied over some horizon in order to generate a “cost-to-go” approximation.  

Combined with information about the rewards received over the 𝑆0 → 𝑆1 transition, the 

value of being in state 𝑆0 and making each decision (in other words, the Q-factors) can be 

estimated. The choice with the highest Q-factor is selected. The system progresses and 

the process is repeated at the next state.   

 

Figure 23. Diagram of Rollout Process 

There are many variations of rollout through look-ahead trees:  

• In multiperiod rollout the depth of the tree is increased. 

• The tree may be truncated with or without addition of a terminal cost 

approximation. 
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• Sparse trees may be used by selecting branches of the tree instead of the 

entire tree.  

Rollout is not guaranteed to give an optimal solution but it often works well in 

practice as famously demonstrated by Tesauro and Galperin’s Backgammon AI (1996). 

Fortified rollout is a rollout variation guaranteed to do no worse than the base 

policy/heuristic (D. P. Bertsekas, 2019a).  

Rollout is most useful when the problem size is small as the trees on which it is 

based can get impractically large, especially with multistep rollout. This curse of 

dimensionality has been addressed by finding ways to reduce the depth of the tree 

through truncation (Bhattacharya, Badyal, Wheeler, Gil, & Bertsekas, 2020) or to 

eliminate branches through the construction of a sparse trees (Somani, Ye, Hsu, & Lee, 

2013). These are generally classed as Monte Carlo Tree Search (MCTS). Rollout is also 

integrated as part of more complex methods such as in Bertazzi (2015) and Moin (2018) 

which used a combination of MIP and rollout to address inventory routing. Adulyasak et 

al. (2015) used rollout to obtain feasible solutions as part of a multistage Bender’s 

decomposition-based approach to the production routing problem. These alterations have 

allowed rollout’s application to large problems. 

In this chapter an online implementation of truncated single period rollout is used. 

In online rollout there is no lookup table or permanent representation of the policy. The 

system is implemented so that decisions are made in real time. 
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5.3.2. Approximate Policy Iteration with Q-factor Approximation 

Background. 

A single iteration of rollout will be optimal for finite-horizon deterministic 

problems. For more complex problems it may not be optimal, but rollout can be iterated 

to produce better solutions. This is policy iteration.  

Policy iteration is the second of the two primary families of solution methods. See 

Bertsekas (2012) and Powell (W. Powell, 2011) for the essentials. Policy iteration can be 

viewed as a “perpetual rollout algorithm” (D. P. Bertsekas, 2019b). Rollout is used to 

generate a new policy which becomes the “base” heuristic for the next iteration. This 

approach requires a permanent representation of the rollout policy.  

In general, an “approximation architecture” describes the structure of a model 

chosen to approximately represent either the state value (approximation in value space) or 

the policy itself (approximation in policy space). There are many different possible 

approximation architectures. Feature-based architectures are perhaps most common. For 

approximating costs they use the form: 

𝐽(𝑥, 𝑟) = 𝐽(𝜙(𝑥), 𝑟)                                                 (5.1) 

where 𝑥 is the state for which to cost-to-go is to be approximated, 𝜙 is a feature vector,  

𝑟 is a vector of parameters and 𝐽 is some function, denoting value. This architecture 

would include feature-based linear regression. The function 𝜙 transforms the state into a 

vector of features which are combined with the parameter vector 𝑟 produce an 

approximation of the actual value function 𝐽(𝑥, 𝑟).  These equations can be made stage 

dependent, for example: 
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,𝐽(𝑥𝑘, 𝑟𝑘) = 𝐽(𝜙𝑘(𝑥𝑘), 𝑟𝑘)                                            (5.2) 

In recent years neural networks and other machine learning techniques have 

gained popularity as approximation architectures. However, even as these methods may 

represent complex functions, many such methods lack interpretability. 

As any data scientist knows, feature creation and selection can be a complex 

process as much art as science. It is a valuable process because well-chosen features can 

capture non-linear complexity of the value (policy) function, allowing for a simpler 

architecture. Handcrafted features permit the inclusion of expert opinion in these models 

while machine learning techniques afford a less hands-on approach to feature selection.  

Once features are selected the model must be trained. Use of least-squares 

regression to fit linear regression models is very common.  

The first policy iteration model used in this chapter approximates Q-factors. 

When approximating Q-factors it is not required to calculate expectations which would 

be very difficult in this case. Q-factors also simplify the process of deriving a policy from 

a value function. Now the recommended action is found by simply comparing the 

predicted Q-factors for the available actions (see eqn. 6.53 in Bertsekas, 2011):  

�̅�(𝑖) = arg min
𝑢∈𝑈(𝑖)

�̅�𝜇(𝑖, 𝑢, �̅�)                                               (5.3) 

In this problem there are a limited number of actions to choose from but many 

states and many possible trajectories, making Q-factors an appealing option.  

Initially, linear regression with a set of handcrafted features was used to 

approximate the Q-factors. A goal of this dissertation is to find practical, implementable 

improvements to real-world problems and linear regression offers the possibility of a 
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model that is easily understood and implemented by blood bank operators. However, the 

linear regression models had low accuracy and the resulting algorithm did not perform 

well. Though a simple policy was the ideal, it was thought that it might be possible to 

find a good policy with a machine learning (ML) architecture and then further 

approximate it to a human-understandable form. In the worst case an ML model could be 

implemented in a way that does not require direct user interaction with the ML model.  

Neural networks are a popular ML approximation architecture, having 

applications to many problems. Their use enables new functions to be approximated and 

enables new solution methods. However, it has not been used extensively in inventory 

management. See Bertsekas (2018) for a recent overview of the use of neural networks in 

approximate policy iteration. When tested in this application, training took an 

unacceptably long time and underperformed the other method considered. 

Extreme gradient boosted regression tree (XGBRegressor) models from the 

XGBoost Python package performed better than neural networks. XGBoost models are 

widely used in advanced applications and many successful Kaggle competition winners 

have used XGBoost models (T. Chen & Guestrin, 2016). After implementing 

XGBRegressor models as the Q-factor approximation architecture it remained clear that 

more improved solution was needed.  

There is a large body of literature about the best way to fit ML models. However, 

solving for the best training problem is a major issue outside the scope of this 

dissertation.  
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5.3.3. Policy Iteration Based on Policy Improvement by Rollout in Policy 

Space Approximation Background. 

The second API approach changes two interrelated aspects of the first approach. 

The previous model uses approximation in value space; it approximates Q-factors and 

defines a policy which must compare the estimated Q-factors of all available options to 

make a recommendation at each decision point. The approach in this section uses 

approximation in policy space as well as approximation in value space. It trains a model 

on decisions made by comparing estimated Q-factors. No Q-factor models are fit. There 

is a single XGBClassifier model which gives a recommendation directly based on state 

features. This requires that the algorithm collect (state, recommended action) pairs 

instead of (state, action, approximate Q-factor) triplets.  

5.4.Approximate Dynamic Programming Model Formulation & Solution  

The choice of models in this chapter reflects the nature of the problem addressed. 

The state space is exceptionally large and calculating transition probabilities would be 

essentially impossible to do with any degree of accuracy. For these reasons it is important 

that the methods chosen not rely on a lookup table representation and not require 

calculation of transition probabilities. Both the rollout and approximate policy iteration 

approaches of this chapter utilize simulation to avoid calculating transition probabilities. 

Before describing the implementations in detail, this section begins by describing 

changes to the mathematical model of the previous chapter required to incorporate 

temporal dynamics. 



  

96 

5.4.1. Changes to Model Formulation to Incorporate Temporal Dynamics 

States:  

 In the emergency model of the previous chapter the Markov chain underlying the 

MDP evolved through states with inventory count always decreasing. There was no 

replenishment or aging. Each of the models in this chapter includes aging, outdating, and 

replenishment. 

In the previous chapter the state was represented by (𝐼, 𝔅); a tuple of the 

inventory position, 𝐼, and current patient blood type, 𝔅. 𝔅 was limited to the four ABO 

types. Both aspects are expanded in this chapter. Previously, 𝔅 strictly described the 

blood type of the current patient. In this model, time is a factor and the passage of time is 

captured by expanding 𝔅 to include “Age” as a possibility. Set 𝔅 is now more correctly 

described as event type rather than patient blood type. Now the non-inventory component 

of the state description is an event; events are either “Age” events (𝔅𝐴𝑔𝑒) or “Use” 

(𝔅𝑈𝑠𝑒) events. All eight ABO/Rh types are included in 𝔅𝑈𝑠𝑒. 

𝔅 = 𝔅𝑈𝑠𝑒 ∪ 𝔅𝐴𝑔𝑒 =  {𝐴+, 𝐴−, 𝐵+, 𝐵−,𝐴𝐵+, 𝐴𝐵−,𝑂+,𝑂−, "𝐴𝑔𝑒"}         (5.4) 

Additionally, the inventory variable now tracks the age of each unit.  

𝐼 = (𝐼𝑏𝑒) ∀ 𝑏 ∈  𝔅𝑈𝑠𝑒 , 𝑒 = 1…42                                             (5.5) 

Finally, because replenishment is allowed and follows a weekly schedule, the day of the 

week is included. See Figure 24 for an illustration of the MDP state evolution. 
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Figure 24. Illustration of the MDP Model for the Improved Allocation of Units Under 

Normal Conditions Problem 

Actions:  

The available actions are defined as in the previous chapter 

𝑎(𝑠) = {0} ∪ { 𝑏: 𝑏 ∈ 𝔅𝑈𝑠𝑒 , 𝐼𝑏 > 0}                                    (5.6) 

where 𝐼𝑏 = ∑ 𝐼𝑏𝑒
42
𝑒=1  is the current inventory of type b of any age and 0 is the “do-

nothing” action.  
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Transitions:  

The model still contains two types of transitions, inventory transitions and 

transitions between patient blood types. Generation of the blood type of the next patient 

is as in the previous chapter’s model. It is independent between patients and is dependent 

on the population under study.  

Inventory transitions are more complex than before because of the inclusion of 

aging and replenishment. When the event type is “Use”, a patient is demanding blood and 

transitions are similar to the previous chapter. It is still assumed that each patient 

demands a single unit. The allocation decision determines the unit type to be issued. In 

modeling a “Use” transition the oldest unit of the chosen type is removed from inventory 

to serve the patient and the next event type is generated to complete the state transition: 

𝐼𝑏,𝑒
𝑘  ←  𝐼𝑏,𝑒

𝑘−1 − 1                                                             (5.7) 

where 𝑒 =  max ({𝑒: 𝐼𝑏,𝑒 > 0}) and  𝑏 is the allocated blood type. 

When the event type is “Age” it means that the end of the day has been reached and 

all units in inventory must age. When an “Age” event happens at period 𝑘, the day of the 

week advances and inventory is updated as follows: 

𝐼𝑏,1
𝑘 ← 𝑁𝑏,1

𝑘  ∀𝑏 ∈ 𝔅 

𝐼𝑏,𝑒
𝑘  ←  𝐼𝑏,𝑒−1

𝑘−1 + 𝑁𝑏,𝑥=𝑒 
𝑘    𝑒 = 2…42, 𝑏 ∈ 𝔅 

𝐼𝑏,𝑒=42
𝑘−1 → units outdating at start of period 𝑘 

where 𝑁𝑏,𝑥=𝑒
𝑘  is the number of replenishment units of age 𝑒, and type 𝑏 arriving at the 

start of period 𝑘. 

In the simulation models used in this chapter the age of the replenishment units, 
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𝑋, is distributed according to mixture distributions that vary by blood type. It is possible 

for replenishment units to be older than on-hand units.  It should be noted that addressing 

the non-uniform age of replenishment units is a contribution of this work. For more 

information on the mixture distributions see Appendix A. 

The daily demand, the replenishment schedule with order-up-to levels, and the 

age distribution of new replenishment units are the simulation model parameters used to 

describe different hospital scenarios. Values can be found in Appendix D.   

Rewards:  

Allowable blood type substitutions are shown in Figure 25. Serving a patient with 

a compatible unit results in a positive reward. All successfully met demands have the 

same reward. Unmet demand or providing an incompatible unit result in negative reward. 

This model also includes a penalty cost for each outdated unit. Rewards are denoted 

𝑟(𝑠, 𝑎). They are only state dependent in so far as determining if the unit provided is 

compatible with the patient’s blood types. Current patient blood type is part of the state.  
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Figure 25. Allowable Blood Type Substitutions in 8-type Model 

5.4.2. The Rollout model. 

As described in the previous section, from the current state rollout estimates the 

“cost-to-go” of each available action. These are Q-factor approximations. The action with 

the best approximate Q-factor is the recommended action.  

The model in this section is an online rollout implementation, meaning that 

decisions are made as they are needed and there is no iteration. This rollout 

implementation (Figure 26) uses simulations of multiple sample trajectories of a given 

length to estimate the value of taking each available action. Each of the implementations 

in this chapter including this rollout implementation utilize common disturbance (random 

noise) sequences (sample trajectories) when performing value estimation to reduce the 

variance of the estimates.  
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 Step 0.  

   Choose base policy 𝜇𝑏𝑎𝑠𝑒 

    Generate a set of sample trajectories 𝑊 = {𝜔𝑛𝑘}𝑛∈[1,…,𝑁],𝑘∈[1,…𝐾]  

     Set 𝑆0 = current state, patient demanding a unit 

 Step 1. Find set of available action 𝑎𝑆0   

Step 2. For each 𝑎 ∈ 𝑎(𝑠0)    

Step 2a. Find 𝑆1 = 𝑓(𝑆0, 𝑎) 

Step 2b.  

For k = 1…K 

      For n = 1… N  

Simulate K trajectories of length N states and controls using 

base policy 𝜇𝑏𝑎𝑠𝑒 

  Step 2c. Calculate the sample q-factor:  

𝛽𝑆0,𝑎 =  1/𝐾∑ (𝑔(𝑆1, 𝑎, 𝜔1,𝑘)
𝐾

𝑘=1

+ ∑ 𝛼𝑛𝑔(𝑆1+𝑛
𝑘 , 𝜇𝑏𝑎𝑠𝑒(𝑆1+𝑛

𝑘 ), 𝜔𝑛,𝑘)
𝑁

𝑛=1
 ) 

 Step 3. Choose action with highest estimated q-factor: 

  a′ =  argmax
𝑎∈𝑎𝑆

𝛽𝑆0,𝑎    

    

Figure 26: Pseudocode for Single Period Rollout Implementation 

The rollout approach was evaluated by generating several test sequences of 

patient arrivals and age events and simulating with the allocation decisions made via 

rollout (see Figure 27). The simulation included replenishment of units according to the 

replenishment policy parameters. 

The test sequences and the sample trajectories fix the sequence of patients per 

simulated day including their number and their blood types. The ages of the 

replenishment units cannot be fixed; this remains a stochastic element.  
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Generate test sequences 

For each test_sequence in test_sequences: 

For each step in test_sequence: 

  If event_type = Age 

   Simulate and record age event 

  Else (event_type = Use) 

   Options = set of compatible options  

   If |Options| =1: 

    Simulate and record allocation of that unit type 

   Else: 

    Use rollout to make allocation decision 

 

Figure 27. Pseudocode for Testing Rollout Implementation 

The rollout approach resulted in improvement in the Cobre scenario, but it did not 

result in any positive improvement in the Mayo scenario. Further efforts were necessary; 

they are described in section 5.4.3.  

5.4.3. Approximate Policy Iteration with Q-factor Approximation Model. 

The success of rollout for Cobre but not for Mayo highlights an interesting feature 

of the scenarios. The normal operating conditions modeled in this chapter have high 

inventory set points so there should be very low unmet demand under all policies. The 

policies must then differentiate themselves by reducing the number of outdating units.  

 The API with Q-factor approximation implementation is described in  

Figure 28. The base policy is improved upon by using rollout to make decisions when 

simulating the trajectories used to estimate the Q-factors. The base policy is initially the 

default policy but with each iteration the base policy is updated. In this API with Q-factor 

approximation the policy was based on comparing estimated Q-factors.  

The first approximation architecture tried was a linear regression approximation 
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of the Q-factor using handcrafted features. Linear regression was not a good fit in this 

case, both in terms of regression R2 and the improvements shown by the model. This is 

unsurprising given the non-linear nature of the policies revealed in the previous chapter. 

Because the nature of the value function was anticipated to be complex, machine learning 

methods were considered. Neural networks and XGBRegressor models were trained on 

sets of sample (state, Q-factor estimate) pairs and tuned to optimize fit. XGBRegressor 

models were chosen over neural networks for having equal or superior fit and lower 

training time.  
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Step 0:   Initialization 

Step 0a:   Set the initial policy to default policy, 𝜇0 

Step 0b:    Set the iteration counter z = 1.  

Step 1: Do for z = 1, . . ., Z, #perform many iterations 

             Step 2. Generate set of q sample trajectories, each of very short length ℓ. 

 𝒴 =  {𝑦𝑠𝑙}𝑠=1…𝑞,𝑙=1…ℓ 

Step 3:   Do for 𝑠 = 1…𝑞 ∶  

  Step 4:  Set initial state 𝑖𝑠, inventory levels &current day of week.  

                          Step 5:  For 𝑙 = 1…  ℓ: 

   Step 5: Set current patient blood type,  𝑏(𝑖𝑠𝑙) =  �̂�𝑠𝑙 

    Step 6: Perform rollout to determine action 𝜇′ at state 𝑖𝑠𝑙   

Step 7: For   𝑎 ∈ 𝑎(𝑖𝑠𝑙) 

    Step 8:  For trajectory 𝑤 ∈  𝒲:   

Step 9: Simulate trajectory of states and 

controls beginning with action 𝑎 and 

applying policy 𝜇𝑧−1 as base policy 

Step 10: Calculate sample Q-factor, 𝛽𝑠,𝑎 

𝛽 𝑠,𝑎 =  𝑔(𝑖𝑠, 𝑎) +∑𝛼𝑗𝑔(𝑖𝑗 , 𝜇𝑧−1(𝑖𝑗), 𝑤𝑗)

𝑁

𝑗=1

 

Step 12 a. Return (𝑖𝑠𝑙 , 𝑎, 𝛽𝑠,𝑎)  

Step 12 b. Simulate optimal action 𝑎′ to progress state  

              𝑎′ = argmax
𝑎∈𝑎

(𝑖𝑠𝑙)

𝛽𝑠,𝑎  

Step 13:   Update Q-factor approximations  

�̃�𝑎
𝑧(𝑖, 𝑎, �̅�) = 𝐹 ({(𝑖𝑠𝑙, 𝑎, 𝛽𝑠,𝑎}𝑧

𝑠=1…𝑞,   𝑙=1…ℓ,
 ) ∀ 𝑎  

where F is some function for fitting the approximation architecture model; in 

this case, XGBoost regression model. One regression model fit per action.  

 

Step 7:   Update policy, 𝜇  

 𝜇(𝑖) ∈  𝑎𝑟𝑔 min
u∈U(i)

�̃�𝜇(𝑖, 𝑢, �̅�),     𝑖 = 1, … , 𝑛, 

 

Figure 28. API with Q-factor Approximation Implementation.  

(Flow may be easier to understand when Step 2 is omitted or if ℓ is considered to be 1. 

Step 2 allows gathering of ℓ related data points per starting point. In practice ℓ = 2 was 

used). 

 

 

Single period 

Rollout with 

shared sample 

trajectories. See 

Figure 26 
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After selecting XGBRegressor, reasonable ranges for tunable XGB parameters 

were established. The Q-factor models were tuned over these ranges in every API 

iteration. This adds considerable training time. In addition to the parameters of the 

approximation architecture, the API algorithm itself has the following additional 

parameters that needed to be set: 

• Length of trajectory: length of simulated trajectory when collecting (𝑖𝑠, 𝑢𝑠, 𝑟) 
samples 

• Number of trajectory restarts from same starting state  

• Sample size: how many different starting states (to simulate trajectory and collect 

sample data from) per iteration  

• Number of iterations 

5.4.4. Policy Iteration based on Policy Improvement by Rollout and Policy 

Approximation in Policy Space model. 

Application of Q-factors is known to be difficult in cases of large state spaces (W. 

Powell, 2011) so it should not have been a surprise that the API with Q-factor estimation 

approach did not produce extraordinary results.  

In the API using Q-factor approximation approach there are multiple 

approximation models to be trained, one for each possible action. When the policy is used 

to make a decision each Q-factor approximation model makes a prediction, the predicted 

Q-factors are compared and the action with the highest predicted Q-factor is selected. 

Each approximation model was trained independently but none of the fits were extremely 

high.   

After reviewing results from initial API with Q-factor approximation attempts, 

this research examined if a process where the decision was given directly by the 

approximation equation might give better results. With the Q-factor approximation 
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approach, even though the same set of test sequences are used to get the (state, action, Q-

factor) samples for each action there is a lot of variability introduced when the Q-factor 

approximation equations are trained. In the second API approach examined here (referred 

to as the direct approach), the comparison between options is made on the Q-factor 

estimates collected from the same test sequence before the model is fit (see illustration of 

Figure 29). The samples in this method are (state, recommendation) tuples. This is similar 

to the concept behind advantage updating or the way that a paired t-test removes 

variability compared to an unpaired t-test.  

Making the recommendation prior to sample collection allows for a model that 

gives better recommendations even if the model “fit” is the same.  Using an 

approximation architecture that produces an action directly shifts the algorithm (see 

Figure 30) into the family of approximations in policy space.  
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Figure 29. Collection of Samples in Two API models; Q-factor Approximation and 

Approximation in Policy Space 
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Step 0:   Initialization 

Step 0a:   Set the initial policy to default policy, 𝜇0 

Step 0b:    Set the iteration counter z = 1.  

Step 1: Do for z = 1, . . ., Z, #perform many iterations 

             Step 2. Generate set of q sample trajectories, each of very short length ℓ. 

 𝒴 =  {𝑦𝑠𝑙}𝑠=1…𝑞,𝑙=1…ℓ 

Step 3:   Do for 𝑠 = 1,… , 𝑞 ∶  

  Step 4:  Set initial state 𝑖𝑠, inventory levels &current day of week.  

                          Step 5:  For 𝑙 = 1,… , ℓ: 

   Step 5: Set current patient blood type,  𝑏(𝑖𝑠𝑙) =  �̂�𝑠𝑙 

    Step 6: Perform rollout to determine action 𝜇′ at state 𝑖𝑠𝑙  

Step 7: For   𝑎 ∈ 𝑎(𝑖𝑠𝑙) 

    Step 8:  For trajectory 𝑤 ∈  𝒲:   

Step 9: Simulate trajectory of states and 

controls beginning with action 𝑎 and 

applying policy 𝜇𝑧−1 as base policy 

Step 10: Calculate sample Q-factor, 𝛽𝑠,𝑎 

𝛽 𝑠,𝑎 =  𝑔(𝑖𝑠, 𝑎) +∑𝛼𝑗𝑔(𝑖𝑗 , 𝜇𝑧−1(𝑖𝑗), 𝑤𝑗)

𝑁

𝑗=1

 

   Step 11: find maximum sample Q-factor:  

 𝜇′(𝑖
𝑠𝑙) =  𝑎𝑟𝑔 max

𝑎∈𝑎
(𝑖𝑠𝑙)

𝛽𝑠,𝑎 

Step 12 a. Return (𝑖𝑠𝑙 , 𝜇′(𝑖𝑠𝑙))  

Step 12 b. Simulate optimal action to progress state  

Step 13:   Update policy: 

𝜇𝑧+1 = 𝐹 ({(𝑖𝑠𝑙, 𝜇′(𝑖𝑠𝑙)}𝑧
𝑠=1…𝑞,   𝑙=1…ℓ,

 )  

where F is some function for training the approximation architecture model, in 

this case a boosted classifier. Use this policy for the next iteration. 

 

(𝑖, 𝜇′(𝑖)): state, recommended action in state pair  

*current patient blood type selected to upweight blood types with lower compatibility as 

substitutes so that sufficient samples are collected  

 

Figure 30. Pseudocode for API with Policy Estimation Implementation 

Single period 

Rollout with 

shared sample 

trajectories. See 

Figure 26 
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5.4.5. Procedures for finding good candidate policies. 

This section describes how good models were extracted from the API solutions 

for further testing. Several different configurations of parameters for each of the API 

approaches were used to find candidate good policies for each of the hospital scenarios. 

Five different configurations were used with Cobre and three were used with Mayo. The 

configurations resulting in the best policies per scenario (that is, configuration 

“DirectPI_Cobre2” for Cobre and configuration “PIPI_direct_Mayo0.2” for Mayo) are 

described here next. Parameter details for these and the other configurations can be found 

in the Appendices C and D.  

Each time before initializing the API algorithm, a set of test sequences were 

defined. These test sequences were simulated each time a new policy approximation was 

fit (once per iteration). The undiscounted reward, discounted reward, unmet demand, and 

number of outdating units were recorded. The API MDP models use a discounted reward 

objective function.  

Plots of the undiscounted total reward and discounted total reward by iteration are 

shown in Figure 31 and 30 for Cobre and Figure 33 for Mayo. Typically, these plots are 

used to judge if the policy has converged since convergence in general is not guaranteed 

with API and policy performance will often fluctuate/chatter.  



  

110 

 

Figure 31. Value by Iteration: DirectPI_Cobre2 

The value by iteration plots in Figure 31 do not show that the policy converged 

though they suggest that it may be in the process of converging. Some early iterations 

performed better on the test sequences than the final iterations.  

Because it appeared that DirectPI_Cobre2 was possibly converging towards the 

end of the first 50 iterations another 100 iterations were completed to see if further 

convergence occurred. In this second set of runs with the same configuration the API 

policy is better than the default policy in terms of raw reward and discounted reward in 

nearly every iteration (see Figure 32). Other than the earliest and last iterations the value 

is consistent across iterations suggesting that the algorithm has converged.  
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Figure 32. Value by Iteration: DirectPI_Cobre2 Extended Iterations 

The policy representations (XGBClassifier models) were saved after each 

iteration of the API models. It was therefore possible to choose a set of policy models 

from intermediate iterations and between different API parameter configurations and 

compare them to each other on the same simulated demand streams.  

The iterations from each model with the lowest outdating, highest undiscounted 

reward, and/or highest discounted reward from the Cobre API configurations are listed in 

Table 11. Description of the configurations can be found in Appendix C. Simulations 

were used to compare these policies with each other using the same test sequences per 

simulation run. Those results are shown later in this chapter. 
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Table 11 

Direct PI models selected for head to head comparison in further simulations: Cobre  

 
Approach Configuration Iteration Policy Name 

1 Fixed 

Priority 

NA NA default 

2 Direct PI PIDirect Cobre1 4 PIPI_direct_Cobre_0.14 

3 Direct PI PIDirect Cobre1 20 PIPI_direct_Cobre_0.120 

4 Direct PI PIDirect Cobre1 26 PIPI_direct_Cobre_0.126 

5 Direct PI PIDirect Cobre1 36 PIPI_direct_Cobre_0.136 

6 Direct PI PIDirect Cobre2 40 PIPI_direct_Cobre_0.140 

7 Direct PI PIDirect Cobre2 42 PIPI_direct_Cobre_0.142 

8 Direct PI PIDirect Cobre2 50 PIPI_direct_Cobre_0.150 

9 Direct PI PIDirect Cobre 2 extension 50 PIPI_direct_2extension50 

10 Direct PI PIDirect Cobre 2 extension 100 PIPI_direct_2extension100 

11 Direct PI DirectPI_Cobre2_reduceda 1 PIPI_direct_Cobre2_reduced_param1 

12 Direct PI DirectPI_Cobre2_reduceda 15 PIPI_direct_Cobre2_reduced_param15 

13 Direct PI DirectPI_Cobre2_reduceda 37 PIPI_direct_Cobre2_reduced_param37 

14 Direct PI DirectPI_Cobre2_reduceda 40 PIPI_direct_Cobre2_reduced_param40 

 

The same process was repeated for the Mayo scenario. The plots of value by 

iteration (see Figure 33) are much less promising. There were a few iterations where the 

iteration’s undiscounted value exceeded the default policy’s undiscounted value but none 

where the iteration’s discounted value exceeded the default policy’s discounted value. At 

best the iteration’s total discounted reward matched that of the default policy. The 

structure of the MDP model is important here. Because many units are demanded per day 

in the Mayo scenario, the last unit of the day will be heavily discounted compared to the 

first and the rewards from (not) outdating will be even more heavily discounted. In the 

scenarios with a lot of safety-stock, the policies differentiate themselves by decreasing 

outdating, but (negative) rewards for outdating will be heavily discounted so it makes 
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sense that the API iteration policy is not able to distinguish itself in terms of discounted 

reward.    

 

Figure 33. Value by Iteration API Mayo 

  

Models from the iterations of the Mayo API test scenarios that had fewer 

outdating units, less unmet demand or higher rewards were selected for further study. A 

list of those policies is found in Table 12 . 
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Table 12 

Direct PI models selected for head to head comparison in further simulation studies: 

Mayo 

 Approach Configuration Iteration Name 

1 Fixed priority NA NA default 

2 Direct PI PIPI_direct_Mayo0.1b 2 PIPI_direct_Mayo0.1b2 

3 Direct PI PIPI_direct_Mayo0.1b 3 PIPI_direct_Mayo0.1b3 

4 Direct PI PIPI_direct_Mayo0.2 2 PIPI_direct_Mayo0.22 

5 Direct PI PIPI_direct_Mayo0.2 5 PIPI_direct_Mayo0.25 

6 Direct PI PIPI_direct_Mayo0.2 7 PIPI_direct_Mayo0.27 

7 Direct PI PIPI_direct_Mayo0.2 9 PIPI_direct_Mayo0.29 

8 Direct PI PIPI_direct_Mayo0.2 15 PIPI_direct_Mayo0.215 

9 Direct PI PIPI_direct_Mayo0.2 21 PIPI_direct_Mayo0.221 

10 Direct PI PIPI_direct_Mayo0.2 23 PIPI_direct_Mayo0.223 

11 Direct PI PIPI_direct_Mayo0.2 27 PIPI_direct_Mayo0.227 

12 Direct PI PIPI_direct_Mayo3 4 PIPI_direct_Mayo_noreplenish4 

13 Direct PI PIPI_direct_Mayo3 6 PIPI_direct_Mayo32 

5.5.Computational Results and Analysis of Approximate MDPs 

The objective function of the ADP models that generated the policies compared in 

this section was approximate expected discounted reward value. Having a discounted 

measure is not only necessary for an algorithmic standpoint; it also acknowledges that 

individuals are able to intervene in the inventory supply chain when potential future 

shortages are anticipated. In practice emergency orders are common. The difficulties with 

the discounted reward measure with the current MDP formulation have already been 

discussed above  

This section presents several metrics for evaluating each policy; the amount of 

unmet demand, the number of units outdating, and three value measures. The first value 

measure is the undiscounted total reward. The second is the discounted total reward with 

𝜆 = 0.95. This is the same objective used in the MDP solution that results in units 
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allocated on the same day having different discounted values. The third metric is the 

daily discounted reward. In these MDP models, fulfilling each unit of demand is a 

discrete event step and each subsequent step is discounted more deeply than the previous 

step (see Figure 24). A policy resulting in unmet demand earlier will have a lower 

discounted reward than a policy resulting in the same amount of unmet demand which 

occurs later, even if the unmet demand occurs in the same simulated day.  

 The daily discounted reward totals all undiscounted rewards for one simulated 

day and applies the same discount to all rewards collected on that day. The discount 

applied on one simulated day will be less than the discount applied on subsequent 

simulated days. In low demand scenarios the discounted and daily discounted values will 

be much closer together than in a high demand scenario.  

In practice, blood bank managers may want to choose a policy based on one of 

these value metrics or choose a policy based on the pareto frontier of “outdating” vs 

“unmet demand”.  

Unless noted otherwise, each analysis in this results section features five starting 

points each with 20 test sequences (resulting in 100 different test sequences), with four 

repetitions for each test sequence. Each simulation run lasted 12 simulated weeks (84 

days). The first 42 days served as warmup. Results from the second 42-day period are 

reported in the analyses. The mean values across the four repetitions for each reward 

metric were found for each starting point and test sequence combination. The difference 

between the default policy mean value for each starting point and test sequence 

combination and the mean for the same starting point and test sequence combination for 
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each test policy were found and two-tailed t-tests (sample size 100 (Cobre) or 120 

(Mayo), with type 1 error rate of 5%) were performed on these differences.  

5.5.1. Comparison of alternate fixed priority policies. 

The policy used as the default policy throughout this dissertation can be described 

as a fixed priority policy. For this policy the allocation decision is based entirely on 

priority and does not consider the age of units in the inventory or the relative amount of 

inventory by type. This policy was selected for use as the default because it is the type of 

policy used by each of the blood bank managers contacted during this research2 and is 

standard in the field (Armstrong et al., 2008). The specific default policy used is the 

allocation policy in use by Mayo Clinic at the time the research was begun (Dumkrieger 

et al., 2014).  

The default policy is one of several possible fixed priority policies. To confirm 

that the default policy is not arbitrarily bad and therefore an unfair way to establish 

improvement over a baseline, several other fixed priority policies were simulated. The 

results are presented below.  

The alternate fixed priority policies are described in Figure 32. In policies FP1 

and FP3 ABO type takes priority over Rh+/-. In policy FP1, which is the default policy, 

blood type A takes priority over B and in FP2 B takes priority over A. In fixed priority 

policies FP2 and FP4 Rh+ units are prioritized over Rh- units for A and B but all A and 

B types have priority over O. In FP2 blood type A is prioritized over B and in FP3 the 

 
2 In one case the manager had decades of experience and would occasionally make alternative 

allocation decision based on the relative inventories and age of units on hand. That manager 

achieved very good results unfortunately the strategy of hiring an expert to oversee the allocation 

of each unit may be impractical on a global scale.  
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opposite is true. In policies FP5 and FP6 Rh+ units are prioritized over Rh- for ABO, 

meaning that O+ has priority over A- or B-. In FP5 blood type A has priority over B and 

in FP6 blood type B has priority over A. In all cases all compatible AB units have 

priority over units of any other compatible type.  

 

 

Figure 34. Fixed Priority Policies 

The alternate fixed priority policies were simulated for both Cobre and Mayo 

scenarios. For the Cobre scenario five different starting points, each with 20 different test 

sequences, were simulated. For the Mayo scenario 6 different starting points were used. 

Results for the low demand scenario, Cobre, are shown in Table 13. Results for 
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the high demand scenario, Mayo, are shown in Table 14.  For the Cobre scenario none of 

the alternate fixed priority policies performed statistically better than the default policy. 

FP3, FP5, and FP6 performed better than default but the difference was not significant. 

For the Mayo scenario FP3 is consistently better than the default policy but the difference 

was not statistically significant. Thus, it can be concluded that the default policy is a 

reasonable one to use as a baseline.  

Blood bank managers may still wish to consider these policies based on their own 

situations. For example, if blood type B is more available in their region or less 

expensive, they may prefer a policy which prioritizes type B blood. Because the 

performance of all of these policies are dependent on the characteristics of the hospital 

and patient population any change should be proceeded by simulation of that particular 

facilities situation. 
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Table 13 

Simulation Results: Cobre Alternate Fixed Priority Policy Simulation Comparison.   

 
Unmet Demand Outdated Units Undiscounted Reward  Discounted Reward  Daily Discount 

Policy Name mean annual 

% 

Demand 

Unmet 

mean annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.09 0.015% 299.59 33.7% 0.0% 0.00 NA 0 NA 0.00 NA 

FP1 0.09 0.015% 303.05 34.0% -1.2% -400.00 0.146 -11 0.917 -91.64 0.522 

FP3 0.09 0.015% 301.47 33.8% -0.6% -217.50 0.413 66 0.533 5.43 0.970 

FP4 0.11 0.018% 302.90 34.0% -1.1% -400.00 0.141 -21 0.845 -112.68 0.458 

FP5 0.11 0.018% 300.45 33.8% -0.3% -117.50 0.662 107 0.351 68.78 0.658 

FP6 0.13 0.022% 303.96 34.0% -1.5% -540.00 0.063 148 0.124 39.83 0.775 

*period is 42 days 

 

 

 

 

 

 

 

1
1
9
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Table 14  

Simulation Results: Mayo Alternate Fixed Priority Policy Simulation Comparison. 6 starting points with 20 test sequences Each 

sequence repeated four times.   

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.00 0.000% 790 1.9% 0.0% 0 NA 0 NA 0.00 NA 

FP1 0.00 0.000% 792 1.9% -0.3% -242 0.771 -15 0.460 -453 0.267 

FP3 0.00 0.000% 774 1.9% 2.0% 1,858 0.088 8 0.797 305 0.579 

FP4 0.00 0.000% 772 1.9% 2.3% 2,090 0.038 -107 0.071 544 0.291 

FP5 0.00 0.000% 794 1.9% -0.5% -467 0.535 1 0.978 -231 0.540 

FP6 0.00 0.000% 764 1.9% 3.3% 3,000 0.003 -128 0.035 676 0.189 

*period is 42 days  

 

1
2
0
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5.5.2. Rollout results. 

The same test sequences and starting points used in the alternate fixed policy 

comparison for Cobre were simulated using rollout. Rollout performed similarly to the 

default policy for Cobre (Table 15). There was slightly more unmet demand with the 

rollout simulation (0.044%) vs the default simulation (0.015%) and a small (6.6%) 

decrease in outdated units. Despite this relatively small improvement the difference in 

each of the value metrics is significant (improvement: undiscounted reward 2210, p 

<0.001; discounted reward 431, p = 0.009; daily discounted reward 1005, p = <0.001). 

The test sequences and starting points are used again in the main Cobre API simulations.  

Rollout did not improve upon the default policy at all for Mayo (therefore 

computational results are not shown). The performance of the two policies were the same 

across all metrics for that scenario. The default policy and the rollout implementation did 

not make the same decisions at each step of the test sequences, but they still ended up in 

the same place when it came time to outdate. The frequent replenishment in the Mayo 

scenario may have also contributed.  
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Table 15  

Simulation Results: Cobre Rollout Comparison 

Policy Name 

Unmet Demand Outdated Units 

Undiscounted Reward Discounted Reward Daily Discount 

Improvement Over 

default 

Improvement Over 

Default 

Improvement Over 

Default 

mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

% of 

Total 

Units 

% 

Reductio

n from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value 

mean per 

period* 
p-value 

default 0.09 0.015% 307 34.3% NA 0 NA 0 NA 0 NA 

rollout 0.26 0.044% 286 32.7% 6.6% 2210 7.89E-09 431 9.07E-03 1005 1.98E-06 

 

1
2
2
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5.5.1. Results of Policy Iteration based on Policy Improvement by Rollout 

and Policy Approximation in Policy Space. 

5.5.1.1. Cobre API results.  

The 14 candidate policies selected from across the API configurations (see Table 

11) were simulated on the same set of tests sequences and starting points that were used 

in the Cobre rollout and Cobre fixed-priority policy comparisons. Results are presented in 

Table 16. 

 The best Cobre policy is PIPI_direct_2extension50. When simulated (with the 

same 100 test sequences as used in the rollout comparisons) it shows positive results for 

improvement in discounted and daily discounted reward compared to the default policy, 

but these differences are not significant. Noticing that few of the results are significant in 

any direction it was considered that the power of the test may be too low. Two-hundred 

additional simulation runs, with four repetitions each, were run for 

PIPI_direct_2extension50 and default policies only (Table 17, Figure 36). With the 

increased test power the improvement in undiscounted reward and the improvement in 

daily discounted reward are significant (undiscounted: p=0.019, discounted p = 0.017), 

while the improvement in discounted reward continues to fail to reach significance (p = 

0.084).    

The rollout policy and PIPI_direct_2extension50 were simulated on the same test 

sequences, enabling comparison. The difference in performance between the two policies 

was calculate and t-tests were performed. The rollout policy outperformed the API in 

each of the value metrics (undiscounted mean improvement: 1760, p <0.001; discounted 
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mean improvement: 1000, p <0.001; daily discounted mean improvement: 619, p = 

0.003). The improvement in reward metrics by the rollout policy are shown in Figure 37.  



  

125 

Table 16 

API Simulation Results: Cobre Standard policy comparison  

  Unmet Demand Outdated Units 

Undiscounted 

Reward 

Improvement 

Over default 

Discounted 

Reward 

Improvement Over 

Default 

Daily Discount 

Improvement 

Over Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean 

per 

period* 

p-value 

mean 

per 

period* 

p-value  

mean 

per 

period

* 

p-value 

default 0.11 0.018% 303 34.0% 0.0% 0 NA 0  NA 0 NA 

PIPI_direct_Cobre_0.14 0.98 0.165% 315 34.9% -4.1% -2,118 1E-06 -103 4E-01 -640 7E-04 

PIPI_direct_Cobre_0.120 0.33 0.055% 306 34.2% -1.1% -555 5E-02 81 4E-01 -101 5E-01 

PIPI_direct_Cobre_0.136 0.35 0.059% 345 36.9% -13.9% -5,053 3E-22 -592 3E-05 -1,861 5E-15 

PIPI_direct_Cobre_0.140 0.56 0.096% 327 35.7% -7.9% -3,133 1E-12 -358 5E-03 -1,141 2E-08 

PIPI_direct_Cobre_0.26 2.34 0.397% 409 41.1% -35.2% 
-

14,095 
3E-49 -2,367 2E-23 -5,820 1E-39 

PIPI_direct_Cobre_0.242 1.91 0.324% 381 39.3% -25.7% 
-

10,448 
7E-34 -1,552 6E-20 -4,198 3E-31 

PIPI_direct_Cobre_0.250 1.04 0.176% 381 39.3% -25.7% -9,728 2E-34 -1,263 2E-12 -3,879 3E-28 

PIPI_direct_2extension50 0.24 0.040% 302 33.9% 0.2% -25 9E-01 130 2E-01 99 5E-01 

PIPI_direct_2extension100 0.65 0.110% 361 38.0% -19.0% -7,088 3E-28 -947 1E-09 -2,802 1E-21 

PIPI_direct_Cobre2_reduced_param1 1.97 0.335% 335 36.3% -10.6% -5,203 7E-15 -310 3E-02 -1,739 1E-09 

PIPI_direct_Cobre2_reduced_param15 1.41 0.239% 334 36.2% -10.4% -4,668 4E-14 -399 4E-03 -1,580 8E-11 

PIPI_direct_Cobre2_reduced_param37 0.67 0.114% 320 35.3% -5.8% -2,485 3E-09 -184 2E-01 -933 9E-06 

PIPI_direct_Cobre2_reduced_param40 1.32 0.224% 322 35.4% -6.4% -3,208 8E-10 -29 8E-01 -998 2E-05 

 

 

 

1
2
5
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Table 17 

API Simulation Results: Additional Basic comparisons runs for Cobre 

  

Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 

mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.03 0.005% 306 34.0% 0.0% 0.0 NA 0 NA 0.00 NA 

PIPI_direct_2extension50 0.29 0.049% 300 33.6% 2.0% 486.3 1.9E-02 144 8.4E-02 274.15 1.7E-02 

 

 

 

1
2
6
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Figure 35. Cobre Standard Comparison Reward Boxplots 

 

 
Figure 36. Cobre PIPI_direct_2extension50 Standard Extra Runs Boxplot 
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Figure 37. Cobre Improvement of Rollout Over API 

Table 18  

Units Allocated by Type, by Policy: Cobre 

 
Unmet 

Units 

Allocated Type 

Policy A+ A- B+ B- AB+ AB- O+ O- 

default 0.02% 33% 7% 8% 2% 3% 1% 37% 8% 

PIPI_direct_Cobre_0.14 0.17% 31% 6% 9% 1% 2% 0% 31% 20% 

PIPI_direct_Cobre_0.120 0.06% 35% 5% 6% 3% 1% 1% 36% 14% 

PIPI_direct_Cobre_0.136 0.06% 14% 5% 4% 5% 2% 1% 58% 12% 

PIPI_direct_Cobre_0.140 0.10% 24% 6% 1% 9% 1% 0% 42% 17% 

PIPI_direct_Cobre_0.26 0.40% 17% 16% 2% 9% 2% 0% 25% 29% 

PIPI_direct_Cobre_0.242 0.32% 10% 18% 3% 8% 0% 1% 41% 19% 

PIPI_direct_Cobre_0.250 0.18% 4% 11% 2% 6% 2% 2% 53% 20% 

PIPI_direct_2extension50 0.04% 33% 7% 5% 2% 2% 1% 37% 12% 

PIPI_direct_2extension100 0.11% 9% 12% 0% 6% 3% 1% 48% 20% 

PIPI_direct_Cobre2_reduced_param1 0.33% 36% 0% 0% 0% 0% 0% 42% 22% 

PIPI_direct_Cobre2_reduced_param15 0.24% 30% 8% 0% 0% 0% 0% 42% 20% 

PIPI_direct_Cobre2_reduced_param37 0.11% 36% 3% 0% 0% 0% 0% 45% 16% 

PIPI_direct_Cobre2_reduced_param40 0.22% 36% 0% 0% 0% 0% 0% 46% 18% 
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Table 19 

 To:From matrix: Cobre Default 

 Allocated Units % of 

Allocated Patient Blood Type  A+ A- B+ B- AB+ AB- O+ O- 

A+ 33.1 - - - - - - - 33.1 

A- - 7.1 - - - - - 0.0 7.1 

B+ - - 8.4 0.1 - - 0.0 - 8.5 

B- - - - 1.8 - - - 0.1 1.8 

AB+ 0.0 - - - 3.1 0.0 - - 3.1 

AB- - 0.0 - - - 1.2 - - 1.2 

O+ - - - - - - 37.0 - 37.0 

O- - - - - - - - 8.1 8.1 

Total Allocated 33.1 7.1 8.4 1.8 3.1 1.2 37.0 8.2 100 

Outdated, % of outdating units  17.7 7.2 5.9 7.5 15.2 8.4 25.8 12.1 100 

Total Units Ordered, % of total 27.9 7.1 7.6 3.8 7.2 3.7 33.2 9.6 100 

Outdated, % of Total Ordered 21.6 34.2 26.7 67.9 71.8 78.0 26.4 43.1 33.96 

 

Table 20 

To:From matrix: Cobre PIPI_direct_2extension50  

 Allocated Units 
% of 

Allocated 

Patient Blood Type A+ A- B+ B- AB+ AB- O+ O-  

A+ 33.1 0.0 - - - - - - 33.2 

A- - 7.1 - - - - - 0.0 7.1 

B+ - - 4.5 0.8 - - 0.0 3.2 8.5 

B- - - - 1.3 - - - 0.6 1.8 

AB+ 0.0 0.0 0.0 - 2.4 0.6 - - 3.1 

AB- - 0.1 - 0.3 - 0.8 - - 1.2 

O+ - - - - - - 37.0 - 37.0 

O- - - - - - - - 8.1 8.1 

Total Allocated 33.2 7.2 4.5 2.4 2.4 1.4 37.0 11.9 100 

Outdated, % of outdating units  17.8 7.2 9.8 6.6 16.3 7.8 26.1 8.4 100 

Total Units Ordered, % of total 28.0 7.2 6.3 3.8 7.1 3.6 33.3 10.7 100 

Outdated, % of Total Ordered 21.6 33.9 52.7 58.8 77.6 73.8 26.6 26.7 33.9 

 

Another factor that blood bank managers or regional blood bank managers are 

interested in is the percentage of demand being met with units of the same blood type. 

This information can be found in Table 19 for the default policy or Table 20 for 
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PIPI_direct_2extension50. Under the default policy 99.8% of demand is allocated a 

direct match and 99.9% are allocated an ABO match. Only 0.3% of O goes to non-O 

patients. Under PIPI_direct_2extension50 94.3% of demand is allocated a direct match, 

95.7% is allocated an ABO match and 7.7% of O goes to non-O patients.  37.0% of 

allocated units are O+ under both policies but a smaller percentage of allocated units are 

O- under the default policy (8.1%) vs PIPI_direct_2extension50 (11.9%).  While 

PIPI_direct_2extension50 orders and allocates more O- units it outdates a smaller 

percentage of the O- units it orders than the default policy.  These values would depend 

on the replenishment policy as well. For the API policies, a replenishment policy that 

orders fewer O units, or if younger O units were provided, it would be expected that 

fewer O units would be allocated. 

5.5.1.2.  Mayo API results. 

PIPI_direct_Mayo0.221 and PIPI_direct_Mayo0.223 are the most promising 

policies for the Mayo scenario. As seen in Table 21 and Figure 38 both policies result in 

slightly more unmet demand but also a large reduction in outdated units compared to the 

default policy. PIPI_direct_Mayo0.221 is significantly better than the default policy in 

terms of undiscounted reward (p<0.001), and daily discounted reward (p<0.001) but not 

discounted reward (p=0.097). PIPI_direct_Mayo0.223 is not significantly better in terms 

of discounted reward (p=0.314) but is better in terms of undiscounted reward and daily 

discounted reward (p<0.001). PIPI_direct_Mayo0.223 shows more improvement in 

outdating than PIPI_directMayo0.221 which may make it attractive to a blood bank 

manager.  
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Figure 38. Mayo API Standard Comparison Boxplots. Figures show the improvement of 

each new policy over the default policy in terms of undiscounted reward and discounted 

reward. 
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Table 21 

API Simulation Results: Mayo Standard Policy Comparison. 6 starting points with 20 test sequences of 42 days each. 42 day 

warmup. Each sequence repeated four times. The same test sequences are used in Table 14. 

  Unmet Demand Outdated Units 

Undiscounted 

Reward 

Improvement Over 

default 

Discounted 

Reward 

Improvement 

Over Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean 

per 

period* 

p-value 

mean 

per 

period* 

p-value  

mean 

per 

period* 

p-value 

default 0.00 0.000% 789 1.9% 0.0% 0.00 NA 0 NA 0 NA 

PIPI_direct_Mayo_noreplenish4 2.85 0.007% 926 2.3% -17.4% -18,173 1.4E-04 -47 6.7E-01 -7,976 5.0E-04 

PIPI_direct_Mayo0.1b2 0.00 0.000% 1,189 2.9% -50.8% -46,227 6.4E-17 -119 1.4E-01 -20,909 2.5E-14 

PIPI_direct_Mayo0.1b3 31.43 0.078% 1,978 4.7% -150.8% -162,625 9.2E-34 -767 2.6E-03 -69,541 3.1E-30 

PIPI_direct_Mayo0.22 43.71 0.109% 8,133 16.8% -931.5% -882,769 1.5E-108 -2,930 1.1E-07 -366,490 6.7E-86 

PIPI_direct_Mayo0.25 4.84 0.012% 1,763 4.2% -123.6% -116,342 1.6E-17 -583 2.4E-02 -51,473 2.7E-15 

PIPI_direct_Mayo0.27 0.40 0.001% 2,176 5.1% -175.9% -160,373 2.4E-40 -1,347 8.7E-03 -68,161 3.3E-31 

PIPI_direct_Mayo0.29 19.30 0.048% 5,216 11.5% -561.5% -526,492 4.7E-51 -2,549 1.8E-05 -223,922 9.5E-45 

PIPI_direct_Mayo0.215 2.04 0.005% 2,721 6.3% -245.1% -224,602 2.1E-16 -882 3.6E-02 -89,678 8.0E-14 

PIPI_direct_Mayo0.221 0.22 0.001% 579 1.4% 26.5% 23,942 8.8E-15 112 9.7E-02 10,434 3.2E-12 

PIPI_direct_Mayo0.223 2.22 0.006% 444 1.1% 43.7% 37,956 3.3E-11 92 3.1E-01 16,028 6.2E-09 

PIPI_direct_Mayo0.227 0.36 0.001% 961 2.3% -21.8% -20,156 5.3E-09 -80 1.8E-01 -8,659 4.2E-07 

PIPI_direct_Mayo32 65.31 0.162% 8,664 17.8% -998.7% -961,419 2.4E-100 -3,100 1.9E-07 -390,668 2.3E-95 

1
3
2
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Table 22  

Units Allocated by Type, by Policy: Mayo  

 Allocated Type 

 Unmet Units A+ A- B+ B- AB+ AB- O+ O- 

Default 0% 39% 8% 10% 1% 0% 0% 35% 6% 

PIPI_direct_Mayo0.1b2 0% 36% 7% 6% 9% 0% 0% 35% 7% 

PIPI_direct_Mayo0.1b3 0% 36% 7% 9% 6% 0% 0% 27% 14% 

PIPI_direct_Mayo0.22 0% 1% 9% 9% 5% 0% 0% 44% 30% 

PIPI_direct_Mayo0.25 0% 34% 9% 8% 3% 0% 0% 30% 17% 

PIPI_direct_Mayo0.27 0% 36% 9% 6% 3% 0% 0% 24% 21% 

PIPI_direct_Mayo0.29 0% 36% 5% 6% 2% 0% 0% 19% 32% 

PIPI_direct_Mayo0.215 0% 24% 10% 10% 4% 0% 0% 34% 19% 

PIPI_direct_Mayo0.221 0% 36% 8% 7% 1% 0% 0% 34% 14% 

PIPI_direct_Mayo0.223 0% 28% 8% 10% 3% 0% 0% 40% 11% 

PIPI_direct_Mayo0.227 0% 37% 7% 7% 0% 0% 0% 36% 13% 

PIPI_direct_Mayo_noreplenish4 0% 27% 13% 7% 3% 0% 0% 39% 12% 

PIPI_direct_Mayo32 0% 3% 13% 3% 5% 0% 0% 59% 17% 

 

Table 23  

To:From Matrix: Mayo default 

 Allocated Units % of 

Allocated Patient Blood Type A+ A- B+ B- AB+ AB- O+ O- 

A+ 36.0 - - - - - - - 36.0 

A- - 7.0 - - - - - - 7.0 

B+ - - 10.0 - - - - - 10.0 

B- - - - 1.0 - - - - 1.0 

AB+ 3.4 - - - 0.4 0.2 - - 4.0 

AB- - 0.9 - - - 0.1 - - 1.0 

O+ - - - - - - 35.0 - 35.0 

O- - - - - - - - 6.0 6.0 

Total Allocated 39.4 7.8 10.0 1.0 0.4 0.4 35.0 6.0 100 

Outdated, % of outdating units 0.3 12.9 0.6 14.9 0.0 0.0 29.4 41.9 100 

Total Units Ordered 38.7 7.9 9.8 1.3 0.4 0.4 34.9 6.7 100 

Outdated, as % of Total Ordered 0.0 3.1 0.1 22.7 0.0 0.0 1.6 12.0 1.9 
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Table 24 

To:From Matrix: Mayo PIPI_direct_mayo0.221  

 Allocated Units %  

Allocated Patient Blood Type  A+ A- B+ B- AB+ AB- O+ O- 

A+ 35.3 0.5 - - - - 0.3 0.0 36.0  

A- - 6.9 - - - - - 0.0 7.0  

B+ - - 4.8 0.1 - - 0.0 5.1 10.0  

B- - - - 0.2 - - - 0.8 1.0  

AB+ 1.1 0.6 1.9 0.0 - 0.1 0.2 0.0 4.0  

AB- - 0.3  0.5  0.1  0.0 1.0  

O+ -      33.6 1.4 35.0  

O- -       6.0 6.0  

Total Allocated 36.4 8.3 6.7 0.8 - 0.2 34.0 13.5 100 

Outdated, % of outdating units  0.3 12.9 0.6 14.9 0.0 0.0 29.4 41.9 100 
Total Units Ordered 35.7 8.4 6.6 1.1 0.0 0.2 34.0 14.1 100 

Outdated, as % of Total Ordered 0.0 2.9 0.2 27.1 100 0.1 1.7 5.7 1.9 

 

With the default policy 96% of demand is met with direct match and 96% is met 

with an ABO match. 0% of O blood goes to non-O patients. The new policy has direct 

matching for only 87% of demand and ABO match for 89% of demand. 13.8% of 

allocated O units go to non-O patients. The default policy has high direct match 

percentage and a lower percentage of O units allocated to non-O patients, but it also has 

more O units outdating. 12.0% of ordered O- units outdate under the default policy, but 

only 5.7% of ordered O- units outdate under the new policy.  

5.5.1.3. Sensitivity Analysis 

 Because these policies are tailored to the specific profile of the simulated 

hospital it is important to check that they are robust to some misspecification in the 

relevant parameters. This section evaluates how the best direct API policies found for 

Cobre and Mayo perform when the demand is altered or when the ages of the 
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replenishment units change. 

Cobre Scenario 

When the demand is approximately 10% higher than the demand used to find the 

policy PIPI_direct_2extension50 performs approximately the same as the default policy 

(Table 25). When the demand is approximately 10% lower than used to find the policy 

PIPI_direct_2extension50 performs better than the default across all three metrics 

(undiscounted reward p = 0.009; discounted reward p = 0.26; daily discount p = 0.032) 

(see Table 26).  The difference between the policies in terms of discounted reward is not 

significant but it affirms that the new policy will not perform worse than the default 

policy even if the actual demand is 10% lower than modeled. This new policy may 

perform even better at lower demands but increased demand would likely cause it to 

perform less well than default. There is a limitation to these models in that the 

replenishment policy was the same in all Cobre simulations. If there was a significant 

change in demand then the replenishment policy would likely change to reflect the 

demand shift. However, if it were a matter of misspecification then this analysis provides 

an accurate estimation of the effect.  
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Table 25  

API Simulation Results: Cobre Increased Demand 

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reductio

n from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.01 0.002% 263 28.5% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_2extension50 0.29 0.044% 260 28.3% 1.3% 158 4.8E-01 68 3.8E-01 127 2.5E-01 

 

 

Table 26 

API Simulation Results: Cobre Decreased Demand  

  Unmet Demand Outdated Units 

Undiscounted 

Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reductio

n from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.03 0.006% 358 41.6% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_2extension50 0.13 0.026% 352 41.2% 1.6% 584 8.7E-03 98 2.6E-01 247 3.2E-02 

1
3
6
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Table 27 

API Simulation Results: Cobre Older Age. Each distribution of the mixture distribution mean age increased by 1.  

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.07 0.011% 365 38.3% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_2extension50 0.27 0.046% 360 37.9% 1.5% 446 5.3E-02 60 4.9E-01 128 3.1E-01 

 

 

Table 28  

API Simulation Results: Cobre Young Age 

  Unmet Demand Outdated Units 

Undiscounted 

Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual** 

% 

Demand 

Unmet 

mean 

annual** 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean 

per 

period* 

p-value 

mean 

per 

period* 

p-value  

mean 

per 

period* 

p-value 

default 0.04 0.007% 120 17.1% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_2extension50 0.56 0.097% 116 16.7% 2.9% -15 9.5E-01 -69 3.6E-01 -61 6.0E-01 

 

1
3
7
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The age of replenishment units is an important factor in blood inventory 

management. Table 27 shows the results of comparison between the API policy and the 

default policy when the mean age per each component of the age mixture distribution is 

increased by one. The improvement of each metric is positive but none of the differences 

are significant any longer.   

The low demand scenario (Cobre) is representative of the many small rural 

hospitals across the United States. These hospitals often receive fresher units than the 

larger hospitals and their aging stock will be retrieved by the regional blood provider and 

rotated to higher demand hospitals. However, none of the small hospitals contacted were 

able to provide data on the actual age of their new units or the age of units collected for 

rotation. For that reason, the same age distribution as the large hospital were used in all 

simulations except those presented as Cobre Young Age in Table 28. In these simulations 

the age distribution for each blood type was distributed according to a normal distribution 

with mean 5 and standard deviation 2. This is an estimate of the youngest units that might 

reach one of the rural hospitals. The simulations show that the new policy does not 

perform better than the default policy when the age is very young, but it does not perform 

statistically worse either. This does not invalidate the results of simulations using the 

older age distributions. If a hospital were going to implement one of these policies then 

they would want to tailor it to their situation to the best of their abilities and that would 

include a more accurate estimation of the age of new units. It does illustrate the benefits 

of correctly tailored policies.  
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Mayo Scenario:  

Simulating the Mayo scenario with increased demand shows that 

PIPI_direct_Mayo0.221 continues to perform better than default, with the difference 

being significant across all three metrics. However, PIPI_direct_Mayo0.223 performs 

less well than default across all three metrics, though none of the differences are 

significant (Table 29). When simulated with decreased demand both of the promising 

policies (PIPI_direct_Mayo0.221, PIPI_direct_Mayo0.223) have statistically significant 

improvement in undiscounted reward and in daily discounted reward (p<0.001) compared 

to default. The difference in discounted reward in each case is positive but not significant 

(Table 30).  

When faced with older age replenishment units (Table 31) both Mayo policies 

have significantly better undiscounted reward and daily discounted reward (p<0.001) 

than the default policy. PIPI_direct_Mayo0.221 shows significant improvement in 

discounted reward (p = 0.01) but the improvement in discounted reward for 

PIPI_direct_Mayo0.223 is not significant (p = 0.19).  
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Table 29 

API Simulation Results: Mayo Increased Demand 

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

Default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount^ 

Policy Name 
mean 

annual 

% Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean 

per 

period* 

p-value 

mean 

per 

period* 

p-value  
mean per 

period* 
p-value 

default 0.00 0.000% 481 1.1% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_Mayo0.221 3.34 0.008% 378 0.8% 21.4% 9,178 2.6E-03 214 6.4E-03 4,632 1.5E-04 

PIPI_direct_Mayo0.223 23.79 0.054% 384 0.9% 20.2% -8,003 4.1E-01 -194 3.3E-01 -3,847 3.6E-01 

 

Table 30 

API Simulation Results: Mayo Decreased Demand 

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean 

per 

period* 

p-value 

mean 

per 

period* 

p-value  
mean per 

period* 
p-value 

default 0.00 0.000% 1,260 3.4% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_Mayo0.221 0.41 0.001% 959 2.6% 23.9% 34,403 9.4E-21 110 6.2E-01 13,165 3.5E-13 

PIPI_direct_Mayo0.223 1.17 0.003% 658 1.8% 47.8% 68,488 1.3E-24 234 4.1E-01 26,898 3.1E-17 

 

1
4
0
 

1
4
0
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Table 31  

API Simulation Results: Mayo Older Age 

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual 

% 

Demand 

Unmet 

mean 

annual 

 % of 

Total 

Units 

% 

Reduction 

from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value  

mean per 

period* 
p-value 

default 0.00 0.000% 1,152 2.8% 0.0% 0 NA 0 NA 0 NA 

PIPI_direct_Mayo0.221 0.22 0.001% 913 2.2% 20.8% 27,510 2.0E-13 445 9.7E-03 11,328 2.4E-10 

PIPI_direct_Mayo0.223 1.13 0.003% 697 1.7% 39.5% 51,675 3.1E-15 399 1.9E-01 21,712 3.4E-12 

 

1
4
1
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5.5.1.4. Application of Mayo policy to Cobre Scenario. 

To evaluate the benefit of tailored policies with the same approach as in the 

previous chapter the best Cobre and Mayo direct API policies were used in simulations of 

the Cobre scenario. These comparisons used 40 test sequences instead of the usual 20. 

Plots comparing the improvement due to the use of the Cobre policy are presented in 

Figure 39 below. The difference between the best Cobre policy 

(PIPI_direct_2extension50) and PIPI_direct_Mayo0.221 was positive (indicating better 

performance by the Cobre policy) for all three reward metrics (undiscounted mean 

improvement: 573, p = 0.006; discounted: 31, p = 0.698; daily discounted: 186, p = 

0.099) but only the undiscounted mean improvement was significant.  

The best Cobre policy was significantly better than PIPI_direct_Mayo.223 for all 

three metrics (undiscounted mean improvement: 10132, p <0.001; discounted reward 

improvement: 1607, p<0.001; daily discounted improvement: 4150, p<0.001). This may 

indicate that PIPI_direct_Mayo0.221 and PIPI_direct_2extension50 are more similar 

policies than are PIPI_direct_Mayo0.223 and PIPI_direct_2extension50. Together, these 

results support the tailoring of policies to hospital characteristics. 
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Figure 39. Cobre Policy Improvement over Mayo Policies in Cobre scenario. Positive 

Value Indicates Cobre policy has higher value. 

 

5.5.1.5. Feature importance for best API model. 

Looking directly at the final XGBRegressor model for the best Mayo policy 

(PIPI_direct_Mayo0.221) itself may suggest a path forward for simpler and better 

models. In these models a large feature vector was used to describe the state. These 

features were used to fit the XGBClassifier models. They included the blood type of the 

current patient, the current day of the week, and a multitude of information on the 

inventory by blood type including the number of units of each age of each blood type 

(e.g. number of 6 day old O+ units, number of 4 day old A- units etc.), the oldest unit, the 

25th, and 75th age percentiles and the total number of units by type (see Appendix F). 

Unsurprisingly, the most important feature overall was the blood type of the 

current patient. Surprisingly, the day of the week was not a significant feature. This 

would probably be different if ordering were not so frequent.  
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One of the handcrafted features included was the total number of compatible units 

available for a patient of each blood type (not the current patient type). For example the 

total number of compatible units available to a patient with AB+ blood  would be the 

total number of units in inventory; the total number of compatible units available to a 

patient with A- blood would be the number of A- units plus the number of O- units. This 

feature was in the top 10 features for 6 of the 8 blood types. The ranking of these features 

were: A+: 4; A-: 9; B+: 5; B-: 1; AB+: 2; AB-: 3. For O+ the most important feature was 

the total number of (O+) units in inventory, while total number of units was 3rd most 

important for O-. The number of 10- and 26-day old units were the most important 

features for O-.  For A+ and B+ the most important feature was the age of the oldest unit. 

5.6.Conclusions 

Rollout performed better than the API for Cobre but provided no improvement in 

the high demand case. It may be possible that a longer lookahead would enable gain with 

rollout for a high demand scenario, but it will come at an impractically steep time 

penalty. Rollout could be easily implemented for small hospitals and will be more robust 

to misspecification than a more tailored algorithm.  

The high outdate rate seen in the Cobre simulations may be misleading as 

hospitals of this size typically have aged units collected by the blood provided and 

distributed for use at hospitals with higher demand.  In this way units which were counted 

as outdated in the simulation would still find use in reality.  Information on the specifics 

of how those rotation decisions are made was not available so that aspect was not able to 

be included. The simulations show what would happen if rotation was not a factor. 
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These analyses also provide information that could be used to set different 

rotation policies, perhaps forgoing rotation altogether or allowing the units to be rotated 

at an older age.  

Assuming the rotation policy is based on some internal age cutoff, the age 

dependent policies could be applied with that internal cutoff as the target maximum shelf 

life. This would reduce the number of units reaching the age where they need to be 

rotated. This is beneficial to the system because rotated units lose useful shelf life during 

each rotation process. Additionally, the units which were rotated would be younger when 

provided to the larger hospitals.   

For a high demand hospital, the direct API results are very promising. In the 

Mayo scenario the API policies showed the potential for outdating to be reduced without 

changing any other policy. The effect on the larger system is hard to judge because of the 

interconnectedness.  

The new policies showed good robustness to misspecification but simulation with 

facility-specific data is recommended for facilities looking to implement this type of 

tailored policy.  

The new policies used more O blood and more often gave it to non-O patients but 

also wasted less of the O type blood.  

The models presented here are realistic representations, based on actual data, that 

forgo many of the simplifications found in other inventory models. The use of distributed 

age of replenishment units and the use of machine learning models is innovative, 

particularly the use of XGBoost and the use of a categorical model rather than a 
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regression model.  

The simulations did not include a crossmatching policy or, as described before, 

rotation of units from the low-demand hospital. The analysis would be improved by the 

simultaneous adjustment of replenishment policies. With the involvement of a regional 

blood center additional benefits could be gained from system-wide coordination of 

replenishment, allocation and rotation policies. The information about variable 

importance gained from the XGBoost model can be used to create more user-friendly 

control policies.  
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CHAPTER 6 

SUMM ARY AND CONCLUSIONS 

This dissertation addressed the hospital level blood inventory management 

problem with an eye towards developing more effective policies for issuing blood units to 

patients. Many of the interacting facets which complicate the allocation of units to 

patients are captured in the developed policies.  

Summary 

In Chapter 3 simulation was used to examine the interaction of forecast accuracy 

with age of new units, replenishment schedule, lead time, daily demand and safety stock. 

A forecast derived from a hospital’s procedure schedule was modeled. It simulated a 

forecast based on procedure schedule. It was shown that increased age of replenishment 

units and less frequent replenishment can increase wastage even under a perfect forecast. 

Consideration of two models with significantly different daily demand showed that the 

interaction of safety stock with forecasting error variance leads to much more wastage in 

the low demand case with an unbiased forecast.  

In Chapter 4 Markov decision process models were used to find optimal issuing 

policies for red blood cell units under emergency conditions where there is no 

replenishment arriving. This model did not consider perishability because of the short 

time horizon of the emergency. The resulting policies are stock level-dependent 

allocation policies that make optimal decisions of what blood type to give to patients 

based on current inventory.  Simple Monte Carlo simulation analysis showed that the new 

policies reduced outdating compared to the default policy. Additionally, it showed the 
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benefits of having location specific policies. In a discrete event simulation-based case 

study of a mass casualty event the new allocation policies were shown to reduce the 

number of unserved patients in most scenarios. In a pandemic influenza simulation-based 

case study the new policies were shown to reduce the number of unserved patients and 

reduce the number of outdated units in all of the considered cases. The model in Chapter 

4 only included ABO type and expansion to include ABO/Rh type may prove beneficial.  

In Chapter 5 approximate policy iteration was used to find improved issuing 

policies under normal operations. This model included perishability and replenishment. It 

also included all eight ABO/Rh blood types. The inclusion of this information led to an 

explosion in problem size, necessitating an approximate dynamic programming approach.  

Simple rollout showed improvement over the default policy for the low demand case but 

not in the high demand case. Policies found using model-free policy iteration using 

rollout to improve the value approximation and a XGBClassifier model to approximate 

the policy did show improvement over the default policy for both the high and low 

demand cases.  

The models in Chapter 5 used complex age distributions for replenishment units 

which can improve the accuracy of model results. Both Chapter 4 and Chapter 5 make 

recommendations for issuing a single unit at a time. Many existing models assume batch 

demand or batch allocation.  

Chapter 4 and Chapter 5 both utilized substitution to improve the inventory 

performance. In Chapter 4 optimal choices about blood unit type to issue increases the 

number of patients that can be served consecutively. In Chapter 5 the policies are age and 
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stock level dependent. Substitution may be recommended even if a direct match is 

present in order to prevent units outdating.  

The common themes of these chapters are the focus on tailoring analysis to the 

specific characteristics and context of a facility as well as maintaining fidelity to the real 

world through use of historical data and simulation. For example, Chapters 3 and 5 both 

consider the size of the facility specifically while Chapters 4 and 5 both analyze multiple 

simulated patient blood type distributions. Each chapter uses simulation to capture the 

complex interactions present in the blood supply chain and each chapter utilizes historical 

data whenever possible, to avoid relying on inaccurate but simple distributional 

assumptions.   

Dissertation Research Contributions 

The specific contributions of this dissertation can be described as: 

• Quantifying the benefits that may accrue through demand forecasting of blood 

needs at the hospital level and showing that the benefits are highly dependent on 

hospital characteristics.  

• Creating relative stock level-dependent policies for the issuing of red blood cell 

units to patients under emergency conditions considering ABO blood typing and 

utilizing proactive blood-type substitution; and then showing that these policies 

outperform the fixed priority default policy. These results show that customized 

policies outperform default policies and stock-dependent policies which are not 

tailored for the specific location.  
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• Creating detailed simulations that evaluate the performance of stock level-

dependent policies with proactive blood-type based substitution in response to a 

mass casualty event and under a pandemic influenza scenario and show that the 

stock level-dependent policies reduce outdating under each scenario considered as 

well as reduce the unmet demand in all pandemic scenarios and most mass 

casualty event scenarios considered.  

•  Showing via simulation that the MDP-derived policies improve outdating and 

unmet demand under normal operating conditions as well as under emergency 

conditions. A method is introduced for extending the policies developed on a 

reduced state space to a larger state space by using an approximating hyperplane.  

• Developing the first age- and stock level-dependent allocation policy with 

proactive substitution between blood types for improved allocation of perishable 

red blood cell inventory. This model incorporates ABO/Rh typing and 

compatibility, the lifetime of the product, set replenishment policies, varying age 

of new replenishment units and active substitution. Previous models have 

assumed batch demand, ignored unit blood type and/or substitution or permitted 

only priority-based substitution.   

• Utilizing approximate dynamic programming with machine learning and 

approximation in policy space to develop the proactively substituting age- and 

stock level-dependent policies. The resulting policies are defined in easily 

implementable machine learning models.  
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• Demonstrating that the policies based on approximate dynamic programming 

models outperform the default policy. These models have fewer assumptions 

compared to existing models and policies and work on problems of any realistic 

size.  

Possible Future Research Directions 

Future work on the forecasting of demand based on hospital procedure schedule 

should increase the range of hospital sizes considered. It should also look for better ways 

to place orders in a scenario where some of the demand is forecastable (for example 

elective procedures) while the other demand is random and cannot be forecast from the 

procedure schedule.  

Similarly, it would be beneficial to use additional data sets from facilities of a 

variety of sizes and configurations to use the methods developed in this dissertation to 

determine new allocation policies as in Chapters 4 and 5. More study of small hospitals 

or hospitals in regions without steady supply is especially warranted.  

 Chapter 5 did not include a lead time in the models and in both chapters, it was 

assumed that each patient required a single unit each. These assumptions are reasonable 

but multiple units per person could be included and studied.  

For hospitals to take action based on the results of this dissertation, it would be 

recommended that they first perform simulations with their own input data and derive 

their own allocation policies specific to their daily demand, age of replenishment units 

from their blood suppliers and blood type distribution of their patient population.  

For a region-wide application, the inclusion of information on the regional blood 
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center would be useful as well as inventory management policies within the region. It is 

possible that allocation and replenishment policies could be coordinated across a region 

along with the blood provider’s rotation policies to optimize inventory usage across the 

region. 
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APPENDIX A 

MIXTURE DISTRIBUTIONS FOR AGE AT RECEIPT 
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A common assumption in blood inventory research is that units are new or the 

same age upon entering inventory. It often assumes that all units are new (Deniz et al., 

2010; Sarhangian et al., 2017);  or of the same age  (Nahmias, 2011). However, in their 

study of a product with a random shelf life, which simulates a product with a fixed life at 

the upper echelon, Gürler and Ӧzkaya (2008) found “shape of the shelf life 

distribution has a significant impact on the costs and a precise estimation of shelf 

life distribution may result in substantial savings” and failure to properly account 

for age had significant costs.  This is supported by Broekmeulen & van Donselaar 

(2009)  who found that taking the age distribution into account when making 

replenishment decisions  can result in a large cost reduction in practice. 

Most hospitals which transfuse red cells do not have their own internal donor 

centers and even those that do may require supplemental units from a regional blood 

center. Regional blood centers provide units of specified type, but not of a specified age, 

to hospitals that order them. Regional blood centers will frequently rotate blood from 

smaller or more isolated hospitals to larger hospitals with higher demand to reduce 

outdating. This rotation by blood centers means that the red cells delivered are of widely 

varying ages when they are delivered. Limited data is available to characterize the age of 

the units received by hospitals of varying sizes. Cheng et al. (2010) found that at the 

Queen Elizabeth II Health Sciences Center in Halifax Nova Scotia, Canada the overall 

mean age of units at receipt was 11.7 days with individual blood types having means 

ranging from 8.5 (B+) days to 29 days (AB+). Average age of O- units was 27.3 days at 

receipt. Furthermore data from the Mayo Clinic, Rochester demonstrates that, at least in 
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some cases, the age is not normally distributed (Figure 40). The shape suggests that the 

distributions may be well modeled as mixture distribution. It is important to note that 

Queen Elizabeth II Health Center and Mayo Clinic have similar (very high) numbers of 

annual transfusions. A facility with lower demand would likely receive fresher units. 

Additionally, the mean ages by blood type of units received by each facility are different. 

The age distribution of the units will depend on the characteristics of the region and the 

polices of the regional blood center.  

A mixture distribution may provide a representation that is more compact than an 

empirical distribution and more true to life than those assumed in literature. Here it is 

shown how a single set of historical age at delivery data was fitted by mixture 

distribution. Such mixture distributions were used as inputs in Chapter 5.  

Mixture distributions were fit with data from six of the blood types using 

Python’s sklearn (Pedregosa et al., 2011) package. Insufficient data was available for AB 

positive and AB negative blood to be able to fit a distribution. The Gaussian mixture 

model function of sklearn uses an expectation maximization (EM) algorithm to fit and 

therefore is not guaranteed to find the optimal fitting models. To address this, multiple 

restarts were used for each fitting. Full covariances were used but other covariance types 

are available. Data from each blood type was fit to a Gaussian mixture model of 1-9 

components. Histograms of the A positive data compared to samples from the fit mixture 

model can be seen in Figure 40. Similar plots were found for the other blood types. The 

fit statistics average log-likelihood, AIC, and BIC were recorded and can be seen in 

Figure 41.  
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The blood types A positive and O positive have the largest numbers of samples 

making them more robust to the EM algorithm.  

Mixture distributions with three components were chosen to model the age 

distributions of new units for A- and B+. For O+ a mixture distribution with four 

components was chosen and for A+, B- and O- mixture distributions with five 

components each were chosen. These were chosen to balance the tradeoff between 

accuracy and complexity. The final overall mean age of replenishment units at receipt 

were A+: 15.4; A-: 17.0; B+: 17.0; B-:19.9; AB+: 21; AB-: 21; O+: 20.7 and O-:15.  

This analysis is a proof of concept. It is limited by the presence of data from only 

one specific (large) hospital being served by one specific regional blood center. In 

particular, the size of the hospital means that the units are likely to be older than units that 

go to hospitals with less demand. If this type of information were more widely available 

it may encourage researchers to incorporate it into their models.  
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Figure 40. Original Data vs Model Fits for A Positive Age at Receipt Mixture Distribution 
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Figure 41. Fit Characteristic Curves for Each Blood Type 
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APPENDIX B 

COBRE ALTERNATIVE FIXED PRIORITY POLICY COMPARISON 
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Table 32  

 API Simulation Results: Cobre Alternate Fixed Priority Policy Simulation Comparisons. Same additional test sequences as 

Table 17.  

  

  Unmet Demand Outdated Units 

Undiscounted Reward 

Improvement Over 

default 

Discounted Reward 

Improvement Over 

Default 

Daily Discount 

Improvement Over 

Default 

Policy Name 
mean 

annual** 

% 

Demand 

Unmet 

mean 

annual** 

 % of 

Total 

Units 

% 

Reductio

n from 

default 

mean per 

period* 
p-value 

mean per 

period* 
p-value 

mean per 

period* 
p-value 

default 0.02 0.004% 307.86 34.2% 0.0% 0.00 NA 0 NA 0.00 NA 

default1 0.04 0.007% 309.75 34.3% -0.6% -235.00 0.248 2 0.983 -52.91 0.631 

default2 0.03 0.005% 308.08 34.2% -0.1% -33.75 0.865 26 0.736 -23.64 0.819 

default3 0.03 0.005% 308.22 34.2% -0.1% -50.00 0.789 61 0.411 9.20 0.928 

default4 0.04 0.007% 305.84 34.0% 0.7% 216.25 0.284 129 0.103 158.91 0.151 

default5 0.05 0.009% 308.48 34.2% -0.2% -97.50 0.619 48 0.499 23.53 0.815 

 * Period is 6 weeks 
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APPENDIX C 

DIRECT API SOLUTION SETUP CONFIGURATIONS: COBRE 
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Table 33  

 Direct API Solution Setup Configurations: Cobre 

Direct Policy Iteration Setup 

 PI_direct_Cobre_0.1d PI_direct_Cobre_0.2 PI_direct_Cobre2_reduced_param PIDirect_Cobre2_extension PI_direct_Cobre_0.3 

bt_weight_use Cobre_All_eight Cobre_All_eight Cobre_All_eight Cobre_All_eight Cobre_All_eight 

use_mixtures Mayo A Pos, Mayo A Neg, Mayo B Pos, Mayo B Neg, random, random, Mayo O Pos, Mayo O Neg 

prob_use 0.617162 0.617162 0.617162 0.617162 0.617162 

target inventory 18,4,4,2,4,2,18,6 18,4,4,2,4,2,18,6 18,4,4,2,4,2,18,6 18,4,4,2,4,2,18,6 18,4,4,2,4,2,18,6 

reorder_policy M M M M M 

resupply TRUE TRUE TRUE TRUE TRUE 

successful_service_reward 2000 2000 2000 2000 2000 

no_unit_cost -5000 -5000 -5000 -5000 -5000 

mismatch_cost -10000 -10000 -10000 -10000 -10000 

outdate_cost -1000 -1000 -1000 -1000 -1000 

simLength 40 40 40 40 40 

simRestarts 2 2 2 2 2 

lengthOfTrajectory 2 2 2 2 2 

discountFactor 0.9 0.95 0.95 0.95 0.95 

sample_size 600 600 600 600 600 

numberOfIterations 50 50 50 100 50 

simCount 10 10 20 10 10 

warmup_length 60 60 60 60 60 

rollout_tail_length 40 40 40 40 40 

rollout_tail_repeats 1 1 1 1 1 

rollout_tail_count 2 2 2 2 2 

rollout_test_sequences_count 3 3 3 3 3 

1
7
7
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rollout_test_length 40 40 40 40 40 

rollout_test_repeats 5 5 5 5 5 

rollout_length 0 0 0 0 0 
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APPENDIX D 

DIRECT API SOLUTION SETUP CONFIGURATIONS: MAYO 
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Table 34 

 Direct API Solution Setup Parameter Configurations: Mayo 

 
 PI_direct_Mayo0.1 PI_direct_Mayo0.2 PI_direct_Mayo_0.3 

bt_weight_use Mayo_All_eight Mayo_All_eight Mayo_All_eight 

use_mixtures 
Mayo A Pos, Mayo A Neg, Mayo B Pos, Mayo B Neg, random, random, Mayo 

O Pos, Mayo O Neg 

prob_use 0.990986 0.990986 0.990986 

target inventory 
650,180,170,30,1,1,650,

190 

650,180,170,30,1,1,650,

190 

650,180,170,30,1,1,650,

190 

reorder_policy M,W,F M,W,F M,W,F 

resupply TRUE TRUE TRUE 

successful_service_re

ward 
2000 2000 2000 

no_unit_cost -5000 -5000 -5000 

mismatch_cost -10000 -10000 -10000 

outdate_cost -1000 -1000 -1000 

simLength 40 800 800 

simRestarts 2 2 2 

lengthOfTrajectory 2 2 2 

discountFactor 0.95 0.95 0.95 

sample_size 600 600 600 

numberOfIterations 50 50 50 

simCount 10 10 10 

warmup_length 60 60 60 

rollout_tail_length 40 400 1000 

rollout_tail_repeats 1 1 1 

rollout_tail_count 2 50 50 

rollout_test_sequences

_count 
3 3 50 

rollout_test_length 40 40 1000 

rollout_test_repeats 5 5 1 

rollout_length 0 0 0 
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APPENDIX E 

API SIMULATION SETTINGS 
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Table 35  

 Settings for API policy comparison simulations. Basic setup. Alterations for 

additional analyses are described in the text. 

 Cobre Scenario Mayo Scenario 

num_threads 4 4 

bt_weight_use Cobre_All_eight Mayo_All_eight 

use_mixtures 

Mayo A Pos, Mayo A Neg, Mayo 

B Pos, Mayo B Neg, random, 

random, Mayo O Pos, Mayo O 

Neg 

Mayo A Pos, Mayo A Neg, Mayo 

B Pos, Mayo B Neg, random, 

random, Mayo O Pos, Mayo O 

Neg 

prob_use 0.617162 0.990986 

Target Inventory 18,4,4,2,4,2,18,6 650,180,170,30,1,1,650,190 

Reorder Schedule M M, W, F 

resupply TRUE TRUE 

Successful service 

reward 
2000 2000 

No Unit Cost -5000 -5000 

Mismatch Cost -10000 -10000 

Outdate Cost -1000 -1000 

warm_starting_point TRUE TRUE 

warmup_length ~42 days ~42 days 

simCount 20 20 

simLength 42 days 42 days 

simRestarts 4 4 

discountFactor 0.95 0.95 
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APPENDIX F 

PIPI_directMayo0.221 FINAL XGBCLASSIFIER PARAMETERS AND VARIABLE 

IMPORTANCE 
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Table 36 

 PIPI_directMayo0.221 final XGBClassifier paramters 

Parameter Value 

'base_score'  0.5, 

 'booster'  'gbtree' 

 'colsample_bylevel'  1 

 'colsample_bytree'  1 

 'gamma'  0 

 'learning_rate'  0.01 

 'max_delta_step'  0 

 'max_depth'  5 

 'min_child_weight'  9 

 'n_estimators'  100 

 'n_jobs'  1 

 'nthread'  16 

 'objective'  'multi:softprob’ 

 'random_state'  0 

 'reg_alpha'  0 

 'reg_lambda'  1 

 'scale_pos_weight'  1 

 'seed'  None 

 'silent'  0 

 'subsample'  1 
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 Figure 42. Variable Importance of PIPI_directMayo0.221 Final XGBClassifier 

Model. Blue is more important; red is less important. Blank is not important. Current 

patient blood type importance 0.0477 

 

 


