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ABSTRACT

Physical activity helps in reducing the risk of many chronic diseases, and plays a key

role in maintaining good health of an individual. Just Walk is an intensively adaptive

physical activity intervention, which has been designed based on system identification

and control engineering principles. The goal of Just Walk is to design interventions

that are responsive to an individual’s changing needs, and thus encourage the indi-

vidual to increase the number of steps walked.

Regularization is widely used in the field of machine learning. The goal of this the-

sis is to see how classical system identification principles in combination with machine

learning methods like regularization help towards getting improved model estimates

for complex systems. Estimating individual behavioral models using traditional pre-

diction error methods can be done using an order selection. However, this method is

can be computationally expensive due to the extensive search performed on a large

set of order combination. If order selection is not done properly, it can cause bias

(low order) and variance (high order) issues. In such cases regularization plays an

important role in addressing the bias-variance trade-off.

One of the most important applications of identifying individual behavioral models

is to understand what factors impact most the behavior of the person. Here “factors”

can be considered as inputs (designed or environmental) to the participant over the

course of the study, and the “behavior” is the step count of the participant under

study. This is done by estimating models with different input combinations and

then seeing which combinations of inputs (influence behavior most) give the best

model estimate (best describe behavior of the person). As a part of this thesis, it is

studied how regularized models can give a better estimation of personalized behavioral

models, for the Just Walk study, which can further help in designing personalized

interventions.
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Upon study and examination of regularization approaches for four individual par-

ticipants in Just Walk, it was observed that the regularized estimates using the DI

(Digonal) kernel gave satisfactory results in terms of the model fit for these partici-

pants, while the using the (Stable Spline) SS kernel was better for personalization.
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Chapter 1

INTRODUCTION

1.1 Motivation

An emerging application of system identification and control theory is the design

of optimized interventions in health behavior [17, 35]. Just Walk is a behavioral

intervention which was designed using open-loop system identification methods to

develop dynamical models, where the goal was to try to understand the outcome,

i.e. the step count per day of an individual using the identified models. Here, system

identification methods help in estimating dynamical models for physical activity (PA)

in sedentary adults using an idiographic approach. The idiographic approach focuses

on individual behavior as opposed to a nomothetic approach, that forms a general

conclusion for all participants. Hence, these idiographic models can be used to design

personalized interventions, which can in turn result in an increase in the number of

steps (measure of PA) of that individual [28].

System identification is basically a method that is used for estimating mathemat-

ical models of dynamical systems, using the system’s input-output data [1]. These

models give an idea about the system’s behavior. One of the major issues faced while

building a model using system identification techniques is to achieve a good balance

between the fit to the data and model complexity. For example, a high order system

may give a good fit to the estimation data, but may cause overfitting and result in a

model that does not generalize well to new data. On the contrary, a low order system

might fail to capture important patterns and features in the estimation data set, and

cause underfitting. This is an issue which is commonly seen for all kinds of system

1



identification problems.

In classical linear time-invariant (LTI) system identification problem, prediction

error methods (PEM) have typically been used. In PEM methods, model complexity

depends on the model orders. To find the most appropriate model order, models are

evaluated over a range of orders using cross validation techniques, information criteria

such as AIC and BIC, and other model validation techniques. However, these classical

methods have limitations. Firstly, they might give less desirable results for data that

is short and noisy. Also, these methods can be computationally expensive, since a

search has to be run over a range of orders. Many different structures have to be

tested before the most appropriate one can be decided on. This complexity increases

with an increase in the number of inputs and outputs, and can hence further worsen

for MIMO (multi-input-multi-output) systems. From the plots in Fig. 1.1, obtained

Figure 1.1: Fitting a model to given data [20]

from the work of Ljung and Chen [20], the first plot represents the raw data, the

third plot shows the case of overfitting, and the second case, which is the best case,

where the model fits adequately to the data under consideration. To achieve this

“best case”, an alternative to the classical system identification methods can be used,

which is regularization of a high order model. It is a statistical technique that can

help in dealing with ill-conditioned parameter estimation problems. Using a high

order model allows the use of more parameters in the model structure, which ensures

2



that the estimated model captures all features, and underfitting is avoided. Using

regularization on this high order model can provide an “automatic” way of finding

the most important parameters. A good parameterization is obtained by giving more

weight to the important parameters, and less weight to the ones with least importance.

This ensures that they do not contribute much to the variance error [14, 38].

Hence, to observe the advantages of regularized models over those obtained by

classical system identification methods, both were implemented on the data set ob-

tained from the Just Walk study, and then studied and compared. Two types of

regularization methods are discussed as a part of the thesis [14, 23]:

1. Ridge Regression, which is basically an example of Tikhonov regularization for

ill-posed problems.

2. Kernel Based Methods, which uses the finite impulse response model to deter-

mine the underlying model structure. This is done using kernel structures, which

encode prior knowledge on the system to be identified. The hyper-parameter

used for parameterization of the kernel structure decides the model complexity,

which is tuned using the empirical Bayes method, where the marginal likelihood

is maximized.

More background on these approaches have been provided in detail in Chapter 2.

1.2 Just Walk Intervention

It is understood that physical activity (PA) aids in reducing the risk of chronic

diseases, and contributes to maintaining a good health of the individual [16]. How-

ever in society, a significant section of the population fails to meet the minimum PA

guidelines. Thus the concern is to find a way to encourage these people to main-

tain favorable and sustained PA levels, especially for middle aged adults who lead a

3



sedentary lifestyle. Since each person is different in terms of behavior and lifestyle

(which might change on a daily basis based on certain factors - internal or external),

the strategies for fitting regular PA into one’s daily schedule should also be idiosyn-

cratic and dynamic, and so should the time and place where individuals fit PA into

their daily routine. This can be accomplished by the use of mobile health (mHealth)

technologies that deliver personalized and adaptive PA interventions which are de-

signed as per an individual’s changing needs. The main advantages of the mHealth

technology lie in its cost-effectiveness and convenience [16].

1.2.1 Overview of the Study

Just Walk is an intensively adaptive physical activity intervention designed using

system identification and control engineering principles. The goal was to develop

behavioral models for individuals under study using the ARX estimation-validation

procedure. The intervention components, “goals” (daily step goals) and “expected

points” (reward targets) for a participant were designed using pseudo random multi-

sine signals. Analysis of the estimated dynamic models were used for understanding

the PA behavior of the participant. This gave insights into what factors influence

participant activity the most. These are critical for building semi-physical models,

for which the basis is a dynamic extension of the Social Cognitive Theory, described

in section 1.2.2 [16].

The participants recruited for this study were healthy, middle aged individuals

between the age of 40-65 years, leading a sedentary lifestyle. These people were

were overweight, with a body mass index (BMI) in the range of 25-45 kg/m2. The

requirement was that the participants own an Android (v 2.3 or higher) phone, which

would be capable of connecting to a Fitbit Zip (activity tracker) via Bluetooth 4.0.

Also, the participants were residents of the United States, and were willing to actively

4



participate in the walking intervention for a period of 14 weeks. The intervention

system consisted of the following:

• Android App: this front-end app as seen in Fig. 1.2, served as medium through

which participants received a daily step goal, and were notified of the available

reward points on achieving the set goal. The participants were also required to

complete daily morning and evening ecological momentary assessment (EMA)

measures, via this app.

• Fitbit Zip: it was used to measure and keep a track of the PA of the participant

• Back-end server : which basically stored and processed all participant data that

was collected during the study, and sync the Fitbit data with the smartphone

application.

Figure 1.2: Screenshot of the Just Walk App [16]

The 14 week study period included an initial baseline period of 2 weeks, during which

no step goals were delivered to the participant. In this period, the median daily step

value was calculated for each participant. Based on this data, for the rest of the

study period, the participant received individualized step goals, which were in an

5



ambitious, but doable step range. The intervention phase started from week 3 and

continued though week 14, during which the participants received interventions, and

were required to complete EMA via the app, which covered a range of psychometric

measures like confidence in achieving goal, predicted business for that day, previous

night’s sleep quality, etc. The points granted, based on whether or not the goal was

achieved were converted into Amazon gift cards [16, 28].

Some of the input variables considered while estimating behavioral models in the

Just Walk study have been illustrated using time series plots in Fig. 1.3, which has

been obtained from [16]. Here, the manipulated inputs are Goals, Expected Points

and Granted Points, while Predicted Busyness, Predicted Stress, Predicted Typical,

and Weekday-Weekend are the measured disturbances. Additional information on

the intervention has been given in Chapter 3.

1.2.2 Behavioral Medicine and Social Cognitive Theory

Adaptive interventions are those which are personalized depending on the person’s

needs, which can vary based on various factors, like time, location, etc. These inter-

ventions give much better results when compared to static ones [17]. For designing

adaptive interventions, it is important to be able to identify the dynamics which vary

depending on the individual under consideration, as well as those that are univer-

sal, and do not depend on individual characteristics. To achieve this parsimonious

modeling based on some a priori knowledge is essential. This can be accomplished

by using behavior change theory, along with control systems engineering principles

to develop behavioral models that can help in the creation of decision frameworks for

interventions, where the ultimate goal is to increase PA among individuals who are

not very active. This is what the Just Walk intervention aims to achieve [16].

6
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One of the behavior change theories that play an important role in this study is the

Social Cognitive theory (SCT), that was proposed by Bandura [9]. The concepts for

this theory have been represented in the form of a simple fluid analogy representation,

as seen in Fig. 1.4, which has been referred from the work of Mart́ın et al. in [27, 11].

The SCT gives an idea about the potential constructs which have a significant effect

Figure 1.4: Dynamical fluid analogy model of Social Cognitive Theory [27, 11]

on participant behavior, and should be taken into consideration for the prediction

of behavioral models. One such example is the Environmental Construct mentioned

in Fig. 1.4, which can have variables like weather, busyness, stress, weekday, mood,

and many more [16]. This model shows how different factors can interact to influence

the behavior of a person over time, and this is interpreted on a daily time-scale. The

primary constructs, which are self-efficacy, outcome expectancy, behavioral outcomes,

cue to action, and behavior, are the ‘inventories’. The other variables which can

increase or decrease the behavior of an individual are the inputs, which can be external

8



or internal.

Tailoring variables comprise of information that forms the basis for the operation

of decision rules to select the intervention option for adaptive interventions. The Just

Walk study was executed considering those variables that showed great potential for

being tailoring variables (e.g. stress, mood, weather, and self-efficacy), that could be

used for informing the decision made at each daily decision point. The variables under

consideration were interpersonal states, and environmental context, which include the

following: predicted stress, predicted typicality, predicted busyness, and whether it

is a weekday/weekend [28].

1.3 Identification of Dynamical Systems and Regularization

The structure M of a model can be defined as a parameterized collection of

models, which describe the relationship between the input and output of the system.

These parameters are given by θ. M(θ) is a particular model which predicts one-step

ahead output at time t, based on the previous input-output data for up to time t− 1

(given by Zt−1), to give [20]

ŷ(t|θ) = g(t, θ, Zt−1) (1.1)

Model parameters can be obtained by fitting measured data to the predicted response

of the model. This is done by comparing values in (1.1) predicted by the model, with

the actual output of the system, which gives the prediction errors

ε(t, θ) = y(t)− ŷ(t|θ) (1.2)

A criterion of fit is given by

FN(θ) =
N∑
t=1

[
ε(t, θ)TΛ−1ε(t, θ)

]
(1.3)
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where Λ is a positive semi-definite (psd) matrix, weighting together the different

output components (channels) [20].

In the absence of regularization, minimizing the weighted quadratic norm of pre-

diction errors ε(t, θ), as shown in (1.3), give the parameter estimates. Since the

flexibility of the model is determined by its order, an increase in the order will give

a model with a better fit to the observed data. However, this might lead to higher

uncertainty in the estimates because of increased random or “variance” error. Lower-

ing the order too much has its disadvantages as well. It can lead to large systematic

errors, also known as “bias” error. To get a good model estimate, which is close to

the ideal situation, the model parameters should be chosen such that it minimizes

the mean square error (MSE), since both, the systematic error (bias) and the random

error (variance) contribute to the MSE as seen below [8]

MSE = |Bias|2 + Variance (1.4)

A reasonable estimation criterion can be

Model = arg min
Model Class

[Fit to Data + Penalty on Flexibility] (1.5)

Regularization introduces an additional penalty term, which gives more control over

the bias-variance trade-off, by penalizing model flexibility. This reduces the variance,

while slightly increasing the bias. The following equation shows the addition of a

quadratic norm to FN(θ), as per (1.5), which penalizes the model flexibility:

VN(θ) = FN(θ) + λ(θ − θ∗)TR(θ − θ∗) (1.6)

(λ is a scaling and R is a psd matrix). The parameter estimates can then be deter-

mined by

θ̂N = arg min
θ∈DM

VN(θ) (1.7)
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The amount of penalty added depends on λ and R, which decides the criterion for

balance between model fit and penalty on the model parameter size [8, 21].

1.3.1 Regularization Example: Bias-variance Trade-off in FIR Modeling

This example replicates the work of Ljung and Chen [20, 22], for which the refer-

ence code and data have been obtained from MATLAB website [2]. Here the problem

is to estimate an FIR model for the impulse response of a linear system:

y(t) =

nb∑
k=0

g(k)u(t− k) (1.8)

The choice of nb, is critical as this decides the trade-off between bias and variance. nb

should be large enough, so that it can capture the slowly decaying impulse responses

without too much error. However, if nb is too large, it will call for the estimation of

many parameters, which in turn will lead to increased variance [2].

This can be illustrated using a simple second order Butterworth filter (1.9), whose

impulse response is shown in Fig. 1.5.

G(z) =
0.02008 + 0.04017z−1 + 0.02008z−2

1− 1.561z−1 + 0.6414z−2
(1.9)

Consider that the input to the system is a low-pass filtered white noise, and a

small output disturbance is added, which is a white noise, with a variance of 0.0025.

The input-output data (regularizationExampleData.mat) file, shown in Fig. 1.6 has

been obtained from the MATLAB example in [2]. Over a range of nb = 1, . . . , 50, all

models were examined, and it was observed that for nb = 13, the best possible error

norm to the impulse response, which is mse = 0.2522, gave a model with the best

fit to the impulse response. Fig. 1.7 shows the comparison of the estimated impulse

response with the true response. It is seen that even though the data set has sufficient

length (1000 data points), and has a good signal to noise ratio, the estimated model is
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Figure 1.5: The true impulse response for the system (example) [2, 22]

Figure 1.6: The data used for estimation (example) [2, 22]
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not good enough. Also, there is significant variance. In order to get a good trade-off

between bias and variance, ridge regression is tried, where a simple penalty of ‖θ‖2 is

applied to an FIR model of order 50. The estimate obtained using this approach has

a lower error norm of 0.1171. The response is shown in Fig. 1.8.

From the plot in Fig. 1.8, it is seen that even a simple form of regularization can

improve results significantly by giving a better bias-variance trade-off, than selecting

an FIR model with optimum order in the absence of regularization [2].

Next, the kernel based methods, which have been further been described in Chap-

ter 2, are also implemented to see if there is any improvement in the results. From

the plot in Fig. 1.9, it can be seen that all regularization methods give better results

than the FIR model with optimum order. Comparing the regularization methods, it

is seen that ridge regression gives reasonable results. The kernel-based methods TC,

SE, SS, and DC give very good results, and the impulse response of model estimate

fits almost perfectly to the true impulse response. The HF and DI kernels perform

worse, but only slightly than the ridge regression, with HF being the worst among

the regularized estimates. The fit percentage values for all estimation methods have

been listed in Table 1.1.

1.4 Contribution of the Thesis

In this thesis, a study is made to determine if using regularization in system iden-

tification for determining the model structure has advantages over traditional PEM

methods, for data from Just Walk, a behavioral intervention. Behavioral dynamical

models are estimated for four individual participants, which will help in designing per-

sonalized interventions. For the design of personalized interventions, it is important

to be able to determine which factors impact individual behavior the most. While

using the traditional order selection approach, many a times it is observed that there
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Figure 1.7: The true impulse response together with the estimate for order nb = 13

(example) [2, 22]

Figure 1.8: The True Impulse Response Together with the Ridge-regularized Estimate

for Order nb = 50 (example) [2, 22]
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Table 1.1: Fit percentages for all model estimation methods (example)

Method % Fit

FIR (nb = 13) 83.20

Ridge Regression 84.41

Kernel TC 84.17

Kernel SE 84.26

Kernel SS 84.16

Kernel HF 84.24

Kernel DI 84.21

Kernel DC 84.17

is very little or almost no change in the % fit measure, when different combination

of inputs are used for model estimation. Thus it is difficult to decide what factors

influence the person’s activity the most. In contrast, models estimated using some

of the regularization methods show a peak in % fit when a certain combination of

inputs is used for model estimation. This shows that regularization can be used for

the personalization of a physical activity intervention, like the Just Walk interven-

tion. Even though traditional methods like order selection give good results, from

the results of this thesis, it can be seen that some regularization methods can provide

comparable, or even better results than the order selection, when judged on the basis

of % fit. However, one of the most important advantages of using regularized models

is that estimation of these models are computationally less complex, especially when

it comes to systems with multiple inputs and outputs, and are also more robust.
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Figure 1.9: The true impulse response together with the regularized estimates using

ridge regression and various kernel-based methods for order nb = 50 (example)

1.5 Thesis Outline

The thesis has been organized into five chapters. Chapter 1 is the introductory

chapter, which gives an overview of the work being done as a part of this thesis.

Chapter 2 describes the various methods used (classical PEM estimates, as well as the

regularized approach) for model estimation and validation. It also points at the issues

related to model structure, faced while using classical system identification methods,

and the reason why regularization can be considered as an option to overcome these

problems. Chapter 3 discusses the procedure for obtaining model estimates using the

methods described in Chapter 2, as well as the results and conclusions obtained for a

set of four participants (164, 180, 222, 230) that were studied. Chapter 4 focuses on

how addition of inputs to the standard 3-input model can have an effect on the % fit,

which in turn determines whether addition of a particular input, or a combination

of certain inputs can have a positive effect on the model estimate quality. This can
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help in determining what factors influence the behavior of a particular participant

the most, and contribute to the design of personalized interventions. Chapter 5

summarizes all results and conclusions, and gives an insight into future work that can

be done based on the results obtained from this thesis.
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Chapter 2

MODEL ESTIMATION AND VALIDATION: METHODS OVERVIEW

2.1 Overview

This chapter gives a briefing about various model estimation methods used in this

thesis, which will help get a better understanding of the work and results described

in the following chapters. The content mentioned here is an overview of established

literature, and contains no new results.

2.2 Classical System Identification

System identification principles can be used for building mathematical models

for dynamic systems using the input-output data that is measured. The system

output is a convolution between the input to the system, and the system’s impulse

response. One of the ways in which system identification can be interpreted as a

deconvolution problem [30]. This mainly involves determining the impulse response

of the system from the collected data. Estimation paradigms from mathematical

statistics, and classical methods like Maximum Likelihood (ML), are some some of

the important elements from which most of the system identification methods have

originated [30, 20].

2.2.1 Parametric Model Structures

For single input–single output (SISO) linear time-invariant, stable and causal

systems, the general model structure from input to output can be described by the

transfer function G, and the transfer function from a white noise source e to output

18



additive disturbances is given by H [30, 20]:

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (2.1)

E
[
e2(t)

]
= λ; E [e(t)e(k)] = 0 if k 6= t (2.2)

where E denotes mathematical expectation. This model is in discrete time, where q

denotes the shift operator qy(t) = y(t + 1). The sampling interval is assumed to be

one time unit. The expansion of G(q, θ) and H(q, θ) in the inverse (backwards) shift

operator gives the impulse responses of the two systems [30]:

G(q, θ) =
∞∑
k=1

gk(θ)q
−k (2.3)

H(q, θ) = h0(θ) +
∞∑
k=1

hk(θ)q
−k (2.4)

For normalization purposes, the function H is assumed to be monic, i.e. h0(θ) = 1.

Assuming H(q, θ) is inversely stable, the natural one-step-ahead predictor for (2.1)

is given by

ŷ(t|θ) =
H(q, θ)− 1

H(q, θ)
y(t) +

G(q, θ)

H(q, θ)
u(t) (2.5)

Since the expansion of H starts with a “1” (h0(θ) = 1), the numerator in the terms

starts with h1(θ)q
−1 and g1(θ)q

−1, respectively. This shows that there is a delay in

both, y and u. The most important step which comes next, is the parameterization

G and H [20, 30].

2.2.1.1 Black-box System Identification: ARX Models

Black-box models are those for which there is no prior insight available. Consider-

ing G and H to be rational in the shift operator q, the ARX-model (AutoRegressive

with eXternal input model), which is one of the common forms of black-box models,
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is given by [20, 19, 30]:

y(t) = G(q)u(t) +H(q)e(t) (2.6a)

=
B(q)

A(q)
u(t) +

1

A(q)
e(t), or (2.6b)

A(q)y(t) = B(q)u(t) + e(t) (2.6c)

where, A(q) = 1 + a1q
−1 + · · ·+ anaq

−na

B(q) = 1 + b1q
−1 + · · ·+ bnbq

−nb

Substituting A(q) and B(q) in (2.6c) gives:

y(t) + a1y(t− 1) + · · ·+ anay(t− na) (2.6d)

= b1u(t− 1) + · · ·+ bnbu(t− nb) + e(t) (2.6e)

where, positive integers, na and nb are the orders of the ARX-model. Other common

black-box structures of this type are FIR-model (Finite Impulse Response model),

OE model (Output Error model), ARMAX-model (AutoRegressive–Moving-Average

model with eXogenous inputs), and BJ-model (Box–Jenkins) [19].

2.2.2 Approximating Linear Systems by ARX Models: Fitting Time-domain Data

For a single-input–single-output (SISO) linear stable system given by

y(t) = G0(q)u(t) +H0(q)e(t), or (2.7a)

y(t) = G0(q)u(t) + ν(t) (2.7b)

where, H0(q)e(t) = ν(t), is the additive noise, which is independent of the input u(t).

The transfer function is given by

G0(q) =
∞∑
k=1

g0kq
−k (2.8)
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The coefficients g0k, k = 1, . . . ,∞, form the impulse response of the system. The

corresponding frequency response is defined as

G0(e
jω) =

∞∑
k=1

g0ke
−iωk (2.9)

Consider that the only information available about the input-output time domain

data record for the system is that is has been collected from a linear stable system

with additive noise.

ZN = {u(1), y(1), . . . , u(N), y(N)} (2.10)

To find the best possible estimate ĜN(ejω) of G0(e
jω), a model of a particular order

having an impulse response close to that of the system under consideration needs

to be estimated. One of the approaches to accomplish this is to try models over a

range of different orders, and use order selection, where the error in the estimate is

quantified and assessed, to get the PEM estimate with the best model order [15].

Consider, an ARX model (2.6b) is estimated for orders na and nb, where the

estimates are calculated by linear least squares (LS) techniques. To form the criterion

of fit, the values predicted by the estimated model (2.5), are compared with the actual

outputs

νN(θ) =
1

N

N∑
t=1

|y(t)− ŷ(t|θ)|2 (2.11)

which gives the parameter estimate

θ̂LSN = arg min
θ

νN(θ) (2.12)

A finite-dimensional parameterization G(q, θ) in terms of θ can be formed, for which θ

is then estimated in order to get the estimate ĜN(ejω) = G(ejω, θ̂N). One of the issues

faced while doing this is determining the size of the parameter vector θ, and computing

the error that is contributed by G0(e
jω) from being outside the set of functions covered

within the parameterization [15]. If multiple solutions to the optimization problem
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exist in (2.12), the equality has to be interpreted as a set inclusion. This is known as

the Prediction Error Method (PEM), which coincides with the Maximum Likelihood,

ML, method when the noise source e is Gaussian [20, 30].

For high order ARX-models, i.e. as na and nb tend to infinity, and the number of

data N increases, the ARX-model estimate Âna(q) and B̂nb(q) is given by [24, 30]:

B̂nb(q)

Âna(q)
→ G0(q),

1

Âna(q)
→ H0(q) as na, nb →∞ (2.13)

One of the disadvantages of high order ARX models is high variance. A solution to

this could be estimation of a high order ARX model, followed by model reduction,

which can be a solution to the numerically demanding PEM criterion minimization.

This has been further discussed in the following section 2.2.3.

2.2.3 Bias and Variance Issues

The quality of the model estimate G0(e
jω) is measured by the distance between

the estimate and the true value, for which one of the approach is to determine the

mean square error (MSE), given by [15, 30]

MN(ω) = E|ĜN(ejω)−G0(e
jω)|2 (2.14)

Here, the expectation E is with respect to the output noise process ν(t). The MSE

MN(ω) is split into a bias part, and a variance part. The bias is given by the difference

between the mean and a true description of the system

BN(ω) = EĜN(ejω)−G)(e
jω) (2.15)

the variance is given by

VN(ω) = E|ĜN(ejω)− EĜN(ejω)|2 (2.16)

such that

MN(ω) = VN(ω) + |BN(ω)|2 (2.17)
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Hence, it can be said that the total error in a system is as a result of the bias and

variance component.

The quality of estimated model depends on two factors. First is the quality of the

measured data which is used for estimation of the model. The second is the flexibility

of the chosen model structure (2.1). A more flexible model will have a smaller bias,

i.e. it may be closer to the true system. But the disadvantage is that increase in the

flexibility contributes to a higher variance. Thus to achieve a small total error, it is

important to balance the trade-off between bias and variance by a proper choice of

the model flexibility, which in turn depends on the order of the estimated model [30].

2.2.4 Selection of Model Flexibility: Order Selection

For black-box estimation, there is almost no prior information available about the

system. In such cases, a reasonable approach for determining the best order for ARX

model estimation, would be to evaluate over a range of orders, and select the one that

seems to work the best. The aim should be to use the most appropriate model order,

which should not be higher than necessary. This can be determined by analyzing how

model % fit improves as a function of the model order. A validation data-set should

be used to avoid overfitting [3].

2.2.4.1 Cross Validation

In this thesis, cross validation (CV) was used for order selection, which is widely

used for model selection. In this method, for different choices of θ, an estimate of the

predictive capability of the model is obtained, which is then optimized for parameter

selection [30].

In Holdout validation, is the simplest form of CV in which the available data is

split in two parts
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• Estimation Set : Used for estimating the model

• Validation Set : Used for assessing the predictive capability of the model

The model order with the best fit to the validation data is then selected [4].

2.3 Regularization of Linear Regression Models

The trade-off between bias and variance errors can be examined by performing

cross-validation tests on a set of models by varying its flexibility. However, this

approach may not give very good results always because of the factors described

below [8]:

• There is no a-priori information about the system, which can be used for im-

proving the model quality.

• The quality of estimated model is governed by the quality of the data used for

estimation, i.e. it should be rich enough to capture the full range of dynamic

behavior of the system

• Varying the model order does not allow for explicitly shaping the variance of

the underlying parameters.

In such cases, regularization gives a better control over the bias versus variance trade-

off by introducing an additional term in the minimization criterion that penalizes the

model flexibility.

2.3.1 Linear Regression Models: FIR Model

The simplest approach to estimate G(q, θ) is to truncate the expansion (2.8) at a

finite number of impulse response coefficients.[15]

G(q, θ) =
n∑
k=1

gkq
−k, θ = [g1g2 . . . gn] (2.18)
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where n is the order of the FIR model. The vector θ can then be estimated by the

least squares method. This model is written as a linear regression model, which has

the form [15, 30]

y(t) = ϕT (t)θ + ν(t), ϕ(t) = [u(t− 1) . . . u(t− n)]T (2.19a)

Here, the observed variables are the output y, and the regression vector ϕ. ν is a

noise disturbance, and θ is the unknown parameter vector. ν(t) is assumed to be

independent of ϕ(t). For convenience, (2.19a) is rewritten in vector form, by stacking

all the row elements in y(t) and ϕT (t) to form the vectors YN and φTN , which gives

or YN = φTNθ + ΛN (2.19b)

where YN = [y(n+ 1) y(n+ 2) . . . y(N)]T (2.19c)

φN = [ϕ(n+ 1) ϕ(n+ 2) . . . ϕ(N)] (2.19d)

ΛN = [ν(n+ 1) ν(n+ 2) . . . ν(N)]T (2.19e)

The least squares (LS) estimate of the parameter θ is

θ̂LSN = [ĝLS1 ĝLS2 . . . ĝLSn ]
T

= arg min νN(θ) (2.20a)

νN(θ) = ‖YN − φTNθ‖2 =
N∑

t=n+1

(y(t)− ϕT (t)θ)2 (2.20b)

θ̂LSN = (φNφ
T
N)−1φNYN = R−1N FN (2.20c)

RN = φNφ
T
N =

N∑
t=n+1

ϕ(t)ϕ(t)T (2.20d)

where ‖ · || represents the Euclidean norm. φNφ
T
N is assumed to be nonsingular. In

cases where φNφ
T
N is singular or ill-conditioned, a regularization term is introduced

in (2.20a) by means of a regularization matrix D and the regularized least squares is

considered instead [15, 30].

Since u(−n+1), . . . , u(0) are not known, the summation in (2.20b) starts at n+1

to allow ϕ(t) to be formed. From (2.19b) it can be seen that the first n outputs,
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y(1), y(2), . . . , y(n) in the data set ZN = {u(t), y(t), t = 1, . . . , N} are not used. [15]

Assume that,

Eν(t) = 0, Eν(t)ν(s) = σ2δt,s (2.21)

where, δt,s denotes the Kronecker delta function. i.e. if t = s, δt,s = 1, otherwise

δt,s = 0. The input u(t), and thus ϕ(t), are seen as deterministic variables. For

simplicity of the conceptual analysis, it is assumed that there exists µ > 0 such that

1

N − n
RN → µIn as N →∞ (2.22)

where, In denotes the n×n identity matrix. This means that for reasonably large N ,

1

N − n
RN ≈ µIn (2.23)

Then it can be shown that

Eθ̂LSN = θ0 = [g01 g
0
2 . . . g

0
n]
T

(2.24)

E(θ̂LSN − θ0)(θ̂LSN − θ0)T = σ2R−1N ≈
σ2

(N − n)µ
In (2.25)

which gives the bias, variance, and MSE, corresponding to (2.15) to (2.17), as follows

BN(ω) =
∞∑

k=n+1

g0ke
iωk (2.26a)

VN(ω) ≈ nσ2

(N − n)µ
(2.26b)

MN(ω) ≈ nσ2

(N − n)µ
+

∣∣∣∣∣
∞∑

k=n+1

g0ke
iωk

∣∣∣∣∣
2

(2.26c)

When the order n increases to infinity with the number of data N , sufficiently slowly,

the model (2.18) converges to the true transfer function (2.8). For minimizing the

MSE MN(ω) with respect to the order n for a given data size N , it is necessary to

have an idea about the size of BN(ω) as a function of n. Assuming the system has
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all poles inside a circle with radius λ̄, there exists a c̄ > 0 such that [15]

|g0K | < c̄λ̄k (2.27a)

|BN(ω)| < c̄λ̄n+1

1− λ̄
(2.27b)

Since the squared bias decreases like λ̄2n as a function of n, and the variance increases

like n (for large N), an upper bound on the MSE MN(ω) is minimized by an order n

that increases with N like

nopt ∼ logN (2.28)

Thus, the upper bound on the MSE MN(ω) is minimized at relatively low orders

compared to the data size [15].

2.3.2 Regularized Least Squares

In order to regularize the estimate, a regularization term θTDθ is added in (2.20a)

to obtain the regularized least squares (ReLS) [30]. This is done by replacing the

criterion νN(θ) in (2.20) by

νRN(θ,D) =
N∑

t=n+1

(y(t)− ϕ(t)θ)2 + θTDθ (2.29a)

where the regularization matrix D, is positive semi-definite, and it changes the esti-

mate to be

θ̂RN = [ĝR1 ĝR2 . . . ĝRn ]
T

(2.29b)

= (RN +D)−1FN = (RN +D)−1RN θ̂
LS
N (2.29c)

Disregarding the tail of the impulse response g0k, k > n and assuming that the true

system is given by a FIR model of order n, the main task at hand now is the deter-

mination of the regularization matrix D. The optimal regularization matrix should
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be such that it should minimize the mean square error matrix and give a theoretical

upper bound on the accuracy that can be achieved. Considering all expectations are

with respect to ν(t) [15]

Eθ̂RN = (RN +D)−1RNθ0 (2.30a)

θRbias = Eθ̂RN − θ0 = −(RN +D)−1Dθ0 (2.30b)

θ̃ = θ̂RN − Eθ̂RN = (RN +D)−1RN(θ̂LSN − θ0) (2.30c)

Eθ̃θ̃T = (RN +D)−1σ2RN(RN +D)−1 (2.30d)

MSE(θ̂RN) = E(θ̂RN − θ0)(θ̂RN − θ0)T

= Eθ̃θ̃T + θRbias(θ
R
bias)

T

= (RN +D)−1(σ2RN +Dθ0θ
T
0DT )(RN +D)−1

(2.30e)

where MSE(θ̂RN) is the MSE matrix of θ̂RN with respect to the true impulse response

coefficients vector θ0 in (2.25). Suppose, D = diag(d1, d2, . . . , dn), and (2.23) is used

for RN , the (k, k)th element of MSE(θ̂RN) will have the form

MSE(ĝRk ) ≈ σ2µ(N − n) + d2k(g
0
k)

2

(µ(N − n) + dk)2
(2.31)

which is minimized with respect to dk by dk = σ2/(g0k)
2. This gives an idea about

how to choose the regularization matrix D, i.e. if the system is stable as in (2.27a),

the diagonal of D should increase exponentially [15, 30]:

dk =
σ2

cλk
, k = 1, . . . , n

where λ = λ̄2 and c = c̄2

(2.32)

2.4 Ridge Regression

In Ridge Regression, regularization modifies the cost function by adding a term

proportional to the square of the norm of the parameter vector θ, so that the param-
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eters θ are obtained by:

θ̂RN = arg min
θ
‖YN − φTNθ‖22 + γ‖θ‖22 (2.33)

where γ is a positive constant that has the effect of trading variance error in νN(θ)

for bias error, i.e. the larger the value of γ, the higher the bias and lower the variance

of θ. The added term penalizes the parameter values with the effect of keeping their

values small during estimation [8, 29].

Cross validation is used for tuning the regularization, where the data set is split

into two parts: estimation and validation data. Regularized models are then esti-

mated using the estimation data for various values of the regularization variables,

and these models are then evaluated to check how well they can reproduce the valida-

tion data. The regularization variables that give the model the best fit to validation

data, are then picked [20].

2.5 Kernel-based Regularization

In the kernel-based regularization methods, the penalty term is made more effec-

tive by using a positive definite matrix, which allows weighting and/or rotation of the

parameter vector. This square matrix gives additional freedom for:

• Shaping the penalty term to meet the required constraints, such as keeping the

model stable

• Adding known information about the model parameters, such as reliability of

the individual parameters in the θ vector

Interpretation in the Bayesian setting is that θ has a prior distribution that is Gaus-

sian. Prior information is introduced in the identification process by modeling the

impulse response as a zero-mean Gaussian process, and introducing prior informa-

tion in the identification process by assigning a covariance, known as kernel in the
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machine learning literature. These kernels include information on impulse response

exponential stability and depend on some hyperparameters which can be estimated

from the data e.g. using marginal likelihood maximization. This procedure is much

more robust than the PEM methods [8, 30].

2.5.1 A Bayesian Interpretation

As per the Bayesian interpretation, the the parameter to be estimated is a random

variable, whose posterior distribution is estimated from the given observations. Fol-

lowing this, a jointly Gaussian random variable is conditioned, which is a key element

in Bayesian calculations [15]. Assuming x|y ∼ N (m,P ) denotes that conditioned on

y, x is a multivariate Gaussian random variable with mean vector m and covariance

matrix P , let x1
x2

 ∼ N

m1

m2

 ,
P11 P12

P21 P22


 (2.34a)

Then, the conditional distribution of x1, given x2 is

x1|x2 ∼ N (m,P ) (2.34b)

m = m1 + P12P
−1
22 (x2 −m2) (2.34c)

P = P11 − P12P
−1
22 P21 (2.34d)

Recalling the following simple matrix equality:

A(Ij +BA)−1 = (Ik + AB)−1A (2.35)

where A is an k × j matrix and B is a j × k matrix. For symmetric matrices A and

B, let A ≥ B denote that A−B is a positive semi-definite matrix [15].

The parameter of the nth order FIR model (2.18), i.e., the impulse response co-

efficients vector θ as a random variable, is considered to be of Gaussian distribution
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with zero mean and covariance matrix Pn:

θ ∼ N (θap, Pn), θap = 0 (2.36)

If the input u(t) (and ϕ(t), refer (2.19a)) is known, and the noise ν(t) is independently

Gaussian distributed with

ν(t) ∼ N (0, σ2) (2.37)

then with

YN = φTN + ΛN (2.38)

YN and θ will be jointly Gaussian variables: θ

YN

 ∼ N

0

0

 ,
 Pn PnφN

φTNPn φTNPnφN + σ2IN−n


 (2.39)

The posterior distribution of θ given YN follows from (2.34)

θ|YN ∼ N (θ̂apostN , P apost
N ) (2.40a)

θ̂apostN = PnφN(φTNPnφN + σ2IN−n)−1YN (2.40b)

= (PnφNφ
T
N + σ2In)−1PnφNYN (2.40c)

= (RN + σ2P−1n )−1FN (2.40d)

= ((σ2R−1N )−1 + P−1n )−1(σ2R−1N )−1θ̂LSN (2.40e)

P apost
N = Pn − PnφN(φTNPnφN + σ2IN−n)−1φTNPn (2.40f)

= Pn − (PnφNφ
T
N + σ2In)−1PnφNφ

T
NPn

= ((σ2R−1N )−1 + P−1n )−1 (2.40g)

where FN , RN , θ̂LSN are defined in (2.20) [15].

It is observed that this aposteriori estimate θ̂apostN is the same as the regularized

estimate θ̂RN if the regularization matrix D is chosen as

D = σ2P−1n (2.41)
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which indicates that regularization is closely related to prior estimates, and gives an

insight into how the regularization matrix can be chosen such that it reflects the

size and correlations of the impulse response coefficients. The size depends on how

the diagonal elements are chosen (2.32). In case of a smooth impulse response (for

example a fast sampled continuous system), the diagonals of Pn close to the main

diagonal can show high correlation in order to reflect this [15]. A simple choice is to

let the correlation coefficient between gk and gj in (2.18) be ρ|k−j|. With diagonal

elements of Pn being cλk as in (2.32), a covariance matrix Pn is obtained, whose

(k, j)th element is

cρ|k−j|λ(k+j)/2 (2.42)

where c ≥ 0, 0 ≤ λ ≤ 1 and |ρ| ≤ 1. Hence, the Bayesian perspective has given

additional insights in the choice of D [15].

2.5.1.1 Estimating Hyper-parameters

If prior knowledge does not give a definite choice of Pn, it is natural to let it depend

on unknown hyper-parameters β, Pn(β) (like β = [c λ] in (2.32)). From (2.39) it is

seen that [15]

YN ∼ N (0, σ2IN−n + φTNPn(β)φN) (2.43a)

hence, with a slight twist in the Bayesian framework, the likelihood function of the

observation YN can be formed, given β, and β can be estimated by the maximum

likelihood (ML) method:

β̂ = arg min
β
Y T
N Σ(β)−1YN + log det Σ(β) (2.43b)

where, Σ(β) = σ2IN−n + φNPn(β)φTN . This method of estimating hyper-parameters

in the prior distribution is known as the Empirical Bayes method [10, 15].
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2.5.1.2 ‘DI’, ‘DC’ and ‘TC’ Kernels

Since the estimation of FIR models is a linear regression problem, regularization

and estimation of hyper-parameters can thus be applied to estimation of FIR mod-

els. Suitable choices of P should reflect a reasonable assumption about the system’s

impulse response. For example, if the system is exponentially stable, the impulse

response coefficients gk should decay exponentially, and if the impulse response is

smooth, neighboring values should have a positive correlation. Based on the Bayesian

method (2.40) and (2.43), with the following prior covariances: the diagonal (2.32)

and the correlation (2.42), a suitable regularization matrix P for θ could be a matrix

whose k, j element is

PDI(k, j) =


cλk if k = j

0 else

(‘Diagonal’) (2.44)

PDC(k, j) = cρ|k−j|λ(k+j)/2 (‘Diagonal/correlated’) (2.45)

where the hyper-parameters are c ≥ 0, 0 ≤ λ ≤ 1 and |ρ| ≤ 1. Here λ accounts for

the exponential decay along the diagonal, while ρ describes the correlation across the

diagonal (the correlation between neighboring impulse response coefficients) [30, 15].

The complexity of the prior (2.45) can be reduced by linking ρ = f(λ), where

f(·) could be, for example, either a non-decreasing function that satisfies f(0) = 0

and f(1) = 1 or a non-increasing function that satisfies f(0) = 0 and f(1) = −1. A

special case of (2.45) by linking ρ = λ1/2 gives:

PTC(k, j) = cmin(λj, λk) (‘Tuned/correlated’) (2.46)

which is known as TC for Tuned/Correlated kernel (2.46), which corresponds to the

First-order Stable Spline [15, 30].
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2.5.2 Gaussian Process Regression for Transfer Function Estimation

Gaussian process regression (GPR), is a method for inferring an unknown function

f(x) from measurements yk, k = 1, 2, . . . , N that bear some information about

f(x). The argument x can either be a continuous or a discrete variable. The prior

information about the function is that it is a Gaussian process, with a certain mean

and covariance function. This means that the vector [f(x1), f(x2), . . . , f(xn)], for a

collection of points xi is a jointly Gaussian random vector, with mean m(x) = Ef(x)

and covariances [15]

Cov(f(xi), f(xj)) = P (xi, xj) (2.47)

where P (xi, xj) is the kernel. Often m(x) ≡ 0. The observation yk is a linear func-

tional of f(xi), measured in additive Gaussian noise. This causes [f(x), y1, . . . , yN ]

to be a jointly Gaussian vector, which means that the posterior distributions,

p(f(x1), . . . , f(xn)|y1, . . . , yN) (2.48)

can be calculated by the rules for conditioning jointly Gaussian random variables,

(2.36).

For a sampled model, the impulse response function is given by gk0 , k = 1, . . . , ∞

in (2.8). The observation yk is the measured output in (2.7b) at time t = k. Modeling

the impulse response function as a Gaussian process means that, for any n,

[g1, . . . , gn] ∼ N (0, Pn) (2.49)

where Pn is the n × n upper left block matrix of the semi-infinite matrix P defined

in (2.47). This is similar to the situation in the Bayesian perspective (2.36)–(2.40).

The Gaussian process estimate of any collections of impulse response coefficients is

thus given by (2.40) [15].
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The considerations for choosing Pn in (2.49) and in (2.36) must be the same, and

the relation to the regularization matrix D in (2.41) still holds. Several standard

choices for (2.47) exist in GPR. The the kernels/covariance functions mentioned in

the following section 2.5.2.1 , have further been discussed in [31]

2.5.2.1 ‘SE’, ‘SS’ and ‘HF’ Kernels

The Squared Exponential kernel, which is probably the most widely-used kernel

within the kernel machines field [34], is defined as

PSE(k, j) = ce−
(k−j)2

2λ2 (‘Squared Exponential’) (2.50a)

For a stable optimal controller, the variance of θ is expected to tend to zero expo-

nentially, with a certain decay rate λ. This is because the impulse response of a

stable system annihilates for large time t. Also, if the impulse response is supposed

to be smooth, the neighbour coefficients have positive correlation. From these two

hypotheses, Stable Spline Kernel can be built as [32, 15]

PSS(k, j) =


c
λ2k

2

(
λj − λk

3

)
, k ≥ j

c
λ2j

2

(
λk − λj

3

)
, k < j

(‘Stable Spline’) (2.50b)

where the hyper-parameters c ≥ 0, 0 ≤ λ ≤ 1. If the impulse response of the

controller is non-smooth and rapidly varying, it is necessary to include the case of

negative correlation between impulse response coefficients. In this case, a suitable

choice of the kernel can be the High Frequency Stable Spline defined as [32]

PHF (k, j) = c


max(λk, λj) if k + j is even

−max(λk, λj) if k + j is odd

(2.50c)
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2.6 Summary

This chapter was basically to give an insight into the background literature, based

on which the work in this thesis was done. A detailed explanation has been given in

this chapter regarding the bias-variance trade-off issues faced while using traditional

system identification methods, and how regularization can help overcome this. The

ridge regression, as well as the kernel-based regularization methods have been further

examined in the subsequent chapters.
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Chapter 3

MODEL ESTIMATION AND VALIDATION OF JUST WALK DATA:

EXPERIMENTAL SETUP AND RESULTS

3.1 Experimental Setup

This section describes how control system methodologies, especially system iden-

tification, can be used for the development of dynamic models of physical activity,

based on an idiographic, which is a person specific approach. These models estimated

can then be used to personalize interventions in a systematic and scalable way. In

this chapter, the goal is to apply system identification methods to develop dynamical

models of PA for individuals, which can help in getting insights on potential tailoring

variables. Tailoring variables are predictors which can be expected to influence step

count for the person the most, and these are determined using the idiographic mod-

els. This is done to ensure that, individual differences, contextual differences, and

changes to both the person and context over time can all be taken into account while

providing the optimal intervention for a participant when they need it, which helps in

providing more personalized adjustments of the intervention dosages over time [28].

3.1.1 Input Variables

The input variables for the Just Walk study consists of two manipulated input

variables, and a set of seven measured disturbance variables, which have been de-

scribed in Table 3.1. A time series plot for a selected participant that shows the

behavior as well as the eight inputs, some of which are shown in Fig. 1.3, which has

been obtained from the work of Freigoun et al. in [16].
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Table 3.1: Variables used in the Just Walk analyses

Variable Design/Measurement Scale/Unit

Step goals Multisine input Steps/day

Expected points Multisine input 100-500

Granted points If goals are met 0-500

Weekday/weekend 0/1

Predicted stress How stressful do you expect your

day to be?

1-5 scale (not at all

to very)

Predicted busyness How busy today is going to be for

you?

1-4 scale (not at all

to extremely)

Predicted typicality How typical do you expect today

to be for a [day of the week ]?

1-4 scale (not at all

to completely)

Temperature ◦F

3.1.1.1 Manipulated Input Signal Design

The study used an orthogonal multisine experimental design [26] to deliver exci-

tation to the intervention inputs. A “multisine” pseudo-random signal is one that

appears to be random but is in fact deterministic and periodic, which can help pro-

duce sufficient excitation in the behavior, which is important for generating dynamic

models. The pseudo-randomization strategies used in these experiments are carried

out at the within-person level, allowing inferences to be drawn at the individual level

[28].

In the Just Walk study, there are two manipulated input signals un, generated

from a multisine signal:

• Step Goals : These establish the desired behavior in a quantitative form
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• Expected Points : These are the daily available points announced each morning,

granted upon goal achievement. Once these are sufficiently accumulated, they

can be traded for Amazon gift cards.

The multisine signal is defined as

un(k) = λn

Ns/2∑
j=1

√
2α[n,j] cos

(
ωjkTs + φ[n,j]

)
(3.1)

ωj = 2πj
NsTs

, k = 1, . . . , Ns

where λn is the scaling factor, Ns is the number of samples per period, Ts is the

sampling time. For the jth harmonic of the signal, α[n,j] is a factor used to specify the

relative power of the harmonic, ωj is the frequency, and φ[n,j] is the phase. To obtain

independent transfer function and uncertainty estimates, factors α[n,j] are chosen to

excite input signals orthogonally in frequency. Two signals are orthogonal if a nonzero

Fourier coefficient at a specific frequency in one signal implies a zero-valued Fourier

coefficient at the same frequency for the other, which is known as a “zippered” spectra

design [16].

The conceptual representation of the “zippered” design [11] is shown in Fig. 3.1

Freigoun et al. [16]. There is another work by Rivera et al. [36], that describes this

design. For nu design inputs and ns independently excited sinusoids, the Fourier

coefficients are specified as

α[n,j] =


1, if j = nu(i− 1) + (n− 7)

for i = 1, 2, . . . , ns

0, otherwise

(3.2)

Using the ωj frequencies defined in (3.1), and the Nyquist- Shannon sampling theorem,

the following bound for Ns is defined:

Ns ≥ 2ns (3.3)

39



Figure 3.1: Conceptual representation of a “zippered” spectra design for nu = 2

design inputs, and ns = 6 harmonic rrequencies [11, 16]

If ns = 6 excited sinusoids are selected for the nu = 2 design inputs, then from

applying (3.3), Ns = 16 days is selected as a feasible option. Phases φ[n,j] are selected

so as to minimize the crest factor of the signal [16]. The amplitudes for input signals

(Goals: u8 and Expected Points: u9) were chosen based on the initial baseline level of

PA for the participant, which was varied if the actual baseline step level of individuals

was too high or low.

3.1.2 Data Pre-processing and Characteristics

The pre-processing of the collected data included interpolation (to account for

missing data), and shifting Actual Steps and Granted Points by one sample to reflect

temporal precedence. The absence of drifts in the data leads to the assumption

that the noise characteristics of the problem remain essentially unchanged during the

course of the intervention, and hence the data is considered stationary over the the

intervention period [16].

For cross-validation, which is one of the conventional approaches in system identi-
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fication (where the model fit is evaluated over data that is not used for estimation), a

certain percentage of data is assigned for estimation, followed by validation. Following

this, the participant data was split into two parts:

• Estimation Data: In our analysis, this corresponds to the first (70%) of the

time-series data

• Validation Data: The remaining (30%) of the time-series data

This was chosen keeping in mind that sufficient data points should be available for

estimation to get a good model estimate, and the validation data should contain at

least one experimental cycle. Even though the data was assumed to be stationary,

it is reasonable to expect that noise and disturbance characteristics will vary over

long-duration interventions such as Just Walk [16].

3.2 Estimation of Behavioral Models

For the estimation of behavioral models, initially the traditional black-box system

identification was used, to estimate ARX models. The ARX model structure was

determined using order selection. Since, this is a computationally expensive method,

and may have bias and variance errors, as described in previous chapters, a more

robust approach, i.e. the regularized identification of dynamic models is used.

For this thesis, four participants (164, 180, 220, 230) were studied. The approach

was to start with a basic 3-input model consisting of Goals (u8), Expected Points (u9),

and Granted Points (u10), and then add additional measured inputs (Predicted Busy-

ness, Predicted Stress, Predicted Typical, Weekday-Weekend, and Temperature) to

this basic model [16]. All possible 3, 4 and 5 input combinations of these inputs were

estimated, using different model estimation methods (ARX and regularized identifi-

cation methods), which are described in the following sections .
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Model validation following estimation, plays an important role in determining

which of these inputs are most important in describing individual behavior [16], which

in turn contributes towards the design of personalized interventions for an individual.

This has been discussed in the following chapter. Model validation involves comparing

the identified model output with the measured output to get a measure of the goodness

of the fit between the simulated response and the measurement data [5]. To quantify

model fits, the normalized root mean square error (NRMSE) fit index is used

model fit (%) = 100×
(

1− ‖y(k)− ŷ(k)‖2
‖y(k)− ȳ‖2

)
(3.4)

y(k) is the measured output, ŷ(k) is the simulated output, ȳ is the mean of all

measured y(k) values, and ‖ · ‖2 indicates a vector l2-norm (‖x‖2
def
=
√
xTx) [16, 28].

3.2.1 Black-box System Identification for PA Interventions

In this method, pre-processed data are fitted to an ARX model structure, ARX-

[na, nb1 , . . . , nbnu , nk1 , . . . , nknu ] which can be expressed as:

y(t) +
na∑
l=1

aty(t− l) =
nu∑
j=1

nbj−1∑
i=0

b(i+1)(j)uj(t− nkj − i) + e(t) (3.5)

where y(t) is the measured output (e.g., steps/day), uj(t) is the measured input j,

e(t) is the prediction error, all measured/estimated on day t. The ARX model in (3.5)

is estimated by using linear least-squares regression, which has attractive statistical

properties such as consistency [16].
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3.2.1.1 Order Selection

The ARX model orders na, nb and nk are determined using Order Selection

functionality in the MATLAB System Identification toolbox. This is done by exhaus-

tively examining a range of model orders, and using model validation procedures to

determine the most suitable structure, a stable ARX model with highest predictive

ability. This step, though computationally expensive, provides a safeguard against

overparameterization. The order selection results for all four participants in three

inputs and all combination of four and five inputs have been listed down in Table 3.2.

3.2.2 Regularized Estimates of Model Parameters

Model parameters are obtained by fitting measured data to the predicted model

response, where the the measure of the model flexibility is directly proportional to its

order. Even though increasing the model order causes the model to fit the observed

data with increasing accuracy, it comes with the price of higher uncertainty in the

estimates, measured by a higher value of random or variance error. On the other hand,

choosing a model with too low an order leads to larger systematic errors, known as

bias error. Hence, to avoid such errors that may arise as a result of improper choice of

model order, regularization is used, which gives a better control over the bias versus

variance trade-off by introducing an additional term in the minimization criterion

that penalizes the model flexibility [8].

In this thesis, regularized models have been estimated, where regularization has

been implemented on models with na = 0 (which makes it FIR), nb = 10 (for 3 and

4 input cases), nb = 9 (for 5 input models), and nk = 0. For this thesis two types of

regularization methods have been used, ridge regression and kernel-based methods,

which have been described in previous chapters.
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3.2.2.1 Determine Regularization Constant γ for Ridge Regression

For ridge regression, the regularization parameter γ, as seen in (2.33), is usually

determined by following the steps, as described below [8]:

• Create a list of γ value that need to be tested, which is done by generating 30

logarithmically spaced values of γ in the range of 10 to 107.

• Estimate a regularized model for each value of γ in the set that minimizes the

objective function in (2.33).

• Compute MSE and Loss Function, parameter 2-norm, and % fit for each esti-

mated model with respect to the validation, overall, and estimation data. These

are then plotted against log γ in order to observe how these parameters vary

with change in γ

Here, the loss function, or cost function, is a positive function of prediction errors

(weighted sum of squares of the errors) [6].

The procedure for choosing the regularization constant γ has been demonstrated

for participant 180 (for the basic 3-input case) in Fig 3.2. From the plots, the value

of γ for which the MSE and loss function (Fig. 3.2a) are seen to have a minimum, is

the one that is selected. For this value of the regularization constant, the estimated

regularized model will have a good fit to the measured data, which can be observed

from the plot of % Fit against log γ (Fig. 3.2b). Also, the parameter 2-norm (Fig.

3.2c) should be low.
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For this particular case, as seen from the plots, the value for log10 γ = 5.069.

Hence the regularization constant γ = 1.1722 × 105. For participant 180, it is seen

that when Temperature is an input, the optimum value for the regularization constant

γ changes to a different value 67235.7. A similar approach approach has been used

for determining the regularization constants for all the four participants that have

been studied, for all input combinations. This has been shown in Table 3.3.

Table 3.3: Values for regularization constant (γ) for all participants

Participant log(Lambda) Lambda

164 5.5517 3.56205× 105

180 5.069 1.1722× 105

180 (when T is added input) 4.8276 67235.7

222 4.5862 38565.6

230 3.3793 2394.97

3.2.2.2 Kernel-based Methods

For the kernel-based methods, the MATLAB function “arxRegul” was used, which

automatically determined the regularization constants for the model estimation. The

regularization options were configured to specify a regularization kernel. The values

obtained for the regularization constant (that determines the bias-variance trade-

off), and the weighting matrix (which is a positive definite matrix), are then used for

estimating the regularized ARX models. This process is repeated using the kernels

‘TC’, ‘SE’, ‘SS’, ‘HF’, ‘DI’ and ‘DC’, all of which have been described in Chapter 2.

The models were estimated and they were analyzed in detail to obtain results and

conclusions described in the following section 3.3.
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3.3 Results and Conclusions

For all four participants, the following models were estimated, for different input

combinations:

1. Black-box ARX model (using order selection)

2. Regularized FIR models (using ridge regression and kernel-based methods)

Initially, a basic 3-input (inputs: Goals, Expected Points, and Granted Points) model,

was estimated using the above mentioned methods. To get an insight into how each

estimated basic model performs, the step responses are observed, and a residual anal-

ysis was run on each model. Residuals are differences between the one-step-predicted

output from the model and the measured output from the validation data set. Hence,

residuals represent the portion of the validation data that is not explained by the

model. Residual analysis consists of two tests [7]:

• Whiteness test : This checks if the model has the residual autocorrelation func-

tion inside the confidence interval of the corresponding estimates, which indi-

cates that the residuals are uncorrelated, and helps in assessing if the estimated

model is good.

• Independence test : This is to see if the model residuals are uncorrelated with

past inputs. If correlation exists, it indicates that the model does not describe

how that part of the output relates to the corresponding input. For example, a

peak outside the confidence interval for lag k means that the output y(t) that

originates from the input u(t− k) is not properly described by the model.

After analysing the basic 3-input model, additional inputs are added to get a set of

all possible combinations of 4 and 5 inputs, which include the basic 3 inputs as well.
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Model estimation is performed for these, in a similar way to the 3-input case. The

models with the best results, in terms of the NRMSE fits are then shortlisted, and

from these results the model estimation methods which best work for that particular

participant is decided upon. High order FIR (nb = 10) models are estimated for

the 3-input case for each participant, and compared with the regularized models to

analyze if regularization gives better results. After examining all four participants,

a conclusion can be obtained based on which model estimation method might work

best for all cases.

3.3.1 Participant 180

The models were estimated for Participant 180, and the % Fit with respect to the

validation, estimation and overall data were computed. These have been tabulated

along with the MSE, and parameter 2-norm in Table 3.4a. The blue, orange, and

green columns contain the value for the % Fit, when the output of the estimated

model is compared with the estimation, validation, and the overall data respectively.

The boxes with the best % Fit values for each category have been highlighted using a

darker color, from which it can be seen that the regularized ARX models using ridge

regression, and kernel-based methods - DI and DC, give a pretty good estimate for

the 3-input behavioral model for participant 180.

The % fit comparisons can be seen from the plots in Fig 3.6. From Table 3.4a,

and the plots, it can be observed that some of the regularized models perform better

than the ARX model estimated using order selection. It is also seen that for the high

order FIR model estimated, the parameter 2-norm is very high, which can be an indi-

cation of a higher variance, the distance between the absolute values of the parameter

coefficients being higher. The regularized methods, using the penalty term, minimize

the parameter coefficient estimates, and minimize the 2-norm value. The worst of all
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(a) Comparison of % fit with respect to validation data

(b) Comparison of % fit with respect to overall data

(c) Comparison of % fit with respect to estimation data

Figure 3.6: Compare fit percentage of estimated models, participant 180

53



the models is the one estimated using the SS Kernel, which a comparatively lower

fit when compared to the remaining estimated models. To get a better idea of the

estimated models for this participant, the step responses are plotted, as shown in Fig

3.7. From the step responses of participant 180, the following can be inferred:

• For the unit step goal, looking at the responses it is seen that the step re-

sponse for order selection is abrupt, whereas the regularized methods give a

more gradual response.

• When the step input is a unit positive change in expected points, order selection

shows no change to the input, whereas the responses for all regularized models

show a change in the negative direction.

• For the third step response, where the step input is a unit change in granted

points, most of the regularized approaches give a much smoother step response,

whereas, for order selection spikes can be seen.

• The above point is true for all 3 responses, for some of the regularization ap-

proaches.

A residual analysis was run for all the estimated 3-input models, for participant

180. The autocorrelation plot of the residuals, as well as the cross correlation of the

inputs with the residuals was within the 99% confidence bound, which proved that the

all the estimated models were good. The residual analysis results have been shown

in Fig. 3.8.

Next, as described previously, the % fit results are obtained for models estimated

for all possible 4 and 5 input combinations. The results have been tabulated in

Table 3.4b and Table 3.4c. The models having a good fit for a particular input

combination have been highlighted in the table. Looking at Tables 3.4a, 3.4b and
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(a) Goals to Behavior

(b) Expected Points to Behavior

(c) Granted Points to Behavior

Figure 3.7: Step response for participant 180 for all 3-input models
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(a) Order Selection (b) ridge regression

(c) Kernel TC (d) Kernel SE

(e) Kernel SS (f) Kernel HF

(g) Kernel DI (h) Kernel DC

Figure 3.8: Residual analysis for estimated models for participant 180
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3.4c, it can be seen that regularized models estimated using “ridge regression” and

“kernel DI” always performs better than the other estimation methods that have been

implemented for participant 180. Even though a slightly higher bias and variance is

observed for ridge regression in general from the step responses, it can be considered

as a good method for model estimation, due to its simplicity, and considerably high

fit to the measured data. The model estimated using kernel DI performs better

in terms of step responses, as can be seen from the plots in Fig 3.7. This can be

primarily because the penalty term is made more effective in kernel-based methods,

by using a positive definite matrix, which allows for the weighting and/or rotation

of the parameter vector [8]. A similar approach has been used for the analysis of

the remaining four participants, 164, 222 and 230, the results for which have been

explained in the following sections.

3.3.2 Participants 164, 222, 230

The results indicating the quality of the estimated models (in terms of fit per-

centages) for participants 164, 222 and 230, for all input combinations have been

documented in Tables 3.5, 3.6 and 3.7 respectively. The blocks highlighted in dark

colors help in locating the model estimation method, and the corresponding input

combinations used, that give a reasonably good fit with respect to the estimation,

validation, and the overall data. This selection was basically done by first shortlisting

the best validation fits. From the previous subset, the ones with reasonable overall

fits were then selected.

For participant 164, from the Table 3.5 it can be seen that for most input com-

binations, the order selection and kernel-based regularization methods HF and DI

perform well. In most cases the regularization methods perform better than the or-

der selection. The high order FIR model fits very well to the estimation data, but
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(a) Comparison of % fit with respect to validation data

(b) Comparison of % fit with respect to overall data

(c) Comparison of % fit with respect to estimation data

Figure 3.9: Compare fit percentage of estimated models, participant 164
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looking at the poor fit to the validation data, it can be seen that this model does

not generalize well to new data. Also, the parameter 2-norm is very high. Both

these factors indicates the presence of a high variance, which is taken care of by the

regularized models.

From the step responses for participant 164, the following observations are made:

• For a unit step change in step goals, for order selection, the step response

rises sharply, and then gradually decreases to settle at a value of about 0.5.

Regularized models estimated using kernels DI and HF perform well, with a

gradual increase in step response, which settles at a value of about 0.7, that is

closer to unity.

• For a unit change in expected points, this participant seems to behave differ-

ently. Increasing reward targets encourages the participant to engage in PA.

For kernels DI and HF, the response of the models show that changing reward

targets has little, or no effect on this participant. Whereas, the order selec-

tion, as well as the other regularization methods, indicate a significant positive

change in behavior.

• For a unit step granted point, the regularized models using kernels DI, DC,

SE, TC and SS give a gradually increasing smooth step response, that shows a

slight overshoot, after which it settles. For the order selection a sharp peak is

seen, followed by a slight undershoot, before settling down.

In a similar way, on examining the results for participant 222 in Table 3.6, it can

be seen that for almost all input combinations, regularized models estimated using

kernels HF and DI give very good fit percentages. Kernel TC gives good results in

many of the cases as well. For this participant, regularized models perform better

than the ones estimated using order selection in general. For the high order FIR
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(a) Goals to Behavior

(b) Expected Points to Behavior

(c) Granted Points to Behavior

Figure 3.10: Step response for participant 164 for all 3-input models
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(a) Comparison of % fit with respect to validation data

(b) Comparison of % fit with respect to overall data

(c) Comparison of % fit with respect to estimation data

Figure 3.11: Compare fit percentage of estimated models, participant 222
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model, even though the fits are quite good, the parameter 2-norm value is extremely

high. This is significantly reduced using the regularization approaches.

For participant 222, on observing the step responses, the following conclusions can

be made:

• For a unit positive step goal, for order selection, the response increases, and

then stabilizes at a value of 0.8. For kernels DI, DC and TC there is a slight

overshoot, followed by an undershoot, after which it stabilizes.

• For a unit positive step increase in expected points, order selection and kernel SE

give constant response, which indicated that this input has almost zero influence

on participant. The other regularized models show a decrease in response.

• For unit step granted points, the regularized models give much smoother re-

sponse with higher gains. Whereas the model obtained using order selection

gives a slightly spiked response, which settles at a lower value.

For participant 230, referring to the % fit results in Table 3.7, it is evident that models

estimated using order selection and ridge regression show the best performance, and

for most of the cases, except for one 5-input case where the additional inputs are

predicted stress and work, the kernel DI based regularized models performs well too.

For this participant, the high order FIR does well in terms of fit percentages. The

parameter 2-norm value is high, close to the one for order selection. The regularized

models bring it down from the range of 50 to 30.

Examining the step responses, the following observations are made:

• For a unit step increase in goals, for order selection, and regularized methods

using kernels TC, DI and DC show a positive change, and the responses are

very similar.
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(a) Goals to Behavior

(b) Expected Points to Behavior

(c) Granted Points to Behavior

Figure 3.12: Step response for participant 222 for all 3-input models
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(a) Comparison of % fit with respect to validation data

(b) Comparison of % fit with respect to overall data

(c) Comparison of % fit with respect to estimation data

Figure 3.13: Compare fit percentage of estimated models, participant 230
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(a) Goals to Behavior

(b) Expected Points to Behavior

(c) Granted Points to Behavior

Figure 3.14: Step response for participant 230 for all 3-input models
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• For a unit positive change in reward targets, all models give negative step

response, with order selection and kernel SS having a maximum negative settling

value of -40.

• For the step response from granted points to behavior for this participant, mod-

els estimated using order selection, kernels DI and DC, and ridge regression

show a near constant response, differing in the final settling value. The other

regularized models show a positive response.

3.3.3 Conclusion

After extensively analyzing the results for all four participants, it can be concluded

that models estimated using Kernel DI perform consistently well throughout. Hence,

this could be considered as a reliable method for estimating regularized models for

other participants who were a part of this study. The one that did not perform well

in for all four participants was the SS kernel. These have not been tried out yet on

the other 18 participants that were a part of the study in order to confirm it.

Another interesting observation is that the results vary significantly in many cases,

depending on the combination of inputs used for model estimation. This gives an

insight into how addition of certain input/inputs to the basic 3-input model improves

the % fit of the estimated model significantly. Examining results from the perspective

of % fit change when certain inputs are added can help in determining what factors

play an important role in deciding the PA of a person. This in turn can contribute

significantly towards designing personalized interventions. Chapter 4 elaborates more

on this aspect.

66



T
ab

le
3.

4:
A

n
al

y
si

s
re

su
lt

s
an

d
%

fi
t

to
es

ti
m

at
io

n
(E

),
va

li
d
at

io
n

(V
)

an
d

ov
er

al
l

(O
)

d
at

a
fo

r
es

ti
m

at
ed

m
o
d
el

s
fo

r

p
ar

ti
ci

p
an

t
18

0

(a
)

3-
in

p
u

t
(A

n
al

y
si

s
R

es
u

lt
s)

P
a
rt
ic
ip
a
n
t
1
8
0
:
3
-i
n
p
u
t
(G

,E
P
,G

P
)

M
o
d
e
l

F
it

e
st

F
it

v
a
l

F
it

o
v
r

M
S
E

p
a
r
2
n
o
rm

O
rd

e
r
S
e
l

26
.6

2
41

.7
0

28
.3

8
2,

58
0,

49
9.

21
18

.3
9

H
ig
h
O
rd

e
r

59
.4

4
45

.9
2

45
.8

9
78

6,
78

4.
70

22
.4

3

R
id
g
e
R
e
g

54
.8

4
50

.7
9

46
.5

0
97

5,
64

8.
47

13
.1

0

K
e
rn

e
l
T
C

42
.0

3
43

.0
9

34
.9

2
1,

60
7,

70
8.

69
10

.4
0

K
e
rn

e
l
S
E

40
.3

3
39

.4
8

31
.9

5
1,

70
3,

48
9.

47
8.

19

K
e
rn

e
l
S
S

18
.7

6
22

.6
2

13
.6

1
3,

15
7,

82
5.

13
7.

01

K
e
rn

e
l
H
F

40
.8

9
40

.8
2

35
.1

7
1,

67
1,

40
7.

92
9.

14

K
e
rn

e
l
D
I

44
.6

1
49

.1
3

41
.2

9
1,

46
7,

61
0.

43
9.

31

K
e
rn

e
l
D
C

42
.3

6
44

.7
0

36
.9

8
1,

58
9,

47
9.

20
9.

31

(b
)

4-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
G
-E

P
-G

P
-P

S
G
-E

P
-G

P
-P

T
G
-E

P
-G

P
-W

G
-E

P
-G

P
-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O

O
rd

e
r
S
e
l

48
.8

9
56

.6
7

43
.8

4
39

.9
6

54
.0

1
40

.3
2

45
.8

1
63

.5
6

44
.2

9
44

.1
4

62
.4

3
47

.3
4

45
.5

3
72

.6
3

48
.5

7

R
id
g
e
R
e
g

54
.5

4
50

.7
2

46
.3

6
54

.5
4

50
.7

2
46

.3
6

54
.5

4
50

.7
2

46
.3

6
54

.5
4

50
.7

2
46

.3
6

57
.3

7
52

.5
2

48
.1

6

K
e
rn

e
l
T
C

45
.8

6
46

.6
0

38
.7

0
34

.3
9

32
.0

0
25

.8
5

50
.1

0
48

.9
7

41
.9

8
26

.3
5

36
.4

1
24

.8
3

43
.8

3
47

.5
8

38
.2

4

K
e
rn

e
l
S
E

49
.8

1
38

.5
6

33
.1

4
30

.9
2

34
.3

9
24

.6
8

61
.9

4
36

.5
1

37
.2

3
30

.9
5

38
.7

2
28

.6
5

40
.2

7
39

.4
5

31
.9

1

K
e
rn

e
l
S
S

20
.2

5
21

.3
1

13
.7

3
15

.0
6

20
.8

3
11

.3
1

34
.7

1
26

.8
9

22
.7

4
19

.3
1

30
.5

0
18

.0
9

18
.6

6
22

.6
3

13
.5

6

K
e
rn

e
l
H
F

43
.7

6
41

.8
2

37
.2

7
37

.1
4

41
.3

9
33

.5
6

53
.0

4
48

.3
6

44
.5

5
35

.7
7

42
.2

5
33

.1
8

40
.8

6
40

.8
0

35
.1

4

K
e
rn

e
l
D
I

49
.0

2
51

.6
3

44
.0

1
39

.7
1

43
.7

1
35

.9
9

58
.8

7
54

.5
5

49
.2

7
39

.7
0

45
.2

4
37

.4
3

44
.6

1
49

.1
3

41
.2

9

K
e
rn

e
l
D
C

48
.4

0
48

.6
8

41
.0

6
35

.7
7

37
.5

7
29

.7
2

59
.0

1
49

.4
3

45
.2

8
38

.9
0

47
.4

6
39

.1
2

42
.3

2
44

.6
5

36
.9

4

(c
)

5-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
-P

S
G
-E

P
-G

P
-P

B
-P

T
G
-E

P
-G

P
-P

B
-W

G
-E

P
-G

P
-P

B
-T

G
-E

P
-G

P
-P

S
-P

T
G
-E

P
-G

P
-P

S
-W

G
-E

P
-G

P
-P

S
-T

G
-E

P
-G

P
-P

T
-W

G
-E

P
-G

P
-P

T
-T

G
-E

P
-G

P
-W

-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

O
rd

e
r
S
e
l

48
.6

2
61

.4
8

46
.5

4
54

.7
6

63
.4

4
50

.9
4

51
.1

4
71

.1
8

47
.6

9
49

.7
7

79
.3

5
51

.5
4

46
.4

3
71

.4
7

47
.0

8
43

.4
2

60
.7

1
46

.6
5

46
.2

3
73

.2
3

48
.8

4
48

.6
5

62
.1

3
47

.1
5

47
.8

1
75

.2
9

49
.6

8
49

.5
8

77
.6

5
53

.7
4

R
id
g
e
R
e
g

50
.5

8
54

.7
9

45
.2

2
50

.8
5

54
.9

0
45

.3
4

50
.8

5
54

.9
0

45
.3

4
53

.1
6

56
.9

6
46

.9
3

50
.8

5
54

.9
0

45
.3

4
50

.8
5

54
.9

0
45

.3
4

53
.1

6
56

.9
6

46
.9

3
50

.8
5

54
.9

0
45

.3
4

53
.1

6
56

.9
6

46
.9

3
53

.1
6

56
.9

6
46

.9
3

K
e
rn

e
l
T
C

23
.2

8
30

.5
1

20
.9

2
43

.1
4

47
.5

1
38

.7
2

27
.8

1
38

.1
8

26
.7

8
60

.1
0

44
.2

2
50

.9
2

46
.0

3
40

.4
2

35
.2

3
35

.2
9

34
.9

6
30

.8
2

34
.8

9
39

.7
0

30
.8

6
42

.9
3

35
.1

9
34

.5
3

32
.5

1
34

.7
3

27
.2

0
24

.3
0

33
.8

1
23

.0
1

K
e
rn

e
l
S
E

34
.2

9
33

.6
4

28
.0

2
48

.1
4

41
.9

5
38

.1
9

36
.5

6
40

.0
7

32
.6

1
76

.7
6

13
.2

6
32

.2
6

48
.4

6
34

.0
2

37
.3

2
32

.7
9

39
.4

5
30

.4
3

34
.2

9
34

.0
9

28
.7

2
40

.7
0

41
.3

6
36

.5
0

32
.4

7
23

.4
3

23
.7

8
27

.7
0

34
.4

1
25

.3
9

K
e
rn

e
l
S
S

14
.1

7
18

.0
7

10
.5

7
17

.0
2

20
.1

4
12

.8
9

19
.1

8
28

.4
0

17
.8

0
52

.2
2

44
.4

9
46

.5
9

15
.6

7
19

.2
7

11
.8

1
18

.8
8

28
.1

2
17

.4
9

14
.4

7
18

.6
0

10
.9

3
18

.9
6

28
.2

1
17

.5
4

14
.0

1
17

.9
3

10
.4

2
18

.4
6

27
.4

1
16

.9
4

K
e
rn

e
l
H
F

36
.4

8
41

.8
1

34
.0

1
41

.0
9

45
.9

4
37

.6
0

39
.1

1
43

.5
4

36
.7

4
62

.9
7

49
.7

5
36

.6
1

39
.1

8
44

.0
1

35
.9

2
38

.7
4

41
.7

0
36

.0
6

50
.5

7
48

.7
5

43
.0

3
40

.3
3

44
.1

6
37

.6
0

36
.5

0
43

.1
2

34
.1

7
34

.2
6

41
.3

6
32

.7
0

K
e
rn

e
l
D
I

39
.3

4
42

.2
9

36
.0

9
49

.9
3

52
.3

1
45

.5
2

40
.3

4
44

.7
2

38
.0

8
71

.6
4

40
.1

6
48

.0
0

49
.3

4
40

.2
6

41
.0

7
38

.6
7

44
.0

5
36

.7
6

41
.5

4
43

.8
0

38
.0

8
41

.5
5

45
.3

3
39

.1
5

36
.1

2
42

.0
9

34
.0

6
34

.5
7

41
.8

8
33

.1
9

K
e
rn

e
l
D
C

36
.1

7
38

.3
9

30
.7

2
49

.0
9

45
.6

1
41

.5
5

41
.3

2
48

.1
6

40
.5

0
73

.2
0

31
.6

1
44

.3
1

47
.0

6
37

.1
2

36
.6

0
38

.9
8

47
.9

1
39

.1
0

38
.9

8
42

.2
1

35
.7

0
43

.4
2

42
.8

4
38

.3
1

37
.1

6
35

.4
1

30
.2

6
30

.7
6

37
.7

5
27

.6
7

67



T
ab

le
3.

5:
A

n
al

y
si

s
re

su
lt

s
an

d
%

fi
t

to
es

ti
m

at
io

n
(E

),
va

li
d
at

io
n

(V
)

an
d

ov
er

al
l

(O
)

d
at

a
fo

r
es

ti
m

at
ed

m
o
d
el

s
fo

r

p
ar

ti
ci

p
an

t
16

4

(a
)

3-
in

p
u

t
(A

n
al

y
si

s
R

es
u

lt
s)

P
a
rt
ic
ip
a
n
t
1
6
4
:
3
-i
n
p
u
t
(G

,E
P
,G

P
)

M
o
d
e
l

F
it

e
st

F
it

v
a
l

F
it

o
v
r

M
S
E

p
a
r
2
n
o
rm

O
rd

e
r
S
e
l

31
.9

7
48

.4
4

26
.4

0
1,

43
8,

03
6.

33
7.

21

H
ig
h
O
rd

e
r

51
.1

7
-5

.2
4

28
.3

6
77

7,
71

1.
54

16
.0

6

R
id
g
e
R
e
g

45
.8

2
23

.7
2

32
.1

2
95

7,
65

1.
20

5.
89

K
e
rn

e
l
T
C

26
.2

7
39

.3
5

20
.5

5
1,

77
3,

28
4.

57
6.

24

K
e
rn

e
l
S
E

35
.1

8
49

.7
2

28
.7

3
1,

37
0,

39
3.

84
5.

26

K
e
rn

e
l
S
S

22
.0

3
19

.7
4

14
.1

0
1,

98
2,

74
9.

94
6.

96

K
e
rn

e
l
H
F

37
.4

1
57

.1
5

30
.2

6
1,

27
7,

93
8.

24
5.

90

K
e
rn

e
l
D
I

37
.4

0
57

.8
9

31
.1

6
1,

27
8,

35
4.

67
5.

78

K
e
rn

e
l
D
C

38
.3

6
38

.6
3

29
.3

2
1,

23
9,

28
1.

34
7.

09

(b
)

4-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
G
-E

P
-G

P
-P

S
G
-E

P
-G

P
-P

T
G
-E

P
-G

P
-W

G
-E

P
-G

P
-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O

O
rd

e
r
S
e
l

37
.1

1
61

.7
1

31
.1

8
30

.8
2

39
.6

7
23

.4
6

33
.2

9
37

.8
1

23
.9

0
30

.8
6

43
.1

8
25

.0
1

35
.6

7
64

.4
5

32
.1

4

R
id
g
e
R
e
g

45
.8

2
23

.7
2

32
.1

2
45

.8
2

23
.7

2
32

.1
2

45
.8

2
23

.7
2

32
.1

2
45

.8
2

23
.7

2
32

.1
2

46
.0

1
23

.8
7

32
.3

2

K
e
rn

e
l
T
C

26
.0

1
39

.1
7

20
.3

3
24

.5
7

36
.5

3
18

.8
1

25
.7

8
27

.9
2

18
.4

0
21

.1
8

41
.1

0
16

.9
2

50
.9

3
-9

.6
5

28
.9

1

K
e
rn

e
l
S
E

38
.8

0
45

.6
8

30
.2

3
27

.6
1

30
.2

8
20

.2
4

33
.7

6
49

.3
9

27
.7

1
17

.1
8

36
.8

6
13

.3
0

50
.5

5
21

.7
5

33
.7

8

K
e
rn

e
l
S
S

21
.9

3
19

.7
4

14
.0

2
20

.4
8

25
.8

1
14

.0
1

21
.4

2
20

.4
3

13
.9

2
15

.9
4

35
.3

6
11

.9
2

25
.0

5
15

.9
6

14
.9

8

K
e
rn

e
l
H
F

23
.1

3
43

.5
2

17
.7

9
36

.8
6

53
.2

3
29

.6
7

37
.8

9
51

.4
3

30
.2

2
31

.7
3

56
.5

9
26

.4
0

50
.4

8
31

.2
2

35
.7

8

K
e
rn

e
l
D
I

39
.3

8
56

.3
7

32
.4

5
35

.7
1

59
.4

3
30

.2
9

36
.7

0
58

.6
5

30
.8

2
31

.7
4

60
.1

0
27

.6
4

51
.4

8
25

.5
7

35
.5

6

K
e
rn

e
l
D
C

39
.6

1
39

.0
1

30
.1

7
36

.1
1

38
.6

8
27

.7
8

37
.3

6
38

.6
7

28
.6

4
29

.5
9

38
.6

4
23

.1
7

53
.9

0
27

.1
3

38
.6

9

(c
)

5-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
-P

S
G
-E

P
-G

P
-P

B
-P

T
G
-E

P
-G

P
-P

B
-W

G
-E

P
-G

P
-P

B
-T

G
-E

P
-G

P
-P

S
-P

T
G
-E

P
-G

P
-P

S
-W

G
-E

P
-G

P
-P

S
-T

G
-E

P
-G

P
-P

T
-W

G
-E

P
-G

P
-P

T
-T

G
-E

P
-G

P
-W

-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

O
rd

e
r
S
e
l

35
.7

8
46

.6
8

26
.1

9
38

.6
3

59
.1

6
30

.1
4

36
.4

1
52

.6
2

30
.1

3
31

.1
4

13
.9

6
27

.3
9

34
.1

7
47

.6
1

25
.5

9
33

.5
1

42
.5

0
24

.9
4

31
.9

5
8.

31
26

.7
5

32
.7

4
52

.7
1

25
.4

4
29

.6
5

15
.2

3
26

.6
7

29
.7

3
13

.5
0

26
.0

5

R
id
g
e
R
e
g

45
.8

0
25

.7
6

32
.2

7
45

.8
0

25
.7

6
32

.2
7

45
.8

0
25

.7
6

32
.2

7
45

.9
9

25
.8

6
32

.4
6

45
.8

0
25

.7
6

32
.2

7
45

.8
1

25
.7

5
32

.2
8

45
.9

9
25

.8
6

32
.4

6
45

.8
0

25
.7

6
32

.2
7

45
.9

9
25

.8
6

32
.4

6
45

.9
9

25
.8

6
32

.4
6

K
e
rn

e
l
T
C

26
.0

0
16

.1
9

17
.8

4
24

.9
0

15
.6

5
16

.9
8

25
.0

4
19

.0
5

17
.8

3
61

.9
1

-2
9.

08
29

.4
9

27
.6

0
16

.4
2

18
.9

9
23

.9
4

21
.6

6
17

.6
4

49
.5

9
17

.5
8

34
.1

0
24

.8
1

13
.3

5
16

.3
8

48
.4

9
17

.8
9

33
.3

8
41

.4
9

24
.2

8
29

.9
3

K
e
rn

e
l
S
E

32
.2

9
21

.9
3

22
.7

4
26

.9
7

20
.5

2
19

.0
9

28
.0

6
20

.5
1

19
.8

1
71

.7
9

-7
2.

98
15

.5
7

20
.6

5
22

.0
9

15
.1

7
21

.2
2

21
.3

1
15

.4
7

54
.9

1
19

.7
8

37
.7

0
26

.7
2

18
.1

1
18

.4
8

54
.3

9
16

.2
9

36
.5

8
45

.0
9

31
.1

7
33

.9
8

K
e
rn

e
l
S
S

23
.6

1
-6

.8
9

10
.5

1
22

.5
2

4.
60

12
.7

0
23

.0
9

-5
.9

5
10

.4
4

53
.9

6
-6

9.
01

10
.4

7
21

.1
5

11
.1

6
13

.3
3

21
.9

1
5.

97
12

.7
2

38
.3

3
-1

3.
36

19
.4

3
22

.9
2

-1
.6

8
11

.4
1

36
.2

5
12

.5
0

23
.8

5
24

.5
4

-4
.4

7
11

.7
7

K
e
rn

e
l
H
F

36
.2

2
52

.8
9

29
.1

2
34

.4
0

53
.2

7
28

.0
4

35
.4

5
52

.2
7

29
.2

7
65

.4
2

5.
04

37
.0

8
32

.5
9

52
.7

4
26

.7
3

33
.4

2
52

.0
5

27
.7

4
38

.2
8

31
.1

5
25

.0
3

34
.7

8
52

.4
6

28
.9

3
35

.4
1

23
.5

0
20

.4
2

40
.2

0
48

.0
7

32
.5

5

K
e
rn

e
l
D
I

37
.0

3
52

.5
5

31
.0

6
34

.5
9

52
.6

6
29

.5
0

34
.9

6
52

.8
0

29
.7

8
65

.3
7

-1
3.

57
33

.5
1

32
.3

3
53

.0
1

27
.9

0
32

.5
9

53
.0

8
28

.0
8

55
.2

2
21

.0
2

37
.6

3
33

.9
1

53
.3

1
29

.0
1

51
.8

5
23

.3
0

35
.5

9
47

.0
0

34
.1

3
35

.1
2

K
e
rn

e
l
D
C

38
.0

2
28

.3
7

27
.6

3
34

.5
4

27
.3

2
25

.2
9

35
.0

1
27

.6
8

25
.6

5
68

.0
9

-2
6.

49
31

.2
3

31
.6

2
23

.0
5

22
.4

9
32

.6
2

25
.8

4
23

.8
7

54
.7

6
21

.4
4

37
.1

6
33

.7
6

25
.5

1
24

.3
1

56
.2

0
20

.6
6

37
.9

8
48

.5
3

34
.1

9
36

.6
6

68



T
ab

le
3.

6:
A

n
al

y
si

s
re

su
lt

s
an

d
%

fi
t

to
es

ti
m

at
io

n
(E

),
va

li
d
at

io
n

(V
)

an
d

ov
er

al
l

(O
)

d
at

a
fo

r
es

ti
m

at
ed

m
o
d
el

s
fo

r

p
ar

ti
ci

p
an

t
22

2

(a
)

3-
in

p
u

t
(A

n
al

y
si

s
R

es
u

lt
s)

P
a
rt
ic
ip
a
n
t
2
2
2
:
3
-i
n
p
u
t
(G

,E
P
,G

P
)

M
o
d
e
l

F
it

e
st

F
it

v
a
l

F
it

o
v
r

M
S
E

p
a
r
2
n
o
rm

O
rd

e
r
S
e
l

35
.9

6
38

.4
7

36
.1

4
2,

26
5,

85
5.

28
8.

86

H
ig
h
O
rd

e
r

66
.9

2
37

.5
53

.2
3

63
4,

77
0.

87
67

0.
75

R
id
g
e
R
e
g

65
.8

6
41

.2
6

54
.6

6
67

6,
42

3.
71

14
.4

1

K
e
rn

e
l
T
C

56
.8

4
44

.9
0

51
.2

8
1,

08
0,

90
0.

88
9.

86

K
e
rn

e
l
S
E

54
.1

0
33

.1
0

46
.6

5
1,

22
2,

51
1.

97
7.

90

K
e
rn

e
l
S
S

51
.0

8
44

.1
8

46
.3

6
1,

38
8,

28
6.

70
9.

87

K
e
rn

e
l
H
F

62
.1

5
45

.8
6

53
.7

1
83

1,
38

5.
38

13
.7

7

K
e
rn

e
l
D
I

61
.6

3
46

.8
6

54
.9

0
85

4,
13

1.
49

11
.4

0

K
e
rn

e
l
D
C

54
.6

7
42

.4
1

48
.8

8
1,

19
2,

41
9.

98
8.

95

(b
)

4-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
G
-E

P
-G

P
-P

S
G
-E

P
-G

P
-P

T
G
-E

P
-G

P
-W

G
-E

P
-G

P
-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O

O
rd

e
r
S
e
l

32
.6

0
43

.7
4

35
.0

9
63

.7
0

53
.8

3
53

.8
8

33
.9

6
46

.6
4

35
.3

4
36

.1
7

41
.5

8
36

.8
2

31
.8

6
45

.6
8

34
.8

2

R
id
g
e
R
e
g

65
.8

6
41

.2
7

54
.6

7
65

.8
7

41
.2

6
54

.6
7

65
.8

7
41

.2
6

54
.6

7
65

.8
6

41
.2

6
54

.6
7

67
.2

0
41

.4
0

55
.2

0

K
e
rn

e
l
T
C

52
.8

2
42

.9
8

48
.7

0
62

.7
8

44
.3

8
54

.9
5

55
.1

0
44

.5
8

49
.8

4
52

.7
2

44
.7

2
48

.1
7

58
.3

6
12

.0
5

42
.6

4

K
e
rn

e
l
S
E

55
.8

4
33

.7
7

48
.4

4
69

.4
9

41
.4

8
58

.4
6

56
.5

8
18

.3
6

44
.0

4
52

.9
4

33
.9

8
46

.1
4

59
.3

9
17

.8
2

45
.2

2

K
e
rn

e
l
S
S

50
.6

3
44

.9
2

47
.0

4
55

.1
7

41
.8

7
49

.1
4

55
.3

0
23

.3
0

44
.1

8
49

.7
6

45
.0

7
45

.7
2

57
.0

6
19

.8
1

44
.0

1

K
e
rn

e
l
H
F

52
.7

9
42

.8
1

47
.8

7
64

.8
4

44
.6

0
54

.4
9

59
.6

6
45

.9
2

52
.1

3
52

.4
9

42
.7

9
47

.6
3

60
.4

6
47

.6
5

53
.0

2

K
e
rn

e
l
D
I

57
.5

8
46

.3
9

52
.4

5
70

.9
8

45
.4

7
59

.6
1

61
.6

4
42

.5
3

55
.0

8
57

.0
8

46
.2

7
52

.1
0

61
.0

4
40

.3
6

53
.5

2

K
e
rn

e
l
D
C

53
.1

2
40

.7
7

48
.0

6
70

.4
3

42
.5

8
59

.4
8

54
.8

9
17

.9
7

42
.4

6
51

.8
3

41
.6

2
46

.7
5

57
.5

6
17

.3
0

43
.4

0

(c
)

5-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
-P

S
G
-E

P
-G

P
-P

B
-P

T
G
-E

P
-G

P
-P

B
-W

G
-E

P
-G

P
-P

B
-T

G
-E

P
-G

P
-P

S
-P

T
G
-E

P
-G

P
-P

S
-W

G
-E

P
-G

P
-P

S
-T

G
-E

P
-G

P
-P

T
-W

G
-E

P
-G

P
-P

T
-T

G
-E

P
-G

P
-W

-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

O
rd

e
r
S
e
l

64
.6

9
55

.2
7

55
.3

5
36

.7
7

42
.5

9
37

.4
5

40
.6

5
39

.3
2

39
.8

8
33

.6
0

45
.8

5
35

.9
3

35
.4

3
48

.5
7

36
.7

0
38

.7
0

40
.6

1
38

.9
7

32
.9

9
45

.8
5

35
.7

5
37

.2
7

44
.2

9
37

.5
8

34
.6

9
49

.1
2

36
.6

2
38

.9
6

49
.6

2
40

.4
9

R
id
g
e
R
e
g

62
.9

0
41

.5
7

52
.8

2
62

.9
1

41
.5

6
52

.8
2

62
.9

0
41

.5
7

52
.8

1
64

.2
5

41
.8

2
53

.2
0

62
.9

1
41

.5
6

52
.8

2
62

.9
0

41
.5

6
52

.8
1

64
.2

6
41

.8
1

53
.2

0
62

.9
1

41
.5

5
52

.8
2

64
.2

6
41

.7
9

53
.2

1
64

.2
5

41
.8

1
53

.2
0

K
e
rn

e
l
T
C

54
.9

9
42

.8
0

49
.8

5
59

.0
2

40
.4

9
52

.5
7

52
.1

6
43

.4
0

48
.0

9
57

.5
2

18
.2

8
44

.0
5

55
.5

1
43

.4
1

49
.5

0
51

.6
8

43
.7

8
47

.0
7

59
.4

0
38

.1
8

50
.7

6
53

.1
4

40
.6

7
48

.2
2

54
.9

7
41

.9
5

49
.1

0
67

.0
9

39
.3

4
56

.8
3

K
e
rn

e
l
S
E

56
.6

0
24

.7
9

45
.3

5
56

.3
0

13
.3

4
40

.9
6

51
.8

4
28

.8
1

43
.6

3
57

.6
6

10
.5

6
41

.5
3

60
.8

6
18

.0
9

45
.4

6
45

.7
5

34
.4

6
40

.6
3

60
.4

6
31

.2
9

48
.6

8
53

.0
0

13
.4

7
39

.4
9

55
.5

9
31

.0
7

46
.6

9
63

.6
5

35
.0

7
52

.7
2

K
e
rn

e
l
S
S

53
.0

1
41

.7
2

47
.8

8
42

.1
7

30
.4

1
37

.1
7

38
.8

5
39

.2
0

35
.9

6
55

.7
5

18
.7

9
42

.8
8

56
.2

1
30

.0
0

47
.5

7
40

.0
8

39
.8

4
37

.1
0

56
.5

3
35

.1
6

47
.6

9
51

.9
6

34
.4

9
45

.9
8

43
.3

1
41

.3
0

39
.8

4
57

.9
8

32
.9

5
48

.2
3

K
e
rn

e
l
H
F

56
.4

2
44

.1
6

49
.2

3
52

.0
4

47
.0

5
46

.1
3

51
.5

2
46

.9
7

46
.4

9
53

.8
4

46
.6

5
47

.3
3

55
.0

5
44

.2
6

46
.9

0
52

.0
9

47
.0

1
46

.8
4

61
.5

2
46

.0
3

51
.6

0
53

.1
7

46
.9

3
47

.4
4

51
.2

9
45

.9
2

45
.8

8
66

.7
8

40
.9

4
51

.8
5

K
e
rn

e
l
D
I

62
.6

7
48

.2
0

56
.2

9
53

.5
3

38
.9

2
48

.3
8

51
.9

3
44

.8
6

48
.2

7
59

.2
6

39
.5

1
50

.9
9

66
.8

0
43

.2
7

58
.0

5
54

.4
6

47
.0

4
50

.4
0

66
.6

7
47

.5
3

56
.8

3
57

.4
7

42
.3

7
52

.2
4

54
.6

8
37

.8
4

48
.4

4
68

.9
4

44
.0

4
57

.0
0

K
e
rn

e
l
D
C

56
.6

7
37

.9
7

49
.7

1
55

.1
9

34
.2

8
48

.3
1

52
.5

9
41

.1
3

47
.4

7
58

.2
5

20
.2

1
44

.8
8

57
.9

9
29

.6
2

48
.8

1
52

.2
1

41
.0

3
46

.7
3

57
.8

3
30

.8
3

47
.5

9
55

.3
3

32
.1

1
47

.8
5

56
.3

0
30

.1
2

46
.6

2
60

.9
9

32
.1

1
50

.0
5

69



T
ab

le
3.

7:
A

n
al

y
si

s
re

su
lt

s
an

d
%

fi
t

to
es

ti
m

at
io

n
(E

),
va

li
d
at

io
n

(V
)

an
d

ov
er

al
l

(O
)

d
at

a
fo

r
es

ti
m

at
ed

m
o
d
el

s
fo

r

p
ar

ti
ci

p
an

t
23

0

(a
)

3-
in

p
u

t
(A

n
al

y
si

s
R

es
u

lt
s)

P
a
rt
ic
ip
a
n
t
2
3
0
:
3
-i
n
p
u
t
(G

,E
P
,G

P
)

M
o
d
e
l

F
it

e
st

F
it

v
a
l

F
it

o
v
r

M
S
E

p
a
r
2
n
o
rm

O
rd

e
r
S
e
l

79
.1

3
78

.2
1

78
.1

9
18

1,
72

1.
21

53
.8

8

H
ig
h

O
rd

e
r

80
.6

3
79

.4
5

78
.7

1
15

5,
27

7.
81

56
.4

8

R
id
g
e
R
e
g

80
.0

4
71

.9
3

76
.2

3
16

4,
85

7.
10

36
.8

9

K
e
rn

e
l
T
C

77
.3

1
57

.1
1

68
.0

7
21

2,
98

3.
43

34
.0

7

K
e
rn

e
l
S
E

78
.4

8
61

.6
8

70
.1

4
19

1,
62

0.
32

34
.3

3

K
e
rn

e
l
S
S

69
.8

0
33

.7
7

54
.8

4
37

7,
48

7.
02

28
.9

3

K
e
rn

e
l
H
F

73
.6

4
45

.1
3

61
.5

5
28

7,
61

5.
30

29
.6

5

K
e
rn

e
l
D
I

79
.0

3
70

.2
7

74
.9

2
18

1,
92

7.
80

37
.4

0

K
e
rn

e
l
D
C

78
.7

1
67

.4
4

73
.5

6
18

7,
59

8.
51

35
.8

8

(b
)

4-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
G
-E

P
-G

P
-P

S
G
-E

P
-G

P
-P

T
G
-E

P
-G

P
-W

G
-E

P
-G

P
-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O

O
rd

e
r
S
e
l

80
.7

5
79

.0
8

79
.2

6
79

.4
7

79
.8

6
78

.2
0

79
.8

8
78

.8
5

79
.0

0
79

.6
6

80
.0

4
79

.0
1

80
.5

6
78

.0
6

79
.1

0

R
id
g
e
R
e
g

80
.0

6
71

.9
4

76
.2

5
80

.0
5

71
.9

3
76

.2
4

80
.0

6
71

.9
1

76
.2

4
80

.0
5

71
.9

5
76

.2
5

82
.1

7
66

.6
4

75
.4

5

K
e
rn

e
l
T
C

75
.1

2
46

.6
8

62
.6

6
71

.1
9

36
.2

4
56

.7
0

75
.7

8
47

.7
7

63
.5

7
60

.6
0

12
.8

3
41

.6
3

76
.9

4
32

.2
2

56
.3

3

K
e
rn

e
l
S
E

77
.1

5
57

.5
9

68
.1

7
76

.6
3

55
.3

9
67

.1
7

77
.1

7
54

.3
8

67
.0

4
73

.5
4

47
.7

4
62

.9
2

78
.3

4
57

.6
9

69
.0

6

K
e
rn

e
l
S
S

61
.8

3
15

.6
6

43
.5

3
62

.0
3

16
.4

2
43

.9
5

64
.6

3
18

.1
8

45
.6

0
60

.3
8

12
.9

8
41

.5
7

62
.6

4
14

.4
8

43
.2

2

K
e
rn

e
l
H
F

71
.5

2
36

.2
9

56
.4

7
71

.2
7

35
.5

1
56

.0
0

71
.4

5
36

.0
7

56
.3

4
70

.7
2

33
.9

4
55

.0
4

72
.2

5
38

.8
6

58
.1

6

K
e
rn

e
l
D
I

78
.1

6
66

.2
1

72
.9

5
77

.7
2

64
.3

0
71

.9
9

78
.3

6
65

.6
0

72
.7

6
76

.0
5

57
.6

0
68

.4
6

79
.3

8
64

.0
4

73
.1

7

K
e
rn

e
l
D
C

67
.2

4
25

.1
5

50
.2

4
66

.1
9

20
.6

1
47

.5
2

68
.1

6
18

.4
5

47
.0

5
64

.8
2

19
.8

1
46

.6
1

67
.8

4
25

.1
8

50
.6

1

(c
)

5-
in

p
u

t
(%

fi
t)

M
o
d
e
l

G
-E

P
-G

P
-P

B
-P

S
G
-E

P
-G

P
-P

B
-P

T
G
-E

P
-G

P
-P

B
-W

G
-E

P
-G

P
-P

B
-T

G
-E

P
-G

P
-P

S
-P

T
G
-E

P
-G

P
-P

S
-W

G
-E

P
-G

P
-P

S
-T

G
-E

P
-G

P
-P

T
-W

G
-E

P
-G

P
-P

T
-T

G
-E

P
-G

P
-W

-T

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

E
V

O
E

V
O

O
rd

e
r
S
e
l

80
.9

6
80

.8
6

80
.1

9
81

.4
2

80
.7

7
80

.1
5

82
.4

6
80

.2
1

79
.6

2
80

.8
1

78
.5

5
79

.6
5

80
.5

4
80

.5
0

79
.3

0
80

.5
8

80
.3

1
78

.8
7

80
.2

3
80

.0
0

78
.9

3
80

.6
2

80
.8

8
79

.5
7

81
.3

6
80

.3
1

80
.2

7
82

.7
2

78
.2

7
79

.2
0

R
id
g
e
R
e
g

79
.6

0
73

.0
3

75
.9

3
79

.6
2

73
.0

0
75

.9
3

79
.6

1
73

.0
5

75
.9

4
81

.7
1

67
.8

7
75

.4
9

76
.6

5
59

.3
5

69
.3

5
79

.6
0

73
.0

4
75

.9
3

81
.7

0
67

.8
6

75
.4

8
79

.6
2

73
.0

1
75

.9
3

81
.7

1
67

.8
6

75
.4

9
81

.7
0

67
.8

8
75

.4
9

K
e
rn

e
l
T
C

76
.9

3
49

.0
7

64
.3

1
74

.0
4

38
.5

1
58

.3
5

63
.0

7
16

.7
1

44
.5

6
74

.7
1

25
.9

0
51

.7
2

73
.3

4
36

.7
2

57
.3

1
60

.2
2

12
.4

2
41

.3
0

75
.4

0
37

.0
8

58
.0

2
61

.8
5

11
.0

3
41

.1
9

75
.6

5
38

.8
1

59
.0

3
63

.4
7

16
.3

1
44

.5
0

K
e
rn

e
l
S
E

79
.2

8
72

.5
1

75
.7

0
76

.5
6

53
.7

6
66

.7
6

63
.3

3
17

.0
3

44
.8

0
78

.7
8

62
.9

3
72

.0
5

65
.3

8
8.

39
41

.4
4

62
.0

1
13

.1
2

42
.3

6
78

.0
7

60
.4

8
70

.7
1

64
.3

3
8.

32
41

.0
1

78
.8

8
63

.6
6

72
.4

3
63

.5
8

17
.2

5
45

.0
2

K
e
rn

e
l
S
S

77
.7

7
62

.6
7

71
.5

8
61

.3
7

13
.5

9
42

.2
9

60
.8

0
14

.1
5

42
.3

7
67

.7
3

19
.5

0
47

.2
0

61
.3

3
11

.1
3

40
.9

1
59

.8
6

11
.0

9
40

.5
0

61
.8

0
13

.5
8

42
.5

1
60

.8
6

12
.0

4
41

.2
1

69
.3

5
26

.6
5

51
.2

2
61

.7
3

13
.6

7
42

.5
1

K
e
rn

e
l
H
F

72
.3

0
41

.9
7

59
.7

2
71

.9
0

19
.6

8
49

.3
1

70
.4

7
33

.3
8

55
.3

9
69

.6
4

31
.0

1
53

.8
8

65
.2

0
16

.3
9

45
.3

2
66

.4
4

22
.2

6
48

.5
7

70
.6

0
32

.4
3

54
.6

9
72

.1
9

25
.2

7
51

.9
3

69
.7

2
32

.7
3

54
.4

9
69

.3
6

33
.2

2
54

.6
3

K
e
rn

e
l
D
I

79
.2

6
71

.7
8

75
.6

9
78

.2
6

64
.0

7
72

.2
2

76
.9

1
61

.1
7

70
.4

3
79

.4
8

63
.9

6
73

.2
1

77
.8

7
62

.8
2

71
.5

3
62

.5
0

14
.6

9
43

.4
0

79
.0

9
62

.5
0

72
.4

2
75

.1
7

51
.9

6
65

.7
1

79
.5

7
64

.2
2

73
.3

6
77

.5
5

57
.5

7
69

.5
9

K
e
rn

e
l
D
C

79
.3

0
70

.5
4

75
.1

3
68

.7
7

18
.3

7
47

.6
7

65
.6

1
21

.3
8

47
.9

0
71

.2
3

30
.3

0
54

.0
9

68
.8

1
17

.9
6

47
.3

6
64

.0
8

18
.1

3
45

.6
8

70
.6

9
29

.1
7

53
.4

8
66

.8
7

16
.5

7
45

.9
6

72
.7

2
25

.6
7

52
.6

1
66

.0
2

22
.2

6
48

.4
5

70



Chapter 4

ESTIMATION OF PERSONALIZED BEHAVIORAL MODELS

4.1 Overview

In the previous chapters, the main focus was on estimation of dynamical system

models using system ID techniques from the available input-output data. The aim

was to estimate models using various regularization approaches, and from the results

obtained, try to determine which is the can be a good technique that can be used for

model estimation, based on the step responses, as well as how well the model fits to

the data.

In this chapter, the focus changes from getting a good model estimate for the

participant to using regularization techniques to determine which inputs affect the

behavior of the participant the most. The aim is to explore the relationships between

the ‘inputs’, which includes the manipulated variables or intervention components

(e.g., daily step goal and points) and time-varying disturbance variables (e.g., per-

ceived stress, weather), and the predicted ‘output’ or outcome of interest (e.g., actual

steps taken per day) for a given individual over time. Having this kind of knowledge

using the idiographic approach can help in tailoring person-specific variables in order

to personalize decision rules and intervention dosages for individuals [28].

4.2 Using Model Fits to Assess Participant Behavior

Initially a basic 3-input model (Goals, Expected Points and Granted Points) was

estimated using all identification methods. Then additional inputs were added to

this set of basic inputs to observe how each input affected the model estimate, in a
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positive or negative way. This was measured in terms of change in % Fit, for each

additional input that was added. The additional inputs were: Predicted Busyness,

Predicted Stress, Predicted Typical, Weekday/Weekend and Temperature. The re-

sults were plotted for each participant in order to visualize what predictors impact

most the % Fit, which can be useful for developing personalized interventions. Also,

this gives an idea regarding what model estimation methods are best suited for es-

timating behavioral models for a particular participant. This has been implemented

and studied for all four participants, and is discussed in the following subsections.

Table 4.1: % Improvement in fit with specific additional inputs for each model esti-

mation method

(a) Participant 164

Methods Validation Overall Estimation

Order Sel. T 16% T 6% PB-T 6%

Ridge Regr. PB-T 2% PB-T 0.30% T 0.20%

Kernel TC W 1% PS-T 14% PB-T 34%

Kernel SE - - PS-T 8% PB-T 37%

Kernel SS W 20% PT-T 10% PB-T 31%

Kernel HF - - PB-T 7% PB-T 28%

Kernel DI W 1% PS-T 6% PB-T 29%

Kernel DC - - T 9% PB-T 29%

(b) Participant 180

Methods Validation Overall Estimation

Order Sel. PB-T 22% W-T 10% PB-PT 12%

Ridge Regr. PB-T 6% T 1.80% T 1.80%

Kernel TC PT 6% PB-T 18% PB-T 16%

Kernel SE PB-T 2% PB-T 5% PB-T 35%

Kernel SS PB-T 22% PB-T 32% PB-T 32%

Kernel HF PB-T 9% PT 9% PB-T 22%

Kernel DI PT 5% PT 8% PB-T 25%

Kernel DC PT 4% PT 8% PB-T 31%

(c) Participant 222

Methods Validation Overall Estimation

Order Sel. PB-PS 17% PB-PS 19% PB-PS 30%

Ridge Regr. PB-T 1% T 0.50% T 1.20%

Kernel TC - - W-T 5% W-T 10%

Kernel SE PS 8% PS 12% PS 16%

Kernel SS W 1% PS 3% W-T 7%

Kernel HF T 2% PS 0% W-T 4%

Kernel DI PB-PS 2% PS 5% PS 9%

Kernel DC - - PS 11% PS 17%

(d) Participant 230

Methods Validation Overall Estimation

Order Sel. PT-W 3% PT-T 2% PT-W 4%

Ridge Regr. - - - - - -

Kernel TC - - - - - -

Kernel SE PB-PS 10% PB-PS 5% PB-PS 1%

Kernel SS PB-PS 28% PB-PS 16% PB-PS 8%

Kernel HF - - - - - -

Kernel DI PB-PS 2% PB-PS 1% PB-PS 1%

Kernel DC PB-PS 4% PB-PS 2% PB-PS 1%
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4.2.1 Participant 180

The “% fit change” results for participant 180 in Fig 4.1 can be analyzed in

a manner, where the maximum % change in fit (for a particular additional input

combination) is noted down for each model estimation method. This can be seen

in Table 4.1b. The fits highlighted in light brown show that there is a significant

positive change in the % Fit when the corresponding inputs are used in addition with

the basic 3-input combination, for model estimation. The best results for Participant

180 is displayed by the Regularized 5-input ARX model which is estimated using the

SS kernel, with PB (Predicted Busyness), and T (Temperature) as additional inputs.

The results for this are highlighted in “green” in the table. From the highlighted

blocks, as well as many of the other results in the Table 4.1b, it is seen that in most

cases, for this participant, Predicted Busyness and Temperature contribute towards

an increased fit %, which indicates that addition of these inputs can have a significant

impact on the walking behavior of the participant. This result helps in providing an

important insight into personalization of behavioral models for the individual.

The data in Table 4.1 is basically a numerical summary obtained from the plots

which depict the % change in fit, which respect to the 3-input models, when a certain

combination of additional inputs are added. For example, for participant 180, from

the plots in 4.1, the maroon bar indicates the highest positive change in fit when the

corresponding combination of inputs are added to the basic 3-input model, for that

particular estimation method. The entries in Table 4.1b, are basically the magnitude

of those maroon bars. If for any participant, and any estimation method, and in-

put combination, the maximum percent change is the fit is either negative, zero, or

negligible, then the corresponding table entry in Table 4.1 is left blank.

The result obtained related to personalization, obtained from the % change in
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(a) % Change in fit (Validation Data)

(b) % Change in fit (Overall Data)

(c) % Change in fit (Estimation Data)

Figure 4.1: Change in % fit with respect to 3-input models for participant 180
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fit plots are then verified with the plots in Fig. 4.2. These plots basically helps us

visualize addition of which inputs leads to estimation of models with significantly high

fit values. The input combination contributing to the highest % fit value among the

4-input models, for each of the estimated models, has been highlighted in maroon,

and the best among the 5-input cases has been highlighted in green.The plots in Fig.

4.2, further reinforce that Predicted Busyness and Temperature play an important

role in deciding whether the participant will walk or not.

Now for the regularized model estimated using the SS kernel, a residual analysis

is done, and the step response is plotted to visualize the model response. This is to

ensure that it is in agreement with the intuition, as well as to see if it has the right gain

and time constant. The step responses (Fig. 4.3) for the selected model look good.

From the plot of the autocorrelation of residuals in Fig. 4.4, very slight correlation

is observed. but since it is only very slightly outside the 99% confidence bound, this

can be ignored. There is no correlation between the inputs and the residuals, which

lends credibility to the model.

4.2.2 Participants 164, 222, 230

For Participant 164, referring to Table 4.1a, it can be seen from the results of

% fit wit overall data that additional inputs PS-T and PT-T result in improved fits

when compared to the basic 3-input case. There is no uniformity in the results,

and hence it is difficult to predict if any of the inputs apart from G, EP and GP

affect participant behavior. However, the % fit results with the estimation data

show some uniformity. For almost all cases (except for a couple of them), the input

combination PB-T when added to the basic 3-inputs while model estimation, show

significant improvements in the fit percentages. From this observation, a conclusion

can be made that predicted busyness and temperature affect the PA levels for this
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(a) Validation Data)

(b) Overall Data

(c) Estimation Data

Figure 4.2: % Fit for each estimated model with respect to measured data for par-

ticipant 180
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(a) Goals (b) Expected Points (c) Granted Points

(d) Predicted Busy (e) Temperature

Figure 4.3: % Step response for model estimated using SS kernel for participant 180,

additional inputs: PB, T

participant. This can be further verified from the plots in Fig. 4.6, where it can

be seen that for many of the model estimation methods, the combination of added

inputs PB-T show higher fit percentages (ones highlighted in green). For getting this

result, kernel based regularization methods TC, SE SS, HF, DI and DC can be used.

Order selection and ridge regression do not work well in this case.

Next participant 222 is analyzed, where it can be seen from Table 4.1c that adding

input PS (when order selection is used) or PB-PS (for regularized FIR using kernel

SE) result in improvement in the fit percentages. These % fits are with respect to

estimation, validation and overall data. From this data it is difficult to come to a

conclusion with regards to which input combination influence participant behavior

the most. Hence, it is necessary to examine the plots in Fig. 4.8, where it can be seen

that in general, predicted stress as an input does influence participant behavior more
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Figure 4.4: Residual analysis for the model estimated using SS kernel for participant

180, additional inputs: PB, T

that the PB-PS combination. But the question is whether the change in significant

enough to be taken into consideration. For this the results in Table 4.1c needs to be

re-examined. It is seen that for regularized models estimated using kernels SE, DI

and DC, do show improved fits in the range of 9-16% when the output is compared

to the estimation data, and an improvement in the range of 5-12% can be seen when

compared to the overall data. Even though these numbers may not be very high, it can

still be said that predicted stress does influence participant behavior to some extent.

Similarly, for participant 230, from Table 4.1d, it is clearly seen that the addition

of input combination PB-PS has a positive effect on the % fit change for while using

kernel-based regularization methods SE, SS, DI and DC. The best result, consistent

with the estimation, validation and overall data is observed for the regularized model

estimated using kernel SS. Kernel SE gives satisfactory results as well. Now, taking

look at Fig. 4.10, it is evident that when predicted busy and predicted stress are

added, the results do show a higher fit percent than the rest of the cases. The extent

78



(a) % Change in fit (Validation Data)

(b) % Change in fit (Overall Data)

(c) % Change in fit (Estimation Data)

Figure 4.5: Change in % fit with respect to 3-input models for participant 164
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(a) Validation Data)

(b) Overall Data

(c) Estimation Data

Figure 4.6: % Fit for each estimated model with respect to measured data for par-

ticipant 164
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(a) % Change in fit (Validation Data)

(b) % Change in fit (Overall Data)

(c) % Change in fit (Estimation Data)

Figure 4.7: Change in % fit with respect to 3-input models for participant 222
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(a) Validation Data)

(b) Overall Data

(c) Estimation Data

Figure 4.8: % Fit for each estimated model with respect to measured data for par-

ticipant 222
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to which these inputs impact a participant can be inferred from the magnitude of

improvement in model quality (% fit), when compared to the basic model with 3

inputs.

4.3 Conclusions

In general, the results of this chapter can be summarized as follows:

• From the four participants that were studied, it can be seen that the factors

affecting the behavior of the individual, that is the measured PA depends mainly

on predicted busyness, predicted stress and temperature. These factors, either

individually, or when combined can have an impact on the level of activity of

the person.

• The graphical results help in predicting which inputs determine the individual’s

behaviour, as well as the magnitude of the impact that they have on the person.

This can be seen from the data which shows the change in % fit from the basic

3-input model.

• Addition of certain input combinations, and using some model estimation meth-

ods can worsen the model quality, when compared to the 3-input model. This

can mean that either the inputs under consideration are not useful in determin-

ing participant behavior, or else the model estimation selected is not the right

one.

• In general, it is seen that regularized models estimated using the SS kernel can

be a good method for the purpose of personalization of the interventions. Even

though the model quality might not be very good in terms of the fit percentages,

when compared to the other estimation methods, it is good enough for selecting

inputs which matter the most.
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(a) % Change in fit (Validation Data)

(b) % Change in fit (Overall Data)

(c) % Change in fit (Estimation Data)

Figure 4.9: Change in % fit with respect to 3-input models for participant 230
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(a) Validation Data)

(b) Overall Data

(c) Estimation Data

Figure 4.10: % Fit for each estimated model with respect to measured data for

participant 230
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• For most cases, the regularized models perform better than the one estimated

using order selection, from the perspective of personalization.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

Control system methods, in particular system identification, play an important

role in building dynamical mathematical models for behavioral interventions. Es-

timating behavioral models is essential for designing personalized interventions for

individual participants. These behavioral models can be helpful in providing an in-

sight into what factors can impact an individual’s behavior, in terms of physical

activity. Since every individual is different, it is important that this analysis is done

on an idiographic level, and not a generalized nomothetic one.

The Just Walk study originally used traditional ARX black box system identifi-

cation methods for model estimation. In classical system identification, one of the

most important factors on which the quality of the estimated model depends, is the

selection of the model structure. If that is not done properly it can lead to two types

of errors. A bias, or systematic error is seen if the order is too low. This happens

because the model predicted is not able to capture all features of the system. In case

of a very high order model variance errors are caused due to overfitting. In this case,

the model may fit very well to the data used for estimation. However, it may not

generalize well to new data. What is required for a good model is a balance between

the bias and variance, so that the main features of the system are captured by the

model, without random errors.

The above can be achieved using an order selection, where models are estimated

over a range of orders (low to high). The best model structure is then evaluated
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using model validation techniques, i.e. the one with the least MSE is selected (since

both bias and variance contribute to the MSE). This can be a good method when the

number of inputs and outputs are less. However in MIMO systems, as the number of

inputs or outputs increases, the computational complexity of this method increases

as well. In this case, there is a need to explore a method which will be robust, and

computationally less expensive. In this case, there is a need to explore alternative

methods from the machine learning domain. This is where regularization comes into

picture. Regularization helps in taking care of the bias variance trade-off by adding

a penalty terms to high order models. This method may increase the bias by a slight

amount, but the variance errors are significantly reduced.

The goal of this thesis was to examine if regularization would be benefiial in the

identification of behavioral models for a physical activity intervention, like the Just

Walk study. Also, another factor that was examined was if the regularized mod-

els provide better results for determining the factors that affect individual behavior,

which in turn would be helpful for designing personalized interventions. The results

using order selection was compared with the results obtained using regularized mod-

els. These results have been described in detail in Chapter 3. The study was carried

out on four participants (164, 180, 222, 230). The performance of the methods im-

plemented for these four participants, in terms of personalization has been described

in Chapter 4.

From this study it was seen that the performance in terms of the fit percentages

varied for different estimation methods, from person to person. Methods that work

well for one participant, may not work well for others. However, it was seen that the

regularized model estimated using the DI kernel gave consistently good results for

all four participants. The next part of the study dealt with determining the inputs,

which when added to the standard 3-input model, help in describing the individual
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better by improving significantly the model quality, which is indicated by a large

increase in the % fit results. For this portion of the study, it is not important to have

really good fits; the important task is to figure out the combination of inputs which

improve model quality. After analyzing the results for all four participants, it can be

seen that regularized models using the kernel SS method work well for all participant.

From this study it can be concluded that even if in some cases, regularized models

may not give the best results when compared to order selection, and some regularized

models might not perform well at all, the ones that do well are reasonably good. Hence

regularization can be considered as a good option, keeping in mind the advantage of

reduced computational complexity.

5.2 Future Work

Identification of good models depends on the following factors:

• Having a model structure with optimal order (not too low, or not too high)

• Deciding on the predictors that need to be considered for model estimation

• Designing the input in such a ways that it can capture the important dynamics

of the system under consideration

While using traditional system identification methods, if the above points are not

taken care of well, then the identification process may end up in estimating a model

of poor quality, which might have bias or variance issues or low fit percentages. This

model may not be a very accurate representation of the true system in this case.

The ideas used in this thesis, to overcome the above mentioned issues in a be-

havioral study, Just Walk, could be possibly used in future for other studies, and

application, in the field of behavioral medicine, or any other application of system
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identification. As a part of this thesis, what has been implemented on the four partic-

ipant in the Just Walk Study, could be further extended to the remaining participants

involved in this study in order to get a much larger view of any new approach that

could be taken. This could involve, designing inputs in a way which can contribute

to better results, or trying to determine whether scaling them to be in a particular

range would have a positive impact on the quality of model estimated. In order to get

further insights, these approaches could be extended so that they can be evaluated

over multiple cycles that will involve estimation and validation at different times (as

was done in Just Walk with standard ARX). Also, getting a bigger picture can help

in developing a tool, which will automatically select the model estimation methods,

based on various factors, internal and external to the participant.

The use of machine learning ideas, like regularization, along with system iden-

tification principles could be something that can be implemented in the future, for

identification for complex systems, where in many cases traditional system identi-

fication methods alone, would not give satisfactory results. Also, controls criteria

could be used as a means to include closed-loop considerations in the regularization

problem, which will lead to different and possibly improved results. One possible ap-

proach is to apply regularization to prefiltered data, using control-relevant prefilters

as described in Rivera et al. [37]. These are some ideas that could be explored further

in extensions of this research.
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