
Robust Deep Learning Through Selective Feature Regeneration

by

Tejas S. Borkar

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved July 2020 by the
Graduate Supervisory Committee:

Lina J. Karam, Chair
Pavan Turaga

Suren Jayasuriya
Cihan Tepedelenlioglu

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

In recent years, the widespread use of deep neural networks (DNNs) has facilitated great

improvements in performance for computer vision tasks like image classification and ob-

ject recognition. In most realistic computer vision applications, an input image undergoes

some form of image distortion such as blur and additive noise during image acquisition

or transmission. Deep networks trained on pristine images perform poorly when tested

on such distortions. DNN predictions have also been shown to be vulnerable to carefully

crafted adversarial perturbations. Specifically, so-called universal adversarial perturbations

are image-agnostic perturbations that can be added to any image and can fool a target

network into making erroneous predictions. This work proposes selective DNN feature re-

generation to improve the robustness of existing DNNs to image distortions and universal

adversarial perturbations.

In the context of common naturally occurring image distortions, a metric is proposed to

identify the most susceptible DNN convolutional filters and rank them in order of the high-

est gain in classification accuracy upon correction. The proposed approach called Deep-

Correct applies small stacks of convolutional layers with residual connections at the output

of these ranked filters and trains them to correct the most distortion-affected filter activa-

tions, whilst leaving the rest of the pre-trained filter outputs in the network unchanged.

Performance results show that applying DeepCorrect models for common vision tasks sig-

nificantly improves the robustness of DNNs against distorted images and outperforms other

alternative approaches.

In the context of universal adversarial perturbations, departing from existing defense

strategies that work mostly in the image domain, a novel and effective defense which only

operates in the DNN feature domain is presented. This approach identifies pre-trained con-

volutional features that are most vulnerable to adversarial perturbations and deploys train-

able feature regeneration units which transform these DNN filter activations into resilient

i

features that are robust to universal perturbations. Regenerating only the top 50% adver-

sarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN

activations unchanged can outperform existing defense strategies across different network

architectures and across various universal attacks.

ii

To my loving parents and brother Varun.

iii

ACKNOWLEDGMENTS

“You never fail until you stop trying.” - Albert Einstein

My Ph.D. journey, like countless before me, has been one full of highs and lows and this

thesis is the culmination of the hard work, sacrifices and support of many who stood by

me through this entire journey and gave me the courage to never stop trying. This ac-

knowledgment is my tribute to those who made vital contributions in bringing this thesis to

fruition.

I would like to thank my Ph.D. advisor Dr. Lina Karam for giving me the opportunity

to work on high impact problems, improving my technical writing skills, providing strong

guidance and support throughout this thesis. I would like to thank the members of my

Ph.D. committee, Dr. Pavan Turaga, Dr. Suren Jayasuriya and Dr. Cihan Tepedelenlioglu

for their time and valuable suggestions that helped to improve the quality of this thesis. I

would like to thank Farshad Akhbari and Intel Corporation for funding the first few years

of my Ph.D. and also providing internship opportunities to work on challenging problems

in computer vision and machine learning. I would like to thank my ECEE graduate advisor

Lynn Pratte for the constant encouragement, help and support in navigating through the

degree requirements.

I would like to express my utmost gratitude to my parents, elder brother Varun and

sister-in-law Shreya for their hard work and countless sacrifices which laid the foundation

for my academic success. Their unwavering faith and unconditional love has served as the

strongest motivating force for me to keep pushing myself to be better. Words alone cannot

capture the enormous contribution they have made to my life and by extension, this thesis.

I would also like to thank my cousins Amita, Chetan and their respective families for their

strong support and encouragement throughout my time at ASU.

iv

I would like to especially thank my wonderful friends aka ”my Arizona family”: Vinay

Kashyap, Charan Prakash, Aditee Shrotre, Vimala Bharadwaj, Shruthi Venkat, Parag Chan-

dakkar, Nutan Dev and Aditya Kulkarni for constantly cheering me on and standing by my

side through the numerous personal and professional setbacks I encountered over the course

of this thesis. They say, ”true friendship reveals itself through adversity”; I couldn’t agree

more. Every obstacle we faced has only served to bring us closer and make us stronger.

Each one of them at one point or another played the crucial role of a ”therapist” and gave

me the chance and space to vent out my frustration/thoughts without feeling judged, with

Vinay Kashyap shouldering this important responsibility in a majority of these cases. Each

one of them is accomplished in their own right and I like to think that the best parts of each

of their personalities rubbed off on me and nudged me in the right direction to be more

humble and grounded in reality. The wonderful memories I forged with each one of them

during my time at ASU is one of the highlights of my Ph.D. and time in Arizona.

As a Graduate Research Assistant in the IVUlab at ASU, I had the pleasure of working

with amazingly talented peers like Sam Dodge, Alireza Golestaneh, Bashar Haddad, Milind

Gide and I had many wonderful and encouraging discussions with each one of them.

As I now look back, I can’t help but draw parallels between my Ph.D. journey and my

area of research. If I as a Ph.D. student were the learning algorithm, a successful Ph.D. the-

sis were the optimal minima point of a loss function and my Ph.D. experience represented

the journey of the learning algorithm through the loss landscape, then my family would

be the initializer and my friends would be the regularizer. Any expert worth their salt will

tell you that no learning algorithm can ever reach an optimal minima point without having

the right initializer and regularizer guiding it, i.e., I could never have finished this thesis

without the contributions of my family and my friends.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 5

1.2 Organization . 7

2 BACKGROUND . 8

2.1 Effect of Image Quality on DNNs . 8

2.2 DNN Susceptibility to Adversarial Attacks . 11

2.3 DNN Architectures for Image Classification . 13

2.3.1 AlexNet . 13

2.3.2 VGG-16 . 15

2.3.3 Residual Networks . 15

2.4 Existing Image-based Datasets . 16

2.4.1 ImageNet (ILSVRC-2012) . 16

2.4.2 Caltech-101 and Caltech-256 . 16

2.4.3 SUN-397 . 17

2.5 Image Distortions . 18

2.5.1 Additive White Gaussian Noise . 18

2.5.2 Gaussian Blur (G. Blur) . 19

2.5.3 Camshake Blur (Cam. Blur) . 19

2.5.4 Defocus Blur (D. Blur) . 19

2.5.5 Motion Blur (M. Blur) . 20

2.6 Universal Adversarial Threat Model . 22

vi

CHAPTER Page

3 DEEPCORRECT: CORRECTING DNNS AGAINST IMAGE DISTORTIONS 23

3.1 Introduction . 23

3.2 DeepCorrect . 24

3.2.1 Ranking Filters Through Correction Priority 24

3.2.2 Correcting Ranked Filter Outputs . 28

3.2.3 Rank-constrained DeepCorrect Models . 32

3.3 Experimental Results . 34

3.3.1 AlexNet Analysis . 34

3.3.2 ResNet18 Analysis . 45

3.4 Conclusion . 47

4 DEFENDING AGAINST UNIVERSAL ATTACKS THROUGH SELECTIVE

FEATURE REGENERATION . 49

4.1 Introduction . 49

4.2 Feature-Domain Adversarial Defense . 50

4.2.1 Stability of Convolutional Filters . 50

4.2.2 Resilient Feature Regeneration Defense . 54

4.2.3 Design of Feature Regeneration Unit . 58

4.2.4 Generating Synthetic Perturbations . 60

4.3 Assessment . 62

4.3.1 Defense Training Methodology . 63

4.3.2 Analysis and Comparisons . 65

4.4 Conclusion . 75

5 CONCLUSION . 76

5.1 Contributions . 76

vii

CHAPTER Page

5.2 Future Research Directions . 78

REFERENCES . 79

APPENDIX

A MAXIMUM ADVERSARIAL PERTURBATION . 86

B LIST OF PUBLICATIONS AND PATENT . 89

viii

LIST OF TABLES

Table Page

3.1 Top-1 Accuracy of Pre-Trained Networks for Distortion Affected Images

as Well as Undistorted Images (Original). 24

3.2 Top-1 Accuracy of AlexNet-Based DNN Models for Distortion Affected

Images of the ImageNet Validation Set (ILSVRC-2012). 35

3.3 Computational Performance of AlexNet-Based DNN Models. 36

3.4 Correction Unit Architectures for AlexNet-Based DeepCorrect Models. . . . 37

3.5 Mean Accuracy per Category of Pre-Trained AlexNet Deep Feature Extrac-

tor for Clean Images. 43

3.6 Mean Accuracy per Category for Gaussian Blur Affected Images. 43

3.7 Mean Accuracy per Category for AWGN Affected Images. 43

3.8 Top-1 Accuracy of ResNet18-Based DNN Models for Distortion Affected

Images of the ImageNet Validation Set (ILSVRC-2012). 44

3.9 Computational Performance of ResNet18-Based DNN Models. 45

3.10 Correction Unit Architectures for ResNet18-Based DeepCorrect Models. . . 46

4.1 Trainable Parameters for DNN Models. 61

4.2 Cross-DNN Evaluation on ILSVRC2012: Top-1 Accuracy Against a `∞-

Norm UAP [1] Attack. 66

4.3 Same-Norm Evaluation on ILSVRC2012: Restoration Accuracy of DNNs

and Defenses Against an `∞-Norm UAP [1] Attack With ξ = 10. 67

4.4 Cross-Norm Evaluation on ILSVRC2012: Restoration Accuracy Against

an `2-Norm UAP [1] Attack. 68

4.5 Restoration Accuracy on ILSVRC2012 for `∞-Norm UAP [1] Attack With

Stronger Perturbation Strengths (ξ) Against CaffeNet. 70

4.6 Robustness to Unseen Attacks. 71

ix

Table Page

4.7 Defense Restoration Accuracy for Oracle DNNs Equipped With Our Defense. 73

4.8 Top-1 Accuracy for White-Box `∞-Norm SPGD [2] Attack Against Res152-

Based `∞-Norm Defenses (ξ = 10). 74

x

LIST OF FIGURES

Figure Page

1.1 Effect of Image Quality on DNN Predictions, With Predicted Label and

Corresponding Prediction Confidence for Top-1 Class. 2

1.2 DNN Label Predictions and Confidence Score for Different Images Per-

turbed With the Same Universal Adversarial Perturbation. 4

2.1 Network Architectures for Common DNN Models Used in Large Scale Im-

age Recognition Tasks. 14

2.2 Sample Images From the ILSVRC-2012 Dataset [3]. 17

2.3 Sample Images From the Caltech-101 [4] and Caltech-256 [5] Object De-

tection Datasets. 17

2.4 Sample Images From the SUN-397 [6] Scene Recognition Dataset. 18

2.5 Visualization of Image Distortions and Adversarial Perturbations on Input

Images From ILSVRC-2012. 20

2.6 Visualization of Blur Kernels. 21

3.1 Effect of Varying the Percentage of Corrected Filter Activations βi ∈ {10%,

25%, 50%, 75%, 90%} in Pre-Trained AlexNet. 27

3.2 Visualization of Ranked Filter Kernels of Pre-Trained AlexNet. 28

3.3 Correction Unit Based on a Residual Function [7], Acting on the Outputs

of a Pre-Trained DNN. 30

3.4 DeepCorrect Model for AlexNet. 31

3.5 Effect of DeepCorrect Ranking Metric on Correction Unit Performance

When Integrated With AlexNet[8]. 40

3.6 Top-1 Error on the ILSVRC-2012 Validation Set, for DeepCorrect Model

Variants and Fine-Tuning. 41

xi

Figure Page

4.1 Observed `∞-Norm for Universal Adversarial Noise in the Activation Maps

of Ranked Convolutional Filters. 51

4.2 Effect of Masking `∞-Norm Universal Adversarial Noise in Ranked Con-

volutional Filter Activations of the First Layer in CaffeNet [8], GoogLeNet

[9] and VGG-16 [10]. 52

4.3 Effect of Masking `∞-Norm Universal Adversarial Noise in Ranked Con-

volutional Filter Activations of Layers 2-5 in CaffeNet [8] and VGG-16

[10]. 53

4.4 Resilient Feature Regeneration Defense . 55

4.5 Effectiveness of Feature Regeneration Units at Masking Adversarial Per-

turbations in DNN Feature Maps. 58

4.6 Examples of DNN Feature Maps Before and After Feature Regeneration

Using the Proposed Method. 59

4.7 Feature Regeneration Unit. 60

4.8 Visualization of Synthetic Perturbations Computed for CaffeNet [8] and

GoogLeNet [9]. 63

4.9 Visual Examples of `∞-Norm and `2-Norm UAP [1] Attack Test Perturba-

tions for CaffeNet [8] and GoogLeNet [9]. 64

4.10 Effect of Adding Feature Regeneration Units on the Restoration Accuracy

of the Proposed Defense. 69

4.11 Robustness to White-Box Attacks Against Defense (Secondary Attacks). . . . 74

xii

Chapter 1

INTRODUCTION

Today, state-of-the-art algorithms for computer vision tasks like image classification, ob-

ject recognition and semantic segmentation employ some form of deep neural networks

(DNNs). The ease of design for such networks, afforded by numerous open source deep

learning libraries [11],[12], has established DNNs as the go-to solution for many com-

puter vision applications. Even challenging computer vision tasks like image classification

[10],[9],[7],[8] and object recognition [13],[14],[15], which were previously considered to

be extremely difficult, have seen great improvements in their state-of-the-art results due to

the use of DNNs. An important factor contributing to the success of such deep architectures

in computer vision tasks is the availability of large scale annotated datasets [3],[16].

The visual quality of input images is an aspect very often overlooked while designing

DNN based computer vision systems. In most realistic computer vision applications, an in-

put image undergoes some form of image distortion including blur and additive noise dur-

ing image acquisition, transmission or storage. However, most popular large scale datasets

do not have images with such artifacts. Dodge and Karam [17] showed that even though

such image distortions do not represent adversarial samples for a DNN, they do cause a

considerable degradation in classification performance. Figure 1.1 shows the effect of im-

age quality on the prediction performance of a DNN trained on high-quality images devoid

of such distortions.

Testing distorted images with a pre-trained DNN model for AlexNet [8], we observe

that adding even a small amount of distortion to the original image results in a misclassi-

fication (Figure 1.1), even though the added distortion does not hinder the human ability

to classify the same images [18, 19]. In the cases where the predicted label for a distorted

1

Original

goldfish 0.977

blur σ = 2

goldfish 0.873

blur σ = 4

goldfish 0.398

blur σ = 6

goldfish 0.100

gila monster 0.234 rock python 0.034 velvet 0.016 velvet 0.010

(a)

Original

goldfish 0.977

AWGN σ = 20

goldfish 0.254

AWGN σ = 60

starfish 0.054

AWGN σ = 100

starfish 0.027

gila monster 0.234 sidewinder 0.165 prayer rug 0.032 stole 0.019

(b)

Figure 1.1: Effect of image quality on DNN predictions, with predicted label and cor-

responding prediction confidence for top-1 class after softmax normalization, generated

by a pre-trained AlexNet [8] model. Distortion severity increases from left to right, with

the left-most image in a row having no distortion (original). Bold green text indicates

correct classification, while italic red text denotes misclassification. (a) Examples from

the ILSVRC-2012 [3] validation set distorted by Gaussian blur. (b) Examples from the

ILSVRC-2012 validation set distorted by Additive White Gaussian Noise (AWGN).

2

image is correct, the prediction confidence drops significantly as the distortion severity in-

creases. This indicates that features learnt from a dataset of high-quality images are not

invariant to image distortion or noise and cannot be directly used for applications where

the quality of images is different than that of the training images. Some issues to consider

while deploying DNNs in noise/distortion affected environments include the following. For

a network trained on undistorted images, are all convolutional filters in the network equally

susceptible to noise or blur in the input image? Are networks able to learn some filters that

are invariant to input distortions, even when such distortions are absent from the training

set? Is it possible to identify and rank the convolutional filters that are most susceptible to

image distortions and recover the lost performance, by only correcting the outputs of such

ranked filters?

Similarly, DNNs also make erroneous predictions when a small magnitude, carefully

crafted perturbation (adversarial perturbations) that is almost visually imperceptible to hu-

mans is added to an input image [20, 21, 22, 23, 24, 25, 26, 27, 28]. Furthermore, such

perturbations have been successfully placed in a real-world scene via physical adversarial

objects [29, 30, 27], thus posing a security risk.

Adversarial attacks can be divided into two major categories: 1) White-box attacks,

where the adversary has complete knowledge (i.e., access to gradients, trained parameters,

network architecture) of the targeted DNN and 2) Black-box attacks, where the adver-

sary has limited knowledge (i.e., access to only network predictions, limited queries for

DNN parameters and network architecture) or no knowledge of the baseline DNN being

targeted. White-box attacks are usually much stronger than black-box attacks due to less

constraints on the adversary to generate an attack. Most existing adversarial attacks use

target network gradients (white-box) to construct an image-dependent adversarial exam-

ple [20, 21, 27, 25, 28, 23] that has limited transferability to other networks or images

[20, 31, 32]. Other methods to generate image-dependent adversarial samples include ac-

3

GoogLeNet

Baseline: ibex 99%
PRN [1]: ibex 99%

Ours: ibex 99%

Baseline: mashed potato 94%
 PRN [1]: mashed potato 43%

Ours: mashed potato 98%

Baseline: weimaraner 98%
PRN [1]: ibex 93%

Ours: ibex 99%

Baseline: burrito 25%
PRN [1]: cauliflower 59%

Ours: mashed potato 98%

ℓ 2
no

rm
 =

 3
20

0

ℓ ∞
no

rm
 =

 1
0

Figure 1.2: DNN label predictions and confidence score for different images perturbed with

the same universal adversarial perturbation. A DNN with no defense (Baseline) misclassi-

fies perturbed images (right) with high confidence (red text) even when it classifies clean

images (left) correctly (green text). The proposed defense (Ours) correctly classifies both

perturbed and clean images with high confidence.

cessing only the network predictions [33, 34, 35] (black-box), using surrogate networks

[26] and gradient approximation [36]. Although there is significant prior work on ad-

versarial defenses such as adversarial training [20, 21, 22, 37], ensemble training [38],

randomized image transformations and denoising [39, 40, 41, 42, 40, 43, 41, 44, 45] and

adversarial sample rejection [46, 47, 48, 49, 50], a DNN is still vulnerable to adversar-

ial perturbations added to a non-negligible portion of the input [36, 51]. These defenses

mostly focus on making a DNN robust to image-dependent adversarial perturbations which

are less likely to be encountered in realistic vision applications [52, 2].

Unlike the aforementioned image-dependent adversarial attacks, universal adversarial

attacks [1, 53, 54, 55, 56, 2, 57, 58, 59] construct a single image-agnostic perturbation

4

that, when added to any unseen image, fools DNNs into making erroneous predictions

with very high confidence (Figure 1.2). These universal perturbations are also not unique

and many adversarial directions may exist in a DNN’s feature space [60, 61, 62]. Further-

more, universal perturbations generated for one DNN can transfer to other DNNs, making

them doubly universal [1]. Such image-agnostic perturbations pose a strong realistic threat

model [2] for many vision applications since perturbations can easily be pre-computed and

then inserted in real-time (e.g., in the form of a printed adversarial patch or sticker) into

any scene [63, 64]. For example, while performing semantic segmentation, such image-

agnostic perturbations can completely hide a target class (i.e., pedestrian) in the resulting

segmented scene output and adversely affect the braking action of an autonomous car [65].

This work proposes two approaches to improve the robustness of existing pre-trained

DNNs to image distortions and universal adversarial perturbations, respectively. The first

method which is called DeepCorrect, corrects distortion-affected DNN feature maps to

improve classification performance under various image distortions. The second proposed

method defends against universal adversarial attacks by regenerating select DNN features

such that the resulting DNNs are resilient to universal adversarial perturbations in the input.

1.1 Contributions

In the context of DNN robustness to image distortions, the following novel contribu-

tions are proposed:

• Evaluating the effect of common image distortions like Gaussian blur and Additive

White Gaussian Noise (AWGN) on the outputs of pre-trained convolutional filters. It

is observed that for every layer of convolutional filters in the DNN, certain filters are

5

more susceptible to input distortions than others and that correcting the activations

of these filters can help recover lost performance.

• Measuring the susceptibility of convolutional filters to input distortions and ranking

filters in the order of highest susceptibility to input distortion.

• Correcting the worst distortion-affected filter activations by appending correction

units, which are small blocks of stacked convolutional layers trained using a target-

oriented loss, at the output of select filters, whilst leaving the rest of the pre-trained

filter outputs in a DNN unchanged.

• Representing full-rank convolutions in DeepCorrect models with rank-constrained

approximations consisting of a sequence of separable convolutions with rectangular

kernels to mitigate the additional computational cost introduced by correction units.

This results in pruned DeepCorrect models that have almost the same computational

cost as the respective pre-trained DNN, during inference.

Similarly, DNN robustness to universal adversarial perturbations [1, 54, 53, 55, 56, 2]

is improved through the following novel contributions:

• Showing the existence of a set of vulnerable convolutional filters, that are largely

responsible for erroneous predictions made by a DNN in an adversarial setting and

that the `1-norm of the convolutional filter weights can be used to identify such filters.

• Unlike, existing image-domain defenses, the proposed DNN feature domain-based

defense uses trainable feature regeneration units, which regenerate activations of

the aforementioned vulnerable convolutional filters into resilient features (adversarial

noise masking). Extensive evaluation of the proposed defense on a variety of DNN

architectures which shows that the proposed defense outperforms all other existing

defenses [52, 40, 37, 45, 22, 2].

6

• A fast method is proposed to generate strong synthetic adversarial perturbations for

training.

• Without any additional attack-specific training, the defense trained on one type of

universal attack [1] effectively defends against other different unseen universal at-

tacks [53, 54, 55, 2, 56, 58] and this is the first work in the literature to show such

broad generalization across different universal attacks.

1.2 Organization

This thesis is organized as follows. Chapter 2 discusses the existing work and their

drawbacks, followed by a brief overview of the necessary technical concepts that are used

in this thesis. Chapter 3 describes DeepCorrect, a novel method that improves DNN robust-

ness to image distortions by identifying and correcting the most distortion-affected DNN

activation maps. DeepCorrect is extensively validated with different DNN architectures

and multiple datasets covering image classification, object detection and scene classifica-

tion. Chapter 4 describes a selective DNN feature regeneration defense that effectively de-

fends against universal adversarial attacks, followed by evaluation of defense performance

against prior art. Chapter 5 summarizes the novel contributions of this work and highlights

directions for future research.

7

Chapter 2

BACKGROUND

This chapter provides an overview of concepts and prior work that is useful in understand-

ing the proposed methods that are described in subsequent chapters of this thesis. Sec-

tion 2.1 provides an overview of the prior work in assessing and improving the robustness

of DNNs to image distortions. Section 2.2 discusses the prior work in addressing the sus-

ceptibility of DNNs to adversarial attacks. Common DNN architectures used for image

classification are described in Section 2.3. Section 2.4 presents a survey of image-based

datasets used for evaluation in this thesis. Sections 2.5 and 2.6 provide, respectively, a

detailed overview of the image distortions and adversarial threat model used in this thesis.

2.1 Effect of Image Quality on DNNs

DNNs have recently been shown to be susceptible to a carefully crafted small mag-

nitude image perturbation, visually imperceptible to humans (adversarial noise), which

when added to an image causes DNNs to misclassify the image even when the original

perurbation-free version of such an image is correctly classified with high confidence [20,

21, 23, 25, 26]. Proposed defenses against such adversarial attacks include: 1) adversar-

ial training [21], which augments adversarial examples in the training stage of a baseline

DNN, 2) transformation-based methods which utilize image denoising and pixel rearrange-

ment to improve robustness (e.g., [40]) and 3) defenses that detect the presence of adver-

sarial perturbations in the input and abstain from making a prediction (e.g., [46]). Such de-

fenses are only designed to work effectively against a small magnitude noise perturbation

(i.e., visually imperceptible or quasi-perceptible) and have not been tested against visually

perceptible image quality degradations such as those encountered in sensing and transmis-

8

sion. Conversely, the concept of rubbish samples proposed in [66] studies the vulnerability

of DNNs to making arbitrary high confidence predictions for random noise images that are

completely unrecognizable to humans, i.e., the images contain random noise and no actual

object. However, both adversarial samples and rubbish samples are relatively less encoun-

tered in common computer vision applications as compared to other common distortions

due to image acquisition, storage, transmission and reproduction.

Karam and Zhu [67] present QLFW, a face matching dataset consisting of images with

five types of quality distortions. Basu et al. [68] present the n-MNIST dataset, which adds

Gaussian noise, motion blur and reduced contrast to the original images of the MNIST

dataset. Dodge and Karam [17] evaluate the impact of a variety of quality distortions such

as Gaussian blur, AWGN and JPEG compression on various state-of-the-art DNNs and

report a substantial drop in classification accuracy on the ImageNet (ILSVRC-2012) dataset

in the presence of blur and noise. A similar evaluation for the task of face recognition is

presented in [69].

Rodner et al. [70] assess the sensitivity of various DNNs to image distortions like trans-

lation, AWGN and salt & pepper noise, for the task of fine grained categorization on the

CUB-200-2011 [71] and Oxford flowers [72] datasets, by proposing a first-order Taylor

series based gradient approximation that measures the expected change in final layer out-

puts for small perturbations to input image. Since a gradient approximation assumes small

perturbations, Rodner et al.’s sensitivity measure does not work well for higher levels of

distortion as shown by [70] and does not assess susceptibility at a filter level within a DNN.

Furthermore, Rodner et al. do not present a solution for making the network more robust

to input distortions; instead, they simply fine-tune the whole network with the distorted im-

ages added as part of data augmentation during training. Retraining large networks such as

VGG16 [10] or ResNet-50 [7] on large-scale datasets is computationally expensive. Unlike

Rodner et al.’s work, the proposed ranking measure (Chapter 3) assesses sensitivity of in-

9

dividual convolutional filters in a DNN, is not limited to differentiable distortion processes,

and holds good for both small and large perturbations.

Zheng et al. [73] improve the general robustness of DNNs to unseen small perturba-

tions in the input image through the introduction of distortion agnostic stability training,

which minimizes the KL-divergence between DNN output predictions for a clean image

and a noise perturbed version of the same image. The perturbed images are generated by

adding uncorrelated Gaussian noise to the original image. Stability training provides im-

proved DNN robustness against JPEG compression, image scaling and cropping. However,

the top-1 accuracy of stability trained models is lower than the original model, when tested

on most distortions including motion blur, defocus blur and additive noise among oth-

ers [74]. Sun et al. also propose a distortion agnostic approach to improve DNN robustness

by introducing 3 feature quantization operations, i.e., a floor function with adaptive resolu-

tion, a power function with learnable exponents and a power function with data dependent

exponents, that act on the convolutional filter activations before the ReLU non-linearity

is applied. However, similar to stability training, the performance of feature quantized

models is lower than the original model, when tested on distortions like defocus blur and

additive noise. Additionally, no single feature quantization function consistently outper-

forms the other two for all types of distortion. Although both distortion agnostic methods

[73], [74] improve DNN robustness, their top-1 accuracy is much lower than the accuracy

of the original DNN on distortion free images, making it difficult to deploy these models.

A non-blind approach to improve the resilience of networks trained on high quality

images would be to retrain the network parameters (fine-tune) on images with observed

distortion types. Vasiljevic et al. [75] study the effect of various types of blur on the

performance of DNNs and show that DNN performance for the task of classification and

segmentation drops in the presence of blur. Vasiljevic et al. [75] and Zhou et al. [76] show

10

that fine-tuning a DNN on a dataset comprised of both distorted and undistorted images

helps to recover part of the lost performance when the degree of distortion is low.

Diamond et al. [77] propose a joint denoising, deblurring and classification pipeline.

This involves an image preprocessing stage that denoises and deblurs the image in a manner

that preserves image features optimal for classification rather than aesthetic appearance.

The classification stage has to be fine-tuned using distorted and clean images, while the

denoising and deblurring stages assume a priori knowledge of camera parameters and the

blur kernel, which may not be available at the time of testing.

2.2 DNN Susceptibility to Adversarial Attacks

Adversarial training (Adv. tr.) [20, 21, 22] has been shown to improve DNN robust-

ness to image-dependent adversarial attacks through augmentation, in the training stage,

with adversarial attack examples, which are computed on-the-fly for each mini-batch us-

ing gradient-ascent to maximize the DNN’s loss. The robustness of adversarial training to

black-box attacks can be improved by using perturbations computed against different target

DNNs that are chosen from an ensemble of DNNs [38]. Kannan et al. [78] scale adversar-

ial training to ImageNet [3] by encouraging the adversarial loss to match logits for pairs of

adversarial and perturbation-free images (logit pairing) but this latter method fails against

stronger iterative attacks [79]. In addition to adversarially training the baseline DNN, prior

works ([37], [80]) further improved DNN robustness to image-dependent attacks by de-

noising intermediate DNN feature maps, either through a non-local mean denoiser (feature

denoising [37]) or a denoising auto-encoder (fortified nets [80]). Although Xie et al. report

effective robustness against a strong PGD attack [22] evaluated on ImageNet [3], the ad-

ditional non-local mean denoisers only add a 4% improvement over a DNN trained using

standard adversarial training.

11

Image-domain defenses mitigate the impact of adversarial perturbations by utilizing

non-differentiable transformations of the input such as image compression [41, 81, 44],

frequency domain denoising [43] and image quilting and reconstruction [39, 42] etc. How-

ever, such approaches introduce unnecessary artifacts in clean images resulting in accuracy

loss [52][40]. Prakash et al. [40] propose a two-step defense that first performs random lo-

cal pixel redistribution, followed by wavelet denoising. Liao et al. [45] append a denoising

autoencoder at the input of the baseline DNN and train it using a reconstruction loss that

minimizes the error between higher layer representations of the DNN for an input pair of

clean and denoised adversarial images (high level guided denoiser). Another popular line

of defenses explores the idea of first detecting an adversarially perturbed input and then

either abstaining from making a prediction or further pre-processing adversarial input for

reliable predictions [46, 47, 48, 49, 50].

All of the aforementioned defenses are geared towards image-specific gradient-based

attacks and none of them has, as of yet, been shown to defend against image-agnostic at-

tacks. Initial attempts at improving robustness to universal attacks involved modelling the

distribution of such perturbations [1, 82, 83], followed by model fine-tuning over this dis-

tribution of universal perturbations. However, the robustness offered by these methods has

been unsatisfactory [2, 1] as the retrained network ends up overfitting to the small set of

perturbations used. Extending adversarial training for image-dependent attacks to univer-

sal attacks has been attempted in [2] and [84]. Ruan and Dai [85] use additional shadow

classifiers to identify and reject images perturbed by universal perturbations. Akhtar et al.

[52] propose a defense against the universal adversarial perturbations attack (UAP) [1], us-

ing a detector which identifies adversarial images and then denoises them using a learnable

Perturbation Rectifying Network (PRN).

12

2.3 DNN Architectures for Image Classification

Some of the DNN architectures commonly used in image recognition tasks and also

used for evaluation in this thesis are described in this section.

2.3.1 AlexNet

AlexNet [8] is an 8-layered DNN that achieved the highest top-1 accuracy (≈ 58%) on

the ImageNet visual recognition challenge in 2012, with more than a 20% improvement in

accuracy over prior state-of-the-art methods. The AlexNet DNN was the first convolutional

DNN proposed for large scale image recognition, consisting of 5 convolutional layers and 3

fully-connected dense layers resulting in 61 million trainable parameters operating on im-

ages of size 256×256 pixels, as shown in Fig. 2.1a. Every convolutional layer is followed

by a ReLU non-linearity for the AlexNet DNN. In addition to the ReLU non-linearity, the

first and second convolutional layers of the AlexNet DNN are also followed by a local re-

sponse normalization operation [8]. A major breakthrough of the AlexNet DNN was the

successful implementation, both in terms of GPU memory used and training convergence,

of large convolutional kernels (e.g., 11×11 and 5×5). Additionally certain convolutional

layers were split across two GPUs for efficient training and memory utilization [8]. Caf-

feNet [11] is a DNN model derived from AlexNet [8] that achieves a similar accuracy but

does not split any of its convolutional layers. VGG-F [86] is another DNN model derived

from AlexNet [8] with the same depth (i.e., 8 layers) but different number of convolutional

filters in each layer as compared to those of AlexNet (e.g., conv1 layer of AlexNet has 96

filters whereas conv1 layer of VGG-F has only 64). VGG-F uses lesser trainable parameters

(easier to train) than AlexNet and still achieves a better accuracy than AlexNet.

13

11x11-conv-96-4

3x3-maxpool-2

5x5-conv-256-1

3x3-maxpool-2

3x3-conv-384-1

3x3-conv-384-1

3x3-conv-256-1

3x3-maxpool-2

4096-fc

4096-fc

1000-fc

1000-softmax

224x224 RGB Image

55x55x96

27x27x96

13x13x256

13x13x384

13x13x256

7x7x256

1x4096

1x1000

(a)

3x3-conv-64-1

3x3-conv-64-1

2x2-maxpool-2

3x3-conv-128-1

3x3-conv-128-1

2x2-maxpool-2

3x3-conv-256-1

3x3-conv-256-1

3x3-conv-256-1

2x2-maxpool-2

3x3-conv-512-1

3x3-conv-512-1

3x3-conv-512-1

2x2-maxpool-2

3x3-conv-256-1

3x3-conv-256-1

3x3-conv-256-1

2x2-maxpool-2

4096-fc

4096-fc

1000-fc

1000-softmax

224x224 RGB Image

112x112x64

64x64x128

32x32x256

16x16x512

8x8x512

1x4096

1x1000

1

(b)

7x7-conv-64-2

3x3-maxpool-2

3x3-conv-64-1

3x3-conv-64-1

3x3-conv-64-1

3x3-conv-64-1

3x3-conv-128-2

3x3-conv-128-1

3x3-conv-128-1

3x3-conv-128-1

3x3-conv-256-2

3x3-conv-256-1

3x3-conv-256-1

3x3-conv-256-1

3x3-conv-512-2

3x3-conv-512-1

3x3-conv-512-1

3x3-conv-512-1

global avg.
pool 7x7

1000-fc

1000-softmax

224x224 RGB Image

112x112x64

56x56x64

28x28x128

14x14x256

7x7x512

1x1x512

1x1000

1

(c)

Figure 2.1: Network architectures for common DNN models used in large scale image

recognition tasks. Convolutional layers are parameterized by kxk-conv-d-s, where kxk is

the spatial extent of the filter, d is the number of output filters in a layer and s represents the

filter stride. Maxpooling layers are parameterized as kxk-maxpool-s, where s is the spatial

stride. (a) AlexNet [8]; (b) VGG-16 [10]; (c) ResNet18 [7].

14

2.3.2 VGG-16

VGG-16 [10], shown in Fig. 2.1b, is a 16-layered (double the depth of AlexNet) DNN

with 144 million trainable parameters that significantly outperformed (by almost 20%) the

previous DNNs like AlexNet [8] on image recognition tasks. Before VGG-16, it was com-

mon practice to use convolutional kernels with large spatial receptive fields such as 11×11,

7×7 and 5×5. Such large kernels required more computational memory and resulted in

shallower networks. VGG-16 made a breakthrough contribution in DNN model architec-

ture by showing that it was feasible to construct deeper DNNs by replacing all large convo-

lutional kernels with stacks of small 3×3 kernels, resulting in lesser trainable parameters

and memory requirements per layer. Simonyan and Zisserman [10] showed that deeper

nets made by stacking several 3×3 convolutional kernels greatly improved accuracy and

was the natural design choice for building DNNs. Both VGG-F [86] and VGG16 [10] have

been developed at the Visual Geometry Group (VGG) at University of Oxford.

2.3.3 Residual Networks

In the area of deep learning, especially in image-based recognition tasks, there is a

broad consensus on the idea that going deeper (more layers in a DNN) improves recogni-

tion accuracy. Starting from 8 layers [8] in 2012, DNN depth had already doubled [10]

(16 layers) and even tripled [9] (27 layers) by the end of 2014, resulting in a top-1 accu-

racy of almost 76% on the ImageNet image recognition challenge. However, researchers

were unable to train deeper DNNs (top-1 accuracy started decreasing after a certain depth).

This was due to a combination of vanishing gradients as well as exploding gradients gen-

erated by backpropogating the classification loss function’s gradients from the DNN out-

put to the input through successive non-linearities (e.g., ReLU) [7]. Residual networks

(ResNets) were proposed as a way to circumvent the issue of vanishing or exploding gradi-

15

ents by adding an identity skip connection across multiple convolutional layers (Fig. 2.1c,

ResNet18), and to facilitate the backpropogation of network gradients from the output to

the input. Every convolutional layer is followed by a batch normalization operation and a

ReLU non-linearity for the ResNet18 model. Skip connections and residual feature maps

are combined through an element-wise addition. Dashed-line skip connections perform an

identity mapping using a stride of 2 to reduce feature map size and pad zero entries along

the channel axis to increase dimensionality [7]. The inclusion of identity skip-connections

was yet another breakthrough contribution in deep learning research which made it feasi-

ble to successfully train very deep networks (i.e., 152 layers) and is a default choice for

designing any new DNN. In this thesis, ResNet18 (deep, 18 layers) and ResNet152 (very

very deep, 152 layers) are used during evaluation.

2.4 Existing Image-based Datasets

The datasets used in this thesis are described in this section.

2.4.1 ImageNet (ILSVRC-2012)

The ImageNet (ILSVRC-2012) dataset is the largest publicly available annotated dataset

for image recognition. ImageNet [3] has images of varying resolution, usually greater

than 224x224 pixels consisting of around 1.3 million training images covering 1000 object

classes and 50000 validation images, with 50 validation images per class. Fig. 2.2 shows

sample images from the ILSVRC-2012 dataset, highlighting the large visual diversity in its

images.

2.4.2 Caltech-101 and Caltech-256

The Caltech-101 [4] dataset consists of 101 object classes with a minimum of 40 im-

ages per class. Similarly, the Caltech-256 [5] dataset consists of 256 object classes with a

16

Figure 2.2: Sample images from the ILSVRC-2012 dataset [3].

Figure 2.3: Sample images from the Caltech-101 [4] and Caltech-256 [5] object detection

datasets.

minimum of 80 images per class. Prior to ImageNet [3], the Caltech datasets were com-

monly used to evaluate object detection and image recognition methods. Due to the large

scale and size of images in the ImageNet dataset, most visual recognition algorithms are

first evaluated and benchmarked on the Caltech datasets. Fig. 2.3 shows sample images

from the Caltech-101 [4] and Caltech-256 [5] datasets. The Caltech datasets share some

common object classes with the ImageNet dataset.

2.4.3 SUN-397

Unlike the task of object recognition, where the aim is to classify the main object in the

image, the goal of scene recognition is to classify the entire scene of the image. The SUN-

397 [6] dataset consists of 397 scene categories with at least 100 images per class. Unlike

17

Figure 2.4: Sample images from the SUN-397 [6] scene recognition dataset.

object recognition datasets like Caltech-101 and Caltech-256, which bear some similarity

to an image classification/object recognition dataset like ImageNet, a scene recognition

dataset like SUN-397 bears no similarity to the ImageNet dataset. Fig. 2.4 shows sample

images from the SUN-397 scene classification dataset.

2.5 Image Distortions

The different naturally occurring image distortions used for evaluating the effectiveness

of DeepCorrect are described in this section.

2.5.1 Additive White Gaussian Noise

Additive White Gaussian noise (AWGN) is commonly used to model additive noise

encountered during image acquisition and transmission. Throughout different evaluations

in this thesis, a noise standard deviation σn ∈ {10, 20, 40, 60, 80, 100} is used for AWGN.

All input images are assumed to have a pixel intensity value in the range [0, 255]. Column 2

in Fig. 2.5 shows visual examples of images affected by AWGN distortions.

18

2.5.2 Gaussian Blur (G. Blur)

Gaussian blur, often encountered during image acquisition and compression [87], rep-

resents a distortion that eliminates high frequency discriminative object features like edges

and contours. Throughout different evaluations in this thesis, a blur standard deviation σb ∈

{1, 2, 3, 4, 5, 6} is used for Gaussian blur. The size of the blur kernel is set to 4 times the

value of σb. Row 1 in Fig. 2.6 visualizes the 6 different Gaussian blur kernels used in this

thesis. Column 3 in Fig. 2.5 shows visual examples of images affected by Gaussian blur.

2.5.3 Camshake Blur (Cam. Blur)

For simulating camera shake blur, the recently proposed method in [88] is used to gen-

erate random blur kernels. Rows 4-8 in Fig. 2.6 visualize 50 randomly generated blur

kernels. Column 4 in Fig. 2.6 shows visual examples of images affected by camera shake

blur.

2.5.4 Defocus Blur (D. Blur)

Spatially uniform disk kernels of varying radii are used to simulate defocus blur as

outlined by Vasiljevic et al. [75]. The different blur strengths of disk kernels are generated

by using a kernel disk radius rd ∈ {2, 4, 6, 8, 10, 12}. Although such uniform disk kernels

are typically not referred to as defocus blur kernels, the term ”defocus blur” is used only

to maintain consistency with the work of Vasiljevic et al. [75]. Row 2 in Fig. 2.6 shows

examples of the different disk kernels used. Column 5 in Fig. 2.6 shows visual examples

of images affected by defocus blur.

19

Original AWGN G. Blur Cam. Blur D. Blur M. Blur UAP

Figure 2.5: Visualization of image distortions and adversarial perturbations on input images

from ILSVRC-2012. Column 1 shows original images devoid of any image distortions

or perturbations. Columns 2-7, show visual examples of images distorted/perturbed with

AWGN, Gaussian blur, camshake blur [88], defocus blur [75], uniform motion blur [75]

and universal adversarial perturbations.

2.5.5 Motion Blur (M. Blur)

Motion blur is simulated by using horizontal and vertical box kernels of single pixel

width and varying length (uniform linear motion) [75]. Three kernels each of different

length are used for representing both uniform horizontal motion and vertical motion, re-

spectively, with the kernel length lm ∈ {6, 10, 14}. Row 3 in Fig. 2.6 shows the different

horizontal and vertical box kernels used to simulate uniform motion blur. Column 6 in

Fig. 2.6 shows visual examples of images affected by uniform motion blur.

20

Figure 2.6: Visualization of blur kernels. Row 1 shows 6 different Gaussian blur kernels in-

creasing in blur strength from left to right. Row 2 shows 6 different defocus blur (disk blur)

kernels increasing in blur strength from left to right [75]. Row 3 shows different motion

blur kernels with the first 3 representing horizontal motion and the next three showing ver-

tical motion [75]. Rows 4-8 show 50 randomly generated camera shake kernels generated

using the method outlined in [88].

21

2.6 Universal Adversarial Threat Model

Let µc represent the distribution of clean (unperturbed) images in Rd , F (·) be a classi-

fier that predicts a class label F (x) for an image x ∈ Rd . The universal adversarial pertur-

bation attack seeks a perturbation vector v ∈ Rd under the following constraints [1]:

P
x∼µc

(
F (x+ v) 6= F (x)

)
≥ (1−δ) s.t. ‖v‖p ≤ ξ (2.1)

where P(·) denotes probability, ‖ · ‖p is the `p norm with p ∈ [1,∞), (1− δ) is the target

fooling ratio with δ ∈ [0,1), (i.e., the fraction of samples in µc that change labels when

perturbed by an adversary) and ξ controls the magnitude of adversarial perturbations. Col-

umn 7 in Fig. 2.6 shows visual examples of images affected by universal adversarial per-

turbations [1].

22

Chapter 3

DEEPCORRECT: CORRECTING DNNS AGAINST IMAGE DISTORTIONS

In this chapter, DeepCorrect, a novel method to make pre-trained DNNs robust to com-

monly occurring image distortions by identifying and correcting highly susceptible DNN

feature activations is discussed in detail, followed by an extensive experimental validation

of the proposed approach with different DNN architectures and multiple vision tasks like

image classification, scene classification and object detection.

3.1 Introduction

In the proposed method, the effect of image distortions like Gaussian blur and additive

noise on the activations of pre-trained convolutional filters is first evaluated. Then, a metric

is proposed to identify the most noise susceptible convolutional filters and rank them in

order of the highest gain in classification accuracy upon correction. In the proposed ap-

proach called DeepCorrect, small stacks of convolutional layers with residual connections

are applied at the output of these ranked filters and trained to correct the worst distortion

affected filter activations, whilst leaving the rest of the pre-trained filter outputs in the net-

work unchanged. Applying the proposed DeepCorrect models for common vision tasks

like image classification [3], object recognition [4] [5] and scene classification [6] signif-

icantly improves the robustness of DNNs against distorted images and also outperforms

other alternative approaches, while training significantly lesser parameters.

This chapter is organized as follows. A detailed description of the proposed approach

is presented in Section 3.2 followed, in Section 3.3, by extensive experimental validation

with different DNN architectures and multiple datasets covering image classification, ob-

ject recognition and scene classification. Concluding remarks are given in Section 3.4.

23

Table 3.1: Top-1 accuracy of pre-trained networks for distortion affected images as well

as undistorted images (original). For Gaussian blur and AWGN, accuracy is reported by

averaging over all levels of distortion.

Models Original Gaussian blur AWGN

AlexNet 0.5694 0.2305 0.2375

ResNet18 0.6912 0.3841 0.3255

3.2 DeepCorrect

Although pre-trained networks perform poorly on test images with significantly differ-

ent image statistics than those used to train these networks (Table 3.1), it is not obvious if

only some convolutional filters in a network layer are responsible for most of the observed

performance gap or if all convolutional filters in a layer contribute more or less equally to

the performance degradation. If only a subset of the filters in a layer are responsible for

most of the lost performance, one can focus on restoring only the most severely affected

activations and avoid modifying all the remaining filter activations in a DNN.

3.2.1 Ranking Filters Through Correction Priority

One can define the output of a single convolutional filter φi, j to the input xi by φi, j(xi),

where i and j correspond to layer number and filter number, respectively. If gi(·) is a

transformation that models the distortion acting on filter input xi, then the output of a

convolutional filter φi, j to the distortion affected input is given by φ̃i, j(xi) = φi, j(gi(xi)). It

should be noted that φ̃i, j(xi) represents the filter activations generated by distorted inputs

and φi, j(xi) represents the filter activations for undistorted inputs. Assuming one has access

to φi, j(xi) for a given set of input images, replacing φ̃i, j(xi) with φi, j(xi) in a deep network

is akin to perfectly correcting the activations of the convolutional filter φi, j against input

image distortions. Computing the output predictions by swapping a distortion affected

24

filter output with its corresponding clean output for each of the ranked filters would improve

classification performance. The extent of improvement in performance is indicative of the

susceptibility of a particular convolutional filter to input distortion and its contribution to

the associated performance degradation.

One can now define the correction priority of a convolutional filter φi, j as the improve-

ment in DNN performance on a validation set, generated by replacing φ̃i, j(xi) with φi, j(xi)

for a pre-trained network. Let the baseline performance (computed over distorted images)

for a network be pb, which can be obtained by computing the average top-1 accuracy of the

network over a set of images or another task-specific performance measure. Let pswp(i, j)

denote the new improved performance of the network after swapping φ̃i, j(xi) with φi, j(xi).

As our implementation focuses on classification tasks, the average top-1 accuracy over a

set of distorted images is used to measure pb and pswp(i, j). The correction priority for

filter φi, j is then given by:

τ(i, j) = pswp(i, j)− pb (3.1)

A higher τ(i, j) indicates higher susceptibility of the convolutional filter φi, j to input dis-

tortion. Using the proposed ranking measure in Equation (3.1) and 5000 images (i.e., 5

images per class) randomly sampled from the ILSVRC-2012 training set, one can com-

pute correction priorities for every convolutional filter in the network and rank the filters in

descending order of correction priority. The detailed overview and pseudo-code for com-

puting correction priorities is summarized in Algorithm 1.

Figure 3.1 evaluates the effect of correcting different percentages, βi, of the ranked filter

activations in the ith DNN layer of AlexNet for distortion affected images. For the AlexNet

model, it is possible to recover a significant amount of the lost performance, by correcting

only 50% of the filter activations in any one layer, which indicates that a select subset of

convolutional filters in each layer are indeed more susceptible to distortions than the rest.

25

Algorithm 1 Computing Correction Priority
Input: (x1,i,gi(x1,i),y1), . . . ,(xM,i,gi(xM,i),yM) are given triplets with 1≤ i≤ L, where i represents

the layer number, xm,i is the mth undistorted input for layer i and gi(xm,i) is the corresponding

distorted version, M is the total number of images in the validation set and ym is the ground-

truth label for the mth input image.

Output: Correction priority τ

1: pb := 0

2: for m = 1 to M do

3: Predict class label ypredm for distorted image g1(xm,1)

4: Compute pb = pb +
1
M h(ym,ypredm),

5: where h(ym,ypredm) = 1, if ym = ypredm and 0 otherwise.

6: end for

7: for i = 1 to L do

8: Ni← number of filters in layer i

9: φi, j← jth convolutional filter in the ith layer

10: for j = 1 to Ni do

11: pswp(j) = 0

12: for m = 1 to M do

13: φi, j(gi(xm,i))← φi, j(xm,i)

14: Predict class label ypredm

15: pswp(j) = pswp(j)+ 1
M h(ym,ypredm),

16: where h(ym,ypredm) = 1, if ym = ypredm and 0 otherwise.

17: end for

18: end for

19: τ(i, j)← pswp(j)− pb

20: end for

21: return τ

26

25 50 75 100
n

0.0

0.2

0.4

0.6
To

p-
1

ac
cu

ra
cy

AWGN: Alexnet, conv 1

25 50 75 100
n

AWGN: Alexnet, conv 2

25 50 75 100
n

AWGN: Alexnet, conv 3

25 50 75 100
n

AWGN: Alexnet, conv 4

25 50 75 100
n

AWGN: Alexnet, conv 5

top 10% top 25% top 50% top 75% top 90%

2 4 6
b

0.0

0.2

0.4

0.6

To
p-

1
ac

cu
ra

cy

Blur: Alexnet, conv 1

2 4 6
b

Blur: Alexnet, conv 2

2 4 6
b

Blur: Alexnet, conv 3

2 4 6
b

Blur: Alexnet, conv 4

2 4 6
b

Blur: Alexnet, conv 5

Figure 3.1: Effect of varying the percentage of corrected filter activations βi ∈ {10%, 25%,

50%, 75%, 90%}, in the ith convolutional layer (conv i) of pre-trained AlexNet, for AWGN

and Gaussian blur affected images, respectively.

Although graphs are shown only for the AlexNet model, similar observations can be made

for the ResNet18 model as well.

Convolutional filter visualizations from the first layer of the pre-trained AlexNet model

(Figure 3.2a) reveal two types of filter kernels: 1) mostly color agnostic, frequency- and

orientation-selective filters that capture edges and object contours and 2) color specific blob

shaped filters that are sensitive to specific color combinations. Figs. 3.2b and 3.2c visualize

the top 50% filters in the first convolutional layer of AlexNet, that are most susceptible to

Gaussian blur and AWGN, respectively, as identified by our proposed ranking metric. The

identified filters most susceptible to Gaussian blur are mainly frequency- and orientation-

selective filters, most of which are color agnostic, while filters most susceptible to AWGN

are a mix of both color specific blobs and frequency- and orientation-selective filters. This

is in line with our intuitive understanding that Gaussian blur majorly affects edges and

object contours and not object color, while AWGN affects color as well as object contours.

27

(a)

(b)

(c)

Figure 3.2: (a) 96 convolutional filter kernels of size 11x11x3 in the first convolutional layer

of pre-trained AlexNet. (b) Convolutional filter kernels most susceptible to Gaussian blur

(top 50%), as identified by the proposed ranking metric. (c) Convolutional filter kernels

most susceptible to AWGN (top 50%), as identified by the proposed ranking metric. In (b)

and (c), the filters are sorted in descending order of susceptibility going row-wise from top

left to bottom right.

3.2.2 Correcting Ranked Filter Outputs

Here, a novel approach, referred to as DeepCorrect is proposed in this work, where

a task-driven corrective transform that acts as a distortion masker for convolutional filters

28

that are most susceptible to input distortion is learnt, while leaving all the other pre-trained

filter outputs in the layer unchanged. Let Ri represent a set consisting of the Ni ranked

filter indices in the ith layer of the network, computed using the procedure in Section 3.2.1.

Also let Ri,βi represent a subset of Ri consisting of the top βiNi ranked filter indices in

network layer i, where Ni is the total number of convolutional filters in layer i and βi is the

percentage of filters corrected in layer i, as defined in Section 3.2.1. If Φi represents the

set of convolutional filters in the ith layer, the objective is to learn a transform Fcorri(:) such

that:

Fcorri(ΦRi,βi
(gi(xi)))≈ΦRi,βi

(xi) (3.2)

where xi is the undistorted input to the ith layer of convolutional filters and gi(·) is a trans-

formation that models the distortion acting on xi. Since no specific form is assumed for

the image distortion process, the corrective transform Fcorri(:) is set to take the form of

a shallow residual block, which is a small stack of convolutional layers (4 layers) with a

single skip connection [7], such as the one shown in Figure 3.3. Such a residual block

is referred to as a correction unit in the remainder of this chapter. Fcorri(:) can now be

estimated using a target-oriented loss such as the one used to train the original network,

through backpropogation [89], but with much less number of parameters.

Consider an L layered DNN Φ that has been pre-trained for an image classification task

using clean images. Φ can be interpreted as a function that maps network input x to an

output vector Φ(x) ∈ Rd , such that:

Φ = ΦL ◦ΦL−1 ◦ . . .Φ2 ◦Φ1 (3.3)

where Φi is the mapping function (set of convolutional filters) representing the ith DNN

layer and d is the dimensionality of the network output.

29

1 x 1 - conv - Di - 1

βiNi

pre-trained
filters’ outputs

•

Batch Norm

k x k - conv - Di - 1

Batch Norm

k x k - conv - Di - 1

Batch Norm

1 x 1 - conv - βiNi - 1

+

βiNi

corrected
filters’ outputs

ReLU

ReLU

ReLU

Figure 3.3: Correction unit based on a residual function [7], acting on the outputs of βiNi

(0 < βi < 1) filters out of Ni total filters in the ith convolutional layer of a pre-trained

DNN. All convolutional layers in the residual block, except the first and last layer, are

parameterized by kxk-conv-Di-s, where kxk is spatial extent of the filter, Di (correction unit

kernel depth) is the number of output filters in a layer, s represents the filter stride and i

represents the layer number of the convolutional layer being corrected in the pre-trained

DNN.

Without loss of generality, if one adds a correction unit that acts on the top β1N1 ranked

filters in the first network layer, then the resultant network Φcorr is given by:

Φcorr = ΦL ◦ΦL−1 ◦ . . .Φ2 ◦Φ1corr (3.4)

where Φ1corr represents the new mapping function for the first layer, in which the corrective

transform Fcorr1(:) acts on the activations of the filter subset ΦR1,β1
and all the remaining

30

11x11-conv-96-4

1x1-conv-24-1
1x1-conv-72-1

Correction unit

Concat

5x5-conv-256-1

1x1-conv-64-1
1x1-conv-192-1

Correction unit

Concat

3x3-conv-384-1

1x1-conv-192-1
1x1-conv-192-1

Correction unit

Concat

3x3-conv-384-1

1x1-conv-192-1
1x1-conv-192-1

Correction unit

Concat

3x3-conv-256-1

1x1-conv-128-1
1x1-conv-128-1

Correction unit

Concat

4096-fc

4096-fc

1000-fc

1000-softmax

224x224 RGB Image

27x27x96

13x13x256

13x13x384

7x7x256

1x4096

1x1000

Figure 3.4: DeepCorrect model for AlexNet, with 75% filter outputs corrected in the first

two layers and 50% filter outputs corrected in the next three layers. Convolution layers

from the original architecture in Figure 2.1, shown in gray with dashed outlines, are non-

trainable layers and their weights are kept the same as those of the pre-trained model.

The 1×1 convolution layer preceding each correction unit implements a one-hot encoding

kernel, where the number of output activation maps represent the number of filter activation

maps being corrected (βiNi) and a kernel weight of 1 represents the index of the input filter

activation map being selected for correction. A similar 1×1 convolution layer is used for

selecting activation maps that are left unchanged from the original DNN.

31

filter activations are left unchanged. If W1 represents the trainable parameters in Fcorr1 ,

then Fcorr1 can be estimated by minimizing :

E(W1) = λR(W1)+
1
M

M

∑
m=1

L (ym,Φcorr(xm)) (3.5)

where λ is a constant, R is a regularizer such as l1 norm or l2 norm, L is a standard

cross-entropy classification loss, ym is the target output label for the mth input image xm,

M represents the total number of images in the training set and, since a collection of both

distorted and clean images are used during training, xm represents a clean or a distorted

image. The trainable parameters in Equation (3.5) are W1, while all other network param-

eters are fixed and kept the same as those in the pre-trained models. Although Equation

(3.5) shows correction unit estimation for only the first layer, it is possible to add such

units at the output of distortion susceptible filters in any layer and in one or more layers.

Figure 3.4 shows an example of a DeepCorrect model for the pre-trained AlexNet model

in Figure 2.1a.The correction unit is applied before the ReLU non-linearity acting upon the

distortion-susceptible convolutional filter outputs. Max pooling layers following convolu-

tional layers 1, 2 and 5 in the pre-trained AlexNet have not been shown in the ImageNet

DeepCorrect model for uniformity.

3.2.3 Rank-constrained DeepCorrect Models

The inference time of the proposed DeepCorrect models (Section 3.2.2) can be slower

than the respective baseline models due to the additional computational cost introduced

by the correction units. To mitigate the impact of these additional computations, a rank-

constrained approximation is used in place of the full-rank DeepCorrect model, which not

only has the same computational cost as the corresponding baseline DNN but also retains

almost 99% of the performance of our full-rank DeepCorrect models.

32

Consider the nth full-rank 3-D convolutional filter with weights Wn ∈ Rk×k×C in a

DNN convolutional layer with N filters, where k× k represents the filter’s spatial extent

and C is the number of input channels for the filter; then a rank constrained convolution is

implemented by factorizing the convolution of Wn with input z into a sequence of separable

convolutions (i.e., horizontal and vertical filters) as in [90]:

Wn ∗ z≈
P

∑
p=1

hp
n ∗ (vp ∗ z) =

P

∑
p=1

hp
n ∗

C

∑
c=1

vc
p ∗ zc (3.6)

where the first convolutional filter bank consists of P vertical filters {vp ∈ Rk×1×C : p ∈

[1...P]} and the second convolution consists of a horizontal filter that operates on P in-

put feature maps {hn ∈ R1×k×P}. The number of intermediate filter maps, P, controls the

rank of the low-rank approximation. The computational cost of the original full-rank con-

volutional layer for N output feature maps with width W ′ and height H ′ is O(Nk2CH ′W ′),

whereas the rank-constrained approximation has a computational cost of O((N+C)kPH ′W ′)

and a speedup can be achieved when NkC > (N+C)P. For the special case of convolutional

layers in our correction units, where N =C (Figure 3.3), if P=N/2, the computational cost

of a convolutional layer can be reduced k times (typically, k = 3).

The rank-constrained DeepCorrect model is thus generated by replacing each full-rank

convolutional layer (except 1×1 layers) with its respective rank-constrained approximation

with P for each approximation chosen such that the total computational cost of the proposed

model is the same as the baseline DNN. Instead of using iterative methods or training the

separable filters from random weights, the simple yet fast, matrix decomposition approach

of Tai et. al. [91] is used to get the exact global optimizer of the rank-constrained approxi-

mation from its respective trained full-rank DeepCorrect model.

33

3.3 Experimental Results

The proposed DeepCorrect models are evaluated against the alternative approaches of

network fine-tuning and stability training [73], for the DNN architectures mentioned in

Section 2.3. The DNN models are trained and tested using a single Nvidia Titan-X GPU.

Unlike common image denoising and deblurring methods like BM3D [92] and NCSR [93]

which expect the distortion level to be known during both train and test phases or learning-

based methods that train separate models for each distortion level, DeepCorrect trains a

single model for all distortion levels at once and, consequently, there is no need to know

the distortion level at test time.

3.3.1 AlexNet Analysis

Finetune Model

The AlexNet model in Figure 2.1a is fine-tuned on a mix of distortion affected images and

clean images to generate a single fine-tuned model and refer to this model as Finetune in

the presented results. Starting with an initial learning rate (= 0.001) that is 10 times lower

than that used to generate the pre-trained model in Figure 2.1a, a fixed number of iterations

(62500 iterations ≈ 10 epochs) is adopted, with the learning rate reduced by a factor of 10

after every 18750 iterations (roughly 3 epochs). Additionally, a data augmentation method

as proposed by [7] is also used.

Stability Trained Model

Following the stability training method outlined in [73] that considers that unseen distor-

tions can be modelled by adding AWGN to the input image, all the fully connected layers

of the pre-trained AlexNet model are fine-tuned by minimizing the KL-divergence between

the classification scores for a pair of images (I, I′), where I′ = I +η and η ∼N (0,σ2).

34

Table 3.2: Top-1 accuracy of AlexNet-based DNN models for distortion affected images

of the ImageNet validation set (ILSVRC-2012), averaged over all levels of distortion and

clean images. Bold numbers show best accuracy and underlined numbers show next best

accuracy.

Method Gaussian blur AWGN

Baseline 0.2305 0.2375

Finetune 0.4596 0.4894

Finetune-rc 0.4549 0.4821

Deepcorr 0.5071 0.5092

Deepcorr-b 0.5022 0.5063

Deepcorr-rc 0.4992 0.5052

Stability[73] 0.2163 0.2305

NCSR[93]+AlexNet[8] 0.2193 -

BM3D[92]+AlexNet[8] - 0.5032

The same hyper-parameters used for the classification task in [73] are adopted here: σ2 =

0.04 and regularization coefficient α = 0.01.

DeepCorrect Models

The main DeepCorrect model for AlexNet shown in Figure 3.4 and referred to as Deepcorr

in Table 3.2 is generated by correcting 75% ranked filter outputs in the first two layers

(β1,β2 = 0.75) and 50% ranked filter outputs in the next three layers (β3,β4,β5 = 0.5)

of the pre-trained AlexNet shown in Figure 2.1a. The correction units (Figure 3.3) in each

convolutional layer are trained using an initial learning rate of 0.1 and the same learning rate

schedule, data augmentation and total iterations used for generating the Finetune model in

Section 3.3.1. Two additional variants are also generated based on the proposed Deepcorr

model, Deepcorr-b, a computationally lighter model than Deepcorr based on a bottleneck

35

Table 3.3: Computational performance of AlexNet-based DNN models.

Metric Baseline/ Finetune Deepcorr Deepcorr-b Deepcorr-rc

FLOPs 7.4×108 23.9×108 11.8×108 7.8×108

Trainable params 60.96M 2.81M 1.03M 1.03M 1

architecture for its correction units as described later in this section, and Deepcorr-rc,

which is a rank-constrained model (Section 3.2.3) derived from the full-rank Deepcorr-b

model such that its test-time computational cost is almost the same as the Finetune model.

For comparison, a rank-constrained model is also derived for the Finetune model using

similar decomposition parameters as Deepcorr-rc and the resulting model is denoted by

Finetune-rc.

Table 3.2 shows the superior performance of the proposed method as compared to the

alternative approaches and Table 3.3 summarizes the computational performance in terms

of trainable parameters and floating point operations (FLOPs) of these DNN models during

training and testing, respectively. The training computational cost is evaluated in terms of

the number of trainable parameters that are updated during training. The test-time com-

putational cost is evaluated in terms of the total FLOPs, i.e., total multiply-add operations

needed for a single image inference, as outlined by He et al. in [7]. In particular, a k× k

convolutional layer operating on C input maps and producing N output feature maps of

width W ′ and height H ′ requires Nk2CH ′W ′ FLOPs [7]. The detailed architecture and cor-

responding FLOPs for each correction unit in the different proposed DeepCorrect models

for AlexNet are summarized in Table 3.4. Design choices for various correction unit archi-

tectures and their impact on inference-time computational cost are also discussed later in

this section.
1Since Deepcorr-rc is derived from the Deepcorr-b model through a low-rank approximation, the number

of trainable parameters and subsequently its effect on model convergence is the same as Deepcorr-b.

36

Table 3.4: Correction unit architectures for AlexNet-based DeepCorrect models. The num-

ber following Corr-unit specifies the layer at which correction units are applied. Correction

unit convolutional layers are represented as kxk, d, where kxk is the spatial extent of a fil-

ter and d is the number of filters in a layer. Stacked convolutional layers are enclosed in

brackets, followed by the number of layers stacked.

Model

Corr-unit 1 Corr-unit 2 Corr-unit 3 Corr-unit 4 Corr-unit 5

β1N1 = 72 β2N2 = 192 β3N3 = 192 β4N4 = 192 β5N5 = 128

Output size Output size Output size Output size Output size

55×55 27×27 13×13 13×13 13×13

Deepcorr

1×1, 72 1×1, 192 1×1, 192 1×1, 192 1×1, 128[
5×5, 72

]
×2

[
3×3, 192

]
×2

[
3×3, 192

]
×2

[
3×3, 192

]
×2

[
3×3, 128

]
×2

1×1, 72 1×1, 192 1×1, 192 1×1, 192 1×1, 128

Total FLOPs: 16.5×108 FLOPs: 8.1×108 FLOPs: 5.3×108 FLOPs: 1.2×108 FLOPs: 1.2×108 FLOPs: 5.5×107

Deepcorr-b

1×1, 36 1×1, 96 1×1, 96 1×1, 96 1×1, 64[
3×3, 36

]
×3

[
3×3, 96

]
×3

[
3×3, 96

]
×3

[
3×3, 96

]
×3

[
3×3, 64

]
×3

1×1, 72 1×1, 192 1×1, 192 1×1, 192 1×1, 128

Total FLOPs: 4.4×108 FLOPs: 1.2×108 FLOPs: 2.0×108 FLOPs: 4.8×107 FLOPs: 4.8×107 FLOPs: 2.1×107

Deepcorr-rc

1×1, 36 1×1, 96 1×1, 96 1×1, 96 1×1, 64 3×1, 27

1×3, 36

×3

 3×1, 72

1×3, 96

×3

 3×1, 72

1×3, 96

×3

 3×1, 72

1×3, 96

×3

 3×1, 48

1×3, 64

×3

1×1, 72 1×1, 192 1×1, 192 1×1, 192 1×1, 128

Total FLOPs: 2.5×108 FLOPs: 6.8×107 FLOPs: 1.1×108 FLOPs: 2.7×107 FLOPs: 2.7×107 FLOPs: 1.2×107

As can be seen from Table 3.2, the Deepcorr model, which is the best performing model

in terms of top-1 classification accuracy, outperforms the Finetune model with ≈ 10% and

≈ 4% relative average improvement for Gaussian blur and AWGN, respectively, by just

training ≈ 2.81M parameters (Table 3.3) as compared to 61M parameters for the Finetune

model (i.e., 95.4% lesser parameters). Deepcorr significantly improves the robustness of a

pre-trained DNN achieving an average top-1 accuracy of 0.5071 and 0.5092 for Gaussian

blur and AWGN affected images, respectively, as compared to the corresponding top-1

accuracy of 0.2305 and 0.2375 for the pre-trained AlexNet DNN.

37

All the proposed DeepCorrect model variants consistently outperform the Finetune and

Stability models for both distortion types (Table 3.2). One can also observe that fine-tuning

DNN models on distortion specific data significantly outperforms DNN models trained

through distortion agnostic stability training. For completeness, the classification perfor-

mance is compared with AlexNet when combined with a commonly used non-blind image

denoising method (BM3D) proposed by [92] and a deblurring method (NCSR) proposed

by [93], where BM3D and NCSR are applied prior to the baseline AlexNet, for AWGN and

Gaussian blur, respectively. Table 3.2 shows top-1 accuracy for these two methods with the

Deepcorr model outperforming each for AWGN and Gaussian blur, respectively.

Correction Unit Architectures

Increasing the correction unit kernel depth (Di in Figure 3.3) makes the proposed correction

unit fatter, whereas decreasing Di makes the correction unit thinner. A natural choice for Di

would be to make it equal to the number of distortion susceptible filters that need correction

(βiNi), in a DNN layer i; this is also the default parameter setting used in the correction units

for Deepcorr. Since Di is always equal to the number of distortion susceptible filters that

need correction (i.e., Di = βiNi), the number of trainable parameters in the correction units

of Deepcorr scale linearly with the number of corrected filters (βiNi) in each convolutional

layer, even though Deepcorr trains significantly lesser parameters than Finetune and still

achieves a better classification accuracy (Tables 3.2 and 3.3).

As shown in Table 3.3, during the testing phase, the correction units in Deepcorr add

almost 2 times more FLOPs relative to the baseline DNN, for evaluating a single image. As

discussed in more detail later in this section, one way to limit the number of trainable pa-

rameters and FLOPs is to explore a bottleneck architecture for our correction units, where

the convolutional kernel depth Di (Figure 3.3) is set to 50% of the distortion susceptible

filters that need correction in a DNN layer i (i.e., Di =
βiNi

2) as compared to Di being set

38

to the number of filters to correct (i.e., Di = βiNi) in Deepcorr. Replacing each correction

unit in Deepcorr with such a bottleneck correction unit, which is referred to as Deepcorr-b,

results in a DeepCorrect model that has significantly less trainable parameters and FLOPs

than the original Deepcorr model (Table 3.4). Compared to the correction units in Deep-

corr, bottleneck correction units provide a 60% reduction in FLOPs on average, with a 85%

reduction in FLOPs for Corr-unit 1 as shown in Table 3.4. From Tables 3.2 and 3.3, it can

be seen that Deepcorr-b achieves ≈ 99% of the average accuracy achieved by Deepcorr,

with a 63% reduction in trainable parameters and a 73% reduction in FLOPs, relative to

Deepcorr. As shown in Table 3.3, the Deepcorr-b model still requires 58% more FLOPs

relative to the baseline DNN, for evaluating a single image at test time. A further reduction

in the computational cost at test-time can be achieved by deriving a rank-constrained Deep-

Correct model (Deepcorr-rc) from the Deepcorr-b model using the approach outlined in

Section 3.2.3. By replacing each full rank convolutional layer in a Deepcorr-b correction

unit with a pair of separable convolutions (Section 3.2.3), one can reduce the FLOPs for

each correction unit by an additional 46% as shown in Table 3.4. Replacing the pre-trained

convolutional layers of the baseline AlexNet (which are left unchanged in the DeepCor-

rect models and shown in gray in Figure 3.4) by their equivalent low-rank approximations

provides an additional 29% reduction in FLOPs, relative to the baseline AlexNet model,

such that the resultant Deepcorr-rc model now has almost the same FLOPs as Finetune

(Table 3.3) and still retains almost 99% of the accuracy achieved by Deepcorr.

Effect of Ranking on Correction Unit Performance

If the superior performance of the DeepCorrect model is only due to the additional network

parameters provided by the correction unit, then re-training the correction unit on the least

susceptible βiNi filter outputs in a DNN layer should also achieve the same performance

as that achieved by applying a correction unit on the βiNi most susceptible filter outputs

39

0 2 4 6
b

0.1

0.2

0.3

0.4

0.5

0.6
To

p-
1

ac
cu

ra
cy

Blur: Alexnet, conv 1

0 2 4 6
b

Blur: Alexnet, conv 2

0 2 4 6
b

Blur: Alexnet, conv 5

ranked
 bottom 50%
ranked
 top 50%
ranked
 bottom 75%
ranked
 top 75%

0 25 50 75 100
n

0.1
0.2
0.3
0.4
0.5
0.6

To
p-

1
ac

cu
ra

cy

AWGN: Alexnet, conv 1

0 25 50 75 100
n

AWGN: Alexnet, conv 2

0 25 50 75 100
n

AWGN: Alexnet, conv 5

ranked
 bottom 50%
ranked
 top 50%
ranked
 bottom 75%
ranked
 top 75%

Figure 3.5: Effect of DeepCorrect ranking metric on correction unit performance when

integrated with AlexNet[8]. Dashed lines represent correction units trained on the least

susceptible filters in a DNN layer and solid lines represent correction units trained on the

most susceptible filters, as identified by our ranking metric (Section 3.2.1).

identified by the proposed ranking metric (Section 3.2.1). βi and Ni, as defined in Section

3.2.1, represent the percentage of filters corrected in the ith layer and the total number of

filters in the ith layer, respectively. To this end, the performance of training correction

units is evaluated on: 1) βiNi filters most susceptible to distortion, and 2) βiNi filters least

susceptible to distortion, as identified by the proposed ranking metric. For this analysis,

βi ∈ {50%, 75%}.

As shown in Figure 3.5, correction units trained on the βiNi most distortion susceptible

filters (solid lines) outperform those trained on the least susceptible filters (dashed lines)

of conv 1, conv 2 and conv 5 layers of the AlexNet model, for Gaussian blur and AWGN,

40

0 2 4
iterations ×104

0.50
0.53
0.55
0.58
0.60
0.62
0.65

To
p-

1
er

ro
r

GB

0 2 4
iterations ×104

AWGN
Deepcorr Finetune Deepcorr-b

Figure 3.6: Top-1 error on the ILSVRC-2012 validation set, for DeepCorrect model vari-

ants and fine-tuning.

respectively. Although a similar trend is observed for the conv 3 and conv 4 layers, results

are plotted for only conv 1, conv 2 and conv 5 as these show the largest difference in per-

formance due to ranking distortion susceptible filters. Correcting the top 75% distortion

susceptible filters (solid orange), as identified by the proposed ranking measure, achieves

the best performance in all layers. Similarly, for all layers and distortions, correction units

trained on the top 50% susceptible filters (solid green) not only significantly outperform

correction units trained on the 50% least susceptible filters (dashed blue) but also outper-

form correction units trained on the 75% least susceptible filters (dashed red), where 25%

filters are shared among both approaches.

Accelerating Training

The evolution of the validation set error over training iterations for Deepcorr, Deepcorr-b

as well as the Finetune model is analyzed in this section. During this evaluation, training for

the Deepcorr models is stopped when their respective validation error is lesser than or equal

to the minimum validation error achieved by the Finetune model. For any particular value

41

of validation error achieved by the Finetune model in Figure 3.6, both the Deepcorr model

variants are able to achieve the same validation error in much lesser number of training

iterations. Thus, one can conclude that just learning corrective transforms for activations

of a subset of convolutional filters in a layer accelerates training through reduced number

of training epochs needed for convergence.

Generalization of DeepCorrect Features to Other Datasets

To analyze the ability of distortion invariant features learnt for image classification to gen-

eralize to related tasks like object recognition and scene recognition, the Deepcorr and

Finetune models trained on the ImageNet dataset (Section 3.3.1) are evaluated as discrim-

inative deep feature extractors on the Caltech-101 [4], Caltech-256 [5] and SUN-397 [6]

datasets. Unlike object recognition datasets like Caltech-101 and Caltech-256, which bear

some similarity to an image classification/object recognition dataset like ImageNet, a scene

recognition dataset like SUN-397 bears no similarity to the ImageNet dataset and is ex-

pected to be challenging for features extracted using models learnt on ImageNet [94]. Fol-

lowing the experimental procedure proposed by [94], the output of the first (Caltech-101

and Caltech-256) or second (SUN-397) fully-connected layer in these models is used as a

deep feature extractor for images affected by distortion.

Since the above deep feature models have not been trained on any one of these datasets

(Caltech-101, Caltech-256 and SUN-397), for each dataset, linear SVMs are trained on top

of the deep features, which are extracted from a random set of training data, and evaluate

the performance in terms of mean accuracy per category averaged over 5 data splits, follow-

ing the training procedure adopted by [94]. The training data for each split consists of 25

training images and 5 validation images per class, sampled randomly from the considered

dataset and all remaining images are used for testing. A baseline accuracy for undistorted

images is first established by training linear SVMs on features extracted only from undis-

42

Table 3.5: Mean accuracy per category of pre-trained AlexNet deep feature extractor for

clean images.

Caltech-101 Caltech-256 SUN-397

0.8500 0.6200 0.3100

Table 3.6: Mean accuracy per category for Gaussian blur affected images, averaged over

all distortion levels. Bold numbers show best accuracy.

Dataset Baseline Finetune Deepcorr

Caltech-101 0.4980 0.7710 0.8371

Caltech-256 0.2971 0.5167 0.5883

SUN-397 0.1393 0.2369 0.3049

Table 3.7: Mean accuracy per category for AWGN affected images, averaged over all dis-

tortion levels. Bold numbers show best accuracy.

Dataset Baseline Finetune Deepcorr

Caltech-101 0.3423 0.7705 0.8034

Caltech-256 0.1756 0.4995 0.5482

SUN-397 0.0859 0.1617 0.2936

torted images using the AlexNet DNN shown in Figure 2.1a, and results are reported in

Table 3.5.

Similar to the evaluation in Section 3.3.1, Gaussian blur and AWGN are now inde-

pendently added to train and test images using the same distortion levels as reported in

Section 2.5 and performance averaged over all distortion levels is reported in Tables3.6-3.7

for deep features extracted using baseline AlexNet, Finetune and Deepcorr models trained

on ImageNet. For each of the three models, a single set of linear SVMs is trained for im-

ages affected by different levels of distortion and also clean images. Both Gaussian blur

43

Table 3.8: Top-1 accuracy of ResNet18-based DNN models for distortion affected images

of the ImageNet validation set (ILSVRC-2012), averaged over all levels of distortion and

clean images. Bold numbers show best accuracy and underlined numbers show next best

accuracy.

Method G.Blur AWGN M.Blur D.Blur Cam.Blur

Baseline 0.3841 0.3255 0.4436 0.3582 0.4749

Finetune 0.5617 0.5970 0.6197 0.5615 0.6041

Finetune-rc 0.5548 0.5898 0.6113 0.5537 0.5973

Deepcorr 0.5808 0.6058 0.6498 0.6005 0.6346

Deepcorr-b 0.5839 0.6087 0.6474 0.5831 0.6365

Deepcorr-rc 0.5821 0.6033 0.6411 0.5785 0.6276

Stability[73] 0.3412 0.3454 0.4265 0.3182 0.4720

and AWGN significantly affect the accuracy of the baseline feature extractor for all three

datasets, with a 41% and 60% drop in respective accuracies for Caltech-101, a 52% and

71% drop in respective accuracies for Caltech-256, and a 55% and 72% drop in respec-

tive mean accuracy for SUN-397, relative to the benchmark performance for clean images.

For Caltech-101, the Deepcorr feature extractor outperforms the Finetune feature extrac-

tor with a 8.5% and 4.2% relative improvement in mean accuracy for Gaussian blur and

AWGN affected images, respectively. For Caltech-256, the Deepcorr feature extractor out-

performs the Finetune feature extractor with a 13.8% and 9.7% relative improvement for

Gaussian blur and AWGN, respectively. Similarly, features extracted using the Deepcorr

model significantly outperform those extracted using the Finetune model for SUN-397,

with a 28.7% and 81.5% relative improvement in mean accuracy for Gaussian blur and

AWGN, respectively. The large performance gap between Deepcorr and Finetune feature

extractors highlights the generic nature of distortion invariant features learnt by our Deep-

Correct models.

44

Table 3.9: Computational performance of ResNet18-based DNN models.

Metric Baseline/ Finetune Deepcorr Deepcorr-b Deepcorr-rc

FLOPs 1.8×109 3.5×109 2.9×109 1.8×109

Trainable params 11.7M 8.41M 5.5M 5.5M

3.3.2 ResNet18 Analysis

Similar to the AlexNet analysis in Section 3.3.1, for ResNet18, the performance of

our proposed DeepCorrect models is evaluated against DNN models trained through fine-

tuning and stability training.

Using the training procedures outlined in Sections 3.3.1 and 3.3.1, fine-tuned and sta-

bility trained models are generated from the baseline ResNet18 DNN by training all layers

(11.7M parameters) of the DNN on a mix of distorted and clean images. Similarly, using

the training procedure of Section 3.3.1, the competing DeepCorrect model is generated

by training correction units that are appended at the output of the most susceptible fil-

ters in the odd-numbered convolutional layers (1 to 17) of the baseline ResNet18 model

right after each skip connection merge (Figure 2.1c). Similar to the AlexNet analysis pre-

sented earlier (Section 3.3.1), three DeepCorrect models (i.e., Deepcorr, Deepcorr-b and

Deepcorr-rc) are generated. For comparison, a rank-constrained model is derived for the

Finetune model using similar decomposition parameters as Deepcorr-rc and the resulting

model is denoted by Finetune-rc. Table 3.8 summarizes the accuracy of ResNet18-based

DNN models against various distortions, while Table 3.9 shows the computational perfor-

mance of the same DNN models, measured in terms of FLOPs and trainable parameters.

Similar to the AlexNet analysis, the detailed architecture and corresponding FLOPs for

each correction unit in our different DeepCorrect models for ResNet18 are shown in Table

3.10.

45

Table 3.10: Correction unit architectures for ResNet18-based DeepCorrect models. The

number following Corr-unit specifies the layer at which correction units are applied. Cor-

rection unit convolutional layers are represented as kxk, d, where kxk is the spatial extent

of a filter and d is the number of filters in a layer. Stacked convolutional layers are enclosed

in brackets, followed by the number of layers stacked.

Model

Corr-unit 1 Corr-unit 3, 5 Corr-unit 7, 9 Corr-unit 11, 13 Corr-unit 15, 17

β1N1 = 48 β2N2 = 48 β3N3 = 96 β4N4 = 192 β5N5 = 384

Output size Output size Output size Output size Output size

112×112 56×56 28×28 14×14 7×7

Deepcorr

1×1, 48 1×1, 48 1×1, 96 1×1, 192 1×1, 384[
3×3, 48

]
×2

[
3×3, 48

]
×2

[
3×3, 96

]
×2

[
3×3, 192

]
×2

[
3×3, 384

]
×2

1×1, 48 1×1, 48 1×1, 96 1×1, 192 1×1, 384

Total FLOPs: 1.7×109 FLOPs: 5.7×108 FLOPs: 1.4×108 FLOPs: 1.4×108 FLOPs: 1.4×108 FLOPs: 1.4×108

Deepcorr-b

1×1, 31 1×1, 31 1×1, 62 1×1, 124 1×1, 248[
3×3, 31

]
×3

[
3×3, 31

]
×3

[
3×3, 62

]
×3

[
3×3, 124

]
×3

[
3×3, 248

]
×3

1×1, 48 1×1, 48 1×1, 96 1×1, 192 1×1, 384

Total FLOPs: 1.1×109 FLOPs: 3.6×108 FLOPs: 9.2×107 FLOPs: 9.2×107 FLOPs: 9.2×107 FLOPs: 9.2×107

Deepcorr-rc

1×1, 31 1×1, 31 1×1, 62 1×1, 124 1×1, 248 3×1, 24

1×3, 31

×3

 3×1, 24

1×3, 31

×3

 3×1, 48

1×3, 62

×3

 3×1, 96

1×3, 124

×3

 3×1, 192

1×3, 248

×3

1×1, 48 1×1, 48 1×1, 96 1×1, 192 1×1, 384

Total FLOPs: 0.6×109 FLOPs: 2.0×108 FLOPs: 5.1×107 FLOPs: 5.1×107 FLOPs: 5.1×107 FLOPs: 5.1×107

From Table 3.8, one can observe that the DeepCorrect models not only significantly

improve the robustness of the baseline DNN model to input distortions but also outperform

the alternative approaches of model fine-tuning and stability training in terms of classi-

fication accuracy. Deepcorr, which trains almost 28% lesser parameters (Table 3.9) than

Finetune, outperforms Finetune by 3.2% for Gaussian blur, 1.47% for AWGN, 4.86% for

motion blur, 6.95% for defocus blur and 5% for camera shake blur. Deepcorr-b, which

trains 50% lesser parameters (Table 3.9) than Finetune, outperforms Finetune by 3.95% for

Gaussian blur, 1.9% for AWGN, 4.46% for motion blur, 3.84% for defocus blur and 5.36%

46

for camera shake blur. Similarly the rank constrained model (Deepcorr-rc), which trains

50% parameters less than Finetune (Table 3.9), outperforms Finetune by 3.63% for Gaus-

sian blur, 1% for AWGN, 3.45% for motion blur, 3% for defocus blur and 3.89% for camera

shake blur. As shown in Tables 3.9 and 3.10, during the testing phase, Deepcorr-b requires

60% more FLOPs relative to the baseline DNN, for evaluating a single image. On the other

hand, for Deepcorr-rc, just using rank-constrained correction units results in a 50% reduc-

tion in FLOPs as compared to Deepcorr-b (Table 3.10), with a 30% additional reduction in

FLOPs relative to baseline ResNet18 achieved by replacing the pre-trained convolutional

layers of baseline ResNet18 with their low-rank approximations. From Tables 3.8 and 3.9,

it can be seen that Deepcorr-rc requires almost the same number of FLOPs as Finetune but

achieves a superior performance than the Finetune and Stability models without sacrificing

inference speed.

3.4 Conclusion

Deep networks trained on pristine images perform poorly when tested on distorted im-

ages affected by image blur or additive noise. Evaluating the effect of Gaussian blur and

AWGN on the activations of convolutional filters trained on undistorted images, one can

observe that select filters in each DNN convolutional layer are more susceptible to input

distortions than the rest. This work proposes a novel objective metric to assess the suscep-

tibility of convolutional filters to distortion and use this metric to identify the filters that

maximize DNN robustness to input distortions, upon correction of their activations.

Correction units, which are residual blocks comprised of a small stack of trainable

convolutional layers and a single skip connection per stack, are proposed for correction

DNN filter activations. These correction units are added at the output of the most distor-

tion susceptible filters in each convolutional layer, whilst leaving the rest of the pre-trained

(on undistorted images) filter outputs in the network unchanged. The resultant DNN mod-

47

els which are referred to as DeepCorrect models, significantly improve the robustness of

DNNs against image distortions and also outperform the alternative approach of network

fine-tuning on common vision tasks like image classification, object recognition and scene

classification, whilst training significantly less parameters and achieving a faster conver-

gence in training. Fine-tuning limits the ability of the network to learn invariance to severe

levels of distortion, and re-training an entire network can be computationally expensive

for very deep networks. By correcting the most distortion-susceptible convolutional filter

outputs, one is not only able to make a DNN robust to severe distortions, but is also able to

maintain a very good performance on clean images.

Although this work focuses majorly on image classification and object recognition, the

proposed approach is not only generic enough to apply to a wide selection of tasks that

use DNN models such as object detection [13],[95] or semantic segmentation [16] but also

other less commonly occurring noise types like adversarial noise.

48

Chapter 4

DEFENDING AGAINST UNIVERSAL ATTACKS THROUGH SELECTIVE FEATURE

REGENERATION

In this chapter, a novel method is proposed to defend DNNs against universal adversarial

perturbations by identifying and robustly regenerating the most adversarially-susceptible

DNN filter activations, followed by extensive experimental validation of the proposed ap-

proach with different DNN architectures, attack norms and also other unseen universal

attacks.

4.1 Introduction

Deep neural network (DNN) predictions have been shown to be vulnerable to carefully

crafted adversarial perturbations. Specifically, image-agnostic (universal adversarial) per-

turbations added to any image can fool a target network into making erroneous predictions.

Departing from existing defense strategies that work mostly in the image domain, this work

presents a novel defense which operates in the DNN feature domain and effectively defends

against such universal perturbations. The proposed approach identifies pre-trained convo-

lutional features that are most vulnerable to adversarial noise and deploys trainable feature

regeneration units which transform these DNN filter activations into resilient features that

are robust to universal perturbations. Regenerating only the top 50% adversarially sus-

ceptible activations in at most 6 DNN layers and leaving all remaining DNN activations

unchanged outperforms existing defense strategies across different network architectures

by more than 10% in restored accuracy. Furthermore, without any additional modification,

the proposed defense trained on ImageNet with only one type of universal attack examples

effectively defends against other types of unseen universal attacks.

49

This chapter is organized as follows. A detailed description of the proposed approach

is presented in Section 4.2, followed with extensive experimental validation in Section 4.3.

Concluding remarks are provided in Section 4.4.

4.2 Feature-Domain Adversarial Defense

This section describes the proposed defense framework which first identifies convolu-

tional filters whose activations are significantly disrupted by adversarial perturbations (Sec-

tion 4.2.1) and then deploys feature regeneration units that transform disrupted features into

resilient features that are robust to universal perturbations (Section 4.2.2). The feature re-

generation units are trained using a target-oriented loss function with synthetic adversarial

perturbations (Section 4.2.4), leaving all the parameters for the underlying baseline DNN

unchanged.

4.2.1 Stability of Convolutional Filters

In this work, the vulnerability of individual convolutional filters is assessed and it is

shown that, for each layer, certain filter activations are significantly more disrupted than

others, especially in the early layers of a DNN.

For a given layer, let φm(u) be the output (activation map) of the mth convolutional filter

with kernel weights Wm for an input u. Let em = φm(u+ r)− φm(u) be the additive noise

(perturbation) that is caused in the output activation map φm(u) as a result of applying an

additive perturbation r to the input u. It can be shown (A) that em is bounded as follows:

‖em‖∞ ≤ ‖Wm‖1‖r‖p (4.1)

where as before ‖ · ‖p is the `p-norm with p ∈ [1,∞). Equation 4.1 shows that the `1-norm

of the filter weights can be used to identify and rank convolutional filter activations in

terms of their ability to restrict perturbation in their activation maps. For example, filters

50

CaffeNet: Conv-1 GoogLeNet: Conv-1

U
p

p
er

 b
o

u
n

d

(
𝑊
1
1
𝑟
∞

)

400

300

200

100

0

0 10 20 30 40 50 60

400

300

200

100

0

0 20 40 60 80 100

(a)

Ranked filters Ranked filters

O
b

se
rv

ed
 ℓ
∞

-n
o

rm
(
𝑒 1

∞
)

400

300

200

100

0

0 10 20 30 40 50 60

400

300

200

100

0

0 20 40 60 80 100

(b)

Figure 4.1: Observed `∞-norm for universal adversarial noise in the activation maps of

ranked convolutional filters (ordered using the proposed `1-norm ranking measure, from

most to least vulnerable) of the first layer of CaffeNet [8] and GoogLeNet [9]. The `∞-

norm attack is used with ξ ≤ 10, i.e. ‖r‖∞ ≤ 10. (a) Adversarial noise upper-bound (Equa-

tion 4.1) in ranked conv-1 filter activations of DNNs. (b) Observed `∞-norm for adversarial

noise in ranked conv-1 filter activations of DNNs.

with a small weight `1-norm would result in insignificant small perturbations in their output

when their input is perturbed, and are thus considered to be less vulnerable to perturbations

in the input. For an `∞-norm universal adversarial input, Figure 4.1a shows the upper-

bound on the adversarial noise in ranked (using the proposed `1-norm ranking) conv-1 filter

activations of CaffeNet [8] and GoogLeNet [9], while Figure 4.1b shows the corresponding

observed `∞-norm for adversarial noise in the respective DNN filter activations. One can

see that the proposed ‖W‖1-based ranking correlates well with the degree of perturbation

51

Top-1 accuracy

Figure 4.2: Effect of masking `∞-norm universal adversarial noise in ranked convolu-

tional filter activations of the first layer in CaffeNet [8], GoogLeNet [9] and VGG-16 [10],

evaluated on a 1000-image subset of the ImageNet [3] training set. Top-1 accuracies for

perturbation-free images are 0.58, 0.70 and 0.69 for CaffeNet, GoogLeNet and VGG-16,

respectively. Similarly, top-1 accuracies for adversarially perturbed images with no noise

masking are 0.1, 0.25 and 0.25 for CaffeNet, GoogLeNet and VGG-16, respectively. Mask-

ing the noise in just 50% of the ranked filter activations restores most of the lost accuracy

for all three DNNs.

(maximum magnitude of the noise perturbation) that is induced in the filter outputs. Similar

observations can be made for other convolutional layers in the network.

Figure 4.2 shows the impact of masking the adversarial noise in such ranked filters on

the overall top-1 accuracy of CaffeNet [8], VGG-16 [10] and GoogLeNet [9]. Specifically,

a subset of 1000 images (1 image per class) is randomly chosen from the ImageNet [3]

training set and adversarially perturbed images are generated by adding an `∞-norm univer-

sal adversarial perturbation [1]. The top-1 accuracies for perturbation-free images are 0.58,

0.70 and 0.69 for CaffeNet, GoogLeNet and VGG-16, respectively. Similarly, the top-1 ac-

curacies for adversarially perturbed images of the same subset are 0.10, 0.25 and 0.25 for

52

Top-1 accuracy Top-1 accuracy

Top-1 accuracy Top-1 accuracy

Figure 4.3: Effect of masking `∞-norm universal adversarial noise in ranked convolutional

filter activations of layers 2-5 (starting from the input) in CaffeNet [8] and VGG-16 [10],

evaluated on a 1000-image subset of the ImageNet [3] training set. Top-1 accuracies for

perturbation-free images are 0.58, 0.69 for CaffeNet and VGG-16, respectively. Similarly,

top-1 accuracies for adversarially perturbed images with no noise masking are 0.1 and 0.25

for CaffeNet and VGG-16, respectively. For VGG-16, masking the noise in just 50% of the

ranked filter activations restores more than≈ 80% of the baseline accuracy on perturbation-

free images.

CaffeNet, GoogLeNet and VGG-16, respectively. Masking the adversarial perturbations

in 50% of the most vulnerable filter activations significantly improves DNN performance,

resulting in top-1 accuracies of 0.56, 0.68 and 0.67 for CaffeNet, GoogLeNet and VGG-16,

respectively, and validates our proposed selective feature regeneration scheme. Similarly,

Figure 4.3, shows the effect of masking `∞-norm adversarial perturbations in ranked filter

53

activation maps of the convolutional layers 2, 3, 4 and 5 of CaffeNet [8] and VGG-16 [10].

For most DNN layers, masking the adversarial perturbations in just the top 50% most sus-

ceptible filter activation maps (identified by using the proposed `1-norm ranking measure)

is able to recover most of the accuracy lost by the baseline DNN (Figure 4.3). Specifically,

masking the adversarial perturbations in the top 50% ranked filters of VGG-16 is able to

restore at least 84% of the baseline accuracy on perturbation-free images.

4.2.2 Resilient Feature Regeneration Defense

The proposed defense is illustrated in Figure 4.4 and seeks to learn a task-driven fea-

ture restoration transform (i.e., feature regeneration unit) for convolutional filter activations

severely disrupted by adversarial input. The feature regeneration unit does not modify the

remaining activations of the baseline DNN. Compared to feature denoising (FD) [37], the

proposed feature regeneration approach has the following differences: (1) Feature regener-

ation units are not restricted to only perform denoising, but consists of stacks of trainable

convolutional layers that provide this proposed defense the flexibility to learn an appropri-

ate feature-restoration transform that effectively defends against universal attacks, unlike

the non-local mean denoiser used in FD; (2) in a selected DNN layer, only a subset of

feature maps which are the most susceptible to adversarial noise (identified by our ranking

metric) are regenerated leaving all other feature maps unchanged, whereas FD denoises all

feature maps, which can result in over-correction or introduce unwanted artifacts in fea-

ture maps that admit very low magnitude noise; (3) instead of adversarially training all the

parameters of the baseline DNN as in FD, this defense only trains the parameters in the

feature renegeration units (up to 90% less parameters than a baseline DNN, see Table 4.1)

and leaves all parameters in the baseline DNN unchanged, which can speed up training,

reduce the risk of over-fitting and also improve robustness to other unseen attacks. A simi-

54

dense dense

Predicted

labels

Feature extraction

RGB image Conv-1 features Conv-2 features Conv-3 features

Classification
Baseline DNN

Frozen parameters from baseline DNN

dense dense

Update of Feature Regeneration units’ trainable parameters through backpropogation

Regenerated features

GT

label

Target-oriented

loss

Feature

Regeneration

unit

Ranked most

susceptible

features

Ranked least

susceptible

features

Feature

concat

Feature

Regeneration

unit

Feature

concat

Figure 4.4: Resilient Feature Regeneration Defense: Convolutional filter activations in the

baseline DNN (top) are first sorted in order of vulnerability to adversarial noise using their

respective filter weight norms (Section 4.2.1). For each considered layer, a feature regener-

ation unit (Figure 4.7) regenerates only the most adversarially susceptible activations into

resilient features that restore the lost accuracy of the baseline DNN, while leaving the re-

maining filter activations unchanged. Feature regeneration units are trained on both clean

and perturbed images in every mini-batch using the same target loss as the baseline DNN

such that all parameters of the baseline DNN are left unchanged during training.

lar approach of learning corrective transforms for making networks more resilient to image

blur and additive white Gaussian noise has been explored in [96].

Let Sl represent a set consisting of indices for convolutional filters in the lth layer of a

DNN. Furthermore, let Slreg be the set of indices for filters one wishes to regenerate (Sec-

tion 4.2.1) and let Sladv be the set of indices for filters whose activations are not regenerated

(i.e., Sl = Slreg ∪Sladv). If ΦSlreg
represents the convolutional filter outputs to be regenerated

in the lth layer, then the feature regeneration unit in layer l performs a feature regeneration

55

transform Dl(·) under the following conditions:

Dl(ΦSlreg
(u+ r))≈ΦSlreg

(u) (4.2)

and

Dl(ΦSlreg
(u))≈ΦSlreg

(u) (4.3)

where u is the unperturbed input to the lth layer of convolutional filters and r is an addi-

tive perturbation that acts on u. In Equations 4.2 and 4.3, ≈ denotes similarity based on

classification accuracy in the sense that features are restored to regain the classification ac-

curacy of the original perturbation-free activation map. Equation 4.2 forces Dl(·) to pursue

task-driven feature regeneration that restores lost accuracy of the DNN while Equation 4.3

ensures that prediction accuracy on unperturbed activations is not decreased, without any

additional adversarial perturbation detector. Dl(·) (i.e., feature regeneration unit) is im-

plemented as a shallow residual block [7], consisting of two stacked 3× 3 convolutional

layers sandwiched between a couple of 1× 1 convolutional layers and a single skip con-

nection (Figure 4.7). Dl(·) is estimated using a target loss from the baseline network,

through backpropagation, see Figure 4.4, but with significantly fewer trainable parameters

compared to the baseline network (Table 4.1).

Given an L layered DNN Φ, pre-trained for an image classification task, Φ can be

represented as a function that maps network input x to an N-dimensional output label vector

Φ(x) as follows:

Φ = ΦL ◦ΦL−1 ◦ . . .Φ2 ◦Φ1 (4.4)

where Φl is a mapping function (set of convolutional filters, typically followed by a non-

linearity) representing the lth DNN layer and N is the dimensionality of the DNN’s output

(i.e., number of classes). Without any loss of generality, the resulting DNN after deploying

a feature regeneration unit that operates on the set of filters represented by Slreg in layer l is

56

given by:

Φreg = ΦL ◦ΦL−1 ◦ . . .Φlreg . . .Φ2 ◦Φ1 (4.5)

where Φlreg represents the new mapping function for layer l, such that Dl(·) regenerates

only activations of the filter subset ΦSlreg
and all the remaining filter activations (i.e., ΦSladv

)

are left unchanged. If Dl(·) is parameterized by θl , then the feature regeneration unit can

be trained by minimizing:

J (θl) =
1
K

K

∑
k=1

L(yk,Φreg(xk)) (4.6)

where L is the same target loss function of the baseline DNN (e.g., cross-entropy classifi-

cation loss), yk is the target output label for the kth input image xk, K represents the total

number of images in the training set consisting of both clean and perturbed images. As both

clean and perturbed images are used during training, xk in Equation 4.6, represents a clean

or an adversarially perturbed image. Figure 4.5 visualizes DNN feature maps perturbed

by various universal perturbations and the corresponding feature maps regenerated by the

feature regeneration units, which are only trained on UAP [1] attack examples. Compared

to the perturbation-free feature map (clean), corresponding feature maps for adversarially

perturbed images (Row 1) have distinctly visible artifacts that reflect the universal pertur-

bation pattern in major parts of the image. In comparison, feature maps regenerated by the

proposed feature regeneration units (Row 2) effectively suppress these adversarial pertur-

bations, preserve the object discriminative attributes of the clean feature map and are also

robust to unseen attacks (e.g, NAG [53], GAP [55] and sPGD [2]), as illustrated in Fig-

ure 4.5 and Table 4.6. Similarly, additional high resolution visualizations of DNN feature

maps before and after resilient feature regeneration using the proposed defense framework

are shown in Figure 4.6.

57

Clean

UAP NAG GAP sPGD

Figure 4.5: Effectiveness of feature regeneration units at masking adversarial perturbations

in DNN feature maps for images perturbed by universal perturbations (UAP [1], NAG [53],

GAP [55] and sPGD [2]). Perturbation-free feature map (clean), different adversarially

perturbed feature maps (Row 1) and corresponding feature maps regenerated by feature

regeneration units (Row 2) are obtained for a single filter channel in conv1 1 layer of

VGG-16 [10], along with an enlarged view of a small region in the feature map (yellow

box). Feature regeneration units are only trained on UAP [1] attack examples but are very

effective at suppressing adversarial artifacts generated by unseen attacks (e.g., NAG [53],

GAP [55] and sPGD [2]).

4.2.3 Design of Feature Regeneration Unit

A defense that only alters the existing weights of a network has to effectively relearn all

its features to not only be discriminative but also be adversarially robust, whereas my mo-

tivation is to preserve the original discriminative (adversarially susceptible) features of the

network and simply augment its knowledge with additional simple restoration transforms

(adversarial robustness) learnt by the feature regeneration units. The feature regeneration

unit architecture adopted in this work (Figure 4.7) is guided by the following constraints:

1) have adequate capacity to learn an effective restoration transform but also minimize the

number of additional trainable parameters added, 2) be simple to implement and generic

enough to be readily integrated into all existing DNN architectures. With these constraints,

58

Clean feature map

Clean Image UAP NAG GAP sPGD

Clean feature map

Clean Image

Clean feature map

Clean Image

Figure 4.6: Examples of DNN feature maps before and after feature regeneration using the

proposed method. Perturbation-free feature map (clean feature map), different adversari-

ally perturbed feature maps (Rows 1, 3 and 5) and corresponding feature maps regenerated

by feature regeneration units (Rows 2, 4 and 6) are obtained for a single filter channel in

conv1 1 layer of VGG-16 [10].

59

+

1
x1

-c
o

n
v-
𝐷
𝑖

3
x3

-c
o

n
v-
𝐷
𝑖

3
x3

-c
o

n
v-
𝐷
𝑖

1
x1

-c
o

n
v-
𝑁
𝑖

𝑁𝑖
most susceptible

filter maps

𝑁𝑖
regenerated filter

maps

Figure 4.7: Feature regeneration unit acting on the activations of the Ni most susceptible

filters in layer i of a DNN. Di represents the feature regeneration unit kernel depth and has

a default value of Ni. All convolutional layers except the final 1×1 layer are also followed

by batch normalization and a ReLU non-linearity. # parameters per feature regeneration

unit ≈ 18D2
i + 2NiDi.

a shallow residual block such as the one shown in Figure 4.7 works well. Using 1×1 convo-

lutions as the input and output mapping layers of the feature regeneration unit also enables

it to adopt a bottleneck architecture (i.e. Di < Ni in Figure 4.7) for resource-constrained

environments. The proposed feature regeneration unit architecture is not the only pos-

sible solution and other more complex sub-networks could also be incorporated into the

proposed defense as an interesting direction for future research. As the proposed defense

formulation does not rely on assumptions about the exact architecture of the feature regen-

eration unit except that it has adequate capacity, the defense is expected to be insensitive

to the specific choice of the feature regeneration unit architecture. Table 4.1 shows the

total number of parameters used by the feature regeneration units for each evaluated DNN.

Compared to the number of trainable parameters in the baseline DNN, the feature regener-

ation units require far less parameters.

4.2.4 Generating Synthetic Perturbations

Training-based approaches are susceptible to data overfitting, especially when the train-

ing data is scarce or does not have adequate diversity. Generating a diverse set of adver-

60

Table 4.1: Trainable parameters for DNN models.

Methods CaffeNet VGG-F GoogLeNet VGG-16 Res152

Baseline 61M 61M 6.9M 131M 60M

Ours (FRUs) 2.2M 1.7M 1.4M 1.6M 2.5M

sarial perturbations (≥ 100) using existing attack algorithms (e.g., [1, 53, 55, 2]), in order

to avoid overfitting, can be computationally prohibitive. A fast method (Algorithm 2) is

proposed to construct synthetic universal adversarial perturbations from a small set of ad-

versarial perturbations, V ⊆ Rd , that is computed using any existing universal attack gen-

eration method ([1, 53, 55, 2]). Starting with the synthetic perturbation vsyn set to zero, at

each iteration t, a random perturbation vnew ∈ V and a random scale factor α ∈ [0,1] are

selected and vsyn is updated as follows:

vsyn(t) = αvnew +(1−α)vsyn(t−1) (4.7)

This process is repeated until the `2-norm of vsyn exceeds a threshold η . The threshold η

is set to be the minimum `2-norm of perturbations in the set V .

Unlike the approach of Akhtar et al. [52], which uses an iterative random walk along

pre-computed adversarial directions, the proposed algorithm has two distinct advantages:

1) the same algorithm can be used for different types of attack norms without any modifi-

cation, and 2) Equation 4.7 (Step 5 in Algorithm 2) automatically ensures that the `∞-norm

of the perturbation does not violate the constraint for an `∞-norm attack (i.e., `∞-norm≤ ξ)

and, therefore, no additional steps, like computing a separate perturbation unit vector and

ensuring that the resultant perturbation strength is less than ξ , are needed.

Sample visualizations of synthetic adversarial perturbations generated using the algo-

rithm proposed in Section 4.2.4 (Algorithm 2) are provided in Figure 4.8.

61

Algorithm 2 Generating Synthetic Adversarial Perturbation

Input: Set of pre-computed perturbations V ⊆ Rd such that vi ∈ V is the ith perturbation and η is

an adjustable threshold

Output: Synthetic perturbation vsyn ∈ Rd

1: vsyn = 0

2: while ‖vsyn‖2 ≤ η do

3: α ∼ uniform(0,1)

4: vnew
rand∼ V

5: vsyn = αvnew +(1−α)vsyn

6: end while

7: return vsyn

4.3 Assessment

The ImageNet validation set (ILSVRC2012) [3] with all 50000 images and a single

crop evaluation (unless specified otherwise) is used in all experiments. All experiments are

implemented using Caffe [11] and for each tested attack the publicly provided code is used.

Results are reported in terms of top-1 accuracy and the restoration accuracy proposed by

Akhtar et al. [52]. Given a set Ic containing clean images and a set Ip/c containing clean

and perturbed images in equal numbers, the restoration accuracy is given by:

Restoration accuracy =
acc(Ip/c)

acc(Ic)
(4.8)

where acc(·) is the top-1 accuracy and acc(Ic) refers to the top-1 accuracy of the baseline

DNN (no defense) on Ic. The universal adversarial perturbation (UAP) attack [1] is used for

evaluation (unless specified otherwise) and 5 independent universal adversarial test pertur-

bations per network are computed using a set of 10000 held out images randomly chosen

from the ImageNet training set with the fooling ratio for each perturbation lower-bounded

62

C
af

fe
N

et

-n

or
m

 =
 1

0

Closest match Synthetic Difference map

Fooling ratio: 0.8 Fooling ratio: 0.78

Fooling ratio: 0.75 Fooling ratio: 0.72

G
oo

gL
eN

et

-n

or
m

 =
 1

0

Figure 4.8: Visualization of synthetic perturbations (center) computed for CaffeNet [8] and

GoogLeNet [9] along with their closest match in the set of original perturbations (left) and

a per pixel difference map between the two (right). Closest match is identified as the the

perturbation in the original set V which produces the smallest pixel-wise mean squared

error with the synthetic perturbation.

to 0.8 on the held out images and the maximum normalized inner product between any two

perturbations for the same DNN upper-bounded to 0.15. Sample visualizations of `∞-norm

and `2-norm UAP [1] attack perturbations used for testing are shown in Figure 4.9.

4.3.1 Defense Training Methodology

In this proposed defense (Figure 4.4), only the parameters for feature regeneration

units have to be trained and these parameters are updated to minimize the cost function

given by Equation 4.6. Although one can expect the prediction performance of defended

models to improve with higher regeneration ratios (i.e., fraction of convolutional filter ac-

tivations regenerated), only 50% of the convolutional filter activations in a layer are regen-

erated and the number of deployed feature regeneration units (1 per layer) is limited to

63

CaffeNet: - norm attack with = 10

CaffeNet: - norm attack with = 2000

GoogLeNet: - norm attack with = 10

GoogLeNet: - norm attack with = 2000

Figure 4.9: Visual examples of `∞-norm and `2-norm UAP [1] attack test perturbations for

CaffeNet [8] and GoogLeNet [9].

64

min(#DNN layers,6). From Figure 4.2 and Figure 4.3, one can observe that an empirical

regeneration ratio of 50% works well. Similarly, although feature regeneration units can

be deployed for each layer in a DNN, it can be shown (Section 4.3.2 and Figure 4.10) that

regenerating features in at most 6 layers in a DNN effectively recovers lost prediction per-

formance. Using Algorithm 2, 2000 synthetic perturbations are generated from a set V of

25 original perturbations [1] and feature regeneration units are trained using a single Nvidia

Titan-X using a standard SGD optimizer, momentum of 0.9 and a weight decay of 0.0005

for 4 epochs of the ImageNet training set [3]. The learning rate is dropped by a factor of

10 after each epoch with an initial learning rate of 0.1. After a defense model has been

trained as outlined above, one can further iterate through the training of this defense with

additional adversarial perturbations computed against the proposed defense, which ensures

robustness to secondary attacks against this proposed defense (Section 4.3.2).

4.3.2 Analysis and Comparisons

Robustness Across DNN Architectures

Top-1 accuracy of adversarially perturbed test images for various DNNs (no defense) and

the proposed defense for respective DNNs is reported in Table 4.2 under both white-box

(same network used to generate and test attack) and black-box (tested network is different

from network used to generate attack) settings. As universal adversarial perturbations can

be doubly universal, under a black-box setting, a target DNN defense (defense is trained

for attacks on target DNN) is evaluated against a perturbation generated for a different

network. Top-1 accuracy for baseline DNNs is severely affected by both white-box and

black-box attacks, whereas the proposed defense is not only able to effectively thwart the

white-box attacks but is also able to generalize to attacks constructed for other networks

without further training (Table 4.2). Since different DNNs can share common adversarial

65

Table 4.2: Cross-DNN evaluation on ILSVRC2012: Top-1 accuracy against a `∞-norm

UAP [1] attack with ξ = 10 and target fooling ratio of 0.8. DNNs in column one are tested

with attacks generated for DNNs in row one.

CaffeNet VGG-F GoogleNet VGG-16 Res152

CaffeNet [8], orginal accuracy 56.4%

CaffeNet 0.109 0.298 0.456 0.431 0.405

Ours 0.542 0.524 0.510 0.457 0.470

VGG-F [86], original accuracy 58.4%

VGG-F 0.299 0.150 0.461 0.417 0.426

Ours 0.556 0.550 0.548 0.492 0.513

GoogLeNet [9], original accuracy 68.6%

GoogLeNet 0.519 0.539 0.260 0.472 0.473

Ours 0.651 0.653 0.653 0.637 0.642

VGG-16 [10], original accuracy 68.4%

VGG-16 0.549 0.559 0.519 0.240 0.484

Ours 0.615 0.622 0.646 0.655 0.631

Res152 [7], original accuracy 79%

Res152 0.720 0.726 0.692 0.626 0.270

Ours 0.764 0.769 0.769 0.763 0.761

directions in their feature space, the proposed feature regeneration units learn to regularize

such directions against unseen data and, consequently, to defend against black-box attacks.

Robustness Across Attack Norms

Here, defense robustness is evaluated against both `∞-norm and `2-norm UAP [1] attacks.

Since an effective defense must not only recover the DNN accuracy against adversarial im-

ages but must also maintain a high accuracy on clean images, restoration accuracy (Equa-

66

Table 4.3: Same-norm evaluation on ILSVRC2012: Restoration accuracy of DNNs and

defenses against an `∞-norm UAP [1] attack with ξ = 10.

Methods CaffeNet VGG-F GoogLeNet VGG-16 Res152

`∞-norm attack, ξ = 10

Baseline 0.596 0.628 0.691 0.681 0.670

PRN [52] 0.936 0.903 0.956 0.690 0.834

PRN+det [52] 0.952 0.922 0.964 0.690 0.834

PD [40] 0.873 0.813 0.884 0.818 0.845

JPEG comp. [41] 0.554 0.697 0.830 0.693 0.670

Feat. Distill. [44] 0.671 0.689 0.851 0.717 0.676

HGD [45] n/a n/a n/a n/a 0.739

Adv. tr. [22] n/a n/a n/a n/a 0.778

FD [37] n/a n/a n/a n/a 0.819

Ours 0.976 0.967 0.970 0.963 0.982

tion 4.8) is used to measure adversarial defense robustness (Tables 4.3 and 4.4). While

Akhtar et al. [52] (PRN and PRN+det) only report defense results on the UAP [1] attack,

the obtained results are also compared with pixel-domain defenses such as Pixel Deflection

(PD [40]) and High Level Guided Denoiser (HGD [45]), defenses that use JPEG com-

pression (JPEG comp. [41]) or DNN-based compression like Feature Distillation (Feat.

Distill. [44]), defenses that use some variation of adversarial training like Feature Denois-

ing (FD [37]) and standard Adversarial training (Adv. tr. [22]).

In Table 4.3, results are reported for an `∞-norm UAP attack [1] against various DNNs

and show that the proposed defense outperforms all the other defenses 1 for all networks

with the highest restoration accuracy (98.2%) being achieved for Res152 [7]. The feature

1FD [37], HGD [45] and Adv. tr. [22] defenses publicly provide trained defense models only for
Res152 [7]) among the evaluated DNNs; results are reported using only the DNN models provided by the
respective authors.

67

Table 4.4: Cross-norm evaluation on ILSVRC2012: Restoration accuracy against an `2-

norm UAP [1] attack. The proposed defense, as well as the other defense models, are

trained only on `∞-norm attack examples with ξ = 10.

Methods CaffeNet VGG-F GoogLeNet VGG-16 Res152

`2-norm attack, ξ = 2000

Baseline 0.677 0.671 0.682 0.697 0.709

PRN [52] 0.922 0.880 0.971 0.834 0.868

PRN+det [52] 0.936 0.900 0.975 0.835 0.868

PD [40] 0.782 0.784 0.857 0.809 0.840

HGD [45] n/a n/a n/a n/a 0.730

Adv. tr. [22] n/a n/a n/a n/a 0.778

FD [37] n/a n/a n/a n/a 0.818

Ours 0.964 0.961 0.912 0.876 0.926

regeneration units are trained on `∞-norm attack examples (same-norm evaluation). Even

without a perturbation detector, the proposed defense outperforms the existing defense with

a perturbation detector (PRN+det) of Akhtar et al. [52] for all networks. Similarly, for

Res152 [7], the proposed defense outperforms adversarially trained defenses (FD [37],

Adv. tr. [22]) and pixel denoisers (PD [40], HGD [45]) by more than 10%. Table 4.4 also

evaluates how well the proposed defense trained on an `∞-norm attack defends against an

`2-norm attack (cross-norm evaluation). The feature regeneration units are able to effec-

tively generalize to even cross-norm attacks and outperform all other defenses for most

DNNs.

Feature Regeneration Unit: An Ablation Study

In general, feature regeneration units can be added at the output of each convolutional

layer in a DNN. However, this may come at the cost of increased computations, due to an

68

Number of feature regeneration units

R
es

to
ra

tio
n

ac
cu

ra
cy

Figure 4.10: Effect of adding feature regeneration units on the restoration accuracy of the

proposed defense. Adding just two feature regeneration units in GoogLeNet [9] achieves a

restoration accuracy of 97% and adding more feature regeneration units to the DNN does

not improve results any further. For VGG-16 [10], adding 6 feature regeneration units

provides best results.

increase in the number of DNN parameters. As mentioned in Section 4.3.1, the number

of feature regeneration units added to the DNN is constrained in order to avoid drastically

increasing the training and inference cost for larger DNNs (i.e., VGG-16, GoogLeNet and

ResNet-152). Here, an ablation study is performed to identify the least number of feature

regeneration units needed to at least achieve a 95% restoration accuracy across most DNNs.

Specifically, VGG-16 [10] and GoogLeNet [9] are used for this analysis. The restoration

accuracy is evaluated on the ImageNet [3] validation set (ILSVRC2012) by adding an in-

creasing number of feature regeneration units, starting from a minimum value of 2 towards

a maximum value of 10 in steps of 2. Starting from the first convolutional layer in a DNN,

each additional feature regeneration unit is added at the output of every second convolu-

tional layer. Figure 4.10 reports the results of this ablation study and it can be observed

that for GoogLeNet, adding just two feature regeneration units achieves a restoration accu-

69

Table 4.5: Restoration accuracy on ILSVRC2012 for `∞-norm UAP [1] attack with stronger

perturbation strengths (ξ) against CaffeNet. The proposed defense, as well as the other

defense models, are trained only on `∞-norm attack examples with ξ =10.

Method ξ = 10 ξ = 15 ξ = 20 ξ = 25

Baseline 0.596 0.543 0.525 0.519

PRN [52] 0.936 0.603 0.555 0.526

PRN+det [52] 0.952 0.604 0.555 0.526

PD [40] 0.873 0.616 0.549 0.524

Ours 0.976 0.952 0.896 0.854

racy of 97% and adding any more feature regeneration units does not have any significant

impact on the restoration accuracy. However, for VGG-16, adding only 2 feature regener-

ation units achieves a restoration accuracy of only 91%. For VGG-16, adding more feature

regeneration units improves the performance with the best restoration accuracy of 96.2%

achieved with 6 feature regeneration units. Adding more than 6 feature regeneration units

resulted in a minor drop in restoration accuracy and this may be due to data over-fitting.

As a result, the number of feature regeneration units deployed for any DNN is restricted to

min(#DNN layers,6).

Stronger Attack Perturbations (ξ > 10)

Although an attack perturbation strength ξ = 10 is used during training, in Table 4.5, the

robustness of the proposed defense is evaluated for the case when the adversary violates the

attack threat model using a higher perturbation strength. Compared to the baseline DNN

(no defense) as well as PRN [52] and PD [40], the proposed defense is much more effective

at defending against stronger perturbations, outperforming other defenses by almost 30%

even when the attack strength is more than double the value used to train our defense. Al-

70

Table 4.6: Robustness to unseen attacks: Restoration accuracy evaluated on ILSVRC2012,

against other unseen universal attacks using our defense trained on just `∞-norm UAP [1]

attack examples with a fooling ratio and `∞-norm of 0.8 and 10, respectively. Results

for all other defenses are reported using publicly provided defense models. Attacks are

constructed for the baseline DNN.

CaffeNet Res152

Methods FFF [54] NAG [53] S.Fool [56] GAP [55] G-UAP [58] sPGD [2]

Baseline 0.645 0.670 0.815 0.640 0.726 0.671

PRN [52] 0.729 0.660 0.732 0.774 0.777 0.823

PD [40] 0.847 0.767 0.871 0.784 0.807 0.890

HGD [45] n/a n/a n/a 0.663 0.782 0.932

Adv. tr [22] n/a n/a n/a 0.776 0.777 0.775

FD [37] n/a n/a n/a 0.815 0.813 0.815

Ours 0.941 0.840 0.914 0.922 0.914 0.976

though defense robustness decreases for unseen higher perturbation strengths, the proposed

defense handles this drop-off much more gracefully and shows much better generalization

across attack perturbation strengths, as compared to existing defenses. Furthermore, one

can also see that adversarial perturbations are no longer visually imperceptible at ξ = 25.

Generalization to Unseen Universal Attacks

Although the proposed method effectively defends against UAP [1] attacks (Tables4.2-4.5),

its robustness to other unseen universal attacks is also assessed without additional attack-

specific training. Note that [52] and [2] do not cover this experimental setting. Since

existing attacks in the literature are tailored to specific DNNs, CaffeNet [8] and Res152 [7]

DNNs are used for covering a variety of universal attacks like Fast Feature Fool (FFF) [54],

Network for adversary generation (NAG) [53], Singular fool (S.Fool) [56], Generative ad-

71

versarial perturbation (GAP) [55], Generalizable data-free universal adversarial perturba-

tion (G-UAP) [58], and stochastic PGD (sPGD) [2].

The proposed defense trained on just UAP [1] attack examples is able to effectively

defend against all other universal attacks and outperforms all other existing defenses (Ta-

ble 4.6). Even against stronger universal attacks like NAG [53] and GAP [55], the proposed

defense outperforms all other defenses including PRN [52], which is also trained on similar

UAP [1] attack examples, by almost 10%. From the results in Table 4.6, one can see that

the proposed feature regeneration units learn transformations that generalize effectively

across perturbation patterns (Figure 4.5). Note that this work is the first to show such broad

generalization across universal attacks.

Robustness to Attacks Using Surrogate Defense DNNs

The work in this section evaluates if it is possible for an attacker/adversary to construct

a surrogate defense network if it was known that this proposed defense was adopted. In

situations where exact defense (feature regeneration units + baseline DNN) is typically

hidden from the attacker (oracle), a DNN predicting output labels similar to the defense

(surrogate) can be useful to generate new attacks only if an attack generated using the sur-

rogate is transferable to the oracle. UAP [1] attacks are transferable across baseline DNNs

(Table 4.2), i.e., adversarial perturbation computed for a DNN whose model weights and

architecture are known (surrogate) can also effectively fool another target DNN that has a

similar prediction accuracy, but whose model weights and architecture are not known to the

attacker (oracle). Assuming that the proposed defense (feature regeneration units + base-

line DNN) for CaffeNet [8] and Res152 [7] is available publicly as a surrogate, universal

attack examples computed from these DNNs may be used to attack proposed defenses for

other DNNs, e.g. VGG-F or VGG-16 as an oracle. Table 4.7 shows that the proposed de-

72

Table 4.7: Defense restoration accuracy for oracle DNNs equipped with our defense for

an `∞-norm UAP [1] attack (ξ = 10) using surrogate defense DNNs equipped with our

defense.

Surrogate
Oracle

VGG-F + defense GoogLeNet + defense VGG-16 + defense

CaffeNet + defense 0.906 0.963 0.942

Res152 + defense 0.889 0.925 0.925

fense mechanism successfully breaks attack transferability and is not susceptible to attacks

from surrogate DNNs that are based on the proposed defense.

Robustness to Secondary White-Box Attacks

Although in practical situations, an attacker may not have full or even partial knowledge of

a defense, for completeness, the proposed defense is evaluated against a white-box attack

on the defense (secondary attacks), i.e., adversary has full access to the gradient informa-

tion of the feature regeneration units. The UAP [1] attack (on CaffeNet) and sPGD [2] (on

Res152) attacks are used for this evaluation.

Figure 4.11 shows the robustness of the proposed defense to such a secondary UAP [1]

attack seeking to achieve a target fooling ratio of 0.85 on it for the CaffeNet [8] DNN. Such

an attack can easily converge (achieve target fooling ratio) against a baseline DNN in less

than 2 attack epochs, eventually achieving a final fooling ratio of 0.9. Similarly, one can

observe that even PRN [52] is susceptible to a secondary UAP [1] attack, achieving a fool-

ing ratio of 0.87, when the adversary can access gradient information for its Perturbation

Rectifying Network. In comparison, using the proposed defense model with iterative adver-

sarial example training (as described in Section 4.3.1), the white-box adversary can achieve

a maximum fooling ratio of only 0.42, which is 48% lower than the fooling ratio achieved

73

0.850.84
0.88 0.91

0.81
0.83 0.85 0.84

0.86 0.87

0.18 0.17
0.21

0.23
0.27 0.29

0.37 0.38 0.4
0.41 0.41 0.41 0.42 0.42 0.42

0.42

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 2 4 6 8 10 20 40 60 80 100 200 300 400 500 600

Target fooling ratio No defense PRN Ours

Attack epochs

A
ch

ie
ve

d
 F

o
o

lin
g

ra
ti

o

Figure 4.11: Robustness to white-box attacks against defense (secondary attacks):

Achieved fooling ratio by attacker vs. attack epochs for an `∞-norm UAP [1] attack

(ξ = 10) against CaffeNet [8], where the attacker has full knowledge of the baseline DNN

and also the defense. The target fooling ratio for attack is set to 0.85.

Table 4.8: Top-1 accuracy for white-box `∞-norm sPGD [2] attack against Res152-based

`∞-norm defenses (ξ = 10), evaluated on ILSVRC2012. Top-1 accuracy for Res152 on

clean images is 0.79.

Baseline Ours FD [37] Adv. tr. [22] HGD [45] Shared tr. [2]2

0.270 0.731 0.641 0.635 0.689 0.727

against PRN [52], even after attacking this proposed defense for 600 attack epochs. Sim-

ilarly, using the same attack setup outlined in [2], Table 4.8 shows results for white-box

sPGD [2] attacks computed by utilizing gradient-information of both the defense and the

baseline DNNs, for Res152 [7]. Table 4.8 shows that the proposed defense trained using

sPGD attack examples computed against both the baseline DNN and the proposed defense,

is robust to subsequent sPGD white-box attacks.
2As an implementation of Shared Adversarial Training (Shared tr. [2]) was not publicly available, results

are reported as published by the authors in [2] and which were only provided for white-box attacks computed

against the defense, whereas results for white-box attacks against the baseline DNN were not provided.

74

4.4 Conclusion

This work shows that masking adversarial noise in a few select DNN activations signif-

icantly improves their adversarial robustness. To this end, a novel selective feature regener-

ation approach that effectively defends against universal perturbations is proposed, unlike

existing adversarial defenses which either pre-process the input image to remove adversar-

ial noise and/or retrain the entire baseline DNN through adversarial training. The `1-norm

of the convolutional filter kernel weights was shown to be an effective way to rank con-

volutional filters in terms of their susceptibility to adversarial perturbations. Regenerating

only the top 50% ranked adversarially susceptible features in a few DNN layers is enough

to restore DNN robustness and outperform all existing defenses. Extensive validation of

the proposed method by comparing against existing state-of-the-art defenses and shows

better generalization across different DNNs, attack norms and even unseen attack pertur-

bation strengths. In contrast to existing approaches, the proposed defense trained solely on

one type of universal adversarial attack examples effectively defends against other unseen

universal attacks, without additional attack-specific training.

75

Chapter 5

CONCLUSION

This work proposes methods for improving the robustness of DNNs against commonly oc-

curring image distortions as well as carefully crafted universal (image-agnostic) adversarial

perturbations. The first method which is called DeepCorrect, identifies the most distortion

susceptible DNN activations using a novel objective ranking measure and corrects these

activation maps to improve classification in the presence of image distortions. The second

method tackles the challenge of making DNNs robust to carefully crafted image-agnostic

universal adversarial perturbations by identifying adversarially susceptible DNN filter ac-

tivations and transforming such activations into adversarially resilient features using train-

able feature regeneration units. This chapter summarizes the main contributions of this

work and suggests directions for future research.

5.1 Contributions

The main contributions of this thesis are summarized as follows:

• The effect of common image distortions like Gaussian blur and Additive White Gaus-

sian Noise (AWGN) on the outputs of pre-trained convolutional filters is evaluated. It

is observed that for every layer of convolutional filters in the DNN, certain filters are

more susceptible to input distortions than others and that correcting the activations

of these filters can help recover lost performance.

• A novel metric which uses the change in DNN prediction accuracy before and after

correction of distortion-affected feature activations is proposed in order to identify

and rank DNN filters in the order of highest susceptibility to input distortion.

76

• The worst distortion-affected filter activations in a DNN layer are corrected by ap-

pending correction units, which are small blocks of stacked convolutional layers

trained using a target-oriented loss, at the output of select filters, whilst the rest of

the pre-trained filter outputs in a DNN are left unchanged.

• Full-rank convolutions in DeepCorrect models are replaced with rank-constrained

approximations consisting of a sequence of separable convolutions with rectangu-

lar kernels to mitigate the additional computational cost introduced by the proposed

correction units. The resulting pruned DeepCorrect models have almost the same

computational cost as the respective pre-trained DNN, during inference.

• Showing the existence of a set of vulnerable convolutional filters, that are largely

responsible for erroneous predictions made by a DNN in an adversarial setting. Fur-

thermore, the `1-norm of the convolutional filter weights is shown to effectively iden-

tify such filters, and masking the noise in their activations is able to prevent erroneous

predictions.

• Unlike, existing image-domain defenses, the proposed DNN feature domain-based

defense uses trainable feature regeneration units, which regenerate activations of

the aforementioned vulnerable convolutional filters into resilient features (adversarial

noise masking) whilst leaving all remaining activations in the DNN unchanged.

• A fast method is proposed to generate strong synthetic adversarial perturbations for

training.

• Extensive evaluation on a variety of DNN architectures shows that the proposed de-

fense outperforms all other existing defenses [52, 40, 37, 45, 22, 2]

• Without any additional attack-specific training, the proposed defense trained only on

one type of universal attack [1] is shown to effectively defend against other differ-

77

ent unseen universal attacks [53, 54, 55, 2, 56, 58] and this is the first work in the

literature to show such broad generalization across different universal attacks.

5.2 Future Research Directions

The proposed methods in this work provide interesting insights into the susceptibility

of DNNs and open up other future research directions. Some of the possible directions for

further research using the proposed methods are:

• The proposed convolutional filter ranking measure can be further extending to im-

prove the generic technique of fine-tuning where only select filters are fine-tuned,

reducing computational complexity during training and also improving generaliza-

tion.

• The proposed method of feature correction can be further extended to other vision

tasks such as object detection, image segmentation and image transformation.

• A Neural Architecture Search (NAS) can be explored for identifying the optimal

design and layer depth for the feature regeneration units.

• Adversarially robust DNN architectures and training methods that produce convolu-

tional filter kernels that have a small `1-norm (i.e. DNNs with sparse convolutional

filter kernels) can be explored.

78

REFERENCES

[1] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 86–94.

[2] C. K. Mummadi, T. Brox, and J. H. Metzen, “Defending against universal pertur-
bations with shared adversarial training,” in The IEEE International Conference on
Computer Vision (ICCV), Oct 2019.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2009, pp. 248–255.

[4] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object
categories,” in Computer Vision and Image Understanding, vol. 106, no. 1. Elsevier,
2007, pp. 59–70. [Online]. Available: http://www.vision.caltech.edu/Image Datasets/
Caltech101/

[5] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.
[Online]. Available: http://www.vision.caltech.edu/Image Datasets/Caltech256/

[6] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-
scale scene recognition from abbey to zoo,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2010, pp. 3485–3492.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1556

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[12] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

79

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://arxiv.org/abs/1409.1556
https://github.com/fchollet/keras

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accu-
rate object detection and semantic segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Advances in Neural Information Pro-
cessing Systems, 2015, pp. 91–99.

[15] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 779–788.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft COCO: Common objects in context,” in European Conference on
Computer Vision. Springer, 2014, pp. 740–755.

[17] S. Dodge and L. Karam, “Understanding how image quality affects deep neural net-
works,” in Eighth International Conference on Quality of Multimedia Experience,
2016, pp. 1–6.

[18] S. F. Dodge and L. J. Karam, “A study and comparison of human and deep learning
recognition performance under visual distortions,” in Proceedings of the IEEE Inter-
national Conference on Computer Communications and Networks, 2017, pp. 1–7.

[19] ——, “Human and DNN Classification Performance on Images with Quality Distor-
tions: A Comparative Study,” ACM Transactions on Applied Perception, pp. 1–19,
2019.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[21] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[22] A. S. L. T. D. V. A. Madry, A. Makelov, “Towards deep learning models resistant to
adversarial attacks,” in International Conference on Learning Representations, 2018.

[23] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in
IEEE Symposium on Security and Privacy, 2017, pp. 39–57.

[24] J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative models,” CoRR,
vol. abs/1702.06832, 2017.

[25] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and accu-
rate method to fool deep neural networks,” in IEEE Conference on Computer Vision
and Pattern Recognition, June 2016, pp. 2574–2582.

[26] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in ACM Asia Conference on Computer
and Communications Security, 2017, pp. 506–519.

80

[27] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” CoRR, vol. abs/1607.02533, 2016.

[28] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in IEEE European Symposium on
Security and Privacy, 2016, pp. 372–387.

[29] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversar-
ial examples,” in Proceedings of the International Conference on Machine Learning
(ICML), 2018, pp. 284–293.

[30] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning models,”
CoRR, vol. abs/1707.08945, 2017.

[31] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial samples
and black-box attacks,” CoRR, vol. abs/1611.02770, 2016.

[32] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples,” CoRR, vol.
abs/1607.02533, 2016.

[33] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with
limited queries and information,” CoRR, vol. abs/1804.08598, 2018.

[34] N. Narodytska and S. P. Kasiviswanathan, “Simple black-box adversarial perturba-
tions for deep networks,” CoRR, vol. abs/1612.06299, 2016.

[35] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-
works,” CoRR, vol. abs/1710.08864, 2017.

[36] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples,” in Proceedings of the
International Conference on Machine Learning, (ICML), 2018.

[37] C. Xie, Y. Wu, L. van der Maaten, A. L. Yuille, and K. He, “Feature denoising for
improving adversarial robustness,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[38] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “En-
semble adversarial training: Attacks and defenses,” in International Conference on
Learning Representations, 2018.

[39] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversarial images
using input transformations,” CoRR, vol. abs/1711.00117, 2017.

[40] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer, “Deflecting adversarial
attacks with pixel deflection,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2018, pp. 8571–8580.

81

[41] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of JPG com-
pression on adversarial images,” CoRR, vol. abs/1608.00853, 2016.

[42] S. Moosavi-Dezfooli, A. Shrivastava, and O. Tuzel, “Divide, denoise, and defend
against adversarial attacks,” CoRR, vol. abs/1802.06806, 2018.

[43] S. Song, Y. Chen, N. Cheung, and C. J. Kuo, “Defense against adversarial attacks
with Saak transform,” CoRR, vol. abs/1808.01785, 2018.

[44] Z. Liu, Q. Liu, T. Liu, Y. Wang, and W. Wen, “Feature Distillation: DNN-oriented
JPEG compression against adversarial examples,” International Joint Conference on
Artificial Intelligence, 2018.

[45] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against adversarial
attacks using high-level representation guided denoiser,” CoRR, vol. abs/1712.02976,
2017.

[46] X. Li and F. Li, “Adversarial examples detection in deep networks with convolutional
filter statistics,” in IEEE International Conference on Computer Vision, Oct 2017, pp.
5775 – 5783.

[47] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly,” in IEEE International Conference on Computer Vision, Oct 2017,
pp. 446–454.

[48] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in
deep neural networks,” in Network and Distributed System Security Symposium, 2018.

[49] D. Meng and H. Chen, “MagNet: A two-pronged defense against adversarial exam-
ples,” in ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 135–147.

[50] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations,” in International Conference on Learning Representations, 2017.

[51] J. Uesato, B. O’Donoghue, A. van den Oord, and P. Kohli, “Adversarial risk and the
dangers of evaluating against weak attacks,” CoRR, vol. abs/1802.05666, 2018.

[52] N. Akhtar, J. Liu, and A. Mian, “Defense against universal adversarial perturbations,”
in IEEE Conference on Computer Vision and Pattern Recognition, June 2018, pp.
3389–3398.

[53] K. R. Mopuri, U. Ojha, U. Garg, and R. V. Babu, “NAG: Network for adversary
generation,” in Proceedings of the IEEE Computer Vision and Pattern Recognition
(CVPR), 2018.

[54] K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data independent ap-
proach to universal adversarial perturbations,” in Proceedings of the British Machine
Vision Conference (BMVC), 2017, pp. 1–12.

82

[55] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie, “Generative adversarial perturba-
tions,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[56] V. Khrulkov and I. Oseledets, “Art of singular vectors and universal adversarial per-
turbations,” in IEEE Conference on Computer Vision and Pattern Recognition, June
2018, pp. 8562 – 8570.

[57] K. Reddy Mopuri, P. Krishna Uppala, and R. Venkatesh Babu, “Ask, acquire, and at-
tack: Data-free uap generation using class impressions,” in The European Conference
on Computer Vision (ECCV), September 2018.

[58] K. R. Mopuri, A. Ganeshan, and R. V. Babu, “Generalizable data-free objective for
crafting universal adversarial perturbations,” in IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 41, 2019, pp. 2452–2465.

[59] Y. Li, S. Bai, C. Xie, Z. Liao, X. Shen, and A. L. Yuille, “Regional homogeneity:
Towards learning transferable universal adversarial perturbations against defenses,”
CoRR, vol. abs/1904.00979, 2019.

[60] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto, “Analysis of
universal adversarial perturbations,” CoRR, vol. abs/1705.09554, 2017.

[61] A. Fawzi, S. Moosavi-Dezfooli, P. Frossard, and S. Soatto, “Classification regions of
deep neural networks,” CoRR, vol. abs/1705.09552, 2017.

[62] A. Fawzi, S. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep networks:
A geometrical perspective,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 50–62,
2017.

[63] J. Li, F. R. Schmidt, and J. Z. Kolter, “Adversarial camera stickers: A physical camera-
based attack on deep learning systems,” CoRR, vol. abs/1904.00759, 2019.

[64] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” CoRR,
vol. abs/1712.09665, 2017.

[65] J. Hendrik Metzen, M. Chaithanya Kumar, T. Brox, and V. Fischer, “Universal ad-
versarial perturbations against semantic image segmentation,” in IEEE International
Conference on Computer Vision, Oct 2017, pp. 2774–2783.

[66] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, June 2015, pp. 427–436.

[67] L. J. Karam and T. Zhu, “Quality labeled faces in the wild (QLFW): a database for
studying face recognition in real-world environments,” in Proc. SPIE 9394, Human
Vision and Electronic Imaging, vol. XX, 2015.

[68] S. Basu, M. Karki, S. Ganguly, R. DiBiano, S. Mukhopadhyay, S. Gayaka, R. Kannan,
and R. Nemani, “Learning sparse feature representations using probabilistic quadtrees
and deep belief nets,” in Neural Processing Letters. Springer, 2015, pp. 1–13.

83

[69] S. Karahan, M. K. Yildirum, K. Kirtac, F. S. Rende, G. Butun, and H. K. Ekenel,
“How image degradations affect deep CNN-based face recognition?” in International
Conference of the Biometrics Special Interest Group. IEEE, 2016, pp. 1–5.

[70] E. Rodner, M. Simon, R. B. Fisher, and J. Denzler, “Fine-grained recognition in the
noisy wild: Sensitivity analysis of convolutional neural networks approaches,” arXiv
preprint arXiv:1610.06756, 2016.

[71] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-
ucsd birds-200-2011 dataset,” Tech. Rep., 2011. [Online]. Available: http:
//www.vision.caltech.edu/visipedia/CUB-200.html

[72] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large num-
ber of classes,” in Proceedings of the Indian Conference on Computer Vision, Graph-
ics and Image Processing, Dec 2008, pp. 722–729.

[73] S. Zheng, Y. Song, T. Leung, and I. J. Goodfellow, “Improving the robustness of deep
neural networks via stability training,” CoRR, vol. abs/1604.04326, 2016. [Online].
Available: http://arxiv.org/abs/1604.04326

[74] Z. Sun, M. Ozay, Y. Zhang, X. Liu, and T. Okatani, “Feature quantization for defend-
ing against distortion of images,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2018.

[75] I. Vasiljevic, A. Chakrabarti, and G. Shakhnarovich, “Examining the impact of
blur on recognition by convolutional networks,” CoRR, vol. abs/1611.05760, 2016.
[Online]. Available: http://arxiv.org/abs/1611.05760

[76] Y. Zhou, S. Song, and N.-M. Cheung, “On classification of distorted images with deep
convolutional neural networks,” arXiv preprint arXiv:1701.01924, 2017.

[77] S. Diamond, V. Sitzmann, S. P. Boyd, G. Wetzstein, and F. Heide, “Dirty pixels:
Optimizing image classification architectures for raw sensor data,” CoRR, vol.
abs/1701.06487, 2017. [Online]. Available: http://arxiv.org/abs/1701.06487

[78] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” CoRR, vol.
abs/1803.06373, 2018.

[79] L. Engstrom, A. Ilyas, and A. Athalye, “Evaluating and understanding the robustness
of adversarial logit pairing,” CoRR, vol. abs/1807.10272, 2018.

[80] A. Lamb, J. Binas, A. Goyal, D. Serdyuk, S. Subramanian, I. Mitliagkas, and Y. Ben-
gio, “Fortified networks: Improving the robustness of deep networks by modeling the
manifold of hidden representations,” CoRR, vol. abs/1804.02485, 2018.

[81] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis,
and D. H. Chau, “SHIELD: Fast, practical defense and vaccination for deep learning
using JPEG compression,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2018, pp. 196–204.

84

http://www.vision.caltech.edu/visipedia/CUB-200.html
http://www.vision.caltech.edu/visipedia/CUB-200.html
http://arxiv.org/abs/1604.04326
http://arxiv.org/abs/1611.05760
http://arxiv.org/abs/1701.06487

[82] J. Hayes and G. Danezis, “Learning universal adversarial perturbations with genera-
tive models,” CoRR, vol. abs/1708.05207, 2017.

[83] J. Perolat, M. Malinowski, B. Piot, and O. Pietquin, “Playing the game of universal
adversarial perturbations,” CoRR, vol. abs/1809.07802, 2018.

[84] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S. Davis, and T. Goldstein, “Universal
adversarial training,” CoRR, vol. abs/1811.11304, 2018.

[85] Y. Ruan and J. Dai, “TwinNet: A double sub-network framework for detecting uni-
versal adversarial perturbations.” in Future Internet, vol. 10, 2018, pp. 1–13.

[86] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the
details: Delving deep into convolutional nets,” in BMVC, 2014.

[87] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti,
“TID2008-A database for evaluation of full-reference visual quality assessment met-
rics,” in Advances of Modern Radioelectronics, vol. 10, no. 4, 2009, pp. 30–45.

[88] A. Chakrabarti, “A neural approach to blind motion deblurring,” CoRR, vol.
abs/1603.04771, 2016. [Online]. Available: http://arxiv.org/abs/1603.04771

[89] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation,” Y. Chau-
vin and D. E. Rumelhart, Eds. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1995,
ch. Backpropagation: The Basic Theory, pp. 1–34.

[90] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural net-
works with low rank expansions,” CoRR, vol. abs/1405.3866, 2014.

[91] C. Tai, T. Xiao, X. Wang, and W. E, “Convolutional neural networks with
low-rank regularization,” CoRR, vol. abs/1511.06067, 2015. [Online]. Available:
http://arxiv.org/abs/1511.06067

[92] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D image denoising with
shape-adaptive principal component analysis,” in Proc. Workshop on Signal Process-
ing with Adaptive Sparse Structured Representations, 2009.

[93] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse representation
for image restoration,” in IEEE Trans. on Image Processing, vol. 22, no. 4, 2013, pp.
1620–1630.

[94] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “De-
CAF: A deep convolutional activation feature for generic visual recognition,” in In-
ternational Conference on Machine Learning, 2014, pp. 647–655.

[95] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
Pascal visual object classes (VOC) challenge,” in International Journal of Computer
Vision, vol. 88, no. 2, Jun. 2010, pp. 303–338.

[96] T. S. Borkar and L. J. Karam, “DeepCorrect: Correcting DNN models
against image distortions,” CoRR, vol. abs/1705.02406, 2017. [Online]. Available:
http://arxiv.org/abs/1705.02406

85

http://arxiv.org/abs/1603.04771
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1705.02406

APPENDIX A

MAXIMUM ADVERSARIAL PERTURBATION

86

Section 4.2.1 shows that the maximum possible adversarial perturbation in a convolu-
tional filter activation map is proportional to the `1-norm of its corresponding filter kernel
weights. Here, a proof is provided for Equation 4.1 in Section 4.2.1. For simplicity but
without loss of generality, let A be a single-channel n× n input to a k× k convolutional
filter with kernel W . For illustration, consider a 3×3 input A and a 2×2 kernel W as shown
below:

A =

[a1 a2 a3
a4 a5 a6
a7 a8 a9

]
and W =

[
w11 w12
w21 w22

]
Assuming the origin for the kernel W is at the top-left corner and no padding for A (same
proof applies also if padding is applied), then the vectorized convolutional output

e = vec(A∗W)

=

w11 ·a1 +w12 ·a2 +w21 ·a4 +w22 ·a5
w11 ·a2 +w12 ·a3 +w21 ·a5 +w22 ·a6
w11 ·a4 +w12 ·a5 +w21 ·a7 +w22 ·a8
w11 ·a5 +w12 ·a6 +w21 ·a8 +w22 ·a9



can be expressed as a matrix-vector product as follows:

e = vec(A∗W) = Mr (A.1)

M =

w11 w12 0 w21 w22 0 0 0 0
0 w11 w12 0 w21 w22 0 0 0
0 0 0 w11 w12 0 w21 w22 0
0 0 0 0 w11 w12 0 w21 w22

 (A.2)

rT = [a1 a2 a3 a4 a5 a6 a7 a8 a9] (A.3)

where vec(·) unrolls all elements of the input matrix with N1 rows and N2 columns into an
output column vector of size N1N2, M is a circulant convolution matrix formed using the
elements of W and r = vec(A).

Similarly, for A ∈ Rn×n and W ∈ Rk×k such that wi j is an element in row i and column
j of W , one has M ∈ R(n−k+1)2×n2

, and e ∈ R(n−k+1)2
is given by:

e = Mr (A.4)

‖e‖∞ = ‖Mr‖∞ = max
1≤i≤(n−k+1)2

|
n2

∑
j=1

mi jr j| (A.5)

≤ max
1≤i≤(n−k+1)2

n2

∑
j=1
|mi j||r j|

≤

(
max

1≤i≤(n−k+1)2

n2

∑
j=1
|mi j|

)
max

1≤ j≤n2
|r j|

87

≤

(
max

1≤i≤(n−k+1)2

n2

∑
j=1
|mi j|

)
‖r‖∞ (A.6)

where r = vec(A),r ∈ Rn2
such that r j is the jth element in the vector r and mi j is the

element in row i and column j of the matrix M.

From Equation A.2,
n2

∑
j=1
|mi j| is always equal to the `1-norm of the filter kernel weights

‖W‖1 =
k
∑

i′=1

k
∑

j′=1
|wi′ j′| for any row i, 1 ≤ i ≤ (n− k + 1)2. Equation A.6, can now be

rewritten as:
‖e‖∞ ≤ ‖W‖1‖r‖∞ (A.7)

Since ‖ · ‖∞ ≤ ‖ ·‖1 and ‖ · ‖∞ ≤ ‖ ·‖2, one can derive the following inequality:

‖e‖∞ ≤ ‖W‖1‖r‖p (A.8)

where p = 1,2,∞.

88

APPENDIX B

LIST OF PUBLICATIONS AND PATENT

89

• T. Borkar, F. Heide and L. Karam, ”Defending Against Universal Attacks Through
Selective Feature Regeneration,” IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 709-719.

• T. S. Borkar and L. J. Karam, ”DeepCorrect: Correcting DNNs Against Image Dis-
tortions,” IEEE Transactions on Image Processing, Volume 28, Issue 12, 2019, pp.
6022-6034.

• L. J. Karam and T. Borkar, ”Systems and Methods for Feature Transformation,
Correction and Regeneration for Robust Sensing, Transmission, Computer Vision,
Recognition and Classification,” US Patent Application No. 16/370,261

• L. Karam, T. Borkar. Y. Cao and J. Chae, ”Generative Sensing: Transforming Un-
reliable Sensor Data for Reliable Recognition,” IEEE International Conference on
Multimedia Information Processing and Retrieval, April 2018, pp. 100-105.

• T. S. Borkar and L. J. Karam, ”Automated Bird Plumage Coloration Quantification
in Digital Images,” Advances in Visual Computing, pp. 220-229. Springer 2014.

90

	LIST OF TABLES
	LIST OF FIGURES
	
	Contributions
	Organization

	
	Effect of Image Quality on DNNs
	DNN Susceptibility to Adversarial Attacks
	DNN Architectures for Image Classification
	AlexNet
	VGG-16
	Residual Networks

	Existing Image-based Datasets
	ImageNet (ILSVRC-2012)
	Caltech-101 and Caltech-256
	SUN-397

	Image Distortions
	Additive White Gaussian Noise
	Gaussian Blur (G. Blur)
	Camshake Blur (Cam. Blur)
	Defocus Blur (D. Blur)
	Motion Blur (M. Blur)

	Universal Adversarial Threat Model

	
	Introduction
	DeepCorrect
	Ranking Filters Through Correction Priority
	Correcting Ranked Filter Outputs
	Rank-constrained DeepCorrect Models

	Experimental Results
	AlexNet Analysis
	ResNet18 Analysis

	Conclusion

	
	Introduction
	Feature-Domain Adversarial Defense
	Stability of Convolutional Filters
	Resilient Feature Regeneration Defense
	Design of Feature Regeneration Unit
	Generating Synthetic Perturbations

	Assessment
	Defense Training Methodology
	Analysis and Comparisons

	Conclusion

	
	Contributions
	Future Research Directions
	REFERENCES
	
	

