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ABSTRACT

In recent years, Convolutional Neural Networks (CNNs) have been widely used in not

only the computer vision community but also within the medical imaging community.

Specifically, the use of pre-trained CNNs on large-scale datasets (e.g., ImageNet) via

transfer learning for a variety of medical imaging applications, has become the de facto

standard within both communities. However, to fit the current paradigm, 3D imaging

tasks have to be reformulated and solved in 2D, losing rich 3D contextual information.

Moreover, pre-trained models on natural images never see any biomedical images

and do not have knowledge about anatomical structures present in medical images.

To overcome the above limitations, this thesis proposes an image out-painting self-

supervised proxy task to develop pre-trained models directly from medical images

without utilizing systematic annotations. The idea is to randomly mask an image and

train the model to predict the missing region. It is demonstrated that by predicting

missing anatomical structures when seeing only parts of the image, the model will

learn generic representation yielding better performance on various medical imaging

applications via transfer learning.

The extensive experiments demonstrate that the proposed proxy task outperforms

training from scratch in six out of seven medical imaging applications covering 2D

and 3D classification and segmentation. Moreover, image out-painting proxy task

offers competitive performance to state-of-the-art models pre-trained on ImageNet

and other self-supervised baselines such as in-painting. Owing to its outstanding

performance, out-painting is utilized as one of the self-supervised proxy tasks to

provide generic 3D pre-trained models for medical image analysis.
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Chapter 1

INTRODUCTION

1.1 Background

Convolutional Neural Networks (CNNs) have been used in the computer vision

for a long time (Lecun et al., 2015). However, their true potential was realized when

(Krizhevsky et al., 2012) used CNNs to win ImageNet (Deng et al., 2009) challenge

in 2012 by designing considerably deep network containing 60 million parameters

and training the network efficiently with graphics processing units (GPUs). Since

then, CNNs have been widely used for various computer vision applications such

as object detection (Ren et al., 2015), semantic segmentation (Long et al., 2015),

etc. Nowadays, the popularity of CNNs is not limited to computer vision but across

various applications such as natural language processing and medical image analysis.

However, the performance of CNNs greatly depends upon the capacity of network

models and the amount of training data. Hence, the computer vision community have

developed deep architectures to increase the network capability and larger datasets

are collected. Various deep architectures such as AlexNet (Krizhevsky et al., 2012),

ResNet (He et al., 2015), DenseNet (Huang et al., 2017), etc have been proposed

that achieves state-of-the-art performance on large scale dataset such as Places (Zhou

et al., 2014) and ImageNet (Deng et al., 2009) containing 1.2 million annotated images

of 1000 categories.

Interestingly, on continue training (fine-tuning) the deep models trained on the

large labeled dataset (e.g., ImageNet) achieve better performance than training from

scratch on various target tasks. In other words, the deep models pre-trained on Im-
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ageNet can be transferred via transfer learning to various medical imaging applica-

tions that outperform the models without any pre-training i.e., training from scratch.

This outstanding performance of pre-trained models on ImageNet is attributable to

learned generic representation while classifying 1.2 million images among 1000 cate-

gories. Hence, this practice of using pre-trained CNN on ImageNet for various target

tasks like image segmentation (Dai et al., 2016), image captioning (Karpathy and

Fei-Fei, 2015), and others (Lecun et al., 2015), has become the de facto standard

within the computer vision community.

1.2 Limitations of the Current Paradigm in Medical Image Analysis

The current paradigm of fine-tuning pre-trained models on ImageNet has become

the de facto standard not only in the computer vision community but also in the med-

ical imaging community. Surprisingly, even though the pre-trained models on Ima-

geNet never see any biomedical images, they offer superior performance over training

from scratch for a wide range of medical imaging applications. Moreover, Tajbakhsh

et al. (2016) demonstrates that pre-training models achieve either equivalent or better

performance over training from scratch and pre-trained models are always desirable

for medical imaging applications. However, there are three limitations of current

paradigm in medical image analysis:

1. Domain gap: Zhou et al. (2019) demonstrated that pre-trained models based

on medical images are more powerful than pre-trained models on natural images

for various medical imaging applications. In other words, same-domain transfer

learning where models are pre-trained and fine-tuned within the same domain,

is superior to cross-domain transfer learning where models are pre-trained and

fine-tuned for a different domain.
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2. 3D imaging tasks have to be solved in 2D: The pre-trained models on

ImageNet utilizes 2D convolutions and are not designed to process 3D cubes.

However, to fit the current state-of-the-art ImageNet fine-tuning paradigm, 3D

imaging tasks in the most prominent imaging modalities (e.g., CT and MRI)

have to be reformulated and solved in 2D, losing rich 3D anatomical information

and inevitably compromising the performance (Zhou et al., 2019).

3. Annotation cost: Medical imaging community does not have a dataset as

large as ImageNet because annotating biomedical images is not only tedious

and time-consuming but also demanding of costly, specialty-oriented knowledge

and skills, which are not easily accessible (Zhou et al., 2017).

1.3 Research Question

To overcome the limitations of the current state-of-the-art paradigm of ImageNet

fine-tuning (see section 1.2), we seek to answer the following question: Can we develop

a learning method directly from medical images, without utilizing systematic annota-

tions, to pre-train a deep model that can achieve better performance on target tasks

via transfer learning? A promising direction to answer the question is to pre-train

the models on unlabeled images. However, the unlabeled images do not provide any

supervision to the models to learn generic representation. Hence, self-supervised rep-

resentation learning can be utilized where data intrinsically provides the supervision.

The following section discusses self-supervised representation learning in detail.

1.4 Self-supervised Representation Learning

Self-supervised learning methods aim at learning the representation from unla-

beled images without utilizing human-annotated labels. To realize this aim, a popular

3



Figure 1.1: The general pipeline of self-supervised learning. First, CNN learns generic
representation by solving pre-defined proxy tasks with pseudo labels. Subsequently,
the learned parameters serve as a pre-train model and are transferred to target tasks
utilizing human-annotated labels.

solution is to propose the proxy tasks for the models to solve, while the models are

trained with the learning objectives of the proxy task. The proxy tasks are designed in

such a way that the model needs to learn the representation to solve the proxy tasks.

Note that the proxy tasks utilize pseudo labels that can be automatically generated

based on the attributes of images.

Figure 1.1 shows the training pipeline of self-supervised learning methods. First,

a proxy task is designed for models to solve, and pseudo labels are generated based on

some attributes of the data. Then the models are trained with learning objectives of

the proxy tasks and utilizing pseudo labels as ground truths. Once the self-supervised

learning is finished, the learned visual representation can be transferred to target tasks

via transfer learning. While there are various ways to transfer learned representation,

we have used the entire pre-trained model and fine-tuned all the layers in the model

on target tasks.
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Figure 1.2: Medical images are highly structured. Hence, proxy tasks can exploit
consistent and recurrent anatomy present in medical images.

1.5 Hypothesis and Proposed Solution

Unlike natural images, medical images are highly structured (Figure 1.2). For

example, the anatomy of rib cage i.e., arrangements of ribs is similar to a certain

extent for most of the patients. Hence, we designed out-painting as a self-supervised

proxy task to exploit consistent and recurrent anatomy present in medical images.

We believe that if the model can predict the missing content when seeing only parts of

the image, the model can learn a generic representation yielding better performance

on target tasks via transfer learning. Moreover, by predicting the missing content, the

model will learn global geometry and spatial layout of the organs in medical images.

We describe out-painting as a self-supervised proxy task in detail in Chapter 3.

Once the model is pre-trained on out-painting proxy task, we evaluate the learned

representation via transfer learning in seven medical imaging applications across

modalities including 2D and 3D classification and segmentation target tasks. In

six out of seven target tasks (see Chapter 4), fine-tuning models pre-trained on out-

painting proxy task outperformed the models without any pre-training i.e., training

from scratch. Moreover, our proposed method is relatively more consistent and ro-

bust than other self-supervised proxy tasks and out-painting is competitive to state-
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of-the-art pre-trained models on ImageNet. Owing to its outstanding performance,

out-painting is utilized as one of the self-supervised proxy tasks to provide generic

3D pre-trained models for medical image analysis.

1.6 Terminology

To make this thesis easy to read, we define important terms used in the remaining

sections. We follow the terminology conventions used in the survey paper (Jing and

Tian, 2020) on self-supervised visual feature learning.

• Human-annotated label: It refers to the data labels that are manually an-

notated by a human.

• Pseudo label: Pseudo labels are automatically generated labels without any

human intervention i.e. zero annotation cost.

• Proxy task: The neural networks are trained on proxy tasks using pseudo

labels with an aim to learn generic representation by solving this task.

• Target task: Target tasks are various computer vision applications that are

used to evaluate the learned representation by self-supervised learning.

• Supervised learning: The learning methods which use human-annotated la-

bels to train the model are called as supervised learning approaches.

• Unsupervised learning: Unsupervised learning methods refers to learning

methods without using either human-annotated labels or pseudo labels.

• Self-supervised learning: Self-supervised learning is a subset of unsupervised

learning methods. In self-supervised learning methods CNNs are trained with

pseudo labels with an aim to learn generic representation.

6



Chapter 2

RELATED WORK

Image out-painting is a self-supervised proxy task to learn generic representation.

Hence, we contrast out-painting with the current state-of-the-art paradigm of super-

vised, unsupervised and self-supervised representation learning.

2.1 Supervised Representation Learning

Supervised representation learning utilizes human-annotated labels to learn generic

representation. For example, ImageNet (Deng et al., 2009) is one of the widely used

datasets for pre-training the model contains 1.2 million human-annotated labels cov-

ering 1,000 classes. The practice of pre-training a model on ImageNet and then

fine-tuning on various target tasks has become de facto standard within not only the

computer vision community but also in the medical imaging community (Tajbakhsh

et al., 2016). As mentioned in section 1.2, the current state-of-the-art paradigm of

fine-tuning pre-trained models on ImageNet has three limitations and our proposed

method overcome these limitations by providing 2D and 3D pre-trained models di-

rectly from medical images at zero annotation costs.

2.2 Unsupervised Representation Learning

Unsupervised representation learning neither utilizes human-annotated labels nor

pseudo labels to learn generic representation. Autoencoders (Hinton and Salakhut-

dinov, 2006) is closely related to our proposed method, as it learns representation by

restoring the original input image. Unfortunately, the learned representation is likely

to compress the image content without learning a semantically meaningful represen-
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tation. Moreover, fine-tuning pre-trained models on out-painting proxy task out-

performs fine-tuning from autoencoder proxy task (see Chapter 4) i.e., out-painting

learns more generic representation than autoencoders. Denoising autoencoders (Vin-

cent et al., 2008) overcome the issue of autoencoders by corrupting the input image

and train the network to restore the original image. However, this corruption process

is localized and the models do not require much semantic information to restore the

original image. In contrast, to solve our proposed out-painting proxy task, the model

requires a much deeper understanding of the anatomical structures present in medical

images.

2.3 Self-supervised Representation Learning

Self-supervised methods aim at learning representation from unlabeled images

i.e., without using any human-annotated labels. To realize this aim, the computer

vision community proposed a variety of proxy tasks (Jing and Tian, 2020) for the

models to solve where they are trained with learning objectives of the proxy task,

and representation is learned through this process. Specifically, Doersch et al. (2015)

designed a proxy task to classify the relative positions of neighboring patches within

an image, Gidaris et al. (2018) proposed rotation as a self-supervised proxy task to

learn representation by discriminating the 0, 90, 180, and 270 degrees rotated images.

Both above proxy tasks are image classification tasks, while out-painting is an image

restoration task. Pathak et al. (2016) proposed image in-painting as a proxy task

to only recover inner missing regions of a masked image, while our method restores

the entire input patches. Moreover, Pathak et al. (2016) only provides a pre-trained

encoder while our proposed method provides both pre-trained encoder and decoder.

Further, on comparing our proposed out-painting proxy task with in-painting and

rotation proxy task (see section 4.4.3), we found out-painting to learn more generic

8



representation effective across modalities. Finally, unlike the proposed method, all

of the above methods provide 2D pre-trained models and cannot be utilized for 3D

imaging target tasks. The 3D target tasks have to be reformulated in 2D, losing rich

3D anatomical information and inevitably compromising the performance.

9



Chapter 3

METHODOLOGY

We humans have uncanny ability to imagine the missing content when seeing only

parts of the image. For example, consider an X-ray patch with the missing region

as shown in Figure 3.1. Although the border pixels are missing, most of us can

predict its content from the surrounding pixels. This ability comes from the fact that

medical images are highly structured and have consistent and recurrent anatomy.

Hence, we explore whether state-of-the-art medical imaging algorithms can learn these

anatomical structures. We demonstrate that by predicting these structures CNNs can

learn generic representation that can achieve better performance on target tasks via

transfer learning.

Figure 3.1: Qualitative illustration of the out-painting proxy task. Give an image
with missing region (a), the model is trained to predict the missing region utilizing
(b) as a ground truth.

3.1 Image Out-painting as a Self-supervised Proxy Task

Aiming at learning generic representation, we proposed image out-painting as a

self-supervised proxy task. As shown in Figure 3.2, we first extract arbitrarily-size

10



Figure 3.2: The proposed out-painting proxy task. The random binary mask M is
applied on arbitrarily-size patch X to obtain transformed patch X̃. The encoder-
decoder architecture is trained to learn a generic representation by restoring the
original patch X from the transformed ones X̃, aiming to yield better performance on
target tasks via transfer learning.

patch X cropped at a random location from an unlabeled image. Subsequently, we

define a random binary mask M of the same dimensions as a patch X such that

boundary pixels are set to zero. We obtain transformed patch X̃ with boundary

pixels masked by combining binary mask M with the patch X.

Afterwards, the model F (·) containing an encoder-decoder architecture with skip

connections in between and produces an output X’ = F (X̃). The encoder learns to

produce latent representation of transformed patches X̃. The decoder utilizes latent

representation and restore original patch X from the transformed ones X̃.

Reconstruction Loss: The model F (·) is trained to minimize L2 distance be-

tween prediction X’ and the ground truth X.

L(X) = ||F (X ′)−X)||22 (3.1)

By restoring the original patch X from the transformed ones X’, the model F (·)

will learn representation about global geometry and spatial layout of the organs via

extrapolating within each patch. Once the model is pre-trained on out-painting proxy

task, we can use the encoder and encoder-decoder both for target classification and

11



Figure 3.3: An example of (a) central region and (b) random region binary mask M
applied to original images X.

segmentation tasks respectively.

3.2 Region Masks

The difficulty of the out-painting proxy task depends upon the size and shape of

binary mask M. To prevent the task from being too difficult or even unsolvable, we

limit the masked region to be less than 1/4 of the whole image. However, the binary

mask M could be of any shape, we present two different strategies here:

1. Central region: As shown in Figure 3.3, the simplest shape of binary mask M

could be square. We randomly select the length and location of the square such

that at most 1/4 area of the whole image is masked. There is a possibility

that the model will learn low-level features such as boundary pattern or texture

continuity to extrapolate the image. Such low-level features are not desirable

to learn generic representation.

2. Random region: To remove the boundaries, we obtained arbitrarily shaped

binary masks. Specifically, we generate an arbitrary number (≤ 10) of masks

with various sizes and aspect ratios, then superimpose them on top of each

other, resulting in a single mask of an arbitrary shape such that at most 1/4

12



Figure 3.4: Limitation of image out-painting is that the proxy task will fail to learn
generic representation when masked region does not contain any informative part
(e.g. chest).

area of the whole image is masked. Although we found central and random

region masks produce a similar generic representation, we use a random region

for our experiments.

3.3 Limitations of Out-painting

The out-painting proxy task aims to learn anatomical structures present in medical

images. However, if we apply random mask M to whole X-rays instead of the patches,

we notice the drop of performance on the target tasks. This behavior was expected

because the most informative part (e.g. chest) of X-rays is masked. In other words, we

should mask the anatomical rich region of the images such that the model will learn

generic representation by predicting the missing structures. For whole X-rays, we

observed that in-painting performs better than out-painting on target tasks. However,

this limitation is naturally eliminated in 3D because current GPUs can’t fit entire CT

scans and the deep models should be trained on sub-volumes. Moreover, the following

chapter demonstrates that this limitation is mitigated because out-painting is a better

proxy task than in-painting in four out of five 3D target tasks.
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Implementation Details

4.1.1 2D Out-painting

We trained our 2D out-painting proxy task on 77,074 X-rays in ChestXray8 (Wang

et al., 2017) dataset. Note that we did not utilize all 108,948 X-rays in the dataset

for training to avoid test-image leaks between proxy and target tasks. This proto-

col will ensure that our pre-trained model never sees any testing images of target

tasks. Moreover, out-painting proxy task utilize only unlabeled images with no an-

notations shipped with the datasets. U-Net (Ronneberger et al., 2015) architecture

with ResNet-18 (He et al., 2015) encoder is used to train the proxy task.

4.1.2 3D Out-painting

3D U-Net (Çiçek et al., 2016) architecture is trained on unlabeled 623 Chest

CT-scans in LUNA 2016 (Setio et al., 2017). We did not utilize all 888 CT scans

of the dataset to avoid test-image leaks between proxy and target tasks. Current

GPUs cannot fit entire 3D CT scans, hence we train the model on sub-volumes of

size 64×64×32 pixels. Following Zhou et al. (2019), we first randomly crop sub-

volumes of size 64×64×32 pixels, then we exclude sub-volumes which are empty (air)

or contain full tissues ensuring the model is trained only on informative sub-volumes.
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Table 4.1: Summary of the target tasks.

Code† Modality Dimension Source Description

DXC X-ray 2D Wang et al. (2017)
Eight pulmonary

diseases classification

IUC Ultrasound 2D Hurst et al. (2010)
RoI, bulb, and

background classification

NCC CT 2D/3D Setio et al. (2017)
Lung nodule false

positive reduction

LCS CT 3D Bilic et al. (2019)
Liver

segmentation

ECC CT 3D Tajbakhsh et al. (2015)
Pulmonary embolism

false positive reduction

BMS MRI 3D Bakas et al. (2018)
Brain tumor

segmentation
† The first letter denotes the object of interest (“N” for lung nodule, “E” for pulmonary embolism, “L” for liver,
etc); the second letter denotes the modality (“C” for CT, “X” for X-ray, “U” for Ultrasound, etc); the last letter
denotes the task (“C” for classification, “S” for segmentation).

4.1.3 Target Tasks

We have evaluated out-painting in seven medical imaging applications including

2D and 3D classification and segmentation tasks as shown in Table 4.1. We selected

seven target tasks such that they are diverse in terms of organs, diseases, and modal-

ities. In the following, we give a brief description of each target tasks:

1. Eight pulmonary disease classification (DXC): Wang et al. (2017) collected

a dataset of 108,948 X-rays containing eight diseases: Atelectasis, Cardiomegaly,

Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax. The tar-

get task here is to classify X-rays among eight diseases where each image can

have multiple diseases. The model is evaluated on 15,424 test images with Area

Under the Curve (AUC) score.

2. RoI/bulb/background classification (IUC): The dataset contains 92 videos
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in carotid intima-media thickness (CIMT) imaging with 8,021 frames (Hurst

et al., 2010). The target task is Region of Interest (RoI) localization i.e., classify

each frame among three classes: RoI, bulb, or background.

3. Lung nodule false positive reduction (NCC): Setio et al. (2017) provided

5,510,166 potential candidate locations of lung nodule in CT scans. The task

is the binary classification of potential candidates in two classes nodules or

non-nodules. Note that we can evaluate both 2D and 3D out-painting on the

NCC target task as the former one uses slice-based solutions and the latter use

volume-based solutions.

4. Lung nodule segmentation (NCS): The target task is to segment the lung

nodules in the dataset provided by (LIDC-IDRI) (Armato III et al., 2011) con-

taining 1,018 CT scans. Each 3D CT scan and the nodules have been marked

as volumetric binary masks. Following Zhou et al. (2020), we have re-sampled

the volumes to 1-1-1 spacing and then extracted a 64×64×32 crop around each

nodule. Similar to NCC, we can reformulate this target task in 2D by utilizing

slice-based solution.

5. Liver segmentation (LCS): Bilic et al. (2019) provided 130 labeled CT scans

containing binary masks of liver and lesion. In our experiments, the model is

trained to segment only liver as a foreground and the rest as a background.

6. Pulmonary embolism false positive reduction (ECC): Following Tajbakhsh

et al. (2015), we divided the dataset at the patient-level into a training set with

434 true positive Pulmonary Embolism (PE) candidates and 3,406 false positive

PE candidates. The target task is binary classification whether PE candidates

are true positives or false positives.
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7. Brain tumor segmentation (BMS): Bakas et al. (2018) provided a dataset

containing 285 brain MRI scans. Annotations include background (label 0)

and three tumor subregions: GD-enhancing tumor (label 4), the peritumoral

edema (label 2), and the necrotic and non-enhancing tumor core (label 1). We

consider those with label 0 as negatives and others as positives and evaluate

segmentation performance using Intersection over Union (IoU) scores.

4.1.4 Hyper-parameters

For all proxy tasks and target tasks, the raw image intensities were normalized to

the [0, 1] range before training. The mean square error (MSE) loss or L2-norm is used

as an objective function to train both proxy tasks. For 2D and 3D proxy tasks, we used

stochastic gradient descent (SGD) method (Zhang, 2004) with an initial learning rate

of 1e0 for optimization. We used a learning rate scheduler such that if validation loss

is not decreasing, the scheduler reduces the learning rate. For target tasks, we used

Adam optimizer (Kingma and Ba, 2014) with learning rate of 1e− 3, where β1 = 0.9

and β2 = 0.999. Moreover, for both proxy and target tasks, we used the early-

stop mechanism to avoid over-fitting. We evaluate the proposed method using Area

Under the Curve (AUC) and Intersection over Union (IoU) scores for classification

and segmentation target tasks respectively, and further present statistical analysis

based on an independent two-sample t-test.

4.2 Qualitative Results of Image Out-painting

We first qualitatively evaluate the image out-painting proxy task on test patches

as shown in Figure 4.1. It is clear from the figure that the predictions from the

pre-trained models are close to the original ground truth. Although the predictions

are blurry for larger masked areas, the model can preserve anatomical information.
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Figure 4.1: Qualitative results of image out-painting.

Figure 4.1 confirms our hypothesis that by doing the out-painting proxy task the

model will learn to predict the anatomical structures present in the medical images.

4.3 Ablation Study

The size of the masked area is an important hyper-parameter in the proposed

image out-painting proxy task. The larger masked areas make the proxy task too

difficult or even unsolvable, while with smaller masked areas the model may not learn

generic representation. Hence, we study the effect of the masked area in out-painting

on two 3D target tasks NCC and ECC. Specifically, we trained the proposed image out-

painting proxy task with different percentages of the masked area in the range [10,

70]. Once trained, we reported the mean and standard deviation of 10 rounds on two

target tasks.

As shown in Figure 4.2, the model trained with just 10% of the masked area
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Figure 4.2: The effect of masked area in out-painting.

performs worst than training from scratch. These results confirm that smaller masked

areas make the proxy task easier and the model may not learn generic representation.

On the other hand, the larger masked areas (>50%) make the task too difficult and the

model may not learn generic representation. However, we found out the performance

of the out-painting proxy task is consistent when the masked area is 20-30%. Hence,

we limit the masked area to be 25% of the whole image in our proposed image out-

painting proxy task.

4.4 2D Results

Once the model is pre-trained on the out-painting proxy task, we evaluate the

learned representation on four target tasks (see Table 4.1) via transfer learning.

Specifically, we fine-tuned all the layers of the pre-trained model to perform tar-

get classification and segmentation tasks. Note that for classification target tasks

(e.g., NCC, IUC, and DXC), we only fine-tune the encoder of the pre-trained model and

replacing the last layer with fully-connected layer, while for segmentation target tasks

(e.g., NCS) encoder and decoder both can be fine-tuned and replacing the last layer

with 1×1 convolutional layer. In the following, we extensively compare the proposed
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Figure 4.3: We conduct statistical analysis between out-painting in 2D and training
from scratch, ImageNet, and the high performing self-supervised baseline among ro-
tation and in-painting. The error bars represent the 95% confidence interval and the
number of ∗ on the bridge indicates how significant two schemes are different from
each other measured by p-value (“n.s.” stands for “not statistically significant”).

method with training from scratch, autoencoder, other self-supervised baselines such

as rotation and in-painting, and state-of-the-art ImageNet fine-tuning.

4.4.1 Out-painting vs. Training from Scratch

Figure 4.3 demonstrates that the fine-tuning models pre-trained on out-painting

proxy task consistently outperforms the models without any pre-training i.e., training

from scratch. Our statistical analysis shows that in three target tasks (except NCC),

the performance gain is significant over training from scratch. Specifically, for DXC

where both proxy and target task is in the same domain, the pre-trained model

achieves 5 points increase in AUC score over training from scratch. This is the

remarkable achievement given that our pre-training comes at zero annotation cost.

Moreover, to evaluate the generalizability of our pre-trained model on X-ray, we fine-

tune the models on the target tasks in different modalities such as Ultrasound (IUC)
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and CT (NCC and NCS). As shown in Figure 4.3, the pre-trained models achieves

statistically significant performance gain over training from scratch for IUC and NCS

target tasks. However, for NCC the out-painting underperform training from scratch

possibly because of the large domain gap as our pre-trained model was not trained

on CT slices. These mixed results in cross-domain transfer learning suggest that

same-domain transfer learning should be preferred whenever possible.

4.4.2 Out-painting vs. Autoencoder

We compare out-painting with simple autoencoder proxy task. Specifically, in

the autoencoder proxy task, the model learns the representation by restoring the

original input. As evident from Figure 4.3, out-painting consistently out-performs

autoencoder in all four target tasks. This suboptimal representation learned by au-

toencoder i.e., restoring the original input, further confirm the importance of masking

the anatomical rich region of the images. In other words, it confirms our hypothesis

that by predicting the anatomical structures the model can learn generic representa-

tion.

4.4.3 Out-painting vs. Self-supervised Baselines

We further compare our proposed method with other self-supervised baselines

such as RotNet (Gidaris et al., 2018) and In-painting (Pathak et al., 2016). To have

a fair comparison, we used an identical experimental setup for both baselines and

the proposed image out-painting proxy task. Figure 4.3 suggests that out-painting

is better than both self-supervised baselines with p > 0.05 in three out of four tar-

get tasks (except NCC). Further analysis of the results reveals that there is no clear

winner among the baselines that can always guarantee the highest performance in

all four target tasks. However, out-painting is relatively more consistent and robust
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than other baselines (except NCC) demonstrating the generalizability of the learned

representation.

4.4.4 Out-painting vs. ImageNet

Our proposed out-painting proxy task is competitive to state-of-the-art ImageNet

fine-tuning in three out of the four target tasks (except NCC). Note that ImageNet

utilizes 1.2 million annotated images, whereas our pre-training has zero annotations

costs. While our empirical results are strong, we recommend using pre-trained models

on ImageNet, if available, for 2D medical image analysis.

4.5 3D Results

As mentioned in section 1.2, one of the limitations of the current state-of-the-art

ImageNet fine-tuning paradigm is that we have to reformulate 3D imaging tasks and

solved them in 2D. To overcome this limitation, we pre-train 3D U-Net (Çiçek et al.,

2016) using proposed out-painting proxy task and evaluate the learned representation

on five 3D target tasks (see Table 4.1) via transfer learning. Specifically, we fine-

tuned all the layers of the pre-trained model to perform target classification and

segmentation tasks. Note that for classification target tasks (e.g., NCC and ECC),

we only fine-tune the encoder of the pre-trained model and replacing the last layer

with fully-connected layer, while for segmentation target tasks (e.g., NCS LCS, and

BMS) encoder and decoder both can be fine-tuned and replacing the last layer with

1× 1× 1 convolutional layer.

Table 4.2 demonstrates that the fine-tuning 3D models pre-trained on out-painting

proxy task consistently outperforms their counterparts trained from scratch. Interest-

ingly, even though 3D out-painting is trained on CT scans from LUNA 2016 dataset

(section 4.1.2), fine-tuning the pre-trained models outperforms training from scratch
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Table 4.2: Fine-tuning 3D models pre-trained on out-painting proxy task outperforms
training from scratch in five 3D target tasks across organs, diseases, and modalities.
Out-painting is better than in-painting in four out of five target tasks (except ECC),
but out-painting is statistically equivalent to in-painting in ECC at p = 0.05 level.
Note that the best result for each target task is highlighted in bold.

Proxy task NCC NCS ECC LCS BMS

Scratch 94.25 ± 5.07 74.05 ± 1.97 79.99 ± 8.06 77.82 ± 3.87 58.52 ± 2.61

Autoencoder 91.50 ± 2.28 75.53 ± 0.63 81.32 ± 5.52 80.57 ± 4.89 57.33 ± 2.57

In-painting 94.46 ± 3.87 75.52 ± 0.66 83.90 ± 2.63 81.05 ± 3.25 61.13 ± 2.66

Out-painting 95.16 ± 1.75 76.20 ± 0.65 82.88 ± 4.38 82.75 ± 2.64 65.79 ± 1.05

in cross-domain transfer learning i.e., LCS, ECC, and BMS target tasks. Moreover, out-

painting not only outperforms training from scratch but also autoencoder proxy task

in all five target tasks. Recall that in the autoencoder proxy task, the model learns the

representation by restoring the original input. This performance gain over training

from scratch and autoencoder is significant because our proposed pre-training requires

no human-annotated labels by successfully utilizing unlabeled medical images.

We further compare our 3D out-painting with other self-supervised baselines such

as in-painting Pathak et al. (2016). Note that (Pathak et al., 2016) proposed in-

painting for 2D natural images and it did not provide 3D pre-trained models to solve

3D imaging tasks. However, to have a fair comparison, we implemented in-painting in

3D and used identical experimental setup for both in-painting and out-painting proxy

tasks. As shown in Table 4.2, out-painting is better than in-painting in four out of five

target tasks (except ECC), but out-painting is statistically equivalent to in-painting

in ECC at p = 0.05 level. Further, out-painting is more generalizable and robust than

in-painting in cross-domain transfer learning demonstrating the superiority of learned

representation by the proposed proxy tasks.
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4.6 Application of Out-painting

Zhou et al. (2019) proposed Models Genesis, one of the early efforts to provide

generic 3D pre-trained models for medical image analysis. Models Genesis unified

four self-supervised proxy tasks including out-painting into single image restoration

task with an aim to learn from multiple perspectives, yielding generic pre-trained

models. Ablation study (Zhou et al., 2020) suggests that out-painting is the second-

best proxy task out of the four, leading Models Genesis to learn generic representation.

Hence, out-painting is utilized as a self-supervised proxy task to provide pre-trained

3D models for medical image analysis.
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Chapter 5

CONCLUSION

In this thesis, we propose a novel image out-painting as a self-supervised proxy task

that can learn the visual representation directly from medical images without using

any human-annotated labels. We demonstrated that the proposed proxy task, requir-

ing no annotations, outperforms training from scratch in six out of seven 2D and 3D

medical imagining applications covering both classification and segmentation. More-

over, in 2D, image out-painting is more consistent and robust as compared to current

self-supervised baselines like rotation and in-painting and offers competitive perfor-

mance to state-of-the-art models pre-trained on ImageNet. Further, we observed that

in-painting performs better than out-painting on target tasks when proxy tasks are

trained on whole X-rays rather than patches of X-rays. However, this limitation is

mitigated in 3D because current GPU memory can’t fit the entire 3D CT scan and

deep models have to process sub-volumes. Also, fine-tuning 3D models pre-trained

on out-painting proxy tasks outperforms training from scratch and in-painting in four

out of five 3D target tasks. Owing to its outstanding performance, out-painting is

utilized as one of the self-supervised proxy tasks to provide generic 3D pre-trained

models for medical image analysis.

We have proposed a generative approach to learn generic representation by predict-

ing the missing content when seeing only parts of the image. However, the alternative

is to design the discriminative proxy task to learn representation. Specifically, for nat-

ural images, the discriminative approaches based on contrastive learning in the latent

space have recently achieved state-of-the-art results (Chen et al., 2020). Nonethe-

less, contrastive learning requires huge mini-batch sizes or memory banks, making it
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impractical for 3D medical imaging applications. Hence, the success of contrastive

representation learning methods is yet to be explored in 3D medical image analysis.
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