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ABSTRACT

According to the Center for Disease Control and Prevention report around 29,668

United States residents aged greater than 65 years had died as a result of a fall in

2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as

a result of a fall. Certain groups of people are more prone to experience falls than

others, one of which being individuals with stroke. The two most common issues with

individuals with strokes are ankle weakness and foot drop, both of which contribute to

falls. To mitigate this issue, the most popular clinical remedy given to these users is

thermoplastic Ankle Foot Orthosis. These AFO’s help improving gait velocity, stride

length, and cadence. However, studies have shown that a continuous restraint on

the ankle harms the compensatory stepping response and forward propulsion. It has

been shown in previous studies that compensatory stepping and forward propulsion

are crucial for the user’s ability to recover from postural perturbations. Hence, there

is a need for active devices that can supply a plantarflexion during the push-off and

dorsiflexion during the swing phase of gait. Although advancements in the orthotic

research have shown major improvements in supporting the ankle joint for rehabili-

tation, there is a lack of available active devices that can help impaired users in daily

activities. In this study, the primary focus is to build an unobtrusive, cost-effective,

and easy to wear active device for gait rehabilitation and fall prevention in individ-

uals who are at risk. The device will be using a double-acting cylinder that can be

easily incorporated into the user’s footwear using a novel custom-designed powered

ankle brace. The device will use Inertial Measurement Units to measure kinematic

parameters of the lower body and a custom control algorithm to actuate the device

based on the measurements. The study can be used to advance the field of gait as-

sistance, rehabilitation, and potentially fall prevention of individuals with lower-limb

impairments through the use of Active Ankle Foot Orthosis.
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Chapter 1

DESIGN OF ACTIVE ANKLE FOOT ORTHOSIS

1.1 Introduction

Certain groups of people are more susceptible to experience falls than others, one

of which being stroke survivors. Although the risk of stroke increases with age, a

stroke can occur at any age, and the most common type of stroke inhibits blood

flow to the brain cdc (2020). The brain is responsible for sending motor signals to

muscles through the nervous system required for muscle movement. After a stroke,

these signals get affected and can delay muscle, both kinetic and kinematic responses

to perturbation Weerdesteyn et al. (2008). Falls are the common complaints that

individuals with such impairment have during or after their rehabilitation phase.

Statistics on after stroke falls Batchelor et al. (2012) reveal that 14%-65% patients

fall during hospitalization and between 37%-73% fall during the first 6 months of

discharge from hospital. According to the CDC article by Burns and Kakara (2018),

it is shown that in 2016 around 29,668 US residents aged ≥ 65 years had died as

a result of a fall. Severe injuries like wrist fractures, hip fracture, and head injury

occur due to falling as shown in the studies of Ramnemark et al. (1998), Dennis

et al. (2002) and Pouwels et al. (2009). In the studies by Jørgensen et al. (2002)

and Herndon et al. (1997), it is shown that individuals with stroke are at high risk

of falling and is the most common medical complication after stroke. It’s shown in

the study by Yarkony and Sahgal (1987) that around 67% of individuals with stroke

suffer from ankle weakness and in the study by Wade et al. (1985), it’s shown that

approximately 20% of individuals with stroke suffer from foot drop issues.
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1.1.1 Requirement for an Active Ankle-Foot Orthosis

Orthotic devices are primarily used by people with partial or complete loss of

muscle activity (paresis) in their extremities. This loss of muscle activity leads to

motor-issues such as drop foot (i.e. inability to lift the impaired foot during the

swing phase of gait) or spasticity (i.e. stiffness and tightening of muscles) of lower

limb muscles. These issues lead to the loss of postural control Geurts et al. (2005)

increasing the risk of falls among those affected. Falls most commonly result in soft

tissue damage and can lead to fractures or death in severe cases. Along with physical

injuries, falls can also cause psychological trauma, associated with fear of falling that

can lead to deficits in gait and balance, reduced physical activities, and deconditioning

as found in Hatem et al. (2016). The most commonly prescribed clinical remedy pro-

vided to tackle drop foot issue and improper gait is passive thermoplastic Ankle Foot

Orthosis (AFO), which are designed to lock the paretic ankle joint at a certain angle,

facilitate foot clearance during swing phase, ankle stability during stance phase and

heel strike as studied in Taborri et al. (2016) and Kluding et al. (2013). While there

are reported improvements of gait velocity, stride length, and cadence(steps/min) as

shown in the study by Simons et al. (2009), studies by Nevisipour (2019) show that

continual constraints in the ankle joint adversely affect the compensatory stepping

response, forward propulsion and proprioceptive sensory information. Studies from

Mcilroy and Maki (1993) and Jensen et al. (2001) show that for the subject to pre-

vent falls from postural perturbations, the compensatory stepping response is crucial.

Therefore continually restricting the ankle movement might adversely affect the user’s

ability to recover from sudden perturbations.

The study by Alam et al. (2014) highlights that the primary cause of musculoskeletal

weakness is the weakness in plantar flexor and dorsiflexor of the ankle. The weak-
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ness in plantar flexors causes a reduced forward propulsion that would result in weak

push-off during the Pre-swing (push-off) of the stance phase. The weakness in the

dorsiflexors would result in an insufficient clearance of the toe during the Mid Swing

of the swing phase and would reduce the step length, force toe dragging, lower walking

speeds and increase the overall chances of tripping. The various phases of gait cycles

are referred from the study in Taborri et al. (2016). As mentioned in the study by

Alam et al. (2014), two of the major complications of the above mentioned weakness

are the foot slap which is the uncontrolled and rapid strike of foot and toe drag which

is the dragging of the forefoot due to insufficient clearance during Mid Swing. There-

fore, there is a need for an AAFO that can deliver powered push off for a stronger

plantar flexion, locking of the ankle joint during the swing phase to prevent dragging

of the paretic foot and a stable foot strike.

1.1.2 Study of Existing Devices

Advancements in orthotics research have provided AFO devices that have shown

improvement in supporting the ankle joint as rehabilitation devices for individuals

with lower body impairments. There are primarily 3 different types of AFOs that are

used for addressing the issue of drop foot and lower limb impairments - passive AFO,

semi-active AFO, and active AFO. The passive AFO is the most commonly prescribed

AFO and usually consists of a thermoplastic element that locks the ankle joint at a

certain angle which is effective in foot clearance since it reduces the chances of the

foot striking an obstacle during Mid Swing. However, the restriction in the ankle

movement prevents the ankle from generating strong push-off torque and normal

ankle movements. The semi-active AFO usually varies the flexibility of the ankle

joint by using an externally controlled damper system. In the studies by Yamamoto
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et al. (1997), specialized joints using stiffness control elements, flexion stops, and a

one-way friction clutch are used to control the ankle movement in the sagittal plane.

The Active AFOs usually consist of an external power source, sensors for detecting

movements in the essential body parts, the control algorithm for articulating the

ankle joint in a dynamic way. The study by Alam et al. (2014) highlights some of the

common control elements used by different ankle-foot orthotics.

• Spring: In the study by Palmer (2002), linear torsional springs are used for

controlling the plantar flexion. the spring would get loaded during the loading

response of the stance phase and would generate a forward propulsion during

the pre-swing (push-off) phase of the gait cycles. These elements are not very

effective in dorsiflexion which in some cases reduce normal movement of the

ankle.

• Series Elastic Actuator: The paper by Hwang et al. (2006) shows the use

of the Series Elastic Actuator (SEA) for controlling the ankle actuation. In

this type of actuator an elastic element, most commonly a spring is attached in

series to a DC motor. An external processing unit is then used for deflecting

the elastic element to generate output force on the ankle joint. In these types of

design the heavier element like the motor and the springs are usually attached

to the leg of the users which tends to hinder the user comfort and wearability

of the device. Other SEA device such as the robotic tendon AFO Boehler et al.

(2008) utilizes a similar configuration of a DC motor in series with a custom-

built lead screw and a spring. The device has shown improvement in providing

push off assistance to the user, although it sacrifices some level of user comfort

with the chosen force and fastening method.

• Passive Pneumatic Element: The use of passive pneumatic elements has
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been studied by Kawamura et al. (2002). The use of these elements benefit

adjustability of ankle joint stiffness and initial ankle angle that are important

for controlling the body alignment for walking.

• Artificial Pneumatic Muscle: Pneumatic actuators has been shown to

be an effective supplementation of the soleus and the gastrocnemious muscles.

The designs by Ferris et al. (2005) and Ferris et al. (2006) utilized McKibben

pneumatic muscles to develop tethered powered ankle foot orthosis. These ankle

foot orthosis have shown to be effective for both plant flexion and dorsi flexion

of the ankle joint. Their effectiveness in helping in the ankle flexion in both

direction motivates the design of the device in this thesis.

1.1.3 Objectives and Hypothesis

The above section highlights the extensive studies that have been conducted to

address the issues with drop foot and paretic limbs. Some of the devices which are ca-

pable of addressing the issues of weaker plantarflexion during the push-off phase and

an insufficient foot clearance during mid-swing phase of the gait cycle has been de-

scribed in the above section. The need for an active ankle-foot orthosis is highlighted

by studies conducted by Nevisipour (2019). However, there is a lack of commercially

available Active Devices that can help impaired users in daily activities. Almost all

the devices mentioned above are useful in laboratory conditions and does not address

the need for rehabilitating the gait for the ease of performing daily activities. Some

of the key negative factors of these devices as highlighted by Alam et al. (2014) are

tethered powered systems, bulky contraptions that increase the overall weight that

is carried by the ankle, adaptability of the devices in dynamic conditions. Most of

the devices utilize some sort of angle measuring sensors, foot pressure sensors, and
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highly expensive and laboratory-controlled motion capture systems for detecting the

conditions of actuation. Although these techniques are useful in a very controlled

environment they become either unreliable or impractical in daily use of the devices

by the users. There is a need for analyzing the data collected through such labora-

tory instruments to determine a more mobile method of detecting falls and recoveries

resulting from perturbations.

The first objective of this thesis is to design an unobtrusive, cost-effective, easy to

wear, AAFO which is capable of housing a remote power unit and can be easily incor-

porated into the user’s daily footwear. The device will be designed by double-acting

pneumatic cylinders for actuation, Inertial Measurement Units (IMUs) for tracking

the kinematic leg motion, and a novel custom printed shoe attachment system. It

is hypothesized is that such a device will be able to sense the various phases of

gait cycles from the attached sensors and will be able to generate a stronger ground

reaction force during push-off and sufficient toe clearance by locking the ankle joint

only during the swing phase of the gait cycle. The second objective of this thesis

is to analyze kinematic parameters of users during treadmill-based perturbations to

determine effective sensor placement and potential parametric thresholds that would

distinguish stepping responses between falls and recoveries. Additionally, it can also

potentially detect whether an actuation is required in the stepping of the base leg

such that the overall device only actuates when a stepping response is detected to be a

potential fall by the sensors. It is hypothesized that out of the multiple lower body

kinematic parameters that can be measured, there exists a subset of those features

that can be used to determine whether a sudden perturbation during stance phase

would result in a fall or recovery and whether the first actuated response is sufficient

to aid in the recovery. The expected outcome of the study is the design an active

ankle-foot device that can potentially aid in gait rehabilitation and a set of kinematic
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parameters that can be measured using IMU sensors for the detection of falls.

In the first chapter of the thesis, the overall design, mechanical components, elec-

tronic components, and the control algorithm that are utilized in the design of the

active ankle-foot orthosis is described. In the second chapter of the thesis, the data

analysis of treadmill perturbation data to determine the most effective kinematic

parameters is described.

1.2 System Design

1.2.1 Design of the Mechanical System

The primary contributor to the kinetic energy and the speed of the stepping leg is

forward propulsion force which is generated by the plantarflexor muscles as described

in Francis et al. (2013). The AAFO’s design accomplishes this by taking a mechanical

approach to supplement the Soleus and gastrocnemius muscles in a controlled manner

while allowing for the maximum range of motion and comfort of the user. The design

offers reasonable accommodation to a variety of users with respect to shoe size and

weight and can be quickly adjusted such that it does not reduce the range of motion

of the ankle. Adjustments are made either through replacement of the lever arm, as

well as tightening or loosening of the turnbuckle connecting rods. These adjustments

allow the AAFO to operate at up to approximately 25 degrees of Dorsiflexion, and

up to approximately 70 degrees of plantarflexion. The connecting rods use swivel-ball

ends which allow some degree of foot rotation as well as inversion and eversion of the

foot. The dorsiflexion represented by Angle a and plantarflexion represented Angle

b can be seen in figure1.1. The AAFO’s uses 8 self-tapping screws to secure it to a

running or walking shoe and can be adapted to fit a range of shoe sizes and styles,
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Figure 1.1: Maximum Variation of Angle for Plantar and Dorsi flexion

offering increased user comfort, affordability, and accessibility. The AAFO uses a

lever arm that is free to pivot in the middle around a steel pin and is fixed at one

end to the fore-end of the user’s shoe on either side of the foot. The pivot point of

the arm is secured to the hind end of the user’s shoe, and the other end of the lever

arm is attached to a double-acting air cylinder where retraction and extension forces

are applied. Simple geometric relationships can be used to derive the relationship

between input air pressure and maximum theoretical propulsive force.

FGR = cos(θ)× Pair × Acylinder ×
d1
d2

(1)

where, d1 and d2 is 99.06mm and 133.604mm, then

FGR = cos(θ)× Pair × 5.34 (2)
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The Acylinder is given square mm and FGR is N. The application of the force on the

mechanical parts of the design can be seen from figure 1.2. The equation above can

Figure 1.2: Geometric Representation of the Force Acting on the Shoe

be used to calculate the maximum theoretical propulsive force the AAFO. With a

cylinder bore of approximately 32 mm and a maximum pressure of approximately 70

psi, the maximum theoretical force the AAFO is capable of providing is when theta is

zero. Under these conditions, the maximum theoretical force is approximately 1661

N. To minimize the weight being added to the lower extremities, much of the pneu-

matic of the system were moved remotely to reduce the negative metabolic effects of

increased weight to the lower legs. A Condor MOPC Modular Operator Plate Carrier

(Condor Outdoor Products, Irwindale, CA) was used to house the pneumatic control
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equipment for the suit including the air solenoids, batteries, and all electronics with

the exception of the sensors and the AAFOs themselves. The Air solenoids used

were Numatics 236-127B 24V 6Watt Solenoid 2-position a4-way valves (Numatics,

Incorporated, Novi, MI), and were responsible for the control of the airflow through

the system. The sensor casings and much of the AAFO parts with exception of the

air cylinder and hardware were 3D printed in Polylactic acid (PLA) material. The

double-acting air cylinder used was a Sydien Single Rod Double Action Pneumatic

Cylinder (Chled, Zhejiang, China) with a 32mm Bore and a stroke of 75mm. Air

was supplied via a commercial air compressor located remotely. A mobile air sup-

ply system would be similarly effective at delivering propulsive force as well and was

successfully tested in non-recorded troubleshooting sessions. The mobile air supply

system can be seen in figure 1.3. The design and orientation of the lever arm, linkage

arms, and shank support provide a rigid connection between the shank and foot with

minimal chafing or rubbing. The force of the air cylinder contracting is transferred

through the level arm to the front of the foot, where the foot typically reaches maxi-

mum Plantar flexion at beginning of the swing phase, ensuring maximum propulsive

force duration.

1.2.2 Design of the Electronic System

The AAFO uses an Adafruit Feather HUZZAH (Adafruit Industries, New York,

NY) onboard to process and transmit the incoming IMU data for data analysis onto to

computer via WiFi, as well as output control signals to two VNH5019 Motor Driver

Carriers. The Motor Drivers are responsible for activating the air solenoid valves

and control the pneumatic actuation of the AAFO. The IMUs used are two Adafruit

(Adafruit Industries, New York, NY) BNO055 Absolute Orientation Sensors which are

placed on the shank of the subjects using straps and custom-designed sensor housing.
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Figure 1.3: Mobile Air Supply System

The paper from Quintero et al Quintero et al. (2017) showed a similar application

of using IMU sensors for detecting gait cycles for lower limb orthotics. The feather

Huzzah is programmed using the Arduino IDE and a MATLAB (Mathworks, Natick,

MA) script is developed to remotely acquire the data via WiFi. The IMU sensor is a

9-DOF sensor with a 3-axis accelerometer, gyroscope, and magnetometer.

Inertial Measurement Units: The BNO055 Absolute Orientation sensors are an

sensors that has a built-in processing unit (i.e. high speed ARM Cortex-M0 processor)

which is capable of measuring the absolute orientation, quaternions and euler angles

from the 3-axis accelerometer, gyroscope and magentometers. It has been shown in
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the paper by Wåhlin and Wrange (2018) that these sensors are effective in measuring

the mobility of knee joints. The product specification of these sensors are given in the

website by Adafruit (2020). This breakout board is capable of measuring Absolute

orientation in Euler Angles, Absolute orientation in Quaternion, Angular Velocity

vector, Angular and linear acceleration vector, magnetic field strength, gravity vector

and ambient temperature. This sensor was selected over the others because of its

versatile functionality and its in-built capability to output Absolute orientation in

Euler angles and Angular velocity which are necessary for measuring the parameters

that will be utilized in the device. In the figure 1.4, we see the BNO055 module in

the custom 3-D printed housing. The housing is attached to the shank of the user

using velcro braces. The sensor is oriented such that the flexion in the sagittal plane

is in the y-direction.

Figure 1.4: IMU Sensor in 3-D Printed Housing
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1.2.3 System Block Diagram

In figure 1.5 we show the block diagram of the system. The V1, V2, V3 and V4 are

the solenoid valves that control the actuation of two cylinders. The IMU’s commu-

nicate with the Microcontroller on the I2C (Inter-Integrated Circuit) communication

bus with clock and data lines. There is an internal 10k pull-up resistor on the IMU

board. The pull-up resistors provide the default states of the signal lines.

Some of the negative factors of previous AAFO designs involved placing the bulk of

Figure 1.5: Block Diagram of the System
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the heavier components on the ankle of the user. This led to an unnatural burden

on the lower body to lift the extra weight during walking and would lead unnatural

gait and increased metabolic cost. In this design, we aimed to displace bulk of the

heavier components to the torso of the user away from the ankle such that ankle brace

contains only essential components required for actuation. The figure 1.6 shows the

device from the Front, Back and Side Views. The user is made to wear the condor

modular plate carrier which houses all the electronics and the pneumatics portion of

the device. The ankle braces are fitted to the user’s shoe as described in the previous

section. The IMU sensors are attached to the shank of the user using the custom

made 3-D printed braces. Electrically insulated sheaths were used to house the wires

running from the housings on the torso to the actuators and the sensors. The sheaths

were attached loosely so that it doesn’t inhibit the normal movement of the user.

The entire design of the device is done by keeping in mind user comfort, unobtrusive

usage and the ease of utilizing the daily footwear of the user.

1.2.4 Control Algorithm

We designed an algorithm 1 for controlling the actuation of the cylinder based on

the Euler angle inputs from the IMU sensors. The V1, V2, V3 and V4 are the solenoid

valves shown in figure 1.5. We used the connection diagram mention in Qi et al.

(2019) for finalizing the solenoid connections. The control parameters defined in the

algorithm are described as follows:

- α is the threshold angle for the absolute difference of the angles between the two

IMUs. α1 is the left shank angle and α2 is the right shank angle with respect

to the vertical plane from the sagittal side.

- λ is the flag that determines which leg needs to be actuated. It’s set to 1
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Figure 1.6: Front, Back and Side Views of the Device

left leg and 2 for the right leg. This ensures that a single leg is not actuated

consecutively during a single gait cycle.

- τ is the time delay for the sensor read. This was set to the minimum amount

possible for consistent data communication over Wifi for the Data Acquisition

System.

- t0, t1 and t2, these are time set for determining the various phases of the gait

cycle. Since we conducted our experiment at a constant speed, the values re-

mained constant throughout the experiment

In figures 1.7 and 1.8 we show the various phases of a single gait cycle as captured

from the testing of the device by the subjects. The various phases shown are the

1) Double support, stance phase, 2) Loading Response, stance phase, 3) Mid Stance,

stance phase, 4) Terminal stance, stance phase, 5) Pre-Swing (Push-off) stance phase,
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6) Initial-Swing, swing phase, 7) Mid-Swing, Swing phase and 8) Terminal Swing

(Heel-Strike) swing phase. The nomenclature of each of the phases was obtained

from Taborri et al. (2016). Here the phases are labeled according to the left leg of

the subject (i.e. the leg closer to the camera). The angle α is the angle difference

between the two IMU sensors placed in front of the shank of the subject. The sensors

provide the shank angle on the sagittal plane of the subject. Here α is the control

parameter used in our control algorithm 1.
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Algorithm 1 Control Algorithm for the Device

Initialize: Sensor system, Wifi module, calibration parameters, control parameters

like α, λ,τ ,t0, t1 and t2.

Obtain offset values from calibration parameters for the sensors

while Client connected do

Obtain α1 and α2 from IMU sensors {Retrieve the euler angles from IMU sensors}

if abs(α1 − α2) > α then

if α1 < α2 and λ ∼= 1 then

Activate V1 {Extend Left leg for push off}

Start counter t = t1

Set λ = 1 {Here lambda = 1 indicates left leg}

else if α1 > α2 and λ ∼= 2 then

Activate V3 {Extend Right leg for push off}

Start counter t = t1

Set λ = 2 {Here lambda = 2 indicates right leg}

end if

else

Deactivate V1, V2, V3 and V4 {Free move state}

end if

Reduce counter t

if t < t2 then

if λ = 1 then

Activate V2 {Retract Left leg for heel strike}

end if

if λ = 2 then

Activate V4 {Retract Right leg for heel strike}

end if

end if

wait for τ ms {Delay for sensor read}

end while
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(a) Double support, stance phase (b) Loading response, stance phase

(c) Mid stance, stance phase (d) Terminal stance, stance phase

Figure 1.7: A Single Gait Cycle With 8 Level of Granularity – First 4 Phases
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(a) Pre swing (Push-off), stance

phase

(b) Initial Swing, swing phase

(c) Mid Swing, Swing phase (d) Terminal Swing(Heel strike),

swing phase

Figure 1.8: A Single Gait Cycle With 8 Level of Granularity – Last 4 Phases
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We obtain the shank angle measurements as shown in figure 1.9. Similar to the

approach in Watanabe et al. (2011), the angle variation of the shank for each phases

of the gait cycle is calculated and using those values we were able estimate the timings

for actuation of the cylinders. We also confirmed the estimated values with the data

obtained from our IMU sensors as shown in figure 1.9 by observation during the

habituation phase of the subjects to determine the values for the control parameters

α, t0, t1 and t2. These values were also adjusted according to the comfort of the

subjects.

Figure 1.9: Shank Angle Measurements From IMU Sensors

1.3 Results and Discussion

1.3.1 Procedure for Testing the Device

We conducted a preliminary test of our device’s ability to provide a stronger

plantar flexion, we used 4 subjects on an instrumental dual-belt treadmill with force

sensors (Bertec, Columbus, Ohio). The subject was fitted with the device on both

of their legs and was made to wear the condor plate carrier with all the additional
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equipment. The testing phase had two sessions.

• Habituation Test for acclimatization to the device: In their first session

the subjects were fitted with the AAFO and was made to walk on the ground for

5 minutes to habituate themselves with the device. They were given 10 minutes

on the treadmill with varying speeds between 0.5 m/s to 1.2 m/s to acclimate

themselves to the shoes for the final testing session. During their habituation

time on the treadmill, data of their shank angle variation was collected from

the IMU sensors for estimating their plantar flexion time and their swing phase

time for synchronizing the actuation of the cylinders. The source pressure was

varied from 30 psi to 70 psi and the subjects were notified about the pressure

level allowing them to anticipate the assistance from the device.

• Walking test for collecting ground reaction force: In their second session,

the subjects were instructed to walk on the treadmill for 1 min with a normal

walking speed of 1 m/s. A passive reflective heel marker was placed on both

the heels of the subject to determine the heel-strike event on the treadmill. The

motion of the heel marker was captured using a motion capture system (Vicon,

Oxford, UK) at 1000 Hz. There was 4 pressure condition used for testing the

ground reaction force: 1) No pressure, 2) Pressure at 30 psi, 3) Pressure at 50

psi, 4) Pressure at 70 psi. Ground Reaction Force (GRF) was collected for each

of the pressure used.

We used young healthy subjects of similar age group without any impairments for

the purpose of this preliminary test. Subject information can found in Table 1.1.
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Table 1.1: Subject Attributes

Attributes Sub A Sub B Sub C Sub D

Height(cm) 177.8 172.2 177.8 185.4

Weight(kg) 88.45 87.54 87.99 112.35

Age 20 25 25 25

Shoe size(US) 11.5 9.0 9.5 12.0

1.3.2 Results of Testing

The figures 1.10, 1.11, 1.12 and 1.13 represents the Anterior-Posterior GRF ob-

tained from the left leg of the 4 subjects. The initial data from the motion capture

system was processed in the Vicon Nexus software (Vicon, Oxford, UK), where the

markers were labeled and gaps were filled with a custom plugin. The data was then

extracted and further processed on the Matlab software (MathWorks, Natick, MA).

The raw data was initially filtered with 2nd order low pass Butterworth filter of 10 Hz.

The heel strike events were calculated by finding the recurrence of the least angle of

the heel marker. The individual gait cycles were then extracted from the filtered data,

curve fitted and an average of 5 gait cycles was taken to obtain the average plots. The

plots show the GRF obtained for the 4 pressure conditions. The red line indicates

the GRF at 0psi, the green line indicates GRF at 30psi, the blue line indicates GRF

at 50psi and the black line indicates GRF at 70psi. The GRF data of Subject D at

70psi was a bad trial and was excluded from the plots. The initial trough in the plots

is the Braking force applied by the stepping leg to go from the swing phase of the

gait cycle to the stance phase after heel strike. The peak that follows from the trough

represents the Propulsive force that the stepping foot generates to transfer from the
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stance phase to the swing phase of the gait cycle.

Figure 1.10: Anterior-Posterior GRF of Left Leg of Subject A

1.3.3 Discussion of the GRF Data

The results from this preliminary testing of the device show that there is a trend

of higher GRF during propulsion with an increase in supply pressure added to the

cylinder. For the purpose of this experiment we only analyze the left leg GRF, however

during the experiment the subjects were wearing the device on both legs to induce

symmetry. This trend of increasing GRF with an increase in force is attributed to

the force applied to the ball of the foot by the device during push-off. The additional

push-off force increased the anterior-posterior propulsion of the stepping leg. The

results from subject A in figure 1.10 show that the highest increment of GRF from

powered off condition was when a pressure of 30 psi was applied. The particular

subject revealed during post-session that it felt the most comfortable with 30psi

pressure. Subject B, C, and D all expressed that they could feel a higher push-off

force with the increase in pressure. We show the GRF for individual subjects as
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Figure 1.11: Anterior-Posterior GRF of Left Leg of Subject B

Figure 1.12: Anterior-Posterior GRF of Left Leg of Subject C
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Figure 1.13: Anterior-Posterior GRF of Left Leg of Subject D

there was a high percent variation of the propulsive forces at their peaks. Subject

A had a variation between 34.87% to 25.43% increase in GRF for the three different

applied pressures. Subject B showed a variation between 6.5% to 47% increase in

GRF for the different pressures. Subject C showed a variation between 82.44% to

89.61% increase in GRF with the different pressures. Subject D showed a variation of

42.4% to 116.8% increase in GRF with different applied pressures. Different control

parameters as mentioned in algorithm 1 were used for different subjects and that

could have attributed to the high variation of peaks of the propulsion force. Further

testing of the AAFO on additional subjects might show an apparent trend in the

relationship between the increase of pressure, control parameters, and the GRF.

1.4 Conclusions

In this chapter, we designed an Active Ankle-Foot Orthosis capable of increasing

ground reaction forces of the user by applying a strong push-off force. The design is

cost-effective and comfortable for the user. Individuals who have suffered from stroke
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have a higher risk of falling and this device can potentially help them rehabilitate to

improved living. There is evidence that with an active ankle-foot orthosis that can

provide a strong plantarflexion force to the ankle, the individuals would be able to

mitigate the factors that cause them to fall. The design of our device utilizes easy to

use components and a novel control algorithm to provide a stronger push off during

normal gait, such that the individuals wearing the device would be able to generate a

stronger ground reaction force. Evidence from other studies suggests that a stronger

ground reaction force would help in better forward propulsion and would help indi-

viduals take faster compensatory steps, increase their stride length, and potentially

reduce chances of falling. Preliminary tests on the 4 different subjects show a gen-

eral trend of an increase in the anterior-posterior ground reaction forces. There is a

need for comprehensive testing of the device to fine-tune the control parameters and

validate the effectiveness of the device, such that it can assist in the rehabilitation

of people with impairments. An analysis of the treadmill perturbation data is per-

formed in chapter 2 to potentially determine more effective control parameters like

the threshold of the angular displacement of the shank, the timing for actuation of

the shank that can successfully determine whether the stepping response will be a fall

or a recovery. Additionally, the analysis will also help in determining the necessary

kinematic parameters that can detect whether a second stepping response is required.

The control algorithm of the device can then be adjusted such that the device only

actuates when a stepping response is determined to be a fall by the IMU sensors.

The device can then potentially reduce the chances of falling in individuals who are

at high risk.
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Chapter 2

ANALYSIS OF PERTURBATION DATA ON FALL AND RECOVERY

2.1 Introduction

The majority of techniques used for detecting falls requires the use of some kind

of sensors to detect the event of a fall in the stepping response of the user. These

sensors can be broadly classified into two categories of wearable and non-wearable

sensors. The studies conducted by Chaudhuri (2015) shows a comprehensive list of

available sensors used for detection of fall in older adults. The wearable sensors are

analyzed in details by Chander et al. (2020) which includes, angle measurement po-

tentiometers, electronic goniometer, foot pressure sensors, pedometer, accelerometers

and gyroscopes as shown in studies Mukhopadhyay (2015), Light et al. (2015), Chen

et al. (2005) and Shany et al. (2012). The non-wearable sensors include motion cap-

ture sensors, cameras, acoustic sensors, floor pressure sensors as shown in studies

Sixsmith and Johnson (2004), Li et al. (2012), and Alwan et al. (2006). The nega-

tive factor for the use of non-wearable sensors is that it requires the user to be in a

controlled environment where the sensors are placed. Restricting the movement of

the user is not ideal since it hampers the quality of life experienced by the user. The

majority of the active devices use wearable sensors for the detection of falls as shown

by Chander et al. (2020). However, wearable sensors like angle measurement sensors

or foot pressure sensors are restricted in their ability to detect a variety of changes in

lower limb kinematics and therefore is not robust enough to detect falls in a variety

of scenarios, such that it can be effective during daily user activity. Wearable sensors

such as IMUs, accelerometers, and gyroscopes are effective in detecting kinematic
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changes of the various body parts and can be continually used for detecting sudden

changes of angular displacement or velocity during the user’s daily activities. In order

to utilize the IMU sensors effectively in fall detection, a detailed analysis of kinematic

parameters that can be measured by these sensors needs to be performed.

The objective is to analyze the kinematic parameters of users during treadmill-

based perturbations to determine effective sensor placement and potential parametric

thresholds that would distinguish the stepping response between falls and recoveries.

Additionally, it can also be used to determine whether the first stepping response was

sufficient or actuation of the second leg is necessary. It is hypothesized that out of

the multiple lower body kinematic parameters that can be measured, there exists a

subset of those features that can be used to determine whether a sudden perturbation

during stance phase would result in a fall or recovery.

In this chapter, the kinematic data collected by Nevisipour (2019) from clinical

experiments that involve giving treadmill perturbations to subjects are analyzed.

The objective is to find out the kinematic parameters that can most significantly

differentiate between fall and recovery. The data is collected from individuals with

unilateral chronic-stroke. The data from individuals from stroke is taken as they are

the population at the highest risk of falls as mentioned by Jørgensen et al. (2002).

In the subsequent sections, the methodology of data collection is described and an

overall description of the data collected is also covered. The data analysis involves

using statistical techniques like correlation, classification, and times series analysis on

the kinematic variables like angular displacement and angular velocity. The major

body parts used for measuring the kinematics are the trunk, knee, shank, foot, and

hip. As stated in the hypothesis, that there should exist a subset of these body

parts from where we can measure the angular displacement or velocity to determine
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whether a perturbation will cause a fall or recovery. The subset of features thus,

found can be used for placing the IMU sensors such that the device can successfully

detect if the user is about to fall and can actuate to potentially prevent the fall based

on the methodology described in chapter 1.

2.2 Methodology

2.2.1 Data Collection

The data was collected by Nevisipour (2019) in the Human Mobility Lab at ASU.

In the study, there were forty-two individuals with unilateral chronic stroke and they

are screened based on a eligibility criteria. The eligibility criteria was 1) ability to

walk 5 minutes without assistance, 2) no spinal/lower limb injury/surgery in the past

year, 3) no history of fainting in the past year, 4) at least a month of usage of a

assistive device like a orthosis or functional electrical stimulators on a daily basis.

This study was performed under the IRB approved protocol STUDY00002970 and

all subjects provided written informed consents.

Subject data like age, height, weight, and stroke type were recorded. Various clinical

tests were performed to evaluate the clinical characteristics of the subjects.

• Fugl-Meyr Test: The lower extremity impairmment was assessed.

• Modified Ashworth Scale: Spasticity of the ankle plantarflexors (lateral

Gastrocnemius and Soleus) and dorsiflexor (Tibialis Anterior) was assessed.

• Maximum voluntary isometric contraction (MVIC) The plantarflexion

and dorsiflexion was measured using a Biodex System 3 (Biodex, New York,

USA).

• Berg Balance Scale (BBS) Functional Balance clinical test was assessed.
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• Timed Up and Go (TUG) Functional Mobility Test was assessed.

• 10m Walk Test Functional Mobility test was assessed.

The above set of tests were performed to match the groups and though an indepen-

dent samples t-test for age, height and weight. They were further matched by stroke

type and gender using a chi-squared test. Fugl-Meyer score, normalized MVIC for

plantar- and dorsi flexion, Modified Modified Ashworth Scale, clinical scores of bal-

ance and mobility (BBS, TUG, 10 m walk test) were compared between the groups

using an independent samples t-test.

The subjects were fitted in a safety harness and then treadmill perturbations were

provided which required them to take single or multiple steps to prevent falling. The

perturbations were provided in a way that would evoke forward or backward stepping

respectively. For the purpose of the thesis only the trials with posteriorly- directed

perturbations were considered. However, anteriorly- directed perturbations were pro-

vided randomly in the experiments to eliminate anticipations. The experiments were

performed on a dual-belt treadmill (GRAIL, Motek Medical BV, Amsterdam, Nether-

lands). The subjects were asked to take a walk for 2 minutes with self-selected com-

fortable walking speed for the purpose of acclimatization to each conditions. The

subjects were then asked to stand upright on the treadmill with a comfortable stance

width. The subjects would stand with the same stance width before every trial.

There were three levels of posterior perturbations, i.e., level 1: small, level 2:

medium, level 3: large. The stepping threshold were decided based on the previous

studies (Owings et al. (2001)). All the perturbations were provided with a trapezoidal

velocity profile according to the previous studies conducted in older adults (Honey-
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cutt et al. (2016)) and individuals with stroke (Crenshaw and Grabiner (2014)). The

velocity profiles are explained in table 2.1, ’BW’ stands for Body Weight. A sample

Table 2.1: Velocity Profiles of the Dual Belt Treadmill

Levels
Displacement

(m)

Constant

Velocity (m/s)

Acceleration

(m/s2)

Deceleration

(m/s2)

level 1 17% of BW 1.00 10.0 -10.0

level 2 32 % of BW 1.26 12.6 -12.6

level 3 47.5% of BW 1.26 12.6 -12.6

velocity profile of subject with height 170 cm is show in figure 2.1. The experiments

Figure 2.1: Velocity Profile of Subject With Height 170 Cm

were performed in three rounds. In the first round, 3 posterior and 2 anterior pertur-

bations were provided, randomized in direction but in the increasing order of intensity

for safety reasons. Two more rounds of the same intensity was provided in a com-
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pletely randomized fashion. The performance of the subjects were observed at each

trials for each round. If the subject fell (i.e. unambiguously caught in the harness)

on any perturbation level, the same perturbation level was repeated up to 3 times.

If the subjects fell on all 3 trials, no more perturbation of that level or larger was

delivered (i.e. that level or larger ones were removed from round 2 and 3).

The subjects were fitted with passive reflective markers according to the modi-

fied Helen Hayes Marker Set (Kadaba et al. (1990)) and the trajectory for each of

the markers were recorded using a 10-camera motion capture system (Vicon, Ox-

ford, UK) at 250 Hz sampling rate. The data was post-processed using the Vicon

Nexus 2.6.1 (Vicon, Oxford, UK), a 4th order Butterworth filter with a 6 Hz cutoff

frequency was used to the kinematic data of the markers. Ground Reaction Forces

were also calculated through the force plates (Bertec, Columbus, OH) embedded in

the treadmill under each belt.

2.2.2 Data Description

The marker data, which are time series data for each trial was first filtered and

then processed using MATLAB software (Mathworks, Natick, MA). The marker data

contained events like Treadmill start, Step start and Step stop which were

identified manually using the Vicon Nexus software. The overall kinematic data can

be categorized into 3 major components.

1. Overall Kinematic Parameters: Reaction time, Step time, Step length, Step

length, Step width, Change of Step width, Pre-Step width.

2. Kinematics of Individual Body Parts: Center of Mass to Base of Sup-

port distance, Angular displacement and angular velocity of Margin of Stability
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(MOS), Trunk, Shank, Ankle, Knee, Hip, Foot for both the stepping and base

legs.

3. Kinetic Parameters: Stepping WB, Base WB, peak push off vertical direc-

tion, peak push off shear, peak foot strike vertical, peak foot strike shear, push

off impulse, Total Moment, Support Moment, Initial Moment.

The description of the above dependent variables are given in table 2.2. The An-

gular displacement and angular velocity time series data of each individual trials were

also collected for further processing and analysis. The primary body parts from which

the angular displacement and angular velocity were extracted was Ankle, Shank,

Trunk, Knee, Hip and Foot. For each of these body parts the angular displace-

ment and angular velocity was recorded at step start and step stop. There were a

total of 7 features for the overall kinematic parameters, 57 features for the individual

body parts kinematics and 10 features for the kinetic parameters. During the data

collection it was recorded whether the individual had a fall and recovery. This would

be referred in the document as the fall parameter where its given the value 1 if the

person had fallen during the particular trial and the value 0 if the person had recov-

ered during the particular trial. This information was used to classify the data into

categories of fall and recovery and to correlate them against the above mentioned

parameters. The time series data for the individual trials were then processed and

the parameters in table 2.3 were extracted. These variables were obtained by first cal-

culating the mean of the individual trials and then a overall mean for each individual

body parts.
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Table 2.2: Dependent Variable Description

Variables Description

Reaction Time The time from the onset of perturbation to Step start.

Step Time The time from Step start to Step stop of the stepping leg

Step Length
The anterior-posterior displacement between stepping and

base leg foot centres at Step stop
.

Step Width The width of the two legs at the start of perturbation.

Change of

Step Width

The difference in width of the two legs at the

start of perturbation and end of perturbation
.

CMBOS

(x and z)

The anterior-posterior and vertical displacement

between center of mass and base of support at step stop

Margin of Stability

(MOS)

Dynamic stability measure calculated using both

position and velocity of CM relative to the edge of BOS.

Stepping WB
Weight Bearing Asymmetry : % of weight

put on stepping leg 500ms before perturbation.

Base WB
Weight Bearing Asymmetry : % of weight

put on base leg 500ms before perturbation.

Peak Push-off
Maximum Ground Reaction Force (GRF) during propulsion

in both the vertical and anterior-posterior direction.

Peak Foot-Strike
Maximum Ground Reaction Force (GRF) during braking

in both the vertical and anterior-posterior direction.

Moment
The moment on the body at Step stop

with respect to the Base of Support
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Table 2.3: Variables From Time Series Data

Variables Description

Max Angle Maximum Angular deflection during a trial.

Max Angle Time The % of gait at which max angle deflection occurs.

Max Velocity Maximum Angular Velocity during a trial.

Max Velocity Time The % of gait at which max velocity occurs.

Min Velocity Minimum Angular Velocity during a trial.

Min Velocity Time The % of gait at which min velocity occurs.

Rise velocity time The % of gait it takes for velocity to reach its max

Fall velocity time The % of gait it takes for velocity to reach its min

2.2.3 Data Processing

The aim of processing the above data-set is to determine the kinematic features

that are primarily responsible for causing a person to fall or recover from the given

perturbations in a trial. The attempt is to reduce the number of features such that

it is convenient to obtain the data using external sensors like Inertial Measurement

Units (IMUs). This information can then be used to support the design of the device

mentioned in chapter 1 for detecting beforehand whether the user is going to fall or

recover from a perturbation. The data processing of the overall data was divided into

multiple parts.

Correlation Analysis: Initially, it’s determined as to which of the parameters

from the 3 different categories mentioned above, is highly related to the fall parameter
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(i.e. the person has fallen or recovered in the particular trial). In order to achieve this

analysis, a correlation analysis is performed. A Pearson product moment correlation

co-efficient Mukaka (2012) is calculated for the three categories of the features with

respect to the fall parameters. The co-efficient is calculated as described in equation

2.1

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.1)

The results from the correlation analysis is given in tables 2.4, 2.5,and 2.6. It’s to

be noted that the correlation coefficient is between -1 and 1, with closer to 1 would

suggest high positive correlation, close to -1 would suggest high negative correlation

and closer to 0 would suggest low positive/negative correlation. Out of the 3 different

categories, the features from the Kinematics of Individual Body Parts are the most

helpful for placing the potential sensors since each of the features corresponds to a

physical body part. Hence, the highly correlated features from this category are most

prominently visited in this thesis.

Classification Analysis: In order to determine whether the above features from

all the 3 different categories are sufficient to classify the individual trials into falls

and recoveries, a logistic regression model from McCullagh (1989) is developed using

the features from the above 3 categories and the fall parameter as label. Since we

have a binary classification between whether a subject has fallen (fall parameter =

1) or has recovered (fall parameter = 0), logistic regression is an effective model for

prediction of such classes. The open-sourced sci-kit learn package of Python using

Jupyter notebook is used to perform the classification. The overall data is split into

75% training set and 25% validation set. In order to evaluate the performance of the

classification model, the scores such as precision, recall and f-1 (Goutte and Gaussier

(2005)) are used. The evaluation scores (Shung (2018)) are described as:
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• Precision: This is a way of determining how good precise the model is in

predicting the actual positive values. It is a good percentage measure when the

cost of false positive is high.

precision =
TruePositive

TruePositive+ FalsePositive

• Recall: It determines the percentage of actual postive values that the model

is able to capture through labeling as true positive. This applies best to the

model which has high cost associated with the false negatives.

recall =
TruePositive

TruePositive+ FalseNegative

• F-1: This is the harmonic mean of precision and recall. It’s useful in seeking

a balance between both the above metrics. Since in our case we do not have

an even number of falls and recoveries, we will be relying on this metric for

evaluation of our model.

f1 = 2× precision ∗ recall
precision+ recall

The data obtained from the above classification analysis is shown in table 2.7 and 2.9

Once the correlation and prediction accuracy is performed, the individual body parts

with the highest correlation to the fall parameters are determined. These individual

body parts are then further analyzed using the angular displacement and angular

velocity time series data for individual trials.

Time Series Analysis: For the purpose of this thesis, the time series data of

both angular displacement and angular velocity are obtained from the trials of 11

subjects. In the overall dataset that was processed for the thesis there were 28 fall

trials and 29 recovery trials. The subjects which had approximately equal falls and
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recoveries in their trails were selected for this analysis. The data was first categorized

into falls and recoveries for individual subjects based on the fall parameter. The time

series plots were sliced based on the treadmill start indices and step stop indices that

were determined from event data file that was obtained for every trial. This was done

in order to locate the time series for an individual gait cycle. The individual gait

cycles for all the trials were then extracted and were fitted using smoothing spline

function in MATLAB software. All the gait cycles were interpolated to 10000 samples

to achieve a uniformity in the dimensions. The average of the time series were then

calculated for the individual subjects and then for all the subjects together based on

fall and recovery categories. A confidence interval of 95% was obtained around the

mean to determine the accuracy of the overall data. The average of the overall time

series data is representative of the angular displacement and angular velocity of a

typical fall and recovery for each of the correlated individual body parts. The table

2.3 describes the various time series variables that were used in the final analysis.

2.3 Results and Discussion

Results From Correlation Analysis The results from the correlation between

the 3 different categories with the fall parameter are observed in this section. Since

the fall parameter is 1 for a fall trial and 0 for a recovery trial, the coefficients with a

higher positive value would mean the higher the value of the feature would contribute

to more falls in subjects. The coefficients with higher negative value would mean the

higher the value of the feature would contribute to more recoveries in subjects. In

the table 2.4 we see the correlation between the overall kinematic parameters with

falls. The reaction time parameter shows a higher positive correlation of 0.33 to

fall which suggests that subjects with faster (smaller) reaction time will most likely

recover from the perturbation. The Step Time parameter is the time of the stepping
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leg in the air during a step and it has a negative correlation of -0.42 to fall which

suggests that subjects who took a longer time from step start to step stop are more

likely to recover. The Step Length parameter also has a negative correlation of -0.37

with the fall parameter and that is consistent with the step time, since it’s highly

probable that subjects who were able to keep their stepping leg in the air were able

to take a longer step. In the paper by Nevisipour and Honeycutt (2020) it’s shown

that a longer step length leads to a reduction in trunk velocity, which suggests that

the subject was able to arrest their fall by increasing the base of support. This also

suggests that while the stepping leg was in the air, the base leg was able to provide

sufficient stability which is crucial since the base leg needs to support the weight of

the whole body momentarily while the stepping leg is in the air.

Table 2.4: Correlation Between Overall Kinematic Parameters With Falls

Reaction

Time

Step

Time

Step

Length

Step

width

Change of

step width

Pre-Step

width

Fall 0.33 -0.42 -0.37 0.13 0.045 0.13

In the table 2.5 and 2.6 we observe the positive and the negative correlation be-

tween the kinematics of the individual body parts with the fall parameter. In order to

reduce the number of features for the time series observation, we take the body parts

which has a high correlation with fall and whose angular data can be conveniently

calculated using sensors attached to the body. In the positive correlation table 2.5

we see that the shank angle at step stop has the highest correlation (0.65) with fall.

The subsequent correlations shows that the Foot angle (0.60), Trunk velocity (0.55),

Hip velocity (0.52) and Knee angle (0.47) also have a high correlation with the fall
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parameter. It suggests that a higher value of these parameters increases the chances

of falls in the subjects. We observe the time series data of the above body parts to

see if there is a way of predicting the fall before it occurs. In the negative correlation

table 2.6, we observe that the the anterior posterior distance of the Center of Mass

Base of Support(CMBOS) at Step Stop has the highest negative correlation (-0.60)

with the fall parameter which is consistent with the fact the step length also had a

higher negative correlation with the fall parameter. The Margin of Stability (MOS) is

the dynamic stability of the body measure which is positive if its stable and negative

if its unstable. It also higher negative correlation (-0.48) with the fall parameter since

a stable margin would have a higher positive which leads to a recovery. In this thesis,

we use the body parts corresponding to the positive correlation for our time-series

analysis since it will be more convenient to attach sensors to them and obtain the

required angular displacement or velocity data.

Table 2.5: Positive Correlation Between Kinematic Parameters of Individual Body

Parts With Falls

Shank Angle

at Step Stop

Foot Angle

at Step Stop

Trunk velocity

at Step Stop

Hip velocity

at Step Stop

Knee Angle

at Step Stop

Fall 0.650555 0.602187 0.545221 0.522828 0.470711

Results from Classification Analysis The results from the classification model

- logistics regression is observed in this section. In the table 2.7 we see the report

of the classification using the overall kinematic parameters. Here we observe that

the precision value (0.79 and 0.71) is lower which suggests that there are lot of false

positive, (i.e. its classified as a fall when it was actually a recovery). The recall value
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Table 2.6: Negative Correlation Between Kinematic Parameters of Individual Body

Parts With Falls

CMBOSx

Step Stop

MOS

Step Start

CMBOSx

Step Start

MOS velocity

Step Start

CMBOSz velocity

Step Stop

Fall -0.604765 -0.484238 -0.466704 -0.462899 -0.462325

is high for recovery class (0.96) which suggests that its able distinguish when its a

Recovery, but has a low recovery value with the fall class which suggests that it fails

to find the false negatives during fall. The table 2.9 reports the classification scores

Table 2.7: Classification Report Using Overall Kinematic Parameters

Classes Precision Recall F-1

Recovery 0.79 0.96 0.87

Fall 0.71 0.29 0.42

using the Individual Body Parts Kinematics. We observe that both the Precision

is high for both fall and recovery (0.96 and 0.88) which suggests that the model is

successful in its prediction for majority of the time using only these features. It is

able to clearly detect the false positives for both fall and recovery. The recall is

high for both fall and recovery (0.96 and 0.88) as well which suggests that the model

is successfully distinguishes between the false negatives. The overall high F-1 score

for both falls and recoveries suggests that these parameters are useful in separating

the data from falls and recoveries. In order to reduce the number of features for

our time series analysis, we observe the coefficients of the final logistic regression
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hypothesis function. We observe only those body parts which had a high correlation

with the fall parameter in the correlation analysis in table 2.8. The mean of the

coefficients from all the 57 parameters was -0.037 and the median of the coefficients

from all the 57 parameters was 0.0215. Here, we observe that the stepping ankle

flexion angle (1.080) during Step Start (TO - Toe Off) is significant higher than the

mean coefficients. The stepping shank flexion angle during Step Start (TO - Toe

Off) and Step Stop (HS - Heel Strike) are also quite high (0.996 and 0.908). The

knee flexion angle and the hip flexion velocity are also significantly high (0.840 and

0.633). These coefficients suggests that among the original 57 parameters, the above

parameters have a stronger significance in determining whether a person would fall or

recover during the perturbation. We would utilize these parameters for the time series

analysis. The trunk flexion velocity had a high correlation coefficient, but a relatively

moderate classification coefficient, however we still use the trunk flexion velocity as

a parameter for the time series analysis. The foot flexion has a lower classification

coefficient than the rest of the parameters and hence it is ignored in the time series

analysis.

Results from Time Series Analysis In this section we observe the results of

the time series data for determining the whether the subject has fallen or recovered.

The above analysis using correlation and classification helped in narrowing down the

parameters for the time series analysis. We ignore the overall kinematic parameters

since it had a low classification score. We observe the individual body part kinematic

parameter for this analysis since it has an associated angular displacement and veloc-

ity which can be then measured using sensors on a device. Out of the 57 parameters

that we analyzed, we look into stepping ankle flexion angle, stepping shank

flexion angle, knee flexion angle, hip flexion velocity and trunk flexion ve-

locity parameters as they had a high correlation and logistic regression coefficient

42



Table 2.8: Logistic Regression Coefficients for the Individual Body Parts Kinematic

Parameters

Parameters Coefficients

SteppingankleflexTO 1.08011386774

SteppingshankflexTO 0.99606009557

SteppingshankflexHS 0.90861648

SteppingkneeflexHS 0.84030523282464

SteppinghipflexvelHS 0.633115093465

trunkflexvelHS 0.30804390224

SteppingfootflexHS 0.081916362

Table 2.9: Classification Report Using Individual Body Parts Kinematics

Classes Precision Recall F-1

Recovery 0.96 0.96 0.96

Fall 0.88 0.88 0.88

during the above analysis.

Individual trials of a single subject: A typical ankle flexion time series data for

a single trial is shown in figure 2.2. The time series data contains the events such as

treadmill start, step start and step stop highlighted in red, green and purple vertical

lines. It’s observed that there is change in the angular displacement at each of the

above events. The amount of changes and the corresponding time would help in de-

termining the relevant variables for the time series analysis. A typical shank flexion
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Figure 2.2: Ankle Angle of a Single Subject for a Single Trial

time series data for a single trial is shown in figure 2.3. Here also we observe that

there is change in angular displacement at each of the trial events like treadmill start,

step start and step stop. A typical knee flexion time series data for a single trial is

Figure 2.3: Shank Angle of a Single Subject for a Single Trial

shown in figure 2.4. Here also we observe that there is change in angular displace-

ment at each of the trial events like treadmill start, step start and step stop. The
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Figure 2.4: Knee Angle of a Single Subject for a Single Trial

velocity plots for the individual trials for a particular subject is not displayed since

event times would get lost after the differentiation is performed on the displacement.

Mean plots of fall and recovery for a single subject In this section, we ob-

serve the average time series plot for a single subject. The y-axis denotes the angular

displacement/velocity and the x-axis denotes % gait cycle. The % gait cycle would

be a measure of the time and would be used interchangeably in the discussion. The

graphs for both the fall and recoveries are plotted on the same graph (blue for recover

and red for fall) to show the difference in the characteristics of the two plots. In

figure 2.5 we observe the average for the angular displacement of the ankle. Here it

can be observed that the during a fall event the maximum angle is lower than the

maximum angle of the recovery event. The time it takes to reach the maximum is

faster for recovery than for fall trials. In figure 2.6 we observe the average for the

angular displacement of the shank. Here it can be observed that the maximum of

the angle is reached much quicker for recovery than for fall. The minimum of the

angle is also reached much quicker for recovery than for fall. In figure 2.7 we observe

the average for the angular displacement of the knee. Here it can be observed that
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Figure 2.5: Mean Ankle Angle of a Single Subject

Figure 2.6: Mean Shank Angle of a Single Subject

the maximum of the angle is reached much quicker for recovery than for fall. The

minimum of the angle is also reached much quicker for recovery than for fall. The

minimum of the angle is also much higher for recovery than for fall. In figure 2.8 we

observe the average for the angular velocity of the hip. Here also, it can be observed

that the maximum of the velocity is reached much quicker for recovery than for fall.

The minimum of the velocity is also reached much quicker for recovery than for fall.
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Figure 2.7: Mean Knee Angle of a Single Subject

The minimum of the angle is also much higher for recovery than for fall. In figure

Figure 2.8: Mean Hip Velocity of a Single Subject

2.9 we observe the average for the angular velocity of the trunk. Here also, it can be

observed that the maximum velocity is reached much quicker for recovery than for

fall. The max velocity is also higher for recovery than for fall. The minimum of the

velocity is also reached much quicker for recovery than for fall. The minimum of the
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angle is also much higher for recovery than for fall.

Mean plots of fall and recovery for all the subjects In this section we observe

Figure 2.9: Mean Trunk Velocity of a Single Subject

the time series plots averaged for all the subjects and categorized into fall and recov-

ery. In these plots we also display the 95% confidence intervals around the mean plot.

The y-axis denotes the angular displacement/velocity and the x-axis denotes the %

gait cycle. Here too the % gait cycle is considered a measure of time and will be used

interchangeably in the discussion. In figure 2.10 we observe the average ankle angle

plots taken for all the subjects. The maximum angle value is higher for recovery than

fall in this overall mean plots. It suggests that the subject would more likely recover

if their highest ankle angular displacement is above a certain threshold. The ankle

angular displacement corresponds to the plantar flexion angle during push off. In

figure 2.11 we observe the average shank angle plots taken for all the subjects. As

observed with the mean plots of individual subjects, The maximum angle is reached

faster for recovery than for fall. The maximum angle value is also higher for recovery

than fall in this overall mean plots. As with the individual mean plots the minimum

of the angle is much higher for recovery than fall. From the observations, it suggests
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Figure 2.10: Mean Ankle Angle of All Subjects

that the subject would more likely recover if they are able to reach their highest shank

angular displacement faster. In figure 2.12 we observe the average knee angle plots

Figure 2.11: Mean Shank Angle of All Subjects

taken for all the subjects. As observed with the mean plots of individual subjects, The

maximum angle is reached faster for recovery than for fall. The maximum angle value

is also higher for recovery than fall in this overall mean plots. As with the individual
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mean plots the minimum of the angle is much higher for recovery than fall. From the

observations, it suggests that the subject would more likely recover if they are able

to reach their highest knee angular displacement faster. In figure 2.13 we observe the

Figure 2.12: Mean Knee Angle of All Subjects

average hip velocity plots taken for all the subjects. As observed with the mean plots

of individual subjects, the maximum velocity value is higher for recovery than fall in

this overall mean plots. As with the individual mean plots the minimum of the angle

is much higher for recovery than fall. From the observations, it suggests that the

subject would more likely recover if they are able to reach a certain velocity in their

stepping hip. In figure 2.14 we observe the average trunk velocity plots taken for all

the subjects. As observed with the mean plots of individual subjects, the maximum

velocity value is higher for recovery than fall in this overall mean plots. As with the

individual mean plots the minimum of the angle is much higher for recovery than

fall. The trunk velocity falls of to the minimum after the maximum is reached much

quicker for recovery than fall. From the observations, it suggests that the subject

would more likely recover if they are able to quickly reduce their trunk velocity.

50



Figure 2.13: Mean Hip Velocity of All Subjects

Figure 2.14: Mean Trunk Velocity of All Subjects

The variables obtained from table 2.3 for the shank and trunk is given in the

table 2.10 and 2.11. It can be observed from the shank statistics that the average

Max Angle is greater for falls than recovery, the average Max Angle time is slower

for fall and recovery. It’s significant that the subjects is likely to recover if they

reach max peak before 50% of the gait cycle. The Maximum and Minimum Velocity,

Rise velocity time and Fall velocity time shows that the subjects who are able to
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reach higher velocity in shank movement can recover from the perturbations better.

It can be observed from the trunk statistics that the Maximum Angle is higher for

falls than recovery, which suggests that if the trunk gets deflected too much, then

subject is more likely to fall. The Maximum and Minimum Velocity are higher for

falls than recoveries which suggests that the faster the trunk is controlled during the

perturbation, the better the subject can recover. The Rise velocity time is higher for

fall than for recovery which suggests that the subjects whose trunk velocity increases

rapidly (less control of trunk) will more like fall during a perturbation.

Table 2.10: Statistics of the Time Series Data for Shank

Variables Mean Fall Mean Recovery

Max Angle (θ) 35.272 30.288

Max Angle Time (%gait) 62.857 42.86

Max Velocity (θ/sec) 1.104 2.249

Max Velocity Time 39.192 42.09

Min Velocity (θ/sec) 2.982 4.696

Min Velocity Time (%gait) 66.981 64.39

Rise velocity time (%gait) 39.182 28.92

Fall velocity time (%gait) 27.789 22.30

2.3.1 Discussion

The time-series analysis of the individual subjects and the average plots of all

the subjects highlights some important features of the parameter we extracted from

the correlation and classification analysis. The hypothesis as previously stated is to
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Table 2.11: Statistics of the Time Series Data for Trunk

Variables Mean Fall Mean Recovery

Max Angle (θ) 57.599 50.948

Max Angle Time (%gait) 91.88 79.50

Max Velocity (θ/sec) 1.411 1.608

Max Velocity Time 48.92 39.63

Min Velocity (θ/sec) 1.459 2.061

Min Velocity Time (%gait) 97.72 94.45

Rise velocity time (%gait) 36.41 28.27

Fall velocity time (%gait) 48.81 54.82

determine the kinematic parameters that firstly, can be measured using IMU sensors

placed on the body similar to designs mentioned in chapter 1 and secondly, these

parameters will be sufficient to distinguish between a fall and recovery.

As observed from the results above, the ankle angular displacement is inconclusive

in determining whether the person would fall or recover since in the individual plots

the time to reach max peak is faster in recovery than fall, but the same is not reflected

in the average of the overall ankle angle plots. The knee angular displacement

for the overall average plots suggests that the maximum angle for recovery is higher

than the maximum angle for a fall but the same is not reflected in the individual av-

erages and hence this feature will not be reliable in distinguishing between a fall and

recovery. The hip velocity is a good measure since for both the individual averages

and the overall average it reaches its max peak faster for recovery than fall. However,

for the thesis we will be ignoring the hip velocity since the objective of the analysis is
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to find out the minimum parameters and we would require two sensors to distinguish

between the stepping hip and the base hip. The shank angular displacement and

trunk angular velocity are the measures which significantly determines whether a

subject has fallen or recovered. In both the measures, the individual averages and the

overall averages of the rise time to the maximum peak were much faster for recov-

eries than for falls. The observations suggest that the subjects who can move their

shank faster and reach a certain maximum angular displacement are able to reduce

the chances of falling. The results also suggest that the subjects who can reduce the

trunk velocity faster are able to recover.

2.4 Conclusions

In chapter 2, the analysis of the treadmill perturbation data is shown. We observe

the three different categories of the data (i.e. overall kinematics, kinematics of individ-

ual body parts, and kinetics). Techniques such as correlation and logistics regressions

were used to determine the parameters which will be most helpful in detecting the

falls when a subject encounters perturbations like ones provided for the data collec-

tion. The parameters like stepping ankle flexion angle, stepping shank flexion angle,

hip flexion velocity, and trunk flexion velocity were found to be the most significant

parameters for distinguishing from falls and recovery. The time-series data of these

parameters were analyzed. It was found from the time-series data that the subjects

who for particular trials moved their shank faster and reached a certain maximum in

the shank angular displacement were able to recover from the perturbations. Its also

observed that the subjects who were able to reduce the trunk velocity faster were also

able to recover in those trials.
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2.4.1 Summary of the Results From Chapter 1 and 2

In chapter 1, the design of an unobtrusive, cost-effective easy to wear Active

Ankle-Foot Orthosis which uses a pneumatic double active cylinder to supplement

the ankle in both plantar flexion and dorsiflexion. The device described is capable

of housing a powered remote air supply and displaces the majority of the heavier

components to the torso of the users keeping the additional weight of the ankle lighter

than comparative designs. The results from the preliminary tests conducted showed

that the device was able to increase the anterior-posterior ground reaction force

of the 4 subjects. To achieve this result a custom control algorithm utilizing timing

and angle parameters was utilized to determine the various phases of the gait cycle.

The results from chapter 2 suggest that the shank angular displacement and

the trunk angular velocity are parameters which if measured using wearable IMU

sensors can potentially detect whether a user is going to fall early enough for the device

to actuate and prevent the fall. These two parameters are easy to measure and can

integrate well with the design of the AAFO mentioned in chapter 1. In chapter 1,

the IMU sensors were already used on the shank to determine the difference of the

angular displacement between the two legs and was a control parameter to actuate

the pneumatic cylinders. The results from chapter 2 suggest that instead of using

the difference of angular displacement, a threshold of the angular displacement of a

particular leg can be utilized. It is seen from the results that when the maximum peak

of the angular displacement is reached after 50% of the gait cycle, then the person

is most likely to fall and actuation of the device is required to provide a sufficient

ground reaction force (push-off) that can aid the recovery of the person. The timing

parameters t1 and t2 as mentioned in the control algorithm 1 can be used to determine

the % gait cycle of the step. Additionally, an IMU sensor can be placed on the trunk
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to determine whether the actuation of the second leg is required or not. The above

results in chapter 2 suggest that the velocity of the trunk needs to be reduced quickly

enough to facilitate recovery. The threshold for the angular velocity of the trunk can

be incorporated in the control algorithm 1 mention in chapter 1 to determine if the

additional actuation is required or not.

2.4.2 Future Directions

Future studies can utilize the results from both chapters 1 and 2 to improve the

design and generate more decisive control parameters for actuation. Although, the

preliminary test conducted in chapter 1 showed the improvement of ground reaction

force on the subjects, more thorough and detailed testing of the device is necessary for

better reliability in a real-world setting. A more detailed clinical study of the device

in the future would include testing the device on more number of subjects. A more

detailed analysis can be performed on the ground reaction force results to state with a

statistical level of certainty that the device is capable of increasing propulsion during

push-off. The current design aims to reduce the weight on the ankle by attaching

the majority of the heavier components on the torso of the users. However, the

weight can be further reduced by using plastic-based or carbon fiber-based double-

acting cylinders instead of metal ones. Even lighter materials can be used for 3D

printing the custom ankle brace. In future testing of the device, a metabolic cost

study can be performed to determine whether the device saves the overall metabolic

cost of walking. The results from chapter 2 can be utilized in the control algorithm in

chapter 1 to test if there is an improvement of device performance by incorporating

the timing and angle parameters from the data analysis. Chapter 2 shortlists the

kinematic parameters using correlation analysis and logistic regression. In the future,

additional statistical analysis like Linear Discriminant Analysis (LDA) or Principal
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Component Analysis (PCA) can be performed to determine these parameters with a

higher degree of certainty. Modern statistical prediction models like Recurrent Neural

Networks (RNNs) or Long-Short Term Memory (LSTM) can be utilized in the future

to utilize the time series data for a better prediction of falls and recoveries.
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Goutte, C. and É. Gaussier, “A probabilistic interpretation of precision, recall and
f-score, with implication for evaluation”, in “ECIR”, (2005).

Hatem, S. M., G. Saussez, M. D. Faille, V. Prist, X. Zhang, D. Dispa
and Y. Bleyenheuft, “Rehabilitation of motor function after stroke: a
multiple systematic review focused on techniques to stimulate upper ex-
tremity recovery”, Frontiers in Human Neuroscience 10, 2016, URL
https://doaj.org/article/21f0872ab10b496b99166baffd640dcd (2016).

Herndon, J. G., C. G. Helmick, R. W. Sattin, J. A. Stevens, C. Devito and P. A.
Wingo, “Chronic medical conditions and risk of fall injury events at home in older
adults”, Journal of the American Geriatrics Society 45, 6, 739–743 (1997).

Honeycutt, C. F., M. Nevisipour and M. D. Grabiner, “Characteristics and adaptive
strategies linked with falls in stroke survivors from analysis of laboratory-induced
falls”, Journal of Biomechanics 49, 14, 3313–3319 (2016).

Hwang, S., J. Kim, J. Yi, K. Tae, K. Ryu and Y. Kim, “Development of an active ankle
foot orthosis for the prevention of foot drop and toe drag”, in “2006 International
Conference on Biomedical and Pharmaceutical Engineering”, pp. 418–423 (2006).

Jensen, J. L., L. A. Brown and M. H. Woollacott, “Compen-
satory stepping: The biomechanics of a preferred response among
older adults”, Experimental Aging Research 27, 4, 361–376, URL
http://www.tandfonline.com/doi/abs/10.1080/03610730109342354 (2001).

Jørgensen, L., K., T. Engstad, K. and B. Jacobsen, K., “Higher incidence of falls
in long-term stroke survivors than in population controls: Depressive symptoms
predict falls after stroke”, Stroke: Journal of the American Heart Association 33,
2, 542–547 (2002).

59



Kadaba, M. P., H. K. Ramakrishnan and M. E. Wootten, “Measurement of lower
extremity kinematics during level walking”, J. Orthop. Res. 8, 3, 383–392 (1990).

Kawamura, S., T. Yamamoto, D. Ishida, T. Ogata, Y. Nakayama, O. Tabata
and S. Sugiyama, “Development of passive elements with variable mechanical
impedance for wearable robots”, vol. 1, pp. 248–253 (2002).

Kluding, P., M., K. Dunning, W., M. O’dell, S., S. Wu, S., J. Ginosian, S., J. Feld, S.
and K. Mcbride, S., “Foot drop stimulation versus ankle foot orthosis after stroke:
30-week outcomes”, Stroke 44, 6, 1660–1669 (2013).

Li, Y., K. C. Ho and M. Popescu, “A microphone array system for automatic fall
detection”, IEEE Transactions on Biomedical Engineering 59, 5, 1291–1301 (2012).

Light, J., S. Cha and M. Chowdhury, “Optimizing pressure sensor array data for a
smart-shoe fall monitoring system”, in “2015 IEEE SENSORS”, pp. 1–4 (2015).

McCullagh, P., Generalized linear models, Monographs on statistics and applied prob-
ability ; 37 (Chapman and Hall, 1989), 2nd ed.. edn.

Mcilroy, W. and B. Maki, “Task constraints on foot movement and the incidence of
compensatory stepping following perturbation of upright stance”, Brain Research
616, 1-2, 30–38 (1993).

Mukaka, M. M., “Statistics corner: A guide to appropriate use of cor-
relation coefficient in medical research.”, Malawi medical journal :
the journal of Medical Association of Malawi 24, 3, 69–71, URL
http://search.proquest.com/docview/1348500849/ (2012).

Mukhopadhyay, S. C., “Wearable sensors for human activity monitoring: A review”,
IEEE Sensors Journal 15, 3, 1321–1330 (2015).

Nevisipour, M., Evaluating the Effects of Ankle-Foot-Orthoses, Functional Electrical
Stimulators, and Trip-specific Training on Fall Outcomes in Individuals with Stroke
(2019).

Nevisipour, M. and C. F. Honeycutt, “The impact of ankle-foot-orthosis (afo) use on
the compensatory stepping response required to avoid a fall during trip-like per-
turbations in young adults: Implications for afo prescription and design”, Journal
of Biomechanics 103, 109703 (2020).

Owings, T. M., M. J. Pavol and M. D. Grabiner, “Mechanisms of failed recovery
following postural perturbations on a motorized treadmill mimic those associated
with an actual forward trip”, Clinical Biomechanics 16, 9, 813–819 (2001).

Palmer, M. L., “Sagittal plane characterization of normal human ankle function across
a range of walking gait speeds”, (2002).

Pouwels, S., A. Lalmohamed, B. Leufkens, A. De Boer, C. Cooper, T. Van Staa and
F. De Vries, “Risk of hip/femur fracture after stroke: A population-based case-
control study”, Stroke 40, 10, 3281–3285 (2009).

60



Qi, H., G. M. Bone and Y. Zhang, “Position control of pneumatic actuators using
three-mode discrete-valued model predictive control”, Actuators 8, 3, 56, URL
https://doaj.org/article/55049024713e4eb3a1aa5ab86f8d51ff (2019).

Quintero, D., D. J. Lambert, D. J. Villarreal and R. D. Gregg, “Real-time continuous
gait phase and speed estimation from a single sensor”, in “2017 IEEE Conference
on Control Technology and Applications (CCTA)”, vol. 2017, pp. 847–852 (IEEE,
2017).

Ramnemark, A., L. Nyberg, B. Borssén, T. Olsson and Y. Gustafson, “Fractures after
stroke”, Osteoporosis International 8, 1, 92–95 (1998).

Shany, T., S. J. Redmond, M. R. Narayanan and N. H. Lovell, “Sensors-based wear-
able systems for monitoring of human movement and falls”, IEEE Sensors Journal
12, 3, 658–670 (2012).

Shung, K. P., “Accuracy, precision, recall or f1?”, URL
https://towardsdatascience.com/accuracy-precision-recall-or-f1-
331fb37c5cb9 (2018).

Simons, C. D., E. H. van Asseldonk, H. v. D. Kooij, A. C. Geurts and J. H. Bu-
urke, “Ankle-foot orthoses in stroke: Effects on functional balance, weight-bearing
asymmetry and the contribution of each lower limb to balance control”, Clinical
Biomechanics 24, 9, 769–775 (2009).

Sixsmith, A. and N. Johnson, “A smart sensor to detect the falls of the elderly”,
IEEE Pervasive Computing 3, 2, 42–47 (2004).

Taborri, J., E. Palermo, S. Rossi and P. Cappa, “Gait partition-
ing methods: A systematic review”, Sensors 16, 1, 66, URL
http://search.proquest.com/docview/1764191779/ (2016).

Wade, D. T., V. A. Wood and R. L. Hewer, “Recovery after stroke–the first 3
months.”, Journal of Neurology, Neurosurgery & Psychiatry 48, 1, 7–13, URL
http://jnnp.bmj.com/content/48/1/7.full.pdf (1985).
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APPENDIX A

ARDUINO CODE FOR DEVICE OPERATION
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The following code was written in Arduino IDE and was used for the device op-
eration.

#include <Wire . h>
#include <Adaf ru i t Senso r . h>
#include <Adafruit BNO055 . h>
#include <u t i l i t y /imumaths . h>
#include <EEPROM. h>
#include <ESP8266WiFi . h>
#include<WiFiClient . h>
#include<ESP8266WebServer . h>

u i n t 1 6 t BNO055 SAMPLERATE DELAY MS = 150 ;
int x = 1 ;
double o f f s e t 1 ;
double o f f s e t 2 ;
double o f f s e t 3 ;
#define TCAADDR 0x70

// Declare the sensor v a r i a b l e s
Adafruit BNO055 bno1 = Adafruit BNO055 (55) ;
Adafruit BNO055 bno2 = Adafruit BNO055 (56) ;
Adafruit BNO055 bno3 = Adafruit BNO055 (57) ;
// Declare Server se tup
const char∗ s s i d = ”RayWifiDaq” ;
const char∗ password = ”sambarta4444” ;
WiFiServer s e r v e r (80) ;

/∗ S e l e c t the M u l t i p l e x e r output ∗/
void t c a s e l e c t ( u i n t 8 t i ) {

i f ( i > 7) return ;

Wire . beg inTransmiss ion (TCAADDR) ;
Wire . wr i t e (1 << i ) ;
Wire . endTransmission ( ) ;

}

void setup ( void )
{

// Sensor Setup
S e r i a l . begin (9600) ;

S e r i a l . p r i n t l n ( ” Or i enta t i on Sensor Test ” ) ; S e r i a l . p r i n t l n ( ”
” ) ;

/∗ I n i t i a l i s e the 1 s t sensor ∗/
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t c a s e l e c t (2 ) ; // s e l e c t por t 2
bno1 . begin ( ) ;
/∗ I n i t i a l i s e the 1 s t sensor ∗/

t c a s e l e c t (3 ) ; // s e l e c t por t 3
bno2 . begin ( ) ;
/∗ I n i t i a l i s e the 1 s t sensor ∗/

t c a s e l e c t (4 ) ; // s e l e c t por t 4
bno3 . begin ( ) ;
t c a s e l e c t (2 ) ;
i n i t i a l i z e 1 s t S e n s o r ( bno1 ) ;
de lay (500) ;
t c a s e l e c t (3 ) ;
i n i t i a l i z e 2 n d S e n s o r ( bno2 ) ;
de lay (500) ;
t c a s e l e c t (4 ) ;
i n i t i a l i z e 3 r d S e n s o r ( bno3 ) ;
de lay (500) ;

// C a l i b r a t e 1 s t Sensor
t c a s e l e c t (2 ) ;
c a l i b r a t e 1 s t S e n s o r ( bno1 ) ;
S e r i a l . p r i n t l n ( ” Sensor 1 c a l i b r a t e d ” ) ;
// C a l i b r a t e 2nd Sensor
t c a s e l e c t (3 ) ;
c a l i b ra t e2ndSenso r ( bno2 ) ;
// Set c r y s t a l use f o r both sensors
S e r i a l . p r i n t l n ( ” Sensor 2 c a l i b r a t e d ” ) ;

bno1 . setExtCrysta lUse ( true ) ;
bno2 . setExtCrysta lUse ( true ) ;
bno3 . setExtCrysta lUse ( true ) ;

// Wifi Setup
S e r i a l . p r i n t f ( ” Connecting to %s ” , s s i d ) ;
WiFi . begin ( s s id , password ) ;
while (WiFi . s t a t u s ( ) != WL CONNECTED)
{

delay (500) ;
S e r i a l . p r i n t ( ” . ” ) ;

}
S e r i a l . p r i n t l n ( ” connected ” ) ;
s e r v e r . begin ( ) ;
S e r i a l . p r i n t l n ( ”IP address ” ) ;
S e r i a l . p r i n t (WiFi . l o c a l I P ( ) ) ;
/∗ Set pin mode f o r output ∗/
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pinMode (12 , OUTPUT) ;
pinMode (14 , OUTPUT) ;
pinMode (13 , OUTPUT) ;
pinMode (15 , OUTPUT) ;
pinMode (0 , OUTPUT) ;

}
void loop ( void )
{

// c o u n t e r L e f t = 0 ;
// counterRigh t = 0;
// i n t Lcounter ;
// i n t Rcounter ;
int l e g = 0 ;
int counter = 0 ;
WiFiClient c l i e n t = s e r v e r . a v a i l a b l e ( ) ;
i f ( c l i e n t ) {

S e r i a l . p r i n t l n ( ”\ nCl i ent Connected\n” ) ;
// c l i e n t . p r i n t l n (” Connected to f e a t h e r BNO055”) ;
/∗Check c l i e n t connect ion ∗/
while ( c l i e n t . connected ( ) ) {

// S e r i a l . p r i n t l n (” C l i e n t in w h i l e ”) ;// f o r debug only
i f ( c l i e n t . a v a i l a b l e ( ) ) {

/∗Take input from user ∗/
char inp = c l i e n t . read ( ) ;
/∗ Setup c a l i b r a t i o n f o r sensors ∗/
/∗Read sensor v a l u e ∗/
// S e r i a l . p r i n t l n (” Reading sensor ”) ; // f o r debug only
t c a s e l e c t (2 ) ;
imu : : Vector<3> e u l e r 1 = bno1 . getVector (

Adafruit BNO055 : :VECTOR EULER) ;
imu : : Vector<3> angVel1 = bno1 . getVector (

Adafruit BNO055 : :VECTOR GYROSCOPE) ;
t c a s e l e c t (3 ) ;
imu : : Vector<3> e u l e r 2 = bno2 . getVector (

Adafruit BNO055 : :VECTOR EULER) ;
imu : : Vector<3> angVel2 = bno2 . getVector (

Adafruit BNO055 : :VECTOR GYROSCOPE) ;
t c a s e l e c t (4 ) ;
imu : : Vector<3> e u l e r 3 = bno3 . getVector (

Adafruit BNO055 : :VECTOR EULER) ;
imu : : Vector<3> angVel3 = bno3 . getVector (

Adafruit BNO055 : :VECTOR GYROSCOPE) ;
i f ( x == 1) {

o f f s e t 1 = 90 − e u l e r 1 . y ( ) ;
o f f s e t 2 = 90 − e u l e r 2 . y ( ) ;
o f f s e t 3 = 100 − e u l e r 3 . y ( ) ;
x = 2 ;
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}

/∗Write sensor v a l u e ∗/
St r ing msg = St r ing ( e u l e r 1 . y ( ) + o f f s e t 1 ) + ”\ t ” +

St r ing ( angVel1 . y ( ) ) + ”\ t ” + St r ing ( e u l e r 2 . y ( ) +
o f f s e t 2 ) + ”\ t ” + St r ing ( angVel2 . y ( ) ) + ”\ t ” +
St r ing ( e u l e r 3 . y ( ) + o f f s e t 3 ) + ”\ t ” + St r ing (
angVel3 . y ( ) ) ;

// S e r i a l . p r i n t l n (msg) ;
c l i e n t . p r i n t l n (msg) ;

// S e r i a l . p r i n t ( abs ( ( e u l e r 1 . y ( ) + o f f s e t 1 ) − ( e u l e r 2 . y
( ) + o f f s e t 2 ) ) ) ;

i f ( counter <= 0) {
i f ( abs ( ( e u l e r 1 . y ( ) + o f f s e t 1 ) − ( e u l e r 2 . y ( ) +

o f f s e t 2 ) ) >= 9 . 5 ) {
i f ( ( e u l e r 1 . y ( ) + o f f s e t 1 ) < ( e u l e r 2 . y ( ) +

o f f s e t 2 ) && l e g != 1) {
counter = 2 ;
l e g = 1 ;

// S e r i a l . p r i n t (” l e f t s t e p ”) ;
d i g i t a l W r i t e (13 , HIGH) ;
d i g i t a l W r i t e (15 , LOW) ;
d i g i t a l W r i t e (14 , LOW) ;
d i g i t a l W r i t e (12 , LOW) ;

} else i f ( ( e u l e r 1 . y ( ) + o f f s e t 1 ) > ( e u l e r 2 . y ( ) +
o f f s e t 2 ) && l e g != 2){

counter = 3 ;
l e g = 2 ;

// S e r i a l . p r i n t (” r i g h t s t e p ”) ;
d i g i t a l W r i t e (13 , LOW) ;
d i g i t a l W r i t e (15 , LOW) ;
d i g i t a l W r i t e (14 , HIGH) ;
d i g i t a l W r i t e (12 , LOW) ;

}
} else {

// S e r i a l . p r i n t (” s t i l l ”) ;
l e g = 0 ;
d i g i t a l W r i t e (13 , LOW) ;
d i g i t a l W r i t e (15 , LOW) ;
d i g i t a l W r i t e (14 , LOW) ;
d i g i t a l W r i t e (12 , LOW) ;

}

}
counter−−;
i f ( counter < 1) {
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i f ( l e g == 1) {
// S e r i a l . p r i n t (” l e f t re turn ”) ;

d i g i t a l W r i t e (13 , LOW) ;
d i g i t a l W r i t e (15 , HIGH) ;
d i g i t a l W r i t e (14 , LOW) ;
d i g i t a l W r i t e (12 , LOW) ;

} else i f ( l e g == 2){
// S e r i a l . p r i n t (” r i g h t re turn ”) ;

d i g i t a l W r i t e (13 , LOW) ;
d i g i t a l W r i t e (15 , LOW) ;
d i g i t a l W r i t e (14 , LOW) ;
d i g i t a l W r i t e (12 , HIGH) ;

}

}

delay (BNO055 SAMPLERATE DELAY MS) ;
}

}
}
// t c a s e l e c t (0) ;
// imu : : Vector<3> e u l e r 1 = bno1 . ge tVector ( Adafruit BNO055

: :VECTOR EULER) ;
// t c a s e l e c t (1) ;
// imu : : Vector<3> e u l e r 2 = bno2 . ge tVector ( Adafruit BNO055

: :VECTOR EULER) ;
// // S t r i n g msg = S t r i n g ( e u l e r 1 . x ( ) )+”\ t”+S t r i n g ( e u l e r 1 . y

( ) )+”\ t”+S t r i n g ( e u l e r 1 . z ( ) ) ;
// S t r i n g msg1 = S t r i n g ( S t r i n g ( e u l e r 1 . y ( ) ) ) ;
// S e r i a l . p r i n t l n (”\n 1 s t Sensor ”) ;
// S e r i a l . p r i n t l n ( msg1 ) ;
// // S t r i n g msg2 = S t r i n g ( e u l e r 2 . x ( ) )+”\ t”+S t r i n g ( e u l e r 2 . y

( ) )+”\ t”+S t r i n g ( e u l e r 2 . z ( ) ) ;
// S t r i n g msg2 = S t r i n g ( S t r i n g ( e u l e r 2 . y ( ) ) ) ;
// S e r i a l . p r i n t l n (”\n 2nd Sensor ”) ;
// S e r i a l . p r i n t l n ( msg2 ) ;
//
// d e l a y (BNO055 SAMPLERATE DELAY MS) ;

}

void i n i t i a l i z e 1 s t S e n s o r ( Adafruit BNO055 bno ) {
t c a s e l e c t (2 ) ;
i f ( ! bno . begin ( ) )
{

/∗ There was a problem d e t e c t i n g the BNO055 . . . check
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your connec t ions ∗/
S e r i a l . p r i n t ( ”Ooops , no BNO055 detec ted . . . Check your

wi r ing or I2C ADDR! ” ) ;
while (1 ) ;

} else {
S e r i a l . p r i n t l n ( ”#1 i s working ” ) ;

}
}
void i n i t i a l i z e 2 n d S e n s o r ( Adafruit BNO055 bno ) {

t c a s e l e c t (3 ) ;
i f ( ! bno . begin ( ) )
{

/∗ There was a problem d e t e c t i n g the BNO055 . . . check
your connec t ions ∗/

S e r i a l . p r i n t ( ”Ooops , no BNO055 detec ted . . . Check your
wi r ing or I2C ADDR! ” ) ;

while (1 ) ;
} else {

S e r i a l . p r i n t l n ( ”#2 i s working ” ) ;
}

}
void i n i t i a l i z e 3 r d S e n s o r ( Adafruit BNO055 bno ) {

t c a s e l e c t (4 ) ;
i f ( ! bno . begin ( ) )
{

/∗ There was a problem d e t e c t i n g the BNO055 . . . check
your connec t ions ∗/

S e r i a l . p r i n t ( ”Ooops , no BNO055 detec ted . . . Check your
wi r ing or I2C ADDR! ” ) ;

while (1 ) ;
} else {

S e r i a l . p r i n t l n ( ”#3 i s working ” ) ;
}

}

void c a l i b r a t e 1 s t S e n s o r ( Adafruit BNO055 bno ) {
S e r i a l . p r i n t l n ( ” Ca l i b ra t i ng senso r 1 \n” ) ;
a d a f r u i t b n o 0 5 5 o f f s e t s t ca l ibData1 ;
ca l ibData1 . a c c e l o f f s e t x = 4 ;
ca l ibData1 . a c c e l o f f s e t y = −207;
ca l ibData1 . a c c e l o f f s e t z = 31 ;
ca l ibData1 . g y r o o f f s e t x = −1;
ca l ibData1 . g y r o o f f s e t y = −1;
ca l ibData1 . g y r o o f f s e t z = −1;
ca l ibData1 . mag o f f s e t x = −203;
ca l ibData1 . mag o f f s e t y = −162;
ca l ibData1 . m a g o f f s e t z = −160;
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ca l ibData1 . a c c e l r a d i u s = 1000 ;
ca l ibData1 . mag radius = 606 ;
bno . s e t S e n s o r O f f s e t s ( ca l ibData1 ) ;
S e r i a l . p r i n t l n ( ”\n Sensor 1 c a l i b r a t e d \n” ) ;

}

void ca l i b ra t e2ndSenso r ( Adafruit BNO055 bno ) {
S e r i a l . p r i n t l n ( ” Ca l i b ra t i ng senso r 1 \n” ) ;
a d a f r u i t b n o 0 5 5 o f f s e t s t ca l ibData1 ;
ca l ibData1 . a c c e l o f f s e t x = −10;
ca l ibData1 . a c c e l o f f s e t y = −86;
ca l ibData1 . a c c e l o f f s e t z = 12 ;
ca l ibData1 . g y r o o f f s e t x = −1;
ca l ibData1 . g y r o o f f s e t y = −2;
ca l ibData1 . g y r o o f f s e t z = −1;
ca l ibData1 . mag o f f s e t x = −318;
ca l ibData1 . mag o f f s e t y = 77 ;
ca l ibData1 . m a g o f f s e t z = −142;
ca l ibData1 . a c c e l r a d i u s = 1000 ;
ca l ibData1 . mag radius = 709 ;
bno . s e t S e n s o r O f f s e t s ( ca l ibData1 ) ;
S e r i a l . p r i n t l n ( ”\n Sensor 1 c a l i b r a t e d \n” ) ;

}

void checkCa l ib ra t i onSta tus ( Adafruit BNO055 bno , WiFiClient
c l i e n t ) {

i f ( ! bno . i s F u l l y C a l i b r a t e d ( ) ) {
c l i e n t . p r i n t l n ( ” sensor1 not f u l l y c a l i b r a t e d ” ) ;

} else {
c l i e n t . p r i n t l n ( ” sensor1 c a l i b r a t e d ” ) ;

}
}
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MATLAB CODE FOR DATA ANALYSIS
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The following code was written in MATLAB and was used for data analysis

%Code f o r a n a l y z i n g the Jo in t Angle Data
clc ;
clear a l l ;
close a l l ;
%% Extrac t and Read f i l e s
%d a t a d i r e c t o r y = u i g e t d i r ( ’ ’ , ’ S e l e c t Jo in t Angle Directory ’ )

;
%Get j o i n t ang l e
[ j o i n tAng l eF i l e , j o in tAng l eF i l ePath ] = uiget f i l e ({ ’ ∗ . tx t ’ } , ’

S e l e c t j o i n t ang le f i l e f o r a t r i a l ’ ) ;

[ eventF i l e , eventFi lePath ] = uiget f i l e ({ ’ ∗ . x l sx ’ ; ’ ∗ . x l s ’ } , ’
S e l e c t the e x c e l f i l e f o r read ing the data ’ ) ; %S e l e c t the
e x c e l f i l e from the f o l d e r

[ eventData , eventText ] = x l s r e ad ( f u l l f i l e ( eventFi lePath ,
ev en tF i l e ) ) ; %Read the e x c e l f i l e and save i t as a
v a r i a b l e in workspace

f 1 =fopen ( f u l l f i l e ( jo intAng leF i l ePath , j o i n t A n g l e F i l e ) ) ;
[ data , count ] = fscanf ( f1 , ’%f ’ , [ 6 7 , Inf ] ) ;
data = data ’ ;

%% Process f i l e s and headers f o r the e x t r a c t e d data

% Set the headers from the o r i g i n a l g e t j o i n t ang l e
p r o c e s s i n g f i l e

column headers = { ’ Rknee f l ex i on ’ , ’ Rknee adduction ’ , ’
Rknee exrotat ion ’ , ’ L k ne e f l e x i o n ’ , ’ Lknee adduction ’ , ’
Lknee exrotat ion ’ , . . .

’ Rshank f l ex ion ’ , ’ Rshank adduction ’ , ’
Rshank exrotat ion ’ , ’ L shank f l ex i on ’ , ’
Lshank adduction ’ , ’ Lshank exrotat ion ’ , . . .

’ R h i p f l e x i o n ’ , ’ Rhip adduction ’ , ’
Rh ip exrotat ion ’ , ’ L h i p f l e x i o n ’ , ’
Lhip adduct ion ’ , ’ Lh ip ex ro ta t i on ’ , . . .

’ p e l v i s f o r w a r d t i l t ’ , ’ p e l v i s r i g h t t i l t ’ , ’
p e l v i s r i g h t r o t a t i o n ’ , ’ t r u n k f l e x i o n ’ , ’
t r u n k r i g h t t i l t ’ , ’ t r u n k r i g h t r o t a t i o n ’ , . . .

’ h e a d f l e x i o n ’ , ’ h e a d r i g h t t i l t ’ , ’
h e a d r i g h t r o t a t i o n ’ , ’ n e c k f l e x i o n ’ , ’
n e c k r i g h t t i l t ’ , ’ n e c k r i g h t r o t a t i o n ’ , . . .

’ R a n k l e f l e x i o n ’ , ’ Rankle adduct ion ’ , ’
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Rank l e exro ta t i on ’ , ’ L a n k l e f l e x i o n ’ , ’
Lankle adduct ion ’ , ’ Lank l e ex ro ta t i on ’ , . . .

’ R f o o t f l e x i o n ’ , ’ Rfoot adduct ion ’ , ’
R foo t ex ro ta t i on ’ , ’ L f o o t f l e x i o n ’ , ’
L foot adduct ion ’ , ’ L f o o t e x r o t a t i o n ’ , . . .

’ R s h o u l d e r f l e x i o n ’ , ’ L s h o u l d e r f l e x i o n ’ , ’
Rshoulder abduct ion ’ , ’ Lshoulder abduct ion ’
, . . .

’ Re lbow f l ex ion ’ , ’ Le lbow f l ex i on ’ , . . .
’xbodyCM ’ , . . .
’ybodyCM ’ , . . .
’zbodyCM ’ , . . .
’ Rtoex ’ , ’ Rtoey ’ , ’ Rtoez ’ , ’ Ltoex ’ , ’ Ltoey ’ , ’

Ltoez ’ , ’ Rheelx ’ , ’ Rheely ’ , ’ Rheelz ’ , ’ Lheelx ’
, ’ Lheely ’ , ’ Lhee lz ’ , ’RAJCx ’ , ’RAJCz ’ , ’LAJCx ’
, ’LAJCz ’ } ;

%% Set f i l e names f o r p r o c e s s i n g
%f i r s t A n k l e = 1; % put manually from event f i l e
%f i n d the f i l e name a f t e r s t r i n g s p l i t s
mFileNameArr = s t r s p l i t ( j o i n tAng l eF i l e , ’ ’ ) ;
sizeMFileName = s ize ( mFileNameArr ) ;
%Remove . t x t from l a s t c e l l
i f sizeMFileName (2) == 6

tempString = s t r s p l i t ( mFileNameArr{6} , ’ . ’ ) ;
else

tempString = s t r s p l i t ( mFileNameArr{5} , ’ . ’ ) ;
end
%c r e a t e s t r i n g from Arr
i f sizeMFileName (2) == 6

mFileName = s t r c a t ( mFileNameArr{3} , ’ ’ , mFileNameArr{4} , ’
’ , mFileNameArr{5} , ’ ’ , tempString {1}) ;

else
mFileName = s t r c a t ( mFileNameArr{3} , ’ ’ , mFileNameArr{4} , ’

’ , tempString {1}) ;
end
%S p l i t the l i s t o f f i l e s from e x c e l v a r i a b l e s
eventTextFileNames = [ eventText ( 2 : end , 2 ) ] ’ ;
%compare s e l e c t e d f i l e names to a l l the f i l e s names to g e t

c o l
fileNameRow = find (strcmp ( eventTextFileNames , mFileName ) ) ;
%% Determine whether t r i a l i s a f a l l or recovery
%e x t r a c t in format ion from the e x c e l f i l e
i f eventData ( fileNameRow , 7 ) == 1

f a l l R e s u l t = 1 ;
else

f a l l R e s u l t = 0 ;
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end

%% Plot r e l e v a n t data on the time s c a l e
%This i s the time s c a l e p l o t o f the ank l e ang l e
f r e q = 1/250 ;
tVec = ( 0 : 1 / 2 5 0 : ( ( length ( data )−1)∗ f r e q ) ) ’ ; %c r e a t e the time

v e c t o r wi th r e s p e c t to the f requency o f the capture
%S e l e c t S tepp ing ank l e
%r i g h t A n k l e = 2 , l e f t A n k l e = 1
stepAnkle = eventData ( fileNameRow , 4 ) ; %e x t r a c t in format ion

from the e x c e l f i l e
%Store v a l u e s from event data
t r eadSta r t = eventData ( fileNameRow , 2 ) ;%e x t r a c t in format ion

from the e x c e l f i l e
s t epSta r t1 = eventData ( fileNameRow , 3 ) ;%e x t r a c t in format ion

from the e x c e l f i l e
stepDown1 = eventData ( fileNameRow , 5 ) ;%e x t r a c t in format ion

from the e x c e l f i l e
%p l o t r e l e v a n t ank l e f l e x i o n data
%This p r o c e s s e s the data on ly f o r the f i r s t s t e p p i n g l e g . I t s

u s u a l l y the
%dominant l e g o f the s u b j e c t
%% Extrac t the r e l e v a n t j o i n t s
% Ankle Data
i f stepAnkle == 1

dataCol1 = find (strcmp ( column headers , ’ L a n k l e f l e x i o n ’ ) ) ;
%L a n k l e f l e x i o n

pAnkleFlexion = data ( : , dataCol1 ) ;
else

dataCol1 = find (strcmp ( column headers , ’ R a n k l e f l e x i o n ’ ) ) ;
%R a n k l e f l e x i o n

pAnkleFlexion = data ( : , dataCol1 ) ;
end
%Shank Data
i f stepAnkle == 1

dataCol2 = find (strcmp ( column headers , ’ L shank f l ex i on ’ ) ) ;
%L S h a n k f l e x i o n

pShankFlexion = data ( : , dataCol2 ) ;
else

dataCol2 = find (strcmp ( column headers , ’ Rshank f l ex ion ’ ) ) ;
%RShank f l ex ion

pShankFlexion = data ( : , dataCol2 ) ;
end
%Trunk Data
dataCol3 = find (strcmp ( column headers , ’ t r u n k f l e x i o n ’ ) ) ;%

Trunk Flex ion
t runkFlex ion = data ( : , dataCol3 ) ;
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%Knee Data
i f stepAnkle == 1

dataCol4 = find (strcmp ( column headers , ’ L kn e e f l e x i o n ’ ) ) ;
%LKnee f l ex ion

pKneeFlexion = data ( : , dataCol4 ) ;
else

dataCol4 = find (strcmp ( column headers , ’ Rknee f l ex i on ’ ) ) ;
%RKnee f lex ion

pKneeFlexion = data ( : , dataCol4 ) ;
end

%Hip Data
i f stepAnkle == 1

dataCol5 = find (strcmp ( column headers , ’ L h i p f l e x i o n ’ ) ) ; %
L H i p f l e x i o n

pHipFlexion = data ( : , dataCol5 ) ;
else

dataCol5 = find (strcmp ( column headers , ’ R h i p f l e x i o n ’ ) ) ; %
R H i p f l e x i o n

pHipFlexion = data ( : , dataCol5 ) ;
end

%% Plot the time s e r i e s o f the r e l v a n t j o i n t s
% Ankle
f 1 = f igure ;
plot ( tVec , data ( : , dataCol1 ) ) ;
t i t l e ( ’ Ankle f l e x i o n o f primary f o o t ’ ) ;
xlabel ( ’Time in seconds ’ ) ;
ylabel ( ’ Ankle Flex ion ang le ’ ) ;
hold on ;
plot ( [ tVec ( t r eadSta r t ) tVec ( t r eadSta r t ) ] , [ min( data ( : , dataCol1

) ) max( data ( : , dataCol1 ) ) ] , ’ r ’ ) ;
hold on ;
plot ( [ tVec ( s t epSta r t1 ) tVec ( s t epSta r t1 ) ] , [ min( data ( : , dataCol1

) ) max( data ( : , dataCol1 ) ) ] , ’ g ’ ) ;
hold on ;
plot ( [ tVec ( stepDown1 ) tVec ( stepDown1 ) ] , [ min( data ( : , dataCol1 ) )

max( data ( : , dataCol1 ) ) ] , ’ b ’ ) ;
legend ( ’ AnkleAngle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’ Step Down ’

) ;
f a l l R e s u l t S t r i n g = s t r c a t ( ’ Fa l l = ’ ,num2str( f a l l R e s u l t ) ) ; %

annotate whether the person f e l l down
dim = [ . 2 . 5 . 3 . 3 ] ;
% annotat ion ( ’ t e x t b o x ’ , dim , ’ S tr ing ’ , f a l l R e s u l t S t r i n g , ’

FitBoxToText ’ , ’ on ’ ) ;
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%Shank

f 2 = f igure ;
plot ( tVec , data ( : , dataCol2 ) ) ;
t i t l e ( ’ Shank f l e x i o n o f primary f o o t ’ ) ;
xlabel ( ’Time in seconds ’ ) ;
ylabel ( ’ Shank Flex ion ang le ’ ) ;
hold on ;
plot ( [ tVec ( t r eadSta r t ) tVec ( t r eadSta r t ) ] , [ min( data ( : , dataCol2

) ) max( data ( : , dataCol2 ) ) ] , ’ r ’ ) ;
hold on ;
plot ( [ tVec ( s t epSta r t1 ) tVec ( s t epSta r t1 ) ] , [ min( data ( : , dataCol2

) ) max( data ( : , dataCol2 ) ) ] , ’ g ’ ) ;
hold on ;
plot ( [ tVec ( stepDown1 ) tVec ( stepDown1 ) ] , [ min( data ( : , dataCol2 ) )

max( data ( : , dataCol2 ) ) ] , ’ b ’ ) ;
legend ( ’ ShankAngle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’ Step Down ’

) ;
f a l l R e s u l t S t r i n g = s t r c a t ( ’ Fa l l = ’ ,num2str( f a l l R e s u l t ) ) ; %

annotate whether the person f e l l down
dim = [ . 2 . 5 . 3 . 3 ] ;
% annotat ion ( ’ t e x t b o x ’ , dim , ’ S tr ing ’ , f a l l R e s u l t S t r i n g , ’

FitBoxToText ’ , ’ on ’ ) ;

%Trunk

f 3 = f igure ;
plot ( tVec , data ( : , dataCol3 ) ) ;
t i t l e ( ’ Trunk f l e x i o n o f primary f o o t ’ ) ;
xlabel ( ’Time in seconds ’ ) ;
ylabel ( ’ Trunk Flex ion ang le ’ ) ;
hold on ;
plot ( [ tVec ( t r eadSta r t ) tVec ( t r eadSta r t ) ] , [ min( data ( : , dataCol3

) ) max( data ( : , dataCol3 ) ) ] , ’ r ’ ) ;
hold on ;
plot ( [ tVec ( s t epSta r t1 ) tVec ( s t epSta r t1 ) ] , [ min( data ( : , dataCol3

) ) max( data ( : , dataCol3 ) ) ] , ’ g ’ ) ;
hold on ;
plot ( [ tVec ( stepDown1 ) tVec ( stepDown1 ) ] , [ min( data ( : , dataCol3 ) )

max( data ( : , dataCol3 ) ) ] , ’ b ’ ) ;
legend ( ’ TrunkAngle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’ Step Down ’

) ;
f a l l R e s u l t S t r i n g = s t r c a t ( ’ Fa l l = ’ ,num2str( f a l l R e s u l t ) ) ; %

annotate whether the person f e l l down
dim = [ . 2 . 5 . 3 . 3 ] ;
% annotat ion ( ’ t e x t b o x ’ , dim , ’ S tr ing ’ , f a l l R e s u l t S t r i n g , ’

FitBoxToText ’ , ’ on ’ ) ;
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%Knee

f 4 = f igure ;
plot ( tVec , data ( : , dataCol4 ) ) ;
t i t l e ( ’ Knee f l e x i o n o f primary f o o t ’ ) ;
xlabel ( ’Time in seconds ’ ) ;
ylabel ( ’ Knee Flex ion ang le ’ ) ;
hold on ;
plot ( [ tVec ( t r eadSta r t ) tVec ( t r eadSta r t ) ] , [ min( data ( : , dataCol4

) ) max( data ( : , dataCol4 ) ) ] , ’ r ’ ) ;
hold on ;
plot ( [ tVec ( s t epSta r t1 ) tVec ( s t epSta r t1 ) ] , [ min( data ( : , dataCol4

) ) max( data ( : , dataCol4 ) ) ] , ’ g ’ ) ;
hold on ;
plot ( [ tVec ( stepDown1 ) tVec ( stepDown1 ) ] , [ min( data ( : , dataCol4 ) )

max( data ( : , dataCol4 ) ) ] , ’ b ’ ) ;
legend ( ’ KneeAngle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’ Step Down ’ )

;
f a l l R e s u l t S t r i n g = s t r c a t ( ’ Fa l l = ’ ,num2str( f a l l R e s u l t ) ) ; %

annotate whether the person f e l l down
dim = [ . 2 . 5 . 3 . 3 ] ;
% annotat ion ( ’ t e x t b o x ’ , dim , ’ S tr ing ’ , f a l l R e s u l t S t r i n g , ’

FitBoxToText ’ , ’ on ’ ) ;

%Hip

f 5 = f igure ;
plot ( tVec , data ( : , dataCol5 ) ) ;
t i t l e ( ’ Hip f l e x i o n o f primary f o o t ’ ) ;
xlabel ( ’Time in seconds ’ ) ;
ylabel ( ’ Hip Flex ion ang le ’ ) ;
hold on ;
plot ( [ tVec ( t r eadSta r t ) tVec ( t r eadSta r t ) ] , [ min( data ( : , dataCol5

) ) max( data ( : , dataCol5 ) ) ] , ’ r ’ ) ;
hold on ;
plot ( [ tVec ( s t epSta r t1 ) tVec ( s t epSta r t1 ) ] , [ min( data ( : , dataCol5

) ) max( data ( : , dataCol5 ) ) ] , ’ g ’ ) ;
hold on ;
plot ( [ tVec ( stepDown1 ) tVec ( stepDown1 ) ] , [ min( data ( : , dataCol5 ) )

max( data ( : , dataCol5 ) ) ] , ’ b ’ ) ;
legend ( ’ HipAngle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’ Step Down ’ ) ;
f a l l R e s u l t S t r i n g = s t r c a t ( ’ Fa l l = ’ ,num2str( f a l l R e s u l t ) ) ; %

annotate whether the person f e l l down
dim = [ . 2 . 5 . 3 . 3 ] ;
% annotat ion ( ’ t e x t b o x ’ , dim , ’ S tr ing ’ , f a l l R e s u l t S t r i n g , ’

FitBoxToText ’ , ’ on ’ ) ;
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%% Process second l e g
%This i s the p r o c e s s i n g f o r the second leg , uncomment i f

necessary . This
%might cause runtime e r r o r s .
% secondStep = eventData ( fileNameRow , 1 2 ) ;
%
% i f secondStep ˜= 0
% s t e p S t a r t 2 = eventData ( fileNameRow , 1 2 ) ;
% stepDown2 = eventData ( fileNameRow , 1 4 ) ;
% end
%
% i f secondStep == 1
% dataCol2 = f i n d ( strcmp ( column headers , ’ L a n k l e f l e x i o n ’ )

) ;
% sAnk leF lex ion = data ( : , dataCol1 ) ;
% e l s e i f secondStep == 2
% dataCol2 = f i n d ( strcmp ( column headers , ’ R a n k l e f l e x i o n ’ )

) ;
% sAnk leF lex ion = data ( : , dataCol1 ) ;
% end
% % Plo t i f a c t i v i t y e x i s t in second l e g
% i f e x i s t ( ’ dataCol2 ’ )
% f i g u r e
% p l o t ( tVec , data ( : , dataCol2 ) ) ;
% t i t l e ( ’ Angle f l e x i o n o f secondary foo t ’ ) ;
% x l a b e l ( ’ Time in seconds ’ ) ;
% y l a b e l ( ’ Angle F lex ion angle ’ ) ;
% ho ld on ;
% p l o t ( [ tVec ( t r e a d S t a r t ) tVec ( t r e a d S t a r t ) ] , [ min( data ( : ,

dataCol1 ) ) max( data ( : , dataCol1 ) ) ] , ’ r ’ ) ;
% ho ld on ;
% p l o t ( [ tVec ( s t e p S t a r t 2 ) tVec ( s t e p S t a r t 2 ) ] , [ min( data ( : ,

dataCol1 ) ) max( data ( : , dataCol1 ) ) ] , ’ g ’ ) ;
% ho ld on ;
% p l o t ( [ tVec ( stepDown2 ) tVec ( stepDown2 ) ] , [ min( data ( : ,

dataCol1 ) ) max( data ( : , dataCol1 ) ) ] , ’ b ’ ) ;
% legend ( ’ AnkleAngkle ’ , ’ Tread Star t ’ , ’ Step Star t ’ , ’

Step Down ’ ) ;
% end

%% Phase p l o t p r o c e s s i n g f o r primary l e g

%f i n d d e r i v a t i v e o f primary ank l e f o r phase p l o t
dTime = d i f f ( tVec ) ; %d i f f e r e n c e o f time v e c t o r ( dt )

%D i f f e r e n t i a t i o n o f Ankle
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dPAnkle = d i f f ( pAnkleFlexion ) ;%d i f f e r e n c e o f ang l e v e c t o r (
d t h e t a )

dPAnkleAngle = dPAnkle . / dTime ;%d e r i v a t i v e o f the ang l e wi th
r e s p e c t to time ( d t h e t a / dtime )

%D i f f e r e n t i a t i o n o f Shank
dPShank = d i f f ( pShankFlexion ) ;%d i f f e r e n c e o f ang l e v e c t o r (

d t h e t a )
dPShankAngle = dPShank . / dTime ;%d e r i v a t i v e o f the ang l e wi th

r e s p e c t to time ( d t h e t a / dtime )

%D i f f e r e n t i a t i o n o f Trunk
dTrunk = d i f f ( t runkFlex ion ) ;%d i f f e r e n c e o f ang l e v e c t o r (

d t h e t a )
dTrunkAngle = dTrunk . / dTime ;%d e r i v a t i v e o f the ang l e wi th

r e s p e c t to time ( d t h e t a / dtime )

%D i f f e r e n t i a t i o n o f Knee
dPKnee = d i f f ( pKneeFlexion ) ;%d i f f e r e n c e o f ang l e v e c t o r (

d t h e t a )
dPKneeAngle = dPKnee . / dTime ;%d e r i v a t i v e o f the ang l e wi th

r e s p e c t to time ( d t h e t a / dtime )

%D i f f e r e n t i a t i o n o f Hip
dPHip = d i f f ( pHipFlexion ) ;%d i f f e r e n c e o f ang l e v e c t o r ( d t h e t a

)
dPHipAngle = dPHip . / dTime ;%d e r i v a t i v e o f the ang l e wi th

r e s p e c t to time ( d t h e t a / dtime )

%p l o t phase p l o t from tread s t a r t to some time a f t e r s t e p
down

afterStepDown = stepDown1 + ( s t epSta r t1 − t r eadSta r t ) ; %
c a l c u l a t e the v a r i o u s dura t ion o f the p l o t s ( e . g . t r ead
s t a r t − s t e p s t a r t dura t ion )

i f afterStepDown > length ( dPAnkleAngle )
afterStepDown = length ( dPAnkleAngle )

end

%% Plot Phase p l o t s
%Ankle
f 6 = f igure ;
plot ( dPAnkleAngle ( t r eadSta r t : s t epSta r t1 ) , pAnkleFlexion (

t r eadSta r t : s t epSta r t1 ) , ’b ’ ) ;
hold on ;
plot ( dPAnkleAngle ( s t epSta r t1 : stepDown1 ) , pAnkleFlexion (
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s t epSta r t1 : stepDown1 ) , ’ r ’ ) ;
hold on ;
plot ( dPAnkleAngle ( stepDown1 : afterStepDown ) , pAnkleFlexion (

stepDown1 : afterStepDown ) , ’ g ’ ) ;
t i t l e ( ’ Phase p l o t f o r primary ankle ang le ’ ) ;
xlabel ( ’\ theta o f primary ankle ’ ) ;
ylabel ( ’ $\dot{\ theta }$ o f primary ankle ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x

’ )
legend ( ’ TreadStart ’ , ’ S tepStar t ’ , ’ StepDown ’ ) ;

% Shank
f 7 = f igure ;
plot ( dPShankAngle ( t r eadSta r t : s t epSta r t1 ) , pShankFlexion (

t r eadSta r t : s t epSta r t1 ) , ’b ’ ) ;
hold on ;
plot ( dPShankAngle ( s t epSta r t1 : stepDown1 ) , pShankFlexion (

s t epSta r t1 : stepDown1 ) , ’ r ’ ) ;
hold on ;
plot ( dPShankAngle ( stepDown1 : afterStepDown ) , pShankFlexion (

stepDown1 : afterStepDown ) , ’ g ’ ) ;
t i t l e ( ’ Phase p l o t f o r primary Shank ang le ’ ) ;
xlabel ( ’\ theta o f primary Shank ’ ) ;
ylabel ( ’ $\dot{\ theta }$ o f primary Shank ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x

’ )
legend ( ’ TreadStart ’ , ’ S tepStar t ’ , ’ StepDown ’ ) ;

% Trunk
f 8 = f igure ;
plot ( dTrunkAngle ( t r eadSta r t : s t epSta r t1 ) , t runkFlex ion (

t r eadSta r t : s t epSta r t1 ) , ’b ’ ) ;
hold on ;
plot ( dTrunkAngle ( s t epSta r t1 : stepDown1 ) , t runkFlex ion (

s t epSta r t1 : stepDown1 ) , ’ r ’ ) ;
hold on ;
plot ( dTrunkAngle ( stepDown1 : afterStepDown ) , t runkFlex ion (

stepDown1 : afterStepDown ) , ’ g ’ ) ;
t i t l e ( ’ Phase p l o t f o r Trunk ang le ’ ) ;
xlabel ( ’\ theta o f primary Trunk ’ ) ;
ylabel ( ’ $\dot{\ theta }$ o f Trunk ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
legend ( ’ TreadStart ’ , ’ S tepStar t ’ , ’ StepDown ’ ) ;

% Knee
f 9 = f igure ;
plot ( dPKneeAngle ( t r eadSta r t : s t epSta r t1 ) , pKneeFlexion (

t r eadSta r t : s t epSta r t1 ) , ’b ’ ) ;
hold on ;
plot ( dPKneeAngle ( s t epSta r t1 : stepDown1 ) , pKneeFlexion (
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s t epSta r t1 : stepDown1 ) , ’ r ’ ) ;
hold on ;
plot ( dPKneeAngle ( stepDown1 : afterStepDown ) , pKneeFlexion (

stepDown1 : afterStepDown ) , ’ g ’ ) ;
t i t l e ( ’ Phase p l o t f o r primary Knee ang le ’ ) ;
xlabel ( ’\ theta o f primary Knee ’ ) ;
ylabel ( ’ $\dot{\ theta }$ o f primary Knee ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’

)
legend ( ’ TreadStart ’ , ’ S tepStar t ’ , ’ StepDown ’ ) ;

% Hip
f 10 = f igure ;
plot ( dPHipAngle ( t r eadSta r t : s t epSta r t1 ) , pHipFlexion ( t r eadSta r t

: s t epSta r t1 ) , ’b ’ ) ;
hold on ;
plot ( dPHipAngle ( s t epSta r t1 : stepDown1 ) , pHipFlexion ( s t epSta r t1 :

stepDown1 ) , ’ r ’ ) ;
hold on ;
plot ( dPHipAngle ( stepDown1 : afterStepDown ) , pHipFlexion (

stepDown1 : afterStepDown ) , ’ g ’ ) ;
t i t l e ( ’ Phase p l o t f o r primary Hip ang le ’ ) ;
xlabel ( ’\ theta o f primary Hip ’ ) ;
ylabel ( ’ $\dot{\ theta }$ o f primary Hip ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ )
legend ( ’ TreadStart ’ , ’ S tepStar t ’ , ’ StepDown ’ ) ;
% Curve f i t data

%% Ankle
choppedPAnkleAngle = pAnkleFlexion ( t r eadSta r t : afterStepDown ) ;
s tepStartAnkle = choppedPAnkleAngle ( s tepStar t1−t r eadSta r t ) ;
stepStopAnkle = choppedPAnkleAngle ( stepDown1−t r eadSta r t ) ;
% [ peakAnkle , peakAnkleTime ] = max( choppedPAnkleAngle (

s t e p S t a r t 1−t r e a d S t a r t : stepDown1−t r e a d S t a r t ) ) ;
xChopped = [ 0 : 1 0 0 / ( afterStepDown−t r eadSta r t ) : 1 0 0 ] ’ ;
f i tAnkleModel = f i t ( xChopped , choppedPAnkleAngle , ’

smooth ingsp l ine ’ ) ;
xNew = 0 : 0 . 0 1 : 1 0 0 ;
f i tPAnk leF lex ion = f itAnkleModel (xNew) ;

%D e r i v a t i v e o f C u r v e f i t Data
dXNew = d i f f (xNew ’ ) ;
dFitPAnkleFlexion = d i f f ( f i tPAnk leF lex ion ) ;
dFitPAnkle = dFitPAnkleFlexion . /dXNew;

%% Shank
choppedPShankAngle = pShankFlexion ( t r eadSta r t : afterStepDown ) ;
stepStartShank = choppedPShankAngle ( s tepStar t1−t r eadSta r t ) ;
stepStopShank = choppedPShankAngle ( stepDown1−t r eadSta r t ) ;
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xChopped = [ 0 : 1 0 0 / ( afterStepDown−t r eadSta r t ) : 1 0 0 ] ’ ;
f itPShankModel = f i t ( xChopped , choppedPShankAngle , ’

smooth ingsp l ine ’ ) ;
xNew = 0 : 0 . 0 1 : 1 0 0 ;
f i tPShankFlex ion = fitPShankModel (xNew) ;

%%D e r i v a t i v e o f C u r v e f i t Data
dXNew = d i f f (xNew ’ ) ;
dFitPShankFlexion = d i f f ( f i tPShankFlex ion ) ;
dFitPShank = dFitPShankFlexion . /dXNew;

%% Trunk
choppedTrunkAngle = trunkFlex ion ( t r eadSta r t : afterStepDown ) ;
stepStartTrunk = choppedTrunkAngle ( s tepStar t1−t r eadSta r t ) ;
stepStopTrunk = choppedTrunkAngle ( stepDown1−t r eadSta r t ) ;
xChopped = [ 0 : 1 0 0 / ( afterStepDown−t r eadSta r t ) : 1 0 0 ] ’ ;
f itTrunkModel = f i t ( xChopped , choppedTrunkAngle , ’

smooth ingsp l ine ’ ) ;
xNew = 0 : 0 . 0 1 : 1 0 0 ;
f i tTrunkFlex ion = fitTrunkModel (xNew) ;

%%D e r i v a t i v e o f C u r v e f i t Data
dXNew = d i f f (xNew ’ ) ;
dFitTrunkFlexion = d i f f ( f i tTrunkFlex ion ) ;
dFitTrunk = dFitTrunkFlexion . /dXNew;

%% Knee
choppedPKneeAngle = pKneeFlexion ( t r eadSta r t : afterStepDown ) ;
stepStartKnee = choppedPKneeAngle ( s tepStar t1−t r eadSta r t ) ;
stepStopKnee = choppedPKneeAngle ( stepDown1−t r eadSta r t ) ;
xChopped = [ 0 : 1 0 0 / ( afterStepDown−t r eadSta r t ) : 1 0 0 ] ’ ;
f itPKneeModel = f i t ( xChopped , choppedPKneeAngle , ’

smooth ingsp l ine ’ ) ;
xNew = 0 : 0 . 0 1 : 1 0 0 ;
f i tPKneeFlex ion = fitPKneeModel (xNew) ;

%%D e r i v a t i v e o f C u r v e f i t Data
dXNew = d i f f (xNew ’ ) ;
dFitPKneeFlexion = d i f f ( f i tPKneeFlex ion ) ;
dFitPKnee = dFitPKneeFlexion . /dXNew;

%% Hip
choppedPHipAngle = pHipFlexion ( t r eadSta r t : afterStepDown ) ;
s tepStar tHip = choppedPHipAngle ( s tepStar t1−t r eadSta r t ) ;
stepStopHip = choppedPHipAngle ( stepDown1−t r eadSta r t ) ;
xChopped = [ 0 : 1 0 0 / ( afterStepDown−t r eadSta r t ) : 1 0 0 ] ’ ;
f itPHipModel = f i t ( xChopped , choppedPHipAngle , ’ smooth ingsp l ine
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’ ) ;
xNew = 0 : 0 . 0 1 : 1 0 0 ;
f i tPHipF lex ion = fitPHipModel (xNew) ;

%%D e r i v a t i v e o f C u r v e f i t Data
dXNew = d i f f (xNew ’ ) ;
dFitPHipFlexion = d i f f ( f i tPHipF lex ion ) ;
dFitPHip = dFitPHipFlexion . /dXNew;

%% Save and Load data i n t o the same . mat f i l e
Ankle
t ry

prevDataAnkleAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’
AnkleProcessedData . mat ’ ) ) ;

pAnkleFlexionData = [ prevDataAnkleAngle . pAnkleFlexionData
f i tPAnk leF lex ion ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ AnkleProcessedData . mat ’ ) ,
’ pAnkleFlexionData ’ ) ;

catch
pAnkleFlexionData = f i tPAnk leF lex ion ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ AnkleProcessedData . mat ’ ) ,

’ pAnkleFlexionData ’ ) ;
end

t ry
prevDataDAnkleAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’

DAnkleProcessedData . mat ’ ) ) ;
pDAnkleFlexionData = [ prevDataDAnkleAngle .

pDAnkleFlexionData dFitPAnkle ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DAnkleProcessedData . mat ’ )

, ’ pDAnkleFlexionData ’ ) ;
catch

pDAnkleFlexionData = dFitPAnkle ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DAnkleProcessedData . mat ’ )

, ’ pDAnkleFlexionData ’ ) ;
end

%Shank
t ry

prevDataShankAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’
ShankProcessedData . mat ’ ) ) ;

pShankFlexionData = [ prevDataShankAngle . pShankFlexionData
f i tPShankFlex ion ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ ShankProcessedData . mat ’ ) ,
’ pShankFlexionData ’ ) ;

catch
pShankFlexionData = f i tPShankFlex ion ;
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save ( s t r c a t ( jo intAng leF i l ePath , ’ ShankProcessedData . mat ’ ) ,
’ pShankFlexionData ’ ) ;

end

t ry
prevDataDShankAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’

DShankProcessedData . mat ’ ) ) ;
pDShankFlexionData = [ prevDataDShankAngle .

pDShankFlexionData dFitPShank ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DShankProcessedData . mat ’ )

, ’ pDShankFlexionData ’ ) ;
catch

pDShankFlexionData = dFitPShank ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DShankProcessedData . mat ’ )

, ’ pDShankFlexionData ’ ) ;
end

%Trunk
t ry

prevDataTrunkAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’
TrunkProcessedData . mat ’ ) ) ;

pTrunkFlexionData = [ prevDataTrunkAngle . pTrunkFlexionData
f i tTrunkFlex ion ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ TrunkProcessedData . mat ’ ) ,
’ pTrunkFlexionData ’ ) ;

catch
pTrunkFlexionData = f i tTrunkFlex ion ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ TrunkProcessedData . mat ’ ) ,

’ pTrunkFlexionData ’ ) ;
end

t ry
prevDataDTrunkAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’

DTrunkProcessedData . mat ’ ) ) ;
pDTrunkFlexionData = [ prevDataDTrunkAngle .

pDTrunkFlexionData dFitTrunk ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DTrunkProcessedData . mat ’ )

, ’ pDTrunkFlexionData ’ ) ;
catch

pDTrunkFlexionData = dFitTrunk ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DTrunkProcessedData . mat ’ )

, ’ pDTrunkFlexionData ’ ) ;
end

%Knee
t ry
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prevDataKneeAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’
KneeProcessedData . mat ’ ) ) ;

pKneeFlexionData = [ prevDataKneeAngle . pKneeFlexionData
f i tPKneeFlex ion ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ KneeProcessedData . mat ’ ) , ’
pKneeFlexionData ’ ) ;

catch
pKneeFlexionData = f i tPKneeFlex ion ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ KneeProcessedData . mat ’ ) , ’

pKneeFlexionData ’ ) ;
end

t ry
prevDataDKneeAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’

DKneeProcessedData . mat ’ ) ) ;
pDKneeFlexionData = [ prevDataDKneeAngle . pDKneeFlexionData

dFitPKnee ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DKneeProcessedData . mat ’ ) ,

’ pDKneeFlexionData ’ ) ;
catch

pDKneeFlexionData = dFitPKnee ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DKneeProcessedData . mat ’ ) ,

’ pDKneeFlexionData ’ ) ;
end

%Hip
t ry

prevDataHipAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’
HipProcessedData . mat ’ ) ) ;

pHipFlexionData = [ prevDataHipAngle . pHipFlexionData
f i tPHipF lex ion ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ HipProcessedData . mat ’ ) , ’
pHipFlexionData ’ ) ;

catch
pHipFlexionData = f i tPHipF lex ion ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ HipProcessedData . mat ’ ) , ’

pHipFlexionData ’ ) ;
end

t ry
prevDataDHipAngle = load ( s t r c a t ( jo intAng leF i l ePath , ’

DHipProcessedData . mat ’ ) ) ;
pDHipFlexionData = [ prevDataDHipAngle . pDHipFlexionData

dFitPHip ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DHipProcessedData . mat ’ ) , ’

pDHipFlexionData ’ ) ;
catch
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pDHipFlexionData = dFitPHip ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ DHipProcessedData . mat ’ ) , ’

pDHipFlexionData ’ ) ;
end

%Save F a l l Resu l t

t ry
prevDataFal lResu l t = load ( s t r c a t ( jo intAng leF i l ePath , ’

Fal lResultData . mat ’ ) ) ;
f a l lR e s u l t Dat a = [ prevDataFal lResul t . f a l lRe su l tD ata

f a l l R e s u l t ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ Fa l lResultData . mat ’ ) , ’

f a l l Re s u l t Dat a ’ ) ;
catch

f a l lR e s u l t Dat a = f a l l R e s u l t ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ Fa l lResultData . mat ’ ) , ’

f a l l Re s u l t Dat a ’ ) ;
end

Save step Star t /Stop

try
prevDataStepStart In fo = load ( s t r c a t ( jo intAng leF i l ePath , ’

S t epSta r t In f o . mat ’ ) ) ;
s t e p S t a r t C o l l e c t = [ s tepStartAnkle ; stepStartShank ;

stepStartTrunk ; stepStartKnee ; s tepStar tHip ] ;
s t e p S t a r t I n f o = [ prevDataStepStart In fo . s t e p S t a r t I n f o

s t e p S t a r t C o l l e c t ] ;
save ( s t r c a t ( jo intAng leF i l ePath , ’ S t epSta r t In f o . mat ’ ) , ’

s t e p S t a r t I n f o ’ ) ;
catch

s t e p S t a r t I n f o = [ s tepStartAnkle ; stepStartShank ;
stepStartTrunk ; stepStartKnee ; s tepStar tHip ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ S t epSta r t In f o . mat ’ ) , ’
s t e p S t a r t I n f o ’ ) ;

end
t ry

prevDataStepStopInfo = load ( s t r c a t ( jo intAng leF i l ePath , ’
StepStopInfo . mat ’ ) ) ;

s t epStopCo l l e c t = [ stepStopAnkle ; stepStopShank ;
stepStopTrunk ; stepStopKnee ; stepStopHip ] ;

s t epStopIn fo = [ prevDataStepStopInfo . s t epStopIn fo
s t epStopCo l l e c t ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ StepStopInfo . mat ’ ) , ’
s t epStopIn fo ’ ) ;

catch
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s t epStopIn fo = [ stepStopAnkle ; stepStopShank ; stepStopTrunk
; stepStopKnee ; stepStopHip ] ;

save ( s t r c a t ( jo intAng leF i l ePath , ’ StepStopInfo . mat ’ ) , ’
s t epStopIn fo ’ ) ;

end

%% Save Data to f i l e
%This w i l l save a l l the f i g u r e s in your f o l d e r as j p g .

Comment i f not
%necessary
% figureName1 = s t r c a t ( j o i n t A n g l e F i l e P a t h , mFileName , ’ ’ , ’

t i m e S e r i e s . jpg ’ ) ;
% saveas ( f1 , figureName1 ) ;
%
% figureName2 = s t r c a t ( j o i n t A n g l e F i l e P a t h , mFileName , ’ ’ , ’

phasePlo t . jpg ’ ) ;
% saveas ( f2 , figureName2 ) ;

% i f e x i s t ( s t r c a t ( j o i n t A n g l e F i l e P a t h , ’ processedData . mat ’ ) )
% prevData = load ( s t r c a t ( j o i n t A n g l e F i l e P a t h , ’

processedData . mat ’ ) ) ;
% prevAng leS i ze = l e n g t h ( prevData . ankleAnkleOut ( : , end ) ) ;
% prevDAngleSize = l e n g t h ( prevData . dAnkleAngleOut ) ;
% i f prevAng leS i ze >= l e n g t h ( pAnkleFlex ion )
% ankleAnkleOut = [ ]
% end
%
% ankleAngleOut = [ prevData . ankleAngleOut pAnkleFlex ion ] ;
% dAnkleAngleOut = [ prevData . dAnkleAngleOut dPAnkleAngle

] ;
% treadStar tOut = [ prevData . t readStar tOut t r e a d S t a r t ] ;
% s t e p S t a r t O u t = [ prevData . s t e p S t a r t O u t s t e p S t a r t 1 ] ;
% stepDownOut = [ prevData . stepDownOut stepDown1 ] ;
% save ( s t r c a t ( j o i n t A n g l e F i l e P a t h , ’ processedData . mat ’ ) , ’

ankleAngleOut ’ , ’ dAnkleAngleOut ’ , ’ t readStar tOut ’ , ’
s tepStar tOut ’ , ’ stepDownOut ’ ) ;

% e l s e
% ankleAngleOut = pAnkleFlex ion ;
% dAnkleAngleOut = dPAnkleAngle ;
% treadStar tOut = t r e a d S t a r t ;
% s t e p S t a r t O u t = s t e p S t a r t 1 ;
% stepDownOut = stepDown1 ;
% save ( s t r c a t ( j o i n t A n g l e F i l e P a t h , ’ processedData . mat ’ ) , ’

ankleAngleOut ’ , ’ dAnkleAngleOut ’ , ’ t readStar tOut ’ , ’
s tepStar tOut ’ , ’ stepDownOut ’ ) ;

% end
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