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ABSTRACT

Dimensionality reduction methods are examined for large-scale discrete problems, specif-

ically for the solution of three-dimensional geophysics problems: the inversion of gravity

and magnetic data. The matrices for the associated forward problems have beneficial struc-

ture for each depth layer of the volume domain, under mild assumptions, which facilitates

the use of the two dimensional fast Fourier transform for evaluating forward and transpose

matrix operations, providing considerable savings in both computational costs and stor-

age requirements. Application of this approach for the magnetic problem is new in the

geophysics literature. Further, the approach is extended for padded volume domains.

Stabilized inversion is obtained efficiently by applying novel randomization techniques

within each update of the iteratively reweighted scheme. For a general rectangular lin-

ear system, a randomization technique combined with preconditioning is introduced and

investigated. This is shown to provide well-conditioned inversion, stabilized through trun-

cation. Applying this approach, while implementing matrix operations using the two di-

mensional fast Fourier transform, yields computationally effective inversion, in memory

and cost. Validation is provided via synthetic data sets, and the approach is contrasted with

the well-known LSRN algorithm when applied to these data sets. The results demonstrate

a significant reduction in computational cost with the new algorithm. Further, this new al-

gorithm produces results for inversion of real magnetic data consistent with those provided

in literature.

Typically, the iteratively reweighted least squares algorithm depends on a standard

Tikhonov formulation. Here, this is solved using both a randomized singular value de-

composition and the iterative LSQR Krylov algorithm. The results demonstrate that the

new algorithm is competitive with these approaches and offers the advantage that no regu-

larization parameter needs to be found at each outer iteration.
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Given its efficiency, investigating the new algorithm for the joint inversion of these

data sets may be fruitful. Initial research on joint inversion using the two dimensional

fast Fourier transform has recently been submitted and provides the basis for future work.

Several alternative directions for dimensionality reduction are also discussed, including it-

eratively applying an approximate pseudo-inverse and obtaining an approximate Kronecker

product decomposition via randomization for a general matrix. These are also topics for

future consideration.
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Chapter 1

INTRODUCTION

Technology increasingly enables the collection of massive amounts of data. While this

causes calculation of the discrete forward operation Ax = b to be more computationally

expensive, this data is often of use in determining an approximate solution of the more ex-

pensive discrete inverse problem to find x given A and b. Inverting to find x often requires

some form of matrix decomposition followed by multiple forward multiplications. Even

if A is invertible, this also often requires some form of regularization to produce a useful

solution. As the amount of data collected increases, the computational cost of the inverse

problem increases by a multiplicative factor. Coupled with a similar effect from increasing

the number of desired model parameters, solving these large problems has proven difficult

for technology to keep up with, Lin et al. [2016], Wang [2015]. To combat this, some tech-

niques for solving large-scale inverse problems utilize dimensionality reduction in some

form. The aim of this work is to further develop dimensionality reduction techniques that

allow stable and efficient solutions of inverse problems.

Inverse problems are introduced in Chapter 2. A framework for linear ill-posed inverse

problems, including discretization, ill-posedness, regularization and regularization param-

eters is also established. Choice of norm is considered based on desired properties of the

unknown solution, and methods are presented that allow an analytical solution to be ob-

tained. The usefulness of the singular value decomposition (SVD) is shown, and computa-

tional limitations when the scale becomes large are discussed. As examples of large-scale

3D problems, geophysical applications for inverting gravity and magnetic data are

introduced.
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In Chapter 3 it is shown that a block-Toeplitz with Toeplitz blocks (BTTB) matrix

can be extended to a block circulant with circulant blocks (BCCB) matrix, for which

matrix multiplication can be performed via a convolution transformation using the two-

dimensional fast Fourier transform (2DFFT), Vogel [2002]. Moreover, this formulation

can be applied to the gravity and magnetic problems, and also be extended when

considering model contributions from outside the discrete domain, for both the symmet-

ric and non-symmetric case. An in-depth formulation is provided for the configurations

with and without domain padding. The details of the algorithmic implementation and a

computational comparison are provided.

It is shown in Chapter 4 that the application of randomization directly to a matrix system

can further reduce the computational requirements. Standard randomized system sketches

are discussed. The naive extension of the randomized sketch to the right of the discrete

forward operator, via a substitution, fails to produce a viable result, and provides motiva-

tion for the LSRN method, Meng et al. [2014], which shows a viable application of a right

preconditioning substitution. This idea is extended to produce a dimensionality reduction

technique that combines a random left sketch and a right preconditioning substitution, de-

noted the randomized preconditioning sketch (RPS). This method is shown to produce a

viable solution, without many of the limitations of previous methods presented, and nu-

merical results verify the stability of the solution when applied to inversion of gravity

and magnetic data in combination with fast multiplication via the 2DFFT.

A standard approach to obtaining a useful solution is reducing the computational cost

by using an approximate SVD. Randomization is applied in Chapter 5 to significantly re-

duce the computational cost of obtaining an approximate SVD, namely for inversion of

gravity and magnetic data. Computational comparisons are demonstrated for both

real and synthetic data.
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Chapter 6 contains other applications for the techniques developed, along with other

directions for dimensionality reduction of large-scale problems, as well as final conclusion

and direction for future research. These include alternate applications of randomization

such as applying an approximate pseudo-inverse and obtaining an approximate Kronecker

product decomposition. A practical application of the RPS method to a nonlinear transient

groundwater transmissivity problem is also presented. It is shown that RPS improves on the

accuracy of the solution compared to the randomized geostatistical approach (RGA), which

only implements a random left sketch. Section 6.6 provides conclusions and directions for

further research. A more detailed outline of these chapters follows.

Outline: Basic linear algebra concepts and inversion techniques are introduced in

Chapter 2. Discretization is discussed in Section 2.1, ill-posedness in Section 2.2, and

noise in Section 2.3. Regularization techniques are shown in Section 2.4, with truncation

in Section 2.4.1, Tikhonov regularization in Section 2.4.2, and general p-norm regulariza-

tion in Section 2.4.3. The large-scale 3D gravity and magnetic inversion problems

are introduced in Section 2.5.

In Chapter 3 gravity and magnetic kernels are discussed. Fast multiplication

using a circulant extension is introduced in Section 3.1. Matrix structure resulting from

spatially invariant kernels is addressed in Section 3.2 with symmetric kernels developed

without domain padding in Section 3.2.3, and non-symmetric kernels in Section 3.2.4.

Padding is introduced around the domain in Section 3.3, with matrix structure resulting

from including domain padding for symmetric kernels discussed in Section 3.3.1, and non-

symmetric kernels in Section 3.3.2. Fast multiplication is extended for a padded domain in

Section 3.3.3. Optimizations are discussed for generating the kernel matrices in Section 3.4,

specifically for the gravity kernel in Section 3.4.1 and for the magnetic kernel in

Section 3.4.2. Numerical results validate the fast multiplication techniques presented in

Section 3.5, and available software resources are provided in Section 3.5.1.
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Chapter 4 combines the fast multiplication techniques with randomization for inversion

of gravity and magnetic data. Dimensionality reduction is introduced in Section 4.1

via a randomized sketch, with sketching applied directly to a system in Section 4.2. A left

sketch applied directly to a system is presented in Section 4.2.1, with a naive application of

a right sketch via a substitution presented in Section 4.2.2. Preconditioning and LSRN are

presented in Section 4.2.3. A novel randomized preconditioning sketch (RPS) is introduced

in Section 4.3, and error analysis is given. Computational analysis is given in Section 4.4.

Numerical experiments are presented in Section 4.5, with specifics relating to inversion of

gravity and magnetic data presented in Section 4.5.1, implementation details given

in Section 4.5.2, implementation of the synthetic model in Section 4.5.4, and results are

presented in Section 4.5.5. Inversion of real-world magnetic data is implemented via

truncation in Section 4.5.9.

The inversion of gravity and magnetic data via Tikhonov regularization combined

with an approximate SVD is discussed in Chapter 5. Applying randomization to obtain an

approximate SVD is presented in Section 5.1. Previously introduced methodology is used

to establish a basis for numerical results in Section 5.1.1, with specific algorithmic details

given in Section 5.1.2. Computational costs are examined in Section 5.1.3, and numerical

experimentation is presented in Section 5.2 with results shown in Section 5.2.2. Inversion

of real-world magnetic data is implemented via Tikhonov regularization combined with

an approximate SVD in Section 5.2.6. Conclusions are drawn in Section 5.3.

Alternative directions for dimensionality reduction are presented in Chapter 6, starting

with alternative sketching techniques in Sections 6.1-6.2. A method to obtain an approxi-

mate pseudo-inverse is presented in Section 6.1, with an updated iteratively applied pseudo-

inverse proposed in Section 6.1.1. An alternative right sketch based on linear interpolation

is discussed in Section 6.2. A Kronecker product decomposition is discussed in Section 6.3,

with a novel sketch applied to the Kronecker product decomposition and analysis given in
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Section 6.3.1. The novel sketching technique is extended and analyzed for a decomposition

containing a sum of Kronecker products in Section 6.3.2. Implementation of the Kronecker

product decomposition to blocks within a matrix is presented in Section 6.3.3. A nonlin-

ear 2D groundwater transmissivity test problem is presented in Section 6.4. The principal

component geostatistical approach is presented in Section 6.4.1, and the randomized geo-

statistical approach is discussed in Section 6.4.2. The randomized preconditioning sketch is

applied to groundwater transmissivity in Section 6.4.3, and numerical results are presented

in Section 6.4.4. Final conclusions and future work are discussed in Section 6.6.

Necessary mathematical identities for the pseudo-inverse and singular value decompo-

sition (SVD) are provided in Appendix A. Useful referenced information is provided in

Appendix B.

Note that MATLAB style notation is used throughout. Specifically, a · before an opera-

tion denotes element-wise operations. Further, for column vector x ∈ Rm and row vector

y ∈ Rn, x · ∗y = [y1x, y2x, . . . , ynx], and x + y = [y1 + x, y2 + x, . . . , yn + x]. MAT-

LAB notation is also used to prescribe a set of values ranging from a to b with step size sz

as a : sz : b, where sz can be negative.
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Chapter 2

TECHNIQUES FOR INVERSION

Solution of discrete inverse problems is of interest in many applications. Here, back-

ground information is presented on inverse problems. Specifically, discrete systems are

introduced in Section 2.1. Ill-posed problems and the discrete Picard condition are dis-

cussed in Section 2.2. Noise contamination and regularization methods are presented in

Sections 2.3 and 2.4 respectively. Computational limitations when the scale becomes large

are motivated by the description of large-scale 3D problems for inversion of gravity and

magnetic data in Section 2.5.

2.1 Discretization

Consider as an example the solution of a Fredholm integral equation of the first kind,∫
Ωt

H(s, t)g(t)dt = f(s), (2.1)

where t ∈ Ωt, s ∈ Ωs, the square integrable kernel H and the continuous right hand side f

are known, and continuous g is unknown. This integral equation can be discretized using

the trapezoidal rule over discrete points 1 ≤ j ≤ m, 1 ≤ i ≤ n and constant ∆tj = tj−tj−1

as ∫
Ωt

H(si, t)g(t)dt ≈
n∑
j=2

∆tj

(
H(si, tj−1)g(tj−1) +H(si, tj)g(tj)

2

)
(2.2)

for each i. Combining like terms, with ai,j = ∆tjH(si, tj), xj = g(tj) and sampled values

bi = f(si), provides the discrete system

Ax ≈ b.

The first and last columns of A may be scaled by 1
2

to account for the first and last terms of

(2.2), depending on boundary conditions.
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2.2 Ill-posed Inverse Problems and the Discrete Picard Condition

The solution of the discrete problem Ax ≈ b is often ill-posed; small errors in the

data can be amplified, creating large errors in the solution. Using the standard 2-norm

‖A‖2 = sup‖x‖2=1 ‖Ax‖2, the condition number ofA, κ2(A) = ‖A‖2‖A−1‖2 for invertible

A, is large for ill-posed problems, Hansen [1994].

The singular value decomposition (SVD) A = UΣV T =
∑

i uiσiv
T
i is useful for

the analysis of ill-conditioned problems, where U and V are orthonormal, Σ is diagonal

with elements σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and A is rank r. Given ‖A‖2 = σ1, then

κ2(A) = σ1/σr. Thus, when the condition number is large, there is a large gap between the

largest and smallest singular values, and the small singular values are more susceptible to

round-off errors.

Regardless of rank, the naive solution can be written in terms of the pseudo-inverse

as x = A†b =
∑

σi 6=0 viσ
−1
i u

T
i b =

∑
σi 6=0

uTi b

σi
vi. The pseudo-inverse of A is given

by A† = V Σ†UT , where Σ† has diagonal elements σ†i = σ−1
i if σi 6= 0 and σ†i = 0 if

σi = 0. The discrete Picard condition, Hansen [1994], is satisfied if the absolute values

of coefficients |uTi b| decay faster than the singular values. Otherwise, terms that relate to

small singular values become over weighted, amplifying small errors.

Regularization Tools, Hansen [1994], provides many simple inverse problems in MAT-

LAB, which can be used to illustrate properties of ill-posed problems. For example, problem

shaw is a one-dimensional model of an image restoration problem defined by the kernel

H(s, t) = (cos(t) + cos(s))2

(
sin(π(sin(s) + sin(t)))

π(sin(s) + sin(t))

)2

,

for s, t ∈ [−π/2, π/2]. The SVD for matrix A obtained from the discretization of H

with m = n = 128 is used. The ratios |u
T
i btrue|
σi

are shown in Figure 2.1, with the clean

right hand side as btrue. It can be seen that the Picard condition fails to be satisfied after
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approximately 20 terms due to numerical precision. The naive solution reaches magnitudes

of approximately 4e3, whereas the true solution has an approximate maximum value of 2.
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(a) Picard plot
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(b) naive solution

Figure 2.1: The computed scalars |uTi b|/σi are plotted versus i for shaw with n = 128 for
btrue in Figure 2.1a, and the related naive solution using the MATLAB backslash operator is
shown in Figure 2.1b. The Picard condition holds approximately for the first 20 components
in Figure 2.1a.

2.3 Noise

Under the assumption that b is measured data, it is generally contaminated by noise. To

simulate contaminated data, normalized white noise is added to btrue as

b = btrue + η
btrue
‖btrue‖2

· ∗randn(n, 1),

where ·∗ represents element-wise multiplication. Again using the SVD of A for problem

shaw with m = n = 128 and noise level η = 1, the Picard condition is violated after

approximately the first 8 terms, see Figure 2.2a. The naive solution now reaches an ap-

proximate magnitude of 4e18, Figure 2.2b. See Figure 2.3 for a comparison of btrue and b.

Since calculating the singular values is limited by machine precision, and any noise in the

data can contaminate the Fourier coefficients uTi b, accurately approximating the full rank
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of the system is not typically possible. Instead, the numerical rank is the number of accu-

rate singular components. The numerical rank, k, can be estimated by the first 1 through k

components for which the Picard condition approximately holds.
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Figure 2.2: The computed scalars |uTi b|/σi are plotted versus i for shaw with n = 128
and noise level η = 1 in Figure 2.2a, and the related naive solution using the MATLAB
backslash operator is shown in Figure 2.2b. The Picard condition holds approximately for
the first 8 components in Figure 2.2a.
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Figure 2.3: btrue and b are shown for shaw with n = 128 and noise level η = 1.
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2.4 Regularization

2.4.1 Truncation

Solving a linear ill-posed inverse problem accurately requires some form of regular-

ization, since terms for which the Picard condition is violated become overweighted. The

simplest regularization method takes the first k terms of the naive solution producing

xk =
k∑
i=1

uTi b

σi
vi =

r∑
i=1

φi
uTi b

σi
vi, (2.3)

where φi = 1 for i ≤ k and φi = 0 for i > k.

The truncation parameter k approximates the numerical rank, and is optimized when

only the terms with singular values dominated by noise are discarded. Generalized cross

validation (GCV), Hansen [1994], is a widely accepted technique for estimating the optimal

regularization parameter k. The optimal k is found by minimizing

G(k) =
‖Axk − b‖2

2

(trace(I− AA†k))2
,

where A†k =
∑k

i=1 u
T
i σ
†
ivi, and is used here for determining the optimal regularization

parameter k for the truncation approach. The regularization parameter obtained through

GCV often approximately enforces the numerical rank accurately. GCV, however, will

also occasionally fail to produce a viable regularization parameter. Figure 2.4 shows the

GCV function with the obtained truncation parameter k for shaw with m = n = 128 and

η = 1 in Figure 2.4a along with the computed solution xk versus the true solution xtrue in

Figure 2.4b.

2.4.2 Tikhonov Regularization

Standard Tikhonov regularization, Hansen [1994], defines x as the minimizer of

1

2
‖Ax− b‖2

2 +
α2

2
‖x‖2

2.
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Figure 2.4: The GCV function is plotted versus choice of truncation parameter k for shaw
with n = 128 and noise level η = 1 in Figure 2.4a, and the related truncated solution xk is
shown along with the true solution xtrue in Figure 2.4b.

The regularization parameter α weights the contributions between the two terms. Differen-

tiating with respect to x shows that x is obtained as the solution of the normal equations:

0 =
∂

∂x

(
1

2
‖Ax− b‖2

2 +
α2

2
‖x‖2

2

)
=

∂

∂x

(
1

2
(Ax− b)T (Ax− b) +

α2

2
xTx

)
=

1

2

∂

∂x

(
xTATAx− bTAx− xTATb+ bTb+ α2xTx

)
= ATAx− ATb+ α2x.

The optimal solution is x = (ATA + α2I)−1ATb, ie x solves the normal equations for the

augmented system  A

αI

x =

 b
0

 .
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Notice that

(ATA+ α2I)†AT = (V Σ2V T + α2V V T )†V ΣUT

= V (Σ2 + α2I)†ΣUT

= V (Σ2 + α2I)†Σ2Σ†UT

= V ΦΣ†UT ,

where now Φ := (Σ2 + α2I)†Σ2. Filter factors φi ∈ [0, 1] depend on regularization param-

eter α, where φi are diagonal elements Φi,i = φi = σ2
i /(σ

2
i + α2).

Define A†α := V ΦΣ†UT . Then

xα :=
∑
σi 6=0

φi
uTi b

σi
vi = V ΦΣ†UTb = A†αb. (2.4)

The optimal filter factors transition from φi ≈ 1 for i < k to φi ≈ 0 for i > k for

approximate numerical rank k. Notice that φi = 1 for i ≤ k and φi = 0 for i > k

produces the truncation approach given in (2.3). Figure 2.5 illustrates the optimal filter

factors obtained through GCV for a truncation approach versus Tikhonov regularization.

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k = 15

 = 1.4817e-09

Figure 2.5: Filter factors are shown for shaw with n = 32 and noise level η = 1e−3,
based on the optimal truncation parameter k for a truncation approach, and also for filter
factors dependent on regularization parameter α for Tikhonov regularization.

Setting α = 0 produces the standard least squares (LS) solution x = (ATA)−1ATb if

(ATA) has full rank. When A is underdetermined, ATA is guaranteed to be singular, and
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the substitution x = ATy is implemented instead. Then y = (AAT )−1b, provided A has

full rank, resulting in the solution x = AT (AAT )−1b. In general, the two solutions are

related by the pseudo-inverse A† = V Σ†UT since

AT (AAT )† = V ΣUT (UΣΣTUT )† = V ΣUT (UT )−1(ΣΣT )†(U)−1 = V Σ†UT

and

(ATA)†AT = (V ΣTΣV T )†V ΣUT = (V T )−1(ΣTΣ)†(V )−1V ΣUT = V Σ†UT .

It has also been shown that implementing a positive definite diagonal weighting matrix

W produces the weighted LS problem,

1

2

∥∥W 1/2(Ax− b)
∥∥2

2
. (2.5)

which is minimized by the solution of the weighted normal equations ATWAx = ATWb.

Standard Tikhonov regularization can also be extended to impose properties on the

solution by incorporating structured matrix L and minimizing

1

2
‖Ax− b‖2

2 +
α2

2
‖Lx‖2

2

where now (ATA + α2LTL)x = ATb. If L is invertible and N (A) ∩ N (L) = 0, then

(LT )−1(ATA+ α2LTL)L−1Lx = ((LT )−1ATAL−1 + α2I)Lx = (LT )−1ATb, which now

fits the standard Tikhonov regularization for Ã = AL−1 with solution x = L−1(ÃT Ã +

α2I)−1ÃTb. Note that when L is not invertible, an analytic solution can be obtained using

a generalized SVD, Golub and Van Loan [2013], which is not considered here.

Tikhonov regularization is easy to implement since it provides a unique solution for

each α, but depends on finding an optimal α. Although there are many methods to deter-

mine an appropriate regularization parameter, the focus here is on the unbiased predictive

risk estimator (UPRE), Vatankhah et al. [2017], Vogel [2002]. Suppose that the noise in
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the data has variance σ = 1, then the UPRE minimizes

U(α) =
∥∥(AA†α − I

)
b
∥∥2

2
+ 2trace

(
AA†α

)
−m, (2.6)

providing an estimate on how well the regularized solution predicts btrue. In general,

weighting W = C−1, based on the covariance C in noise in (2.5), whitens the Gaussian

noise in the data, and (2.6) can be applied.

2.4.3 Minimum p-Norm

Minimization using a 2-norm produces a smooth solution, which can lead to over-

smoothing. Other choices of norm are often used based on desired characteristics. For

example, the 1-norm tends to be better at edge detection than the 2-norm. In general, min-

imization can be implemented via q and p-norms by minimizing, Rodriguez and Wohlberg

[2006],
1

q
‖Ax− b‖qq +

α2

p
‖x‖pp . (2.7)

Whereas the 2-norm on both terms, q = p = 2, provides an analytic solution, this is not

available for general p and q. Many methods exist for the solution of this mixed p-q problem

given by (2.7). Here the focus is on one approach that recasts (2.7) as a 2-norm problem.

The iteratively reweighted LS (IRLS) method, Rodriguez and Wohlberg [2006], itera-

tively applies a weighted norm such that ‖x‖pp ≈
∥∥W 1/2x

∥∥2

2
. Specifically,

‖x‖pp =
m∑
i=1

|xi|p ≈
m∑
i=1

(
xi

(x2
i + ε2)(2−q)/4

)2

= ‖Wx‖2
2,

where wi = (x2
i + ε2)−(2−q)/4 are the diagonal elements of W and ε � 1 is chosen to

avoid dividing by values close to zero. Since W is based on the unknown solution, either

an initial guess for x is used to produce an estimate W (1), or W (1) = I is used. W (k)

is updated iteratively until a stopping condition is met, ie ‖x‖pp ≈ ‖W (x(k−1))x(k)‖2
2 for

iteration k.
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2.5 Large-Scale Inversion for 3D Problems

Obtaining a solution for an inverse problem can become prohibitively expensive as the

size of the problem increases. For example, consider the 3D problem associated with the

inversion of gravity and magnetic data. The 3D Fredholm integral equation of the

first kind, which describes these two models, is given by

d(a, b, c) =

∫ ∫ ∫
h(a, b, c, x, y, z)ζ(x, y, z)dx dy dz. (2.8)

Here, consistent with geophysics literature, the discrete forward model is denoted by d =

Gm. Thus, for results specific to gravity and magnetic the general system is replaced

by d = Gm. The data measurements for d(a, b, c) are made on the surface with c = 0, not

necessarily at uniformly-spaced station locations denoted by

sij = (aij, bij), 1 ≤ i ≤ sx, 1 ≤ j ≤ sy. (2.9)

The total number of stations at the surface is m = sxsy. The volume domain is discretized

into n = sxsynz uniform prisms, cpqr, with coordinates

xp−1 = (p− 1)∆x xp = p∆x, 1 ≤ p ≤ sx,

yq−1 = (q − 1)∆y yq = q∆y, 1 ≤ q ≤ sy,

zr−1 = (r − 1)∆z zr = r∆z, 1 ≤ r ≤ nz.

(2.10)

The geometry is illustrated in Figure 2.6, in which the configuration of station at location

(i, j) relative to volume prism pqr is shown. Here the blocks in the z-direction define depth

z ≥ 0 pointing down, and it is assumed there is one station located above each prism, so

that there are sx and sy blocks in the x and y-directions, respectively.

The entries in G depend on the integral of kernel h and correspond to the unit contri-

bution from a given prism to a particular station. The ordering of the entries depends on

the organization of the volume domain into a vector of length, n = sxsynz. The multilayer
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Figure 2.6: The configuration of prism pqr in the volume relative to a station on the surface
at location sij = (aij, bij). This shows that the stations are located on the surface of the
physical domain.

model, in which the volume is organized by slices in depth, yields

G = [G(1), G(2), . . . , G(nz)]. (2.11)

Each G(r) has size sxsy × nxny = m × nr, where there are nr prisms in slice r, and

maps from the prisms in depth slice r, with depth coordinates zr−1 and zr, to the station

measurements. Further, G(r) decomposes as a block matrix with block entries G(r)
jq , 1 ≤

j ≤ sy, 1 ≤ q ≤ ny each of size sx × nx. Equivalently, this means that a given slice

of the volume with syny blocks is mapped to a one dimensional vector using row-major

ordering; the prisms in the slice are swept through for increasing x and fixed y direction.

Entry (G(r))k`, 1 ≤ k ≤ sxsy, 1 ≤ ` ≤ nxny represents the contribution from the prism at

location ` = (q− 1)nx + p, for 1 ≤ q ≤ ny and 1 ≤ p ≤ nx, for depth slice r, to the station

at k = (j − 1)sx + i, 1 ≤ j ≤ sy, 1 ≤ i ≤ sx. Using h̃(sij)pqr to denote the function that
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calculates the contribution to station sij from prism cpqr, then

(G(r))k` = h̃(sij)pqr, k = (j − 1)sx + i, ` = (q − 1)nx + p. (2.12)

Assuming that the discussion is applied for slice r, the dependence of h̃ on depth is removed

and h̃(sij)pq is used to indicate the contribution to station sij = (aij, bij) due to block num-

ber p in x and q in y. Further, while the discussion is applied under the assumption of a

uniform depth interval, ∆z, the approach applies equally well for problems in which the

multilayer coordinate grid has layers of different depths, see e.g. Zhang and Wong [2015].

Further discussion on the calculation of h̃ for the gravity and magnetic models is

given in Chapter 3. The notation used for the solution of gravity and magnetic prob-

lems is provided in Table 2.1.

2.5.1 Computation Limitations for Large-scale 3D Problems

The kernel sizes for gravity and magnetic problems are based on number of sta-

tions in the x direction, number of stations in the y direction, and number of layers of depth,

namely nx, ny, and nz respectively. The number of values in the kernel is (nxny)
2nz. Thus,

for nx = 100 and ny = 50 with nz = 10, there are 2.5e8 elements in the kernel matrix.

Assuming 8 bytes per number, this requires 2GB of memory.

In addition, calculating the SVD requires O (nxny(nxnynz)
2) floating-point operations

(flops), Golub and Van Loan [2013]. Using the same example, the SVD would require

O (1.25e13) flops. In contrast, matrix-vector multiplication would require approximately

2(nxny)
2nz = 5e8 flops. Thus, for large-scale problems, mitigating or avoiding the cost of

directly calculating the SVD is highly desirable.

Doubling the number of grid points in the y direction produces nx = ny = 100 and

nz = 10, with 109 elements in the kernel, requiring 8GB of memory. The SVD now

requires O (1014) flops, whereas matrix-vector multiplication requires approximately 2e9
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Table 2.1: Notation Adopted in the Discussion

sx # true stations in x
sij = (aij, bij) Station location

sy # true stations in y
m = sxsy # measurements
nx, ny, nz # coordinate blocks in x,y,z

∆x,∆y,∆z Grid sizes in x,y,z
pxL , pxR , px Left, right, total padding: x

nx nx = sx + px

pyL , pyR , py Left, right,total, padding: y
ny ny = sy + py

xp xp = (p− 1− pxL)∆x, 1 ≤ p ≤ nx + 1

n = nxnynz Volume Dimension
yq yq = (q − 1− pyL)∆y, 1 ≤ q ≤ ny + 1

nr = nxny Layer Dimension
zr zr = (r − 1)∆z, 1 ≤ r ≤ nz + 1

cpqr Prism pqr in xyz
d, h, ζ Forward Model, see (2.8)
h̃(sij)pqr Projection cpqr to sij
G ∈ Rm×n (G(r))k` = h̃(sij)pqr, see (2.12)

G(r) ∈ Rm×nr Depth r Contribution
G

(r)
q ∈ Rsx×nx G

(r)
q = G

(r)
1q , 1 ≤ q ≤ ny

Ḡ
(r)
j ∈ Rsx×nx Ḡ

(r)
j = Ḡ

(r)
j1 , 1 ≤ j ≤ sy

cq, rq G
(r)
q = toeplitz(cq, rq), see (3.12)

c̄j , r̄j Ḡ
(r)
j = toeplitz(c̄j, r̄j), see (3.21)

BTTB Block Toeplitz Toeplitz blocks
symBTTB Symmetric BTTB

BCCB Block Circulant Circulant blocks
Jm Exchange matrix, Defn. 3.1.1

cext
q , rext

q Defining (G(r))circ

c̄ext
j , r̄ext

j Defining (Ḡ(r))circ

T Components of BCCB, see (3.37)
T̂ fft2(T ) : 2DFFT
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flops. As further grid refinement is desired, this problem quickly becomes intractable in

terms of both memory and computations. The remaining focus of this dissertation is on

reducing the dimensionality, and thus memory and computational requirements associated

with solving large-scale inverse problems.

Techniques to handle these large-scale problems, with respect to storage and computa-

tional cost, will also be the focus of later chapters.

2.6 Conclusions

A brief overview of the most relevant aspects of the solution of inverse problems, to be

used in later chapters, has been provided. Also of interest, the large-scale 3D gravity

and magnetic problems have been described in general form.

19



Chapter 3

USING STRUCTURE TO REDUCE COMPUTATIONS OF FORWARD OPERATIONS

FOR LARGE-SCALE GRAVITY AND MAGNETIC KERNELS

Overview of Chapter

This chapter provides a general discussion on Toeplitz and circulant matrices and fast

Fourier based multiplication. Block structure is taken into account with the extended two-

dimensional Fourier based multiplication. This is followed by a detailed tutorial on the

efficient generation of sensitivity matrices with BTTB structure and their efficient for-

ward multiplication using the 2DFFT. The approach depends on the underlying convo-

lution kernel that describes the model. This work, therefore, provides a general tool for

the efficient simulation of gravity and magnetic field data, as well as any formulation

which admits a model matrix with BTTB structure. It will be shown that the fast convo-

lution multiplication can be extended for rectangular kernel matrices. Results will validate

that there is a considerable reduction in computational cost for generation of these matri-

ces, and for forward and transpose operations with these matrices.The algorithm is open

source and available at https://github.com/renautra/FastBTTB, along with

a full description of the algorithm implementation and example simulations at https:

//math.la.asu.edu/˜rosie/research/bttb.html.

Fast computation of geophysics kernel models has been considered by a number of

authors, including calculation within the Fourier domain as in Li et al. [2018], Pilkington

[1997], Zhao et al. [2018], and through discretization of the operator and calculation in

the spatial domain as in Chen and Liu [2018], Zhang and Wong [2015]. Pilkington [1997]

introduced the use of the Fast Fourier Transform (FFT) for combining the evaluation of the
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magnetic kernel in the Fourier domain with the conjugate gradient method for solving

the inverse problem to determine magnetic susceptibility from measured magnetic

field data. Li et al. [2018] considered the use of the Gauss FFT for fast forward modeling

of the magnetic kernel on an undulated surface, combined with spline interpolation of

the surface data. This work focused on the implementation of the model in the wave number

domain and only applied the method for forward modeling. The Gauss FFT was also used

by Zhao et al. [2018] for the development of a high accuracy forward modeling approach

for the gravity kernel.

Bruun and Nielsen [2007], and subsequently, Zhang and Wong [2015], introduced the

use of the Block-Toeplitz-Toeplitz-Block (BTTB) structure of the modeling sensitivity ma-

trix for fast three-dimensional inversion of three-dimensional gravity and magnetic

data. For a matrix with BTTB structure, it is possible to embed the information within a

matrix of Block-Circulant Circulant-Block (BCCB) structure that facilitates fast forward

multiplication using a two-dimensional FFT (2DFFT). For three-dimensional modeling,

Zhang and Wong [2015] exploited the two-dimensional multi-layer structure of the kernel,

that provides BTTB structure for each layer of the domain, and performed the inverse op-

eration iteratively over all layers of the domain. The technique is flexible to depth layers

of variable heights, and permits the inclusion of smoothness stabilizers in the inversion, for

each layer of the domain. Moreover, Zhang and Wong [2015] adopted the preconditioning

of the BTTB matrix using optimal preconditioning operators as presented in Chan and Jin

[2007] for implementing efficient and effective solvers for the inversion.

A fast forward modeling of the gravity field was developed by Chen and Liu [2018],

using the three-dimensional modeling of the gravity kernel as given in e.g. Boulanger

and Chouteau [2001], Haáz [1953]. Their work extends the techniques of Zhang and Wong

[2015] for taking advantage of the BTTB structure of the sensitivity matrix associated with

a single layer of the gravity kernel, but offers greater improvements in the implementa-
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tion of the forward kernel through the presentation of an optimized calculation of the kernel

entries in this matrix. This arises due to the observation that the uniform placement of the

measurement stations, in relation to the coordinate grid for the unknown densities, yields

significant savings in computation and memory. When the stations are on a grid that is

uniformly staggered with respect to the coordinate grid on the top surface of the coordinate

domain, redundant operations in the calculation of the sensitivity matrix can be eliminated.

A careful derivation of the forward operators for kernels that are spatially invariant in

all dimensions, and are thus convolution operators, is presented. With uniform placement

of measurement stations relative to the coordinate domain, namely on staggered grids in

the x and y dimensions, the resulting discretizations of the first kind Fredolm integral oper-

ators, Zhdanov [2002], yield sensitivity matrices that exhibit BTTB structure. Dependent

on the model, the matrices are symmetric BTTB (symBTTB) or BTTB but not symmet-

ric. This depends on the kernel operator, the gravity kernel, Boulanger and Chouteau

[2001], is symmetric in the distances, but the magnetic kernel, Rao and Babu [1991]

is not. Thus, the generation of the sensitivity matrix requires further analysis for efficient

computation in the case of the magnetic kernel as compared to the gravity kernel.

It is demonstrated that it is feasible to develop an optimized calculation of the entries of

the magnetic kernel matrix, in a manner similar to that used for the gravity case, but

due to lack of symmetry the memory and computation requirements are increased. Still,

remarkable savings in generating the matrix are achieved. While it is not possible to take

advantage of BTTB structure when the stations are not on a uniform grid, the calculation

of the underlying kernel matrices can still be optimized for arbitrary stations locations, by

reuse of common vectors and arrays for each depth layer of the coordinate volume.

Although the BTTB structure for the gravity kernal has been discussed in the literature,

the analysis for the magnetic kernel is new. Moreover, this work provides both the care-

ful derivation of the matrices that arise, and the associated implementation of the 2DFFT
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for fast computation of forward multiplications with the matrix and its transpose. This

is described in the submitted paper Hogue et al. [2019], where the intent is to provide a

user-friendly environment for the development and validation of kernel operators that yield

the underlying BTTB structures which facilitate the fast computation of both forward and

transpose operations. Before presenting this discussion for the specific kernels, a general

introduction to Toeplitz matrices, BTTB matrices, and the use of the 2DFFT is provided.

Overview of main scientific contributions. The approach implements and extends the

BTTB algorithm for the forward modeling with the magnetic kernel, and for the inclu-

sion of padding around the domain. Specifically, the main contributions are as follows. (i)

A detailed derivation of the implementation of the algorithm presented in Chen and Liu

[2018] for the forward modeling of the gravity problem is given; (ii) The algorithm is

extended to include domain padding in x and y directions, that is not necessarily symmetric

with respect to the domain and is no longer limited to a square kernel with square blocks;

(iii) The use of the 2DFFT for forward multiplication using the transpose matrix, as is

required for the solution of the associated inverse problem is demonstrated; (iv) The algo-

rithm, with and without padding, is further extended for matrices that are not symmetric,

as occurs for the magnetic kernel; (v) Efficient derivation of the underlying operators

to be used without the 2DFFT is also provided, so as to facilitate a realistic performance

comparison between the use of the 2DFFT for the forward multiplication and a direct for-

ward multiplication without the use of the 2DFFT; (vi) All components of the discussion

are coded for optimal memory, storage and computation as an open source MATLAB code

which can be adapted for any convolution kernel which generates a BTTB matrix. The user

need only provide the algorithm for the computation of the original matrix components.

The chapter is organized as follows. In Section 3.1 a general discussion is given on the

formulation that facilitates the use of the 2DFFT, following the discussion of Vogel [2002].

The general kernel-based forward geophysics model presented in Section 2.5, is extended
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in Section 3.2, specifically in Section 3.2.1 for convolutional kernels as seen for gravity

and magnetic potential fields. In Section 3.2.2, it is demonstrated how the placement

of the measurement stations as uniformly staggered with respect to the coordinate domain

yields a distance vector for distances from coordinates to stations that is efficiently stored

as a one-dimensional instead of two-dimensional vector. It is shown how operators that are

spatially invariant yield matrix operators with BTTB structure, for the symmetric case in

Section 3.2.3 and the non-symmetric case in Section 3.2.4. This applies also for the case

of the introduction of padding around the domain, Section 3.3, for the symmetric case in

Section-3.3.1 and the non-symmetric case in Section 3.3.2. In each case the calculation

of the relevant entries of the matrices are carefully explained. Specific examples are given

in Section 3.4 for the efficient derivation of the entries in the operators for gravity and

magnetic kernels, following Chen and Liu [2018] and Rao and Babu [1991], in Sec-

tions 3.4.1 and 3.4.2, respectively. The improved efficiency of forward operations with the

matrix and its transpose for these kernels is demonstrated for domains of increasing size.

The presented numerical results in Section 3.5 validate that the given algorithms are effi-

cient and facilitate forward modeling for problems that are significantly larger as compared

to the case when the BTTB structure is not utilized for fast computation with the 2DFFT.

Software availability is discussed in Section 3.5.1.

3.1 Circulant Operators and the 2DFFT

An introduction of the structured matrices that are useful throughout the discussion is

provided. First, assume B ∈ Rm×m has block structure with blocks Bij ∈ Rnx×nx for

1 ≤ i ≤ ny and 1 ≤ j ≤ ny, and thus m = nxny. Now assume each block is Toeplitz.
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Specifically,

Bij =



a0 a1 · · · anx−1

a−1
. . . . . . ...

... . . . . . . a1

a1−nx
. . . a−1 a0


(3.1)

is a Toeplitz matrix with 2nx− 1 unique elements. Notice that Bij can be defined solely by

its first column and row, namely c and r respectively. MATLAB style notation toeplitz(c, r)

is used to denote this relationship.

Any Toeplitz matrix can be embedded in a circulant extension,

E =



a0 a1 · · · anx−1 a1−nx · · · a−1

a−1
. . . . . . . . . . . . . . . ...

... . . . . . . a1
. . . . . . a1−nx

a1−nx
. . . a−1 a0

. . . . . . anx−1

anx−1
. . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . a1

a1 · · · anx−1 a1−nx · · · a−1 a0



,

where this circulant matrix also has 2nx−1 unique elements, and can be defined by its first

column [
a0 a−1 · · · a1−nx anx−1 · · · a1

]T
.

Further, assume B has block Toeplitz structure, so B can be written

B =



A0 A1 · · · Any−1

A−1
. . . . . . ...

... . . . . . . A1

A1−ny
. . . A−1 A0


, (3.2)

where each Ai is Toeplitz. This structure is called block Toeplitz with Toeplitz blocks

(BTTB), and B now has 2ny − 1 unique blocks. Abusing MATLAB notation, denote this
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relationship by toeplitz(C,R), where C and R contain the defining block column and row

respectively.

Similar to the circulant extension ofBij , B can be extended to form a 2ny−1×2ny−1

block circulant matrix. The defining first column of blocks for the block circulant extension

is given by [
ET

0 ET
−1 · · · ET

1−nx ET
nx−1 · · · ET

1

]T
, (3.3)

where each Ej is a circulant extension of Aj . This produces a matrix E that is block

circulant with circulant blocks (BCCB) that has 2ny − 1 defining blocks with 2nx − 1

unique defining elements in each block. Thus the first column of E contains all of the

unique defining elements.

Specifically, the defining first column of each circulant extension from the first defining

column of blocks is stored as T ∈ R(2nx−1)×(2ny−1), given by

T =

[
E0e1 E−1e1 · · · E1−nxe1 Enx−1e1 · · · E1e1

]
,

where elementary matrix e1 is the first column of the identity matrix and thus Eje1 is the

first column of Ej .

Compact notation that is useful for defining circulant extensions is now introduced,

which depends on the exchange matrix.

Definition 3.1.1 (Exchange matrix). The exchange matrix is the m ×m matrix Jm which

is everywhere 0 except for 1’s on the principal counter diagonal.

Given arbitrary vector x of length m, with entries xi, 1 ≤ i ≤ m, then Jmx = y where

yi = xm−i+1, namely it is the the vector with the order of the entries reversed. Equivalently,

for matrix A with rows ai, 1 ≤ i ≤ m, then JmA = B where B is the matrix with rows

in reverse order, bi = am−i+1. Further, multiplying on the right reorders the columns in

reverse order. Specifically, JTm = Jm, and thus yT = (Jmx)T = xTJTm = xTJm and the
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column entries of y are in reverse order as compared to x. In the same way, AJm gives the

matrix with the columns in reverse order. In MATLAB the exchange matrix is implemented

using the functions flipud and fliplr, for “up-down” and “left-right”, for multiplication with

Jm on the left and right, respectively.

Now the defining first column of each Ej is given by

cext
j =

 cj

Jnx−1rj(2 : nx)

 . (3.4)

While (3.4) can be used as a defining vector to explicitly generate the extensions Ej as

circulant matrices, here the intent is to define the vectors that define the extensions but not

to generate the extensions. Note that this definition for generating the extension differs from

that used in Li et al. [2018], Vogel [2002], Zhang and Wong [2015]; the extra 0 is omitted

for convenience. Also, the circulant extension is defined directly instead of performing a

series of transformations.

Consider the right shift matrix

SR =



0 · · · 0 1

1 0 · · · 0

0
. . . . . . ...

0
. . . 1 0


.

Then the circulant extension of each block Aj from BTTB matrix B can also be written

using defining elements ak for k = 1− nx,−nx, · · · , nx − 1 as

Ej =
nx−1∑

k=1−nx

akS
−k
R . (3.5)

Similarly, the BCCB extension of B defined by T can be written

E =

ny−1∑
j=1−ny

S−jR ⊗ Ej,
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where the Kronecker product is defined by

D ⊗ Z =


d11Z · · · d1nZ

... . . . ...

dm1Z · · · dmnZ

 .
Now matrix SR is useful for analyzing the convolution. Let F be the Fourier matrix,

where F T = F , F−1 = F ∗, and Fi1 = 1 for all i. This provides the similarity transform of

SR.

Lemma 3.1.1. [Vogel, 2002, Lemma 5.15] Let ω = exp(−2π
√
−1/n). Then

SR = F ∗diag(1, ω, ω2, . . . , ωn−1)F.

Proof. Fij = ωij/
√
n. Consequently,

[
F ∗diag(1, ω, ω2, . . . , ωn−1)F

]
ij

=
1

n

n−1∑
k=0

ω̄ikωkωjk =
1

n

n−1∑
k=0

ω(j+1−i)k.

Thus, (SR)ij = 1 if i = j − 1, and (SR)ij = 0 if i 6= j − 1.

Consequently, as shown in Davis [1979], a circulant matrix is diagonalizable by a

Fourier matrix.

Theorem 3.1.2. [Davis, 1979, Theorem 3.2.3] Let Λj = diag([λ1, λ2, . . . , λn]). Then

Ej = F ∗ΛjF (3.6)

is circulant.

Extending Lemma 3.1.1 to (3.5),

FEjF
∗ = F (

2nx−1∑
k=1

tjkS
(k−1)
R )F ∗ =

2nx−1∑
k=1

tjkFS
k−1
R F ∗.

Since SpR = (F ∗ΛSRF )p = F ∗Λp
SR
F for ΛSR = diag(1, ω, ω2, . . . , ωn−1), it is immediate

that FEjF ∗ is a diagonalized matrix.
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Now rewriting (3.6) yields

FEje1 = ΛjFe1 = λj,

where λj ∈ Rnx contains diagonal entries of Λj . Forward multiplication Ejx can then be

computed as

Ejx = F ∗ΛjFx = F ∗(λj · ∗(Fx)),

where ·∗ signifies element-wise multiplication.

It remains to be seen how this method applies to the full block matrix. But, following

Vogel [2002], the 2DFFT can be written in terms of a Kronecker product. Hence, operations

using E are accomplished via the 2DFFT. Define x = vec(X) such that the columns the

columns of X ∈ Rm×n are stacked to form x ∈ Rmn, let X = array(x) be the inverse

operation, and let fft2() denote the 2DFFT.

Proposition 3.1.3. [Vogel, 2002, Proposition 5.30] Given X ∈ Cnx×ny ,

fft2(X) = array((Fny ⊗ Fnx)x),

where Fourier matrices Fnx ∈ Cnx×nx , Fny ∈ Cny×ny .

Then, array((Fny ⊗Fnx)x) = FnxXF
T
ny = FnxXFny . Now considering BCCB matrix

E,

(Fny ⊗ Fnx)E(Fny ⊗ Fnx)∗ = (Fny ⊗ Fnx)(
2ny−1∑
j=1

Sj−1
R ⊗ Ej)(F ∗ny ⊗ F

∗
nx).

Given (A⊗B)(C ⊗D) = (AC)⊗ (BD),
2ny−1∑
j=1

(Fny ⊗ Fnx)(S
j−1
R ⊗ Ej)(F ∗ny ⊗ F

∗
nx) =

2ny−1∑
j=1

(FnyS
j−1
R F ∗ny)⊗ (FnxEjF

∗
nx).

Since (FnyS
j−1
R F ∗ny) and (FnxEjF

∗
nx) have both been shown to be diagonal and the Kro-

necker product of two diagonal matrices is also diagonal, this reduces to a sum of diagonal

matrices. Thus

(Fny ⊗ Fnx)E(F ∗ny ⊗ F
∗
nx) = Λ
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is a diagonal matrix, and BCCB matrix E is diagonalized by a 2DFFT. In addition,

(Fny ⊗ Fnx)Ee1 = Λ(Fny ⊗ Fnx)e1 = λ,

where λ ∈ Rnxny contains the diagonal elements of Λ. Note that (Fny ⊗ Fnx)Ee1 =

vec(Fnxarray(Ee1)Fny), where

array(Ee1) ∈ Rnx×ny = [E0e1, E−1e1, · · · , E1−nxe1, Enx−1e1, · · · , E1e1].

Now, T = array(Ee1) with T̂ = array((Fny⊗Fnx)Ee1). Then forW ∈ R(2nx−1)×(2ny−1)

with w = vec(W ),

Ew = (F ∗ny ⊗ F
∗
nx)Λ(Fny ⊗ Fnx)w = (F ∗ny ⊗ F

∗
nx)(λ · ∗((Fny ⊗ Fnx)x)).

Notice that (Fny⊗Fnx)w = vec(FnxWFny). Removing the vectorization from the element-

wise multiplication yields

Ew = (F ∗ny ⊗ F
∗
nx)(T̂ · ∗(FnxWFny)).

Now for U ∈ Rnx×ny with u = vec(U), define W by

W =

 U 0nx(ny−1)

0(nx−1)ny 0(nx−1)(ny−1)

 , (3.7)

using 0mn to denote a matrix of zeros of size m× n, and compute

array(Ew) = T ? W = ifft2(T̂ · ∗Ŵ ). (3.8)

Here ? denotes convolution, ifft2 denotes the inverse 2DFFT, and Ŵ = fft2(W ). But

now to obtain Bu from this product, notice that each Bij is in the upper left block of the

corresponding Ej and u(j) is segmented such that it multiplies with the first nx entries in

block column j. Hence,  Bij †

† †


 u(j)

0

 =

 Biju(j)

†

 ,
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where † shows an omission of entries.

This form can be extended to E as a whole, producing

Ew = vec


 ∑j B1ju(j)

∑
j B2ju(j) · · ·

∑
j Bnyju(j) † · · · †

† † · · · † † · · · †


 .

Thus,Bu can be extracted as the top left nx×ny block ofEw before vectorizing the result.

It is immediate that a set of equivalent steps can be used to calculate BTv, where

v = vec(V ) for matrix V , since BT is also BTTB. In addition, BT is embedded in ET .

The matrix T̃ defining the BCCB extension of BT uses T with columns 2 through 2ny − 1

swapped left to right, and rows 2 through 2nx − 1 swapped top to bottom. As shown by

Bruun and Nielsen [2007], however, the complex conjugate can be used to produce the

transpose operation. For z ∈ Rnxny ,

ETz =
(

(F ∗ny ⊗ F
∗
nx)Λ̄(Fny ⊗ Fnx)

)
z = (F ∗ny ⊗ F

∗
nx)(

¯̂
T · ∗(FnxZFny)),

and

zTE = zT (F ∗ny ⊗ F
∗
nx)Λ(Fny ⊗ Fnx)

= ((F ∗ny ⊗ F
∗
nx)Λ̄(Fny ⊗ Fnx)z)∗

= ((F ∗ny ⊗ F
∗
nx)(

¯̂
T · ∗(FnxZFny)))T .

Thus, when T̂ is available, the transpose operations can be performed using the complex

conjugate of T̂ . Since BT has blocks ATj ∈ Rnx×nx with block dimensions ny × ny, BTv

can also be extracted as the top left nx × ny block of array(ETz) before vectorizing the

result.

Now suppose the multiplication DLBDRu is needed, where DL and DR are diago-

nal with diagonal elements in vectors dL and dR respectively. The product DLBDRu

is accomplished via DL(B(DRu)), where now B(DRu) is obtained via the fast 2DFFT
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based multiplication using a BCCB extension of B, and computational cost is further re-

duced by using element-wise multiplication dL · ∗(B(dR · ∗u)). Specifically, using BCCB

extension E of BTTB matrix B with corresponding extension w of dR · ∗u, compute

Ew = (F ∗ny ⊗ F ∗nx)λ · ∗(Fny ⊗ Fnx)w, and extract b = B(DRu) vectorized from the

upper-left nx × ny block of Ew. Finally, DLBDRu = dL · ∗b. Moreover, a similar

approach is used for DRB
TDLv, but using the complex conjugate as detailed above.

Input: That for T̂ : see Table 3.1;
x : vector for forward or transpose multiplication;
t : 1 or 2 for forward or transpose multiplication, respectively;
prob params : required parameters see Table 3.1
Output: vector: b of size m or n, for t = 1, 2, respectively.

1 Extract parameters from prob params ;
2 Initialize zero array for b and W ;
3 if t == 2 then
4 Initialize W according to (3.39) ;
5 Take transform of W : Ŵ = fft2(W );
6 end
7 for j = 1 : nz % For all layers of domain do
8 switch t do
9 case 1 do

10 Initialize W according to (3.38);
11 Take transform of W : Ŵ = fft2(W );
12 Form convolution (3.8): W = real(ifft2(That(:, :, j) · ∗Ŵ ));
13 Extract and accumulate top left block:

b = b + reshape(W (1 : sx, 1 : sy),m, 1);
14 end
15 case 2 do
16 Form convolution (3.8): Z = real(ifft2(conj(That(:, :, j) · ∗Ŵ )));
17 Extract top left block and assign to output:

b((j − 1)nr + 1 : jnr) = reshape(Z(1 : nx, 1 : ny), nr, 1);
18 end
19 end
20 end

Algorithm 1: b = mult BTTB(That,x, t, prob params)
This algorithm calculates the forward and transpose multiplication, Gx, or GTx as
described in Section 3.1 using the embedding of the BTTB matrix in a BCCB matrix
and the 2DFFT. The transform of (3.36) or (3.37) for symBTTB and BTTB, respec-
tively, is precomputed and provided in That. See Table 3.1 for definitions of input
parameters.
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Now suppose also that G is a column block matrix,

G =

[
G(1), G(2), · · · G(nz)

]
,

and each G(r) is BTTB. Then it is also efficient to apply the 2DFFT based multiplication

for Gu and GTv, where u ∈ Rmnz and v ∈ Rm. Specifically, partition u into ur ∈ Rm for

1 ≤ r ≤ nz. Then

Gu =
nz∑
r=1

G(r)ur, and GTv =



(
G(1)

)T
v(

G(2)
)T

v

...(
G(nz)

)T
v


. (3.9)

Now each G(r)ur and
(
G(r)

)T
v can be obtained via the 2DFFT based multiplication for

each respective circulant extension. This leads to the specific case of application for the rest

of this chapter, namely gravity and magnetic forward operations. Matrix operations

using BCCB extensions for a BTTB matrix are demonstrated in Algorithm 1.

3.2 Matrix Structure for Spatially Invariant Kernels

The structure of the matrices is considered that arise for spatially invariant kernels, and

the associated computations that are required. The discussion is presented first for domains

without padding in Section 3.2.3, and then the modifications that are required when domain

padding is introduced, Section 3.3.1. This will show that the kernels generate matrices that

contain BTTB structure.

3.2.1 Spatially Invariant Kernels

This discussion focuses on kernels that are spatially invariant in all dimensions:

h(a, b, c, x, y, z) = h(x− a, y − b, z − c).
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Then, considering a single slice at depth z, the calculation of (2.12) depends on the differ-

ences (x−a) and (y−b) for all station and prism coordinates, (2.9) and (2.10), respectively.

Using the matrices

(DX)ij,p = (xp − aij) 0 ≤ p ≤ nx

(DY )ij,q = (yq − bij) 0 ≤ q ≤ ny

 1 ≤ i ≤ sx, 1 ≤ j ≤ sy,

the distances for block pq, 1 ≤ p ≤ nx and 1 ≤ q ≤ ny, are obtained from distance

matrices (DX)p−1 and (DX)p in x and likewise from (DY )q−1 and (DY )q in y. Now,

these matrices are independent of the slice coordinate r, and, under the assumption that the

prisms are uniform in the x− and y− dimensions,

(DX)p = (DX)p−1 + ∆x, 1 ≤ p ≤ nx, (DY )q = (DY )q−1 + ∆y, 1 ≤ q ≤ ny.

Thus, all matrices (DX)p and (DY )q can be obtained directly from (DX)0 and (DY )0

and they are independent of the slice, regardless of the locations of the stations relative to

the prisms. When the stations are on a uniform grid so that aij is independent of j and bij

is independent of i, then the sizes of matrices (DX)0 and (DY )0 are reduced in the first

dimension to sx and sy, respectively. It is practical, therefore, to store (DX)0 and (DY )0

entirely, and update an entire slice of the domain without recalculating (DX)0 and (DY )0

across slices, regardless of the station locations. Still, greater optimization is achieved

when the stations are located also on a uniform grid.

3.2.2 Placement of the Stations at the Center of the Cells

Now, following Boulanger and Chouteau [2001], Chen and Liu [2018], suppose that

the stations are placed at the centers of the cells such that ai = (i− 1
2
)∆x, 1 ≤ i ≤ sx and

bj = (j − 1
2
)∆y, 1 ≤ j ≤ sy. Then, the two coordinate systems for the stations and the

volume domain, are uniformly staggered in the x − y plane. Thus the distances between
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stations and coordinates are uniform,

(DX)i,p = xp − ai = (p− 1)∆x − (i− 1
2
)∆x = (p− i− 1

2
)∆x, 1 ≤ p ≤ nx + 1

(DY )j,q = yq − bj = (q − 1)∆y − (j − 1
2
)∆y = (q − j − 1

2
)∆y, 1 ≤ q ≤ ny + 1,

and for all pairs of indices (i, p) and (j, q), the possible paired distances are obtained from

the vectors

X` = (`− sx − 1
2
)∆x, 1 ≤ ` ≤ 2sx

Yk = (k − sy − 1
2
)∆y, 1 ≤ k ≤ 2sy.

(3.10)

Under these assumptions, the associated system matrix is then BTTB.

3.2.3 Symmetric Kernel Matrices with Toeplitz Block Structure

Consider first the case in which the matrix G(r) is symmetric BTTB. Specifically, sup-

pose that the slice matrix G(r) has a symmetric block structure and is defined by its first

row (and column) G(r)
1q = G

(r)
q , 1 ≤ q ≤ ny. Then, with nx = sx and ny = sy,

G(r) =



G
(r)
1 G

(r)
2 G

(r)
3 . . . G

(r)
ny

G
(r)
2 G

(r)
1 G

(r)
2 . . . G

(r)
ny−1

... . . . . . . . . . ...

... . . . . . . . . . ...

G
(r)
sy G

(r)
sy−1 G

(r)
sy−2 . . . G

(r)
1


, (3.11)

where each G(r)
q is symmetric and defined by its first row (and column),

G(r)
q =



g1q g2q g3q . . . gnxq

g2q g1q g2q . . . g(nx−1)q

... . . . . . . . . . ...

... . . . . . . . . . ...

gsxq g(sx−1)q g(sx−2)q . . . g1q


.
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MATLAB notation can be used to write these matrices compactly in terms of the defining

first row (column). Specifically, using MATLAB notation,

G(r)
q = toeplitz(rq), rq = [g1q, g2q, g3q, . . . , gnxq]

T , (3.12)

and, with abuse of the same notation as applied to matrices,

G(r) = toeplitz(R), R =
[
(G

(r)
1 )T , (G

(r)
2 )T , (G

(r)
3 )T , . . . , (G(r)

ny )T
]T
. (3.13)

From (3.12) and (3.13) it is immediate, as discussed in Boulanger and Chouteau [2001]

and Chen and Liu [2018], that the generation ofG(r) requires only the calculation of its first

row. But the first row represents the contributions of all prisms to the first station. Thus, to

find G(r) requires only the calculation of

(G(r))1` = h̃(s11)pq, ` = (q − 1)nx + p, 1 ≤ p ≤ nx, 1 ≤ q ≤ ny or (3.14)

(G
(r)
1 )1:nxny =

[
rT1 rT2 . . . rTny

]
where

rq =
[
h̃(s11)1q, h̃(s11)2q, h̃(s11)3q, . . . , h̃(s11)nxq

]T
, 1 ≤ q ≤ ny. (3.15)

Equivalently, it is sufficient to calculate only the distances (DX)1,p = (p − 3/2)∆x and

(DY )1,q = (q− 3/2)∆y, for 1 ≤ p ≤ nx + 1 and 1 ≤ q ≤ ny + 1, and (3.10) is replaced by

X` = (`− 3
2
)∆x, 1 ≤ ` ≤ (nx + 1)

Yk = (k − 3
2
)∆y, 1 ≤ k ≤ (ny + 1).

(3.16)

3.2.4 Nonsymmetric Kernel Matrices with Block Structure

Consider now the non symmetric BTTB matrix given by

G(r) =



G
(r)
1 G

(r)
2 G

(r)
3 . . . . . . G

(r)
ny

Ḡ
(r)
2 G

(r)
1 G

(r)
2 . . . . . . G

(r)
ny−1

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . ...

Ḡ
(r)
sy Ḡ

(r)
sy−1 Ḡ

(r)
sy−2 . . . . . . G

(r)
1


, (3.17)
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where, without padding, ny = sy. This matrix depends on the first block row and column

only, and, again using the abuse of the Toeplitz notation, is given by

G(r) = toeplitz(C,R), (3.18)

C =
[
(G

(r)
1 )T , (Ḡ

(r)
2 )T , . . . , (Ḡ(r)

sy )T
]T
, R =

[
(G

(r)
1 )T , (G

(r)
2 )T , . . . , (G(r)

sy )T
]T
.

Here Ḡ(r)
j is used to denote the contributions below the diagonal, and G(r)

q for the contri-

butions above the diagonal. None of the block matrices are symmetric and, therefore, to

calculate G(r) it is necessary to calculate columns and rows that define the entries in C

and R. Calculating R uses just the first row entries G(r)
q , but since each of these is not

symmetric the first columns cq of each block in G(r)
q are also needed.

Using (2.12), the G(r)
q are given by (3.24) with

rq =
[
h̃(s11)1q, h̃(s11)2q, . . . , h̃(s11)nxq

]T
, 1 ≤ q ≤ ny (3.19)

cq =
[
h̃(s11)1q, h̃(s21)1q, . . . , h̃(ssx1)1q

]T
, 1 ≤ q ≤ ny. (3.20)

Effectively, rather than calculating all entries in the first block row ofG(r), (sxnx)ny entries,

for each matrix of the block, just its first row and column are calculated, for a total of

(sx + nx)ny entries.

This leaves the calculation of the Ḡ(r)
j , 2 ≤ j ≤ sy, which by the Toeplitz structure only

use the entries of the first block column of G(r). They are given by

Ḡ
(r)
j = toeplitz(c̄j, r̄j), 2 ≤ j ≤ sy, (3.21)

c̄j =
[
h̃(s1j)11, h̃(s2j)11, . . . , h̃(ssxj)11

]T
, 2 ≤ j ≤ sy, and

r̄j =
[
h̃(s1j)11, h̃(s1j)21, . . . , h̃(s1j)nx1

]T
, 2 ≤ j ≤ sy. (3.22)

It is also immediately clear that this requires not only all distances between the first station

and all prism coordinates, as in (3.16), but also for all stations and the first coordinate block

(for the first column of G(r)) which uses X` = (` + 1
2
)∆x, −sx ≤ ` ≤ 0, and likewise for

Yk. Thus, the full set of differences (3.10) are required.
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3.3 Introducing Padding Around the Domain

Building upon the structure established in Section 2.5, consider the more general con-

figuration for the gravity and magnetic problems on which padding is imposed. Now

that padding is introduced around the domain, with an extra pxL and pxR blocks in the x-

direction, the x−coordinates extend from (−pxL : (sx+pxR))∆x for a total of sx coordinate

blocks within the domain but a total number of blocks nx = (sx +pxL +pxR), where blocks

1 to pxL are in the padded region to the left of the domain, and blocks sx + pxL + 1 to nx

are within the padded region to the right. Thus, the coordinates of block p are adjusted

to (p − pxL − 1)∆x to (p − pxL)∆x, consistent with (2.10) for pxL = 0. Likewise, the y

coordinates extend from−pyL : (sy+pyR) and ny = (sy+pyL +pyR), see Figure 3.1. Hence,

(3.10) is replaced by

X` = (`− (sx + pxL)− 1
2
)∆x, 1 ≤ ` ≤ 2sx + pxL + pxR = nx + sx

Yk = (k − (sy + pyL)− 1
2
)∆y, 1 ≤ k ≤ 2sy + pyL + pyR = ny + sy.

(3.23)

If all possible paired distances are needed for calculating h̃, vectors X and Y only need

to be stored, as given by (3.23), which is negligible as compared to the entire storage of the

mn entries in the matrix G. Note that (3.23) explicitly assumes no stations in the padded

regions.

3.3.1 Symmetric Kernel Matrices with Toeplitz Block Structure and Domain Padding

Suppose now that the domain is padded in the x and y directions, with no real stations

within the padded region. To illustrate the impact of the padding on the generation of the

matrix consider a one-dimensional example with sx = 4, pxL = 2 and pxR = 1. Suppose

first that there are artificial stations in the first two blocks and in the final block, namely for
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p-1 q-1 r-1(x , y ,z )

p q r(x , y ,z ) y

x

z

ys

sx

pqrc

nz	!!!  

!!! 	
!!! 	 !!! 	

(a ij ,bij )

Figure 3.1: The configuration of the volume domain with padding.

blocks 1, 2, and 7. Then the single square and symmetric Toeplitz that defines G(r) is

G
(r)
1 =



g1 g2 g3 g4 g5 g6 g7

g2 g1 g2 g3 g4 g5 g6

g3 g2 g1 g2 g3 g4 g5

g4 g3 g2 g1 g2 g3 g4

g5 g4 g3 g2 g1 g2 g3

g6 g5 g4 g3 g2 g1 g2

g7 g6 g5 g4 g3 g2 g1



Station 1(Artificial)

Station 2(Artificial)

Station 3 = pxL + 1

Station 4

Station 5

Station 6 = pxL + sx

Station 7(Artificial)

.

This depends on

r = (g1, g2, g3, g4, g5, g6, g7)T = (h̃(s1)1, h̃(s1)2, h̃(s1)3, . . . , h̃(s1)7)T .

But the contribution to the first real station due to all prisms is given by the third row, row

pxL + 1 of G(r)
1 , which is

(G
(r)
1 )3 = (g3, g2, g1, g2, g3, g4, g5) ,
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and the contributions for the real stations are determined, using symmetry, by

(G
(r)
1 )(pxL + 1 : pxL + sx, :) =



g3 g2 g1 g2 g3 g4 g5

g4 g3 g2 g1 g2 g3 g4

g5 g4 g3 g2 g1 g2 g3

g6 g5 g4 g3 g2 g1 g2


= toeplitz(c, r).

Here

c = (g3, g4, g5, g6) and r = (g3, g2, g1, g2, g3, g4, g5)T .

More generally, for one dimension only,

c = (gpxL +1, gpxL +2, . . . , gpxL +sx)
T = (h̃(s1)pxL +1, h̃(s1)pxL +2, . . . , h̃(s1)pxL +sx)

T and

r = (gpxL +1, . . . , g2, g1, g2, . . . , gnx−pxL
)T

= (h̃(s1)pxL +1, . . . , h̃(s1)2, h̃(s1)1, h̃(s1)2, . . . , h̃(s1)nx−pxL
)T .

Extending to the two-dimensional case, and assuming that the first artificial station is in the

(1, 1) block of the padded domain, then G(r)
q , for any q, is also Toeplitz and is given by

G(r)
q = toeplitz(cq, rq), 1 ≤ q ≤ ny, (3.24)

cq = (h̃(s11)(pxL +1)q, h̃(s11)(pxL +2)q, . . . , h̃(s11)(pxL +sx)q)
T and (3.25)

rq = (h̃(s11)(pxL +1)q, . . . , h̃(s11)2q, h̃(s11)1q, h̃(s11)2q, . . . , h̃(s11)(nx−pxL )q)
T . (3.26)

This is consistent with (3.14) - (3.15) for the unpadded case. But notice, also, that the max-

imum distance between station and coordinates in the x−coordinate is max(nx−pxL , nx−

pxR)∆x = max(sx + pxR , sx + pxL)∆x.

It remains to apply the same argument to the structure of the matrix G(r), as to the

structure of its individual components, to determine the structure of the symBTTB matrix
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when padding is applied. Then, consistent with (3.24)-(3.26), (3.13) is replaced by

G(r) = toeplitz(C,R), (3.27)

C = ((G
(r)
pyL +1)T , . . . , (G

(r)
pyL +sy)

T )T and (3.28)

R = ((G
(r)
pyL +1)T , . . . , (G

(r)
2 )T , (G

(r)
1 )T , (G

(r)
2 )T , (G

(r)
3 )T , . . . , (G

(r)
ny−pyL

)T )T . (3.29)

Moreover, since this matrix depends on the first row of the symmetric matrix, defined with

respect to the artificial station at s11, it is sufficient to still use (3.16) for the calculation of

the relevant distances between the first station and all coordinate blocks. But, from (3.25) -

(3.26), and (3.28)-(3.29), just as all entries gj in G(r)
q are not calculated, all the blocks G(r)

q

are also not calculated, rather the blocks needed are for q = 1 : max(ny − pyL , ny − pyR).

Thus, while (3.16) may be used to calculate the relevant distances, in practice some savings

in memory and computation can be made, when padding is significant relative to sx and sy,

by using

X` = (`− 3
2
)∆x, 1 ≤ ` ≤ sx + max(pxR , pxL) + 1

Yk = (k − 3
2
)∆y, 1 ≤ k ≤ sy + max(pyR , pyL) + 1.

(3.30)

3.3.2 Nonsymmetric Kernel Matrices with Block Structure and Domain Padding

As for the discussion of the impact of the domain padding on the symmetric kernel in

Section 3.3.1, consider first an example using one dimension, namely fixed y-coordinate.

Again assume sx = 4, pxL = 2 and pxR = 1 and suppose that there are artificial stations in

the first two blocks and in the final block, namely for blocks 1, 2, and 7. Then, the single
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square but non-symmetric Toeplitz matrix that defines G(r) is

G
(r)
1 =



g1 g2 g3 g4 g5 g6 g7

γ2 g1 g2 g3 g4 g5 g6

γ3 γ2 g1 g2 g3 g4 g5

γ4 γ3 γ2 g1 g2 g3 g4

γ5 γ4 γ3 γ2 g1 g2 g3

γ6 γ5 γ4 γ3 γ2 g1 g2

γ7 γ6 γ5 γ4 γ3 γ2 g1



Station 1(Artificial)

Station 2(Artificial)

Station 3 = pxL + 1

Station 4

Station 5

Station 6 = pxL + sx

Station 7(Artificial)

This depends on

r = (g1, g2, g3, g4, g5, g6, g7)T = (h̃(s1)1, h̃(s1)2, . . . , h̃(s1)6, h̃(s1)7)T

c = (g1, γ2, γ3, γ4, γ5, γ6, γ7)T = (h̃(s1)1, h̃(s2)1, . . . , h̃(s6)1, h̃(s7)1)T .

But again the required rows of G(r)
1 are those that correspond to the actual real stations

(G
(r)
1 )(pxL + 1 : pxL + sx, :) =



γ3 γ2 g1 g2 g3 g4 g5

γ4 γ3 γ2 g1 g2 g3 g4

γ5 γ4 γ3 γ2 g1 g2 g3

γ6 γ5 γ4 γ3 γ2 g1 g2


= toeplitz(c, r) where

c = (γ3, γ4, γ5, γ6)T and r = (γ3, γ2, g1, g2, g3, g4, g5)T .

More generally,

c = (γpxL +1, γpxL +2, . . . , γpxL +sx)
T = (h̃(spxL +1)1, h̃(spxL +2)1, . . . , h̃(spxL +sx)1)T and

r = (γpxL +1, γpxL
, . . . , γ2, g1, g2, . . . , gnx−pxL

)T

= (h̃(spxL +1)1, h̃(spxL
)1, . . . , h̃(s2)1, h̃(s1)1, h̃(s1)2, . . . , h̃(s1)nx−pxL

)T .
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Extending to the two-dimensional case, with the same assumptions as in Section 3.3.1,G(r)
q

is obtained as

G(r)
q = toeplitz(cq, rq), 1 ≤ q ≤ ny, (3.31)

cq = (h̃(s(pxL +1)1)1q, h̃(s(pxL +2)1)1q, . . . , h̃(s(pxL +sx)1)1q)
T and

rq = (h̃(s(pxL +1)1)1q, h̃(spxL 1)1q, . . . , h̃(s21)1qh̃(s11)1q, . . . , h̃(s11)(nx−pxL )q)
T .

This is consistent with (3.19) - (3.20) for the unpadded case.

Turning to the column block entries, first observe that Ḡ(r)
1 = G

(r)
1 , and so examine Ḡ(r)

j

which represents stations 1 to nx (both real and artificial) in the x-direction for a fixed j

coordinate in the y-direction. Then, with the same example for choices of sx, pxL and pxR ,

Ḡ
(r)
j =



ḡ1 ḡ2 ḡ3 ḡ4 ḡ5 ḡ6 ḡ7

γ̄2 ḡ1 ḡ2 ḡ3 ḡ4 ḡ5 ḡ6

γ̄3 γ̄2 ḡ1 ḡ2 ḡ3 g4 ḡ5

γ̄4 γ̄3 γ̄2 ḡ1 ḡ2 ḡ3 ḡ4

γ̄5 γ̄4 γ̄3 γ̄2 ḡ1 ḡ2 ḡ3

γ̄6 γ̄5 γ̄4 γ̄3 γ̄2 ḡ1 ḡ2

γ̄7 γ̄6 γ̄5 γ̄4 γ̄3 γ̄2 g1



Station 1(Artificial)

Station 2(Artificial)

Station 3 = pxL + 1

Station 4

Station 5

Station 6 = pxL + sx

Station 7(Artificial)

This depends on

r̄ = (ḡ1, ḡ2, ḡ3, ḡ4, ḡ5, ḡ6, ḡ7)T = (h̃(s1j)11, h̃(s1j)21, . . . , h̃(s1j)61, h̃(s1j)71)T

c̄ = (ḡ1, γ̄2, γ̄3, γ̄4, γ̄5, γ̄6, γ̄7)T = (h̃(s1j)11, h̃(s2j)11, . . . , h̃(s6j)11, h̃(s7j)11)T .
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But again, since stations 1 to 2 and 7 are artificial, the only needed elements are

(Ḡ
(r)
j )(pxL + 1 : pxL + sx, :) =



γ̄3 γ̄2 ḡ1 ḡ2 ḡ3 ḡ4 ḡ5

γ̄4 γ̄3 γ̄2 ḡ1 ḡ2 ḡ3 ḡ4

γ̄5 γ̄4 γ̄3 γ̄2 ḡ1 ḡ2 ḡ3

γ̄6 γ̄5 γ̄4 γ̄3 γ̄2 ḡ1 ḡ2


= toeplitz(c, r) where

c = (γ̄3, γ̄4, γ̄5, γ̄6)T and r = (γ̄3, γ̄2, ḡ1, ḡ2, ḡ3, ḡ4, ḡ5)T .

Thus, in two dimensions, the first column block entries are Ḡ(r)
j , 1 ≤ j ≤ ny, with

Ḡ
(r)
j = toeplitz(c̄j, r̄j), 1 ≤ j ≤ sy + pyL + pyR ,

c̄j = (h̃(s(pxL +1)j)11, h̃(s(pxL +2)j)11, . . . , h̃(s(pxL +sx)j)11)T and (3.32)

r̄j = (h̃(s(pxL +1)j)11, h̃(spxLj
)11, . . . , h̃(s2j)11, h̃(s1j)11, . . . , h̃(s1j)(nx−pxL )1)T .

But now (3.18) is replaced by the block Toeplitz matrix

G(r) = toeplitz(C,R), (3.33)

C = ((Ḡ
(r)
pyL +1)T , . . . , (Ḡ

(r)
pyL +sy)

T )T and

R = ((Ḡ
(r)
pyL +1)T , (Ḡ(r)

pyL
)T , . . . , (Ḡ

(r)
2 )T , (G

(r)
1 )T , . . . , (G

(r)
ny−pyL

)T )T .

Here each block matrix is the subset of rows corresponding to the real stations, as noted in

(3.31) and (3.32). Moreover, we conclude that (3.31) is applied only for 1 ≤ q ≤ ny−pyL =

sy + pyR and (3.32) for 1 ≤ j ≤ pyL + sy, reducing the dimension of the required Y in the

y−direction. Likewise, X is reduced because of the padding impacting the required entries

for generating bothG(r)
q and Ḡ(r)

j . Thus while the required vectors are given by (3.10), with

nx replacing sx and ny replacing sy, their lengths can be reduced as for the symmetric case,

(3.30), by using

X` = (`− (sx + max(pxR , pxL))− 1
2
)∆x, 1 ≤ ` ≤ 2(sx + max(pxR , pxL))

Yk = (k − (sy + max(pyR , pyL))− 1
2
)∆y, 1 ≤ k ≤ 2(sy + max(pyR , pyL)).

(3.34)
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This effectively assumes the calculation of Ḡ(r)
1 as well as G(r)

1 , whereas only one is calcu-

lated in practice, since Ḡ(r)
1 = G

(r)
1 .

3.3.3 Convolution with Domain Padding

For the padded domain, assume that the indices for rp and cq are from the first row and

column of the padded domain. Then, for the case of the symBTTB matrix, (3.4) is replaced

by

rext
q =

 rq

Jsx−1cq(2 : sx)

 , cext
q =

 cq

Jnx−1rq(2 : nx)

 , (3.35)

here using the definitions (3.25) and (3.26) for rq and cq. But now since rq is defined by cq

for the symmetric case only cext
q is needed. Each vector is of length sx for cq and nx − 1

for Jnx−1(rq(2 : nx)). Then using (3.28), the BCCB extension is defined by the matrix

T =

[
cext

1+pyL
· · · cext

sy+pyL
cext
sy+pyR

· · · cext
2 cext

1 · · · cext
pyL

]
, (3.36)

of size (sx + nx − 1)× (sy + ny − 1). For the nonsymmetric case (3.36) is replaced by

T =

[
c̄ext

1+pyL
· · · c̄ext

sy+pyL
cext
sy+pyR

· · · cext
2 c̄ext

1 · · · c̄ext
pyL

]
, (3.37)

where c̄ext
j is obtained as in (3.35) but using c̄j and r̄j from (3.32).

Figure 3.2 shows the complete BTTB slice G(r) with domain padding (sy = 3, ny =

4), with defining elements given by T that is generated using the corresponding row and

column entries.

Note that in any case in which pyL = 0 then the end block is removed. Moreover, due

to G(r)u of size sxsy, when u is of size nxny, the definition of W in (3.7) is replaced by

W =

 U 0nx(sy−1)

0(sx−1)ny 0(sx−1)(sy−1)

 , (3.38)

with U ∈ Rnx×ny .
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Figure 3.2: Required unique entries from a BTTB matrix G(r) in order to form the corre-
sponding configuration of T , where the arrow denotes the direction of the vector in ascend-
ing order. The dotted line indicates that the first elements of each rq and r̄q are omitted in
the construction of T .

The transpose operation can still be applied via T̃ directly. But notice that for v of size

sxsy, (G(r))Tv is of size nxny, and in this case (3.7) is replaced by

W̃ =

 V 0sx(ny−1)

0(nx−1)sy 0(nx−1)(ny−1)

 , (3.39)

with V of size sx × sy.

3.4 Optimizing the Calculations for Specific Kernels

Chen and Liu [2018] demonstrated that considerable savings are realized in the genera-

tion of the entries for the matrices T through optimized calculations of the entries necessary

for finding T for forward modeling of the gravity problem. Here the focus is on both

improving that optimization and with the generation of an optimized and stable calcula-

tion for the magnetic kernel following the derivation of Rao and Babu [1991]. Relevant

parameters are given in Table 3.1.
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Table 3.1: Parameters and variables in the codes. The parameters are defined in Table 2.1.

prob params sx, sy, nz, pxL , pxR , pyL , pyR , nx, ny,m, n, nr, px, py

gsx, gsy, gsz Grid sizes ∆x, ∆y and ∆z

That That.forward = T̂

z blocks Depth coordinates, increasing, zr
D Declination of geomagnetic field and magnetization vector
I Inclination of geomagnetic field and magnetization vector
F Intensity of the geomagnetic field in nT (10−9F in T)

H = 10−9F
4π

Magnetic field intensity (A/m) in SI units
H̃ = 109H = F

4π
Assumes the field is measured in nT

3.4.1 Gravity Kernel Calculation

The gravity kernel generates a symBTTB matrix for each slice in depth (z-direction).

According to Boulanger and Chouteau [2001], and as used in Chen and Liu [2018], the con-

tribution of the kernel from the prism at point (p, q) on the volume grid, (where x points

East and y points North), to the station at location (a, b, c), and here assume c = 0 = z0, is

given by

h̃(a, b, c)pq = γ
2∑
i=1

2∑
j=1

2∑
k=1

(−1)i(−1)j(−1)k(
Ζk arctan

ΧiΥj

ΖkΡ
k
ij

− Χi ln
(
Ρ
k
ij +Υj

)
−Υj ln

(
Ρ
k
ij + Χi

))
.

Here γ is the gravitational constant and

Χ1 = xp−1 − a, Χ2 = xp − a

Υ1 = yq−1 − b Υ2 = yq − b

Ζ1 = zr−1 − c, Ζ2 = zr − c

R2
ij = Χ2

i +Υ2
j Ρ

k
ij =

√
R2
ij + Ζ2

k.

(3.40)
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Input: See Table 3.1 for details;
gsx, gsy, z blocks : grid spacing in x and y and z coordinates;
prob params required parameters
Output: symBTTB real matrix G of size m× n.

1 Extract parameters from prob params ;
2 Initialize zero arrays: G, Gr, Grq;
3 Sizes: nX = sx + max(pxL , pxR), nY = sy + max(pyL , pyR);
4 Form distance arrays X and Y according to (3.30);
5 Form X2 = X·2, Y 2 = Y ·2, XY = X(:) · ∗Y and R = X2(:) + Y 2;
6 for r = 1 : nz do
7 Set z1 = z blocks(r), z2 = z blocks(r + 1);
8 Calculate slice response at first station: g = gravity(z1, z2, X, Y,XY,R);
9 for q = 1 : nY do

10 Extract cq, rq from g : use (3.25), (3.26);
11 Generate: Grq = toeplitz(cq, rq): use (3.24) ;
12 end
13 for j = [pyL + 1 : −1 : 2, 1 : sy + pyR ] do
14 Build first row of Gr using (3.29);
15 end
16 for j = 2 : sy do
17 Build jth row of Gr using (3.27) and (3.28);
18 end
19 Assign: Gr to rth block of G;
20 end

Algorithm 2: G = sym BTTB(gsx, gsy, z blocks, prob params)
Entries of padded symBTTB matrix. Function gravity.

Specifically, the summation needed is given by

∑
i

∑
j

(−1)i+j+1

((
Ζ1 arctan

(ΧΥ)ij
Ζ1(R1)ij

− Ζ2 arctan
(ΧΥ)ij
Ζ2(R2)ij

)
−

Χi (ln((R1)ij +Υj)− ln((R2)ij +Υj))−Υj (ln((R1)ij + Χi)− ln((R2)ij + Χi))) .

Here

R1 =
√
R ·2 +Ζ1·2, R2 =

√
R ·2 +Ζ2·2,

and operations involve element-wise powers and multiplications as indicated by the ·. Us-

ing the notation in Chen and Liu [2018], and ignoring
∑

j(−1)i+j+1, the summand is

((Ζ1(CM5)ij − Ζ2(CM6)ij)− Χi ((CM3)ij − (CM4)ij)−Υj ((CM1)ij − (CM2)ij)) .

48



Now notice that (CM3)ij − (CM4)ij is a logarithmic difference (and also for (CM1)ij −

(CM2)ij). Thus, the differences can be replaced by

CMX = ln
Χ+R1

Χ+R2

, and CMY = ln
Υ+R1

Υ+R2

. (3.41)

Moreover,

CM5Z = Ζ1 arctan
(ΧΥ)ij
Ζ1(R1)ij

, and CM6Z = Ζ2 arctan
(ΧΥ)ij
Ζ2(R2)ij

.

Hence, the summand of the triple sum is replaced by

(((CM5Z)ij − (CM6Z)ij)− Χi(CMY )ij −Υj(CMX)ij) = CMij.

Input: See Table 3.1 for details;
gsx, gsy, z blocks : grid spacing in x and y and z coordinates;
prob params required parameters
Output: Array That

1 Extract parameters from prob params ;
2 Initialize zero arrays: T and That for T and T̂ ;
3 Sizes: nX = sx + max(pxL , pxR), nY = sy + max(pyL , pyR);
4 Form distance arrays X and Y according to (3.30);
5 Form X2 = X·2, Y 2 = Y ·2, XY = X(:). ∗ Y and R = X2(:) + Y 2;
6 for r = 1 : nz do
7 Set z1 = z blocks(r), z2 = z blocks(r + 1);
8 Calculate slice response at first station: g = gravity(z1, z2, X, Y,XY,R);
9 for j = [1 + pyL : sy + pyL .sy + pyR : −1 : 21 : pyL ] do

10 Extract rj from g : use (3.26);
11 Augment column of T , use (3.36) ;
12 end
13 Take 2DFFT of T : That(:, :, r) = fft2(T ) ;
14 end

Algorithm 3: That = sym BTTBFFT(gsx, gsy, z blocks, prob params)
Transform of padded symBTTB matrix. Function gravity.
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Input: Depth coordinates z1 and z2 for the slice;
X: Distances of x−coordinates from station 1 size nx+1;
Y : Distances of y−coordinates from station 1 size ny+1;
XY : the product X(:) · ∗Y which is a matrix of size (nx+ 1)× (ny + 1);
R: the matrix of size (nx+ 1)× (ny + 1) of entries X(:)·2 and Y ·2;
Output: Response vector g of length nxny;

1 [p, q] = size(R);
2 nx = p− 1; ny = q − 1;
3 R1 = sqrt(R + z2

1);
4 R2 = sqrt(R + z2

2);
5 CMX = (log((X(:) +R1) · /(X(:) +R2))) · ∗Y ;
6 CMY = (log((Y +R1) · /(Y +R2))) · ∗X(:);
7 CM5Z = atan2(XY,R1z1)z1;
8 CM6Z = atan2(XY,R2z2)z2;
9 CM56 = CM5Z − CM6Z;

10 CM = (CM56− CMY − CMX)γ;
11 g = −(CM(1 : nx, 1 : ny)− CM(1 : nx, 2 : q)− CM(2 : p, 1 : ny) + CM(2 :

p, 2 : q));

Algorithm 4: g = gravity(z1, z2, X, Y,XY,R)
Entries of sensitivity matrix G for the gravity problem.

Clearly Χ1, Χ2 are entries from X , and Υ1, Υ2 are entries from Y . Thus, given the

definition (3.23), and assuming that X and Y are stored in row vectors, matrices XY =

X(:) · ∗Y and R2 = X(:) ·2 +Y ·2 can be formed. These are of size (nx + 1)× (ny + 1), are

independent of the z coordinates, and substantial computation is saved by only calculating

XY and R2 once for all slices. Each slice only requires the calculation of one row of

the matrix. Since these are based on matrices, the double sum for multiple coordinates is

calculated by shifting each ij matrix to the right in i and right in j with the appropriate sign,

and obtaining the entire sum in one line by correct indexing into the matrices. Suppose that

CM has size (nx + 1)× (ny + 1). Then the matrix

g = CM(1 : nx, 1 : ny)−CM(1 : nx, 2 : ny + 1)− CM(2 : nx + 1, 1 : ny)

+CM(2 : nx + 1, 2 : nx + 1)
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can be reshaped as a row vector

h̃(a1, b1, 0) = −γg(:).

Thus, the first row of depth block r is calculated by an evaluation of (2.12) for all coordi-

nate contributions to station 1 in one step. Note that the simplification (3.41) is a further

optimization of the calculation of entries for G as compared to that given in Chen and Liu

[2018]. The details of the use and application of the of the gravity problem in the con-

text of forward algorithms for symBTTB matrices are provided in Algorithms 2-3 with the

gravity function in Algorithm 4.

3.4.2 Magnetic Kernel

The improvement of the calculation of the gravity kernel as discussed in Chen and

Liu [2018] is now extended to the calculation of the magnetic kernel, under the as-

sumption that there is no remanence magnetization or self-demagnetization, so that the

magnetization vector is parallel to the Earth’s magnetic field. The total field is assumed to

be measured in nano Teslas; introducing a scaling factor 109 in the definitions. Although

the magnetic kernel is not symmetric, its discretization does lead to a BTTB matrix,

and hence the discussion of Section 3.2.4 is relevant. Applying the simplifications of Rao

and Babu [1991] for the evaluation of the magnetic kernel contribution, and using their

notation [Rao and Babu, 1991, eq. (3)]

h̃(a, b, 0)pq = H̃(G1 lnF1 +G2 lnF2 +G3 lnF3 +G4F4 +G5F5). (3.42)

The constants gi = H̃Gi depend on the volume orientation and magnetic constants, Rao

and Babu [1991], and it is now assumed that x points North and y points East. Taking

advantage of the notation in (3.40), and noting all terms are arrays, then with element-wise
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Input: See Table 3.1 for details;
gsx, gsy, z blocks : grid spacing in x and y and z coordinates;
prob params required parameters
Output: BTTB real matrix G of size m× n.

1 Extract parameters from prob params ;
2 Calculate constants gi = H̃Gi for (3.42), [Rao and Babu, 1991, (3)];
3 Initialize zero arrays: G, Gr and row and column cell arrays, Figure 3.2;
4 Sizes: nX = sx + max(pxL , pxR), nY = sy + max(pyL , pyR);
5 Form distance arrays X and Y according to (3.34);
6 Form X2 = X·2, Y 2 = Y ·2, and R = X2(:) + Y 2;
7 for r = 1 : nz do
8 Set z1 = z blocks(r), z2 = z blocks(r + 1);
9 Calculate grow{1} = h̃(11)pq, 1 ≤ p ≤ nX , 1 ≤ q ≤ nY ;

10 for j = 2 : sy + pyL do
11 Calculate grow{j} = h̃(1j)p1, 1 ≤ p ≤ nX;
12 end
13 Calculate : gcol{1} = h̃(ij)11, 1 ≤ i ≤ nX , 1 ≤ j ≤ nY ;
14 for q = 2 : sy + pyR do
15 Calculate : gcol{q} = h̃(i1)1q, 1 ≤ i ≤ nX;
16 end
17 for j = pyL + 1 : −1 : 2 do
18 Generate Gjr: using gcol{1} and grow{j}, (3.32) for R in (3.33);
19 end
20 for q = 1 : sy + pyR do
21 Generate Gqr: using gcol{q} and grow{1}, (3.31) for R in (3.33);
22 end
23 for j = pyL + 2 : −1 : 2, 1 : sy + pyL do
24 Generate Grj: using gcol{1} and grow{j}, (3.32) for C in (3.33);
25 end
26 Build Gr in (3.33) using C and R;
27 Assign: Gr to rth block of G;
28 end

Algorithm 5: G = BTTB(gsx, gsy, z blocks, prob params, D, I,H)
Entries of padded BTTB matrix, Figure 3.2. Function magnetic.
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Input: See Table 3.1 for details;
gsx, gsy, z blocks : grid spacing in x and y and z coordinates;
prob params required parameters;
D, I , H declination, inclination and intensity of magnetization
Output: Array That

1 Extract parameters from prob params ;
2 Calculate constants gi = H̃Gi for (3.42), [Rao and Babu, 1991, (3)];
3 Initialize zero arrays: T and That for T and T̂ ;
4 Initialize zero arrays for and row and column cell arrays, see Figure 3.2;
5 Sizes: nX = sx + max(pxL , pxR), nY = sy + max(pyL , pyR);
6 Form distance arrays X and Y according to (3.34);
7 Form X2 = X·2, Y 2 = Y ·2, and R = X2(:) + Y 2;
8 for r = 1 : nz do
9 Set z1 = z blocks(r), z2 = z blocks(r + 1);

10 Calculate grow{1} = h̃(11)pq, 1 ≤ p ≤ nX , 1 ≤ q ≤ nY ;
11 for j = 2 : sy + pyL do
12 Calculate grow{j} = h̃(1j)p1, 1 ≤ p ≤ nX;
13 end
14 Calculate : gcol{1} = h̃(ij)11, 1 ≤ i ≤ nX , 1 ≤ j ≤ nY ;
15 for q = 2 : sy + pyR do
16 Calculate : gcol{q} = h̃(i1)1q, 1 ≤ i ≤ nX;
17 end
18 for j = pyL + 1 : pyL + sy do
19 Augment column of T , gcol{1} and grow{j}, (3.32) with (3.37) ;
20 end
21 for q = sy + pyR : −1 : 2 do
22 Augment column of T , gcol{q} and grow{1}, (3.31) with (3.37) ;
23 end
24 for j = 1 : pyL do
25 Augment column of T , gcol{1} and grow{j}, (3.32) with (3.37) ;
26 end
27 Take 2DFFT of T : That(:, :, r) = fft2(T );
28 end

Algorithm 6: That = BTTBFFT(gsx, gsy, z blocks, prob params, D, I,H)
Transform of padded BTTB matrix, Figure 3.2. Function magnetic.
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Input: Depth coordinates z1 and z2 for the slice;
X: Distances of x−coordinates from station ;
Y : Distances of y−coordinates from station ;
R: Matrix of entries X(:)·2 and Y ·2;
gc vector of constants, [Rao and Babu, 1991, 3];
Output: Response vector g of length (`+ 1)(k + 1);

1 ` = length(X)− 1;k = length(Y )− 1;
2 R1 = sqrt(R + z2

1);
3 R2 = sqrt(R + z2

2);
4 F1 = ((R2(1 : `, 1 : k) +X(1 : `)) · /(R1(1 : `, 1 : k) +X(1 : `))). ∗ ((R1(2 :

`+ 1, 1 : k) +X(2 : `+ 1)) · /(R2(2 : `+ 1, 1 : k) +X(2 : `+ 1))) · ∗((R1(1 :
`+ 1, 2 : k + 1) +X(1 : `)) · /(R2(1 : `+ 1, 2 : k + 1) +X(1 : `))) · ∗((R2(2 :
`+ 1, 2 : k + 1) +X(2 : `+ 1)) · /(R1(2 : `+ 1, 2 : k + 1) +X(2 : `+ 1)));

5 F2 = ((R2(1 : `, 1 : k) + Y (1 : k)) · /(R1(1 : `, 1 : k) + Y (1 : k))) · ∗((R1(2 :
`+ 1, 1 : k) + Y (1 : k)) · /(R2(2 : `+ 1, 1 : k) + Y (1 : k))) · ∗((R1(1 : `+ 1, 2 :
k + 1) + Y (2 : k + 1)) · /(R2(1 : `+ 1, 2 : k + 1) + Y (2 : k + 1))) · ∗((R2(2 :
`+ 1, 2 : k + 1) + Y (2 : k + 1)) · /(R1(2 : `+ 1, 2 : k + 1) + Y (2 : k + 1)));

6 F3 = ((R2(1 : `, 1 : k) + z2) · /(R1(1 : `, 1 : k) + z1)) · ∗((R1(2 : `+ 1, 1 :
k) + z1) · /(R2(2 : `+ 1, 1 : k) + z2)) · ∗((R1(1 : `+ 1, 2 : k + 1) + z1) · /(R2(1 :
`+1, 2 : k+1)+z2))·∗((R2(2 : `+1, 2 : k+1)+z2)·/(R1(2 : `+1, 2 : k+1)+z1));

7 F4 = atan2(X(2 : `+ 1)z2, R2(2 : `+ 1, 2 : k + 1) · ∗Y (2 : k + 1))− atan2(X(1 :
`)z2, R2(1 : `+ 1, 2 : k + 1) · ∗Y (2 : k + 1))− atan2(X(2 : `+ 1)z2, R2(2 :
`+ 1, 1 : k) · ∗Y (1 : k)) + atan2(X(1 : `)z2, R2(1 : `, 1 : k) · ∗Y (1 :
k))− atan2(X(2 : `+ 1)z1, R1(2 : `+ 1, 2 : k+ 1) · ∗Y (2 : k+ 1)) + atan2(X(1 :
`)z1, R1(1 : `+ 1, 2 : k + 1) · ∗Y (2 : k + 1)) + atan2(X(2 : `+ 1)z1, R1(2 :
`+ 1, 1 : k) · ∗Y (1 : k))− atan2(X(1 : `)z1, R1(1 : `, 1 : k) · ∗Y (1 : k));

8 F5 = atan2(Y (2 : k + 1)z2, R2(2 : `+ 1, 2 : k + 1) · ∗X(2 : `+ 1))− atan2(Y (2 :
k + 1)z2, R2(1 : `+ 1, 2 : k + 1) · ∗X(1 : `))− atan2(Y (1 : k)z2, R2(2 : `+ 1, 1 :
k) · ∗X(2 : `+ 1)) + atan2(Y (1 : k)z2, R2(1 : `, 1 : k) · ∗X(1 : `))− atan2(Y (2 :
k + 1)z1, R1(2 : `+ 1, 2 : k + 1) · ∗X(2 : `+ 1)) + atan2(Y (2 : k + 1)z1, R1(1 :
`+ 1, 2 : k + 1) · ∗X(1 : `)) + atan2(Y (1 : k)z1, R1(2 : `+ 1, 1 : k) · ∗X(2 :
`+ 1))− atan2(Y (1 : k)z1, R1(1 : `, 1 : k) · ∗X(1 : `));

9 g = (gc(1) ∗ log(F1) + gc(2) ∗ log(F2) + gc(3) ∗ log(F3) + gc(4) ∗F4 + gc(5) ∗F5);
10 g = g(:);

Algorithm 7: g = magnetic(z1, z2, X, Y,R, gc))
Entries of sensitivity matrix G for the magnetic problem.
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operations as appropriate the variables Fi are given by

F1 =
(Ρ2

11 + Χ1)(Ρ1
21 + Χ2)(Ρ1

12 + Χ1)(Ρ2
22 + Χ2)

(Ρ1
11 + Χ1)(Ρ2

21 + Χ2)(Ρ2
12 + Χ1)(Ρ1

22 + Χ2)

F2 =
(Ρ2

11 +Υ1)(Ρ1
21 +Υ1)(Ρ1

12 +Υ2)(Ρ2
22 +Υ2)

(Ρ1
11 +Υ1)(Ρ2

21 +Υ1)(Ρ2
12 +Υ2)(Ρ1

22 +Υ2)

F3 =
(Ρ2

11 + Ζ2)(Ρ1
21 + Ζ1)(Ρ1

12 + Ζ1)(Ρ2
22 + Ζ2)

(Ρ1
11 + Ζ2)(Ρ2

21 + Ζ1)(Ρ12 ·2 +Ζ1)(Ρ1
22 + Ζ2)

F4 = arctan
Χ2Ζ2

Ρ
2
22Υ2

− arctan
Χ1Ζ2

Ρ
2
12Υ2

− arctan
Χ2Ζ2

Ρ
2
21Υ1

+ arctan
Χ1Ζ2

Ρ
2
11Υ1

−

arctan
Χ2Ζ1

Ρ
1
22Υ2

+ arctan
Χ1Ζ1

Ρ
1
12Υ2

+ arctan
Χ2Ζ1

Ρ
1
21Υ1

− arctan
Χ1Ζ1

Ρ
1
11Υ1

F5 = arctan
Υ2Ζ2

Ρ
2
22Χ2

− arctan
Υ2Ζ2

Ρ
2
12Χ1

− arctan
Υ1Ζ2

Ρ
2
21Χ2

+ arctan
Υ1Ζ2

Ρ
2
11Χ1

−

arctan
Υ2Ζ1

Ρ
1
22Χ2

+ arctan
Υ2Ζ1

Ρ
1
12Χ1

+ arctan
Υ1Ζ1

Ρ
1
21Χ2

− arctan
Υ1Ζ1

Ρ
1
11Χ1

.

As for the gravity kernel, the calculation of (3.42) can, therefore, use (3.40) to calculate

X , Y andR·2 once for all slices. Minor computational savings may be made by calculating

for example R1 + Χ1 within the calculations for h̃ but these are not calculations that can

be made independent of the given slice. It may appear also that one could calculate ratios

Χ · /Υ, with modification of the calculations for F4 and F5, but the stable calculation

of the arctan requires the ratios as given. Otherwise sign changes in the numerator or

denominator passed to arctan can lead to changes in the obtained angle. In MATLAB

we use atan2 rather than atan for improved stability in the calculation of the angle. The

details of the use and application of the of the magnetic problem in the context of the

forward algorithms for BTTB matrices are provided in Algorithms 5-6 with the magnetic

function in Algorithm 7.

3.5 Numerical Validation

The fast and efficient methods for generating both the symmetric and non symmetric

kernels relating to gravity and magnetic problems are now validated. Specifically,
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the computational cost of direct calculation of the entries of the matrix G that are required

for matrix multiplications is compared with the entries that are required for the transform

implementation of the multiplications; Algorithms 2 and 3 are compared with all entries

calculated using Algorithm 4, and Algorithms 5 and 6 with all entries calculated using

Algorithm 7, for the symmetric gravity, and non symmetric magnetic kernels, respec-

tively. The 12 problem sizes considered are detailed in Table 3.2. They are generated by

taking the smallest size with (sx, sy, , nz) = (25, 15, 2), and then scaling each dimension

by 1 to 12 for the test cases. For padding cases with p = 0% and p = 5% across x and

y dimensions, and rounded to the nearest integer, are compared. Thus, m = sxsy, and

n = b(1+p)sxcb(1+p)sycnz. All computations use MATLAB release 2019b implemented

on a desktop computer with an Intel(R) Xeon (R) Gold 6138 processor (2.00GHz) and

256GB RAM.

Also, note that the last two columns of Table 3.2 report the estimated memory require-

ment to store the arrays G and T̂ , which is independent of whether this is for the gravity

or the magnetic problem. These are the results without padding, but the difference be-

tween the padded and unpadded case is insignificant in comparison to the memory require-

ments for each of these arrays. For the problem of size m × n, matrix G has mn entries,

corresponding to 8mn bytes and complex array T̂ uses approximately 8m entries for each

depth layer, for a total of 8mnz = 8n entries or 64n bytes, here using that one floating

point number uses 8 bytes and noting that 1 byte is 10−9GB.

In the results, the kernels generated by Algorithms 2, 5, 3, and 6 are referenced as

Ggravity, Gmagnetic, Tgravity, and Tmagnetic respectively. These values are plotted on a

“log-log” scale in Figure 3.3, without padding in Figure 3.3a and with padding in Fig-

ure 3.3b, in which the problem sizes are given as relevant triples on the x−axis. The

problem cases from 8 to 12 for the direct calculation of G are too large to fit in memory

on the given computer. It can be seen that the generation of G is effectively indepen-
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Table 3.2: Dimensions of the volume used in the experiments labeled as problems 1 to 12
corresponding to scaling each dimension in (25, 15, 2) by the problem number (Prob.) and
increasing m by a factor 8 for each row. In the last two columns the memory requirements,
in Gigabytes (GB), calculated in MATLAB, where the entries for rows 7 to 12 are the esti-
mates given by MATLAB using try zeros(m,n), which gives an exception for matrices that
are too large for storage in the given environment and reports the estimated requirements
in GB.

Prob. (sx, sy, , nz) m n n (p = 0.05%) GB G GB T̂

1 (25, 15, 2) 375 750 918 .000225 .000005

2 (50, 30, 4) 1500 6000 7616 .007200 .000037

3 (75, 45, 6) 3375 20250 24402 .054675 .000127

4 (100, 60, 8) 6000 48000 58080 .230400 .000303

5 (125, 75, 10) 9375 93750 113710 .703125 .000594

6 (150, 90, 12) 13500 162000 199200 17.4960 .001028

7 (175, 105, 14) 18375 257250 310730 35.2 .001634

8 (200, 120, 16) 24000 384000 464640 68.7 .002441

9 (225, 135, 18) 30375 546750 662450 123.7 .003478

10 (250, 150, 20) 37500 750000 916320 209.5 .004774

11 (275, 165, 22) 45375 998250 1206500 337.5 .006358

12 (300, 180, 24) 54000 1296000 1568200 521.4 .008258

dent of the gravity or magnetic kernels; Ggravity, Gmagnetic are comparable. But

the requirement to calculate extra entries for the non-symmetric magnetic kernel is also

seen; Tgravity < Tmagnetic. On the other hand, the significant savings in generating just

the transform matrices, as indicated by timings Tgravity, and Tmagnetic, as compared to

Ggravity, andGmagnetic is evident. There is a considerable computational advantage to the

use of the transform for calculating the required components that are needed for evaluating

matrix-vector products for these structured kernel matrices.

57



(a) p = 0 (b) p = 0.05

Figure 3.3: Running times for generating G using Algorithms 2 and 5 and T̂ using Algo-
rithms 3 and 6 with 0% padding in Figure 3.3a, and with 5% padding in Figure 3.3b.

Of greater significance is the comparison of the computational cost of direct matrix

multiplications, b = Gu and d = GTv, as compared with the transform implementations

for these products. As noted already, u ∈ Rnxnynz is consistently partitioned into nz blocks,

ur ∈ Rnxny , 1 ≤ r ≤ nz, with

Gu =
nz∑
r=1

G(r)ur, and GTv =



(
G(1)

)T
v(

G(2)
)T

v

...(
G(nz)

)T
v


,

where v ∈ Rsxsy . 100 copies of vectors u ∈ Rn and v ∈ Rm are randomly generated and

the mean times for calculating the products over all 100 trials, for each problem size, are

recorded. The differences over all trials in the generation of b and d obtained directly for

Ggravity and Gmagnetic, and by Algorithm 1 for Tgravity and Tmagnetic, are also recorded.

Then, Egravity and Emagnetic are the mean values of the relative 2-norm of the differ-

ence between the results produced by Ggravity versus Tgravity, and for Gmagnetic versus

Tmagnetic, respectively, for both forward and transpose operations. The results are illus-

trated in Figures 3.4 and 3.5 for the generation of Gu and GTv, respectively. In each case
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Figure 3.4: Mean running times over 100 trials for forward multiplication using Ggravity,
Gmagnetic, Tgravity, and Tmagnetic (left y-axis) and mean errors over 100 trials Egravity

and Emagnetic for forward multiplication using Ggravity versus Tgravity, and Gmagnetic

versus Tmagnetic respectively (right y-axis) are shown for 0% padding in Figure 3.4a, and
5% padding in Figure 3.4b.

the timing is reported on the left y−axis and the error on the right y-axis. Again all plots

are on the “log-log” scale, and Figures 3.4a and 3.5a are without padding, but Figures 3.4b

and 3.5b are with padding. Figures 3.4 and Figure 3.5 show significant reductions in mean

running time when implemented without the direct calculation of the matrices. Moreover,

the results are comparable, Egravity . 10ε for both forward and transpose operations,

and Emagnetic . 102ε, where ε is the machine accuracy. Thus, in all cases, Tgravity and

Tmagnetic show a significant reduction in mean running time for large problems, and al-

low much larger systems to be represented. Indeed, the largest test case for Tgravity and

Tmagnetic is by no means a limiting factor, and it is possible to represent much larger ker-

nels.

Remark 3.5.1 (MATLAB fft2). Note that the MATLAB fft2 function determines an optimal

algorithm for a given problem size. On the first call for a given problem size, fft2 uses the

function fftw to determine optimal parameters for the Fourier transform. Thus, the first

time fft2 is called generally takes longer than subsequent instances. This effect is mitigated
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Figure 3.5: Mean running times over 100 trials for transpose multiplication usingGgravity,
Gmagnetic, Tgravity, and Tmagnetic (left y-axis) and mean errors over 100 trials Egravity

and Emagnetic for transpose multiplication using Ggravity versus Tgravity, and Gmagnetic

versus Tmagnetic respectively (right y-axis) are shown for 0% padding in Figure 3.5a, and
5% padding in Figure 3.5b.

by first removing the variable dwisdom within fftw, and then setting the planner within fftw

to exhaustive. After running a single call to fft2, the resulting dwisdom is then saved. Then

for each trial, the appropriate stored values for dwisdom are loaded before each use of

fft2. Hence the results are not contaminated by artificially high costs of the first run of fftw

for each problem case.

3.5.1 Data Availability and Software Package

The software consists of the main functions to calculate the BTTB and symBTTB ma-

trices, with padding, and the circulant matrices T that are needed for the 2DFFT. Also

provided is a simple script to test the algorithms using the gravity and magnetic

kernels. All the software for the algorithms is open source and available at https://

github.com/renautra/FastBTTB, and described at https://math.la.asu.

edu/˜rosie/research/bttb.html. Provided are the scripts that are used to gen-

erate the results presented in the paper. The variables used in the codes are described in
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Table 2.1 and Table 3.1. The TestingScript.m is easily modified to generate new

examples and can be tested within different hardware configurations and versions of MAT-

LAB. A safety test for memory usage in generating large scale examples is provided at

the initialization of each problem size, so that problems too large to fit in memory will

not be used in generating the matrix G directly. The presented implementation assumes

uniform grid sizes in all dimensions, but using depth layers of different heights is an easy

modification, through the change in the input coordinate vector z blocks.

3.6 Conclusions

A general discussion on Toeplitz and circulant structure relating to fast Fourier based

multiplication has been presented. It was shown that careful derivation of gravity and

magnetic models admitts BTTB structure, and provides efficient generation of the ker-

nel matrices for both the symmetric and non-symmetric cases with padding around the

domain. It was shown that the fast convolution multiplication can be extended for the

resulting rectangular kernel matrices. The presented results validate that there is a consid-

erable reduction in computational cost for generation of these matrices, and for forward

and transpose operations with these matrices. Software implementing the algorithms has

been made available.
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Chapter 4

A RANDOMIZED PRECONDITIONING SKETCH

Overview of Chapter

In this chapter, sketching of matrices using randomization techniques is introduced. A

new algorithm, RPS, will be shown to significantly reduce computational time compared

to the LSRN method by combining dimensionality reduction via a left randomized sketch

with a right preconditioning substitution. Analysis will show that using the RPS method

creates an extremely well-conditioned system, along with the associated error bounds for

the resulting solution. The RPS method will also be shown to provide regularization via

truncation based on choice of truncation parameter, and demonstrations will validate the

use of the RPS algorithm in comparison to LSRN. These methods will be applied to real

data, and for this practical data set a preferable estimate for the truncation parameter will

be shown for the RPS and LSRN algorithms. The LSRN algorithm, however, will require

approximately three times as much computational time compared to the RPS algorithm for

this truncation size.

While randomization techniques have been around for decades, as reviewed in the text

of Motwani and Raghavan [1995], algorithms toward dimensionality reduction via random-

ization have only more recently gained attention and application, Bárdossy and Hörning

[2016], Gower and Richtárik [2015], Halko et al. [2011], Lin et al. [2017], Mahoney [2011],

Meng et al. [2014], Vatankhah et al. [2018a,b], Woodruff [2014]. Sketching is a technique

that takes advantage of recent developments in randomization, and has been introduced as

a technique for dimensionality reduction, Halko et al. [2011], Wang [2015]. Two major

directions for applying dimensionality reduction through sketching have been considered.
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The first is sketching the matrix A, generally to obtain a rank-k decomposition of A that

allows the problem to be solved more efficiently, Gower and Richtárik [2017], Halko et al.

[2011], Mahoney [2011], Wang [2015], Vatankhah et al. [2018a,b]. The second method

applies the sketch directly to the linear system Ax ≈ b to obtain a reduced size surrogate

model, Gower and Richtárik [2015], Lin et al. [2017].

Here, a random Gaussian left sketch, S, is introduced. Shortfalls are addressed when

attempting to apply a random Gaussian sketch via the transform Sy = x, and possible

alternatives are presented. It is shown how a randomized left sketching technique can be

combined with right preconditioning methods to reduce the dimensions of both the model

parameter and measurement data spaces. Theoretical results supporting the new left sketch

with right preconditioning are presented.

As noted in Chapter 3, the sensitivity matrices for gravity and magnetic problems

exhibit block Toeplitz Toeplitz block (BTTB) structure provided that the data measurement

positions are uniform and carefully related to the grid defining the volume discretization.

The 2DFFT can be used to provide fast multiplication as shown. Hence, here the focus is

on a method that takes advantage of this fast matrix multiplication.

Note that Zhang and Wong [2015] have used the BTTB structure for fast computations

with the sensitivity matrix, and employed this within an algorithm for the inversion of

gravity data using a smoothing regularization, allowing for variable heights of the indi-

vidual depth layers in the domain. They also applied optimal preconditioning for the BTTB

matrices using the approach of Chan and Jin [2007]. Their approach was optimized by

Chen and Liu [2018] but only for efficient forward gravity modeling and with a slight

modification in the way that the matrices for each depth layer of the domain are defined

using the approximation of the forward integral equation. Here the extension of the use

of the FFT approach to the inversion of magnetic data is considered. Both inversion

problems are solved using a truncation method based on randomization. This method is
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then validated in combination with BTTB multiplication via the 2DFFT for the solution of

the linear systems that arise in focused inversion of gravity and magnetic data using

both synthetic and real data.

Overview of main scientific contributions. This chapter provides a comprehensive

study of the application of the 2DFFT in focusing inversion algorithms for gravity and

magnetic potential field data sets in combination with the development of new random-

ization techniques. Specifically, the main contributions are as follows. (i) A detailed review

of randomization techniques in application to a discrete linear system by left multiplication;

(ii) The extension of this randomization technique to include a right preconditioning sub-

stitution to produce a novel randomized preconditioning sketch (RPS); (iii) Presentation of

theoretical analysis and computational properties for the RPS method; (iv) The extension

of the RPS method to utilize the 2DFFT for all forward multiplications with the sensitivity

matrix, or its transpose; (v) Presentation of numerical experiments that confirm that the

RPS algorithm is more efficient for the inversion of gravity and magnetic data sets

than an existing method, LSRN, Meng et al. [2014]; (vi) Finally, all conclusions are con-

firmed by application on a practical data set, demonstrating that the methodology is suitable

for focusing inversion of large scale data sets and can provide parameter reconstructions

with more than 1M variables.

4.1 Sketching A

Rapid assimilation of data and the trend to increase the number of model parameters

have led to increasingly large problems. Large inverse problems are prohibitively compu-

tationally expensive to solve, both in terms of memory and time. Applying dimensionality

reduction can reduce a problem to a manageable size. A sketch, Halko et al. [2011], Wang

[2015], reduces dimensionality while attempting to represent the dominant information of

a matrix. If A ∈ Rm×n and sketching matrix S ∈ Rn×s, where s � min(m,n), then
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C = AS is a sketch of A. The sketch size s = k + p uses an oversampling parameter

p to ensure C provides a rank k approximation of A. Note that a sketch can also be ap-

plied by left multiplication for S ∈ Rm×s as C = STA and as C = ST1 AS2, Gower and

Richtárik [2017], Wang [2015], for consistent sketching matrices S1 and S2. The sketch C

then contains a combination of either the rows and/or columns of A.

Suppose the SVD of A is given by A = UΣV T , and Ak = UkΣkV
T
k where Σk contains

the first k columns and rows of Σ. It is well known, Hansen [1987], Hansen et al. [2013],

that Ak is the closest rank-k approximation to A with ‖A − Ak‖2 = σk+1. The solution

xk = VkΣ
†
kU

T
k b of Akxk ≈ b is then easy to obtain. Computing the SVD of a large

matrix can, however, become very computationally expensive, and in some cases altogether

impossible. Suppose C ∈ Rm×s is a matrix that satisfies the low-rank approximation

property, Mahoney [2011],

‖CC†A− A‖2 ≤ (1 + ε)‖Ak − A‖2, (4.1)

where C† is the pseudo-inverse of C, and 1 + ε ≥ 1 is small, generally close to 1. Then, C

is a good rank-k approximation of A if the dominant k singular terms of A are represented

in C. The oversampling parameter p is chosen to ensure statistically that (4.1) holds with

high probability, [Sarlos, 2006, Theorem 14].

An alternative criterium that ensures that the dominant features of A are represented in

C is the subspace embedding property, Wang [2015], Woodruff [2014]. Specifically, this

requires preservation of the length of a vector under projection

‖STAx‖2 ≈ ‖Ax‖2 or ‖STATz‖2 ≈ ‖ATz‖2, (4.2)

for any x ∈ Rn or z ∈ Rm. This property becomes less straightforward when the sketch

C = ST1 AS2 is used. Since both dimensions of C have been reduced the transformations

S2y = x or ST1 w = z, for some y,w ∈ Rs are needed.

65



Several different sketching matrices have been shown to enforce properties (4.1) and

(4.2) with high probability. These include the use of random Gaussian matrices, ran-

domized Hadamard transforms, and count sketches Wang [2015]. The random Gaussian

sketch matrix S = 1√
s
Ω, where Ω contains randomly sampled values ωij ∼ N (0, 1), is

simple to implement and allows a flexible choice of s that is typically smaller in comparison

to other methods, Mahoney [2011], Wang [2015]. Here, ∼ N(0, 1) denotes a random vari-

able sampled from a standard normalized Gaussian distribution with mean 0 and variance

1. A randomized singular value decomposition (RSVD) is covered in more detail relating

to inversion of gravity and magnetic data in Chapter 5

4.2 Directly Applying Sketching to Solve Systems

Many methods, Gower and Richtárik [2017], Halko et al. [2011], Mahoney [2011],

Wang [2015], Vatankhah et al. [2018a,b], Voronin et al. [2015], use the sketch of A to

obtain a surrogate system that is more computationally efficient to solve. Given the linear

system

Ax ≈ b, (4.3)

consider the left, right and full sketches given by STAx ≈ STb,ASy ≈ b, and ST1 AS2y ≈

ST1 b, respectively, yielding the general form

Cy ≈ c, (4.4)

where c = STb for left and full sketches. Regardless of the choice of s, C is not guaranteed

to be square and nonsingular, or even well-conditioned. To find a suitable estimate for y,

it may, therefore, be necessary to either right precondition C, use regularization, or both

precondition and regularize. Further, the resulting sketched system may still be computa-

tionally expensive to solve. Although y may be accurate as a solution of (4.4), the accuracy

of x as a solution of (4.3), when using right and full sketches, still depends on the accuracy
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of the projection x = Sy from Rs to Rn. For example, it is immediate that if S is a random

Gaussian sketch matrix, then the projection to Rn is random and inaccurate.

4.2.1 Left Sketch

First consider a left sketch applied to the system Ax = b, producing the surrogate

system STAx = STb. Algorithm 8 shows an implementation of the left sketch in MAT-

LAB using a Gaussian sketch matrix and solving the surrogate system with the MATLAB

implementation of lsqr, which is based on Paige and Saunders [1982].

Input: A, b, and sketch size s,
with [m,n] = size(A)

S = randn(m, s);
x = lsqr(STA, STb);

Algorithm 8: Left sketch

Input: A, b, and sketch size s,
with [m,n] = size(A)

S = randn(n, s);
y = lsqr(AS, b);
x = Sy;

Algorithm 9: Right sketch

Although one dimension of the system is reduced when a sketch is applied on the left

of A, the solution x is computed in its original dimension.

4.2.2 Naive Right Sketch

Next consider ASy ≈ b obtained by the substitution x = Sy. While this allows

implementation of the sketch C = AS, the projection x = Sy is disastrous when using a

random Gaussian sketch matrix. Algorithm 9 presents a simple MATLAB implementation

of the naive right sketch.

4.2.3 LSRN

One method that gives insight into reducing the model dimensionality and providing an

accurate projection is LSRN, Meng et al. [2014]. For matrix A which is either significantly

overdetermined (m� n) or underdetermined (m� n), the LSRN algorithm uses a projec-

tion based preconditioning approach. The sketch size s > min(m,n) is chosen to ensure
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the full rank of A is represented in C, [Meng et al., 2014, Theorem 4.1]. For example, for

n� m, a left sketch C = STA, of size (n+ p)× n, is produced using a random Gaussian

sketch matrix S, with s = n+p. Next, the SVD C = UCΣCV
T
C is produced, and the rank-k

SVD is used to form the preconditioning matrix N = (VC)k(ΣC)−1
k . While CN is used to

obtain an initial vector for use with lsqr, Paige and Saunders [1982], the extremely overde-

termined problem ANy ≈ b is solved, and the projection xLSRN = Ny provides the de-

sired solution. LSRN is shown in Algorithm 10 for m� n, and Algorithm 11 for m� n.

Due to the concentration of the extreme singular values, [Meng et al., 2014, Theorem 4.4],

in high probability the system is well-conditioned, with κ2(AN) ≈ 1. Note that a simi-

lar preconditioning approach is used by [Drineas et al., 2012] to obtain statistical leverage

scores. Further, as noted in [Meng et al., 2014, Lemma 3.1], range(NNTCT ) = range(CT )

ensures that a least squares solution is still found. Thus, LSRN provides a viable method

that combines sketching and preconditioning techiques. Since LSRN requires m � n or

n � m, if m and n are both large LSRN requires more computational resources than a

standard regularization approach, and is thus of limited applicability.

Input: A ∈ Rm×n with rank k,
b ∈ Rm, and oversampling
factor p, with m� n

s = n+ p;
S = randn(m, s);
C = STA ∈ Rs×n;
[˜,Σ, V ] = svd(C, ‘econ’);
N = VkΣ

−1
k ;

y = lsqr(AN, b);
x = Ny;

Algorithm 10: LSRN (m� n)

Input: A ∈ Rm×n with rank k,
b ∈ Rm, and oversampling
factor p, with m� n

s = m+ p;
S = randn(n, s);
C = AS ∈ Rm×s;
[U,Σ, ˜] = svd(C, ‘econ’);
M = UkΣ

−1
k ;

x = lsqr(MTA,MTb);

Algorithm 11: LSRN (m� n)

4.3 Randomized Preconditioning Sketch

In order to reduce the model dimensionality and keep the computational costs down

we propose a randomized preconditioning sketch (RPS), Hogue and Renaut [2020], with
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sketch size s = k + p, and k � min(m,n). As with LSRN, a random Gaussian left sketch

is applied to give C = STA ∈ Rs×n. Then in contrast to choosing N = (VC)k(ΣC)−1
k from

the truncated SVD ofC, we take the truncated SVD ofCCT to formN based on the identity

C† = CT (CCT )† = CTVCCTΣ†
CCT

UT
CCT derived from (A.1). Since s � n and CCT ∈

Rs×s, its SVD, UCCTΣCCTV
T
CCT , is found efficiently. Hence assuming rank(CCT ) ≥ k,

we can choose N = CT (VCCT )k(ΣCCT )−1
k , producing the overdetermined preconditioned

system

CNy ≈ STb. (4.5)

The solution x = Ny is obtained at significantly reduced cost because CN ∈ Rs×k. Fur-

ther, multiplying from the right only requires matrix-vector multiplications, where now

x = CT (VCCT )k(ΣCCT )−1
k y. Pseudo-code for RPS is given in Algorithm 12. Computa-

tional analysis is discussed carefully in Section 4.4.

Input: A, b, sketch size s, and power iteration
parameter q, with [m,n] = size(A)

S = randn(m, s);
Calculate C ∈ Rs×n: C = STA;
c = b;
for i = 1 : q do

C = (CA)AT ; // power iteration
c = A(ATc);

end
Calculate SVD for CCT ∈ Rs×s:
[U,Σ, ˜] = svd(CCT );

Solve for y ∈ Rk: y = UT
k (STc);

Compute x ∈ Rn: x = (CT (Uk(Σ
−1
k y)));

Algorithm 12: RPS

Note that the preconditioned surrogate model is solved directly by a single matrix mul-

tiplication, provided through Lemma 4.3.1 and Theorem 4.3.2. Error bounds are also pre-

sented for the projected solution. Since the error is shown to rely on the decay of singular

values, we also include a power iteration such that ST (AAT )qAx = ST (AAT )qb. In the
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following analysis, the impact of floating-point errors is in evaluating terms is ignored and

negligible.

Lemma 4.3.1. Hogue and Renaut [2020] Suppose A ∈ Rm×n has rank k and S ∈ Rm×s is

a standard Gaussian sketch matrix with s = k+p� min(m,n). SupposeUCCTΣCCTV
T
CCT

is the SVD of CCT where C = STA ∈ Rs×n and let N = CT (VCCT )k(ΣCCT )−1
k ∈ Rn×k.

Then CN = (UC)k is column orthogonal, where UCΣCV
T
C is the SVD of C.

Proof. Since VCCT = UCCT = UC and ΣCCT = Σ2
C by Lemma A.0.1,

CN = CCT (VCCT )k(ΣCCT )−1
k = UCΣ2

CU
T
C (UC)k(ΣC)−2

k = UCΣ2
C

 Ik

0

 (ΣC)−2
k

= UC

 (ΣC)2
k

0

 (ΣC)−2
k = UC

 Ik

0

 = (UC)k.

Hence CN is column orthogonal.

Theorem 4.3.2. Hogue and Renaut [2020] Suppose A ∈ Rm×n has rank at least k �

min(m,n), S ∈ Rm×s is a standard Gaussian sketch matrix with s = k + p� min(m,n),

with p ≥ 4, and as in Lemma 4.3.1 N = CT (VCCT )k(ΣCCT )−1
k . Let xk = A†kb be the

least squares solution of Akxk ≈ b, where Ak is the best rank k approximation of A, and

x̃k = Ny be the projection of the least squares solution of the right preconditioned system

STANy ≈ STb. Defining rk = b − Axk and (∆A)k = A − (AP )k for the projector

P = CT (CCT )−1C, and using σ1 > σ2 > · · · > σk > σk+1 as the first k + 1 singular

values of A, then

1. The overdetermined least squares problem CNy ≈ STb with system matrix CN ∈

Rs×k is well-conditioned, and κ2(CN) = 1 and y = (UCCT )Tk S
Tb.
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2. The solution x̃k = Ny = C†kS
Tb is a least squares solution of (4.3), and satisfies

‖xk − x̃k‖2

‖xk‖2

≤ ‖(∆A)k‖2

σk − ‖(∆A)k‖2

+
‖(∆A)k‖2

σk − ‖(∆A)k‖2 − σk+1

(
1 +

σ1‖r‖2

(σk − ‖(∆A)k‖2)‖Axk‖2

)
with probability greater than 1− 6e−p, where

‖(∆A)k‖2 ≤

(
2 + 16

√
1 +

k

p+ 1

)
σk+1 +

8
√
s

p+ 1

( ∑
j≥k+1

σ2
j

) 1
2

. (4.6)

Proof.

1. It is immediate by Lemma 4.3.1 that κ2((CN)TCN) = κ2((UC)Tk (UC)k) = 1.

Thus the least squares problem given by (4.5) is well-conditioned, by [Golub and

Van Loan, 2013, Theorem 5.3.1 and related discussion], summarized in Theorem B.1.1.

By column orthogonality and (4.6), y = (UC)Tk S
Tb = (UCCT )Tk S

Tb.

2. Using N = CT (VCCT )k(ΣCCT )†k and Lemma A.0.1,

N(UCCT )Tk = VCΣCU
T
C (UC)k((ΣC)†k)

2(UC)Tk = (VC)k(ΣC)†k(UC)Tk = C†k,

where the last equality holds by (A.2). Thus, x̃k = Ny = N(UCCT )Tk S
Tb = C†kS

Tb

and x̃k is a least squares solution of Ckx̃k ≈ STb, or (STA)kx̃k ≈ STb.

Now, using the projector P = CT (CCT )−1C, and noting that the truncated SVD

(AP )k is the closest rank k approximation to AP , we apply [Halko et al., 2011,

Theorem 9.3], summarized in Theorem B.2.1, using Y = CT = ATS to show

‖A− (AP )k‖2 ≤ σk+1 + ‖A(I − P )‖2,

since for a projector P T = P , I − P is the orthogonal projector to P , and ‖AT‖2 =

‖A‖2. Furthermore, by [Halko et al., 2011, Corollary 10.9], summarized in Corol-

lary B.2.2,

‖A(I − P )‖2 ≤

(
1 + 16

√
1 +

k

p+ 1

)
σk+1 +

8
√
s

p+ 1

( ∑
j≥k+1

σ2
j

) 1
2

.
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Combining these two results yields the given bound (4.6) for ‖(∆A)k‖2.

Finally, the relative least squares error, which is given by [Hansen, 1987, Theo-

rems 3.2-3.4], can be written as

‖xk − x̃k‖2

‖xk‖2

≤ ‖(∆A)k‖2

σk − ‖(∆A)k‖2

+
‖(∆A)k‖2

σk − ‖(∆A)k‖2 − σk+1

(
1 +

σ1‖r‖2

(σk − ‖(∆A)k‖2)‖Axk‖2

)
as long as there is a distinct gap between σk and σk+1, and thus the result follows.

Note that using N = CTVkΣ
−1
k with y = UT

k S
Tb is equivalent to the truncation ap-

proach yk = ΦUTST b, where Φ is diagonal with elements φi = 1 for i ≤ k and φi = 0

for i > k. Since Theorem 4.3.2 requires a distinct gap σk > σk+1, consider the case where

σk ' σk+1. Notice that applying the power iteration produces (AAT )qA = UΣqV T and

thus produces σqk > σqk+1 for some q. Now the system (AAT )qAx = (AAT )qb has a

distinct gap between σqk and σqk+1, and thus Theorem 4.3.2 is applicable.

4.4 Computational Analysis

The RPS algorithm requires the calculation of C = STA, the product CCT and the

generation of the SVD for CCT . These are dominated by O(mns), O(ns2) and O(s3)

flops, respectively, Wang [2015]. Using q power iterations adds an additionalO(2qmns)

flops. Then solution x̃k = Ny = CT (VCCT )k(ΣCCT )−1
k y is obtained without directly

forming matrix N , using k scalar operations for (ΣCCT )−1
k y, s inner products of length k

for action by (VCCT )k and n inner products of length s for action by CT . The dominant

cost is thenO((n+k)s). Similar arguments can be made for LSRN, but with min(m,n) <

s = min(m,n) + p, where p is the oversampling factor. In addition, unlike RPS where the

preconditioned system is obtained for free, the matrix multiplication for preconditioning in
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LSRN is taken into account. LSRN also requires an iterative solver. Supposing that the

standard LSQR algorithm is used, the dominant computational cost per iteration is O(mn)

arising from the matrix vector operations ATu and Av, for u ∈ Rm and v ∈ Rn, Paige and

Saunders [1982]. Thus the total cost of an i−step LSQR is O(2mni1). Since m and n are

large, the 2mni operations dominate the cost of LSQR. These counts are summarized in

Table 4.1. Note in all instances that the first order costs of inner products and scalar vector

multiplications are ignored.

Table 4.1: The dominant computational cost comparison of solvingAx ≈ b forA ∈ Rm×n

with numerical rank k, sketch size s � min(m,n) = m̃, max(m,n) = ˜̃m, oversampling
factor p, q power iteration within RPS, and i ≤ k iterations of LSQR. Note that the projec-
tion is only applicable for LSRN when m� n.

Sketch Precondition Solution Projection Overall

LSRN O((m̃+ p)nm) O(mnk) O( ˜̃mki) O(nk) O((m̃+ p)nm)

RPS O((2q + 1)mns) 0 O(sk) O(n(s+ k)) O((2q + 1)mns)

The memory cost is also reduced through RPS, as shown in Table 4.2. When the size

of the problem is too large to be stored in local memeory, the randomized sketch can be

applied as a series of vector operations, thereby only holding an s × n matrix in memory

to be updated iteratively, after which the full size system is no longer needed. The largest

matrix needed is then either the s× n sketch C or the n× k preconditioning matrix N for

the final projection. LSRN, however, requires a matrix larger than A by a factor of p.

4.5 Application to Inversion of Geophysics Data

The fast and efficient methods for inversion of potential field data using the BTTB

structure of the gravity and magnetic kernel matrices are now validated.
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Table 4.2: The dominant memory cost comparison for solving Ax ≈ b with A ∈ Rm×n

with numerical rank k, sketch size s � min(m,n) = m̃, max(m,n) = ˜̃m, and oversam-
pling factor p. Note that the projection is only applicable for LSRN when m� n.

Sketch Precondition Solution Projection Overall

LSRN O((m̃+ p) ˜̃m) O( ˜̃mk) O( ˜̃mk) O(nk) O((m̃+ p)m)

RPS O(2m+ ns) O(sk) O(sk) O(ns) O(2m+ ns)

4.5.1 Stabilized Inversion

The solution of (2.8) is an ill-posed problem; even if G is well-conditioned the problem

is underdetermined because m � n. There is a considerable literature on the solution of

this ill-posed problem, see Vatankhah et al. [2020c] for a relevant overview, and specifically

the use of the unifying framework for determining an acceptable solution of d = Gm by

stabilization. Briefly, m∗ is estimated as the minimizer of the nonlinear objective function

Φα(m) subject to bound constraints mmin ≤m ≤mmax

m∗ = arg min
mmin≤m≤mmax

{Φα(m)} = arg min
mmin≤m≤mmax

{Φd(m) + α2ΦS(m)}. (4.7)

Here α is a regularization parameter which trades off the relative weighting of the two

terms Φd(m) and ΦS(m), which are respectively the weighted data misfit and stabilizer,

given by

Φd(m) = ‖Wd(Gm− dobs)‖2
2, and ΦS(m) = ‖WzWL(m−mapr)‖2

2.

The weighting matrices Wd, Wz and WL are all diagonal. The prior information given

by mapr is taken to be zero, mapr = 0, but when initial estimates for the parameter are

available, perhaps from physical measurements, note that these can be incorporated into

mapr as an initial estimate for m. The weighting matrix Wd has entries (Wd)ii = 1/σi

when the measured data can be given by dobs = dexact + η, where dexact is the exact but
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unknown data, and η is a noise vector drawn from uncorrelated Gaussian data with variance

components σ2
i .

Whereas stabilizer matrix WL in W = WzWL depends on m, Wz is a constant

depth weighting matrix and is routinely used in the context of potential field inversion

and is imposed to counteract the natural decay of the kernel with depth. With the same

column structure as G, Wz = blockdiag(Wz
(1), . . . ,Wz

(nz)) where Wz
(r) = (.5(zr +

zr−1))−βInr×nr , .5(zr + zr−1) is the average depth for depth level r, and β is a parameter

that depends on the data set, [Li and Oldenburg, 1996]. Now, diagonal matrix WL depends

on the parameter vector m via ith entry given by

(WL)ii =
(
(mi − (mapr)i)

2 + ε2
)λ−2

4 , i = 1 . . . n,

where parameter λ determines the form of the stabilization, and focusing parameter 0 <

ε � 1 is chosen to avoid division by zero. Using λ = 1 yields an approximation to the

L1 norm as described in [Wohlberg and Rodrı́guez, 2007], and is preferred for inversion of

potential field data, although the implementation makes it easy to switch to λ = 0, yielding

a solution which is compact, or λ = 2 for a smooth solution. Based on prior studies

ε2 = 1e− 9 is used, [Vatankhah et al., 2017].

4.5.2 Algorithmic Details for Truncation Approaches

Let W = WzWL and y = W (m −mapr). Then m = mapr + W−1y and y provides

an update that can be applied iteratively. Now using Wd(Gm − dobs) = Wd(Gmapr +

GW−1y− dobs) with r = Gmapr − dobs, produces WdGW
−1y = Wdr for solving (4.7)

without dependance on α. This comprises the iteratively reweighted least squares (IRLS)

method introduced in Section 2.4.3, and is summarized in Algorithm 13. The IRLS method

is applied for (2.7) with q = 2 and p = 1.
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As shown in Section 2.4.2, this formulation is equivalent to finding the filtered solution

y = W−1Ṽ ΦΣ̃†ŨT r̃ = W−1G̃†κr̃, (4.8)

where G̃ = WdGW
−1 = ŨΣ̃Ṽ T and Φ is a diagonal matrix containing filter factors.

Here truncation filtering is implemented with Φii = 1, i ≤ κ and Φii = 0, i > κ. Hence,

solution of (4.7) is obtained via truncation for Algorithm 13, whereas standard Tikhonov

style regularization, dependent on α, is examined in Chapter 5.

Input: G, dobs, mmin, mmax, Wd, Wz, and Kmax

initialize k = 0,m(1) = 0, y(1) = 1, and stopping conditions;
store WdG, Wddobs;
while stopping conditions not met do

k = k + 1;
r(k) = Gm(k) − dobs;
(WL

(k))ii = diag((y2
ii + ε2)−1/4);

W = WL
(k)Wz;

solve WdGW
−1y = Wdr

(k) for y;
m(k+1) = m(k) +W−1y;
enforce mmin ≤m(k+1) ≤mmax;
update stopping conditions;

end

Algorithm 13: IRLS

The two methods compared for computing (4.8) via truncation are RPS, Algorithm 12

with 1 power iteration, and LSRN, Algorithm 11 (since m � n). Computations involv-

ing the kernel G with BTTB slices are computed using the FFT approach established in

Section 3.1. To use the MATLAB lsqr function for LSRN, a parameterized anonymous

function is used in place of the kernel that makes use of the FFT approach. In the al-

gorithm specifically, superscript k is used to indicate a variable at an iteration k. Trun-

cation parameter κ is replaced by κ(k), WL by matrix W
(k)
L with entries (W

(k)
L )ii =(

(m
(k−1)
i −m

(k−2)
i )2 + ε2

)λ−2
4

and m−mapr by m−m(k−1), initialized with WL
(1) = I ,

and m(0) = mapr respectively. Then y(k) is found as the solution given by (4.8), and m(k)

is the restriction of y(k) + m(k−1) to the bound constraints.
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In addition, the MATLAB eig function is used in place of the svd function since only U

and Σ are needed. Specifically, given AAT = QΛQT and A = UΣV T for orthonormal U

andQ and diagonal Λ and Σ, provides the relationQΛQT = AAT = (UΣV T )(UΣV T )T =

UΣ2UT . Then QΛQT can be transformed to provide U and Σ by sorting the values in Λ.

Also note that for all simulations, the IRLS algorithm is iterated to convergence as

determined by the χ2 test for the predicted data,

‖Wd(Gm(k) − dobs)‖2
2 ≤ m+

√
2m,

or
‖Wd(Gm(k) − dobs)‖2

2

m+
√

2m
≤ 1. (4.9)

If this is not attained for k ≤ Kmax, the iteration is terminated. Noisy data are generated

for observed data dobs = dexact + η using

ηi = (τ1|(dexact)i|+ τ2‖dexact‖∞)ei (4.10)

where e is drawn from a Gaussian normal distribution with mean 0 and variance 1. The

pairs (τ1, τ2) are chosen to provide a signal to noise ratio (SNR), as calculated by

SNR = 20 log10

‖dexact‖2

‖dobs − dexact‖2

, (4.11)

that is approximately constant across the increasing resolutions of the problem. Recorded

for all simulations are (i) the values of the relative error RE(k), as defined by

RE =
‖mexact −m(k)‖2

‖mexact‖2

, (4.12)

(ii) the number of iterations to convergence K which is limited to 25 in all cases, (iii) the

scaled χ2 estimate given by (4.9) at the final iteration, and (iv) the time to convergence

measured in seconds, or to iteration 25 when convergence is not achieved.
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The IRLS algorithm needs to use operations with G̃ = WdGW
−1 rather than G.

But this is handled immediately by using suitable component-wise multiplications of the

diagonal matrices and vectors as noted in Section 3.1. Specifically,

G̃x = Wd(G(W−1x))

and the 2DFFT is applied for the evaluation of Gw where w = W−1x. Then, given z =

Gw, a second component-wise multiplication, Wdz, is applied to complete the process.

Within the algorithms, matrix-matrix operations are also required but, clearly, operations

G̃(k)X , (G̃(k))TZ, ZT G̃(k) are just loops over the relevant columns (or rows) of the matrices

X and Z, with the appropriate weighting matrices provided before and after application of

the 2DFFT.

4.5.3 Implementation Parameter Choices

Diagonal depth weighting matrix Wz uses β = 0.8 for the gravity problem, and

β = 1.4 for the magnetic problem, consistent with recommendations in Li and Olden-

burg [1998] and Pilkington [1997], respectively. In order to contrast the performance and

computational cost of the RPS and LSRN algorithms with increasing problem size m, dif-

ferent sizes t of the projected space for the solution are obtained using t = floor(m/s),

s = 40, 25, 20, 8, 6, and 4, corresponding to increasing t, but also limited by 5000. Trunca-

tion parameter κ(k) is found using the GCV method for k > 1, but initialized with appropri-

ately small κ(1) = t/2. This follows the practice implemented in Vatankhah et al. [2018a],

Renaut et al. [2017] for studies using Tikhonov style regularization, and which was based

on the recommendation to use a large value for the first regularization parameter, [Farquhar-

son and Oldenburg, 2004], corresponding to a smaller κ when applied for truncation. For

comparison, both methods are also implemented without using GCV, instead with κ = t.
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4.5.4 Synthetic Data

(a) Iso-surface of the volume structure. (b) Cross-section of the volume structure.

Figure 4.1: The basic volume structure within the domain of size 2000 × 1200 × 400.
The extent of each structure is shown by the shadow on the base of the volume. The same
structure is used for the results using the padded domain.

A volume structure with a number of boxes of different dimensions, and a six-layer

dipping dike is used for the validation of the algorithms. The same structure is used for

generation of the gravity and magnetic potential field data. For gravity data the

densities of all aspects of the structure are set to 1, with the homogeneous background set

to 0. For the magnetic data, the dipping dike, one extended well and one very small

well have susceptibilities .06. The three other structures have susceptibilities set to .04.

The distinction between these structures with different susceptibilities is illustrated in the

illustration of the iso-structure in Figure 4.1a and the cross-section in Figure 4.1b.

The domain volume is discretized in x, y and z into the number of blocks as indicated by

triples (sx, sy, nz) with increasing resolution for increasing values of these triples. They are

generated by taking (sx, sy, nz) = (25, 15, 2), and then scaling each dimension by scaling

factor ` ≥ 4 for the test cases, correspondingly, sxsy = 375 is scaled by `2 with increasing

`, yielding a minimum problem size with m = 6000 and n = 48000. The grid sizes are
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Table 4.3: Dimensions of the volume used in the experiments with scaling of the small
problem size (25, 15, 2) by scale factor ` in each dimension. m and n are the dimensions
of the measurement vector and the volume domain, respectively, G ∈ Rm×n. Here m =
sxsy = 375`2 and n = mnz where nx = sx and ny = sy without padding. Here, npad =
nxnynz is used to denote the volume dimension n with 5% padding, using nx = sx +
2 round(pad sx) and ny = sy + 2 round(pad sy) for padding obtained using a percentage,
pad, on each side of the domain so that pxL = pxR = round(pad sx), and similarly for sy.

` (sx, sy, nz) m n npad τ g
2 τm

2 SNRg SNRm

4 (100, 60, 8) 6000 48000 58080 .0138 .0081 24.0 24.0

5 (125, 75, 10) 9375 93750 113710 .0147 .0083 24.0 24.0

6 (150, 90, 12) 13500 162000 199200 .0133 .0074 24.0 24.0

7 (175, 105, 14) 18375 257250 310730 .0133 .0070 24.0 24.0

8 (200, 120, 16) 24000 384000 464640 .0133 .0071 24.0 24.1

9 (225, 135, 18) 30375 546750 662450 .0133 .0069 24.0 24.0

10 (250, 150, 20) 37500 750000 916320 .0132 .0070 24.0 24.0

11 (275, 165, 22) 45375 998250 1206500 .0135 .0075 24.0 24.0

12 (300, 180, 24) 54000 1296000 1568160 .0135 .0075 24.0 24.0

thus given by the triples (∆x,∆y,∆z) = (2000/sx, 1200/sy, 400/nz). The problem sizes

considered for each simulation are detailed in Table 4.3. Padding is given by pad = 0% and

pad = 5% across x and y dimensions. These are rounded to the nearest integer yielding

pxL = pxR = round(pad sx), and nx = sx + 2 round(pad sx). ny is calculated in the

same way, yielding n = (sx + 2 round(pad sx))(sy + 2 round(pad sy))nz. Certainly, the

choice to use pad = 5% is quite large, but is chosen to demonstrate that the solutions

obtained using the 2DFFT are robust to boundary conditions, and thus not impacted by the

restriction due to lack of padding or very small padding.

For these structures and resolutions, noisy data are generated as given in (4.10) to yield

an SNR of approximately 24 across all scales as calculated using (4.11). This results in
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different choices of τ1 and τ2 for each problem size and dependent on the gravity or

magnetic data case, denoted by (τ g
1 , τ

g
2 ) and (τm

1 , τ
m
2 ), respectively. In all cases τ g

1 =

τm
1 = .02 and τ2 is adjusted. The simulations for the choices of τ g

2 and τm
2 for increasing

problem sizes are detailed in Table 3.2. Figure 4.2 illustrates the true and noisy data for

gravity and magnetic data, when ` = 12.

(a) True gravity anomaly (b) Noisy gravity anomaly

(c) True magnetic anomaly (d) Noisy magnetic anomaly

Figure 4.2: The calculated true and noisy anomalies for the volume structure given in
Figure 4.1a, where the units are mGal and nT for gravity and magnetic data, respec-
tively. The anomalies used for the inversion using the padded domain are exactly the same
as given here.
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4.5.5 Numerical Results

The validation and analysis of the algorithms for the inversion of the potential field

data is presented in terms of (i) the cost per iteration of the algorithm (Section 4.5.6),

(ii) the total cost to convergence of the algorithm (Section 4.5.7), and (iii) the quality of

the obtained solutions, (Section 4.5.8). Supporting quantitative data that summarize the

illustrated results are also presented as Tables.

4.5.6 Comparative Cost of RPS and LSRN Algorithms Per IRLS Iteration

[100,60,8] [125,75,10] [150,90,12] [175,105,14]
10
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10
1
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2
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3

t = 150 240 300 750 1000 1500

t = 234 375 468 1171 1562 2343

t = 337 540 675 1687 2250 3375

t = 459 735 918 2296 3062 4593

(a) Running time magnetic.
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t = 337 540 675 1687 2250 3375

t = 459 735 918 2296 3062 4593

(b) Running time gravity

Figure 4.3: Running time in seconds for one iteration of the inversion algorithm for the
inversion of magnetic and gravity data using the 2DFFT, without padding the volume
domain. Problems are of increasing size, as indicated by the x−axis for triples [nx, ny, nz]
and increasing projection size t (y−axis using log scale) determined by fractions of m =
sxsy. In Figures 4.3a and 4.3b the running time for the LSRN algorithm and the RPS
algorithm with one power iteration using tp = floor(1.05t) (an oversampling percentage
5%), for the magnetic and gravity problems respectively. GCV is used to obtain κ in
all cases. In these plots the blue solid symbols represent the timing for one iteration of the
RPS algorithm and the open black symbols represent the timing for the same simulation
using the LSRN algorithm. Note that the projection for LSRN does not rely on t, and the
timings tends to overlap.
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Table 4.4: Results for inversion of gravity potential field data for the simulations de-
scribed in Table 4.3 without padding for problem sizes up to ` = 7. The maximum number
of iterations is set to 25 in all cases. tp is the size of the projected space for the RPS imple-
mentation, whereas the LSRN implementation uses the projected space of 1.1m. Reported
are the number of iterations to convergence, K, for convergence as defined by (4.9). The
calculated relative error RE for the given K are also given.

gravity RPS (GCV) RPS (t) LSRN (GCV) LSRN (t)

` t tp K RE K RE K RE K RE

4

150 157 7 0.73 6 0.71 5 0.62 6 0.72

240 252 5 0.66 5 0.68 5 0.62 4 0.66

300 315 5 0.66 4 0.65 5 0.62 4 0.66

750 787 5 0.66 5 0.68 4 0.62 5 0.68

1000 1050 5 0.66 9 0.79 4 0.62 7 0.76

1500 1575 9 0.76 10 0.80 4 0.62 12 0.82

5

234 245 7 0.73 6 0.71 6 0.62 6 0.72

375 393 6 0.69 6 0.71 7 0.96 6 0.72

468 491 7 0.73 6 0.71 6 0.62 6 0.72

1171 1229 8 0.74 8 0.77 8 0.71 11 0.81

1562 1640 9 0.76 10 0.80 7 0.96 11 0.81

2343 2460 12 0.78 13 0.82 7 0.96 14 0.83

6

337 353 7 0.73 5 0.68 4 0.62 5 0.68

540 567 6 0.69 6 0.71 4 0.62 5 0.68

675 708 5 0.66 6 0.71 5 0.62 5 0.68

1687 1771 10 0.77 12 0.81 6 0.62 12 0.82

2250 2362 11 0.78 13 0.82 6 0.62 12 0.82

3375 3543 14 0.80 15 0.83 7 0.96 16 0.84

7

459 481 7 0.73 6 0.71 7 0.96 7 0.76

735 771 7 0.73 7 0.75 6 0.62 7 0.76

918 963 7 0.73 7 0.75 6 0.62 7 0.76

2296 2410 12 0.78 12 0.81 7 0.96 13 0.83

3062 3215 13 0.79 13 0.82 7 0.96 14 0.83

4593 4822 17 0.81 16 0.83 14 0.76 17 0.84
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Table 4.5: Timing results to convergence for inversion of gravity potential field data for
the simulations described in Table 4.3 without padding, for problem sizes up to ` = 7. In
the last two columns the relative costs of LSRN as compared to RPS. Values greater than
1 indicate that RPS is overall faster. In general, RPS is faster for inversion of gravity
data. As projection size increases, however, the relative efficiency of RPS decreases and
CostLSRN/CostRPS decreases towards 1. Results for relative errors and number of itera-
tions are presented in Table 4.4 for gravity data.

CostRPS CostLSRN CostLSRN/CostRPS
` t tp GCV t GCV t GCV t

4

150 157 40 31 580 600 15 19

240 252 43 43 574 400 13 9

300 315 53 42 572 408 11 10

750 787 136 136 451 506 3 4

1000 1050 180 314 456 704 3 2

1500 1575 495 499 469 1217 1 2

5

234 245 123 92 2371 1652 19 18

375 393 167 150 2723 1640 16 11

468 491 239 187 2348 1653 10 9

1171 1229 685 615 3082 3016 5 5

1562 1640 1039 1037 2737 3024 3 3

2343 2460 2054 2075 2767 3876 1 2

6

337 353 217 148 2941 2585 14 17

540 567 299 290 2893 2505 10 9

675 708 303 364 3780 2496 12 7

1687 1771 1543 1821 4255 6000 3 3

2250 2362 2171 2649 3680 5998 2 2

3375 3543 4177 4399 3505 8109 1 2

7

459 481 444 339 8628 8762 19 26

735 771 725 642 7369 8774 10 14

918 963 844 814 7408 8662 9 11

2296 2410 3911 3546 8672 16032 2 5

3062 3215 5901 5184 8665 17279 1 3

4593 4822 12049 10019 17267 21100 1 2
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Table 4.6: Results for inversion of magnetic potential field data for the simulations
described in Table 4.3 without padding for problem sizes up to ` = 7. The maximum
number of iterations is set to 25 in all cases. tp is the size of the projected space for the
RPS implementation, whereas the LSRN implementation uses the projected space of 1.1m.
Reported are the number of iterations to convergence, K, for convergence as defined by
(4.9), with K = 25 indicating that the simulation did not converge to the given tolerance,
marked with ∗. The calculated relative error RE for the given K are also given.

magnetic RPS (GCV) RPS (t) LSRN (GCV) LSRN (t)

` t tp K RE K RE K RE K RE

4

150 157 25∗ 0.75 25∗ 0.80 13 0.71 25∗ 0.77

240 252 25∗ 0.75 25∗ 0.80 12 0.70 25∗ 0.77

300 315 25∗ 0.75 23 0.80 9 0.68 25∗ 0.77

750 787 12 0.68 10 0.68 11 0.69 11 0.68

1000 1050 11 0.67 10 0.68 12 0.70 10 0.67

1500 1575 10 0.66 9 0.66 11 0.69 8 0.68

5

234 245 25∗ 0.75 25∗ 0.80 14 0.72 25∗ 0.77

375 393 25∗ 0.75 25∗ 0.80 14 0.72 25∗ 0.77

468 491 25∗ 0.75 20 0.80 15 0.73 16 0.75

1171 1229 14 0.70 12 0.69 24 0.75 12 0.69

1562 1640 13 0.69 11 0.69 25∗ 0.75 11 0.68

2343 2460 12 0.68 10 0.68 14 0.72 10 0.67

6

337 353 25∗ 0.75 25∗ 0.80 15 0.73 23 0.70

540 567 25∗ 0.75 17 0.74 15 0.73 16 0.75

675 708 23 0.75 15 0.73 15 0.73 15 0.74

1687 1771 14 0.70 11 0.69 25∗ 0.75 11 0.68

2250 2362 11 0.67 9 0.66 25∗ 0.75 10 0.67

3375 3543 9 0.66 9 0.66 25∗ 0.75 9 0.67

7

459 481 25∗ 0.75 25∗ 0.80 25∗ 0.75 22 0.81

735 771 25∗ 0.75 18 0.74 16 0.74 16 0.75

918 963 25∗ 0.75 15 0.73 25∗ 0.75 15 0.74

2296 2410 14 0.70 12 0.69 25∗ 0.75 12 0.69

3062 3215 13 0.69 12 0.69 25∗ 0.75 12 0.69

4593 4822 13 0.69 11 0.69 25∗ 0.75 12 0.69
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Table 4.7: Timing results to convergence for inversion of magnetic potential field data
for the simulations described in Table 4.3 without padding, for problem sizes up to ` = 7.
Entries with ∗ indicate that the algorithm did not converge. In the last two columns the
relative costs of LSRN as compared to RPS. Values greater than 1 indicate that RPS is
overall faster. In all cases, RPS is faster for inversion of gravity data. As projection
size increases, however, the relative efficiency of RPS decreases and CostLSRN/CostRPS
decreases towards 1. Results for relative errors and number of iterations are presented in
Table 4.6 for magnetic data.

CostRPS CostLSRN CostLSRN/CostRPS
` t tp GCV t GCV t GCV t

4

150 157 117∗ 115∗ 1287 2474∗ 11∗ 21∗
240 252 189∗ 187∗ 1212 2473∗ 6∗ 13∗
300 315 234∗ 213 902 2477∗ 4∗ 12∗
750 787 281 236 1093 1090 4 5

1000 1050 340 312 1194 998 4 3

1500 1575 471 427 1092 809 2 2

5

234 245 335∗ 334∗ 3856 7027∗ 11∗ 21∗
375 393 545∗ 543∗ 3860 7008∗ 7∗ 13∗
468 491 681∗ 536 4172 4392 6∗ 8

1171 1229 945 807 6586 3300 7 4

1562 1640 1194 1008 6875∗ 3041 6∗ 3

2343 2460 1633 1368 3873 2754 2 2

6

337 353 616∗ 615∗ 7553 11549 12∗ 19∗
540 567 997∗ 682 7558 8133 8∗ 12

675 708 1151 747 7538 7571 7 10

1687 1771 1773 1393 12477∗ 5578 7∗ 4

2250 2362 1859 1507 12603∗ 5082 7∗ 3

3375 3543 2357 2358 12583∗ 4528 5∗ 2

7

459 481 1363∗ 1364∗ 31012∗ 27514 23∗ 20∗
735 771 2194∗ 1591 19785 19850 9∗ 12

918 963 2721∗ 1638 30961∗ 18643 11∗ 11

2296 2410 4038 3401 31325∗ 14807 8∗ 4

3062 3215 5069 4690 30899∗ 14810 6∗ 3

4593 4822 7903 6677 30906∗ 14836 4∗ 2
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The computational cost is investigated, as measured in seconds, for one iteration of the

inversion algorithm using the circulant embedding for the resolutions up to ` = 7 that are

indicated in Table 4.3, using both the RPS and LSRN algorithms, and for both gravity

and magnetic data. For fair comparison, all the timing results that are reported use

MATLAB release 2019b implemented on the same cores using an Intel(R) Xeon(R) Gold

6138 processor (2.00GHz) and 256GB RAM. The details of the timing results for one

step of the IRLS algorithm using GCV to obtain truncation parameter κ are illustrated in

Figure 4.3, with the specific values for the gravity data case, given in Tables 4.4-4.5,

and magnetic data case, given in Tables 4.6-4.7.

m/40 m/25 m/20 m/8 m/6 m/4

10
0

10
1

(a) magnetic data: CostLSRN/CostRPS.

m/40 m/25 m/20 m/8 m/6 m/4

10
0

10
1

(b) gravity data: CostLSRN/CostRPS.

Figure 4.4: The relative computational cost for one iteration of the IRLS algo-
rithm for inversion using the LSRN algorithm as compared to the RPS algorithm
(CostLSRN/CostRPS), for given ` and projected size t. In each case the given plots for
a fixed ` are for increasing projection size t as given by m/s. The horizontal line at y = 1
represents the data for which the costs are the same, independent of whether using the RPS
or LSRN algorithms. GCV is used to obtain κ in all cases. The RPS algorithm is more
efficient when t is maintained small, s = 40, 25 and 20, but is still more efficient than
LSRN when s = 4. While the gain in using RPS is shown to depend on t, the effect on the
relative cost across ` is insignificant. This coincides with the computational analysis given
in Section 4.4.

Figure 4.3 provides an overview of the computational cost with increasing projection

size t, for a given m, when the algorithm is implemented using the 2DFFT. These costs
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exclude the cost of generating T̂ . In these plots, the black open symbols indicate calcula-

tions using the LSRN algorithm and blue solid symbols indicate using the RPS algorithm.

The same symbols are used for each choice of t and `. An initial observation, confirming

expectation, is that the timings for equivalent problems and methods, are almost indepen-

dent of whether the potential field data are gravity or magnetic, comparing Figure 4.3a

with Figure 4.3b. With increasing `, (increasing values of the triples along the x−axis), it

can also be observed that the open symbols are less spread out vertically, confirming that

the LSRN algorithm is more expensive for problems at all resolutions, since the sketch size

is based on m instead of t. Indeed, the comparative cost is almost identical for all problem

sizes.

Figure 4.4 shows the relative computational costs, CostLSRN/CostRPS for a single iter-

ation of IRLS when using GCV to obtain truncation parameter κ. These plots demonstrate

that the relative costs for a single iteration are not constant across all t with RPS generally

cheaper for smaller t. Further, the computational benefit is approximately equal across `.

These results confirm the analysis of the computational cost in terms of flops provided in

Section 4.4. The relative computational costs increase from roughly 1.9 to 22 for gravity

and from roughly 2 to 23 for magnetic, with decreasing t and without regard for `.

4.5.7 Comparative Cost of RPS and LSRN Algorithms to Convergence

The computational cost of the IRLS algorithm for solving the inversion problem to con-

vergence depends on the choice of t, the choice of LSRN or RPS algorithms, and whether

solving the magnetic or the gravity problem. Tables 4.4-4.7 report the timing re-

sults for the inversion of gravity and magnetic data for problems of increasing size

` and projected spaces of sizes tp. The relative total computational costs to convergence,

CostLSRN/CostRPS, (the last two columns in Tables 4.5 and 4.7) are illustrated via Fig-

ures 4.5a-4.5b, for the magnetic and gravity results, respectively. The results in Fig-
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ures 4.5a and 4.5b for the magnetic and gravity problems respectively demonstrate

a strong preference for the use of the RPS algorithm, except for large t, t = floor(m/4)

for the gravity problem. Furthermore, if based entirely on the calculated RE, the results

suggest that good results can be achieved for relatively small t as compared to m, certainly

s & 8 leads to generally acceptable error estimates, and the errors using the LSRN are

generally larger for comparable choices of t.

Figure 4.6 shows the computational cost to convergence for LSRN and RPS, CostLSRN

and CostRPS, as well as the corresponding RE upon convergence. These plots demonstrate

that while the costs with the RPS algorithm are generally less for smaller t, the RE decreases

for larger t. The RE upon convergence is generally lower when using RPS as compared to

LSRN, with values ranging from roughly 0.66 to 0.75 for RPS and from roughly 0.68 to

0.76 for LSRN.
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(a) magnetic data: CostLSRN/CostRPS.
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(b) gravity data: CostLSRN/CostRPS.

Figure 4.5: Computational cost to convergence of the IRLS algorithm for inversion using
LSRN as compared to RPS, CostLSRN/CostRPS, for magnetic and gravity problems
respectively, in Figures 4.5a-4.5b, black open symbols, and RE, corresponding blue solid
symbols.
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(a) magnetic data: LSRN.
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(b) magnetic data: RPS.

Figure 4.6: The total computational cost of the IRLS algorithm for inversion (left y-axis,
open symbols) and corresponding converged RE (right y-axis, solid symbols), for given `
and projected size t. In each case the given plots for a fixed ` are for increasing projection
size t as given by m/s. The RPS algorithm is more efficient when t is maintained small,
s = 40, 25 and 20. The RE in using RPS, however, decreases as t increases. The RE also
decreases across t when using LSRN, but is generally larger than when using RPS.
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(a) LSRN: ` = 4,

t = 300, (5, 572s).
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(b) ` = 4, t = 750,

(4, 451s).
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(c) ` = 7, t = 918,

(6, 7408s).
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(d) ` = 7, t = 2296,

(7, 8672s).
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(e) RPS: (5, 53s).
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(f) (5, 136s).
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(g) (7, 844s).
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(h) (12, 3911s).

Figure 4.7: For gravity data the predicted anomalies (mGal) obtained using LSRN in
Figures 4.7a-4.7d and RPS in Figures 4.7e-4.7h. The first row for LSRN indicates the
choices of ` and t in each column: t = 300 and t = 750 for ` = 4, and t = 918 and
t = 2296 for ` = 7, corresponding to t = floor(m/20) and t = floor(m/8) for (m,n) =
(6000, 48000) and (18375, 257250), respectively. In the captions are pairs (K,Costs),
(number of iterations to convergence and computational cost in seconds). See Tables 4.4
and 4.5.
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4.5.8 Illustrating Solutions with Increasing ` and t

Figure 4.7 illustrates the predicted anomalies and reconstructed volumes for gravity

data inverted by both algorithms, with resolutions given by ` = 4 and ` = 7 with t =

floor(m/20) and t = floor(m/8). For the cases using ` = 4 it can be seen that the

predicted anomalies are generally less accurate than with ` = 7. Moreover, there is more

deterioration present in the anomaly predictions when using t = floor(m/20) instead of

t = floor(m/8). It is apparent from consideration of the reconstructed volumes shown in

Figures 4.8a-4.8h that the LSRN and RPS algorithms yield similar results in most cases, and

specifically the high resolution ` = 7 results are very good, even using t = floor(m/20).

When including the consideration of the computational cost, it is clear that if using ` = 7

it is sufficient to use t = floor(m/20) and the RPS algorithm, but that a reasonable result

may even be obtained using the same algorithm but with ` = 4 and requiring less than 1

minute of computational time.

The results for the inversion of the magnetic data are illustrated in Figures 4.9 and

4.10 for the same cases as for the inversion of gravity data in illustrated in Figure 4.8.

Now, in contrast to the gravity results, the predicted anomalies are in good agreement

with the true data for the results obtained using the GKB algorithm, with apparently greater

accuracy for the lower resolution solutions, ` = 4 for both choices of t. On the other hand,

the predicted magnetic anomalies are less satisfactory for small ` and t but acceptable for

large `. Then, considering the reconstructed volumes, there is a lack of resolution for ` = 4

which is evidenced by the loss of the small well near the surface, which is seen when ` = 7

for both cases of t. The other structures in the domain are also resolved better with ` = 7,

but using t = floor(m/8) produces a lower RE for RPS over t = floor(m/20). Then,

considering the reconstructions obtained using the RPS algorithm, while it is clear that the

result with ` = 4 and small t is unacceptable, the anomaly and reconstructed volume with
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(a) LSRN: ` = 4,

t = 300, (.66, .99).

(b) ` = 4, t = 750,

(.66, .99).

(c) ` = 7, t = 918,

(.60, .98).

(d) ` = 7, t = 2296,

(.60, .97).

(e) RPS: (.65, .96). (f) (.65, .94). (g) (.61, .95). (h) (.67, .93).

Figure 4.8: For gravity data the reconstructed volumes obtained using LSRN in Fig-
ures 4.8a-4.8d and RPS in Figures 4.8e-4.8h, corresponding to Figures 4.7a-4.7d and Fig-
ures 4.7e-4.7h, respectively. The first row for LSRN indicates the choices of ` and t in
each column: t = 300 and t = 750 for ` = 4, and t = 918 and t = 2296 for ` = 7,
corresponding to t = floor(m/20) and t = floor(m/8) for (m,n) = (6000, 48000) and
(18375, 257250), respectively. In the captions are pairs (RE, χ2/(m +

√
2m)). Results for

all cases are summarized in Table 4.4 with timings in Table 4.5.

` = 4 and t = floor(m/8) is acceptable and achieved in reasonable time, approximately

5 minutes, far faster than using LSRN. Thus, the RPS algorithm requires a fraction of the

computational time compared to LSRN within the magnetic data inversion algorithm for

reasonable choice of t ≥ floor(m/8).

Further, for truncation parameter choice estimation, the GCV function is preferable in

general for gravity for both RPS and LSRN, although when ` = 7, κ = t produces

similar timing and number of iterations for RPS. In contrast, the choice κ = t is preferable

in general for the magnetic problem for both RPS and LSRN, and GCV performs poorly

when applied to LSRN when ` is large, in particular ` = 7. Although the choice κ = t is
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(a) LSRN: ` = 4,

t = 300, (9, 902s).

200 400 600 800 1000 1200 1400 1600 1800

x-direction (m)

100

200

300

400

500

600

700

800

900

1000

1100

y
-d

ir
ec

ti
o

n
 (

m
)

-300

-200

-100

0

100

200

300

400

500

600

700

800

(b) ` = 4, t = 750,

(11, 1093s).
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(c) ` = 7, t = 918,

(25, 30961s).
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(d) ` = 7, t = 2296,

(25, 31325s).
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(e) RPS: (25, 234s).
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(f) (12, 281s).
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(g) (25, 2721s).

200 400 600 800 1000 1200 1400 1600 1800

x-direction (m)

100

200

300

400

500

600

700

800

900

1000

1100

y
-d

ir
ec

ti
o

n
 (

m
)

-400

-200

0

200

400

600

800

(h) (14, 4038s).

Figure 4.9: For magnetic data the predicted anomalies (nT) obtained using LSRN in
Figures 4.9a-4.9d and RPS in Figures 4.9e-4.9h. The first row for LSRN indicates the
choices of ` and t in each column: t = 300 and t = 750 for ` = 4, and t = 918 and
t = 2296 for ` = 7, corresponding to t = floor(m/20) and t = floor(m/8) for (m,n) =
(6000, 48000) and (18375, 257250), respectively. In the captions are pairs (K,Costs),
(number of iterations to convergence and computational cost in seconds). Results for all
cases are summarized in Table 4.6 with timings in Table 4.7.

preferable, the RPS method performs well for these magnetic test cases when t ≥ 10,

regardless of parameter choice method.

4.5.9 Real Data

For validation of the simulated results on a practical data set the RPS algorithm is ap-

plied using κ = t as the truncation parameter for the inversion of a magnetic field anomaly

that was collected over a portion of the Wuskwatim Lake region in Manitoba, Canada.

This data set was discussed in Pilkington [2009] and also used in Vatankhah et al. [2020a].

Further details of the geological relevance of this data set is given in these references.

Moreover, its use makes for direct comparison with these existing results. The grid uses
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(a) LSRN: ` = 4,

t = 300, (.69, .86).

(b) ` = 4, t = 750,

(.65, .97).

(c) ` = 7, t = 918,

(.74, 1.02).

(d) ` = 7, t = 2296,

(.76, 1.05).

(e) RPS: (.68, 1.17). (f) (.63, .96). (g) (.75, 1.03). (h) (.70, .97).

Figure 4.10: For magnetic data the reconstructed volumes obtained using LSRN in Fig-
ures 4.10a-4.10d and RPS in Figures 4.10e-4.10h, corresponding to Figures 4.9a-4.9d and
Figures 4.9e-4.9h, respectively. The first row for LSRN indicates the choices of ` and t in
each column: t = 300 and t = 750 for ` = 4, and t = 918 and t = 2296 for ` = 7,
corresponding to t = floor(m/20) and t = floor(m/8) for (m,n) = (6000, 48000) and
(18375, 257250), respectively. In the captions are the pairs (RE, χ2/(m+

√
2m)). Results

for all cases are summarized in Table 4.6 with timings in Table 4.7.

62× 62 = 3184 measurements at 100m intervals in the East-North direction with padding

of 5 cells yielding a horizontal cross section of size 72 × 72 cells in the East-North direc-

tions. The depth dimension is discretized with ∆z = 100m, yielding a regular cube, to

∆z = 8m for rectangular prisms with a smaller edge length in the depth dimension for

a total depth of 2000m, and providing increasing values of n from 103680 to 1238976 as

detailed in Table 4.8. The given magnetic anomaly is illustrated in Figure 4.11a.

In each inversion the RPS algorithm is run with t = 384, corresponding to t =

floor(m/10), where m = 3844 and oversampled projected space of size 403, and a noise

distribution based on (4.10) is employed using τ1 = .02 and τ2 = .018. The computational

cost measured in seconds is also given in Table 4.8 and demonstrates that it is feasible
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(a) Given anomaly.
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(b) Predicted: n = 103680.
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(c) Predicted: n = 1238976.

Figure 4.11: The given magnetic anomaly in Figure 4.11a and the obtained predicted
anomalies for inversion using the parameters for the first and last lines of data in Table 4.8
for the RPSmethod using t as the truncation parameter in Figures 4.11b-4.11c, respectively.

to invert for large parameter volumes, in times ranging from just under 5 minutes for the

coarsest resolution, to just over 73 minutes for the volume with the highest resolution. Ta-

ble 4.8 also shows results for the RPS algorithm using GCV and for the LSRN algorithm

using both truncation parameter estimation methods.

Results of inversion, for the coarsest and finest resolutions are presented in Figures 4.11,

4.12 and 4.13, for anomalies, reconstructed volumes, and depth slices through the volume

domain, respectively. It can be seen from Figures 4.11b-4.11c that the predicted anomalies

provide better agreement to the measured anomaly with larger nz. Moreover, the increased

resolution provides greater detail in Figure 4.12b as compared to Figure 4.12a. Here the

volumes are presented for the depth from 0 to 1000m only, but it is seen in Figures 4.13e

and 4.13j, which are the slices at depth 1100m, that there is little structure evident at greater

depth. Comparing the depth slices for increasing depth, it is immediate that the use of the

higher resolution leads to more structure at increased depth.
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Table 4.8: Inversion of practical magnetic data using RPS with the GCV approach, with
t as the truncation parameter as illustrated in Figure 4.11, and using LSRN with both trun-
cation approaches, for m = 3844 on a grid of 62 × 62 stations, with ∆x = ∆y = 100m
and padding of 5 cells in both x and y-directions, yielding blocks of size nr = 5184. The
inversion uses t = 384 (floor(m/10)) and tp = 403. The noise in the algorithm uses (4.10)
as given for the simulations with τ1 = .02 and τ2 = .018.

method n nz ∆z K χ2/(m+
√

2m) Cost(s)

RPS
(GCV)

103680 20 100 27∗ 1.41 454
207360 40 50 27∗ 1.32 912
305856 59 33 27∗ 1.15 1334
414720 80 25 27∗ 1.11 1850
518400 100 20 27∗ 1.12 2300
616896 119 16 27∗ 1.11 2738
829440 160 12 27∗ 1.13 3703
1036800 200 10 27∗ 1.06 4734
1238976 239 8 27∗ 1.06 5588

RPS
t

103680 20 100 27∗ 1.06 454
207360 40 50 27 0.99 909
305856 59 33 27 0.98 1343
414720 80 25 24 0.98 1637
518400 100 20 27 1.03 2284
616896 119 16 26 0.99 2633
829440 160 12 23 0.98 3157
1036800 200 10 24 0.99 4186
1238976 239 8 25 1.00 5161

LSRN
(GCV)

103680 20 100 18 0.79 1471
207360 40 50 18 0.92 2942
305856 59 33 19 0.79 4613
414720 80 25 18 0.84 5835
518400 100 20 18 0.89 7257
616896 119 16 18 0.93 8694
829440 160 12 18 0.85 11555
1036800 200 10 19 0.82 15291
1238976 239 8 18 0.92 17331

LSRN
t

103680 20 100 27∗ 1.06 2200
207360 40 50 27∗ 1.03 4446
305856 59 33 26 1.00 6201
414720 80 25 26 0.99 8400
518400 100 20 25 0.98 10088
616896 119 16 27∗ 1.01 12907
829440 160 12 26 0.98 16661
1036800 200 10 26 0.99 20897
1238976 239 8 27 1.00 25994

96



(a) Iso-surface using n = 103680. (b) Iso-surface using n = 1238976.

Figure 4.12: The reconstructed volumes showing parameters κ > 0.05 and depth from 0
to 1000, corresponding to the predicted anomalies in Figure 4.11.

(a) 300m (b) 500m (c) 700m (d) 900m (e) 1100m

(f) 300m (g) 500m (h) 700m (i) 900m (j) 1100m

Figure 4.13: Slices through the volumes illustrated in Figure 4.12 for depths 300, 500,
700, 900 and 1100, for n = 103680 in Figures 4.13a-4.13e and for n = 1238976 in Fig-
ures 4.13f-4.13j.

As shown in Table 4.8, the RPS algorithm converges in a fraction of the computational

time compared to the LSRN algorithm when using κ = t to approximate the truncation

parameter, but fails to reach convergence when using GCV. The χ2 error upon convergence,

however, tends to be larger for the RPS method. Similar to the results in Table 4.7, the

RPS algorithm is slightly faster with lower χ2 error upon convergence when using κ = t to
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estimate the truncation parameter as compared to applying GCV. In contrast, the opposite

is true for the LSRN algorithm, where applying GCV results in a significant reduction in

number of iterations to convergence compared to using κ = t as the truncation parameter,

with smaller χ2 error and time to convergence. Note that when using GCV, the LSRN

method does not rely on t or tp.
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(a) Given anomaly.
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(b) Predicted: n = 103680.
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(c) Predicted: n = 1238976.

Figure 4.14: The given magnetic anomaly in Figure 4.14a and the obtained predicted
anomalies for inversion using the parameters for the first and last lines of data in Table 4.9
for the RPSmethod using t as the truncation parameter in Figures 4.14b-4.14c, respectively.

Contrary to the results for simulated data, convergence conditions were not met for

many runs for both LSRN and RPS and thus an increase to t = 480 is implemented, cor-

responding to t = floor(m/8), and oversampled projected space of size 504. The updated

computational cost measured in seconds is given in Table 4.9 and demonstrates that it is

feasible to invert for large parameter volumes, in times ranging from just under 5 min-

utes for the coarsest resolution, to just over 73 minutes for the volume with the highest

resolution.

Results of inversion, for the coarsest and finest resolutions are presented in Figures 4.14,

4.15 and 4.16, for anomalies, reconstructed volumes, and depth slices through the volume

domain, respectively. Figures 4.14b-4.14c illustrate that the predicted anomalies provide

better agreement to the measured anomaly with larger nz. Moreover, the increased resolu-
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Table 4.9: Inversion of magnetic data using RPS with the GCV approach, with t as the
truncation parameter as illustrated in Figure 4.14, and using LSRN with both truncation
approaches, for m = 3844 on a grid of 62 × 62 stations, with ∆x = ∆y = 100m and
padding of 5 cells in both x and y-directions, yielding blocks of size nr = 5184. The
inversion uses t = 480 (floor(m/8)) and tp = 504. The noise in the algorithm uses (4.10)
as given for the simulations with τ1 = .02 and τ2 = .018.

method n nz ∆z K χ2/(m+
√

2m) Cost(s)

RPS
(GCV)

103680 20 100 21 0.99 442
207360 40 50 19 0.99 805
305856 59 33 19 0.93 1210
414720 80 25 18 0.97 1548
518400 100 20 19 0.98 2025
616896 119 16 19 0.94 2449
829440 160 12 18 0.93 3176
1036800 200 10 19 0.91 4160
1238976 239 8 20 0.99 5299

RPS
t

103680 20 100 19 0.98 398
207360 40 50 17 0.99 716
305856 59 33 17 0.94 1082
414720 80 25 17 0.97 1472
518400 100 20 17 0.99 1806
616896 119 16 17 0.93 2246
829440 160 12 17 0.94 3031
1036800 200 10 17 0.97 3729
1238976 239 8 17 0.99 4485

LSRN
(GCV)

103680 20 100 18 0.79 1471
207360 40 50 18 0.92 2942
305856 59 33 19 0.79 4613
414720 80 25 18 0.84 5835
518400 100 20 18 0.89 7257
616896 119 16 18 0.93 8694
829440 160 12 18 0.85 11555
1036800 200 10 19 0.82 15291
1238976 239 8 18 0.92 17331

LSRN
t

103680 20 100 18 0.99 1467
207360 40 50 18 0.93 2933
305856 59 33 17 0.98 4053
414720 80 25 18 0.93 5860
518400 100 20 18 0.96 7286
616896 119 16 18 0.94 8636
829440 160 12 17 0.99 10954
1036800 200 10 18 0.92 14600
1238976 239 8 17 0.98 16419
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tion provides greater detail in Figure 4.15b as compared to Figure 4.15a. Here the volumes

are presented for the depth from 0 to 1000m only, but it is seen in Figures 4.16e and 4.16j,

which are the slices at depth 1100m, that there is little structure evident at greater depth.

Again, comparing the depth slices for increasing depth, it is clear that the use of the higher

resolution leads to more structure at increased depth.

(a) Iso-surface using n = 103680. (b) Iso-surface using n = 1238976.

Figure 4.15: The reconstructed volumes showing parameters κ > 0.05 and depth from 0
to 1000, corresponding to the predicted anomalies in Figure 4.14.

(a) 300m (b) 500m (c) 700m (d) 900m (e) 1100m

(f) 300m (g) 500m (h) 700m (i) 900m (j) 1100m

Figure 4.16: Slices through the volumes illustrated in Figure 4.15 for depths 300, 500,
700, 900 and 1100, for n = 103680 in Figures 4.16a-4.16e and for n = 1238976 in Fig-
ures 4.16f-4.16j.
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As shown in Table 4.9, the RPS algorithm converges in a fraction of the computational

time compared to the LSRN algorithm for both truncation parameter evaluation methods.

The χ2 error upon convergence, however, tends to be larger for the RPS method. Similar

to the results in Table 4.7, the RPS algorithm is slightly faster with lower χ2 error upon

convergence when using t to estimate the truncation parameter as compared to applying

GCV. With t = m/8, the same is now also true for the LSRN algorithm, and using t = m/8

results in a significant reduction in number of iterations to convergence compared to using

t = m/10, with smaller χ2 error and time to convergence even thought the projection size

is larger.

4.6 Conclusions

The RPS method has been shown to significantly reduce computational time compared

to the LSRN method by combining dimensionality reduction via a left randomized sketch

with a right preconditioning substitution. Analysis has also been given showing that using

the RPS method creates an extremely well-conditioned system, along with the associated

error bounds for the resulting solution. The RPS method has also been shown to provide

regularization via truncation based on choice of truncation parameter, and demonstrations

validated the use of the RPS algorithm in comparison to LSRN. The choice of truncation pa-

rameter based on a suitable projection size was shown to be preferable for the magnetic

problems for both RPS and LSRN. While the GCVmethod was preferable for the gravity

problems, its use was shown to be unnecessary for RPS, particularly as the size of the prob-

lems increased. These methods were applied to real data, and for this practical data set the

estimate for the truncation parameter of t = m/8 was preferable for the RPS and LSRN

algorithms. The LSRN algorithm, however, required approximately three times as much

computational time compared to the RPS algorithm. The RPS method is easy to imple-
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ment, and can be applied to a wide range of problems where dimensionality reduction is

desired.
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Chapter 5

INVERSION OF LARGE-SCALE GRAVITY AND MAGNETIC DATA USING

APPROXIMATE SINGULAR VALUE DECOMPOSITIONS

Overview of Chapter

In this chapter, two algorithms, GKB and RSVD, for the focused inversion of poten-

tial field data with all operations for the sensitivity matrix G implemented using a fast

2DFFT algorithm will be developed and validated for the inversion of both gravity and

magnetic data sets. The results will show that it is distinctly more efficient to use the

2DFFT for operations with matrix G rather than direct multiplication. This is independent

of algorithm and data set, for all large scale implementations considered. Moreover, the

implementation using the 2DFFT makes it feasible to solve these large scale problems on

a standard desktop computer without any code modifications to handle multiple cores or

GPUs, which is not possible due to memory constraints whenm and n increase. While both

algorithms are improved with this implementation, the results show that the impact on the

GKB efficiency is greater than that on the RSVD efficiency. When considering the compu-

tational cost to convergence for both algorithms, the results will confirm earlier published

results that it is more efficient to use RSVD, with t ≥ floor(m/8) for inversion of gravity

data. Moreover, generally larger projected spaces are required when using RSVD for the

inversion of magnetic data. On the other hand, prior published work did not contrast

GKB with RSVD for the inversion of magnetic data. Here, results will show that GKB is

more efficient for these large-scale problems and can use also t ≈ floor(m/8) rather than

larger spaces for use with RSVD. Further, GKB is also more efficient than RPS, with RPS

more computationally efficient than RSVD. When the implementations use padding, fewer
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iterations to convergence will be shown to be required. RPS is shown to provide a viable

truncation approach for the inversion of real magnetic data. Although GKB is prefer-

able, RPS provides similar timing and similar number of iterations to convergence for all

cases, without dependance on either regularization parameter α or truncation parameter κ,

provided an appropriate projection space is used.

Associated with the development of a focusing inversion algorithm, is the choice of

solver within the inversion algorithm, the choice of regularizer for focusing the subsurface

structures, and a decision on determination of suitable regularization parameters. With re-

spect to the solver, small scale problems can be solved using the full singular value decom-

position (SVD) of the sensitivity matrix, which is not feasible for the large scale. Moreover,

the use of the SVD for focusing inversion has been well-investigated in the literature, see for

example [Vatankhah et al., 2014b,a], while choices and implementation details for focusing

inversion are reviewed in [Vatankhah et al., 2020c]. Furthermore, methods that yield useful

approximations of the SVD, hence enabling automatic but efficient techniques for choice of

the regularization parameters have also been discussed in [Renaut et al., 2017, Vatankhah

et al., 2017] when considered with iterative Krylov methods based on the Golub-Kahan

Bidiagonalization (GKB) algorithm, [Paige and Saunders, 1982], and in Vatankhah et al.

[2018a, 2020a] when adopted using the randomized singular value decomposition (RSVD),

[Halko et al., 2011]. Recommendations for the application of the RSVD with power it-

eration, and the sizes of the projected spaces to be used for both GKB and RSVD were

presented, but only within the context of problems that can be solved without the use of

the 2DFFT. Thus, a complete validation of these algorithms for the solution of the large

scale focusing inversion problem, with considerations contrasting the effectiveness of these

algorithms in the large scale, is still important, and is addressed here.

An alternative approach for the comparison of RSVD and GKB algorithms was discussed

by Luiken and van Leeuwen [2020]. The focus there, on the other hand, was on the effective
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determination of both the size of the projected space and the determination of the optimal

regularization parameter, using these algorithms. Their RSVD algorithm used the range

finder suggested in [Halko et al., 2011, Algorithm 4], rather than the power iteration. They

concluded with their one rather small example for an under-determined sensitivity matrix of

size 400 by 2500 that this was not successful. The test for the GKB approach was successful

for this problem, but it is still rather small scale as compared to the problems considered

here. Instead as stated, we return to the problem of assessing a suitable size of the projected

space to be used for large scale inversion of magnetic and gravity data, using the

techniques that provide an approximate SVD and hence efficient and automatic estimation

of the regularization parameter concurrently with solving large scale problems. We use the

method of Unbiased Predictive Risk Estimation (UPRE) for automatically estimating the

regularization parameters, as extensively discussed elsewhere, Vogel [2002].

Overview of main scientific contributions. This chapter provides a comprehensive study

of the application of the 2DFFT in regularized focusing inversion algorithms for gravity

and magnetic potential field data sets, and summarizes joint research in Renaut et al.

[2020]. Specifically, the main contributions are as follows. (i) A detailed review of the me-

chanics for the inversion of potential field data using focusing inversion algorithms based

on the iteratively regularized least squares algorithm in conjunction with the solution of

linear systems using GKB or RSVD algorithms; (ii) The extension of these approaches for

the use of the 2DFFT for all forward multiplications with the sensitivity matrix, or its trans-

pose; (iii) Comparison of the computational cost when using the 2DFFT as compared to

the sensitivity matrix, or its transpose, directly, when implemented within the inversion

algorithm, and dependent on the sizes of the projected spaces adopted for the inversion;

(iv) Presentation of numerical experiments that confirm that the RSVD algorithm is more

efficient than the GKB for the inversion of gravity data sets, for larger problems than pre-

viously considered; (v) A new comparison of the use of GKB as compared for RSVD for the
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inversion of magnetic data sets, showing that GKB is to be preferred; (vi) All conclusions

are confirmed by application on a practical data set, demonstrating that the methodology

is suitable for focusing inversion of large scale data sets and can provide parameter recon-

structions with more than 1M variables using a laptop computer; (vii) Comparison is given

for RPS compared to GKB and RSVD for the inversion of magnetic data, which shows

that while GKB is preferred, RPS is a viable alternative.

The chapter is organized as follows. The general methodology used for approximation

of the SVD is presented in Section 5.1. Details for the numerical solution of the inversion

formulation are provided in Section 5.1.1 and the algorithms are in Section 5.1.2. The

estimated computational cost of each algorithm, in terms of the number of floating point

operations flops is given in Section 5.1.3. Numerical results applying the presented

algorithms to synthetic and practical data are described in Section 5.2, with the details

that apply to all computational implementations given in Section 5.2.1. Results assessing

comparison of computational costs for one iteration of the algorithm for use with, and

without, the 2DFFT are discussed in Section 5.2.3. The convergence of the 2DFFT-based

algorithms for problems of increasing size is discussed in Section 5.2.4. Validating results

for the inversion of real magnetic data obtained over a portion of the Wuskwatim Lake

region in Manitoba, Canada are provided in Section 5.2.6 and conclusions in Section 5.3.

5.1 Approximate Singular Value Decomposition

The SVD can be approximated using the sketchC = AS, Halko et al. [2011], Vatankhah

et al. [2018a]. First, a QR decomposition provides orthogonal Q ∈ Rm×s and upper tri-

angular R. Then, the SVD ŨΣV of QTA ∈ Rs×n is less computationally expensive since

s � m. Since QQT = I, this provides U ≈ QŨ . UkΣkV
T
k is then returned, where k < s.

The sketch C = STA can be used to approximate a rank k SVD of A in a similar way.
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Either way, the resulting rank k decomposition can then be used to approximate A†, Halko

et al. [2011], Vatankhah et al. [2018a].

As shown in Halko et al. [2011],

‖A−QQTA‖2 ≤
[
1 + 11

√
smin(m,n)

]
σk+1

with failure at most 6p−p when p ≥ 5. Since this error bound is based on the separation

of singular values, the error may be high when singular values decay slowly. A power

iteration can then be used to decrease the error, since (AAT )qA = (UΣ2UT )qUΣV T =

UΣ2qUTUΣV T = UΣ2q+1V T , and thus the decay of singular values is increased. This

method is developed in specific relation to inversion of gravity and magnetic data in

Section 5.1.2.

5.1.1 Numerical Solution

Following the basic setup established in Section 4.5.1 and incorporating regularization

parameter α, then the solution m∗ of (4.7) without the bound constraints is given analyti-

cally by

m = mapr + (GTWd
TWdG+ α2WTW)−1GTWd

TWd(dobs −Gmapr). (5.1)

Equivalently, assuming that W is invertible, and defining G̃ = WdGW
−1, r̃ = Wd(dobs−

Gmapr) and y = m−mapr, then y solves the normal equations

y = W−1(G̃T G̃+ α2I)−1G̃T r̃, (5.2)

and m∗ can be found by restricting y + mapr to lie within the bound constraints.

Now, (5.2) can be used to obtain the iterative solution for (4.7) using IRLS, but with

dependance on α, as described in Vatankhah et al. [2020c]. Specifically, again superscript k

is used to indicate a variable at an iteration k, and α is replaced by α(k), WL by matrix W
(k)
L
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with entries (W
(k)
L )ii =

(
(m

(k−1)
i −m

(k−2)
i )2 + ε2

)λ−2
4

and m −mapr by m −m(k−1),

initialized with WL
(1) = I , and m(0) = mapr respectively. Then y(k) is found as the

solution of the normal equations (5.2), and m(k) is the restriction of y(k) + m(k−1) to the

bound constraints.

This use of the IRLS algorithm for the incorporation of the stabilization term ΦS con-

trasts the implementation discussed in [Zhang and Wong, 2015] for the inversion of poten-

tial field gravity data. In their presentation, they considered the solution of the general

smoothing Tikhonov formulation described by (5.2) for general fixed smoothing operator

D replacing WL. For the solver, they used the re-weighted regularized conjugate solver for

iterations to improve m(k) from mapr. They also included a penalty function to impose pos-

itivity in m(k), depth weighting to prevent the accumulation of the solution at the surface,

and adjustment of α with iteration k to encourage decrease in the data fit term. Moreover,

they showed that it is possible to pick approximations D which also exhibit BTTB structure

for each depth layer, so that Dx can also be implemented by layer using the 2DFFT. Al-

though we do not consider the unifying stabilization framework here with general operator

D as described in Vatankhah et al. [2020c], it is a topic for future study, and a further exten-

sion of the work, therefore, of Zhang and Wong [2015] for the more general stabilizers. In

the earlier work of the use of the BTTB structure arising in potential field inversion, Bruun

and Nielsen [2007] investigated the use of a truncated SVD and the conjugate gradient least

squares method for the minimization of the data fit term without regularization. They also

considered the direct solution of the constant Tikhonov function with WL = I and a fixed

regularization parameter α, for which the solution uses the filtered SVD in the small scale.

Here, not only do we use the unifying stabilization framework, but we also estimate α at

each iteration of the IRLS algorithm. The IRLS algorithm is implemented with two dif-

ferent solvers that yield effective approximations of a truncated SVD. One is based on the
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randomized singular value decomposition (RSVD), and the second uses the Golub Kahan

Bidiagonalization (GKB).

5.1.2 Algorithmic Details

The IRLS algorithm relies on the use of an appropriate solver for finding y(k) as the

solution of the normal equations (5.2) for each update k, and a method for estimating

the regularization parameter α(k). While any suitable computational scheme can be used to

update m(k), the determination of α(k) automatically can be challenging. But if the solution

technique generates the SVD for G̃(k), or an approximation to the SVD, such as by use of

the RSVD or GKB factorization for G̃(k), then there are many efficient techniques that can be

used such as the unbiased predictive risk estimator (UPRE) or generalized cross validation

(GCV). The obtained estimate for α(k) depends on the estimator used and there is extensive

literature on the subject, e.g. Hansen [2010]. Thus, here, consistent with earlier studies on

the use of the GKB and RSVD for stabilized inversion, we use the UPRE, denoted by U(α),

for all iterations k > 1, and refer to Renaut et al. [2017] and Vatankhah et al. [2018a, 2020a]

for the details on the UPRE. The GKB and RSVD algorithms play, however, a larger role in

the discussion and thus for clarity are given here as Algorithms 14 and 15, respectively.

For the use of the GKB we note that Algorithm 14 uses the factorization G̃Atp =

Htp+1Btp , where Atp ∈ Rn×tp and Htp+1 ∈ Rm×tp+1. Steps 6 and 11 of Algorithm 14

apply the modified Gram-Schmidt re-orthogonalization to the columns of Atp and Htp+1,

as is required to avoid the loss of column orthogonality. This factorization is then used

in Step 15 to obtain the rank tp approximate SVD given by G̃ = (Htp+1Utp)Σtp(AtpVtp)
T .

The quality of this approximation depends on the conditioning of G̃, [Paige and Saunders,

1982]. In particular, the projected system of the GKB algorithm inherits the ill-conditioning

of the original system, rather than just the dominant terms of the full SVD expansion. Thus,

the approximate singular values include dominant terms that are good approximations to
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Input: r̃ ∈ Rm, G̃ ∈ Rm×n, a target rank t and size of oversampled projected
problem tp, t < tp � m.

Output: α and y.
1 Set a = zeros(n, 1), B = sparse(zeros(tp + 1, tp)), H = zeros(m, tp + 1),

A = zeros(n, tp);
2 Set β = ‖r̃‖2, h = r̃/β, H(:, 1) = h;
3 for i = 1 : tp do
4 b = G̃Th− βa ;
5 for j = 1 : i− 1 do
6 b = b− (A(:, j)Tb)A(:, j) (modified Gram-Schmidt (MGS))
7 end
8 γ = ‖b‖2, a = b/γ, B(i, i) = γ, A(:, i) = a;
9 c = G̃a− γh ;

10 for j = 1 : i do
11 c = c− (H(:, j)Tc)H(:, j) (MGS)
12 end
13 β = ‖c‖2, h = c/β, B(i+ 1, i) = β, H(:, i+ 1) = h;
14 end
15 SVD for sparse matrix: UtpΣtpV

T
tp = svds(B, tp);

16 Apply UPRE to find α using Utp(:, 1 : t) and Σtp(1 : t, 1 : t);
17 Solution y = ‖r̃‖2AtpVtpΓ(α,Σtp)Utp(1, :)

T ;

Algorithm 14: Use GKB algorithm for factorization G̃Atp = Htp+1Btp and obtain
solution y of (5.2).

the dominant singular values of the original system, as well as very small singular values

that approximate the tail of the singular spectrum of the original system. The accuracy of

the dominant terms increases quickly with increasing tp, Paige and Saunders [1982]. There-

fore, to effectively regularize the dominant spectral terms from the rank tp approximation,

in Step 16 we use the truncated UPRE that was discussed and introduced in Vatankhah

et al. [2017]. Specifically, a suitable choice for α(k) is found using the truncated SVD of

Btp with t terms. Then, in Step 17, y(k) is found using all terms in the expansion of Btp .

The matrix Γ(α,Σ) in Step 17 is the diagonal matrix with entries σi/(σ2
i + α2). In the

simulations we use tp = floor(1.05 t) corresponding to 5% increase in the space obtained.

This contrasts to using just t terms and will include terms from the tail of the spectrum.

Note, furthermore, that the top t terms, from the projected space of size tp > t will be more
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accurate estimates of the true dominant t terms than if obtained with tp = t. Effectively,

by using a 5% increase of t in the calculation of tp, we assume that the first t terms from

the tp approximation provide good approximations of the dominant t spectral components

of the original matrix G̃. We reiterate that the presented algorithm depends on parameters

tp and t. At Step 16 in Algorithm 14 α(k) is found using the projected space of size t but

the update for y in Step 17 uses the oversampled projected space of size tp. The results

presented for the synthetic tests will demonstrate that this uniform choice for tp is a suitable

compromise between taking tp too small and contaminating the solutions by components

from the less accurate approximations of the small components, and a reliable, but larger,

choice for tp that provides a good approximation of the dominant terms within reasonable

computational cost.

The algorithm presented in Algorithm 15, denoted as RSVD, includes a single power

iteration in Steps 3 to 6. Without the use of the power iteration in the RSVD it is necessary to

use larger projected systems in order to obtain a good approximation of the singular space

of the original system, Halko et al. [2011]. Further, it was shown in [Vatankhah et al.,

2020a], that when using RSVD for potential field inversion, it is better to apply a power

iteration. Skipping the power iteration steps leads to a less accurate approximation of the

dominant singular space. Moreover, the gain from taking more than one power iteration is

insignificant as compared to the increased computational time required. As with the GKB,

the RSVD, with and without power iteration, depends on two parameters t and tp, where

here t is the target rank and tp is size of the oversampled system, tp > t. For given t and tp

the algorithm uses an eigen decomposition with tp terms to find the SVD approximation of

G̃ with tp terms. Hence, the total projected space is of size tp, the size of the oversampled

system, which is then restricted to size t for estimating the approximation of G̃. Using

(Y +Y T )/2 in Step 10 of Algorithm 15, rather than Y , assures that the matrix is symmetric

which is important for the efficiency of eig.
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Input: r̃ ∈ Rm, G̃ ∈ Rm×n, a target matrix rank t and size of oversampled
projected problem tp, t < tp � m.

Output: α and y.
1 Generate a Gaussian random matrix Ω ∈ Rtp×m ;
2 Y = ΩG̃ ∈ Rtp×n ;
3 [Q,∼] = qr(Y T , 0), Q ∈ Rn×tp . (economic QR decomposition) ;
4 Y = G̃Q ∈ Rm×tp ;
5 [Q,∼] = qr(Y, 0), Q ∈ Rm×tp ;
6 Y = QT G̃, Y ∈ Rtp×n ;
7 [Q,∼] = qr(Y T , 0), Q ∈ Rn×tp ;
8 B = G̃Q ∈ Rm×tp ;
9 Compute Y = BTB ∈ Rtp×tp ;

10 Eigen-decomposition of BTB: [Ṽ , D] = eig((Y + Y T )/2) ;
11 S = diag(

√
|real(D)|), [S,indsort] = sort(S, ′descend′);

12 Σ̃t = diag(S(1 : t)), Ṽ = Ṽ (:,indsort(1 : t)), Ũ = Ṽ ./(S(1 : t)T );
13 Apply UPRE to find α using Ũ , Σ̃t, and BT r̃;
14 Solution y = QṼ Γ(α, Σ̃t)Ũ

T (BT r̃);
15 Note if Ṽt = QṼ is formed; and Ũt = BŨ Σ̃−1

t , then ŨtΣ̃tṼ
T
t is a t-rank

approximation of matrix G̃ ;

Algorithm 15: Use RSVD with one power iteration to compute an approximate
SVD of G̃ and obtain solution y of (5.2)

It is clear that the RSVD and GKB algorithms provide approximations for the spectral

expansion of G̃, with the quality of this approximation dependent on both t and tp, and

hence the quality of the obtained solutions y(k) at a given iteration is dependent on these

choices for t and tp. As noted, the GKB algorithm inherits the ill-conditioning of G̃ but

the RSVD approach provides the dominant terms, and is not impacted by the tail of the

spectrum. Thus, the use of the same choices may not be expected for the pairs t and tp for

these algorithms. Vatankhah et al. [2020a] investigated the choices for t and tp for both

gravity and magnetic kernels. When using RSVD with the single power iteration

they showed that suitable choices for t, when tp = t + 10, are t & m/s, where s ≈ 8

for the gravity problem and s ≈ 4 for magnetic data inversion. This contrasts using

s ≈ 6 and s ≈ 2 without power iteration, for gravity and magnetic data inversion,

112



respectively. On the other hand, results presented in [Vatankhah et al., 2017] suggest using

tp & m/s where s . 20 for the inversion of gravity data using the GKB algorithm. This

leads to the range of t used in the simulations to be discussed in Section 5.2, s = 40, 25, 20,

8, 6, 4 and 3. This permits a viable comparison of cost and accuracy for GKB and RSVD.

Observe that, for the large scale cases considered here, testing with least s = 3 was chosen

rather than s = 2. Indeed, using s = 2 generates a large overhead of testing for a wide

range of parameter choices, and suggests that relatively large subspaces would be needed

defined by t = m/2, offering limited gain in speed and computational cost.

5.1.3 Computational Costs

Of interest is the computational cost of (i) the practical implementations of the GKB

or RSVD algorithms for finding the parameter vector y(k) when operations with matrix G

are implemented using the 2DFFT, and (ii) the associated impact of the choices of tp on

the comparative costs of these algorithms with increasing m and n. In the estimates the

focus is on the dominant costs in terms of flops, recalling that the underlying cost of a

dot product of two vectors of length m is assumed to be 2m. Further, the costs ignore any

overheads of data movement and data access.

First, the evaluation of matrix products with G̃ or G̃T is addressed, required at Steps 4

and 9 of Algorithm 14 and 2, 4, 6 and 8 of Algorithm 15. Matrix operations with G,

rather than G̃, use the 2DFFT, as described in Section 3.1 for Gx, GTy and yTG, based

on the discussion in [Vogel, 2002]. The cost of a single matrix vector operation in each

case is 4nxnynz log2(4nxny) = 4n log2(4nr). This includes the operation of the 2DFFT

on the reshaped components of xr ∈ Rnxny and the inverse 2DFFT of the component-

wise product of x̂r with Ĝ(r), for r = 1 : nz, but ignores the lower cost of forming the

component-wise products and summations over vectors of size nr. Thus, multiplication
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with a matrix of size n× tp has dominant cost

4ntp log2(4nr),

in place of 2mntp. The IRLS algorithm uses operations with G̃ = WdGW
−1 via component-

wise multiplication, and loops over matrix-vector multiplication instead of matrix-matrix

multiplication as demonstrated in Section 4.5.2.

Now, to determine the impact of the choices for t (and tp) the dominant costs are es-

timated for finding the solution of (5.2) using the GKB and RSVD algorithms. This is the

major cost of the IRLS algorithm. The assumptions for the dominant costs of standard

algorithms, given in Table 4.3, are quoted from Golub and Van Loan [2013]. But note that

the cost for eig depends significantly on problem size and symmetry. Here t can be quite

large, when m is large, but the matrix is symmetric, hence the estimate 9t3 is used, [Golub

and Van Loan, 2013, Algorithm 8.3.3]. Note that svds for the sparse bidiagonal matrix B

is achieved at cost which is at most quadratic in the variables. A comment on the cost of

the qr operation is also required. Generally, in forming the QR factorization of a matrix

the information on the Householder reflectors would be maintained that are used in the re-

duction of the matrix to upper triangular form, rather than accumulating the matrix Q. The

cost is reduced significantly if Q is not accumulated. But, as seen from Steps 2, 4, 6 and 8

of Algorithm 15, evaluation of products of Q with G̃ or its transpose are needed. To take

advantage of the 2DFFT evaluating a product ofQwith a diagonal scaling matrix is needed

first, which amounts to accumulation of matrix Q. Experiments, that are not reported here,

show that it is more efficient to accumulate Q as given in Algorithm 15, rather than to to

first evaluate the product of Q with a diagonal scaling matrix without pre accumulation.

Then, the cost for accumulating Q is 2t2(m− t/3) for a matrix of size m× t, [Golub and

Van Loan, 2013, page 255] yielding a total cost for the qr step of 4t2(m − t/3), as also

reported in Xiang and Zou [2013].
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Table 5.1: Computational costs for standard operations. Matrix G ∈ Rm×n, X ∈ Rn×t,
Y ∈ Rm×t, sparse bidiagonal B ∈ Rt+1×t, ATA ∈ Rt×t, and Z ∈ Rm×t. The modified
Gram-Schmidt for C ∈ Rm×i is repeated for i = 1 : t, yielding the given estimate. These
costs use the basic unit that the inner product xTx for x of length n requires 2n operations.

GX GTY svds(B) MGS(C) eig(ATA) [Q,∼] = qr(Z)

2mnt 2mnt 6t(m+ t) 2mt2 9t3 4t2(m− t/3)

Results in Table 5.1 estimate the dominant costs of Algorithms 14 and 15. The es-

timates do not distinguish between costs based on tp or t, noting tp = floor(1.05 t) and

t = m/s. The distinction between m and nr is also ignored, where nr > m for padded

domains. Moreover, the cost of finding α(k) and then evaluating y(k) is of lower order than

the dominant costs involved with finding the needed factorizations. Using LOT to indicate

the lower order terms that are ignored, and assuming the calculation without the use of the

2DFFT, the most significant terms yield

CostGGKB = 4nmt+ 2t2(n+m) + LOT

CostGRSVD = 8nmt+ 4t2(2n+m− t) + 2mt2 + 9t3 + LOT

= 8nmt+ 4t2(2n+ 3/2m) + 5t3 + LOT .

When using the 2DFFT, the first two entries 2mnt in Table 5.1 are replaced by 4nt log2(4nr).

Then, using m ≈ nr, it is just the first term in each estimate that is replaced leading to the

costs with the 2DFFT as

CostGKB = 8nt log2(4m) + 2t2(n+m) + LOT (5.3)

CostRSVD = 16nt log2(4m) + 4t2(2n+ 3/2m) + 5t3 + LOT . (5.4)

Both pairs of equations suggest, just in terms of flop count, that CostRSVD > 2CostGKB.

Thus, in order to obtain a comparable cost it would require the use of a smaller t for the
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RSVD, than for the GKB. This expectation contradicts earlier experiments contrasting these

algorithms for the inversion of gravity data, using the RSVD without power iteration,

as discussed in Vatankhah et al. [2018a]. Alternatively, it would be desired that the RSVD

should converge in the IRLS far faster than the GKB. Further, theoretically, the gain of using

the 2DFFT is that the major terms are 8t2n and 2t2n for the RSVD and GKB, respectively.

as compared to 8nmt > 8t2n and 4mnt > 2t2n, noting t < m. Specifically, even though

the costs should go up with order nt2 eventually with the 2DFFT, this is still far slower

than the increase mnt that arises without taking advantage of the structure.

Now, as discussed in Xiang and Zou [2013], measuring the computational cost just in

terms of the flop count can be misleading. It was noted by Xiang and Zou [2013] that a

distinction between the GKB and RSVD algorithms, where the latter is without the power

iteration, is that the operations required in the GKB involve many BLAS2 (matrix-vector)

operations, requiring repeated access to the matrix or its transpose, as compared to BLAS3

(matrix-matrix) operations for RSVD implementations. On the other hand, within the qr

algorithm, the Householder operations also involve BLAS2 operations. Hence, when using

MATLAB, the major distinction should be between the use of functions that are builtin

and compiled, or are not compiled. In particular, the functions qr and eig are builtin and

hence optimized, but all other operations that are used in the two algorithms do not use any

compiled code. Specifically, there is no compiled option for the MGS used in steps 6 and 11

of Algorithm 14, while almost all operations in Algorithm 15 use builtin functions or

BLAS3 operations for matrix products that do not involve the matrices with BTTB structure.

Thus, in the evaluation of the two algorithms in the MATLAB environment, computational

costs will be directly considered, rather than just the estimates given by (5.3) -(5.4). On the

other hand, the estimates of the flop counts should be relevant for higher-level program-

ming environments, and are thus relevant more broadly. In all implementations none of the

results quoted will use multiple cores or GPUs.
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5.2 Numerical Experiments

The fast and efficient methods are now validated for inversion of potential field data

using the BTTB structure of the gravity and magnetic kernel matrices. Moreover, the

same setup is used as for examples in Chapter 4.

5.2.1 Implementation Parameter Choices

For clarity, the parameter choices used in Chapter 4 are repeated. Diagonal depth

weighting matrix Wz uses β = 0.8 for the gravity problem, and β = 1.4 for the

magnetic problem, consistent with recommendations in Li and Oldenburg [1998] and

Pilkington [1997], respectively. Diagonal Wd is determined by the noise in the data, and

hard constraint matrix Wh is taken to be the identity. Moreover, mapr = 0 is used, indicat-

ing no imposition of prior information on the parameters. Regularization parameter α(k) is

found using the UPRE method for k > 1, but initialized with appropriately large α(1) given

by

α(1) =
( n
m

)3.5 σ1

mean(σi)
. (5.5)

Here σi are the estimates of the ordered singular values for WdGW
−1 given by the use of

the RSVD or GKB algorithm, and the mean value is taken only over σi > 0. This follows

the practice implemented in Vatankhah et al. [2018a], Renaut et al. [2017] for studies using

the RSVD and GKB, and which was based on the recommendation to use a large value for

α(1), [Farquharson and Oldenburg, 2004]. In order to contrast the performance and com-

putational cost of the RSVD and GKB algorithms with increasing problem size m, different

sizes t of the projected space for the solution are obtained using t = floor(m/s). Generally,

the GKB is successful with larger values for s (smaller t) as compared to that needed for

the RSVD algorithm, s = 40, 25, 20, 8, 6, 4 and 3, corresponding to increasing t, but also

limited by 5000.
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For all simulations, the IRLS algorithm is iterated to convergence as determined by

the χ2 test for the predicted data, given by (4.9). If this is not attained for k ≤ Kmax,

the iteration is terminated. Noisy data are generated for observed data dobs = dexact + η

using (4.10). Recorded for all simulations are (i) the values of the relative error RE(k), as

defined by (4.12), (ii) the number of iterations to convergence K which is limited to 25 in

all cases, (iii) the scaled χ2 estimate given by (4.9) at the final iteration, and (iv) the time

to convergence measured in seconds, or to iteration 25 when convergence is not achieved.

5.2.2 Numerical Results

The validation and analysis of the algorithms for the inversion of the potential field

data is presented in terms of (i) the cost per iteration of the algorithm (Section 5.2.3),

(ii) the total cost to convergence of the algorithm (Section 5.2.4), and (iii) the quality of

the obtained solutions, (Section 5.2.5). Supporting quantitative data that summarize the

illustrated results are also presented as Tables.

5.2.3 Comparative Cost of RSVD and GKB Algorithms Per IRLS Iteration

The computational cost is investigated, as measured in seconds, for one iteration of the

inversion algorithm using both the direct multiplications using matrix G, respectively, GT ,

and the circulant embedding, for the resolutions up to ` = 6 that are indicated in Table 4.3,

using both the RSVD and GKB algorithms, and for both gravity and magnetic data.

For fair comparison, all the timing results that are reported use MATLAB release 2019b

implemented on the same iMac 4.2GHz Quad-Core Intel Core i7 with 32GB RAM. In

this environment, the size of the matrix G is too large for effective memory usage when

` > 6. The details of the timing results for one step of the IRLS algorithm are illustrated in

Figures 5.1-3.5, with the specific values for the magnetic data case, given in Table 5.2.
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Table 5.2: Timing results in seconds for one step of the inversion algorithm applied to
magnetic potential field data for the simulations described in Table 4.3 without padding
and with padding (indicated by P), and for problem sizes up to ` = 7. tp = floor(1.05t)
is the size of the oversampled projected space for GKB and RSVD implementations. The
columns under Direct use of G do not use the 2DFFT. These results are illustrated
in Figures 5.1-3.5, along with the equivalent set of results for the inversion of gravity
data.

magnetic WITH 2DFFT Direct use of G

` t tp GKB RSVD PGKB PRSVD GKB RSVD PGKB PRSVD

4

150 157 2 3 2 2 25 3 31 3

240 252 3 4 3 4 40 4 49 5

300 315 4 6 4 5 51 5 62 6

750 787 16 16 17 14 132 12 161 15

1000 1050 26 22 28 20 180 16 220 19

1500 1575 52 35 56 32 283 26 344 31

2000 2100 87 49 95 46 393 36 477 45

5

234 245 8 13 7 11 120 12 143 14

375 393 14 20 14 18 193 18 232 22

468 491 18 26 18 24 244 22 294 27

1171 1229 72 70 77 68 633 55 765 66

1562 1640 115 96 125 90 862 74 1044 89

2343 2460 230 151 257 144 1347 118 1633 142

3125 3281 389 215 435 208 1869 169 2278 211

6

337 353 19 29 16 20 430 440 532 1597

540 567 36 48 32 35 689 1996 831 2985

675 708 49 60 46 45 867 977 1050 2821

1687 1771 213 164 224 127 2255 465 2739 1301

2250 2362 351 227 382 182 3068 1235 3738 2425

3375 3543 733 376 818 315 4798 1279 5890 2834

4500 4725 1259 542 1413 475 6666 2108 61661 3487

7

459 481 41 56 54 72 NA NA NA NA
735 771 84 94 104 117 NA NA NA NA
918 963 117 121 145 150 NA NA NA NA
2296 2410 554 346 674 433 NA NA NA NA
3062 3215 944 496 1136 601 NA NA NA NA
4593 4822 1999 854 2409 1061 NA NA NA NA
5000 5250 2317 949 2868 1192 NA NA NA NA
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(a) Running time magnetic: GKB.
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(b) Running time magnetic: RSVD.
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(c) Running time gravity: GKB.
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(d) Running time gravity: RSVD.

Figure 5.1: Running time in seconds for one iteration of the inversion algorithm for the in-
version of magnetic and gravity data, without padding the volume domain. Problems
are of increasing size, as indicated by the x−axis for triples [nx, ny, nz] and increasing pro-
jection size t (y−axis using log scale) determined by fractions ofm = sxsy. In Figures 5.1a
and 5.1c the running time for the GKB algorithm using tp = floor(1.05t) (an oversampling
percentage 5%), for the magnetic and gravity problems respectively. In Figures 5.1b
and 5.1d the equivalent running times using the RSVD algorithm with one power iteration.
In these plots the solid symbols represent the timing for one iteration of the algorithm us-
ing the 2DFFT and the open symbols represent the timing for the same simulation using
G directly. Matrix G for problem size ` = 7, which corresponds to triple [175, 105, 14],
requires too much memory for implementation in the specific computing environment.

Figure 5.1 provides an overview of the computational cost with increasing projection

size t, for a given m, when the algorithm is implemented using G directly, or using the

2DFFT. These costs exclude the cost of generating G. In these plots, the open symbols

indicate calculations using G and solid symbols indicate using the 2DFFT. The same sym-
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bols are used for each choice of t and `. An initial observation, confirming expectation, is

that the timings for equivalent problems and methods, are almost independent of whether

the potential field data are gravity or magnetic, comparing Figures 5.1a-5.1b with Fig-

ures 5.1c and 5.1d. The lack of entries for triple [175, 105, 14] indicates that the matrix G is

too large for the operations, ` = 7. With increasing `, (increasing values of the triples along

the x−axis), it can also be observed that the open symbols are more spread out vertically,

confirming that the algorithms using G directly are more expensive for problems at these

resolutions.

m/40 m/25 m/20 m/8 m/6 m/4 m/3

10
0

10
1

(a) magnetic data: CostG/Cost2DFFT.

m/40 m/25 m/20 m/8 m/6 m/4 m/3

10
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10
1

(b) gravity data: CostG/Cost2DFFT.

Figure 5.2: Relative computational cost for one iteration of the IRLS algorithm using
G directly as compared to the 2DFFT, as indicated by CostG/Cost2DFFT, for the data
presented in Figure 5.1, for the magnetic and gravity problems, Figures 5.2a-5.2b.
Here, the values for the relative cost that are less than 1, below the horizontal line at y = 1,
indicate that it is more efficient to useG directly. Values that are greater than 1 indicate that
it is more efficient to use the 2DFFT. Open symbols indicate the GKB algorithm and solid
symbols the RSVD algorithm. In each case the given plots for a fixed ` are for increasing
projection size t as given by m/s for the selections of t as used in Figure 5.1.

Figure 5.2 shows the relative computational costs for one iteration of the IRLS algo-

rithm using the matrix G as compared to the algorithm using the 2DFFT, as indicated by

CostG/Cost2DFFT, for the data presented in Figure 5.1. The size t used for the projected

problem in terms of the ratio m/s is given along the x−axis. The lines with solid blue
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symbols are for results using the RSVD algorithm, and the open black symbols are for the

GKB algorithm. Here, the values for the relative cost that are less than 1, below the hor-

izontal green line at y = 1, indicate that for the specific algorithm it is more efficient to

use G directly. Values that are greater than 1 indicate that it is more efficient to use the

2DFFT for the given algorithm and problem size. It is apparent that it is not beneficial to

use the 2DFFT for the smaller scale implementation of the RSVD algorithm, when ` = 4 or

5. But the situation is completely reversed using the GKB algorithm for all choices of ` and

the RSVD algorithm for ` ≥ 6. Thus, the relative gain in reduced computational cost, by

using the 2DFFT depends on the algorithm used within the IRLS inversion algorithm. The

decrease in efficiency for a given size problem, fixed ` but increasing size t (in the x−axis),

is explained by the theoretical discussion relating to equations (5.3)-(5.4). As t increases

the impact of the efficient matrix multiplication using the 2DFFT is reduced. Again the

gravity and magnetic data results are comparable.

Figure 5.1 provides no information on the relative costs of the GKB and RSVD algo-

rithms with increasing `, independent of the use of the 2DFFT. Figure 5.3 shows the rela-

tive computational costs, CostGKB/CostRSVD. Note that Figure 5.3a also includes results

for larger problems. These plots demonstrate that the relative costs for a single iteration

are not constant across all t with the GKB generally cheaper for smaller t, and the RSVD

cheaper for larger t. These results confirm the analysis of the computational cost in terms

of flops provided in (5.3)-(5.4) for small t. The relative computational costs increase

from roughly 0.6 to 2.5, increasing with both ` and t. Still, this improved relative per-

formance of RSVD with increasing ` and t appears to violate the flop count analysis in

(5.3)-(5.4). As discussed in Section 5.1.3, this is a feature of the implementation. While

RSVD is implemented using the MATLAB builtin function qr which uses compiled code

for faster implementation, GKB only uses builtin operations for performing the MGS re-
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(a) magnetic data: CostGKB/CostRSVD.
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(b) gravity data: CostGKB/CostRSVD.

Figure 5.3: The relative computational cost for one iteration of the IRLS algorithm for
inversion using the GKB as compared to the RSVD algorithm (CostGKB/CostRSVD), for
given ` and projected size t. In each case the given plots for a fixed ` are for increasing
projection size t as given by m/s as in Figure 5.2. The horizontal line at y = 1 represents
the data for which the costs are the same, independent of whether using the RSVD or GKB
algorithms. The GKB is more efficient when t is maintained small, s = 40, 25 and 20. The
gain in using the GKB decreases, however, as ` increases. For small ` and t, the estimates
confirm the computational cost estimates in (5.3)-(5.4), but for larger projection sizes t, the
RSVD is more efficient. In Figure 5.3a the relative costs are also included for ` = 8 and
` = 9, where t ≤ 5000.

orthogonalization of the basis matrices Atp and Htp . Once again results are comparable for

inversion of both gravity and magnetic data sets.

Figure 5.4 summarizes magnetic data timing results from Table 5.2 for domains

which are padded with 5% padding in x and y directions. Data illustrated in Figures 5.4a-

5.4b are equivalent to the results presented in Figures 5.1a-5.1b, but with padded volume

domains. Again these results show the open symbols are more spread out vertically, for

increasing `, confirming that the algorithms using G directly are more expensive for prob-

lems at these resolutions, with greater impact when using the GKB algorithm for small `.

This is further confirmed in Figure 5.4c, equivalent to Figure 5.2a, showing that the com-

putational cost of performing one step of the IRLS algorithm using matrix G directly, is

always greater than that using the 2DFFT. This is more emphasized for the GKB algorithm.
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(a) Running time (padded): GKB.
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(b) Running time (padded): RSVD.
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(c) CostG/Cost2DFFT (Padded).
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(d) CostGKB/CostRSVD (Padded).

Figure 5.4: In Figures 5.4a-5.4b the running time in seconds for one iteration of the inver-
sion algorithm for the inversion of magnetic data, for the same problems as in Figure 5.1a
and 5.1b but with padding, pad = 5%, added to the volume domain. Problems are of in-
creasing size, as indicated by the x−axis for triples [nx, ny, nz] and increasing projection
size t (y−axis using log scale) determined by fractions of m = sxsy. In these plots the
solid symbols represent the timing for one iteration of the algorithm using the 2DFFT and
the open symbols represent the timing for the same simulation without using the 2DFFT
for the kernel operations. In Figure 5.4c the relative costs for these results, as also provided
in Figure 5.2a for the case without padding, and in Figure 5.4d the relative costs of the two
algorithms with the 2DFFT, as in Figure 5.3a without padding.

The relative costs shown in Figure 5.4d, equivalent to Figure 5.3a, again shows that the

GKB algorithm is cheaper for small t when ` is small. But as the problem size increases and

the projected problem size also increases, it is more efficient to use the RSVD algorithm,

consistent with the observations for the unpadded domains.
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5.2.4 Comparative Cost of RSVD and GKB Algorithms to Convergence
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(a) magnetic CostGKB/CostRSVD.
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Figure 5.5: Computational cost to convergence of the IRLS algorithm for inversion using
the GKB as compared to the RSVD algorithm, CostGKB/CostRSVD, for the magnetic and
gravity problems respectively, in Figures 5.5a-5.5b.

The computational cost of the IRLS algorithm for solving the inversion problem to

convergence depends on the choice of t, the choice of GKB or RSVD algorithms, and

whether solving the magnetic or the gravity problem. Table 5.3 reports the tim-

ing results for the inversion of gravity and magnetic data for problems of increasing

size ` and projected spaces of sizes tp. The relative total computational costs to conver-

gence, CostGKB/CostRSVD, (the last two columns in Table 5.3) are illustrated via Fig-

ures 5.5a-5.5b, for the magnetic and gravity results, respectively. There is a distinct

difference between the two problems. The results in Figure 5.5a for the magnetic prob-

lem demonstrate a strong preference for the use of the GKB algorithm, except for large t,

t = floor(m/3). In contrast, the RSVD algorithm is always most efficient for the solution

of the gravity problem, which is consistent with the conclusion presented in Vatankhah

et al. [2018a] for RSVD without power iteration. Moreover, the data presented in Table 5.4

for the gravity problem, indicate that the RSVD algorithm generally converges more

quickly and yields a smaller relative error. Furthermore, if based entirely on the calculated
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Table 5.3: Timing results to convergence for inversion of gravity and magnetic po-
tential field data for the simulations described in Table 4.3 without padding, for problem
sizes up to ` = 7. Entries with ∗ indicate that the algorithm did not converge. In the last
two columns the relative costs of GKB as compared to RSVD. Values greater than 1, less
than 1, indicate that the RSVD is overall faster, slower, respectively. In general RSVD is
faster for inversion of gravity data but slower for inversion of magnetic data. Still, as
problem size increases, the relative efficiency of GKB for the magnetic data decreases,
CostGKB/CostRSVD increases towards 1. Results for relative errors and number of iter-
ations are presented in Tables 5.5-5.4, for magnetic and gravity data, respectively.

gravity magnetic CostGKB/CostRSVD
` t tp GKB RSVD GKB RSVD gravity magnetic

4

150 157 78 56 40 172∗ 1.40 0.23

240 252 111 79 60 282∗ 1.40 0.21

300 315 153 100 70 351∗ 1.53 0.20

750 787 248 216 136 883∗ 1.15 0.15

1000 1050 323 285 197 1182∗ 1.13 0.17

1500 1575 494 436 343 650 1.13 0.53

2000 2100 641 588 739 771 1.09 0.96

5

234 245 265 166 152 509∗ 1.60 0.30

375 393 411 259 174 811∗ 1.59 0.21

468 491 342 325 199 1014∗ 1.05 0.20

1171 1229 1064 835 626 2582∗ 1.27 0.24

1562 1640 1235 997 948 2121 1.24 0.45

2343 2460 1899 1492 1728 2126 1.27 0.81

3125 3281 2918 2052 2915 2971 1.42 0.98

6

337 353 595 296 246 923∗ 2.01 0.27

540 567 671 424 347 1514∗ 1.58 0.23

675 708 802 527 413 1877∗ 1.52 0.22

1687 1771 2704 1385 1077 2581 1.95 0.42

2250 2362 2518 1597 1608 2937 1.58 0.55

3375 3543 4308 2483 3071 4142 1.73 0.74

4500 4725 6925 3429 6699 5109 2.02 1.31

7

459 481 1427 679 594 2157∗ 2.10 0.28

735 771 1642 1104 1070 3524∗ 1.49 0.30

918 963 2084 1218 1026 4413∗ 1.71 0.23

2296 2410 5732 3311 3809 6618 1.73 0.58

3062 3215 6959 4490 5639 8469 1.55 0.67

4593 4822 12347 6979 10979 12949 1.77 0.85

5000 5250 13975 7711 12544 13239 1.81 0.95
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RE, the results suggest that good results can be achieved for relatively small t as compared

to m, certainly s & 8 leads to generally acceptable error estimates, and in contrast to the

case without the power iteration, here with power iteration, the errors using the GKB are

generally larger for comparable choices of t.

For the magnetic data, the results in Table 5.5 demonstrate that the RSVD algorithm

generally requires more iterations than the GKB algorithm, and that the obtained relative

errors are then comparable, or slightly larger. This is then reflected in Figure 5.5a that the

GKB algorithm is most efficient. Referring back to Table 5.5, it is the case that the RSVD

algorithm often reaches the maximum number of iterations, K = 25, without convergence,

when GKB has converged in less than half the number of iterations, when t is small relative

to m, t = floor(m/s) with s = 40, 25 and 20. This verifies that the RSVD needs to take a

larger projected subspace t in order to capture the required dominant spectral space when

solving the magnetic problem, as compared to the gravity problem, and confirms the

conclusions presented in Vatankhah et al. [2020a]. On the other hand, the use of the GKB

as compared to the RSVD was not discussed in Vatankhah et al. [2020a]. These results

now lead to a new conclusion concerning these two algorithms for solving the magnetic

data inversion problem. In particular, the results suggest that the GKB algorithm be adopted

for inversion of magnetic data. Further, the results suggest that the relative error ob-

tained using the GKB generally decreases with increasing t, and that it is necessary to use

subspaces with t at least as large as floor(m/8). It remains to verify these assertions by

illustrating the results of the inversions and the predicted anomalies for a selection of cases.
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Table 5.4: Results for inversion of gravity potential field data for the simulations de-
scribed in Table 4.3 without padding and with padding and for problem sizes up to ` = 7.
The maximum number of iterations is set to 25 in all cases. tp is the size of the projected
space for GKB and RSVD implementations. Reported are the number of iterations to conver-
gence, K, for convergence as defined by (4.9), with K = 25 indicating that the simulation
did not converge to the given tolerance. The calculated relative error RE for the given K
are also given, for both unpadded and padded cases respectively.

gravity GKB RSVD PGKB PRSVD

` t tp K RE K RE K RE K RE

4

150 157 19 1.00 8 0.56 20 1.00 8 0.56

240 252 16 0.97 7 0.56 17 0.97 7 0.56

300 315 17 0.97 7 0.56 17 0.96 7 0.56

750 787 9 0.76 6 0.57 10 0.76 6 0.57

1000 1050 8 0.66 6 0.57 8 0.66 6 0.57

1500 1575 7 0.64 6 0.57 7 0.64 6 0.57

2000 2100 6 0.62 6 0.57 7 0.64 7 0.58

5

234 245 21 1.05 8 0.49 21 1.05 9 0.51

375 393 19 1.01 8 0.50 21 1.03 9 0.53

468 491 12 0.82 8 0.50 13 0.84 8 0.53

1171 1229 12 0.78 8 0.53 11 0.79 8 0.57

1562 1640 9 0.66 7 0.53 9 0.68 8 0.58

2343 2460 8 0.65 7 0.55 8 0.67 8 0.59

3125 3281 8 0.64 7 0.57 8 0.66 7 0.60

6

337 353 24 1.03 8 0.56 23 1.03 8 0.60

540 567 15 0.90 7 0.58 15 0.93 7 0.61

675 708 14 0.89 7 0.58 14 0.91 7 0.62

1687 1771 13 0.85 7 0.61 12 0.85 6 0.64

2250 2362 8 0.70 6 0.62 8 0.71 6 0.64

3375 3543 7 0.69 6 0.63 8 0.71 6 0.64

4500 4725 7 0.69 6 0.63 8 0.70 6 0.64

7

459 481 24 1.07 8 0.56 25 1.08 8 0.59

735 771 16 0.95 8 0.57 16 0.95 8 0.59

918 963 15 0.93 7 0.58 15 0.94 7 0.60

2296 2410 11 0.75 7 0.60 11 0.75 7 0.60

3062 3215 9 0.72 7 0.60 10 0.73 7 0.61

4593 4822 8 0.70 7 0.61 9 0.71 7 0.61

5000 5250 8 0.70 7 0.61 9 0.71 7 0.61
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Table 5.5: Results for inversion of magnetic potential field data for the simulations de-
scribed in Table 4.3 without padding and with padding and for problem sizes up to ` = 7.
The maximum number of iterations is set to 25 in all cases. tp is the size of the projected
space for GKB and RSVD implementations. Reported are the number of iterations to conver-
gence, K, for convergence as defined by (4.9), with K = 25 indicating that the simulation
did not converge to the given tolerance. The calculated relative error RE for the given K
are also given, for both unpadded and padded cases respectively.

magnetic GKB RSVD PGKB PRSVD

` t tp K RE K RE K RE K RE

4

150 157 10 0.71 25 0.72 5 0.63 25 0.79

240 252 9 0.68 25 0.69 5 0.63 25 0.72

300 315 8 0.66 25 0.69 5 0.63 25 0.74

750 787 5 0.63 25 0.64 4 0.63 25 0.65

1000 1050 5 0.63 25 0.63 4 0.63 19 0.65

1500 1575 5 0.63 9 0.63 5 0.62 8 0.64

2000 2100 7 0.61 8 0.63 6 0.60 7 0.63

5

234 245 12 0.81 25 0.82 6 0.71 25 0.89

375 393 8 0.72 25 0.78 6 0.69 25 0.82

468 491 7 0.70 25 0.77 6 0.69 25 0.80

1171 1229 7 0.66 25 0.70 6 0.66 25 0.71

1562 1640 7 0.66 15 0.70 6 0.66 12 0.71

2343 2460 7 0.65 10 0.67 6 0.66 9 0.68

3125 3281 8 0.65 10 0.67 8 0.66 9 0.68

6

337 353 10 0.74 25 0.73 5 0.67 25 0.77

540 567 8 0.69 25 0.69 5 0.67 25 0.73

675 708 7 0.67 25 0.68 5 0.67 25 0.71

1687 1771 5 0.64 13 0.66 5 0.65 10 0.68

2250 2362 5 0.64 11 0.65 5 0.66 10 0.68

3375 3543 5 0.64 10 0.64 5 0.67 9 0.66

4500 4725 7 0.62 9 0.63 5 0.67 9 0.66

7

459 481 11 0.78 25 0.80 6 0.69 25 0.80

735 771 10 0.74 25 0.75 6 0.69 25 0.76

918 963 7 0.69 25 0.73 6 0.69 25 0.75

2296 2410 7 0.67 14 0.70 5 0.72 12 0.72

3062 3215 7 0.68 13 0.70 6 0.69 11 0.71

4593 4822 7 0.68 13 0.69 6 0.70 11 0.72

5000 5250 7 0.68 12 0.68 6 0.70 11 0.72
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(a) GKB: ` = 4,

t = 750, (9, 248s).
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(b) ` = 4, t = 1500,

(7, 494s).
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(c) ` = 7, t = 2296,

(11, 5732s).
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(d) ` = 7, t = 4593,

(8, 12347s).
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(e) RSVD: (6, 216s).
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(f) (6, 436s).
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(g) (7, 3311s).
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(h) (7, 6979s).

Figure 5.6: For gravity data the predicted anomalies (mGal) obtained using GKB in Fig-
ures 5.6a-5.6d and RSVD in Figures 5.6e-5.6h. The first row for GKB indicates the choices
of ` and t in each column: t = 750 and t = 1500 for ` = 4, and t = 2296 and t = 4593 for
` = 7, corresponding to t = floor(m/8) and t = floor(m/4) for (m,n) = (6000, 48000)
and (18375, 257250), respectively. Captions contain pairs (K,Costs), (number of itera-
tions to convergence and computational cost in seconds). See Tables 5.4 and 5.3.

5.2.5 Illustrating Solutions with Increasing ` and t

First, a comparison is given for a set of solutions for which the timing results were

compared in Section 5.2.4. Figures 5.6 and 5.6b illustrate the predicted anomalies and

reconstructed volumes for gravity data inverted by both algorithms, with resolutions

given by ` = 4 and ` = 7 with t = floor(m/8) and t = floor(m/4). For the cases

using ` = 4 it can be seen that the predicted anomalies are generally less accurate than

with ` = 7. Moreover, there is little deterioration in the anomaly predictions when using

t = floor(m/8) instead of t = floor(m/4), except that the results with the GKB show

more residual noise. On the other hand, it is more apparent from consideration of the

reconstructed volumes shown in Figures 5.7a-5.7h that the RSVD algorithm does yield

better results in all cases, and specifically the high resolution ` = 7 results are very good,

even using t = floor(m/8). When including the consideration of the computational cost,
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it is clear that if using ` = 7 it is sufficient to use t = floor(m/8) and the RSVD algorithm,

but that a reasonable result may even be obtained using the same algorithm but with ` = 4

and requiring less than 5 minutes of compute time.

(a) GKB: (.76, .90). (b) (.64, .96). (c) (.75, .81). (d) (.70, 1.00).

(e) RSVD: (.57, .96). (f) (.57, .93). (g) (.60, .95). (h) (.61, .91).

Figure 5.7: For gravity data the reconstructed volumes obtained using GKB in Fig-
ures 5.7a-5.7d and RSVD in Figures 5.7e-5.7h, corresponding to Figures 5.6a-5.6d and
Figures 5.6e-5.6h, respectively. The first row for GKB indicates the choices of ` and t in
each column as provided in Figure 5.6. In the captions are pairs (RE, χ2/(m +

√
2m)).

Results for all cases are summarized in Table 5.4 with timings in Table 5.3.

The results for the inversion of the magnetic data are illustrated in Figure 5.8 for

the same cases as for the inversion of gravity data in illustrated in Figure 5.6. Now, in

contrast to the gravity results, the predicted anomalies are in good agreement with the

true data for the results obtained using the GKB algorithm, with apparently greater accuracy

for the lower resolution solutions, ` = 4 for both choices of t. On the other hand, the

predicted magnetic anomalies are less satisfactory for small ` and t but acceptable for

large `. Then, considering the reconstructed volumes, there is a lack of resolution for ` = 4

which is evidenced by the loss of the small well near the surface, which is seen when ` = 7

for both cases of t, when using the GKB. The other structures in the domain are also resolved
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better with ` = 7, but there is little gain from using t = floor(m/4) over t = floor(m/8).

Then, considering the reconstructions obtained using the RSVD algorithm, while it is clear

that the result with ` = 4 and small t is unacceptable, the anomaly and reconstructed

volume with ` = 4 and t = floor(m/4) is acceptable and achieved in reasonable time,

approximately 11 minutes, far faster than using ` = 7 with GKB. Thus, this may contradict

the conclusion that one should use the GKB algorithm within the magnetic data inversion

algorithm. If there is a large amount of data and a high resolution volume is required, then it

is important to use GKB in order to limit computational cost. Otherwise, it can be sufficient

to use the RSVD provided t ≥ floor(m/8) for a coarser resolution solution obtained at

reasonable computational cost.
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(a) GKB: ` = 4, t = 750,

(5, 136s).
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(b) ` = 4, t = 1500,

(5, 343s).
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(c) ` = 7, t = 2296,

(7, 3809s).
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(d) ` = 7, t = 4593,

(7, 10979s).
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(e) RSVD: (25, 883s).
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(f) (9, 650s).
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(g) (14, 6618s).
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Figure 5.8: For magnetic data the predicted anomalies (nT) obtained using GKB in
Figures 5.8a-5.8d and RSVD in Figures 5.8e-5.8h. The first row for GKB indicates the
choices of ` and t in each column: t = 750 and t = 1500 for ` = 4, and t = 2296 and
t = 4593 for ` = 7, corresponding to t = floor(m/8) and t = floor(m/4) for (m,n) =
(6000, 48000) and (18375, 257250), respectively. In the captions are pairs (K,Costs),
(number of iterations to convergence and computational cost in seconds). Results for all
cases are summarized in Table 5.5 with timings in Table 5.3.
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(a) GKB: ` = 4, t = 750,

(.63, .90).

(b) ` = 4, t = 1500,

(.63, .91).

(c) ` = 7, t = 2296,

(.67, .90).

(d) ` = 7, t = 4593,

(.68, .92).

(e) RSVD: (.64, 1.11). (f) (.63, .93). (g) (.70, .99). (h) (.69, .90).

Figure 5.9: For magnetic data the reconstructed volumes obtained using GKB in Fig-
ures 5.9a-5.9d and RSVD in Figures 5.9e-5.9h, corresponding to Figures 5.8a-5.8d and
Figures 5.8e-5.8h, respectively. The first row for GKB indicates the choices of ` and t in
each column, as provided in Figure 5.8. In the captions are pairs (RE, χ2/(m +

√
2m)).

Results for all cases are summarized in Table 5.5 with timings in Table 5.3.

The quality of solutions obtained is now investigated for magnetic data using higher

resolution data sets, and both GKB and RSVD algorithms to assess which algorithm is best

suited for such larger problems. In these cases t = floor(m/20) is chosen, to assess quality

with a necessarily restricted subspace size as compared to the size of the given data set. Re-

sults using ` = 11 with t = 2268 and ` = 12 with t = 2700, corresponding to m = 45375

and n = 998250, and m = 54000 and n = 1296000, respectively, are illustrated in Fig-

ure 5.10. For these large scale problems, the memory becomes too large for implementation

on the environment with just 32GB RAM. Thus, these timings are for an implementation

using a desktop computer with the Intel(R) Xeon (R) Gold 6138 CPU 2.00GHz chip and

with MATLAB release 2019b. Comparing the results between m = 45375 and m = 54000

(` = 11 and ` = 12) it can be seen that the predicted anomalies are always better for the
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larger problem, and in particular the result shown in Figure 5.10e shows greater artifacts

when using RSVD. The obtained reconstruction for this case, shown in Figure 5.10g is,

however, acceptable. Overall, trading off between computational cost and solution quality,

there seems little gain in using ` = 12 and the results with ` = 11 obtained with the GKB

algorithm in 227 minutes (nearly 4 hours) are suitable. These results also show that it is

sufficient to use a relatively smaller projected space, t = floor(m/20) when m is larger.

Indeed, notice that even in these cases the largest matrix required by both algorithms is of

size n × tp and requires 17.7GB and 27.4GB, for ` = 11 and ` = 12, respectively. Effec-

tively, it is this large memory requirement that limits the given implementation using either

GKB or RSVD for larger size problems.

(a) 11 : (9, 13595s). (b) 12 : (8, 21649s). (c) 11 : (.74, .98). (d) 12 : (.74, .92).

(e) (15, 21266s). (f) (16, 41981s). (g) (.74, .99). (h) (.73, .98).

Figure 5.10: The magnetic anomalies (nT) and reconstructed volumes using the GKB
and RSVD algorithms in Figures 5.10a-5.10d and 5.10e-5.10h, respectively. The first row
indicates the choice of ` = 11, for which t = 2268 = floor(m/20), m = 45375
and n = 998250 and oversampled projected problem of size 2381, or ` = 12, with
t = 2700 = floor(m/20), m = 54000 and n = 1296000, and oversampled projected
problem of size 2835. In the captions are pairs (K,Costs), (number of iterations to con-
vergence and computational cost in seconds) for the anomalies, and (RE, χ2/(m+

√
2m))

for the reconstructions.
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Numerical experiments for the inversion of gravity data, similar to the testing for

the magnetic data, demonstrates that indeed the RSVD algorithm with power iteration is

to be preferred for the inversion of gravity data, yielding acceptable solutions at lower

cost than when using the GKB algorithm. Representative results are detailed in Figure 5.11

for the same parameter settings as given in Figure 5.10 for the magnetic problem.

(a) 11 : (21, 30833s). (b) 12 : (21, 59837s). (c) 11 : (1.02, .76). (d) 12 : (1.00, .78).

(e) (8, 11779s). (f) (8, 30212s). (g) (.61, 1.00). (h) (.59, .99).

Figure 5.11: The gravity anomalies (mGal) and reconstructed volumes using the GKB
and RSVD algorithms in Figures 5.11a-5.11d and 5.11e-5.11h, respectively. The first row
indicates the choice of ` = 11, for which t = 2268 = floor(m/20), m = 45375
and n = 998250 and oversampled projected problem of size 2381, or ` = 12, with
t = 2700 = floor(m/20), m = 54000 and n = 1296000, and oversampled projected
problem of size 2835. In the captions are pairs (K,Costs), (number of iterations to con-
vergence and computational cost in seconds) for the anomalies, and (RE, χ2/(m+

√
2m))

for the reconstructions.

5.2.6 Real Data

Validation of the simulated results on a practical data set is applied by the GKB algo-

rithm for the inversion of a magnetic field anomaly that was collected over a portion of

the Wuskwatim Lake region in Manitoba, Canada. This data set was discussed in Pilking-

ton [2009] and also used in Vatankhah et al. [2020a] for inversion using the RSVD algorithm
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with a single power iteration. Further details of the geological relevance of this data set is

given in these references. Moreover, its use makes for direct comparison with these ex-

isting results. Here a grid is used of 62 × 62 = 3184 measurements at 100m intervals in

the East-North direction with padding of 5 cells yielding a horizontal cross section of size

72× 72 in the East-North directions. The depth dimension is discretized with ∆z = 100m,

yielding a regular cube, to ∆z = 8m for rectangular prisms with a smaller edge length in

the depth dimension for a total depth of 2000m, and providing increasing values of n from

103680 to 1238976 as detailed in Table 5.6. The given magnetic anomaly is illustrated

in Figure 5.12a.

In each inversion the GKB algorithm is run with t = 480, corresponding to t =

floor(m/8), where m = 3184 and oversampled projected space of size 504, and a noise

distribution based on (4.10) is employed using τ1 = .02 and τ2 = .018. All inversions

converge to the tolerance χ2/(m +
√

2m)) < 1 in no more than 19 iterations for all prob-

lem sizes, as given in Table 5.6. The computational cost measured in seconds is also given

in Table 5.6 and demonstrates that it is feasible to invert for large parameter volumes, in

times ranging from just under 5 minutes for the coarsest resolution, to just over 73 min-

utes for the volume with the highest resolution. Here the computations are performed on a

MacBook Pro laptop with 2.5 GHz Dual-Core Intel Core i7 chip and 16GB memory. Fig-

ure 5.13a shows that the UPRE function has a well-defined minimum at the final iteration

for all resolutions, and Figure 5.13b shows that the convergence of the scaled χ2 value is

largely independent of n. The final regularization parameter α(K) decreases with increasing

n, while the initial α found using (5.5) increases with n, as reported in Table 5.6.

Results of the inversion, for the coarsest and finest resolutions are presented in Fig-

ures 5.12, 5.14 and 5.15, for anomalies, reconstructed volumes, and depth slices through

the volume domain, respectively. First, from Figures 5.12b-5.12c, as compared to Figure

16b in Vatankhah et al. [2020a], it is evident that the predicted anomalies provide better
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(b) Predicted: n = 103680.
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(c) Predicted: n = 1238976.

Figure 5.12: The given magnetic anomaly in Figure 5.12a and the obtained predicted
anomalies for the inversion using the parameters for the first and last lines of data in Ta-
ble 5.6 in Figures 5.12b-5.12c, respectively.

Table 5.6: Inversion of magnetic data as illustrated in Figure 5.12 for m = 3844 on
a grid of 62 × 62 stations, with ∆x = ∆y = 100m and padding of 5 cells in both x and
y-directions, yielding blocks of size nr = 5184. The inversion uses the GKB algorithm with
t = 480 (floor(m/8)) and tp = 504. The noise in the algorithm uses (4.10) as given for the
simulations with τ1 = .02 and τ2 = .018. These results are obtained using a MacBook Pro
laptop with 2.5 GHz Dual-Core Intel Core i7 chip and 16GB memory.

n nz ∆z K α(1) α(K) χ2/(m+
√

2m) Cost(s)

103680 20 100 17 4.60e+ 05 8558 0.87 334

207360 40 50 18 5.36e+ 06 5887 0.90 754

305856 59 33 19 2.07e+ 07 4930 0.70 1126

414720 80 25 18 6.09e+ 07 4116 0.95 1513

518400 100 20 18 1.33e+ 08 3701 0.94 2018

616896 119 16 18 2.43e+ 08 3386 0.90 2095

829440 160 12 18 6.90e+ 08 2933 0.95 3091

1036800 200 10 18 1.51e+ 09 2627 0.95 3690

1238976 239 8 18 2.80e+ 09 2396 0.96 4389
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(b) χ2 with k.

Figure 5.13: The plot of the regularization function U(α) for the UPRE algorithm, at the
final iteration K for increasing values of n as indicated in Table 5.6 in Figure 5.13a and
the progression of the scaled χ2 estimate as a function of iteration k and for increasing n in
Figure 5.13b.

agreement to the measured anomaly, with respect to structure and the given values. More-

over, more structure is seen in the volumes presented in Figures 5.14a-5.14b as compared

to Figure19 Vatankhah et al. [2020a], and the increased resolution provides greater detail

in Figure 5.14bas compared to Figure 5.14a. Here the volumes are presented for the depth

from 0 to 1000m only, but it is seen in Figures 5.15e and 5.15j, which are the slices at depth

1100m, that there is little structure evident at greater depth. Comparing the depth slices

for increasing depth shows that the use of the higher resolution leads to more structure at

increased depth. Moreover, the results are consistent with those presented in Vatankhah

et al. [2020a] for the use of the RSVD for a projected size t = 1100 as compared to t = 480

used here. It should also be noted that the RSVD algorithm with one power iteration does

not converge within 50 steps, under the same configurations for m, n and t.
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(a) Iso-surface using n = 103680. (b) Iso-surface using n = 1238976.

Figure 5.14: The reconstructed volumes showing parameters κ > 0.05 and depth from 0
to 1000, corresponding to the predicted anomalies in Figure 5.12.
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Figure 5.15: Slices through the volumes illustrated in Figure 5.14 for depths 300, 500,
700, 900 and 1100, for n = 103680 in Figures 5.15a-5.15e and for n = 1238976 in Fig-
ures 5.15f-5.15j.

5.2.7 Comparison to RPS

Here MATLAB release 2019b is implemented on the same cores as Section 4.5.5 us-

ing an Intel(R) Xeon(R) Gold 6138 processor (2.00GHz) and 256GB RAM for all results.
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Comparisons in Table 5.7 show that the RPS algorithm reaches convergence faster and

with a similar number of iterations compared to the RSVD algorithm, but requires more

computational time and number of iterations compared to the GKB algorithm.

Table 5.7: Inversion of magnetic data using RPS with t as the truncation parameter as
illustrated in Figure 4.11, GKB and using RSVD with one power iteration, for m = 3844 on
a grid of 62 × 62 stations, with ∆x = ∆y = 100m and padding of 5 cells in both x and
y-directions, yielding blocks of size nr = 5184. The inversion uses t = 384 (floor(m/10))
and tp = 403. The noise in the algorithm uses (4.10) as given for the simulations with
τ1 = .02 and τ2 = .018.

method n nz ∆z K χ2/(m+
√

2m) Cost(s)

RPS
t

103680 20 100 19 0.98 398
207360 40 50 17 0.99 716
305856 59 33 17 0.94 1082
414720 80 25 17 0.97 1472
518400 100 20 17 0.99 1806
616896 119 16 17 0.93 2246
829440 160 12 17 0.94 3031
1036800 200 10 17 0.97 3729
1238976 239 8 17 0.99 4485

GKB

103680 20 100 17 0.87 376
207360 40 50 18 0.90 749
305856 59 33 19 0.70 1156
414720 80 25 18 0.95 1469
518400 100 20 18 0.94 1790
616896 119 16 18 0.90 2092
829440 160 12 18 0.95 2785
1036800 200 10 18 0.95 3323
1238976 239 8 18 0.96 4001

RSVD

103680 20 100 27 1.19 903
207360 40 50 21 0.99 1401
305856 59 33 23 0.99 2306
414720 80 25 25 1.00 3423
518400 100 20 22 1.00 3725
616896 119 16 24 1.00 4923
829440 160 12 25 1.00 7007
1036800 200 10 23 0.99 8012
1238976 239 8 27 1.00 11258
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(a) GKB: Iso-surface using n = 103680. (b) Iso-surface using n = 1238976.

(c) RPS: Iso-surface using n = 103680. (d) Iso-surface using n = 1238976.

Figure 5.16: The reconstructed volumes showing parameters κ > 0.05 and depth from 0
to 1000, corresponding to the predicted anomalies in Figure 5.12.

5.3 Conclusions

Two algorithms, GKB and RSVD, for the focused inversion of potential field data with

all operations for the sensitivity matrix G implemented using a fast 2DFFT algorithm have

been developed and validated for the inversion of both gravity and magnetic data sets.

The results show first that it is distinctly more efficient to use the 2DFFT for operations

with matrix G rather than direct multiplication. This is independent of algorithm and data

set, for all large scale implementations considered. Moreover, the implementation using

the 2DFFT makes it feasible to solve these large scale problems on a standard desktop
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computer without any code modifications to handle multiple cores or GPUs, which is not

possible due to memory constraints when m and n increase. While both algorithms are

improved with this implementation, the results show that the impact on the GKB efficiency

is greater than that on the RSVD efficiency. A theoretical analysis of the computational cost

of each algorithm for a single iterative step demonstrates that the GKB should be faster, but

this is not always realized in practice as the problem size increases, with commensurate

increase in the size of the projected space. Then, the efficiency of GKB deteriorates, and the

advantage of using builtin routines from MATLAB for the RSVD algorithm is crucial.

When considering the computational cost to convergence for both algorithms, which

also then includes the cost due to the requiring projected spaces that are of reasonable size

relative to m, the results confirm earlier published results that it is more efficient to use

RSVD, with t ≥ floor(m/8) for inversion of gravity data. Moreover, generally larger

projected spaces are required when using RSVD for the inversion of magnetic data. On

the other hand, prior published work did not contrast GKB with RSVD for the inversion

of magnetic data. Here, results contribute a new conclusion to the literature, namely

that GKB is more efficient for these large-scale problems and can use also t ≈ floor(m/8)

rather than larger spaces for use with RSVD. Further, GKB is also more efficient than RPS,

with RPS more computationally efficient than LSRN. Critically, which algorithm to use is

determined by the spectral space for the underlying problem-specific sensitivity matrix G,

as discussed in Vatankhah et al. [2020a]. Moreover, the restriction can be relaxed, t ≈

floor(m/8); indeed satisfactory results are achieved using t ≈ m/20 for large problems,

for the inversion of magnetic data.

It should be noted that equivalent conclusions can be made when the implementations

use padding, only that generally fewer iterations to convergence are required. Furthermore,

all the implementations use the automatic determination of the regularization parameter

using the UPRE function. The suitability of the UPRE function was demonstrated in earlier
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references, and is thus not reproduced here, but results that are not reported here demon-

strated that the earlier results still hold for these large scale problems and algorithms. In

contrast, RPS provides a viable truncation approach for the inversion of real magnetic

data. Although GKB is preferable, RPS provides similar timing and similar number of iter-

ations to convergence for all cases, without dependance on either regularization parameter

α or truncation parameter κ, provided an appropriate projection space is used.

143



Chapter 6

OTHER DIRECTIONS IN DIMENSIONALITY REDUCTION FOR INVERSION OF

LARGE-SCALE PROBLEMS, CONCLUSIONS AND FUTURE WORK

Overview of Chapter

In this chapter some alternative directions and applications of dimensionality reduction

techniques will be reviewed. These have been considered in developing the major topics

that were described in Chapters 3-5. An iterative method for approximating the pseudo-

inverse will be shown to be much more computationally efficient when applied directly to

the system within each iteration. Using a linear interpolation matrix as a dimensionality

reduction substitution is shown to produce a viable piecewise linear solution upon projec-

tion. Sketching is shown to provide an approximate Kronecker product decomposition via

a SVD. Further, the same SVD is shown to provide a decomposition for a sum of approx-

imate Kronecker products. RPS will be shown to produce viable results when applied to

a nonlinear groundwater transmissivity problem at reduced computational error and time.

Conclusions for this work will be presented, and avenues for future research will be dis-

cussed for joint inversion of gravity and magnetic data as well as validation of the sketched

Kronecker product decomposition.

The chapter is organized as follows. First, alternative sketching techniques are con-

sidered in Sections 6.1-6.2. An existing iterative method for obtaining an approximate

pseudo-inverse is discussed in Section 6.1. The iterative method is extended and directly

applied to the matrix system in Section 6.2 to reduce computation cost while obtaining

a solution. An alternative right sketch based on linear interpolation is developed in Sec-

tion 6.2. Sketching is applied in a novel way to obtain a Kronecker product decomposition
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(KPD) in Section 6.3. Considerations are also given for producing a sum of Kronecker

products, producing Kronecker product decompositions for blocks within a matrix, as well

as matrix multiplication using Kronecker products for BTTB matrices. RPS is applied to a

nonlinear groundwater transmissivity application in Section 6.4, and numerical results are

given showing a reduction in both error and computational time on a single-core proces-

sor in comparison to the randomized geostatistical approach (RGA). This provides further

validation of the RPS method. Conclusions and future work are discussed in Section 6.6.

6.1 Pseudo-Inverse Approximation

Consider an approach that uses an iterative process to obtain X ≈ A†, Gower and

Richtárik [2017]. The solution can then be estimated as x ≈ Xb. Using AT = ATAA† ≈

ATAX , and left multiplying by C(i) = AS(i) yields S(i)TAT ≈ S(i)TATAX or C(i)T ≈

C(i)TAX . Minimizing the difference X(i+1)−X(i) subject to this formulation provides the

update,

X(i+1) = X(i) − ATC(i)(C(i)TAATC(i))†C(i)T (AX(i) − I).

Writing B(i) = C(i)TA = S(i)TATA allows this update to be written more concisely as

X(i+1) = X(i) −B(i)T (B(i)B(i)T )†(B(i)X(i) − C(i)T ). (6.1)

Note that at each iteration, X is updated using a different sketch matrix, and X keeps the

same dimensions as A†. Thus, even though the sketch helps reduce the cost of computing

A†, most of the arithmetic is done using full size matrices. Although this provides a viable

result, the computational cost can be just as high as using a direct method on the full size

problem.

Note that the right sketch C = AS is left multiplied on A. This creates a sketch on

the normal equations STATAx = STATb. Other methods also inherently avoid directly

solving a right sketch when applied to a system.

145



6.1.1 Applying an Approximate Pseudo-Inverse

An immediate motivation for applying sketches directly to a system can be shown by

re-examining the approximate pseudo-inverse. Since the current interest is in obtaining

X ≈ A† to obtain the approximate solution x ≈ Xb, as shown in Section 6.1, the iterative

pseudo-inverse approximation process can be simplified. An updated iterative method is

proposed using x(i) = X(i)b. Thus, right multiplying (6.1) by b provides the update

x(i+1) = x(i) −B(i)T (B(i)B(i)T )†(B(i)x(i) − C(i)Tb),

where now the approximate pseudo-inverse is applied iteratively. In addition to (B(i)B(i)T )†

being performed at reduced computational cost since B(i)B(i)T ∈ Rs×s, multiplying from

right to left also allows the rest of the update to now be performed on a matrix-vector basis,

further reducing the computational cost. A new sketch is still formed within each iteration,

however, requiring additional computational resources. These results are demonstrated in

Figure 6.1 for shaw with m = n = 1e4, s = 20 and η = 1e−3. Notice that this shows

that all times for the iteratively applied pseudo-inverse are less than a quarter of the time

for finding an approximate pseudo-inverse and then calculating the solution.

6.2 Interpolating Sketch

Applying a right random Gaussian sketch fails to provide an accurate approximation

of x. Thus, shifting the focus to accurately projecting y into a larger space leads to a

more structured and reliable right sketching matrix. A simple linear interpolation matrix is

presented that can be utilized to project y into an n-length vector. Here, the sketch matrix

S is a block diagonal matrix, with each block containing two column vectors. The first

vector is a set of linearly spaced points in descending order, and the second vector contains

the same points in ascending order. S is then a sparse matrix, which often decreases the
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Figure 6.1: The solution of shaw with m = n = 1e4 with s = 20 and η = 1e−3 using
an approximate pseudo-inverse is shown in Figure 6.1a, and using an iteratively applied
pseudo-inverse is shown in Figure 6.1c. The timings for 100 trials using an approximate
pseudo-inverse and using the iteratively applied pseudo-inverse are shown in Figure 6.1b
and Figure 6.1d respectively.

computational time for matrix multiplication. A simple example with S ∈ R5×3 produces

S =



1 0 0

0.5 0.5 0

0 1 0

0 0.5 0.5

0 0 1


.
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Now, after taking the sketch C = AS and solving Cy = b, the projection x = Sy

provides a linear interpolation. This process is summarized in Algorithm 16.

Input: A ∈ Rm×n, b ∈ Rm, sketch size s� min(m,n)
S = 0 ∈ Rn×s;
α2 = 1;
for j = 1 to s− 1 do

α1 = α2;
α2 = floor(jn/(s− 1));
v = linspace(0, 1, α2 − α1 + 1);
S(α2 : −1 : α1, j) = v;
S(α1 : α2, j + 1) = v;

end
C = AS;
y = C†αb;
x = Sy;

Algorithm 16: Interpolating sketch

The projection x = Sy produces a much more stable solution, and the accuracy at a

smaller subset of points is based on solving for y. While using linear interpolation allows

for a more stable projection, a piecewise linear solution based on y is not typically the best

solution of Ax ≈ b. Similarly, higher order approximations that account for first deriva-

tive, second derivative, and so forth, are not guaranteed to provide an accurate solution for

Ax ≈ b. The higher order approximations merely enforce a higher degree of smoothness

between the points in y. The sparsity of S also diminishes as higher oder approximations

are implemented.

Note that when using a viable projection, it is possible to implement a joint sketch

S1AS2y = b and maintain the same level of accuracy. S1 is used as a random Gaussian

sketch matrix and S2 as a linear interpolation matrix in Figure 6.2 for shaw with m =

n = 1e4 and s = 20, which shows that in practice, the values of y typically fall along the

solution regardless of whether a left sketch is also implemented.
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Figure 6.2: Solution of shaw with m = n = 1e4 and s = 20. Only a linear interpolation
matrix is used as a right sketch to produce the solution in Figure 6.2a, and a randomized
left sketch is also used to produce the solution in Figure 6.2b. In both cases the solution y
obtained before the final projection is also shown.

6.3 Kronecker Product Decomposition

The Kronecker product, defined by

D ⊗B =


d11B · · · d1nB

... . . . ...

dm1B · · · dmnB

 ,
is a dimensionality reduction technique that takes advantage of structure within a matrix,

and has been growing in popularity since around 1858, as summarized in Schäcke [2013].

Obtaining an approximate Kronecker product decomposition (KPD) B ⊗D ≈ A ∈ Rm×n,

however, can be computationally expensive. If B ∈ Rm1×n1 and D ∈ Rm2×n2 can be

found, with m1m2 = m and n1n2 = n, the cost of matrix operations can be reduced using

B and D. In particular, given vec(X) = x, then Ax ≈ (B ⊗ D)x = vec(DXBT ). In

addition, (B⊗D)† = B†⊗D†, enabling the system Ax ≈ b to be solved more efficiently.
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The SVD of a rearrangement of A provides the necessary components of the KPD,

Van Loan and Pitsianis [1993]. Given

A =


A11 · · · A1n1

... . . . ...

Am11 · · · Am1n1

 ,

and with vec(A) = [AT1A
T
2 · · ·ATn ]T , define the rearrangement of A as

Ã =



vec(A11)T

...

vec(Am11)T

...

vec(A1n1)
T

...

vec(Am1n1)
T



.

A simple example with

A =



a1 a3 a9 a11

a2 a4 a10 a12

a5 a7 a13 a15

a6 a8 a14 a16


has the rearrangement

Ã =



a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16


.

The following results implement the rearrangement of A to obtain a KPD.
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Theorem 6.3.1. [Van Loan and Pitsianis, 1993, Theorem 2.1] Assume thatA ∈ Rm×n with

m = m1m2 and n = n1n2. If B ∈ Rm1×m2 and D ∈ Rm2×n2 , then

‖A−B ⊗D‖F = ‖Ã− vec(B)vec(D)T‖F .

Corollary 6.3.2. [Van Loan and Pitsianis, 1993, Corollary 2.2] Assume that A ∈ Rm×n

with m = m1m2 and n = n1n2. If the rearrangement of A has the SVD

Ã = ŨΣ̃Ṽ T ,

where σ̃1 is the largest singular value, and ũ1 and ṽ1 are the corresponding singular vec-

tors, then the matrices B ∈ Rm1×m2 and D ∈ Rm2×n2 defined by vec(B) = σ̃1ũ1 and

vec(D) = ṽ1 minimize ‖A−B ⊗D‖F .

Now, by Theorem 6.3.1 and corollary 6.3.2, a rank 1 approximation of Ã provides B

and D. This result is immediate for Kronecker rank r A by applying ‖A‖2
F =

∑r
i=1 σ

2
i ,

[Golub and Van Loan, 2013, Corollary 2.4.3], and thus ‖A−B ⊗D‖2
F =

∑r
i=2 σ

2
i .

6.3.1 Sketched KPD

Since the elementary technique uses a rank 1 SVD, sketching can be implemented to

significantly reduce the computational cost. First, the dimensionality of the rearrangement

of A is reduced by the sketch C̃ = ÃS, with random Gaussian S ∈ RN×s and sketch size

s = k + p, where k = 1 is a truncation parameter and p is an oversampling factor. Note

that the sketch can be applied iteratively across each row of C̃ by sketching each vectorized

block of A one at a time, reducing memory requirements when A is large.

Lemma 6.3.3. Given A ∈ Rm×n with m1m2 = m and n1n2 = n, rearrangement Ã ∈

Rm1n1×m2n2 , Gaussian sketch matrix S ∈ Rm2n2×s with s = 1 + p for oversampling factor

p, and sketch C̃ = ÃS = ŨΣ̃Ṽ T , then

‖(I − PC̃)Ã‖2 ≤
(

1 + 17
√

1 + 1/p
)
σ2 +

8√
s

(∑
j>1

σ2
j

)1/2
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with failure probability at most 6e−p, and

‖(I − PC̃)Ã‖2 ≤
(

1 + 8
√
sp log p

)
σ2 + 3

√
s

(∑
j>1

σ2
j

)1/2

with failure probability at most 6p−p.

Proof. By [Halko et al., 2011, Corollary 10.9], given p ≥ 4 and random Gaussian sketch

matrix S, error bounds

‖(I − PC̃)Ã‖2 ≤
(

1 + 17
√

1 + k/p
)
σk+1 +

8
√
s

p+ 1

(∑
j>k

σ2
j

)1/2

for the projection onto the range of C̃ have failure probability at most 6e−p.

Note that PC̃ = C̃(C̃T C̃)−1C̃T defines the projector onto the range of C̃. Thus, it is

assumed s ≥ 5 for a rank 1 approximation.

Input: A ∈ RM×N , m1, m2, n1, n2, p
1 s = 1 + p;
2 S = randn(N, s);
// Compute C̃ = ÃS

3 ind = 1;
4 for j = 1 to n2 do
5 for i = 1 to m2 do
6 C̃(ind)(:) = vec(Aij)

TS;
7 ind = ind + 1;
8 end
9 end

10 ŨΣ̃V = C̃;
// Compute Ṽ T = Σ̃−1ŨT Ã

11 ind = 1;
12 for j = 1 to n2 do
13 for i = 1 to m2 do
14 ṽTind = Σ̃−1ŨT [vec(A11)ind · · · vec(Am2n2)ind];
15 ind = ind + 1;
16 end
17 end
// Form B and D

18 vec(B) = σ̃1ũ1;
19 vec(D) = ṽ1;

Algorithm 17: SKPD
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Then, the SVD ŨΣ̃V = C̃ produces vec(B) = σ̃1ũ1 with high probability. Note that

the V ∈ Rs×s is unneeded. Since Σ̃−1
k ŨT

k Ã ≈ Σ̃−1
k ŨT

k ŨΣ̃Ṽ T = Ṽ T
k , set vec(D)T =

Σ̃−1
1 ŨT

1 Ã. This sketched KPD (SKPD) is summarized in Algirithm 17.

Note that the memory cost is optimized for m1 ≈ m2 and n1 ≈ n2. Since Ã ∈

Rm1n1×m2n2 , the computational cost of the SVD is reduced by passing AT to Algorithm 17

when m1n1 > m2n2.

6.3.2 Rank r SKPD

While using a sum of terms for a Kronecker rank rmatrix constructed byA =
∑r

i=1Bi⊗

Di was briefly introduced in Van Loan and Pitsianis [1993], it can be extended to the min-

imization problem for general matrix A. Notice that ‖A− B ⊗D‖F is reduced further by

considering additional terms of the SVD
∑r

i=1 ũiσ̃iṽ
T
i = Ã.

Lemma 6.3.4. Suppose A ∈ Rm×n with Kronecker rank r defined by rearrangement Ã ∈

Rm1n1×m2n2 with Ã = ŨΣ̃Ṽ T , then taking vec(Bi) = σ̃iũi and vec(Di) = ṽi produces∥∥∥∥∥A−
r∑
i=1

Bi ⊗Di

∥∥∥∥∥
F

= 0.

Proof. Since Ã = ŨΣ̃Ṽ T =
∑r

i=1 ũiσ̃iṽ
T
i , then by Theorem 6.3.1,∥∥∥∥∥A−

r∑
i=1

Bi ⊗Di

∥∥∥∥∥
F

=

∥∥∥∥∥Ã−
r∑
i=1

vec(Bi)vec(Di)
T

∥∥∥∥∥
F

=

∥∥∥∥∥Ã−
r∑
i=1

ũiσ̃iṽ
T
i

∥∥∥∥∥
F

= 0

In addition, given an estimate of Σ̃, the minimum error for the KPD can still be obtained.

Lemma 6.3.5. Given A with Kronecker rank r defined by rearrangement Ã = ŨΣ̃Ṽ T ,

target approximate rank r̃ ≤ r, and diagonal matrices Γ ≈ Σ̃ with diagonal elements

γi > 0 and ∆ with diagonal elements δi such that Γ∆ = Σ̃, then vec(Bi) = γiũi and

vec(Di)
T = 1

γi
ũTi Ã minimize ‖A−

∑r̃
i=1 Bi ⊗Di‖F .
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Proof. Since Ã = ŨΣ̃Ṽ T and Σ̃ = Γ∆, then ∆Ṽ T = Γ−1ŨT Ã. Now,∥∥∥∥∥A−
r̃∑
i=1

Bi ⊗Di

∥∥∥∥∥
2

F

=

∥∥∥∥∥Ã−
r̃∑
i=1

ũiγiδiṽ
T
i

∥∥∥∥∥
2

F

=
r∑
i=r̃

σ̃i.

Algorithm 17 can then be updated with a target approximate Kronecker rank, r̃. The

updated rank r SKPD is given in Algorithm 18.

Input: A ∈ RM×N , m1, m2, n1, n2, p, r̃
1 s = r̃ + p;

//
...

// Form Bi and Di

18 for i = 1 to r̃ do
19 vec(Bi) = σ̃iũi;
20 vec(Di)

T = ṽi;
21 end

Algorithm 18: rank r̃ SKPD

Now by Lemma 6.3.5, given a small misrepresentation of the singular values of Ã due

to sketching, then computing each Di provides self-correction.

6.3.3 Block Kronecker Product Decomposition

Assuming the matrix A contains some block structure, the Kronecker rank is typically

much smaller for each block than for A in whole. In addition, partitioning A and taking a

KPD for each partition allows more accuracy.

Theorem 6.3.6. Suppose A ∈ Rm×n with partition A = [A1|A2| · · · |Ap] with Ai ∈ Rm×νi ,

B ∈ Rm1×n1 and D ∈ Rm2×n2 with m1m2 = m and n1n2 = n such that ‖A−B⊗D‖F is

minimized, and Ei ∈ Rm1×qi with
∑

i qi = n1 and Gi ∈ Rm2×n2 such that ‖Ai−Ei⊗Gi‖F

is minimized for i ∈ [1, p].

Then ‖A− [E1 ⊗G1|E2 ⊗G2| · · · |Ep ⊗Gp]‖F ≤ ‖A−B ⊗D‖F .
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Proof. Partition B such that

B = [B1|B2| · · · |Bp]

with Bi ∈ Rm1×qi . Since each ‖Ai − Ei ⊗Gi‖F is minimized and

‖A− [E1 ⊗G1|E2 ⊗G2| · · · |Ep ⊗Gp]‖F =

p∑
i=1

‖Ai − Ei ⊗Gi‖F ,

it is then immediate that

p∑
i=1

‖Ai − Ei ⊗Gi‖F ≤
p∑
i=1

‖Ai −Bi ⊗D‖F = ‖A−B ⊗D‖F .

A simple example with m1 = n1 = 2 and q1 = q2 = 1 allows∥∥∥∥∥∥∥A−
 e11G1 e21G2

e12G1 e22G2


∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥A−
 b11D b12D

b21D b22D


∥∥∥∥∥∥∥
F

.

After taking the KPD, methods that utilize only matrix vector multiplication, such as

LSQR, can easily be modified to benefit from the reduced computational cost of Kronecker

multiplication. Namely, with vec(Ui) = ui ∈ Rνi for partition u = [uT1 | · · · |uTp ]T based

on the partition of A, then Au =
∑p

i=1 Aiui =
∑p

i=1GiUiE
T
i . Further, with vec(V ) = v,

then ATv = [(AT1 v)T | · · · |(ATp v)T ]T = [vec(GT
1 V E1)T | · · · |vec(GT

p V Ep)
T ]T . Using a

block KPD allows more potential accuracy, but requires more memory. When A is too

large to store in memory, however, this allows a KPD to be formed one block of A at a

time.

In general, when A can be represented by a small approximate Kronecker rank, Kro-

necker product multiplication has potential to significantly reduce computational require-

ments. Thus the SKPD is a valuable method that can be validated through future research.
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6.4 RPS Applied to Groundwater Transmissivity

A brief discussion is now given on work from a summer internship at Los Alamos

National Laboratory in 2017, which motivated the development of the RPS method.

An understanding of the subsurface transmissivity is desired in many applications such

as estimating the dispersion pathways of water and hazardous materials, extracting valuable

resources such as oil and gas, and estimating the effectiveness of geothermal reservoirs,

Bárdossy and Hörning [2016], Lin et al. [2017]. Trends in groundwater modeling have lead

to increasing numbers of unknown model parameters and measurement data, Kourakos and

Mantoglou [2012], Lin et al. [2016], Vermeulen et al. [2005].

Many methods have been developed to alleviate the increasing computational burdens

of determining the unknown parameters for these increasingly large problems, Asher et al.

[2015], Bárdossy and Hörning [2016], Kitanidis [1997], Lee and Kitanidis [2014], Lin et al.

[2017], Zimmerman et al. [1998]. The associated parameter dependent nonlinear transient

flow equation can be solved by applying a linearization and then solving the linear system,

Kitanidis [1997]. A large portion of the computational cost can then be attributed to solving

linear systems of equations.

6.4.1 Principal Component Geostatistical Approach (PCGA)

The subsurface transmissivity can be modeled by the transient groundwater flow equa-

tion h = f(T ) + ε, giving the hydraulic head, h, in terms of the transmissivity, T , and

unknown error, ε. Suppose the vectorized transmissivity is given by m ∼ N(Xβ, Q) and

that h ∼ N(ĥ, R), and that the standard definition ‖d‖2
D = dTDd is used. Then [mT ,βT ]T

can be found as the solution of the non-linear ill-posed problem m

β

 = arg min
m,β

{
1

2
‖h− f(m)‖2

R−1 +
1

2
‖m−Xβ‖2

Q−1

}
= arg min

m,β
{J(m,β)} .
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Solving for ∇J = 0, using ∇mJ = HTR−1f(m) − HTR−1h + Q−1m − Q−1Xβ and

∇βJ = XTQ−1Xβ −XQ−1m, where H is the Jacobian of f , gives

Q−1m = Q−1Xβ +HTR−1(h− f(m)), and XTQ−1m = XTQ−1Xβ, (6.2)

and

XTHTR−1(h− f(m)) = 0. (6.3)

But now, following Kitanidis [1997], Lee and Kitanidis [2014], Lin et al. [2017] this can

be linearized about the current update form(i), giving f(m(i+1)) ≈ f(m(i)) +H(m(i+1)−

m(i)). This can be used to replace (h−f(m)) in (6.3) by (h−f(m(i))−H(m(i+1)−m(i))).

Together with introducing ξ = R−1(h − f(m(i)) −H(m(i+1) −m(i))) this replaces (6.3)

by

(HX)Tξ = 0. (6.4)

Further, using ξ in (6.2) directly, gives Q−1m = Q−1Xβ +HTξ or the update

m(i+1) = Xβ +QHTξ. (6.5)

Multiplying (6.5) through by H along with (6.4) provides the linear block system compris-

ing the PCGA method, HQHT +R HX

(HX)T 0


 ξ

β

 =

 h− f(m(i)) +Hm(i)

0

 . (6.6)

In terms of Ax = b, (6.6) can be broken down as

x =

 ξ

β

 A =

 HQHT +R HX

(HX)T 0

 b =

 h− f(m(i)) +Hm(i)

0

 .
6.4.2 Randomized Geostatistical Approach (RGA)

In obtaining the PCGA solution of (6.6), Lee and Kitanidis [2014], the computational

time is reduced by utilizing a finite difference approximation in place of matrix H , and the
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rank-k approximation Q =
∑k

i=1 ζiζ
T
i . The RGA approach, Lin et al. [2017], yields S̄THQHT S̄ + S̄TRS̄ S̄THX

(S̄THX)T 0


 ξ̃

β

 =

 S̄T (h− f(m(i)) +Hm(i))

0

 ,
which corresponds to applying a left block sketch

S̃ =

 S̄ 0

0 I


to (6.6) and the right preconditioning ξ = S̄ξ̃, where now the update is given by m(i+1) =

Xβ + QHT S̄ξ̃. Although it was shown in Lin et al. [2017] that RGA produces compara-

ble results to PCGA with reduced computational time this formulation is not immediately

amenable to the analysis leading to Theorem 4.3.2.

6.4.3 Application of RPS

In contrast, if RPS is implemented directly on the full block system (6.6), the modified

block system

ST

 HQHT +R HX

(HX)T 0

Ny ≈ ST

 h− f(m(i)) +Hm(i)

0


is obtained, which now fits the formulation of Theorem 4.3.2.

6.4.4 Numerical Results

As the number of points in the discretized domain increases, the size of the problem

increases quadratically, relying on aN = 2NxNy length vector, whereNx andNy represent

the number of points used in the x and y domains respectively. A sketch size s = 2k = 256

is used for grids ranging from Nx = 50 and Ny = 51 to Nx = 200 and Ny = 201,

producing linear problems ranging from 5100× 5100 to 80400× 80400. 4 hydraulic heads
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Figure 6.3: Demonstration of spacing for a 4× 4 grid of hydraulic heads. x and y are then
discretized over [0, 1] using Nx and Ny points respectively.

are simulated on a 2× 2 grid for each problem size, see Figure 6.3. For direct comparison,

each simulation is performed with a maximum of 5 outer iterations. The resulting root mean

squared errors of both the RGA method and RPS are given in Figure 6.4. RPS consistently

produces results with less error while maintaining similar computational time on a single

core processor.

Figure 6.4: Comparison of computational time and root mean squared errors obtained by
RPS versus RGA

The horizontal transmissivity is shown on a log scale with a 100 × 101 grid for both

methods in Figure 6.5, giving a visual representation of the results after 5 outer iterations

are performed. This provides visual confirmation of the results produced by RPS.
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(a) True (b) RGA (c) RPS

Figure 6.5: True log-transmissivity field Figure 6.5a, and the log-transmissivity field re-
sulting from RGA Figure 6.5b and RPS Figure 6.5c.

6.4.5 Groundwater Transmissivity Conclusions

RPS shows great versatility due to the simplicity and performance gains from precon-

ditioning mixed with the computational efficacy gains from sketching. This method is

applied to the framework established by the PCGA method directly and uses properties of

the pseudo-inverse to add preconditioning in comparison to the dimensionality reduction

of the RGA method.

Through theoretical and computational cost analysis, it is shown that the efficiency

of solving the linearized portion of the transient flow equation can be significantly in-

creased by applying these multi-dimensionality reduction techniques, resulting in a well-

conditioned system.The improved conditioning achieved by the RPS method helps the so-

lution gain increased accuracy at each iteration.Thus an invaluable method for solving large

linear systems by inversion has been provided.

In summary, this method improves accuracy while satisfying the need for computational

efficiency caused by the trend to increase the number of both model parameters and data.

This contribution consists of extending the dimensionality reduction by a simple, novel

construction of a preconditioning matrix based on properties of the pseudo-inverse, and

thereby increasing the accuracy of the solution. Due to the simplicity of the approach,
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this method is by no means limited to hydrogeological inverse problems, but can easily be

implemented in a variety of applications across multiple fields of interest.

6.5 Conclusions

An approximate pseudo-inverse method was iteratively applied with significantly re-

duced computational time in comparison to directly calculating an approximate pseudo-

inverse. It was also showed that using a linear interpolation matrix as a right sketch provides

a stable method of dimensionality reduction. Although using a linear interpolation matrix

produces undesirable characteristics in the projection, it shows an alternative direction for

dimensionality reduction that could be extended to higher order interpolation.

In addition, randomization was implemented in a novel way to obtain a series of r̃

approximate Kronecker product decompositions based on an approximate Kronecker rank

r̃. If the system matrix can be approximated well for small r̃, this method has potential

to significantly reduce computational requirements, but has yet to be validated. Thus, the

SKPD provides a promising topic for further study.

6.6 Conclusions and Future Work

As the trend to collect massive amounts of data leads to more computationally expen-

sive regularization methods for inverse problems, solving these large problems becomes

difficult for technology to keep up with, Lin et al. [2016], Wang [2015]. To combat this,

techniques for solving large-scale inverse problems were presented based on dimensional-

ity reduction.

In Chapter 3, special case problems were introduced that benefit exceptionally from

dimensionality reduction. Namely, a block-Toeplitz with Toeplitz blocks (BTTB) matrix

was shown to be extendable to a block circulant with circulant blocks (BCCB) matrix, for

which matrix multiplication can be performed via a convolution transformation using the
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2DFFT. This analysis was extended for the gravity and magnetic problems, and in-

cluded extensions for domains with model contributions from outside the discrete domain.

Fast multiplication using the 2DFFT was also extended for use with BTTB matrices for the

case where domain padding is desired.

Chapter 4 shows how applying randomization directly to a matrix system can further

reduce computational requirements by combining a random left sketch and a right precon-

ditioning substitution, denoted the randomized preconditioning sketch (RPS). Numerical

results validated the stability of the solution when applied to inversion of gravity and

magnetic data in combination with fast multiplication via the 2DFFT, and showed a

significant reduction in computational time in comparison to the LSRN algorithm.

The RSVD approach for obtaining an approximate SVD was discussed in Chapter 5 for

inversion of gravity and magnetic data. Computational comparisons for both real and

synthetic data with and without domain padding were also provided.

Chapter 6 provided alternate applications for the techniques developed, along with other

directions for dimensionality reduction of large-scale problems. These included alternate

applications of randomization such as applying an approximate pseudo-inverse and ob-

taining an approximate Kronecker product decomposition. Section 6.4 then presented a

practical application of the RPS method to a transient groundwater transmissivity problem

where it was shown that RPS improves on the accuracy of the solution compared to the

randomized geostatistical approach (RGA), which only implements a random left sketch.

In short, extensions for novel formulations of randomization techniques combined with

a preconditioning substitution, useful for general inverse problems, have been discussed.

There are many directions for further research in dimensionality reduction. First, the

RPS method can be applied in combination with the fast 2DFFT based multiplication for

the joint inversion of gravity and magnetic data. An extension to the inversion of

gravity and magnetic data by implementing joint inversion has been considered.
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The system matrix is structured into a block system containing both the gravity and

magnetic matrices, along with a coupling term. Since this produces a much larger sys-

tem than considering either method alone, dimensionality reduction shows great potential

in providing a viable solution via joint inversion. A paper, Vatankhah et al. [2020b], has

been submitted for the implementation of joint inversion using BTTB structure to provide

fast matrix multiplication via the 2DFFT, but without consideration for randomization tech-

niques. Thus, joint inversion of gravity and magnetic data combining fast 2DFFT

based multiplication with randomization techniques is a topic for future work.

Specifically, joint inversion is implemented by alternating between magnetic and

gravity models for dobs, G and m, at each step minimizing

‖Wd(dobs −Gm)‖2
2 + α2‖WD(m−mapr)‖2

2 + β2 ‖t(m)‖2
2,

with regularization parameters α and β, and the cross-gradient function t(m) ∈ R3n is

the link between the gravity and magnetic models. Given results demonstrated in

Sections 4.5.5 and 4.5.9, the RPS algorithm provides a significant reduction in computa-

tional time when solving either the gravity or magnetic model. Further, RPS has

been shown to provide regularization through truncation, effectively removing the reliance

on α. Thus, RPS provides a viable candidate for simplifying and efficiently solving this

joint method.

A basis for applying randomization to obtain an approximate Kronecker product de-

composition has been considered. The SKPD was also extended to produce a sum of

Kronecker products based on the Kronecker rank. This allows matrix multiplication to

be carried out at reduced computational cost for each Kronecker product, but the reduction

can become outweighed by repeating the matrix multiplication repeatedly when the Kro-

necker rank is large. Thus, the SKPD is most efficacious and has yet to be validated for an

application where the system matrix has a small Kronecker rank.
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Kathrin Schäcke. On the Kronecker product. 2013.

Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. In Lin-
ear algebra for large scale and real-time applications, pages 293–314. Springer, 1993.

Saeed Vatankhah, Vahid E Ardestani, and Rosemary A Renaut. Application of the χ2

principle and unbiased predictive risk estimator for determining the regularization pa-
rameter in 3-D focusing gravity inversion. Geophysical Journal International, 200
(1):265–277, Nov 2014a. ISSN 0956-540X. doi: 10.1093/gji/ggu397. URL http:
//dx.doi.org/10.1093/gji/ggu397.

Saeed Vatankhah, Vahid E Ardestani, and Rosemary A Renaut. Automatic estimation of
the regularization parameter in 2D focusing gravity inversion: application of the method
to the Safo manganese mine in the northwest of Iran. Journal of Geophysics and Engi-
neering, 11(4):045001, 2014b.

Saeed Vatankhah, Rosemary A Renaut, and Vahid E Ardestani. 3-D Projected L1 inver-
sion of gravity data using truncated unbiased predictive risk estimator for regularization
parameter estimation. Geophysical Journal International, 210(3):1872–1887, 06 2017.
ISSN 0956-540X. doi: 10.1093/gji/ggx274. URL https://doi.org/10.1093/
gji/ggx274.

Saeed Vatankhah, Rosemary A Renaut, and Vahid E Ardestani. A fast algorithm for reg-
ularized focused 3D inversion of gravity data using randomized singular-value decom-
position. GEOPHYSICS, 83(4):G25–G34, 2018a. doi: 10.1190/geo2017-0386.1. URL
https://doi.org/10.1190/geo2017-0386.1.

Saeed Vatankhah, Rosemary A. Renaut, and Vahid E. Ardestani. Total variation regu-
larization of the 3-D gravity inverse problem using a randomized generalized singular
value decomposition. Geophysical Journal International, 213(1):695–705, 2018b. doi:
10.1093/gji/ggy014. URL http://dx.doi.org/10.1093/gji/ggy014.

167

https://arxiv.org/abs/2004.13904
https://arxiv.org/abs/2004.13904
http://dx.doi.org/10.1093/gji/ggu397
http://dx.doi.org/10.1093/gji/ggu397
https://doi.org/10.1093/gji/ggx274
https://doi.org/10.1093/gji/ggx274
https://doi.org/10.1190/geo2017-0386.1
http://dx.doi.org/10.1093/gji/ggy014


Saeed Vatankhah, Shuang Liu, Rosemary A Renaut, Xiangyun Hu, and Jamaledin Ba-
niamerian. Improving the use of the randomized singular value decomposition for the
inversion of gravity and magnetic data, 2020a. URL https://doi.org/10.1190/
geo2019-0603.1. recently accepted.

Saeed Vatankhah, Shuang Liu, Rosemary A Renaut, Xiangyun Hu, Jarom D Hogue, and
Mostafa Gharloghi. An efficient alternating algorithm for the Lp-norm cross-gradient
joint inversion of gravity and magnetic data using the 2D fast Fourier transform, 2020b.
URL https://arxiv.org/abs/2001.03579. original version on arXiv.

Saeed Vatankhah, Rosemary A Renaut, and Shuang Liu. Research note: A unify-
ing framework for the widely used stabilization of potential field inverse problems.
Geophysical Prospecting, 68(4):1416–1421, May 2020c. ISSN 0016-8025. doi:
10.1111/1365-2478.12926. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/1365-2478.12926.

P. T. M. Vermeulen, A. W. Heemink, and J. R. Valstar. Inverse modeling of groundwater
flow using model reduction. Water Resources Research, 41(6):n/a–n/a, 2005. ISSN
1944-7973. doi: 10.1029/2004WR003698. URL http://dx.doi.org/10.1029/
2004WR003698. W06003.

C. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied
Mathematics, 2002. doi: 10.1137/1.9780898717570. URL https://epubs.siam.
org/doi/abs/10.1137/1.9780898717570.

Sergey Voronin, Dylan Mikesell, and Guust Nolet. Compression approaches for the
regularized solutions of linear systems from large-scale inverse problems. GEM -
International Journal on Geomathematics, 6(2):251–294, Nov 2015. ISSN 1869-
2680. doi: 10.1007/s13137-015-0073-9. URL http://dx.doi.org/10.1007/
s13137-015-0073-9.

Shusen Wang. A practical guide to randomized matrix computations with MATLAB imple-
mentations. CoRR, abs/1505.07570, 2015. URL http://arxiv.org/abs/1505.
07570.

Brendt Wohlberg and Paul Rodrı́guez. An iteratively reweighted norm algorithm for min-
imization of total variation functionals. Signal Processing Letters, IEEE, 14(12):948–
951, 2007.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends R© in Theoretical Computer Science, 10(12):1–157, 2014. ISSN 1551-305X. doi:
10.1561/0400000060. URL http://dx.doi.org/10.1561/0400000060.

Hua Xiang and Jun Zou. Regularization with randomized SVD for large-scale discrete
inverse problems. Inverse Problems, 29(8):085008, 2013. URL http://stacks.
iop.org/0266-5611/29/i=8/a=085008.

Yile Zhang and Yau Shu Wong. BTTB-based numerical schemes for three-dimensional
gravity field inversion. Geophysical Journal International, 203(1):243–256, 2015.

168

https://doi.org/10.1190/geo2019-0603.1
https://doi.org/10.1190/geo2019-0603.1
https://arxiv.org/abs/2001.03579
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12926
https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12926
http://dx.doi.org/10.1029/2004WR003698
http://dx.doi.org/10.1029/2004WR003698
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570
https://epubs.siam.org/doi/abs/10.1137/1.9780898717570
http://dx.doi.org/10.1007/s13137-015-0073-9
http://dx.doi.org/10.1007/s13137-015-0073-9
http://arxiv.org/abs/1505.07570
http://arxiv.org/abs/1505.07570
http://dx.doi.org/10.1561/0400000060
http://stacks.iop.org/0266-5611/29/i=8/a=085008
http://stacks.iop.org/0266-5611/29/i=8/a=085008


Guangdong Zhao, Bo Chen, Longwei Chen, Jianxin Liu, and Zhengyong Ren. High-
accuracy 3D Fourier forward modeling of gravity field based on the Gauss-FFT tech-
nique. Journal of Applied Geophysics, 150:294 – 303, 2018. ISSN 0926-9851. doi: https:
//doi.org/10.1016/j.jappgeo.2018.01.002. URL http://www.sciencedirect.
com/science/article/pii/S0926985117301751.

Michael S. Zhdanov. Geophysical Inverse Theory and Regularization Problems, vol-
ume 36. Elsevier, Amsterdam, 2002.

D. A. Zimmerman, G. de Marsily, C. A. Gotway, M. G. Marietta, C. L. Axness, R. L.
Beauheim, R. L. Bras, J. Carrera, G. Dagan, P. B. Davies, D. P. Gallegos, A. Galli,
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For arbitrary matrix A ∈ Rm×n, the pseudo-inverse A† of A is the unique matrix that
satisfies the Moore-Penrose conditions, [Golub and Van Loan, 2013, Section 5.5.4]

(i) AA†A = A, (ii) A†AA† = A†, (iii) (AA†)T = AA†, (iv) (A†A)T = A†A. (A.1)

When A is of full rank and square A† = A−1. Note, in general AA† 6= A†A 6= I . Given
the SVD of A, A = UΣV T , and A of rank k, k ≤ min(m,n),

(i) A† = V Σ†UT , (ii) Ak = UkΣkV
T
k , (iii) A†k = VkΣ

†
kU

T
k . (A.2)

Lemma A.0.1. SupposeA = UΣV T andAAT = UAATΣAATV
T
AAT then (VAAT ) = (UAAT ) =

U and (ΣAAT ) = Σ2.

Proof. It is immediate that AAT = UΣ2UT and by the uniqueness of the SVD the result
follows.

Lemma A.0.2. Assume that matrix A has at least rank k then AT (A†k)
TA†k = A†k

Proof. It is immediate using the truncated SVD of A that

AT (A†k)
TA†k = V ΣUTUkΣ

−2
k UT

k = V Σ

[
Ik
0

]
Σ−2
k UT

k

= V

[
Σk

0

]
Σ−2
k UT

k = V

[
Σ−1
k
0

]
UT
k = VkΣ

−1
k UT

k = A†k.
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B.1 Conditioning of Least Squares Problem

Theorem B.1.1 shows the dependance of the perturbed least squares solution on the
conditioning number.

Theorem B.1.1. [Golub and Van Loan, 2013, Theorem 5.3.1] Suppose xLS , rLS , x̂LS , and
r̂LS satisfy

‖AxLS − b‖2 = min rLS = b− AxLS
‖(A+ δA)x̂LS − (b+ δb)‖2 = min r̂LS = (b+ δb)− (A+ δA)x̂LS,

where A has rank n and ‖δA‖2 < σn(A). Assume that b, rLS and xLS are not zero. Let
θLS be defined by

sin(θLS) =
rLS
‖b‖2

.

If

ε = max
{
‖δA‖2

‖A‖2

,
‖δb‖2

‖b‖2

}
and

νLS =
AxLS

σn(A)‖xLS‖2

,

then
‖x̂− x‖2

‖x‖2

≤ ε

{
νLS

cos(θLS)
+ [1 + νLS tan(θLS)κ2(A)

}
+O(ε2)

and
‖r̂ − r‖2

‖b‖2

≤ ε

{
1

sin(θLS)
+

[
1

νLS tan(θLS)
+ 1

]
κ2(A)

}
+O(ε2).

B.2 Rank k SVD of a Projected Matrix

Next, Theorem B.2.1 and Corollary B.2.2 show an error bound for the truncated SVD
under projection.

Theorem B.2.1. [Halko et al., 2011, Theorem 9.3] Let A be an m×n matrix with singular
values σ1 ≥ σ2 ≥ σ3 ≥ . . . , and let Z be an m× l matrix, where l ≥ k. Suppose that Â(k)

is the best rank k approximation of PZA with respect to the spectral norm. Then

‖A− Â(k)‖2 ≤ σk+1 + ‖(I− PZ)A‖2.

Corollary B.2.2. [Halko et al., 2011, Corollary 10.9] Suppose that A is a real m × n
matrix with singular values σ1 ≥ σ2 ≥ σ3 ≥ . . . . Choose a target rank k ≥ 2 and an
oversampling parameter p ≥ 4, where k + p ≤ min(m,n). Draw an n× (k + p) standard
Gaussian matrix Ω, and construct the sample matrix Y = AΩ. Then

‖(I− PY )A‖2 ≤
(

1 + 17
√

1 + k/p
)
σk+1 +

8
√
k + p

p+ 1

(∑
j>k

σ2
j

)1/2

,
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with failure probability at most 6e−p. Moreover,

‖(I− PY )A‖2 ≤
(

1 + 8
√

(k + p)p log p
)
σk+1 + 3

√
k + p

(∑
j>k

σ2
j

)1/2

,

with failure probability at most 6p−p.
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