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ABSTRACT

Transmission line capacity is an obstacle for the utilities because there is a load

increment annually, and new power plants are being connected, which requires an

update. Energy router (ER) is a device that provides an additional degree of freedom

to the utilities by controlling the reactive power. The ER reactive power injection

is demonstrated by changing the line’s reactance value to increase its capacity and

give the utility a deferral time for the project upgrade date. Changing the reactance

manually and attaching Smart Wire’s device to the branches have effectively solved

the overload in three locations of a local utility in Arizona (LUA) system.

Furthermore, electric vehicle charging stations (EVCSs) have been increasing to

meet EV needs, which calls for an optimal planning model to maximize the profits.

The model must consider both the transportation and power systems to avoid dam-

ages and costly operation. Instead of coupling the transportation and power systems,

EVCS records have been analyzed to fill the gap of EV demand. For example, by ac-

cessing charging station records, the moment knowledge of EV demand, especially in

the lower order, can be found. Theoretically, the obtained low order moment knowl-

edge of EV demand is equivalent to a second order cone constraint, which is proved.

Based on such characteristics, a chance-constrained (CC) stochastic integer program

for the planning problem is formulated. For planning EV charging stations with ER,

this method develops a simple ER model to investigate the interaction between the

mobile placement of power flow controller and the daily pattern of EV power demand.
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Chapter 1

INTRODUCTION

The method for transmitting power through a line has been improving since the

debate started in the late 19th century between Thomas Edison and Nikola Tesla

about the type of current to be used [8]. To provide electricity for wide areas with

different requirements, the type of line is divided into two categories, which are the

transmission lines and distribution lines. Transmission line has been upgrading and

additional components being attached to it aiming to maintain stabilized power flow.

Transmission lines are being designed to be more controllable, reliable, and secured

to protect the system from outages and blackouts, which requires controlling devices

to achieve these features. Flexible alternating current transmission systems (FACTS)

is one of the enhancement devices that can be attached to the transmission line. The

FACTS devices will assist in reaching the utility goals with less economical cost and

high reliability. Especially, with the increment in power rating that utilities provide

to the consumers annually.

Furthermore, not only the power system is improving, the transportation system

has been as well. The new generation of transportation systems relies on the power

system because it operates using electricity instead of gas. The main reasons behind

the switch are to reduce the emission, and the fuel cost. The average annual cost of

driving gasoline vehicles is $1,117 and for electric vehicles (EVs) is $485 in the U.S.

depending on the prices in each state [9]. However, to charge EVs, it requires more

attention than fueling gas vehicles because of the influence on the power grid. The

EV can be charged in either the owner’s house or electric vehicle charging station

(EVCS). So, to plan an EVCS optimal placement requires considering the effects on

1



the power system and meeting consumer needs.

In this chapter, the literature review of energy router, EV, and EV charging

records are discussed. Then, the problem definition states the issues and how this

thesis is solving them. The thesis outline describes each chapter’s content.

1.1 Background

1.1.1 Flexible Alternating Current Transmission Systems

Electronic power controllers were used to ensure power flow stability by controlling

the voltage and angle of HVDC transmission only. Then, Dr. Narain G. Hingorani

presented flexible alternating current transmission systems (FACTS) in 1988 to apply

electronic power controllers for AC transmission line. FACTS is a group of devices

aiming to increase the line’s capacity while reaching the same security and voltage

regulation when an additional line is added. So, instead of adding a line to the

system, a FACTS device can be placed such as voltage source converter (VSC), static

phase shifting transformer (SPST), static var compensator (SVC), static synchronous

series compensator (SSSC), etc. SSSC will be discussed and tested by applying it to

different case studies, which proved the device’s effectiveness.

AC transmission line power flow relies on the reactance value in the system. Equa-

tion 1.1 represents the power flow with assuming there is no losses in the line. It shows

that the real power P is in an inverse proportion relation with the reactance X. On

the other hand, the reactance has a direct proportion relation with the line’s length,

which has been making series capacitors necessary to maintain the power flow.

Pmax =
V1V2

X
sin(θ1 − θ2) (1.1)

Equation 1.1 represents the power flow on transmission line, but the main concern

is to control the reactive power on the line. Controlling the reactive power on the
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line can be represented in Equation 1.2, where QC is the injected reactive power.

Magnitude and phase angle of the voltage are defined as V1∠θ1 at the sending node

and V2∠θ2 at the receiving node.

Figure 1.1: Reactive Power Control

QC =
V 2

2 − V1V2cos(θ1 − θ2)

X
(1.2)

Applying a controlling device at the receiving node as shown in Figure 1.1 that is

designed following Equation 1.2, can double the maximum power being transferred.

FACTS devices have been divided into two classes, which are variable impedance type

and VSC based. VSC device is more compact and considered to be better than a

variable impedance type. Thus, SSSC that is one of the VSC devices, is studied and

used to solve the issue of overload and maintain stability of the system [10].

1. Different Applications Compering to Energy Router

Different devices were invented to control stability and increase line capac-

ity. Capacitors are used to increase the transmitted power, but they could not

decreases it. In [11], it shows that the SSSC can increase and decrease the

transmitted power. In addition, capacitor banks, VAR compensators, and syn-

chronous condensers are used to ensure stability and compensation. However,
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they have an issue, which is the lag in terms of fast response due to the mechan-

ical operation [12]. Some devices have close operation principles to the SSSC’s,

but there are differences between them. For instance, back-to-back (BTB) con-

verters are being used to control phase shifting and frequency (timescale) of

voltage, so what is the need for SSSC and it’s more expensive? SSSC can con-

trol power flow of transmission lines, and change set point with the ability to

avoid the lag in time. So, it’s more flexible to be used in the transmission system

that operates at high voltage as shown in [2].

Multiple FACTS devices are designed for different operational uses like unified

power flow controller (UPFC), thyristor controlled series compensator (TCSC),

SSSC, static synchronous compensator (STATCOM), etc. [13]. The FACTS can

be divided into two main categories, which are FACTS and distributed FACTS

(D-FACTS). D-FACTS are cheaper than the SSSC, but it’s only allowed to be

used withing max voltage of 10 kVA [14]. In term of better application than the

SSSC, in [15], it compares the SSSC with SMES. Super-conduction magnetic

energy storage (SMES) is more expensive than the SSSC. The paper showed

that SMES has better critical clearing time than the SSSC does, which means

better line transfer capacity. In [10], it showed that STATCOM is better than

the SSSC at low voltage levels, but STATCOM best location to be placed is the

midpoint. On the other hand, the SSSC is directly proportional to the reactive

voltage injected, which makes it better than the STATCOM in increasing the

power transfer.

2. Energy Router

The remaining of the thesis will introduce the SSSC as energy router (ER)

since it was the name used with the local utility in Arizona (LUA) and in the
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case studies. ER is designed to provide the utility an option of controlling the

reactance in transmission lines [4]. The ER will be attached to the transmission

line in series, with additional circuit connections, and it could require additional

tower or an update for the used tower due to the heavy weight of the ER [4].

To understand how the ER attached and its operation principle three VSC

devices will be discussed. STATCOM is connecting in a shunt with the line to

inject the reactive current, which can be done by regulating the bus voltage.

ER is connecting in series with the line as shown in Figure 1.2, to inject the

reactive voltage. Unified power flow controller (UPFC) is connecting in both

ways because it controls both the real and reactive power by injecting both the

voltage and current [10].

Figure 1.2: ER Connected in Series to the Line

Figure 1.2 is showing the capacitor, which is a part of the ER that provides

energy from the DC terminal [10]. The capacitor will be charged by pulling

some power from the line [12]. The capacitor is better to be connected to an

energy source because an issue can occur at low line current stages, which is

necessary to be mentioned. The ER series insertion will inject the line voltage

in series with the current. The voltage will be injected in quadrature comparing
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to the line current [12], [10]. The following bullet points will be used to explain

the ER’s operation methodology and benefits.

• Energy Router Principles

The operating principles of the ER can be discussed in three major

things. First, is to control the reactance on the transmission line, which

will happen by using either inductive or capacitive mode or lagging and

leading position. Second, ER determines if there is a fault that occurred

and stops the flow to the device by isolating the frequency and magnitude

flowing from the line, which is known as bypass mode [4]. Third, is to

increase the stability of the system when contingency condition occurs

[10].

• Energy Router Affects and Impact

The effect of using the ER is to provide the utility more freedom of

controlling the reactance in the system. It will help to solve the issue

of overload on the grid. The solution will also help the utility to stop

damages caused by fault of other lines on the system and get ready for the

new generation of renewable power plants [2].

(a) ER Impact on Harmonics

ER will reduce the harmonics on the system, which can happen due

to different reasons like, the inverters [1]. Also, switching is causing

losses on the system, which makes the power electronic devices lim-

ited to one off-on, and one on-off per cycle. However, ER uses complex

multi-pulse inverters method, which cancels harmonic voltage by ap-

plying basic six-pulse inverters that are coupling the AC terminals

[1]. Figure 1.3 shows ER with 24 pulses represented by the Voltage
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Source Inverter (VSI). Note, the previous reference discussed ER using

VSI, which is rarely used in the new generation of ER research. Most

of the modern researches and companies discussed ER with Voltage

Source Converter (VSC). Both VSI and VSC will reduce harmonic,

but converters are more helpful in increasing the speed simulation and

improve the convergence [16].

Figure 1.3: ER 24-pules to Deal with Harmonics [1]

In [17], ER assists in dealing with the harmonics on the system, and

it shows how ER reduced the harmonics that effected in maintaining

the steady state condition of the power flow. It used a 48 gate turn off

voltage source converter (GTO-VSC) that was attached to ER, which

assisted in reducing the harmonic more than the 6 or 24 pulse. So,
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as a conclusion from the previous references, increasing the number

of pulses will decrease the harmonics, which means ER will assist in

reducing harmonic in the system.

(b) ER Influence when Short Circuit Occurs

To explain the short circuit clearly, check Figure 1.4. The ER is

located on line 1−4, so when the fault happens in the same line 1−4,

then the ER will have no impact on the system since it will bypass

the power flow. However, if the fault occurred in any other line on the

system the ER will fix the issue by changing the reactance.

Figure 1.4: ER Connected in Series to Line 1-4 [2]

Further investigation regarding the ER impact when a short circuit

occurs will be shown in Chapter 2. Three case studies will clearly

explain ER’s influence on the LUA system. ER’s model is provided

by Smart Wires, which is named Smart Valve in their company.

(c) ER and Power Flow

Controlling the reactive power on the system means the losses can
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be decreased [18]. When a fault occurs in one line, the relay will stop

the power flow into that line, which will create an overload on the

system. To control the problem, the line with ER attached to it will

change the voltage phase angle to specific values that will keep it at

the required level.

Multiple devices can be used to assist in the phase-shifting for in-

stance, the ER and IGBT are applied in [19]. So, ER will control the

post-contingency on the system to reduce losses [2], which will assist

in maintaining secured power flow.

To understand how the ER will impact the power flow Figure 1.5

shows the phase angle injection of ER. In [10], the complex power

formula found, which is driven to find the ER characteristics on the

power flow by presenting the complex power of the receiving end shown

in Eq. 1.3.

S2 =
S0Z

∗

Z∗ + jA
=

S0Z
∗

R + j(A−X)
(1.3)

Figure 1.5: ER Attached on a Single Line and Phasor Diagrams

Where S2 is the receiving end, and A can be between −∞ to +∞.

So, to find the ER impact on the system, Eq. 1.3 can be applied to
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find the complex power values at the receiving end.

• How the ER Operates?

The reactance is important in the system because it can change the angle

between voltage and current. There are two types of reactance modes,

which are the capacitive Xc and inductive reactance Xl. The two types

are used to manage the angle between V and I. Xc, or positive mode is to

have the voltage lagging the current, which is used to improve the line’s

current. However, Xl or negative mode is to have the voltage leading the

current of the line. So, by controlling the reactance it means the angle can

be in phase, or out of phase depending on the grid load [20]. The focus

on voltage and current in this section will be in term of phase angle, not

magnitude. The reason behind that is the ER affects the angle of the line

more than the magnitude. The phase angle in the transmission line can

be different within, 30, 60, or 90 degrees between V and I. The ER will

make the difference in angle depending on the readings the control unit is

receiving from the line. The inductive and capacitive can affect reactance

in the system by making the system lagging or leading. To have a better

understanding, the capacitive and inductive will cause a 90◦ difference

between the current and voltage. Figure 1.6 shows the relationship between

current and voltage with angle differences due to leading once, and lagging

for the other. In other words, reactance assists to have the current in a

different phase compering to the voltage and by doing this, the system can

be controlled, which is the basic concept of the ER to control reactance on

the system.

• ER Control Methodology
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Figure 1.6: Inductive and Capacitive Modes [3]

The control in ER is divided into three types, initially how it controls

the line and receives data. Then, the devices that are used to control

in the ER will do the calculation. Lastly, sending orders to operate for

a certain mission. To explain each type in order, the H-bridge, IGBT,

and current transformer devices are used because they operate as sensors,

but for high voltage uses. These devices are controlled or programmed to

collect a specific type of data, and what to do if it receives an order from

the main control room. Second, after receiving the data, the ER will make

the calculation to maintain stability by avoiding reaching the overload on

the grid. The last type of control is to send orders to the ER location to

set the reactance at a specific value, or to use the H-bridge that will bypass

the fault occurred to protect the device itself.

To connect the three types of control, there must be communication

and an optimal location found for the ER placement [4]. To clarify the

three controlling parts, first is the phase locked loop, which is used for

synchronization, second is the measurement of voltages inputting to the

voltage regulator, and third is the measurement of axis for the converter’s

voltage. For the communication between the ER and the utility’s control

unit it will focus on operating with different grids. ER will receive data

from the main control unit, and send it using communication and control
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system or end to end (E2E) system, which is shown in Figure 1.7 [4], [19].

Figure 1.7: ER Communication with the Control Center to Make the Accurate

Changes in Reactance [4]

Furthermore, the ER is designed to control the reactance of the power

flow on the transmission line. When a short circuit occurs, the ER is

programmed to a default stage to avoid the need of communicating with

the main control unit, which is named as bypassing as shown in [4]. Be-

fore describing the ER’s control methodology in mathematical form, the

explanation of the ER’s communication method will be classified first in

2a.

(a) ER Communication Method

The communication in ER will receive data from the main control

unit and this data will be sent using the internet, because of the high

speed, accuracy of data exchange it has. To have a better vision of how

the communication in the ER is operation there are three components

to be explained, which are shown in Figure 1.8.

First is the Cellular Enabled PowerLine Guardian that is used to

receive and send the data to the control unit and responsible for the
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Figure 1.8: The Three Components in the ER for Communication [5]

communication. Second, is PowerLine Commander, which is the En-

ergy Management System (EMS). Third, is the power Guardian that

is designed to inject the impedance of the line after receiving the data

[5].

(b) ER Deployment

The deployment of ER will go over three main parts, the transporta-

tion, towers, and ground-based. This section will assist in understand-

ing the time for transportation, and an estimation of the additional

cost due to the new parts required.

i. Tower Base

The ER has a heavy weight, so it requires an upgrade to the

tower, where it can handle the additional weight and carry it.

Figure 1.9 shows the design that Smart Wires made for attaching

the ER. There is a second option, which is to replace the tower

with the one designed by Smart Wires [6].

ii. Ground Base

Ground base is to carry the device at close locations to the

substations or inside it. Figure 1.10 shows the ground base of
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Figure 1.9: ER Tower Base [6]

Smart Wires design [6].

Figure 1.10: ER Ground Base [6]

iii. Mobile ER

The mobile container can be ready to ship within short time.

Installation can be done within different periods depending on the

location and can take from a few hours (eight) to two days. Figure

1.11 shows the container provided by Smart Wires [6].

• Different Applications Leveraged by ER

The ER has been used with different devices to find the best power flow
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Figure 1.11: Mobile ER [6]

on the system. For instance in [21] it was used with STATCOM to control

the power flow during contingencies and faults. Since the ER is capable of

controlling the reactance on the system, it was studied to solve different

issues caused by different reasons. In this section, some applications will

be discussed to clarify the ER importance.

(a) Energy Management for Power Plants

Energy management in the ER is to reduce losses on the grid, with

better controlling opportunities. As mentioned earlier, the ER focuses

on controlling the impedance on the line. To control it, it will assist in

having the flexibility to add new generator sources with fewer changes

on the power system and to solve the damping power oscillation. In

[22], it explains how the ER is efficient in controlling the damping

oscillations.

The power system is being built with specific requirements, which

are being changed due to the new needs. For instance, the generator

plants are being built depending on the location. The location must

be safe and can be reached to different states or cities depending on

the MW rating for it. The renewable energy depends on the natural

source location to be sunny, windy, etc. [23]. And due to the increment

of renewable energy being used and the unstable amount of power it
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provides, a FACTS device will assist in solving these issues. In [24], it

shows the ER is being used for applying wind turbines to the system

and provides the ability to have better power damping.

The ER will provide the flexibility of energy management by shifting

from leading to lagging position or the opposite depending on the

condition. In [25], it discusses how the ER will assist in connecting

a wind plant to the grid located in Indiana. The ER will solve the

voltage collapse issue due to the lack of reactive power on the system

and maintain stability and efficiency. The result of using the ER to

combine wind power plant with a diesel generator on the system shows

that the reactive power and active was controlled, which solves the

problem.

(b) ER Impact on Power Swing

In [26] it studied the impedance that is shown in distance relay when

a power swing occurs. The ER is used to shift the angle on the line

when a power swing occurs in the system. It shows the difference

between the inductive mode and capacitive mode, by using a relay

that has a smaller radius on capacitive mode. Also, it proved how

effective it was in terms of power flow stability.

(c) ER Impact on Transient Damping

From [27, 28, 29], it’s clear that the ER can solve the transient

damp on the system. In [27], the paper solved the second dip in

dynamic response that occurs on induction motor when the output

is adjusted. The ER solves the issue by phase-shifting to avoid the

different dynamics that happened in the line and keep the power flow

in between the required limits. Also, it was used to increase active
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power in the transmission line. In addition, the ER has fast operation

principles to maintain the steady-state condition. In [30], it tested the

ER to fix the transient damping in the system, which was fixed within

2 cycles.

The ER’s definition and usage are explained in terms of its principles, effects, and

impact, applications that are leveraged by it, operation, and control methodologies.

The impact on the grid and operation when different conditions occurs showed that

the ER will assist in increasing the transmission line security. The control method

in term of mathematical and communication forms are presented to provide a clear

vision of the ER’s is modeled. In addition, different applications of ER are explained

like applying it to solve renewable generation issues. Chapter 2 will apply the ER on

a utility grid, and its model is formulated in Chapter 4 for EVCS planning method.

1.1.2 Electric Vehicle and Electric Vehicle Charging Records

EV number is increasing because of two main reasons, which are pollution and

energy prices. In [31], it considered the same two reasons and it was published in 1964.

To understand why the EV market is increasing recently, a brief introduction of the

EV is discussed. Also, the charging records are introduced due to their importance

in finding the EV impact on the power grid.

• Electric Vehicles

EV is a method of transportation that is first found in the 19th century with

a top speed of 14 miles/hr. Different studies found how the EV will assist in

economical term. In [32], it demonstrates the savings by comparing an electric

wagon with a horse. The EV began to grab more attention, which made 60

electric taxis drove in New York roads. While EVs were being welcomed by
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the society and more researches were found, Ferdinand Porsche built the first

hybrid vehicle in 1898 [33].

In addition, the early method to charge the EV used to be complicated, and

an expert is required to do such a job. In [34], it introduces electric automobile

operating using a rotary motor, compounded gear that reduces the motor’s

weight and size while providing enough torque, and a battery. The battery

provides power for 1 − 2 hours, which stores the power using compressed air.

The method to charge a battery required an expert with a differential watt-

meter, and periodic inspection using a hydrometer.

However, the gas vehicle industry has ended up the EV’s because of their

limited speed, and they used to cost more than double the price of the gas

vehicle [33]. In 1922 the gas vehicles were used to drive with high speed for

long distances while the EVs were still being introduced to replace the horses.

The main reason is the battery storage that had issues, in [35] it compares the

lead cell with the Nickel-iron cell, and both had their disadvantages where one

of them had a short lifetime and the other one was costly.

Although the EVs industry almost disappeared, scientists were still digging

into the topic to enhance the technology. In [36] it discussed different designs

of EVs, and one of them used two motors that are operating with the battery

in pairs. Maximizing the gear-ratio can be reached by using a double-reduction

drive from a single motor [37]. Generation rubber tire to charge the EV is also

modeled, which had two methods of induction and conduction the charges from

and to the tires. Once the vehicle is charged the current will flow to the street

instead of the car. The method was not preferred because the vehicles had

enough electric charge to shock a person even when it’s no longer moving [38].
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Furthermore, the pollution from the gas emission and lack of oil made the

EV concept introduced again [31]. In [39], it finds that using a DC motor

is better than an AC because it’s lighter, requires 60% additional current to

reach maximum torque, and operates at larger gear induction. Converters were

being applied to the circuit, which provides the ability to increase the motor’s

performance while the lead-acid battery capacity reaches to 108 V. To charge

the EV, a 115V with a 60 Hz source is required [40]. At the same time duration

computers were also well designed to function different applications, which made

the study in [41] demonstrates a model that had the ability of controlling the

EV. An electric van is designed in [42], which had a maximum speed of 90

km/h, using a three-phase squirrel cage induction motor rated for 27 kW. The

van battery ran out fast, which recommended applying a battery interchange or

attaching on-board charger to have a longer driving range. Yet the EV couldn’t

take place in the market because it created more pollution than the gas vehicles

since it impacted the demand, which increased the power plant emissions [43].

So, the main reasons behind the delay of the EV industry are three:

1. EV used to cost more than double the price of gas vehicles.

2. The battery storage was limited.

3. The power plants had large emission rates, which will be increased to meet

EV needs. In such a condition, the EV will not assist in decrease the

pollution comparing to gas vehicles.

The problems that affected the EVs market are solved due to the integration

of renewable power plants, battery improvement in range and life, and the lower

operational cost. Therefore, the EVs have been popular worldwide and the

number of EVs will skyrocket especially with the governments’ subsidies. For
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instance, the number of EVs in the U.S. will reach 18.7 million in 2030, which

will require 9.6 million charging ports [44]. In addition, China is planning to

reach five million EVs in 2020 [45] and the Indian government is aiming for a

huge switch from a gas vehicle to EV in 2030 [46].

There are benefits of adapting the EV, which are economical profit, and

pollution reduction. EV impact on pollution is analyzed in terms of direct and

life cycle emissions, which found the EV will reduce both. The direct term

emissions for gasoline vehicle produces during fueling and from the exhaust,

which decreases to zero for an EV. The life cycle emission is emitted from

power generator and petroleum extraction, which is less for the EV and can

reach zero if a renewable source is used [47].

In [48], it compares three Tesla models fast charging prices with gasoline

vehicle fueling costs, which estimates the supercharger cost as 0.26 kWh and

the Gasoline cost as 2.85 per gallon. For the driving distance of 1, 500 miles,

the costs of three models are shown in Table 1.1.

Table 1.1: Supercharger and Gasoline Costs of Three Tesla Models

Model Supercharger cost Gasoline cost

S $116 204

X $132 204

3 $100 153

The EV operational cost have been increasing its market shares. The growth

number in 2018 comparing to 2017 reached 64% globally, 34% in Europe, 79%

in the U.S., and 78% in China. Figure 1.12 shows the EV growth number in

the U.S., which reached 1.18× 106 vehicles [7].
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Figure 1.12: EVs Number in the U.S. [7]

Moreover, the driving range of the EV has been increasing because the battery

improvements. In [49] it shows two electric Nissan vehicles, which are LEAF S

PLUS with battery capacity of 62 kWh and LEAF with 40 kWh battery. LEAF

model can drive up to 149 miles on a single charge, where the LEAF S PLUS

drives up to 226 miles. Chevrolet also designed an EV and called it Bolt EV,

which has driving range of 259 miles and 66 kWh battery [50]. Audi e-trone

integrates a 95 kWh battery with driving range of 204 miles in a charge [51].

The ranges and types of the battery are different from one EV to another, which

is the same for the charging time.

• Electric Vehicle Charging Records

To charge an EV there are rules and regulations that must be followed because

it can result to a big damage on the power system if not. For instance, the U.S.

Department of Energy lists three levels of charging. First, 120 V AC plug that

can be named as slow charging, which can be located at houses. Second, 240

V AC that can be placed in public charging station. Lastly, is the DC fast

charging, which is rated for 480 V AC [52, 53]. The charging time for each

level is different and it depends on the battery type. For instance, applying the
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fast charging level to the Audio e-trone for 10 minutes will provide a range of

54 miles, Chevrolet Bolt for 30 minutes will drive it for 100 miles, and Nissan

LEAF for 40 minutes will charge 80% of the battery, which is equivalent to

119.2 miles [49, 50, 51].

EVCSs have been recording the charging transactions to reach maximum

profit. EVCS records are discussed to understand the provided information and

based on them study their behavior.

– Colorado Data

The city of Boulder, Colorado provided a data set for EVCSs in five

zip codes. The data set represents useful information, but not all of the

features are used. Table 1.2 shows the first three rows of Colorado’s EVCS.

Table 1.2: Boulder, CO EVCS Data Set

Station Name City State/Province Postal Code Transaction Date Transaction Start Time Energy (kWh) Gasoline Savings (gallons) Port Type

BOULDER / ATRIUM ST1 Boulder Colorado 80302 2/26/20 12 : 47 3.833 0.481 Level 2

BOULDER / N BOULDER REC 1 Boulder Colorado 80304 2/29/20 20 : 19 18.64 2.339 Level 2

COMM VITALITY / 1104 SPRUCE1 Boulder Colorado 80302 2/29/20 18 : 14 5.196 0.652 Level 2

The data set is analyzed in a useful way when it’s applied in filling the

transportation system in Chapter 4, by providing the EVCS demand at

different day periods. For this chapter, the data set is separated depending

on each zip code. Then, for each transaction year, every month, and per

hour, the sum of energy consumption in kWh is found. The dataset is

provided from January 2018 to February 2020. Figure 1.13, shows the five

plots for each zip code presented in hour vs sum of kWh.

Figures 1.13a, and 1.13e, are showing energy consumption for 2018, and

2019. Figure 1.13d, is showing kWh consumption for 2019 and 2020, but
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(a) Sum of EVCS Energy for

Zip Code: 80301

(b) Sum of EVCS Energy for

Zip Code: 80302

(c) Sum of EVCS Energy for

Zip code: 80303

(d) Sum of EVCS energy for

zip code: 80304

(e) Sum of EVCS energy for

zip code: 80305

Figure 1.13: Colorado EVCS Energy Consumption for 26 Months. Each Line Shows

the Sum of kWh Consumption in y − axis for Each Month in 24 Hours as Shown in

the x-axis.

few for 2018. Figure 1.13c, is showing for 2019 with couple ones in 2020,

but not 2018. Figure 1.13b, is showing the consumption for the three

years and it has the most amount number of transactions, which give it

the advantage to be further investigated because the more data is available

the better analysis and more efficient prediction can be found. Table 1.3, is
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showing the number of transactions (NT) for each zip code, which verifies

the plot shapes.

Table 1.3: Number of Transactions in Five Zip Codes for the City of Boulder

Zip Code 80301 80302 80303 80304 80305 Total

NT 1766 12382 561 2936 1666 19311

The data set description and observations are discussed by showing a

sample from the table and separate the data depending on the zip code.

– California Data

Palo Alto, California data set is provided in [54], which shows the in-

formation for EVCS during 72 months from 2011 to 2017. The data will

be studied first in term of the zip code and the one with largest records of

charging will be investigated. The kWh consumption will described and

observed for the 24 hours during the 72 months. To have a look on the

studied data, Table 1.4 shows the first three rows with some important

features. The number of columns is 39, but and not all of the features are

shown in the table.

Table 1.4: Palo Alto, CA EVCS Data Set

Station Name Transaction Date (Pacific Time) Charging Time (hh:mm:ss) Energy (kWh) City Postal Code Year Month Hour

PALO ALTO CA / HAMILTON #1 29/07/2011 23 : 20 01 : 54 : 03 6.250 Palo Alto 94301 2011 7 20

PALO ALTO CA / HAMILTON #1 30/07/2011 00 : 02 00 : 01 : 54 0.107 Palo Alto 94301 2011 7 0

PALO ALTO CA / HAMILTON #1 30/07/2011 12 : 34 04 : 17 : 28 14.952 Palo Alto 94301 2011 7 8

The data set will be separated following Boulder’s method, which is

depending on each zip code. After grouping the data, the sum of energy

presented in kWh will be found for each transaction at every year, month,

and hour. The data set is given for 72 months, which are from July 2011
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to July 2017. To find how the load consumption is diverging at each zip

code, Figure 1.14 plots it for the 72 months.

(a) Sum of kWh consumption

for zip code: 94301

(b) Sum of kWh consumption

for zip code: 94303

(c) Sum of kWh consumption

for zip code: 94306

Figure 1.14: California EVCS Energy Consumption for 72 Months. Each Line Shows

the Sum of kWh Consumption in y-axis for Each Month in 24 Hours as Shown in the

x-axis.

From Figure 1.14, the load at different areas shows an increment between

the hours 05 : 00 to 20 : 00 while at early hours from 00 : 00 to 04 : 00 the

load is almost zero. Note that the data set is provided from Jul 2011 so the

first seven months are not plotted since they are not given. Figure 1.14b

shows the transactions are recorded starting from 2014, which means the

EVCS is built in this year. Figure 1.14c is providing the data starting from

2016. In addition, The number of transaction for each zip code is given in

Table 1.5.

From Table 1.5, the three zip codes for EVCSs in Palo Alto are 94301,

94303, and 94306. The data represents 133, 559 charging records, where

each zip code varies with the number of records. Zip code 94301 shows
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Table 1.5: Number of Transactions in Three Zip Codes for the City of Palo Alto

Zip Code 94301 94303 94306 Total

NT 90, 022 29, 049 14, 488 133, 559

90, 022 records, 94303 lists 29, 049 records, and 94306 presents 14, 488

records. So, the decision has been made to analyze the zip code with

the highest number of charging occurred between July 2011 to July 2017,

which is 94301. Furthermore, to compare the time of charging to discussed

models, Figure 1.15 shows the charging duration for all 72 months.

Figure 1.15: Palo Alto 94301 Charging Duration From 2011 to 2017

EV charging records for two data sets are discussed, which shows that different

features are recorded. The data sets for the two cities showed useful information such

as the transaction time, energy used, and the charging duration. The three features

are separated depending on their largest transactions record and in Chapter 3 they

will be observed and studied.
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1.2 Problem Definition

While new power plants are establishing and the load is increasing, maintaining a

secured power flow has been a hard task. The new power plants are mostly renewable

since the governments worldwide are encouraging it because it fights the pollution

and has a lower operational cost. For instance, the wind turbine is located depending

on multiple factors and one of them is how windy the place is. When the wind

turbine plant is connected to the power grid, the transmission line in the system is

designed for a limited current rate. So, to overcome this problem utilities upgrade

their transmission line capacity, but building new line is costly and might lead to

delaying the project timeline. Although upgrading the line sounds like the only

solution, but the ER will also solve the problem. The ER will inject the reactance

with a specified value that will provide the controlling over the reactive power in the

line. When the reactive power is controlled, the line limits can be increased, which

will solve the overload problem with lower cost and faster time. In addition, when the

ER is purchased and the reactive power is no longer assisting in solving the overload,

it can be attached to another location and still assist the stability of the system.

The items operating on electricity are variant, but the most noticed one is the

EV. The EV has an impact on the power system especially the distribution area in

the current time, but it will significantly impact the transmission in the near future

due to the EVs growing numbers.

EV charging duration varies, which affects the power flow stability if enough load

is used. The problems can be voltage oscillation, transient damping, overload, etc. If

any of these problems occur without fast action, then major damage will happen in

the system. So, to avoid the issues EVCS impact on the grid can be clearly found

if the transactions at each time are recorded. When this is the case, the time series
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analysis method can be applied to understand the behavior of the data. Also, to

estimate if an issue will occur in the future, the trend and seasonality of the historical

data are studied using an exponential smoothing method. The EVCS behavior can

be represented numerically or by plotting it, which means to plan a new one can

consider the findings to avoid any problem occurring in the system.

EVCS planning models considered both distribution and transmission system.

The references [55, 56] studied EVCS planning method with coupling the transporta-

tion system, which can be influenced by different random factors such as an accident.

However, the presented model will consider the EVCS data set that represents the EV

demand to fit the planning method. EVCS planning with considering transmission

grid has been already studied in [56, 57, 58], but none has considered to apply the

ER to provide an ability of controlling the power flow to the system.

Since the ER can enhance the operation of the transmission system, and EVCS is

impacting the grid; An optimal EVCS planning method is formulated while consid-

ering the ER to control the power flow depending on real EVCS data set. The model

will assist both sides, the utility, and EV owners because it will maintain low prices

and stability of the power flow.

1.2.1 Thesis Statement

This thesis will explain the effect of using an energy router on the transmission

line and EVCS planning. The ER placement on LUA transmission lines using Smart

Wires model is to solve the overload and provide a deferral time to upgrade the

projects. ER impact on EVCS planning is formulated with an objective function that

considers the estimation of EVCS historical records. This thesis finds how effective

the ER is to enhance the power flow stability in the electrical system.
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1.3 Claims of Originality

The work of this dissertation enhances transmission system and EVCS planning

following the original contributions:

• Rigorous validation of ER impact to enhance the transmission system stability

by applying the device and its mathematical model on a local utility in Arizona

grid. ER model is presented by Smart Wires company.

• Development of forecasting method using exponential smoothing model that

is applied on Boulder, CO and Palo Alto, CA EVCS data sets. The method

analyzed the charging behavior to understand its impact on the power grid.

• Novel formulation of EVCS placement using knowledge moment, which is en-

hanced by ER, based on chance constraint is generated. The impact of ER and

its mobile using mobility matrix are investigated in terms of EVCS planning.

1.4 Thesis Outline

Chapter 2: ER placement on LUA transmission line is studied for three case

studies each represents a different project. First, since the ER injects the reactance

of the line, it was changed manually by multiplying X value with a specified range.

Although the results solved the problem, the same projects are tested with real ER

model provided by Smart Wires. The outcome of placing an ER on the system is

positive, where it solves the overload with faster time and lower cost.

Chapter 3: EVCS data sets for two cities, which are Boulder, CO, and Palo Alto,

CA are analyzed. First, the kWh is studied and observed depending on a specified

time period. Then, mean and standard deviation values are found to understand

EVCS behavior. Also, forecasting methods are applied to predict future energy con-
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sumption, but one of them successfully had the good fitting to the historical data

set.

Chapter 4: EVCS optimal planning model is formulated while the power flow

is controlled by ER and EV demand presented by the EVCS demand. The ER is

modeled to be tested for 30− bus IEEE system, which has 41 branches and 30 buses.

Three scenarios are tested, which are distributing the load in different location to find

the ER.

Chapter 5: The conclusion of the thesis provides a summary and discusses every

chapter’s content, findings, and future work.
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Chapter 2

ENHANCING THE OPERATIONAL RELIABILITY AND EFFICIENCY OF

TRANSMISSION GRIDS WITH ENERGY ROUTERS

2.1 Introduction

Energy router (ER) is a FACTS device that is known in power system with the

name of SSSC. The ER controls the voltage, current, or reactance through injecting

the impedance of the transmission line, which is studied in [12, 59, 60]. Reference

[59], considers ER to control the line’s voltage to increase the system stability. In [12],

injecting the voltage of the transmission line using ER is found, which damped out

the oscillation in the system and ensured its stability. ER is also applied to damp the

oscillation by injecting the voltage phase in series with the line current [60]. Although

the previous cited publications have good findings, the ER is not tested on real power

system, which considers more factors.

In this chapter, the ER will be tested by attaching it to a system of local utility

in Arizona (LUA). First, since the ER is able to shift reactance, current, or voltage

to inject the reactive and real powers to maintain stability on the system. The

reactance is shifted by multiplying it with different values between 0− 100, which is

an estimation average for the ER’s ability to change X value. Then, a real model of

the ER is applied on LUA grid to test it and compare the results of the multiplication

method. Each method is applied to three case studies, which represent three different

locations, and years. The results will show the deferral time the ER will provide

instead of upgrading the system. In other words, when the ER is attached, an annual

load increment of 1.8% will be applied to the previous year’s load value; Then the
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current value I will be checked to find if an overload solved or not.

2.2 Data Analytics for Utility Transmission Planning

LUA is considered under the WECC region, which combines more than a state.

Every utility faces different problems, for instance, outages, overload, static and dy-

namic security, etc. For LUA case this section will find what are their needs from

the provided data. LUA data was provided in (.sav) format, which requires PSLF

software to read the information. In addition, there are files in (.p) format, which

shows LUA’s projects plan from 2019 − 2025. So, (.p) files provided the upgrades

LUA planning to work on for six years. Also, the information provided by Smart

Wires is explained to assist in understanding how the ER will be attached to LUA

system.

The main files are provided in a format that can be opened using PSLF for both

LUA and Smart Wires. So, an introduction to PSLF, LUA files, and Smart Wires

information is introduced.

2.2.1 Simulation Tool: PSLF

PSLF is a power system program that simulates the electrical system for many

utilities because of its ability in connecting wide areas together. There are many

parameters provided in each sheet in PSLF and there is one way to understand them,

which is by going to PSLF’s manual. Some parameters are described to give a picture

of how PSLF operates.

• Bus parameters

The Bus information has the name in PSLF as Busd. It started with bus

numbers, their names and kV base. Then, the type of bus from (−2) to (2),
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scheduled voltage, bus voltage magnitude (pu) are defined.

• Branch parameters

The branch data is called SECDD in PSLF. The sheet started with From bus

number, bus name, base voltage, To bus number, bus name, base kV voltage.

• Transmission parameters

The transmission information is named Tran in PSLF. The sheet started with

from bus number, name, from bus base voltage, to bus number.

These are some of the sheets information in PSLF, but not all of the parameters

are explained because explaining the simulator is beyond this chapter goal, and the

information is not allowed to be shared. So, the format of the provided files (.p) and

(.sav) will be explained in terms of their operation principles.

• (.p) File

(.p) files are being used by PSLF as a coding page, which defines the param-

eters and information will be represented on the (.sav) files. In addition, PSLF

manual showed (.p) definition as store directly under working directory. Also,

it showed that (.bat, .p) files are used to execute the program.

• (.sav) File

(.sav) files are being used in PSLF to represent the power flow in binary

format. So, (.sav) file shows the LUA power flow for six different time periods.

It was clear the same states, cities were defined in all six (.sav) files, but when

the power flow was running using PSLF the reactive and real power losses were

different, which clearly shows that the provided data represents different time

periods with the load increment of 1.8%.
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From the previous items, it’s clear that the (.p) file is used to apply and upgrade

the system’s power flow file (.sav), which is the case to apply the ER model from Smart

Wires to LUA grid. More information can be discussed regarding the data mining

and description of PSLF, LUA, and Smart Wires files, but due to their sensitivity,

the case studies of solving the overload in LUA system using will be discussed. All

of the buses, lines, and branches names used in this chapter are given names. The

names of alphabet letters are used to represents the buses. However, the numerical

results, parentage, current, and reactance values are based on the real information of

LUA. .

2.3 Energy Router Implementation on LUA Grid to Reach Maximum Deferral

Time by Reactance Multiplication

The ER will control the power flow of the line by controlling its reactance, which

will impact the current rating in the line. The mathematical form for the ER to inject

the reactive power is found in Eq. 2.2, which is found after expressing the reactive

power on the receiving end QR as Eq. 2.1 shows;

−QR = V Isin(
δ

2
− φ) (2.1)

−QR =
V 2

XL

(1− cosδ)− V Vp
XL

cos(
δ

2
− φ) +

V Vr
XL

sin(
δ

2
− φ) (2.2)

where XL is the line’s reactance, δ is the phase angle, VCp is the active magnitude

and VCr is the reactive magnitude of the injected voltages [10]. From Eq. 2.2 it’s

clear that the ER is injecting the voltages, wherein this chapter the reactance will be

controlled by the ER. Controlling the reactance will have an impact on the reactive

power that will lead to control the current of the line, which is shown in Eq. 2.1.

This section will change the value of the line’s reactance by multiplying it with
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a range of 0 − 100. The range is expected to represent ER’s ability of injecting the

reactance since there are different types of ER. The ER types will be discussed in

section 2.4 because their model is not applied yet. Before moving to the case studies

the following enumerators will explain how the problem is formulated and the followed

method to solve it, which is based on the flowchart in Figure 2.1. The steps are used

for both reactance multiplication and applying the ER model methods, but there

are different assumptions for applying ER on the system, which will be discussed in

section 2.4.

Figure 2.1: Flowchart Describing the Case Studies Solving Methodology

.

1. Project selection

LUA provided multiple files that showed the projects they are planning to do

in term of upgrading their lines or switches due to an overload, which occurs
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when an outage happens. The case studies applied the ER to increase the

capacity of the line and avoid the upgrade of a switch and line.

2. Excel documentation

The original data of the overload line or switch and its neighbors are docu-

mented with the load of the same year in an excel sheet. Then, the outage is

applied to cause the overload and the data are written down in the same excel

sheet. The second sheet shows the line with overload and the reactance of the

same line and its neighbors are multiplied with the values between 0 − 100.

The third sheet will increase the load and multiply the reactance with the same

values for the lines that solved the overload in the first year. The progress is

repeated for 10 years. The line or switch that is multiplied with the least value

of X and solved the overload for the longest years will be chosen as the best

line to apply the ER on it. In a case where two neighbor lines have an overload

situation when the outage is applied, the reactance will be multiplied by and

for the first year, both lines will be checked if the overload has been solved on

the location or not. If yes, the one with higher overload rate will be considered

for the rest of the years.

3. ER Placement

Smart Valve is the ER model provided by Smart Wires company. The ER

placement will be depending on the results from the multiplication method,

which finds the longest deferral with the least X injection. If one ER solves the

issue, then it will be the final result; If not, another ER is added to the system.

In some cases the ER that fitted the line’s current limits has another model

with stronger injection ability, which will be applied instead of using additional

ER.

36



The previous enumerators discussed the followed steps to solve an overload in

LUA system using the two methods. The steps are tested in three case studies to

find if the ER is able to solve the problem or not. The case studies for multiplication

method have three assumptions, and the first is the range of multiplying the reactance

is between 0− 50, but if the maximum value doesn’t solve the overload, the range of

multiplication will be increased to 100 just to ensure that this line or switch will not

assist in solving the overload. Second, each line’s reactance will be changed separately

to find the best line that will assist in increasing the capacity. Last, is the reactance

of the line and its neighbors will be changed and their values will be checked to avoid

solving the problem in one location and starting another issue in another line or

switch.

2.3.1 Reactance Multiplication Case Study (City A - City B)

Case study I is to apply the ER instead of upgrading a switch located between

two buses (City A - City B). ER will shift the phase angle between the voltage and

current, which is the reactance (X) of the line. Thus, the testing focuses on X impact

on overload. LUA plan is to increase the line capacity from 1200 A to 2000 A because

when there is an outage located between one of four different locations an overload

will happen in the switch between City A and City B. Figure 2.2 shows the names of

the four locations that will cause the overload and Table 2.1 will provide the parentage

rate City A and City B switch will reach.

Each outage gave City A - City B switch different rates, where City F - City D had

the worst case-scenario, which makes it applied to further investigate X multiplication

influence on the line. Note that the original rate for City A - City B switch is 1200

A. After applying the outage each line of the switch neighbor will have its reactance

value being changed. First, Figure 2.3 will visualize how the switch is connected to
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Figure 2.2: Four Outage Locations, when One of them Occurs, an Overload Between

City A - City B will Happen

Table 2.1: Four Outages that will Make an Overload in City A - City B

Location Line Amps Line percentage

City F - City D 1293.9 107.8%

City C - City D 1258.9 104.9%

City C - City G 1226.5 102.2%

City G - City H 1130 94.2%

the outage location and shows the switch rate of the overload.

So, while the outage between City F - City D is applied, City A - City B will

have a rate of 107.8% in 2020. Four locations will have their X value changed, which

are the overloaded switch and its neighbors. Figure 2.4 is zooming in to the overload

location, which will assist in matching the results shown in Table 2.2. It also shows

38



Figure 2.3: Outage Implementation in the Four Locations to Find Higher Overload

Rate Between City A - City B

the best location recommend to place the ER since it had the highest deferral with

the least reactance multiplication value. The green arrows are used to show that there

is an additional connection between the from-bus to the to-bus. Table 2.2 shows the

information about the overload switch and the ones connected to it. The reactance

values X will be multiplied by the range between 0− 100, which is represented by N .

The year of deferral is showing how many years the overload will be solved for the

new reactance value. The Amps rate is showing the percentage the line will reach at

the specified year of deferral.

Table 2.2: X Multiplication Results of City A - City B

From To Original Reactance [pu] X ×N New Reactance [pu] Type # Year of Deferral Line Amps Rate

City A City B 0.0006 75 0.045 Switch1 2 Years 100%

City B City J 0.0006 75 0.045 Switch2 No def. 106.6%

City L City B 0.0136 50 0.68 Line1 3 Years 100%

City I City A 0.02848 3 0.0844 Line2 9 Years 100.1%

City I City A 0.02848 5 0.1424 Line2 10+ Years 92.7%

City I City A 0.02848 10 0.2848 Line2 10+ Years 77.7%
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Figure 2.4: Overload Between City A - City B when City F - City D Outage is Applied

The range is assigned to be between 0 − 50, but for some cases, the values are

increased up to 100, which is to verify that this location will not assist in solving the

overload. From Table 2.2 Changing X in the same location of the overload City A

- City B is not effective because the current rate is still not in the limits range. To

solve the issue, X of the other three lines on the system is changed and the power

flow was tested again. However, changing the reactance for the second switch City

B - City J will not decrease the overload percentage. The third location is named

line1 for City L - City B and it solved the overload, but for 3 years with having it

reactance multiplied in a large number 50. Line2 City I - City A changed the current

values with a larger difference, which can solve the overload issue for 9 years when

multiplied by 3 and for more than 10 years when N = 5. The results found the best

line to apply the ER on, which will be line2 (City I - City A) because it reached

the maximum deferral project time assigned in this project, which is 10 years, with

changing the reactance with a small value.

2.3.2 Reactance Multiplication Case Study (City C - City D)

Case study II presents LUA plan to update an overload location in 2020 from

1200 A to 2000 A. The 2019 upgrades are applied in this project, which focuses on
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230 kV lines in the grid, but it didn’t affect the overload locations. In this case study,

the annual load increment for two years is 2.198% instead of 1.8% for one year. The

reactance multiplication range is between 0 − 40. There are two overload locations

where the outage is applied to either of the other two locations. The overload lines

are located between City C - City D, and City C - City G, which are shown as Line1

and Line 3 in Figure 2.5. Table 2.3 shows the percentage when each outage is applied

for the two lines, where the higher percentage of the outage and of overload locations

are considered to check the reactance changing impact.

Figure 2.5: Applying Outage in the Two Locations to Find Higher Overload Rate

Between Both City C - City D and City C - City G

Table 2.3: Two Outages that will Make an Overload in City C - City D and City C

- City G

Location Line1 Amps Line1 percentage Line3 percentage

City A - City B 1282.5 106.8% 103.7%

City I - City A 1169.1 97.4% 94.3%

It is clear from Figure 2.5 that the outage between City A - City B will create the
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worst-case scenario because it has a larger percentage 106.8%. The other outage does

not cause an overload in the same year, but with load increment percentage it will.

From Table 2.3 it is clear that City C - City D has a larger overload percentage than

City C - City G. So, City C - City D line current values are further investigated to

explain the results, and the other line was always checked during simulation to ensure

that both locations have been solved when X is changed. Figure 2.6 and Table 2.4

are showing the values of City C - City D line when the outage applied between City

A - City B.

Figure 2.6: Overload Between City C - City D when City A - City B Outage is

Applied

Table 2.4: X Multiplication Results of City C - City D

From To Original Reactance [pu] X ×N New Reactance [pu] Type # Year of Deferral Line Amps Rate

City C City D 0.00197 24 0.04728 Line1 2 Years 101.7%

City D City F 0.003542 4 0.142 Line2 10+ 98%

City D City F 0.003542 10 0.354 Line2 10+ 74.9%

City C City G 0.03307 4 0.132 Line3 5 Years 100%

City C City G 0.03307 10 0.331 Line3 10+ 78.2%

City G City H 0.0006 40 0.024 Switch1 No def. 102.9%
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Figure 2.6 showed the overload location with it’s neighbors and the red boxes

finds the percentage Line1 will have when X is shiffted in the box’s placement. Table

2.4 showed that switch1 will not assist in solving the problem, Line1, which is the

same location of the overload will fix the problem for 2 years with X being multiplied

by 24. Line2 maintain the current limits for more than 10 years with changing the

reactance to (X × 4). Line3, which is the second overload line with less rate, showed

good results by having the deferral for 5 years by multiplying it by 4 and more than

10 yeas when X × 10. So, the robust placement of ER will be on Line2 City D - City

F, when there is an outage between City A - City B.

2.3.3 Reactance Multiplication Case Study (City M - City N)

Case study III considers LUA plan to update two overload locations, which are

City M – City N and City L – City N in 2025 from 1200A to 2000A. The overload will

occur when either an outage between City F – City D or City C – City D happens. The

assumptions for this case study are the annual load increment for every year is 1.8%

and changing the line’s reactance to a certain value between the range X × (2− 32).

Figure 2.7 shows the overload and its neighbor’s reactance values. Table 2.5 is finding

the overload worst-case scenario by applying the two loads.

Table 2.5: Two Outages that will Make an Overload in City M – City N and City L

– City N

Location Line1 Amps Line1 percentage Line2 percentage

City F – City D 1221.5 101.8% 100.9%

City C – City D 1206.7 100.6% 99.3%

Table 2.5 shows the worst case scenario for the overload in Line1 and Line2 will
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Figure 2.7: Applying Outage in the Two Locations to Find Higher Overload Rate

Between Both City M – City N and City L – City N

occur when the outage between City F - City D with values of 101.8%. The outage

will give larger overload percentage to Line1 comparing to Line2. So, Line1 values

are explained in the results Table 2.6 and Figure 2.8 while during simulation both

locations were being watched carefully.

Figure 2.8: Overload Between City M – City N when City F – City D Outage is

Applied

Figure 2.8 showed the reactance being changed in five locations instead of four

because bus City C is connected to two lines and a switch, which all considered
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Table 2.6: X Multiplication Results of City M – City N

From To Original Reactance [pu] X ×N New Reactance [pu] Type # Year of Deferral Line Amps Rate

City M City K 0.00027 12 0.00324 Switch1 2 Years 100%

City M City K 0.00027 16 0.00432 Switch1 5 Years 100.2%

City M City Q 0.00014 32 0.00448 Switch2 No def. 101.8%

City M City N 0.02183 16 0.3493 Line1 No def. 116%

City L City N 0.00785 2 0.0157 Line2 7 Years 100.2%

City L City N 0.00785 4 0.0314 Line2 9 Years 100.1%

City L City B 0.0136 2 0.0272 Line3 10+ Years 98.7%

neighbors the overload locations. Switch1 solved the overload for 2 and 5 years but

with a multiplication value of more than 10, which means it will require a big change

in the reactance. Switch2 didn’t solve the overload, which makes it a bad decision

to place the ER on. Line1 also didn’t solve the problem and made it worse because

it directed more flow into the overload, which is the case of switch between captive

mode and inductive mode, but neither solved the overload because a new problem

happened in another location. Line2 increased the project deferral for 7 years by

multiplying the value by 2 and for 9 years when (X × 4). Although Line2 showed

a good result, Line3 has better because it reaches the maximum deferral with only

multiplying the reactance value by 2. Line3 is the best location to place the ER

since it solved the overload for more than 10 years with the least multiplication value

between the three case studies not only for the tested one.

2.3.4 Section Summary

In this section three case studies are discussed, which focuses on solving the over-

load in LUA transmission line when an outage occurs. The overload is solved by

multiplying the reactance values of the line or switch and its neighbors after applying

the worst case scenario that will occur when an outage is applied. Each location
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values are tested separately and each case study had good results where the overload

is solved for the maximum deferral assigned to this project by multiplying X with

small values (2 − 5). From the represented results, it’s clear that the ER is able to

enhance the stability of the power flow in the system by controlling the reactance

value that will affect the line’s reactive power. To verify the results, a real model

of the ER will also be applied to the system to shift the reactance under the same

scenarios for the three case studies in section 2.4. An important observation from the

result is that the reactance controlling on a line is better than a switch because the

switch has lower reactance values, which decrease its impact and requires large values

of multiplication.

2.4 Energy Router Placement on LUA Grid using Smart Wires Model

The ER model is provided by Smart Wires company, which is named Smart Valve

and it has been applied and tested on LUA grid. The provided Smart Valve model is

intended for steady-state power flow studies only, for both capacitive and inductive

ER modes. The model is provided in a single script in (.p) format that contains

information for multiple deployments, which means more than one ER can be applied

and with different types. The model is provided with three injection modes, which are

reactance, voltage, and current. The current mode is applied in the three case studies,

which follows the multiplication method results to place the ER. In the multiplication

method, the reactance was multiplied within a specified range, wherein the Smart

Valve model there is a deployment usage, which is the injection rate that the ER can

reached. The ER maximum deployment will be reach when it equals to 100%. Figure

2.9 shows the ER behavior of injecting the reactance and current, which is for the

Smart Valve model 10− 3600i.

Figure 2.9 shows the reactance and current injection ranges for ER model 10 −

46



Figure 2.9: ER Injection Behavior [4]

3600i, which is from 0.79 Ω to 28.3 Ω and for current is 100 A. To understand the

range Smart Wires provide for an ER, the table in Figure 2.10 shows each type and

it’s operating range.

The table in Figure 2.10 shows each ER type and its parameter, where each has

its own rates. The first type is SmartValve 1− 900, which represents its current rate

from the name. If the line is rated for 700 A, then the ER with a current rate of

900 A can be applied, but if the line is rated for 1200 A, then the choice will be ER

with a rate of 1800 A, which named as SmartValve 5−1800. The maximum injection

voltage rate of the SmartValve 1−900 is +/−1132 V, where the (+/−) represents the

inductive and reactive modes. Remember in the multiplication method the reactance

is injecting not voltage and in this section, the current is considers. The emergency
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Figure 2.10: Smart Wires ER Parameters [4]

rating is when there is an outage or an overload in the line. The ER will know the

difference between an outage and overload by this rating. If the line is designed with

rating of 900 A and the current in the line reaches a value between 900−1080 A, then

the ER will try to control the reactive power for two hours and then bypass. However,

if the same line has a rating for more than 1080 A, then the ER will immediately

bypass the power flow for protection reasons. The ER model is clearly explained and

to apply it there are three assumptions considered, which are the least line reactance

multiplication that solved the overload is assumed to be the best location to place

ER on, deployment rate must maintain to be < 100%, and a current injection mode

is applied.

2.4.1 ER Attachment Case Study (City A - City B)

In this case study, the same locations considered the first case study for the mul-

tiplication method is used. So, the outage is applied in City D - City F line, and the

overload is located in City A - City B. The results in Table 2.2 showed that Line2

(City I - City A) is the best location to place the ER on because it had the deferral for
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9 with the lowest multiplier value. Line2 has a current rate of 1935 A, which makes

ER type 7.5− 2700i applied because it has a current rate of 2700 A as shown in the

table in Figure 2.10. Figure 2.11 shows the ER being placed on the line and Table

2.7 find the results.

Figure 2.11: ER Placement on Line2

Table 2.7: ER Applied on City A - City I (Line2)

# of ER 1 ER 2 ER 2 ER Max injection

Year of deferral 6 Years 10+ Years 10+ Years

Amps 1202.5 1155.2 1103.5

Year 2025 2030 2030

Deployment Usage 98.18% 74.54% 98.53%

Table 2.7 shows the result of injecting the voltage from the recommended location

by the multiplication method for case study I. Attaching one ER solved the overload

for six years and when two ER were applied the deferral increase to more than 10

years. Also, the maximum injection rate for two ERs is tested, which decreased

more than 100 A and reached the maximum deferral year assigned in this project.

Furthermore, the deployment usage is found when the model is running, which can
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be seen in Figure 2.12 from the PSLF results.

Figure 2.12: Two ERs Applied on City I – City A, Results From PSLF

The ER model has successfully solved the overload for more than 10 years using

two devices and 6 years when one device is applied.

2.4.2 ER Attachment Case Study (City C - City D)

Case study II is applying the ER on the recommended line from the multiplication

method, which is Line2 (City D - City F). The overload is on two lines, but the one a

with larger overload rate is considered, which is Line1 (City C - City D). The overload

occurs when the outage between City A - City B is applied. The ER model is also

7.5−2700i because Line2 current rate is 1935 A. Figure 2.13 shows the ER placement

on Line2 and Table 2.8 finds the results.

Table 2.8 showed the result of applying the ER on Line2, where one ER solve

the overload for 2 years, 2 ERs have 5 years of deferral, and 3 ERs have reached the

maximum deferral time in this projects. So, in this case, LUA can apply one ER,

and after two years the second ER, which will give them 5 extra years to extend the

project’s upgrade time.
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Figure 2.13: ER Placement on Line2

Table 2.8: ER Applied on City D - City F (Line2)

# of ER 1 ER 2 ER 3 ER

Year of deferral 2 Years 5 Years 10+ Years

Amps 1214 1209.7 1109

Year 2022 2025 2030

Deployment Usage 84.58% 56.2% 98.19%

2.4.3 ER Attachment Case Study (City M - City N)

The multiplication method suggested to attach the ER on Line3 (City L - City

B), when the overload is located in City M – City N due to, the outage in City F

– City D. Figure 2.14 shows the ER placement on Line3 and Table 2.9 provide the

results.

Table 2.9 shows the results for applying two types of ER, where the first type is

1−1800 and the second is 5−1800i. ER 1−1800 has a voltage injection rate +/−566

V, which solved the overload for 6 years. ER 5 − 1800i has a larger injection rate

of +/ − 2830 V, which reached the maximum deferral years assigned to this project
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Figure 2.14: ER Placement on Line3

Table 2.9: ER Applied on City L - City B (Line3)

# of ER 1 ER 2 ER

Year of deferral 6 Years 10+ Years

Amps 1200.8 1068.7

Year 2031 2036

Deployment Usage 72.48% 49.51%

(10+) years. Note that both ER has the same continuous current rating, but their

injection rate is different, which means the one starts with 5 is more enhanced.

2.5 Conclusion

In this chapter, the ER is introduced, and following its mathematical form for

controlling the reactive power by injecting the reactance in three case studies are

discussed. The first method is to multiply the line’s reactance value within a specified

range. The overload location and its neighbors use the same method and the one

which solves the overload for the longest time with least multiplication values is

considered the best location to place an ER. The second method is to apply the real
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ER model provided by Smart Wires on LUA transmission lines and test different

deployment rates in case study I, more than one ER on the same line in case study

II, and two ER types in case study III, which has the same continues current ratings.

Lastly, the ER guarantees to increase the stability of power flow on the transmission

line by controlling its reactive power, which is proved using two methods and six case

studies in this chapter.
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Chapter 3

ELECTRIC VEHICLE CHARGING STATION DATA ANALYTICS

Time series analysis (TSA) methods are presented in different publications to

predict the future using exponential smoothing, ARMA, and polynomial curve fitting

models [61, 62, 63]. In [61] ARMA and exponential smoothing predicting the future

disease rating and then compares, where ARMA had better accuracy in fitting the

data. Short term traffic flow is predicted using ARMA with exponential smoothing

to assist in controlling the real-time flow [62]. Transmission line transient stability is

forecasted using polynomial curve fitting to assist the relay in protecting the system

from power swings [63].

In this chapter, TSA will be studied to show how the EVCS will impact the power

grid, and then predict the future. Two EVCS data sets are studied, which are located

in Boulder, Colorado, and Palo Alto, California. The first rows of the data set will

be shown to provide more understanding. So, the energy will be studied for each

year during the provided years. The charging duration is also studied for each month

to provide more observation from the EVCS impact on the electrical system. Then,

the standard deviation and mean of the energy summation during 24 hours is found.

The data sets will first be divided depending on each zip code and the one with more

records is considered because the more data that is provided, the better prediction

will be found. For the data prediction, different forecasting TSA methods are applied,

which are polynomial curve fitting, autoregressive moving-average, and exponential

smoothing. Knowing the future will assist in planning the EVCS and avoid any issues

like the overload. So, the aim of this chapter is to find the EVCS impact on the power

grid by studying different features and forecasting them.
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3.1 Electric Vehicle Charging Station for the City of Boulder, Colorado

The EVCS data for the city of Boulder, Colorado [64], is studied to find the energy

consumption at every hour during the day. From Table 1.3 the TSA will be applied

for the zip code of 80302 to find EVs behaviour during 26 months. Then, the mean

and standard deviation are found for the 24 hours.

3.1.1 Boulder Data Set Description and Observations

Colorado records are analyzed in Figure 3.1, which shows the sum of energy con-

sumption for each month at a certain hour.

The energy usage at early hours of the day (00 : 00 − 04 : 00) is almost 0 kWh,

but between the months 10 to 15 there is an increment between 5 kWh - 25 kWh

as shown in Figures 3.1a, and 3.1b. This usage is rarely considered for charging EV

since the charging station might be closed and there are few people who are awake

at these hours. So, the reason could be that the EVCS operation consumption in

the winter season increases for the first year. As mentioned the data is given from

Jan 2018 to Feb 2020, which means between October 2018 to March 2019 the EVCS

was using energy while the charging station is closed. However, it seems the EVCS

owners fixed the problem in the next year, which can be noticed in the second year

the problem might be solved where Figures 3.1a, and 3.1b are showing 0 kWh for

the same season at the following year, which can be seen in the months 22 to 26 that

represents the date of October 2019 to Feb 2020. At 05 : 00, the energy starts to

increase up to 50 kWh, which seems like the starting time of charging the EVs, but

with few vehicles being charged. Figures 3.1c, and 3.1d, are showing increment from

06 : 00 to 20 : 00 in the consumption for more than 100 kWh. Figure 3.1h, represents

the hours from 21 : 00 to 23 : 00 and the usage is decreasing to below 50 kWh, which
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(a) Sum of EVCS Energy for

the Zip Code: 80302 Between

00 : 00 - 02 : 00

(b) Sum of EVCS Energy for

the Zip Code: 80302 Between

03 : 00 - 05 : 00

(c) Sum of EVCS Energy for

the Zip Code: 80302 Between

06 : 00 - 08 : 00

(d) Sum of EVCS Energy for

The Zip Code: 80302 Be-

tween 09 : 00 - 11 : 00

(e) Sum of EVCS Energy for

the Zip Code: 80302 Between

12 : 00 - 14 : 00

(f) Sum of EVCS Energy for

the Zip Code: 80302 Between

15 : 00 - 17 : 00

(g) Sum of EVCS Energy for

Zip Code: 80302 between 18 :

00 - 20 : 00

(h) Sum of EVCS Energy for

the Zip Code: 80302 Between

21 : 00 - 23 : 00

Figure 3.1: Colorado EVCS Energy Consumption for 24 Hours

seems that few people are charging at these hours that might be the closing hours.

Furthermore, the hours from 7 : 00 to 20 : 00 will be clearly explained in the

following items.
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• EVCS low load usage (50− 200) kWh

Figure 3.1c, at 06 : 00, and Figure 3.1g, at 20 : 00 are showing the EVCS is

operating with value of 100 kWh.

• EVCS normal load usage (250− 400) kWh

Figures 3.1c, at 07 : 00, 3.1e at 13 : 00, 3.1f at 15 : 00 and 16 : 00, and 3.1g,

at 19 : 00 are showing the EVCS station operation have value between 250 kWh

to 400 kWh.

• EVCS heavy load usage (450− 750) kWh

Figure 3.1c at 08 : 00, Figure 3.1d at 09 : 00 the consumption is rapidly

increasing, which reached up to 750 kWh. Figure 3.1d at 10 : 00 and 11 : 00,

Figure 3.1e at 12 : 00, Figure 3.1f at 17 : 00, and Figure 3.1g at 18 : 00 are

showing that the energy usage goes up to 500 kWh.

After analyzing the data in the plots and explaining them, there are important

observations that will be listed as the following.

1. EV owners are increasing and it can be seen obviously in Figure 3.1e by the

increment of the curves. So, the number of the EV will increase in the city of

Boulder, which will increase the load on the power grid.

2. An overload might occur at the hours 08 : 00 to 09 : 00 because the kWh is

higher than any other time.

3. The energy consumption in the winter season is more than the other seasons,

which can be clearly seen between the months 10− 12, and 22− 24.

4. The higher energy consumption value is located at 80302
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3.1.2 Mean and Standard Deviation of Boulder’s Data

The mean and standard deviation (SD) will be applied Chapter 4, which will use

them to find and optimal charging station placement location with ER to reduce the

total cost. So, the mean value will present the mean of kWh consumption for the 26

months at a specified hour. The SD will also present 24 values for the 26 months.

Both the mean and SD values are shown in Table 3.1, which will show only the values

of the zip code of 80302. Figure, 3.2 visualize Table 3.1, which clearly shows that the

EV are mostly being charged between the hour 05 : 00 to 20 : 00.

Table 3.1: Mean and Standard Deviation for 24 Hours in 80302

Hour SD [kWh] Mean [kWh]

0 8.533 4.074

1 5.156 3.399

2 1.946 1.03

3 2.714 0.864

4 4.314 1.202

5 14.30 11.821

6 43.652 63.327

7 75.12 130.417

8 203.337 408.809

9 217.541 329.351

10 89.232 240.216

11 103.229 296.598

Hour SD [kWh] Mean [kWh]

12 115.929 331.484

13 104.565 298.324

14 74.020 221.626

15 78.884 183.957

16 73.263 204.982

17 120.878 338.800

18 115.775 306.804

19 70.874 177.087

20 30.417 55.021

21 17.503 18.665

22 16.928 10.506

23 8.753 7.049

From Table 3.1, the kWh consumption usage can be observed in the following

numbers.
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Figure 3.2: Energy Consumption SD and Mean Values of 26 Months for 24 Hours in

80302

1. From the hour 0 to 4, and 23 the SD values are below 10, which shows low

kWh consumption. Mean values are also low, which are lower than 5 except

the mean of the hour 23. So, during the hours 0 to 4 the load will not have a

big impact on the power grid.

2. The hours from 5 to 7 the energy consumption is increasing.

3. The hours 8, 9, 11, 12, 17, and 18 presents the highest values for both SD and

mean, which must be noticed because it will be a reason for overload.

4. The hours 10 to 13, 14, and 16 are also showing high kWh, but not as large as

the previous hours. These hours can be a reason for overload in the long term,

which must be considered.

5. The hours 15 to and 19 are the in same range of hour 7, which can be considered

as low or medium load.
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6. The hours from 20 to 22 are showing that the kWh values are decreasing, which

is a low energy consumption usage.

The observation clearly described how charging the EV is impacting the grid

during different hours of the day. The mean and SD will be used and further analyzed

in Chapter 4 for planning the EVCS.

3.1.3 Section Summary

In this section, Boulder’s data set for EVCS has been analyzed to find how the EV

owners are impacting the power grid. First, the zip code with the highest number of

transactions has been explained in detail by showing their plots and provide important

observations such as the overload that might occur between the hours 08 : 00−09 : 00.

Then, the SD and mean were found for the data set and observed following the table

and figure provided in the same section. So, the TSA is applied to find how the

EVCSs are influencing the electric system and from visualizing the plots the tables

it is clearly seen when the load will be large or small. To forecast the data set, the

more information is provided the better prediction will result because it will have a

bigger number of data to train on. Thus, the next section represents a new data set

with more records to apply TSA for present analyses, and future prediction.

3.2 Electric Vehicle Charging Station for the City of Palo Alto, California

The EVCS data for the city of Palo Alto, California [54] is studied following the

area with largest transactions, which is 94301 as shown in Table 1.5. For each month

the energy consumption and charging duration is observed by plotting them and

describe each one. The SD and mean values will be found by summing the 72 months

energy consumption. After observing the data, it will be forecasted using polynomial,

autoregressive moving-average, and exponential smoothing.
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3.2.1 Palo Alto Data Set Description and Observations

Palo Alto EVCS records are studied considering two features, which are energy

and charging duration. From the curve shape, mean, and SD values, the EVCS impact

of the power grid will be observed.

EVCS Energy Consumption for Each Hour in the 72 Months

The area with a zip code of 94301 will be studied in detail for the 24 hours. The

data is separated to present each hour’s consumption of kWh on a duration of 72

months. To explore the kWh consumption, Figures 3.3 and 3.4 is showing each hour

usage.

Figures 3.3 and 3.4 shows 79 months versus the the sum of kWh consumption for

the 24 hours, which showed that the peak usage is between hour 09 : 00 to 14 : 00

and 07 : 00. Also, the kWh is rapidly increasing starting at the hour 06 : 00. Then,

from the hour 20 : 00 it starts to decrease and goes almost to zero starting from the

hour 00 : 00 to 04 : 00 since there is no hour 24 : 00 when the data started recording

at hour 00 : 00. The provided bullet points in the bottom are used to explain the

plots.

• Low consumption (0− 800) kWh

From hour 00 : 00 to 05 : 00 and 23 : 00 the energy usage is low where there

are few people charging their cars at this time.

• Medium consumption (900− 1800) kWh

The hours 06 : 00, 08 : 00, 10 : 00, and 15 : 00 − 22 : 00 have the medium

load usage, which can be considered for the long term to avoid any issues.

• High consumption 1900− 3800 kWh
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(a) Sum of Energy Consump-

tion Between 00 : 00−02 : 00

(b) Sum of Energy Consump-

tion Between 03 : 00−05 : 00

(c) Sum of Energy Consump-

tion Between 06 : 00−08 : 00

(d) Sum of Energy Consump-

tion Between 09 : 00−11 : 00

(e) Sum of Energy Consump-

tion Between 12 : 00−14 : 00

(f) Sum of Energy Consump-

tion Between 15 : 00−17 : 00

Figure 3.3: California EVCS Energy Consumption for 72 Months in the Area with

Zip Code of 94301 From Hour 00 : 00 to 17 : 00.

The hours 07 : 00, 09 : 00, and 11 : 00−14 : 00 have high energy consumption,

which must be considered to protect the system from damages.

After explaining each hour and how the EVCSs are operating, the following num-

bers points will discuss the observations for the figures.

1. From Figures 3.3 and 3.4 it is clearly shown that the number of EV is increasing

annually or even monthly by looking at the kWh consumption increment slope
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(a) Sum of Energy Consump-

tion Between 18 : 00−20 : 00

(b) Sum of Energy Consump-

tion Between 21 : 00−23 : 00

Figure 3.4: California EVCS Energy Consumption for 72 Months in the Zip Code

94301 From Hour 18 : 00 to 23 : 00.

on all hours.

2. The EVCS have the lowest energy consumption from 01 : 00 to 04 : 00 where

few people are charging as shown in Figures 3.3a and 3.3b.

3. The energy consumption is separated into low, medium, and high. The low

type will not have a big impact on the power grid. The medium type does have

an impact, but will not be the reason for issues in the short term. However,

the high type needs to be considered because it might cause an overload in the

system.

4. From 06 : 00 to hour 18 : 00 the number of EVs being charged is increasing for

more than 1500 kWh, which can be a reason for problems on the grid especially

in the winter season. Note that hour 16 : 00 is about 1, 000 kWh, which shows

fewer owners are charging at this time.

5. The higher NT is located in 94301, which means it’s the largest load between
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the three.

After observing the data set by explaining the kWh usage, the EV charging can

be studied more to list more findings. Thus, the charging duration of the EVCS at

each year, month, and hour is found.

Analyzing EV Charging Duration for Each Month of the 72

The EV is being charged for different times, which makes studying the charging

duration assistant in providing better pictures of how the EVCSs are affecting the

power grid. Palo Alto’s data set analysis for the charging duration will be discussed

in the following figures. So, every month is plotted separately and the changes have

been observed, but only the first and last years are presented to avoid repetition.

• Charging Duration from 2011 to 2014

Starting with Figure 3.5, which shows every month in the year of 2011 except

January to July because the information is not provided, which might means

this EVCS opened in 2011. In addition, each month is plotted separately in 3.6

to zoom in into the time of charging duration.

The following items are used to explain the plots and list the important

observations for the years 2012− 2014.

– July’s plot has few charging records, but it is clearly seen that the time

varies from one EV to another as shown in Figure 3.6a.

– In August the duration has a maximum value of 250 minutes, where most

charging is clearly seen between 50 to 150 minutes as shown in Figure 3.6b.

– The rest of the figures have similar shapes bust not the same, where the

most of the durations are between 50 minutes to 250 minutes.
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Figure 3.5: Palo Alto 94301 Charging Duration for Year: 2011

(a) Jul 2011 (b) Aug 2011 (c) Sep 2011

(d) Oct 2011 (e) Nov 2011 (f) Dec 2011

Figure 3.6: California EVCS Charging Duration for 2011 in the Area with Zip Code

of 94301.

– Average the duration for charging the EV has increased in 2012 about 50

minutes, which gives it the range from 50 to 300 minutes.

– The maximum duration recorded in 2014 has jumped to 1200 from 800

minutes in 2013.
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– The average of the charging duration is decreasing starting from 2013 to

be mostly less than 250 minutes, which can be due to introducing fast-

charging machines in the EVCSs.

• Charging Duration from 2015 to 2017

The number of recorded months in 2017 is seven since the data covers the

EVCSs information until July 2017. Figure 3.7 shows the charging duration in

2017 and Figure 3.8 shows every month’s charging periods.

Figure 3.7: Palo Alto 94301 Charging Duration for Year: 2017

To describe the plots in Figure 3.8, the following items are provided.

– The average for all months is mostly limited by 200 minutes, which means

it decreased compared to 2014.

– The maximum duration has jumped to 2500 minutes in 2016, which was

1500 minutes in 2015. It can be noticed that both of these long periods

charging happened only once in 2015 and 2016 in the same month, which

is January.
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(a) Jan 2017 (b) Feb 2017 (c) Mar 2017

(d) Apr 2017 (e) May 2017 (f) Jun 2017

(g) Jul 2017

Figure 3.8: California EVCS Charging Duration for 2017 Months in the Area with

Zip Code of 94301.

– The average of charging duration in 2017 is less than 200 minutes for all

seven months.

The charging duration in Palo Alto showed that the charging at the hours of the

day between 11 : 00 pm to 5 am was the lowest in 2011, the lengthiest charging

duration was on January 2016 with a value of 2500 minutes and the average duration

of charging reached to less than 200 minutes in 2017. The first year seemed like the

charging station might be closed between the 12 : 00 am to 05 : 00 am, but going

through each month of the next years it showed that there were only a few EVs being

charged at theses hours and the EVCS seems to be open 24 hours a day. The number
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of EVs is increasing, which can be clearly seen from the number of charges between

the hours 9 : 00 pm to 05 : 00 am. The maximum duration seems that there was

testing or an issue behind this long period because it happened once in some years

such as 2015 and 2016. The average charging duration has been decreasing, which

proves the fast charging is being used more often and the batteries of EVs are being

updated to be charged within less duration.

Section Summary

In brief, in this subsection, the energy and charging duration is observed and de-

scribed by plotting and explaining them. It was clear from both that the EVs are

being more purchased, which means a larger load on the grid. The energy represented

in kWh found the hours that can be a reason for the overload. For the charging du-

ration, it showed that the fast charging and the upgraded batteries are being used to

decrease the required number of minutes; These observations meet what references

[65] discussed about the shorter time an EV will require it be charged due to the new

generation of batteries. Furthermore, to discover the data and find how the EVCSs

will affect the grid from the Palo Alto’s data the SD and mean values are discussed

next.

3.2.2 Mean and Standard Deviation of Palo Alto’s Data

The SD and mean values for the zip code 94301 are studied to find EV’s impact

on the power system. Figure 3.9 shows the plot of both values during 24 hours. Table

3.2 provides the couple values during a day to clearly understand how the EVCSs are

consuming the kWh.

Figure 3.9 shows that the peak usage of kWh is between the hours 10− 12. The

mean values show more details about the consumption, which can be clearly visualized
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Figure 3.9: Energy Consumption SD and Mean Values of 72 Months for 24 Hours in

94301

by the more details on the mean curve especially between the hours 5 − 10. Table

3.2 shows the values of mean and SD during 24 hours. The following numeration

explains the table.

1. The hours between 0 − 4 shows the lowest energy consumption for the mean

values, which are below 50 kWh. The SD values for the same hours are also

lower than 50 kWh.

2. The hours 5, and 22 − 23 had larger values for both the mean and SD, which

will affect the power system, but with a low rate (100− 230) kWh.

3. The medium consumption can be separated into small, middle, and large groups.
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Table 3.2: Mean and Standard Deviation for 24 Hours in 94301

Hour SD [kWh] Mean [kWh]

0 49.190 48.569

1 30.848 24.687

2 16.107 9.696

3 12.435 5.957

4 35.575 28.652

5 131.598 162.320

6 421.364 577.775

7 593.406 590.347

8 504.702 595.667

9 535.625 550.075

10 502.721 539.999

11 640.636 711.445

Hour SD [kWh] Mean [kWh]

12 467.652 565.319

13 543.247 623.011

14 581.474 639.911

15 417.300 496.791

16 399.793 466.161

17 434.490 541.521

18 451.530 573.302

19 367.171 466.348

20 298.526 344.705

21 285.613 328.901

22 199.061 227.885

23 103.756 121.998

The small medium can be seen during the hours 20− 21, which had the values

smaller than 400 kWh for the mean and between 250 − 300 kWh for the SD.

The middle medium will have mean values between 450 to 500 kWh, which are

shown in hours 15−16, and 19. The large medium values are between 500−600

kWh that can be found in the hours 6− 10, 12, and 17− 18.

4. The large consumption have mean values between 600− 700 kWh at the hours

11, and 13−14. Although the previous hours considered large, hour 11 had the

largest value, which was 711 kWh.

The SD and mean table showed three consumption types to find how the EVCS

will impact the grid. The low usage can be seen in the late and early hours of the day

70



0− 4, which will not have a big impact on the gird. The second group is the medium

one, which was divided into three types that must be considered in the long term to

avoid issues on the grid. Also, the large consumption hours are found, which must

be considered due to the big impact it has. The largest consumption occurred at 11

and it can be a reason to have an overload in the system.

3.2.3 Forecasting Palo Alto Data Set using Time Series Analysis Methods

Two data sets have been described and observed in kWh, but one of them will be

forecasted because it has a higher number of transactions. The bigger the number of

rows provided by the data set, the better training the model will have, which makes

the prediction data more robust. Palo Alto data set energy consumption for the zip

code 94301 will be forecasted using optimization method represented by polynomial

curve fitting. Also, different TSA methods that applied both machine learning and

optimization to predict the future kWh ratings. This part will discuss, which method

is best to be used for the data by testing them.

Polynomial Curve Fitting for Energy Consumption Data Set

The polynomial curve fitting method is applied to Palo Alto’s data set with the zip

code of 94301. The polynomial curve fitting will basically match a line to the data

and find their coefficients am depending on the least square fit [66]. For linear form

least-square fit, the function f(x) is represented in equation 3.1.

f(x) = a0f0(x) + a1f1(x) + ...+ amfm(x) =
m∑
j=0

ajfj(x) (3.1)

The basis function is every fj(x), which is a predetermined function of x as Eq. 3.2.

S =
n∑
i=0

[yi −
m∑
j=0

ajfj(xi)]
2 (3.2)
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From the derivation described in reference [67], the matrix of the notation can be

presented as Aa = b. The polynomial equation to fit the data is f(x) =
∑m

j=0 ajx
j,

which can be found if the polynomial degree is m that gives the basis as defined in

equation 3.3.

fj(x) = xj (j = 0, 1, ...,m) (3.3)

Where Aa = b matrix for the polynomial fitting is shown Eq 3.4.

Akj =
n∑
i=0

xj+ki bk =
n∑
i=0

xki yi (3.4)

It is important to mention that with increasing the number of m the polynomial

method will have higher noise, which makes the low m values more helpful to apply

the equation [67].

Furthermore, the polynomial curve fitting is applied to 94301 data set to find if

the method can be used to predict the future kWh consumption. The degree m of

the equitation is tested for the values from 1−6 to find, which curve fits the data the

best.

• Polynomial Curve Fitting to the Power m of 1− 6

The polynomial curve fitting is tested and plotted for each degree from 1− 6.

Every two degrees are plotted in the same figure and the important findings

will be listed in the bottom. Since the polynomial curve fitting to the power

1 and 2 didn’t match the expectations, it has been increased to be tested with

the values of 3 and 4. The polynomial curve fitting to the power of 3 will be

represented in yellow and to the power 4 will be in orange. Figures 3.10 and

3.11 shows kWh consumption in 24 plots each shows an hour of the day for

the 72 months. It can be seen the number of months is shown as 79 in the

plots, but when referring to it the value 72 is used instead. This is because the
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data provided from July 2011 and the plots are considering the first six months,

which appears always as zero.

From Figures 3.10 and 3.11 the hours 1 to 5 the curve can’t be specified in a

shape because of the low consumption of of EVCS energy (< 250 kWh). The 6th

hour shows many people in 2015 are charging their vehicle, but then it decreases

again in the next years. The 7th hour shows an increment wave shape for both

powers, but the power to the 4th fits the data closer, which is better. From the

8th hour to the 21st hour the shape looks like a bird’s body where the energy

consumption increases then stay almost at steady state from the 20th month to

the 40th. The hour 23rd and 24th takes the increasing wave shape again, where

the energy consumption values in kWh are decreasing again. Tables 3.3 and 3.4

show the coefficients for the degree with values of 3 and 4 during the 24 hours.

Table 3.3: Polynomial Coefficient Values for the Degree m of 3 and 4 for the Hours

1− 12 in 94301

Hour m = 3 m = 4

1 −0.00053x3 + 0.06729x2 − 0.918x+ 9.624 −5.044× 10−05x4 + 0.007541x3 − 0.3495x2 + 6.602x− 22.16

2 −0.0003203x3 + 0.03216x2 − 0.1202x+ 1.807 −1.361× 10−05x4 + 0.001858x3 − 0.08033x2 + 1.909x− 6.76

3 −0.000113x3 + 0.011x2 + 0.023x− 0.2563 8.786× 10−06x4 − 0.001519x3 + 0.0836x2 − 1.287x+ 5.279

4 −0.0001162x3 + 0.008524x2 + 0.05788x+ 0.2585 2.532× 10−07x4 − 0.0001567x3 + 0.01062x2 + 0.02013x+ 0.4181

5 −0.0002455x3 + 0.02991x2 − 0.3217x+ 9.136 −6.205× 10−05x4 + 0.009683x3 − 0.4829x2 + 8.93x− 29.96

6 −0.004028x3 + 0.406x− 5.07x2 + 13.54 6.757× 10−05x4 − 0.01484x3 + 0.9643x2 − 15.14x+ 56.11

7 0.00655x3 − 0.7536x2 + 39.71x− 240.9 0.0004232x4 − 0.06117x3 + 2.744x2 − 23.39x+ 25.77

8 0.006257x3 − 0.2947x2 + 10.44x+ 6.798 −0.0004696x4 + 0.0814x3 − 4.176x2 + 80.45x− 289.1

9 0.01466x3 − 1.332x2 + 41.06x− 76.97 −0.0002885x4 + 0.06082x3 − 3.716x2 + 84.07x− 258.7

10 0.01603x3 − 1.467x2 + 45.08x− 168.6 0.0001058x4 − 0.0008951x3 − 0.5931x2 + 29.31x− 101.9

11 0.009032x3 − 0.731x2 + 26.26x− 102.4 −8.566× 10−05x4 + 0.02274x3 − 1.439x+ 39.03x− 156.4

12 0.004466x3 − 0.126x2 + 10.27x+ 3.029 −0.0003776x4 + 0.06488x3 − 3.246x2 + 66.57x− 234.9

From Tables 3.3 and 3.4 the third coefficient x3 on the equation for the 3rd
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(a) Degree 3&4 hr. 1 (b) Degree 3&4 hr. 2 (c) Degree 3&4 hr. 3

(d) Degree 3&4 hr. 4 (e) Degree 3&4 hr. 5 (f) Degree 3&4 hr. 6

(g) Degree 3&4 hr. 7 (h) Degree 3&4 hr. 8 (i) Degree 3&4 hr. 9

(j) Degree 3&4 hr. 10 (k) Degree 3&4 hr. 11 (l) Degree 3&4 hr. 12

Figure 3.10: Polynomial Curve Fitting Based on Energy Consumption Data for the

Hours 1− 12 in the Area with Zip Code of 94301. Each Plot Shows the Curve Fitted

During an Hour of the Day with m Values of 3 and 4.
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(a) Degree 3&4 hr. 13 (b) Degree 3&4 hr. 14 (c) Degree 3&4 hr. 15

(d) Degree 3&4 hr. 16 (e) Degree 3&4 hr. 17 (f) Degree 3&4 hr. 18

(g) Degree 3&4 hr. 19 (h) Degree 3&4 hr. 20 (i) Degree 3&4 hr. 21

(j) Degree 3&4 hr. 22 (k) Degree 3&4 hr. 23 (l) Degree 3&4 hr. 24

Figure 3.11: Polynomial Curve Fitting Based on Energy Consumption Data for the

Hours 13−24 in the Area with Zip Code of 94301. Each Plot Shows the Curve Fitted

During an Hour of the Day with m Values of 3 and 4.
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Table 3.4: Polynomial Coefficient Values for the Degree m of 3 and 4 for the Hours

13− 24 in 94301

Hour m = 3 m = 4

13 0.01026x3 − 0.9243x2 + 33.26x− 103.1 −0.0001139x4 + 0.02848x3 − 1.865x2 + 50.24x− 174.9

14 0.01076x3 − 0.9113x2 + 32.55x− 106.7 −0.0001113x4 + 0.02856x3 − 1.831x2 + 49.14x− 176.8

15 0.0127x3 − 1.098x2 + 37.68x− 144.1 2.614× 10−05x4 + 0.008516x3 − 0.8823x2 + 33.79x− 127.7

16 0.005803x3 − 0.4492x2 + 19.55x− 66.54 −4.169× 10−05x4 + 0.01247x3 − 0.7937x2 + 25.77x− 92.8

17 0.006389x3 − 0.5091x2 + 19.99x− 61.72 −0.0001527x4 + 0.03082x3 − 1.771x2 + 42.76x− 157.9

18 0.006254x3 − 0.5073x2 + 22.21x− 61.94 −0.0001163x4 + 0.02486x3 − 1.468x2 + 39.55x− 135.2

19 0.01013x3 − 0.9438x2 + 35.18x− 113.7 −0.0001372x4 + 0.03209x3 − 2.078x2 + 55.64x− 200.1

20 0.005273x3 − 0.4406x2 + 19.48x− 45.33 −0.0001345x4 + 0.0268x3 − 1.552x2 + 39.54x− 130.1

21 0.002433x3 − 0.1268x2 + 7.638x+ 0.4095 −0.000192x4 + 0.03316x3 − 1.714x2 + 36.27x− 120.6

22 0.001141x3 + 0.005327x2 + 4.027x+ 12.3 −0.000214x4 + 0.03538x3 − 1.763x2 + 35.93x− 122.5

23 −0.00216x3 + 0.304x2 − 4.657x+ 42.87 −0.0001762x4 + 0.02603x3 − 1.152x2 + 21.61x− 68.15

24 −0.002177x3 + 0.2527x2 − 4.181x+ 28.69 −8.374× 10−05x4 + 0.01122x3 − 0.4393x2 + 8.304x− 24.07

degree (m = 3) has negative values during the low consumption of kWh, which

can be clearly seen in the hours 1− 6 and 23− 24. However, for the rest of the

hours where the kWh is rated higher the values are positive for third degree’s

(x3) coefficients. For the fourth degree (m = 4) the coefficients of x4 have lower

values (×10−5) for medium and low kWh ratings. On the other hand, the higher

rates of kWh had larger values (×10−4).

Although there are good findings when m = 3 and m = 4 regarding the kWh

usage, the main focus for this section is the polynomial curve fitting. Figures

3.10 and 3.11 didn’t meet the aim because it’s not showing the details of how

the kWh is operating during peak, normal hours. However, the curve is going

through the points with enough variance values that make the fourth degree’s

(x4) curve named as best-fitting. Since the fourth degree had better fitting the
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fifth and sixth degrees are tested as well.

The overall observation for m = 1− 6 are the following:

– The linear shape is representing the degree of 1.

– The Nike curve is found from the m = 2 and it can simply be observed

by that the number of EV was increasing from the year of 2011 to 2013.

Then the purchasing for EV stay steady, and from the last months of 2015

to the future it will be increasing, which means more kWh consumption

will occur.

– When the degree is 4 the curve is fitting the data better than the power

of 3. The curve can still be specified with one shape for different hours

for both degrees, which is fitting the data and can use additional method

such as ridge regression to predict the future. There are many curves such

as, 3.11c, 3.10l, and 3.11i are heading to +y − axis for, which shows the

accurate behaviour of the the data set values. So, the m = 4 looks like

the perfect fit for the data, but addition methods are needed to predict

by training and testing the curve, which can’t be done by the polynomial

curve fitting itself from the provided plot in Figures 3.10 and 3.11.

– The curves for the 5th and 6th are fitting the data in almost the same

shape for most of the hours. Since the curve is started to over-fit the data

set, then the larger degree will not assist any more in fitting the data.

This observation matches what the earlier mentioned reference [67] that

the larger value of m, the less useful the polynomial curve fitting is. When

the degree m used with a value of 5 and 6 it was obviously seen that

increasing the value of m leads to finding neither the best curve fit nor the

coefficient values. The values are getting smaller when the degree’s values
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are increasing, which makes a larger error percentage to fit the data. So,

applying the polynomial with a larger degree will no be further applied.

Polynomial curve fitting has been tested on Palo Alto’s data set for the zip code

of 94301. The mathematical forms are described first to clearly explain how the line

will fit the points. Then, the number of variables for the equations is changed to find

a robust fit. Each degree represented in m is plotted for 72 months for 24 hours. In

addition, the coefficients are shown in tables for each equation with its variables. The

tables and figures are observed and described in terms of both how kWh consumption

and curve fitting. The polynomial curve fitting is tested from the degree 1 − 6, but

none of them fitted the points enough to predict the future and show the details

such as the peak hours. However, the best polynomial fit to the data can be seen in

Figures 3.10 and 3.11 for the yellow curves, which represents the fourth degree m = 4.

The polynomial curve fitting will be a perfect fit for the data, but it needs additional

methods to assist it in forecasting. So, the method will be tested to find the future,

but with the assistance of different TSA methods that are applied to the data in the

next section.

Forecasting Energy Consumption Using TSA Methods

There are a variety of TSA methods for different applications to reach one goal,

which is to predict the future. In this section, two methods are applied, which are

autoregressive moving-average (ARMA) and exponentiation smoothing (ES). Both

are applied on the zip code 94301 and tested first only on one hour, which is the

236rd. After testing each model and find how fit it would be the rest of the hours

will be tested upon it.

• ARMA
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The ARMA is based on the polynomial curve fitting, which can be clearly

seen by its first and second term. The terms in ARMAp,q are corresponding to

the autoregressive polynomial (p) and moving average polynomial(q). Eq. 3.5

represents the relation of the integers [68, 69].

Yt = µ+

p∑
j=1

φj(Yt−j − µ) +

q∑
j=1

ψjεt−j + εt (3.5)

Where εt is the error or the Gaussian white noise, µ is assumed to be zero,

φ1..., φp is autoregressive parameters, and ψ1, ..., ψq is moving average parame-

ters.

ARMA is applied to the data for the hour 23 for 72 months. The data is rep-

resenting from July 2011 to July 2017. Different time series analysis functions

were applied to the system to decrease the error to fit the data. First, the au-

tocorrelation of the data and the partial correlation are found without applying

the ARMA model as shown in Figure 3.12a. Before finding the correlation after

ARMA is applied, the fitting line to the data is found in Figure 3.12b, which

looks the same as polynomial curve fitting using the first degree m = 1. Figure

3.12c shows the correlation with applying the ARMA model.

(a) Correlation without

Applying ARMA

(b) Curve Fitting Depend-

ing on the Correlations

(c) Correlation with Apply-

ing ARMA

Figure 3.12: Finding the Data Correlations with and without ARMA at the Hour 23

for 72 Months in the Zip Code 94301
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Comparing the plots before and after applying ARMA, it is clear in Figure

3.12a the correlation is out of the shaded area especially on the months 0 − 5.

On the other hand, when ARMA is applied the shaded area covered almost all

of the points. So, it is clear that ARMA will improve the curve fitting. The

forecasting using ARMA is found in Figure 3.13.

Figure 3.13: ARMA Model Forecasting Energy Consumption for the Hour 23

From Figure 3.13 the forecasting is not fitting the shape it followed while

training. The yellow curve is the chosen data for training, which is 60 months

and the blue carve is the original data for 72. The orange is the curve forecasting

form 72 until the month 79, which was designed to test the predictions by

comparing the blue curve from the month 60 to 72. It’s clear that on the

training months 0−60, the ARMA curve is learning, but when it was forecasting

it didn’t follow the training behavior. The blue curve and orange don’t have

similarities, which makes the testing of the ARMA method fails to predict the

future. There are many reasons for failure and in this case, it can be the number
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of training data is not enough for the module to train, or the degree of ARMA

for polynomial fitting is small, which gives almost a linear behavior. So, more

features for the ARMA model is required to reach better prediction.

• Exponential smoothing

TSA is to use a mathematical model that will study some data, which depends

on time and then predict the future data, find when the sales will increase, etc.

The exponential smoothing is one method used in TSA, which considers the

trend, seasonality, and residuals. The trend can be visualized by a slope to

represents the increment and decrement of the data for the long term from

historical data. The seasonality can be represented with a fixed frequency of

seasonal changes such as hours, days, years. The residual is an additional type

that describes the data in the short term. To find the observed data of the

ES there are different methods to assist it such as Holt Winter’s that can be

represented in additive and multiplicative. The additive method represents the

linear trend and the multiplicative shows the exponential trend [70].

ES Mathematical Formulation: Before moving to Holt Winter’s model,

the ES mathematical form is represented in Eq. 3.6 that represents the naive

method, which equals the predicted values to the last observed one [71].

ŷT+h|T = yT , for h = 1, 2, ..., (3.6)

However, using only one value will not give good forecasting, which makes the

observations average weight is applied as Eq. 3.7 shows.

ŷT+h|T =
1

T

T∑
t=1

yt, (3.7)
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Although, Eq. 3.7 depends on different weights, but it gives all observations

the values of 1 to predict the future that means all observations will have the

same importance on forecasting. The ES will solve the issue by giving different

importance values depending on their time. The observations found at an earlier

time will have lower weights and the recent ones will have a larger impact, which

makes the prediction more efficient following a series. Eq. 3.8 shows the ES in

mathematical form to give each observation different weight [71, 72].

ŷT+h|T = αyT + α(1− α)yT−1 + α(1− α)2yT−2 + ..., (3.8)

where 0 ≤ α ≤ 1. So, α will control the importance of each observation, which

means the higher α the more importance the observation is. The ES model

with the level γt period included will be shown in Eq. 3.9 for forecasting and

Eq. 3.10 is showing the smoothing formula.

ŷt+h|t = γt (3.9)

γt = αyt + (1− α)γt−1, (3.10)

Eq. 3.10 includes the level to predict the future, but as mentioned earlier the

ES can consider the seasonal and trend components, which are investigated in

mathematical form in [71].

Furthermore, Holt Winter will assist in forecasting the data by using the

periods with ES. Eq. 3.11 shows the additive and Eq. 3.12 is used for the

multiplicative models of Holt winter. [71].

ŷt+h|t = γt + hbt + st+h−m(k+1) (3.11)

ŷt+h|t = (γt + hbt)st+h−m(k+1) (3.12)

where bt is the weighted average and st is the seasonal components at time t.
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Data set Separation and Description: First, before applying any ES

method, the data must be divided into training and testing sets. The model

will be applied to Palo Alto’s Energy consumption with the zip code 94301 for

72 months in the hour 23. Since the percentage for training is suggested to be

more than 60% of the data, then the data is divided into 43 months training

set and 29 months testing set. The overall number being used is 72 months,

which represents the data from July 2011 to July 2017. Figure 3.14 represents

the training and testing data set.

Figure 3.14: Training and Testing Separation for the Hour 23 of the Energy Con-

sumption

After having the training and testing sets ready, the next step will be to

visualize the ES period type of training data. Figure 3.15a shows the additive

method that can be represented as a trend, where the slope of seasonal and
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residual is zero when the a frequency = 1. Figure 3.15b shows the multiplicative

method with frequency of 1. The curves of the multiplicative method for the

residual and seasonal have the values of 1, which is not having any behavior by

the data.

(a) Periods for Additive Method for

f = 1

(b) Periods for Multiplicative

Method for f = 1

(c) Periods for Additive Method for

f = 4

(d) Periods for Multiplicative

Method for f = 4

Figure 3.15: Finding the Data Periods with Different Frequencies at the Hour 23 for

72 Months in the Zip Code 94301
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The frequency is the period of series and because the data plots will be

presented for each month and the given data is also in months, then 1 is the

number to be used. If the data is given for every 1 month, which is 30 days

and the prediction for the seasonal will be every one week (7) days, then it can

be calculated as f = 30days
7days

× 1week =4weeks. To ensure that the frequency

is meeting ES aim, Figures 3.15c and 3.15d shows the plot with frequencies

of 1 month and 4 weeks, which represents the series for in the additive and

multiplicative method.

ES Testing Including Different Components: The ES method is applied

to the training and testing data to compare the results and then predict the

future. The simple smoothing that is shown in 3.8 is applied with different

alpha values, which are the smoothing level values. Figure 3.16a shows the

simple smoothing with three levels that are represented in two alpha values,

which found bad predictions.

Figure 3.16a showed almost the same shape for the predicted slopes, but with

different heights and they didn’t follow the kWh curve’s series. So, Holt winter

method will be applied using the additive and multiplicative model to find better

predictions. Figure 3.16b applied Holt’s model with different methods, which

improved the results slightly.

The predicted curve of Holt winter with the exponential has an increment

curve instead of a linear shape, which is shown by the damped method in

Figure 3.16b and for alpha’s Figure in 3.16a, but both are still far from fitting

the testing data. So, Holt’s and damped methods had linear curves, Holt’s with

exponential increased to large values because it’s not following the limitations,

which can be fixed by studying the level and slope of the training data and
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(a) Simple Smoothing with α = 0.2

and 0.6

(b) Holt’s Model Implementation

with Different Methods

Figure 3.16: Data Periods Analysis with Different Frequencies at the Hour 23 for 72

Months in the Zip Code 94301

apply them to predict the testing data. Following equations 3.11 and 3.12 the

slope and level of components are found using Holt’s linear trend and additive

damped method as showing in Figure 3.17a. Figure 3.17b shows the level and

slope when applying Holt’s and ES together without including the damping.

Figure 3.17a shows that the damping will not assist in predicting the values

since into not following the behavior of the data, which clearly affected Figure

3.16b for the Holt’s and ES method represented in the red line. Figure 3.17b

showed the Holt and ES without applying the damped, which clearly fitted the

data in better shape. Figure 3.17c showed Holt’s and ES methods that include
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(a) Slope and Level of Holt

Damped Method

(b) Slope and Level of Holt

and ES Methods Combined

(c) Slope and Level of Holt

and ES Including Damping

Figure 3.17: ES and Holt Winter Including Different Methods at the Hour 23 for 72

Months in the Zip Code 94301

damping. The slope shape is not providing the details because of the large value

it started at y − axis = 30. The damping is not recommended to be further

applied because it’s affecting the prediction on a negative side.

Since the slope and level are found, let’s apply Holt’s prediction with the

same methods shown in Figure 3.16b. Figure 3.18 provide Holt’s prediction

values with different methods while applying the level and slope.

Figure 3.18: Holt with Different Methods Including Slope and Level at the Hour 23

for 72 Months in the Zip Code 94301

Figure 3.18 showed closer fitting to the testing data, where the additive and
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multiplicative damped curves are located by the bottom area of the training

data. Holt’s is shown in the green curve, which is located in a better area than

the previous ones. The blue curve is Holt’s with ES combined including the

slope and plot, which fits the upper area of the testing data.

From the previous figures, Holt with ES showed an improvement in fitting

the testing, but it was only using the slope and level from the training data.

Holt’s can also find the prediction depending on the seasonality and trend to

improve the fitting. Figures 3.19 and 3.20 shows for plots for the trend additive

and multiplicative, and seasonal additive and multiplicative withe periods of 2.

(a) Additive Trend (b) Multiplicative Trend

Figure 3.19: Additive and Multiplicative Trend and Seasonal with Period of 2 at the

Hour 23 for 72 Months in the Zip Code 94301

Figure 3.19 showed two plots using the multiplicative and additive trend

methods of ES and Holt’s. Figure 3.19a showed the additive trend, which

follows the testing increment rate. This matches the trend’s definition earlier

that is focuses on long term behavior. For the multiplicative method, it had a

wider increment rate as shown in Figure 3.19b.

Figure 3.20 shows the additive and multiplicative seasonal methods for the

period of 2, which means for every 15 day. Figure 3.20a provide the additive
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(a) Additive Seasonal with Period of

2

(b) Multiplicative Seasonal with Pe-

riod of 2

Figure 3.20: Additive and Multiplicative Trend and Seasonal with Period of 2 at the

Hour 23 for 72 Months in the Zip Code 94301

seasonal plot with period of 2. For the multiplicative seasonal it’s tested in

Figure 3.20b. Both of them are filling a part of prediction the testing data,

where the additive had smaller periods between one prediction to the other

comparing the multiplicative model.

Figures 3.19 and 3.20 shows that the trend is applying the long term shape

and the seasonal focus on the short term. So, combining the trend with seasonal

(TWS) will be checked to find if the prediction curve will fit the testing data.

In Figure 3.21 the TWS additive and multiplicative are plotted for the same

period, which is 2. The plots will use (ATWS) for the additive and (MTWS)

for the multiplicative TWS.

The ATWS fitted the testing curve from the middle without caring about the

changes that occurred in the middle of testing data, which can be seen between

the months 55 − 65 in Figure 3.21a. MTWS in Figure 3.21a is increasing to a

point beyond where the testing data is found. The TWS can be still investigated

before changing the period to different values, by having the multiplicative
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(a) ATWS for Period of 2 (b) MTWS for Period of 2

Figure 3.21: Additive and Multiplicative TWS for Period of 2 at the Hour 23 for 72

Months in the Zip Code 94301

trend (MT) and the additive seasonal (AS) methods to predict the values. The

opposite will also be tested for additive trend (AT) and multiplicative seasonal

(MS) models. Figure 3.22 shows the couple plots, the first shows the AT and

MS, and the second tests the MT and AS with a period of 2.

(a) AT and MS with Period of 2 (b) MT and AS with Period of 2

Figure 3.22: (MT - AS) and (AT - MS) Testing for Periods of 2 at the Hour 23 for

72 Months in the Zip Code 94301

Figure 3.22 has the best prediction comparing to the previous methods used

in this section. From looking at Figure 3.22a the predicted curve in green is

fitting the data with better shape than the MT and AS method in Figure 3.22b.

90



The number of simulation periods will be tested for the value of 3 to have a clear

decision. In Figure 3.23 the (AT - MS), and (MT - AS) methods are plotted.

(a) AT and MS with Period of 3 (b) MT and AS with Period of 3

Figure 3.23: (MT - AS) and (AT - MS) Testing for Periods of 3 at the Hour 23 for

72 Months in the Zip Code 94301

Figure 3.23b looks better, but still, the decision must be ensured to take off

one of the methods. The simulation period will be assigned to 4 and then one

of the methods will be removed. Figure 3.24 will find whether (AT - MS) is

better than (MT - AS) method, or not.

(a) AT and MS with Period of 4 (b) MT and AS with Period of 4

Figure 3.24: (MT - AS) and (AT - MS) Testing for Periods of 4 at the Hour 23 for

72 Months in the Zip Code 94301

Figure 3.24a looks better for forecasting and fitting the data, which can be
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seen by the additional movement in the curve. So, AT and MS will be tested

for the Holt Winter ES method. The values of the simulation period will be

tested for 8, 9, 10, 20, which will find different slopes to fit the testing curve.

The period with the most robustness fit will be later used to predict the other

hours of the day from the zip code 94301.

(a) AT and MS with Period of 8 (b) MT and AS with Period of 9

(c) AT and MS with Period of 10 (d) MT and AS with Period of 20

Figure 3.25: MT and AS Testing for Periods of 8, 9, 10, 20 at the Hour 23 for 72

Months in the Zip Code 94301

Figure 3.25 showed four periods and all of them found good seasonality pre-

diction, which can be obviously seen by the repetition of the curve’s behavior.

The positive point for the predicted curve is that the curve has ignored the peak

values between the month 62 − 64; It can be considered more advanced than

the testing data itself, which represents the historical data. Figure 3.25a shows
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the curve with a period of 8, which is close to the testing data, but there is a

sharp decrement repeated every eight months. So, AT and MS with a period

of 8 is has a good fit with a disadvantage that drives the curve far from the

testing. Figure 3.25b is fitting the testing data even for the small details that

can be seen between the months of 43 − 50. Also, on month 70 the predicted

data fitted almost exactly the testing points. So, AT and MS with a period of

9 shows a robust fit to predict the data set. Figure 3.25c is plotting AT and

MS with a period of 10, which shows a good fit, but it misses the details due to

the bigger seasonality it considers. Figure 3.25d can be considered the perfect

fit for the testing data, but it has sharp decrement and increment points that

it can be seen in the months 53, 57, 60, 71. So, the decision to forecast will be

found with a period of 9 because it had the best prediction comparing to the

others. MT and AS with a period of 9 is tested in this section and it predicted

the best fit to the testing curve. The same period of 9 can be applied for the

rest of the hours from 1 − 24 to predict their future behavior. However, the

prediction for the rest of the hours might require different period values to have

better forecasting.

Forecasting kWh for the city Palo Alto in the zip code 94301 required different

methods to reach a robust fit that is compared with the testing data. First, the ARMA

model is applied to the data and it found bad forecasting. ARMA’s prediction can be

improved by increasing the degree of the polynomial and applying additional features

to follow the behavior of the data. Then, the ES is explained in mathematical form

and introduced Holt Winter method to improve the fitting. The data set is divided

into training and testing sets to compare the prediction to the historical values. The

hour 23 has been studied with different periods to find it’s seasonality, trend, level,

slope, residuals, and then observe them. The ES is tested with additional methods
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such as Holt’s, ES by themself, adding the damping, combine them both. However,

the damping had a negative impact, where the best method to fit the data is to use

ES and MS with a period of 9. For future work, the period value can be changed

when forecasting the data because as mention the ES prediction method follows the

seasonality, which is the short term behavior, and the trend that represents the long

term shape.

3.3 Remarks

In this chapter, TSA methods have been applied to forecast the future and study

the principles of EVCS. EVCS data sets are studied for two cities Palo Alto, CA, and

Boulder, CO. Boulder’s data has five zip codes and Palo Alto’s data has three, where

the one with the highest transactions is further investigated.

The investigation observed the kWh consumption during 24 for each month, which

is 26 for Boulder and 72 for Palo Alto. Then, the SD and mean of the kWh summation

during the 24 hours are found and represented in a table. Since CA’s data has

more transactions it was further investigated by including more TSA methods. The

charging duration for each month is found for seven years and then found important

observations, for instance, attaching the fast charging to the EVCS, which decreases

the minutes it required to charge an EV.

After observing and describing the data, forecasting TSA methods are applied to

predict the future. The first method is to apply the polynomial curve fitting, but it

didn’t work because it required additional constraints. So, the ARMA method that

depends on the polynomial smoothing level and autoregressive components. Although

ARMA improved the prediction, it shows bad fitting to the historical data curve.

Furthermore, the ES method is applied to Palo Alto data set and divided the data

into training and testing to compare the prediction to the real data. Additional
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constraints is added, which is Holt Winter to improve the prediction. The method

depends on seasonality that studies the short term shape and the trend that focuses

on the long term behavior. The ES method found a perfect prediction for the hour

23 by using the period of 9. For future work, the rest of the hours can be also studied

using different periods to fit the historical data.
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Chapter 4

IMPACT OF ENERGY ROUTER ON ELECTRIC VEHICLE CHARGING

STATION PLACEMENT

There is a large number of publications that studies an optimal placement for

EVCS aiming for almost the same goals, which are reducing the cost, ensuring se-

cured power flow in the system, and meeting consumer requirements that effects

the power system demand. Planning electric vehicle charging station (EVCS) mod-

els consider both the power and transportation system to reach the efficient result.

EVCS planning considering network size to be small [73], large [55, 74, 75], and both

sizes [76] has been performed to fit the area’s requirements. Charging infrastructure-

planning problems for small cities associated with the multi-objective considering

power grid, random road traffic, EV user’s, and economic characteristics is solved in

[73] and it ensured minimum harm to the power grid. In [76], it represents a plan-

ning capacity framework considering different charging levels that EVCSs will offer,

which is formulated by applying a convolution algorithm to evaluate the customer

target in small and large cities while ensuring the quality of service. Novel integrated

complicated multiple criteria decision making is approached using uncertain linguis-

tic multi-objective optimization by ratio analysis plus full multiplicative module, and

decision making trial and evaluation laboratory in [75], to find an optimal site of

EVCS in a large city. So, three sizes are presented to plan EVCS, which will assist

in finding the site that meets the demand.

Furthermore, ER devices have evolved over the last decade, becoming more eco-

nomical and deployable than the original FACTS devices. Additionally, new overhead

transmission lines have become more challenging to build in some regions, increasing
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the demand for ER devices to augment the transmission capability of the existing

transmission networks [77]. Given these drivers, the set of viable locations for ERs

has expanded and further complicated the process of planning and operating EVCSs.

In addition, system planning and operation have become more complex given the

emergence of renewable generation and additional stakeholders. These facts motivate

us to deploy ERs to enhance EVCS placement with reduced costs. As shown in Fig.

4.1, less EVCSs are installed due to the top line’s congestion. After the deployment

of ERs, additional power flows in the bottom two lines resulting in the expanded

installation of EVCSs, without violating the line limits.

Figure 4.1: Energy Routers’ Exemplary Interaction with EVCS Placement. (a) Shows

the Overload on the Line and One EVCS is Connected to the Network. (b) Indicates

the Overload is Solved and More EVCSs are Applied.

This chapter studies EVCS optimal planning with using ER to reach maximum

profit. The system will compare EVCS planning with and without using the ER to

show how ER will assist the model.
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4.1 Problem Formulation

A well-planned EVCS infrastructure needs to satisfy the EV charging demand

at a high probability. Therefore, it is essential to accurately estimate EV demand.

Meanwhile, to fill the gap of modeling the interaction between the power flow con-

troller and the EV power demand, a simplified method to model the ERs and its

mobility using a mobility matrix is propose. Based on the mentioned two ideas, the

EVCS planning into a stochastic integer programming problem is formulated, which

is presented at the end of this section.

4.1.1 Chance-constrained EV Demand Estimation

As mentioned in section 1.1.2, a great amount of work has been done to couple

transportation modeling into the electrical networks. However, power system op-

erators do not always have access to and the modeling/validating capability of the

transport networks. Therefore, trying to address this issue through the data analyt-

ics of what is accessible to transmission and distribution planners – the EV charging

record data from the EVCSs. The EV charging records are studied in Chapter 3 that

contain the individual charging starting and ending time, Zip code, charging power,

etc., based on the estimation is made for the EV demand. To satisfy the EV demand

at bus i, we have:

wTi yi ≥ D̃i, ∀i ∈ Φ, (4.1)

where wi is the serviceability coefficient, a deterministic vector such that wi :=

[wi1, . . . , wiJ ]T , where J is the order of the serviceability model; and D̃i is the EV

charging demand, a random vector such that D̃i := [D̃i1, . . . , D̃iJ ]T that affects the

constraints. It would be a waste of societal resources to require the constraints (4.1) to
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hold under any realization of the random demand distribution and a very high prob-

ability. Thus, a probabilistic bound, 1− ε, on the constraint violations is introduce.

The charging demand chance constraints are

inf
PD̃∈SD̃

PD̃{w
T
i yi ≥ D̃i} ≥ 1− ε, ∀i ∈ Φ, (4.2)

where SD̃ is an ambiguity set [78] and the chance constraint is satisfied for all distri-

butions within the ambiguity set SD̃ := {PD̃ ∈ P ′ : EPD̃
[D̃] = µ,EPD̃

[D̃D̃T ] = Σ}.

Under many circumstances, only the series of historical data taken from the true

(while ambiguous) distribution is known. Here, the historical data can be considered

as charging records data from charging stations. Fortunately, power system operators

have a continuing collection of historical charging record data that reflects the true

EV charging demand. Therefore, having an easily access and predict the lower order

moment knowledge from the past data to estimate the EV load demand in the future

is possible. In charging record data, the first-order moment directly refers to the mean

value of the charging demand at each time slot; meanwhile, the second-order moment

can be easily derived from the covariance of the charging demand. For higher-order

moments, it is harder to estimate, in the sense that larger samples are required to

obtain estimates of similar quality. Therefore, this method focuses only on the first

two order moments for EV demand estimation. If the first-order moments of the EV

demand data is given, we have:

Theorem 1. (Conversion from the Stochastic to Deterministic Integer

Program When Given the EV Demand Mean Values) If wTi ≥ 0, D̃i ≥ 0, ∀i

and we are given the first moment knowledge E[D̃i], ∀i, then an equivalent formulation

for (4.2) is the following deterministic integer program:

inf
PD̃∈SD̃

{wTi yi ≥ (1− ε)E[D̃i]}, ∀i ∈ Φ. (4.3)
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Proof. It has be shown in [79] that the standard Markov Inequality is tight; i.e.,

infPD̃∈SD̃
PD̃{wTi yi ≥ D̃i} ≥ 1− ε = min(1, wTi yi/E[D̃i]). Since 0 < ε < 1,∀i, applying

this equation to (4.2), we get infPD̃∈SD̃
{wTi yi ≥ (1− ε)E[D̃i]}, ∀i ∈ Φ.

It is a stochastic integer program problem to guarantee that the planned charging

stations are satisfying the EV demand at each bus no matter what the probability

distribution of the charging demand is. This is hard to solve. However, Theorem 1

indicates that this stochastic integer program can be converted into a deterministic

one as long as we have the mean value of the EV demand in the past.

If we are given both the first and second moments of the charging demand,

E[D̃i
k
], k = 1, 2, it is straightforward to calculate the corvariance matrix Σi: Σjk

i =

E[(D̃ji−E[D̃ji])(D̃ki−E[D̃ki])],∀j, k = 1, . . . , n, where Σjk
i is the value in the jth row

and kth column of Σi and D̃ji is the jth element of vector D̃i.

Theorem 2. (Reformulation of the Chance Constraint into a Second-

Order Cone Constraint) Assume we have the first two-order knowledge of the

charging demand data, denoted by E[D̃i] = µ,E[D̃i
2
] = Σ. Once we reformulate (4.2)

into supPD̃∈SD̃
PD̃{D̃i ≤ wTi yi} ≤ ε, ∀i ∈ Φ, (4.2) is equivalent to√(1− εi

εi

)
ITi ΣIi ≤ wTi yi − µT Ii. (4.4)

Proof. Consider the following variant of the Chebyshev Inequality for random variable

X that has mean µ and variance δ2, we have P[X ≥ (1 + δ)µ] ≤ δ2

δ2+µ2δ2
for any

0 < δ < 1. According to [79, 80], there exists a distribution in SD̃ to make the

inequality tight. Therefore, by setting δ = −1 +
wT

i yi

ITi E[D̃]
and rearranging terms, we

have (4.4).

Regardless of the estimation for the EV demand uncertainty pattern character-

ized by any specific probability distribution functions (PDFs), the utilization of the
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CC method with ambiguity set could provide a general closed-form using first and

second-moment information to guarantee to fulfill the optimization under any un-

known distribution of EV charging behavior. Some discussion about the accepted

form of candidate PDFs encapsulating uncertainty information can be referred to [81],

in which the CC method associated with unimodal distributions and mis-specified

modes is also studied.

Remark 1. In contrast to many other works using Gaussian distribution to ap-

proximate the real probability distribution of EV charging demand, the CC method

could get rid of such assumptions with the utilization of ambiguity set for fitting real-

istic dataset, as presented in the numerical study. It is the advantage of data-driven

methods over the analytical physical modeling, which often involves charging behavior

modeling with arrival time or departure time estimation.

In this way, the non-analytical formulation (4.3) can be transferred to (4.4), which

is a second-order cone constraint that satisfies all the convex characteristics. This re-

formulated constraints will be incorporated in the following optimization problem,

together with various deterministic constraints.

Remark 2. In the approach of building ambiguity set for the CC method, (4.3)

and (4.4) mainly use first-moment and second-moment information of uncertainty

variable. They can be further relaxed and combined with a more accurate estima-

tion using well-defined α-unimodality information. For the sake of simplification, we

neglect such accuracy as discussed in [81].

4.1.2 Modeling of Energy Router and Its Mobility Characteristics

We introduce another optimization variable zij,t to represent the number of ERs at

branch {ij} ∈ Ψ, where i and j are the ‘from’ and ‘to’ buses respectively. Obviously,

all of the zij,t elements form a n-by-n sparse matrix. Importantly, the time-variant
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matrix zij,t links the fast-changing power flow due to EV demand variation and other

renewable generations with the coarse time granularity of EVCS planning. The daily

power flow pattern under the planning year should satisfy the physical limits, at least

with the assistance of ERs. In this model, we assume ER as a power electronics

device with a unit reactive power injection Q0,ij at branch {ij} ∈ Ψ. Consequently,

the reactive power injection at bus i is given as follows by splitting the reactive power

at both ends of the branch:

Qer
i,t =

1

2

n∑
j=1
j 6=i

zij,tQ0,ij, {ij} ∈ Φ. (4.5)

Besides the per-unit cost of ER devices, a high amount of ER cost stems from its

mobility. Specifically, we include the transport cost, installation cost, and uninstal-

lation cost of ERs in mobility. Define the operation M(M > 0) and M(M < 0) as

keeping all the positive and negative elements in M respectively, and let ER mobility

matrix zij,∆t , zij,t − zij,t−1:

Cer
mob,t = F +

1

2
γins

∑
(zij,∆t(zij,∆t < 0))

+
1

2
γunins

∑
(zij,∆t(zij,∆t > 0)), (4.6)

where F is the transporting cost of the ERs. It is insignificant since some ER prod-

ucts are simply delivered through trailers [4]. Actually, the optimal cost of ER alloca-

tion belongs to the classical optimum distribution problems on goods transportation,

which is beyond the scope of this paper. However, due to its relatively small cost

comparing to other infrastructures (see the numerical results for more details), this

term is assumed to be constant, denoted by F . Moreover, the introduction of the

ER location matrix zij,t makes the ER mobility matrix simple and accessible. By

taking the difference between the ER location matrix at two consecutive time slots,
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the summation of all negative elements in the resulting matrix is the number of the

ERs to be installed; while the summation of all positive elements gives us the number

of ERs to be uninstalled. Since zij,∆t is symmetrical, the number goes half.

4.1.3 The Overall Cost for Distribution System Operators

To formulate the EV charging station planning problem along with the adoption

of energy routers, we consider the EV charging station cost CEV , the distribution

system expansion cost CSY S, and the distribution system operation cost COP,t that

includes the cost of energy routers. The overall EVCS planning cost is formulated

below: min
xi,yi,zij,t

T∑
t=1

(CEV + CSY S + COP,t)

s.t. xi ∈ {0, 1}, ∀i ∈ Φ,

yi, zij,t ∈ Z, ∀i, j ∈ Φ,

f
(
Vi,t, θi,t, Pi,t + PD, Qi,t +Qer

i,t

)
= 0, ∀i ∈ Φ,

(4.4)− (4.6),

(4.7)

where

CEV =
∑
i∈Φ

(c1,ixi + c2,iyi), (4.8)

CSY S =
∑
i,j∈Φ
i 6=j

c3lij max(|(Vi − Vj)2/Zrated
ij − λSQer

i,t

− Srated|, 0) + c4,ih(∆P sub
i ), (4.9)

COP,t = Cvr + Cer
fix + Cer

mob,t

= c5

∑
i∈Φ

(Vsp − Vi)2 +
1

2
ξ
∑
i,j∈Φ

zij,t=0

+ F +
1

2
γins

∑
(zij,∆t(zij,∆t < 0))

+
1

2
γunins

∑
(zij,∆t(zij,∆t > 0)). (4.10)
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Concretely, the objective function has three decision variables: the availability of a

charging station xi, the number of charging spots yi, and the ER location matrix

zij,t. For the nth year to be planned, an estimate of the mean and variance in that

year is required. The constraints here include the function f(·) that represents the

physical limits stemming from power flow equations, as well as equations (4.4)-(4.6).

Furthermore, the three costs in (4.7) are elaborated as follows:

• The term CEV is the sum of the charging station cost and the cost of adding

an individual charging spot.

• The term CSY S has two parts. The first part is the line expansion due to load

increase, which is proportional to the line length and the increment of the line’s

MVA rating. We introduce λS to indicate the power contribution factor, by

which the energy router can contribute to attenuate the power flow congestion

in proportional to its reactive power injection. The second part is associated

with the substation expansion, whose detail is provided in [82].

• The term COP,t involves the voltage regulation and the ER cost. The voltage

regulation devices are still considered even though ERs are deployed since it is

biased if the common voltage regulation approach is eliminated. For the fixed

ER cost, we assume
∑
zij,t preserves two times of the deployed ERs when t = 0.

4.2 Numerical Results

4.2.1 Case Study Systems

To validate the proposed method, the model have implemented it in multiple

IEEE systems. For the demonstration, the IEEE 30-bus system is employed in this

section. In the 30-bus system as shown in Fig. 4.2, there are 41 branches. The sys-
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tem territory have been divided into north (mainly processes load) and south areas

(with six generators) by a dashed line. The purpose is to investigate the impact of re-

gional heavy EV loads on the EVCS planning. The cost coefficients and optimization

parameters are shown in Appendix A.1.

Figure 4.2: IEEE 30-bus System.

4.2.2 The Impact of Regional EV Demand Variation

Three types of demand conditions are considered. It assumes each branch can

implement up to 10 ERs.

1. No regional heavy load, uniform bus demand

No regional heavy load is assumed in this scenario. Specifically, there is no

constraint on any particular bus that represents a heavy regional load demand.

However, the EV load demand variation during the day is taken into consid-

eration according to the EV load data at Boulder, Colorado, from Jan. 2018

to Feb. 2020 [64]. To simplify the daily variation pattern in the test, the EV
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demand is divided into four consecutive time slots during one day, which in turn

helps the investigation of the ER placement. The results for this uniform bus

demand are presented in Fig. 4.3a and 4.3d. It can be clearly seen that the

EVCS placement has no particular pattern since it follows the power flow result

to reduce the overall cost. On the other hand, the ER distribution varies as the

load change during the day. The load change is based on the realistic data in

[64]. Concretely, the used percent is the maximum demands of [0.5; 0.1; 0.9; 0.8]

to represent the load condition from 1 am - 6 am, 7 am - 12 pm, 1 pm - 6 pm,

and 7 pm - 12 am. Therefore, Fig. 4.3d reflects the ERs’ compensation towards

a reduced total cost.

2. North heavy load

In the north region of Fig. 4.2, it is assumed that the EV load demand is

heavy since this region has large residential areas. We assume eighty percent

of the maximum EV load capacity (250 charging stations) at bus 14-30 has to

be satisfied to get rid of the heavy load concern in the north. The optimization

results are making sense since the best case for bus 14-30 is to satisfy the

demand without any extra investment on EVCS. The only exception is on bus

28, where the preferable charging station number is the maximum, as shown

in Fig. 4.3b. If one looks into the location of bus 28, it is connected to one

of the six large generators. The load incremental at bus 28 is compensated

by the generator, therefore, installing more stations here more beneficial than

installing somewhere else.

3. South heavy load

When the south area requires heavy EV demand, we assume a scenario where

bus 2-13 demand heavy load. This represents places like industrial parks where
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(a) EVCS placement Under

Uniform Bus Demand.

(b) EVCS Placement Under

North Heavy Load.

(c) EVCS Placement Under

South Heavy Load.

(d) ER Distribution Under

Uniform Bus Demand.

(e) ER Distribution Under

North Heavy Load.

(f) ER Distribution Under

South Heavy Load.

Figure 4.3: The Impact of Regional EV Demand Variation on EVCS Placement and

ER Distribution. The Capacity Limits for EV Spots and ER at Each Bus are Assumed

to be 250 (Charging Spots per Bus) and 10 (ERs per Branch) Respectively. For the

ERs’ Relocation Resolution, Four Time Slots are Assumed During the Day.

EV possession rate is high. Similar to the north heavy case, bus 2-13 requires

at least eighty percent of the maximum EV load capacity to satisfy its EV

demand. However, the results in Fig. 4.3c exhibit a higher EVCS installation

rate. The reason is covered in the previous paragraph similar to bus 28. The
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heavily loaded buses, in this case, are all connected to large generators. If more

charging stations are installed in the north region buses, the voltage profile

is affected, which results in more cost on system upgrade and operation. ER

distribution in Fig. 4.3f is similar to that of Fig. 4.3e. However, the difference

exists due to the distinct power flows. For example, the ER number is 2 at the

last branch under the south heavy load while it is 5 under the other case.

4.2.3 The Impact of ER on EVCS Planning

Investing in ERs seems extra cost for system operation, however, it saves money

when integrating a significant amount of EVs. In Table 4.1, it compares the cost

with and without the utilization of ERs. The testing scenarios can refer to the

parameters in Section 1. Through comparison, it is noticed that ER cost is high,

reaching $261, 110. Although no cost on ERs in the case without ER, extra costs

have to be spent on a system upgrade, voltage regulation, and, especially, the system

operation. A close-up investigation is conducted under three load scenarios in the

previous section. As shown in Table 4.2, the optimization cost reduces more than 48%

comparing if ERs are installed and their costs are considered in various scenarios.

Table 4.1: Cost Comparison Under Uniform Bus Demand.

Cost Cev Csys Cvr Cer Cop Ctotal

With ERs

(×105$)

1653.0 1759.6 0.1339 2.6111 3.2664 3415.9

Without ERs

(×105$)

1653.0 4941.7 0.0129 0 0.0129 6594.7

To further understand the role that each item in the objective function plays, the
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Table 4.2: Cost Comparison with and without ERs.

Total cost Uniform load North heavy South heavy

Without ER [$] 6.5947× 108 6.9145× 108 6.5947× 108

With ER [$] 3.4159× 108 3.4224× 108 3.4223× 108

Saved 48.20% 50.50% 48.11%

cost details are demonstrated in Table 4.3. Interestingly, the voltage regulation cost

is lowest in the south heavy case since the reactive power is locally compensated by

the generation. Meanwhile, the ER cost is the lowest in the uniform load case since

no demand constraint is applied in the system. Thus, the optimal EVCS planning

result is to place the charging stations in such a way that reduces the system update

and operational cost. Consequently, the operational cost in the first case is also the

lowest among the three cases.

Table 4.3: Cost Details Under Different Load Scenarios.

Cost Uniform load North heavy South heavy

Cev [$] 1.6530× 108 1.6530× 108 1.6530× 108

Csys [$] 1.7596× 108 1.7596× 108 1.7596× 108

Cvr [$] 1.3388× 104 1.6791× 104 7.8630× 103

Cer [$] 2.6111× 105 9.6486× 105 9.6459× 105

Cop [$] 3.2664× 105 9.8165× 105 9.7245× 105

Ctotal [$] 3.4159× 108 3.4224× 108 3.4223× 108
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4.2.4 ER Mobility Demonstration and Economical Benefit

ER’s characteristics of mobility lend itself the advantage of being economical. To

highlight this advantage, we demonstrate the case where ERs are immobile under

uniform bus demand. Although not the same, the EVCS placement results in Fig.

4.4 resemble the left two sub-figures in Fig. 4.3. Nevertheless, the results of ER

placement experience the loss of flexibility. Economically, the immobility of the ERs

costs 72.9% more on purchasing extra ERs to reach a similar total cost (only 0.19%

difference) comparing to the one with mobility capability.

(a) EVCS Placement With Immobile ERs. (b) ER placement with immobile ERs.

Figure 4.4: ER Deployment with and without Mobility. Both Placements are Under

the Uniform Demand Scenario. The ER Limits are Assumed to be 10 (ERs per

Branch).

4.2.5 Sensitivity Analysis Under Different EV Estimation Errors

Sensitivity analysis is conducted to evaluate the impact of parameters in the CC

approach on the EVCS planning and ER distribution. Specifically, we change the

errors of EV demand estimation mean and variance to observe their impact on plan-

ning. On one hand, Table 4.4 and Fig. 4.5 illustrate the cost breakdown, the EVCS
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planning, and the ER distribution under various mean errors. On the other hand,

Table 4.5 and Fig. 4.6 illustrate the counterparts under various variance errors. It

can be seen that the EVCS planning result is not sensitive to the mean EV demand

estimation error. However, when the EV demand’s variance changes, a large variance

deviates a lot from a small variance, which alters the EVCS planning results greatly.

Table 4.4: The Impact of Mean EV Demand Estimation Error on Cost.

µ 0.001 0.005 0.05 0.1

Cev (×108$) 1.65 1.65 1.64 1.64

Csys (×108$) 1.76 1.76 1.76 1.76

Cvr (×103$) 7.98 7.94 26.9 26.9

Cer (×105$) 9.65 9.65 9.74 9.74

Cop (×105$) 9.73 9.73 10.1 10.1

Ctotal (×108$) 3.42 3.42 3.41 3.41

Table 4.5: The Impact of the Variance of EV Demand Estimation Error on Each

Cost.

µ 0.01 0.05 0.4 0.6 0.8 1.0

Cev (×108$) 1.65 1.64 1.65 1.65 1.65 1.65

Csys (×108$) 1.76 1.76 1.76 1.76 1.76 1.76

Cvr (×103$) 160 26.9 8.25 8.62 9.07 9.69

Cer (×105$) 9.65 9.74 9.65 9.65 9.65 9.65

Cop (×105$) 9.84 10.1 9.74 9.73 9.74 9.74

Ctotal (×108$) 3.42 3.41 3.42 3.42 3.42 3.42
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Figure 4.5: The Impact of Mean EV Demand Estimation Error on EVCS Planning.

The EV Demand Estimation Variance Error is Assumed to be 15%.

Figure 4.6: The Impact of EV Demand Estimation Variance Error on EVCS Planning.

The EV Demand Estimation Mean Error is Assumed to be 10%.

4.3 Conclusion

This chapter formulates the EVCS planning problem by integrating the CC EV

demand estimation approach. This approach overcomes the time granularity mis-

match issue between the long-term EVCS planning and short-term daily EV demand

variation. Meanwhile, ERs are modeled and implemented to observe their impact

on EVCS planning. It is concluded that the FACTS-device-based power flower con-

trollers can enhance the EV charging station integration into the electrical grid with
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economical benefits. Concretely, we observe that the uniform placement of EVCSs

creates the least amount of system operational costs. If regional heavy EV demand

cannot be circumvented, it is preferable to install more fast-charging stations near the

generators. Moreover, the mobility capability of the ER devices can greatly reduce

the associated investment through recycling. Furthermore, through the comparison

between the sensitivity of charging demand mean and variance errors, it is noticed

that the EVCS planning is more sensitive to a high standard deviation error than

the mean error. This sheds light on future research toward an optimal EV charging

management, which can eventually and profoundly decrease the EVCS infrastructure

investment.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Thesis Summary

Electricity has been assisting humanity by providing more comfort. It started

with turning on a spark to light and today it is possible to build an electric flight

that carries an individual.

“Electric power is everywhere present, in unlimited qualities. This new power for

the driving of the world’s machinery will be derived from the energy which operates

in the universe, without the need for coal, gas, oil, or any other fuel” – Nikola Tesla

[83].

The more items operate on electricity, the bigger need for generating and trans-

mitting it will happen. Transmission lines are the most efficient method to deliver

power, which requires to be updated so it can meet the new demand. Increasing

the line capacity is not a simple task because of the tower’s height, and their loca-

tions that can be unfriendly such as mountains or underwater. Also, the upgrade

is costly, which can be the main reason for delaying projects connected to the same

circuit. Transmission line capacity obstacle can be solved with a shorter time, and

cheaper price by applying the ER. ER will assist in providing more freedom to control

the power flow on the transmission line, which gives additional capacity and more

stability.

Through the work of the thesis, ER is tested in six case studies to find how it

will impact on the transmission line and maintain secured power flow. The demand

that affects the transmission line is studied in terms of EVCSs. Three time series
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analysis methods are applied to predict the future load of the EVCSs. The behavior

of the load is also considered to find when are the peak times, which will be perfect

for scheduling mobile ER placement to avoid the overload. Because EVCS planning

also depends on the power flow, an optimal planning EVCS model considering the

ER is formulated.

ER mathematical principles are studied to understand how it will assist the line’s

stability. The ER controls the power flow by injecting the reactance of the line that

can be in either inductive or capacitive mode. When LUA transmission line reactance

value is injected, the overload has been solved in three different locations. A realistic

ER model has been attached to the same three locations to verify the results, which

was provided by Smart Wires. The two methods guarantee ER assistance to secure

the power flow.

EVCSs data set of Boulder, CO, and Palo Alto has been analyzed to find their

load behavior of the electrical grid. EVCS location is found for each zip code, and the

one with the largest recorded transactions is selected. Then, for each year and month,

the sum of kWh usage during every hour is founded to understand the load variation

during the day. The mean and standard-deviation of the data sets are demonstrated.

Since Palo Alto had more records covering the years 2011 to 2017, three TSA methods

are applied to predict it’s future. Polynomial curve fitting matched the data in a good

shape, but it requires additional variables to fit the details so it can predict the future.

So, polynomial curve fitting assisted in observation the EVCS characteristics, but not

forecasting it. Thus, ARMA is applied, but it also found bad prediction because it

depends on exponential smoothing and it didn’t use the data set trend or seasonality.

Although ARMA is more popular in predicting the future, exponential smoothing

had better findings. Exponential smoothing using the multiplicative seasonality and

additive trend predicted the future with better fitting to the testing data.
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Finally, the thesis finds an optimal planning EVCS method that formulates an

ER model and estimated the demand based on Boulder data set mean and variance

behaviors. The ER and its mobility using the mobility matrix is found by a unit

reactive power injection. For the charging demand mean values are considered by

the formulated CC stochastic integer program for planning EVCS. The objective

function is designed to minimize the charging station, distribution system operation,

and distribution system expansion costs. The model is tested for three case studies,

which are a south heavy load, north heavy load, and uniform load. The three of them

use the EVCS demand from an estimation depending on the founded mean values of

Boulder with the day separated into four periods.

5.2 Conclusion

The work in this thesis focus on power system, especially for the transmission line

and EVCS. The three case studies on LUA transmission line solved the overload in

the system when an outage occurs in another location connected to the same circuit.

The first case study has the overload happening on a switch and the ER was attached

to it. However, injecting the reactance of a switch didn’t assist in solving the problem

because the switch has lower reactance value, which means less impact on the received

power. So, the ER is placed on the neighbors, which successfully solves the problem

for more than 10 years. ER placement on for the other two case studies also assisted

in maintaining the current in the line limits. The ER proved its ability to control

the power flow of the transmission line, which assists the utilities in securing their

system.

For EVCS data set analysis it finds that EV number is growing, the peak load

consumption is occurring on specified hours, and the charging duration for an EV is

decreasing. Boulder and Palo Alto peak hours are found in the morning times. The
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charging duration has been decreasing annually, which proves that fast-charging is

being used in the EVCS. From the polynomial curve fitting for Palo Alto data, the

load behavior is observed by specifying the slope shape. Exponential smoothing has

good prediction behavior, but for a small short time because for long durations, it

starts to repeat it’s forecasting over and over due to the seasonality influence.

For formulating EVCS planning with ER and its mobile an optimal solution is

found that considers the EVCS mean value as the demand. The load is tested as

uniform, south heavy, and north heavy. The ER placement for each load changed

to fit the demand. Even though the ER adds additional cost to the system, but the

total cost almost cuts in half for all case studies due to the reactive power injection.

5.3 Recommendations for Future Work

While ER impacts transmission system and EVCS planning additional work can

also be studied in the future.

1. A techno-economic analysis model for the deferral project can be developed by

considering the costs of line and ER. Then, formulate an optimal ER placement

model to reach maximum profit. The optimal method will assist in purchasing

the least number of ER while ensuring the stability of the system. The model

presented in the thesis tested each line and switch manually, which can increase

the chance of error when considering the whole transmission system.

2. ER Impact on harmonics and oscillation can be utilized for LUA grid especially

in the areas close to the solar and wind power plants.

3. D-FACTS has similar behavior as the ER, but for the distribution system, which

can be considered to avoid the overload on the distribution lines.

4. Applying exponential smoothing method on Palo Alto data set to forecast all
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24 hours using different seasonality and trend values. If the data is forecasted,

EVCS planning can apply the future demand to find an optimal placement.
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A.1 Parameters and Settings

The fixed costs for each EV charging station is assumed to be c1,i = 163, 000 ($).
The land use costs are 407 $/m2 and adding one extra charging spot requires 20 m2

land. The per-unit purchase cost for one charging spot is 23, 500 $. Thus we have
c2,i = 407 × 20 + 23, 500 = 31, 640 ($). The distribution line cost is assumed to
be c3,i =120 ($/(kVA · km)) and the substation expansion cost is assumed to be
c4,i =788 ($/kVA). The rated charging power for each charging spot is 44 kW. The
voltage regulation coefficient c5 is assumed to be 50, 000 ($), given the base power of
100 MVA. The readers can find the references for these coefficients in [82]. As for
the ER price, it is assumed to be $10/kVA, according to a similar device in [84]. For
simplification, we assume the serviceability coefficient wi to be with the order of one.
Moreover, we set λS = 1, γins = $550, and γunins = $500 per ER.
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