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ABSTRACT 

Interpersonal communications during civil infrastructure systems operation and 

maintenance (CIS O&M) are processes for CIS O&M participants to exchange critical 

information. Poor communications that provide misleading information can jeopardize 

CIS O&M safety and efficiency. Previous studies suggest that communication contexts 

and features could be indicators of communication errors and relevant CIS O&M risks. 

However, challenges remain for reliable prediction of communication errors to ensure 

CIS O&M safety and efficiency. For example, existing studies lack a systematic 

summarization of risky contexts and features of communication processes for predicting 

communication errors. Limited studies examined quantitative methods for incorporating 

expert opinions as constraints for reliable communication error prediction. How to 

examine mitigation strategies (e.g., adjustments of communication protocols) for 

reducing communication-related CIS O&M risks is also challenging. The main reason is 

the lack of causal analysis about how various factors influence the occurrences and 

impacts of communication errors so that engineers lack the basis for intervention. 

This dissertation presents a method that integrates Bayesian Network (BN) 

modeling and simulation for communication-related risk prediction and mitigation. The 

proposed method aims at tackling the three challenges mentioned above for ensuring CIS 

O&M safety and efficiency. The proposed method contains three parts: 1) 

Communication Data Collection and Error Detection – designing lab experiments for 

collecting communication data in CIS O&M workflows and using the collected data for 

identifying risky communication contexts and features; 2) Communication Error 

Classification and Prediction – encoding expert knowledge as constraints through BN 
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model updating to improve the accuracy of communication error prediction based on 

given communication contexts and features, and 3) Communication Risk Mitigation – 

carrying out simulations to adjust communication protocols for reducing communication-

related CIS O&M risks. 

This dissertation uses two CIS O&M case studies (air traffic control and NPP 

outages) to validate the proposed method. The results indicate that the proposed method 

can 1) identify risky communication contexts and features, 2) predict communication 

errors and CIS O&M risks, and 3) reduce CIS O&M risks triggered by communication 

errors. The author envisions that the proposed method will shed light on achieving 

predictive control of interpersonal communications in dynamic and complex CIS O&M.  
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CHAPTER 1 

INTRODUCTION 

Civil infrastructure systems (CIS), such as transportation infrastructure, canal system 

networks, and power plants, require effective operations and maintenance (O&M) for 

providing vital services to surrounding communities. CIS O&M contains operational 

networks, which consist of human activities that interact with physical environments. 

Such operational networks are extremely vulnerable due to tedious interpersonal 

communication processes dominated by CIS O&M participants for achieving effective 

team coordination and collaboration. Interpersonal communications during CIS O&M are 

processes by which CIS O&M participants exchange information on field discoveries and 

schedule updates. Reliable and timely information exchanged through such 

communications are thus necessary to allow CIS O&M participants to make proper 

decisions and ensure CIS O&M safety and efficiency. An extensive study is thus indeed 

for revealing the causal relationships between interpersonal communications and the 

impacts on CIS O&M risks.  

CIS O&M contains interwoven networks of sets of interconnected elements such as 

human activities and CIS O&M workflows. The human activity network specifies the 

behaviors of CIS O&M participants during task preparations and executions. The CIS 

O&M workflows specify the spatiotemporal relationships between tasks listed on the as-

planned schedule. The interwoven relationships between human activities and CIS O&M 

workflows are vulnerable due to the large number of interconnected elements that interact 

in a way that is hard to predict and control. Despite well-designed procedures to carry out 

CIS O&M workflows, poor communications that provide misleading information could 
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still ruin these procedures and threaten CIS O&M safety and efficiency. Timely 

recognizing the vulnerabilities of interpersonal communications is vital for preventing 

CIS O&M risks (Golparvar-Fard et al. 2009; Zhang et al. 2009).  

Interpersonal communications during CIS O&M remain the main approach for 

exchanging data and information between CIS O&M participants by following well-

designed communication protocols during task preparations and executions. Such 

protocol specifies the communication network structure, chains of communications, 

communication timing and frequency, and the use of standardized phraseologies. For 

example, nuclear power plant (NPP) outages require an outage control supervisor to 

communicate with multiple field workers to exchange field information (e.g., field 

discoveries, abnormal indicators) through radio transmissions (Sun et al. 2018a). All such 

communications require clear and accurate exchanges of information promptly. Despite 

well-designed communication protocols, communication errors still exist and cause 

delays during NPP outages. Such delays could easily accumulate that cause significant 

cost overrun of NPP outages. 

Previous studies indicate that communication contexts and features could be 

indicators of communication errors during CIS O&M. Communication contexts refer to 

the environmental conditions when communication occurs during CIS O&M. For 

example, communication protocols during NPP outages require outage participants to 

communicate within a centralized communication network, in which field workers can 

only communicate with their supervisor individually. Besides, CIS O&M schedules that 

specify the spatiotemporal relationships between tasks could also affect communications. 

As the interconnectivity of a task (i.e., the number of connected tasks) increases, workers 
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who work on such a task could make more communication errors due to the increased 

task interconnectivity. 

Communication features refer to the distinctive aspects of communication networks 

and contents, which define the talking behaviors of CIS O&N participants. These features 

such as, message length, talking speed, timing, frequencies, patterns, and keywords are 

all features that compose communication contents. For example, interpersonal 

communications during air traffic control allow the air traffic controller (ATC) to 

communicate with pilots for exchanging directive information (i.e., clearance) (see 

Figure 1). ATCs may issue long clearances to pilots to guide aircraft arrivals and 

departures. Such long clearances contain numerous numerical information including 

heading directions, reduced speed, and decent altitude (Sun et al. 2018c). Even 

experienced pilots cannot percept and read-back such information correctly. Besides, 

meticulous ATCs can hardly discover all read-back errors while controlling numerous 

aircraft in the controlled airspace. Despite well-designed communication protocols, 

communication errors still exist and aggravate the challenge for keeping aircraft 

separated in a safe distance. 

 
Figure 1. Communication Contexts and Features during Air Traffic Control Processes 
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It is thus necessary to develop resilience-based scientific tools for ensuring the CIS 

O&M safety and efficiency due to communication errors. Previous studies spent 

extensive efforts in the design of such tools for improving CIS O&M resilience, 

challenges still exist (Madni and Jackson 2009). Some studies focused on the design of 

system-level strategies (e.g., schedule updating, network optimization) for improving the 

CIS O&M resilience (Rodríguez-Sánchez and Vera Perea 2015; Zeng and Yang 2009; 

Zhang et al. 2017b). Studies in the human factors domain discovered anomalous 

human/team behaviors in CIS O&M through tedious lab experiments. However, these 

studies aim at understanding how human/team cognitions influence the safety and 

efficiency of CIS O&M but fell short of providing a quantitative assessment of the 

impacts of communication errors on CIS O&M safety and efficiency (Boring 2015; 

Cooke et al. 2004; Pan and Bolton 2015). 

This dissertation aims to develop scientific tools for civil engineers to 1) identify 

risky communication contexts and features during CIS O&M workflows; 2) encode 

experts’ opinions as constraints with field observations for reliable prediction of 

communication errors and CIS O&M risks, and 3) examine possible mitigation strategies 

in reducing delays caused by communication errors during CIS O&M. The author 

envisions the tools developed in this dissertation will form a foundation for advancing 

interpersonal communication prognosis in the domain of CIS O&M. 

Motivating Cases 

This section demonstrates two motivating cases of the proposed research. The first 

case study shows potential delays due to communication errors (e.g., late communication, 

wrong information) in a long chain of work package approval processes during NPP 
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outages. The second case study demonstrates the safety risks (e.g., loss of separations, 

known as “LoS”) due to read-back errors during aircraft landing processes. 

The two motivating cases demonstrate the need for more in-depth investigations of 

the impacts of interpersonal communications on the safety and efficiency of CIS O&M. 

The investigations should focus on the 1) identification of risky communication contexts 

and features during CIS O&M, 2) using the identified communication contexts and 

features for predicting communication errors and CIS O&M risks (e.g., delays, LoS), and 

3) examining potential mitigation strategies for reducing impacts of communication 

errors on CIS O&M risks. Please see the detailed descriptions of the three case studies. 

Case 1: Interpersonal communications in nuclear power plant outages 

NPPs need routine shutdowns (known as “outages”) for maintenance and refueling 

activities that requires thousands of contract personnel to complete numerous 

maintenance and refueling tasks within 30 days (Sun et al. 2020; Zhang et al. 2018). 

Transitions between tasks (known as “handoff”) often involve highly uncertain activities, 

such as frequent transports of resources and labors between job sites, tedious 

interpersonal communications, and complex briefing and checking processes during NPP 

outages (Sun et al. 2020). The transitional nature of handoffs causes time and resource 

wastes due to the involvement of multiple groups of personnel and resource sharing 

problems. Despite well-developed training programs, contract personnel’s 

unaccustomedness of the working procedures and environments could still aggravate the 

risks of delays during handoffs. 

Interpersonal communications during handoffs are time-consuming due to 

complicated organization structures and tedious operational processes (Petronas et al. 
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2016; Tang et al. 2016; Zhang et al. 2016b). For example, field discoveries require 

approvals of new work packages for resolving the discovered anomalies (e.g., broken 

pump). Such approval processes require confirmations from all stakeholders to confirm 

before executions of the new work packages (Germain et al. 2014). Communication 

protocol violations during such approval processes could trigger safety concerns during 

NPP outages (Akca 2020). 

Tedious interpersonal communications in the chain of the approval process during 

NPP outages are necessary for ensuring safety while inducing time wastes and risks of 

communication errors (Akca 2020; Gorman et al. 2006). Hobbins et al. (Hobbins et al. 

2016) claimed that 50% of human-related incidents during NPP outages are associated 

with communication errors. For example, a field worker requested a valve replacement 

after over-torquing a valve during a turbine maintenance workflow with a hectic schedule 

at the Palo Verde Nuclear Generating Station in 2018. The worker accidentally sent a 

request to the outage control center directly by bypassing the supervisor, who needs to 

verify the request. In the request, the worker used the wrong model number of the valve 

without meticulous verifications and only fond out until the requested valve was 

delivered. The worker ends up sending a second request by following the specified chain 

of communication, which caused an 8-hour-delay to the outage. 

The example case above indicates that the wrong information (i.e., content) 

exchanged during communications and abnormal communication patterns resulted in 

delays during an NPP outage. Precise communications that follow the specified 

communication patterns are thus essential to avoid communication errors and delays. 

Furthermore, such delays on individual tasks often cause propagative delays to 
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workflows with hectic schedules. Motivated by this case, this dissertation aims at 

revealing what communication contexts that influence the occurrences of communication 

errors and propagate to CIS O&M risks. 

Case 2: Interpersonal communications in air traffic control 

Air traffic control aims at keeping multiple aircraft separated in a safe distance. LoS 

occurs when the minimum distance between airborne aircraft are breached in either a 

vertical or horizontal plane within the controlled airspace (U.S. Department of 

Transportation 2013). The U.S. Federal Aviation Administration (FAA) has reported over 

one thousand LoS in 2018 (Federal Aviation Administration 2019). Most of LoS 

involved with communication issues between ATC and pilots and remains threatening to 

airspace safety (Gario et al. 2016). The Terminal Approach and Departure Control 

Facilities (TRACON) usually handle traffic in a 30 to 50 nautical mile radius from the 

airport for guiding aircraft arrivals and departures (Castle et al. 2010).  

 LoS occurs within TRACON controlled airspace occurs even more frequently due to 

the operational complexity within such airspace that requires tedious communications 

between ATC and pilots for coordinating air traffic flows (Castle et al. 2010). For 

example, operations within the TRACON airspace consist of tedious handling processes 

of aircraft arrival and departure. Despite the uses of Automatic Dependent Surveillance-

Broadcast (ADS-B) in the NextGen (Castle et al. 2010), LoS still exists and jeopardizes 

the aviation safety (Bailey et al. 2005; Federal Aviation Administration 2015).  

ATCs are responsible for safe and efficient coordination of air traffic, play vital roles 

in avoiding LoS (Skaltsas et al. 2013). Poor communications between ATCs and pilots 

could result in misinterpretations of the clearances on flying instructions. For example, 
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two aircraft breached the horizontal separation minima near the Brisbane airport 

(Queensland, Australia) in 2016 due to an incorrect read-back of decent altitude from the 

pilot of Qantas Flight 652 (QF 652). The ATC issued a descending clearance to Qantas 

Flight 62 (QF 62) – “Qantas flight sixty-two descending maintain twenty-five thousand.” 

However, the pilot of QF 652 mistook this clearance and gave an incorrect read-back – 

“Descending maintain twenty thousand, Qantas flight six fifty-two.” The ATC did not 

recognize the incorrect read-back until the horizontal separation of two aircraft (QF 652 

and QF 62) reached to 3.2 nautical miles (separation minima is five nautical miles). 

Communication error between the ATC and pilots is one of the main contributors to 

most aviation accidents (Krivonos 2007; Shappell et al. 2007). Misunderstandings in 

communications can be hard to recognize and remain a critical threat to aviation safety 

(Elliott 2013; Immanuel and Candace 2013). Previous studies and historical records 

indicate that over 70% of all aviation accidents were involved with communication errors 

(Dao et al. 2011; Stelkens-Kobsch et al. 2015; Witowski 2018). Despite well-trained and 

experienced ATCs and pilots, miscommunications still occur and jeopardize the safety 

and efficiency of the aviation system (Molesworth and Estival 2015; Skaltsas et al. 2013).  

The example case above indicates that incorrect content in the pilot’s read-back lead 

to this LoS incident. Besides, the ignorance of the ATC on the pilot’s incorrect read-back 

also contributes to the LoS. A follow-up investigation of this incident also suggests that 

the talking speed and radio congestions were contributing factors to this incident. 

Motivated by the above case, this dissertation will dedicate in revealing 1) what 

communication features that influence the communication error occurrences and 2) what 

communication errors are more likely to cause CIS O&M risks. 
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Problem Statement 

The above motivating cases show that complex CIS O&M are extremely vulnerable 

due to numerous risky contextual factors and features of interpersonal communications 

during CIS O&M workflows. Challenges include: 1) lack of a synthesis of risky 

communication contexts and features during CIS O&M for predicting communication 

errors, 2) lack of methods to encode expert knowledge for reliable predictions of 

communication errors and CIS O&M risks based on the identified features and contextual 

factors extracted from limited communication data, and 3) lack of methods for using 

formalized representations to model communication behaviors in CIS O&M and 

examining different communication protocols in reducing risks of communication errors. 

How to identify risky contextual factors and features of interpersonal communications 

for predicting communication errors is pivotal. Besides, assessing the CIS O&M risks of 

communication errors and examining potential mitigation strategies to ensure CIS O&M 

safety and efficiency is also important. This section synthesizes the efficiency and safety 

risks associated with interpersonal communications in practices of CIS O&M. 

Efficiency issues in NPP outages due to interpersonal communications 

Interpersonal communications during NPP outages follow an adequately designed 

communication protocol that defines the organization structures, timing, channel, and 

content of the communication. Improper communications during handoffs could 

accumulate non-value-added waiting times due to resource sharing issues and cause 

delays to the workflow (Kim et al. 2014). A “hot handoff” in practice means two 

sequential tasks overlap with each other that allows workers on the successor task can 

early start the preparation processes. Such “hot handoffs” are encouraged in the current 



10 

NPP practice to allow worker teams to prepare in advance and reduce delays. However, 

how to determine the best timing for allowing worker teams to start preparing for the 

successor tasks without causing unnecessary delays to remain as a challenge in the 

current practice. A better understanding of how delays arise that involve complex 

interactions between workers and multiple tasks is thus necessary for predicting delays 

due to different “early-call” strategies. Such prediction could help outage control centers 

prepare for delays and control field operations proactively for improved efficiency and 

safety. 

Safety issues in air traffic control processes due to interpersonal communications 

Reliable communications are also critical for ensuring the safety of air traffic 

operations. Tedious communications between ATCs and pilots during busy air traffic 

operations could incur risks unwanted event handling processes that trigger propagations 

of air traffic control inefficiencies and accidents (Molesworth and Estival 2015; Prinzo 

and Britton 1993). Communication errors between ATCs and pilots have contributed to a 

majority of LoS that trigger risks of fatal accidents (Elliott 2013; Immanuel and Candace 

2013). A proactive air traffic control system is thus necessary. Establishing such a system 

requires a systematic characterization of communication errors to reveal how various 

communication arrangements and errors influence LoS during air traffic control 

operations. Such “know-how” can target the efforts of ATCs and pilots to the parts of 

communication processes and contents that influence LoS the most. 

Summary of similarities of interpersonal communications in CIS O&M 

Interpersonal communications during CIS O&M workflows and processes share 

some similarities. The nature of such similarities could introduce similar problems that 
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trigger CIS O&M risks. Table 1 provides a summary of similarities of communication 

during NPP outages and air traffic operations. As shown in Table 1, communications 

during NPP outages and air traffic operations are similar in terms of network structure 

(e.g., centralized), communication channel (e.g., radio), communication direction (e.g., 

bi-direction), and content. The summary indicates that a comprehensive understanding of 

the communication processes in CIS O&M is important for ensuring safety and efficiency 

Table 1. Similarities of Communications during NPP Outages and Air Traffic Operations 

 NPP Outages Air Traffic Operations 

Structure Centralized (supervisor); De-centralized Centralized (ATC) 

Channel Face-to-face; Radio; Text Messages Radio; DataLink (text) 

Direction Bi-directional; Multi-directional  Bi-directional 

Content 
Casual (task/site condition;  

field discoveries) 

Standard Phraseology 

(call-sign; altitude) 

Timing/ 

Frequency 

After task completion; 

Emergent situation 
Before all actions 

Pattern Report status; Assign tasks Issue clearance; Read-back 

 

Vision 

The goal of this research is to establish a predictive control system that could identify 

vulnerable interpersonal communications during CIS O&M using communication 

features and contextual factors. Such a system aims to assess the impacts of 

communication errors on efficiency and safety and provide mitigation strategies in 

reducing the risks of communication errors on CIS O&M safety and efficiency.  

The overall research question of this dissertation 

How to capture communication errors and mitigate communication-related 

safety and efficiency risks during CIS O&M?  

To answer this research question, the proposed study lists three steps in the overall 

research roadmap, 1) Communication Data Collection and Error Detection – designing a 
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lab experiment for collecting communication data and identify communication errors; 2) 

Communication Error Classification and Prediction – establishing a constraint-based 

Bayesian Network (BN) model updating method that incorporates expert opinion as 

constraints for predicting communication errors and the associated risks, and 3) 

Communication Risk Mitigation – developing a computational agent-based simulation 

approach for examining mitigation strategies in reducing the delays due to 

communication errors. The author decomposes the overall research question into three 

sub research questions based on the “three-step” research roadmap (Figure 2).  

 
Figure 2. Overall Research Roadmap 

 

Sub Research Question #1 

What are the features and contextual factors that influence the occurrence and 

propagation of communication errors in CIS O&M? 

Identifying features and contextual factors that influence the occurrence and 

propagation of communication errors is essential to ensure the efficiency and safety of 
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civil infrastructure operations. To answer this sub-question, this dissertation aims at 1) 

reviewing previous accident reports for identifying abnormal communication processes 

and risky features and contexts in communications, and 2) designing lab experiments for 

collecting communication data using two cases.  

The author first uses an NPP outage case to demonstrate how the proposed method 

could identify features and contexts that will influence the occurrence and propagation of 

communication errors in NPP outages through lab experiments. The designed lab 

experiment models the spatiotemporal relationship, and the human-resource relationship 

between tasks based on typical NPP outage maintenance workflow extracted from a 

previous outage schedule. The author recruits students from the Construction Engineering 

program at Arizona State University for participating in the experiments and collecting 

data. During experiments, the author observes the communication behaviors between 

participants and their performances. Such observations aim to identify risky contexts and 

features of the communication processes and understand the impact of communication 

errors on workflow delays. 

The author then designs an experiment of using an air traffic control case for 

identifying features and contexts that will influence the occurrence and propagation of 

communication errors during air traffic control processes. The designed experiment is 

based on an aircraft approaching process controlled by the TRACON controller. The 

aircraft approach process includes adjusting flight directions, speed reductions, and 

descending altitudes through communications between the ATC and pilots. The author 

recruits a retired ATC and three student pilots from the Aviation Program for 

participating in the experiment and collecting data. 
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Sub Research Question #2 

How to classify and predict communication errors by integrating field 

observations and experts’ experience? 

Classifying and predicting communication errors using contexts and features 

identified in the data collection section is critical for making timely corrective actions and 

ensuring the safety of civil infrastructure operations. However, a more accurate and 

reliable prediction demands an integrated use of field observations (observations in 

experiments) and experts’ experience. To answer this sub-question, this dissertation aims 

at implementing a constraint-based Bayesian Network (BN) model updating method that 

uses experts’ experiences as constraints for updating the conditional probabilities derived 

from field observations.  

Specifically, the author first constructs two BN models based on the data collected in 

the two experiments. The author uses the constructed BN models for deriving 1) 

conditional probabilities of communication errors on contexts and features and 2) 

conditional probabilities of risks on communication errors. Then, the author uses the 

Maximum-Entropy method to encode experts’ opinions into the BN for updating the 

posterior distributions derived from the data collected during lab experiments. 

Sub Research Question #3 

What communication protocols are optimal in mitigating delays caused by 

communication errors? 

Mitigating risks of communication errors is vital for ensuring the efficiency of civil 

infrastructure operations. Optimizing communication protocols could potentially help 

streamline CIS O&M by reducing delays caused by communication errors. To answer 



15 

this sub-question, this dissertation aims at developing a computational agent-based 

simulation approach for examining mitigation strategies in reducing delays due to 

communication errors. In the simulation model, the author introduced an “early-call” 

function, which allows a “hot handoff” during NPP outage for reducing delays.  

The objective function of the optimization is to minimize the outage workflow 

duration. However, a fundamental understanding of 1) when to call, and 2) who to call is 

thus necessary for investigating optimal communication strategies in reducing delays. To 

validate this methodology, the author classified the tasks in a valve maintenance 

workflow based on 1) the number of links a task has, and 2) the position of the task in the 

workflow.  Then the author examined the “early-call” function in reducing delays.  

Research Objectives 

Specifically, the objectives of the proposed research are: 

(a) Review accident reports from multiple sources and literature to identify features 

and contextual factors that influence the occurrence and propagation of 

communication errors during CIS O&M and design lab experiments for capturing 

the identified anomalies (Sub Research Question #1; Chapter 3); 

(b) Establish a constraint-based BN model updating method that can encode expert 

opinion as constraints on updating the conditional probabilities derived from the 

data collected during lab experiments for predicting communication errors (Sub 

Research Question #2; Chapter 4); 

(c) Develop an agent-based simulation model for examining mitigation strategies in 

reducing impacts of communication errors on the delays of civil infrastructure 

operations (Sub Research Question #3; Chapter 5). 
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Dissertation Organization 

The Introduction chapter of this dissertation provides a brief overview of the 

conducted research and identifies the potential of the research study using two strong 

motivation cases. This chapter also elaborates on the vision of the author based on the 

discussed research objectives. The overall dissertation provides specific research 

contributions that highlighted and discussed in the research vision section. The author 

concludes the dissertation by summarizing the entire research study, its contributions to 

the literature and briefly mentions the future research directions. The four chapters 

discussed between the Introduction and Conclusion chapter are being prepared to submit 

for publication as separate journal articles.  

The following describes the outline of each chapter.  

 Chapter 1 (INTRODUCTION) uses two strong motivation cases to demonstrate the 

practical problems of communication issues in CIS O&M. The author shows a “three-

step” research roadmap to approach three listed sub research questions.  

 Chapter 2 (A REVIEW OF INTERPERSONAL COMMUNICATIONS IN CIS 

O&M) synthesizes various communication-related studies for understanding the 

impacts of interpersonal communications on CIS O&M safety and efficiency. The 

significance of this review of the literature and CIS O&M accident/incident reports is 

to provide a basis for identifying risky communication contexts and features. 

 Chapter 3 (COMMUNICATION DATA COLLECTION AND ERROR 

DETECTION) designs lab experiments for capturing abnormal interpersonal 

communications during CIS O&M. The author uses formal models for modeling 

detailed human-task-workspace interactions during typical workflows of CIS O&M. 
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The significance of the experiment design is to collect abundant human behavior data 

for comprehending human reliability on CIS O&M safety and efficiency.  

 Chapter 4 (COMMUNICATION ERROR CLASSIFICATION AND PREDICTION 

THROUGH CONSTRAINT-BASED BAYESIAN NETWORK MODELING) 

introduces a constraint-based BN modeling method for predicting communication 

errors and CIS O&M risks. In particular, the BN method aims at 1) constructing a BN 

model based on the data collected from a series of lab experiments, 2) classifying and 

predicting communication errors and CIS O&M risks (LoS during air traffic control 

operations, delays during NPP outages) based on contexts and features of 

communication processes, and 3) using a Maximum-Entropy method to encode expert 

knowledge as constraints for improving the prediction accuracy of the BN model. The 

significance of this method is to incorporate expert knowledge for updating posterior 

distributions derived from the BN based on the data collected from lab experiments.   

 Chapter 5 (COMMUNICATION RISK MITIGATION THROUGH 

COMPUTATIONAL AGENT-BASED MODELING AND OPTIMIZATION) 

demonstrates a developed computational simulation model of a CIS O&M workflow. 

The significance of the developed model is to incorporate human activities into 

conventional CIS O&M workflow modeling efforts. Besides, the developed model 

allows examinations of possible mitigation strategies in reducing CIS O&M 

workflow delays under numerous uncertainties.  

 Chapter 6 (CONCLUSION AND FUTURE RESEARCH) concludes and summarizes 

the major contributions of this research. This chapter shows the future research 

directions for advancing the proposed research. 



18 

CHAPTER 2 

A REVIEW OF INTERPERSONAL COMMUNICATIONS IN CIS O&M 

CIS O&M requires effective team coordination and collaboration to ensure safety and 

efficiency. Such coordination and collaboration often involve tedious interpersonal 

communication processes for exchanging information of schedule updates or field 

discoveries. Communication errors arise and propagate during CIS O&M could result in 

delays and safety issues. For example, 80 percent of aviation accidents and incidents 

during air traffic operations were associated with communication errors (e.g., read-back 

error) between ATCs and pilots. Some of the accidents involve severe fatalities. Besides, 

late communications during NPP outages often lead to significant delays and financial 

losses. Moreover, inadequate information exchanged during interpersonal 

communications could cause severe damage to the civil infrastructure. For example, the 

Three Mile Island accident was due to miscommunications among field workers that 

cause the cooling system malfunction. Such loss of coolant accidents (LOCA) usually 

causes severe core damages and leads to radioactive contamination due to core 

meltdown. A better understanding of interpersonal communications is thus crucial for 

ensuring the efficiency and safety of civil infrastructure operations.  

This section aims at synthesizing various research studies that examine the impacts of 

interpersonal communications on CIS O&M safety and efficiency. This synthesis 

provides a detailed review of the studied communication contexts and features (e.g., 

communication network, link). Such a synthesis forms a basis for the author 1) to identify 

risky communication contexts and features, and 2) to study how these risky 

communication contexts and features are associate with communication errors and CIS 
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O&M risks, and 3) to quantitatively assess the impacts of the interpersonal 

communications on the identified CIS O&M risks. 

Contextual Factors and Features of Interpersonal Communications 

CIS O&M requires coordinating groups of workers to complete thousands of tasks in 

complex workflows. Good teamwork is increasingly more necessary in accomplishing 

complex tasks that individuals cannot manage alone. Such teamwork demands all team 

members work together and make decisions. However, limited studies examined “good” 

teamwork in the contexts of CIS O&M. Communication, as one of the most important 

processes to increase team situation awareness, plays a significant role in affecting the 

information flow between individuals within and across teams. Previous studies about 

communication are mainly within the social science domain, and social scientists have 

extensively studied several parameters of communication. However, most of these studies 

fell short in providing a quantitative assessment of how combinations of communication 

parameters could result in communication errors. 

The author has synthesized all communication-related studies along two dimensions: 

1) communication network patterns; and 2) characterization of communication links. 

Table 2  presents a synthesis of parameters of communication along these two 

dimensions. For example, the structure of a communication network is formed by nodes 

and links. Most of these studies show that multiple communication features could have an 

impact on causing communication errors. However, how to quantitatively assess the 

impacts of communication errors on operational processes remain challenging. Besides, 

such a quantitative assessment is critical to guide developing better communication 

training for ensuring CIS safety and efficiency. 
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Table 2. Communications Parameters Studied in Previous Studies 

Aspects of 

Communication 
Properties Example Values References 

Communication 

Network 

Patterns 

Structure – 

network formed 

by nodes and links 

Circle-pattern;  

Chain-pattern;  

Wheel-pattern 

(Liao et al. 2014a; 

Park et al. 2012) 

Multi-level 

indicators of 

communication 

complexity 

Complexity levels of 

communications 

(Abstraction Hierarchy 

Level and Engineering 

Decision Level) 

(Cooke et al. 2017; 

Pan and Bolton 

2015; Wang et al. 

2016) 

Team-level 

indicators 

Communication 

Measures (content; flow; 

timing) 

(Cooke et al. 2005, 

2013; Cooke and 

Gorman 2009) 

Characterization 

of Links 

Communication 

Channel 

Face-to-face;  

Radio device;  

Mobile devices. 

(Jara et al. 2014; 

Sites et al. 2016) 

Timing and 

Frequency of 

Communication 

Every 15 min;  

“early-call” 

(Kim et al. 2010; 

Liao et al. 2014a) 

Ownership and 

Accessibility of 

the Link 

Point-to-point link;  

Multipoint link;  

Broadcast link 

(Park et al. 2012) 

Standardized 

Language 

Symbols and language 

for communication  

(Guzman et al. 

2002) 

 

Many studies established methods for characterizing communication networks and 

identifying critical factors that influence communication errors and related team 

performance degradation. These studies considered communications as a network 

composed of nodes and links between nodes (Liao et al. 2014b; Wang et al. 2016). Nodes 

are people or teams linked by various communication channels or methods (Darwazeh et 

al. 2017; Liao et al. 2014a). Communication reliability analysis thus includes the 

characterization of the nodes, links, and the network structures that collectively achieve 

data and information sharing across people and teams for achieving real-time team 

situation awareness and effective teamwork (Dao et al. 2011).  
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At the node level, the human reliability studies mentioned in the previous section 

examined the cognition, decision, and execution reliability of human individuals (Wilke 

et al. 2014). At the link level, a series of “communication protocol” studies examined 

how various options of exchanging information between people and teams influence the 

success rates of transferring the information and data. Those factors include the technical 

methods or channels used for information exchange (Darwazeh et al. 2017), frequencies, 

and timing of communication along with the link (Smart and Shadbolt 2012), 

communication contents, and related coding or standardization efforts (Chierichetti et al. 

2014; Tiferes et al. 2015), and confirmation and follow-up strategies for confirming the 

communication contents (Laakso et al. 2002).  

At the network level, some studies investigated how network structures and 

dynamics-related factors influenced the real-time team situation awareness. Examples of 

communication network reliability studies examined ways of classifying topological 

structures of networks (Gillan et al. 1992; Wang et al. 2016), examining properties of 

data and information flows (Herrmann 2004), identifying the vulnerability of 

communication protocols and networks for ensuring the cyber-security of the 

communication networks (Jara et al. 2014) and assessing schedules and delays of 

communication networks (Mo 2007).  

All these communication protocols and network studies have been advancing the 

understanding of communication reliability. Unfortunately, limited studies were on the 

impacts of communication errors on teamwork safety and efficiency during the 

collaborative operations in CIS O&M. Fundamental limitations lie in the lack of 

understanding about 1) what features and contexts that influence the occurrence and 
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propagation of communication errors; 2) how to reliably predict communication errors 

using combinations of features and contexts; 3) what communication protocols are 

optimal in mitigating communication-related risks. 

One challenge related to the communication issues is that technically it is infeasible 

to carry out a large number of teamwork simulations in various environmental conditions 

and changed facility conditions. Combinations of a large number of environmental 

factors need careful synthesis for designing human subject experiments that cover critical 

combinations that significantly influence team performance. Another possible approach 

could be using natural language processing, and machine learning algorithms that could 

automate the summarization of documented accidents in historical reports and 

experimental results documented by researchers to identify common factors and 

environmental conditions studied and critical knowledge gaps (Demner-Fushman et al. 

2009; Zou et al. 2017). Further experiment design should build on such gap analysis 

using historical reports and academic literature. 

A Synthesis of Impacts of Interpersonal Communications CIS O&M Safety and 

Efficiency 

Reliable interpersonal communications require immediate attention and a clear 

understanding of the information exchanged for achieving more resilient CIS O&M 

(Boring 2009, 2010; Shi et al. 2019). Table 3 lists steps (e.g., cognition, decision-making, 

execution) in the communication processes with examples to demonstrate the complexity 

of such communications. Each step could induce risks of communication errors and 

affect CIS O&M safety and efficiency. For example, during air traffic control, the ATC is 

responsible for providing vocal directives such as flight directions, speed limit, and 
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weather conditions to pilots during the take-off, en-route, and landing processes (Wang et 

al. 2016). Such air traffic operation requires the ATC and pilots to exchange real-time 

information using standard phraseologies through radio communications. A correct 

understanding of the exchanged information is critical to ensure safe air traffic control. 

Besides, both ATC and pilots also need to maintain situation awareness by continuously 

monitoring the radar or through visual checking (Dao et al. 2011; Demir et al. 2017). 

Decisions and executions such as aircraft turn-around reduce speed, and change flight 

directions are always required to make sure the minimum separation between aircraft and 

avoids LoS.  

Table 3. Detailed Illustration of Communication Processes in CIS O&M 

Human Cognitive Behaviors during 

Interpersonal Communications 
Examples 

Cognition 

 Perception of the information received 

 Talking behaviors  

 Talking speed 

 Frequency 

 Information volume 

Decision-making 

 Who to report for  

 Field observations 

 Abnormal indicators? 

 When to communicate? 

Execution 

  Initiate communications 

 Phone call 

 E-mail 

 Message 

 

Interpersonal communications during CIS O&M remain as a key approach for human 

individuals within and across the team to exchange field information and achieve better 

team situation awareness (Liao et al. 2014a). Poor communications always jeopardize the 

safety and efficiency of CIS O&M (Figure 3). Researchers can quantify team situation 

awareness as the deviations of the team’s knowledge and the actual conditions in the field 
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(Demir et al. 2017; Gorman et al. 2006). The communication reliability thus examines 

how the reliability of data or information exchanges during communications between 

human individuals or digital devices used by multiple people influence the team situation 

awareness (Lee et al. 2015; Park et al. 2012). Specifically, the communication reliability 

reveals how communication errors arise, propagate, and influence the safety and 

efficiency of the real-time operation and environmental condition information shared by 

all team members (Cooke et al. 2017; Sun et al. 2020).  

 

Figure 3. Impact of Communication Errors on Aviation Safety 

 

Studying team communication reliability should examine how different 

communication protocols influence communication error occurrences and propagation. 

Communication protocols are rules that 1) define the structures of the communication 

network; and 2) specify the communication channel, frequency, timing, and standardized 

phraseologies used during communications (Sun et al. 2018b; Zhang et al. 2018). A 

typical communication protocol should answer three questions, 1) who to communicate 

within or across the team (e.g., team member, supervisor); 2) when to communicate (e.g., 
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when the task completes; when the task is about to complete); 3) how to communicate 

(e.g., face-to-face; text message; email; phone call). All individuals are required to follow 

the specified communication protocols when exchanging field information.  

Interestingly, even everyone strictly follows the protocol, communication errors still 

exist and jeopardize CIS O&M, which usually results in reworks, severe delays, and 

additional cost (Sambasivan and Soon 2007). A better understanding of the 

communication error propagation mechanisms during CIS O&M is thus necessary to 

ensure CIS O&M safety and efficiency. Such an understanding should address 1) how 

communication errors arise and propagate during CIS O&M; 2) how to assess and 

mitigate the impact of communication errors on CIS O&M safety and efficiency 

quantitatively; 3) how to validate the proposed mitigation strategies for reducing impacts 

of communication errors on CIS O&M.  
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CHAPTER 3 

COMMUNICATION DATA COLLECTION AND ERROR DETECTION 

Introduction 

CIS O&M workflows usually involve coordinating a huge amount of tasks with 

extensive collaboration efforts among participants. Timely and effective interpersonal 

communications in CIS O&M are essential for ensuring safety and efficiency. Poor 

interpersonal communications between CIS O&M participants not only result in late 

deliveries of information during field operations but also propagate to severe CIS O&M 

risks and jeopardize CIS safety and efficiency. NPPs and airports are all critical CIS that 

could be vulnerable to delays or incidents. However, several challenges exist that prevent 

the safe and efficient CIS O&M, such as 1) lack of systematic summarization of risky 

linguistic and grammatical features for predicting communication deficiencies, and 2) 

lack of formalized representations of communication behaviors consist of linguistic and 

grammatical features for modeling communication behaviors within and across teams. 

Achieving safe and efficient CIS O&M requires extensive data analytics to reveal the 

underlying problems. Such data analytics usually requires rich field data and historical 

records to serve as input for data analytics. Unfortunately, researchers from multiple 

domains start to collect human behavior data but only limited data are available for 

comprehending human behaviors on CIS O&M. Besides, data from NPP outages and air 

traffic control operations could be difficult to acquire due to 1) privacy issues, 2) 

cybersecurity concerns, and 3) union restrictions (a huge number of NPP workers and 

ATC participants are union workers). Moreover, comprehensive human-related dataset 

(e.g., communication behaviors) does not exist yet for researchers to study how 
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interpersonal communications could jeopardize CIS O&M safety and efficiency. This 

section aims at design and carries out a series of lab experiments for capturing abnormal 

interpersonal communications during CIS O&M. The author uses a formal method for 

modeling detailed spatiotemporal human-task-workspace interactions during typical 

workflows of CIS O&M. 

Handoff processes are transitions between tasks during CIS O&M. Such processes 

involve tool pick-up/drop-off activities, traveling between job sites, preparations for the 

next work orders, and tedious interpersonal communications for coordination and 

collaboration between multiple worker teams (Zhang et al. 2017a). Poor communications 

during handoffs could induce resources sharing problems that accumulate non-value-

added waiting times and cause delays to the workflow (Kim et al. 2014). Figure 4 

illustrates the waiting line at the shared tool pick-up/return and dosimetry checking area 

inside the radiation protection island (RPI) at an NPP. The outage manager should 

determine the best timing to call in worker teams to start handoffs. However, without 

real-time field information and properly designed communication protocols, even an 

experienced outage manager could hardly determine 1) which worker team should I call 

to start the handoff processes, and 2) when should I call the worker teams to start the 

handoff processes?.  

Good communication protocols should always rely on the progress of CIS O&M 

workflow and field conditions to avoid non-value-added activities (e.g., non-essential 

travel, long waiting lines). A better understanding of delays arising and propagation 

mechanisms associate with dynamic human-physical interactions of CIS O&M are thus 

necessary for predicting delays under different communication protocols. Such prediction 
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could support the outage manager to make a proper judgment on 1) when to call, and 2) 

who to call for reducing delays and achieving better NPP outage resilience. 

 
Figure 4. Waiting Line in the Radiation Protection Island (RPI) during an NPP Outage 

 

Besides, allocating workers and resources to monitoring a large number of tasks for 

ensuring safety and efficiency during NPP outages is challenging. Workers need to keep 

tracking the progress of all the tasks on the critical path to avoid delays (Yoo et al. 2016). 

Besides,  workers also need to monitor the progress of the non-critical-path tasks to avoid 

critical-path change due to the accumulation of delays of non-critical-path tasks (Kim et 

al. 2014). However, such manual progress monitoring requires excessive human efforts, 

which are limited resources in NPP outages. Besides, the long communication chain 

caused by the complex organization of outage participants and tedious processes. Delays 

in such a communication process prevent the real-time updating of the overall outage 

schedule using the scheduling software directly to coordinate work because the tasks are 

completed long before the status updates as complete in the scheduling software.  
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Previous Research 

Interpersonal communications in NPP outages 

Operating and managing NPP outages is challenging due to the coordination and 

collaboration of a large number of outage personnel on thousands of maintenance and 

refueling activities within a short period and zero-tolerance for accidents (Hadavi 2008). 

Tedious refueling and maintenance tasks during NPP outages require workers to perform 

the scheduled tasks at the right time and place by strictly following outage procedures. 

However, workers can still forget certain steps specified in the procedure while 

performing the scheduled tasks and cause reworks (Pyy 2001).  

Human and team cognition have played a critical role in affecting the efficiency and 

safety of CIS O&M (Promsorn et al. 2015). For example, previous studies have revealed 

that the forgetting, fatigue, and experience level of individuals can seriously affect 

workflow efficiency and safety during CIS O&M (Sun et al. 2018a). Besides, team 

behaviors (e.g., communication, situation awareness, culture) also contribute to many 

operational failures. Forgetting errors (known as “omission errors”) is the most frequent 

human error in valve maintenance tasks and causes 14% of valve maintenance failures 

(Kim and Park 2012; Love and Li 2000; Neboyan and Lederman 1987; Pyy 2001). 

Besides, such errors always associate with additional costs due to reworks (Love and Li 

2000).  

Interpersonal communications in air traffic control operations 

Air traffic control also involves complex operational processes that help to maintain 

minimum separation between aircraft while keeping orderly and expeditious air traffic 

flows (Sun et al. 2018c). Human factors during air traffic control have been proved to be 
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one of the dominant factors that could jeopardize the airspace safety (Borghini et al. 

2017; Chang and Wong 2012; Shappell et al. 2007). In particular, ATC-pilot 

communication studies have been studying risky communication features, such as 

message frequency and message complexity, as indicators of communication errors 

(Smith 2005). These risky communication features could raise concerns of 

communication errors that often arise in read-backs and confirmations during the 

information exchange processes between the ATC and pilots.  

Communication monitoring and error detection alerts could be potentially useful to 

not only recognize erroneous communication behaviors but also minimize LoS during an 

air traffic control. Besides, communication classification is vital for formulating the basis 

for accurate detection of communication errors. Previous studies focused on identifying 

inconsistencies during ATC-pilot communications (Geacăr 2016; Immanuel and Candace 

2013). Such error detection concentrates only on determining whether a mismatch 

occurred in the communications without quantifying the risks of such errors. 

Communication errors still exist and jeopardize the safety and efficiency of air traffic 

control operations.  

Augmenting the existing ATC-pilot communication mechanisms is thus necessary 

through automatic recognition of communication errors and guidance for preventing 

propagated risks. Such augmentation requires 1) detailed aircraft approach process model 

with full consideration of ATC-pilot communications; 2) identifications of 

communications features that could potentially support the early detection of 

communication errors; 3) discovering trends of communication errors from historical data 

and propose a systematic classification method to classify communication errors. 
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Lab Experiment Design/Setup for Human Behavior Data Collection 

The author carried out series of lab experiment for simulating 1) valve/turbine 

maintenance processes during NPP outages and 2) aircraft landing processes during 

TRACON operations and for collecting data of 1) communications between participants, 

2) task information, 3) workflow duration, and 4) events of accidents/incidents.  

Collecting human behavior data during valve/turbine maintenance processes 

This section presents research experiments for modeling and capturing 

communication behaviors of outage participants (e.g., supervisor, workers) during 

valve/turbine maintenance workflows of NPP outages. The author conducted extensive 

post-outage report analysis and interviews with industry experts to identify sections of 

NPP outages as typical field workflows that have repetitive procedures close to critical 

paths of outage schedules. Such typical “repetitive near-critical-path field workflows” 

can frequently cause changes of critical paths, and uncertain handoffs within such field 

workflows can seriously influence the delays. The author found two typical workflows 

(valve maintenance and turbine maintenance) that always delay during NPP outages. 

These workflows associate with many handoffs (“transitions” between tasks) activities in 

the Radiation Protection Island (RPI) (in this case, the lab for simulating the RPI indoor 

space) that could induce risks of delays. 

The lab experiment design (Figure 5) has two objectives: 1) modeling – to model the 

detailed interactions between individuals in a valve/turbine maintenance workflow during 

a typical NPP outage, 2) data collection – to capture abnormal human/team behaviors 

during such maintenance workflows, 3) to examine the performance of using the 

developed proactive communication system in reducing workflow delays, and 4) to serve 
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as inputs for the computation simulation for examining the impact of abnormal 

human/team behaviors in complex scenarios and potential mitigation strategies in 

reducing delays. 

 
Figure 5. Experiment Design and Modeling of Workflows during NPP Outages 

 

Workflow Modeling 

Valve Maintenance Workflow – A Linear Schedule (Plan A) 

The tasks simulated in the experiment are valve maintenance at Site A, Site B, and 

handoff at an indoor workspace. Maintenance of a valve at one job site requires five 

steps, 1) Remove the insulation from the valve; 2) De-term, the motor operator; 3) 

Perform valve maintenance; 4) Re-term the motor operator, and 5) Re-install the 

insulation. Figure 6 visualizes the entire as-designed workflow at Site A and Site B. 

Blocks with the same color are tasks using the same resource that is part of the same 

worker team (e.g., Insulator: black, Electrician: blue, Mechanic: orange). Tasks sharing 

the same worker team cannot be executed at the same time. Table 4 summarizes detailed 

task information and the associated uncertainties.  
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Figure 6. Valve Maintenance Workflow at Site A/B (Plan A) 

 

Table 4. Task Information for the Valve Maintenance Workflow (Plan A) 

Task # Task Name Location 
Worker 

Team 

Avg.  

Task 

Duration 

(min) 

Scaled Task 

Duration 

(min) 

Task 1 
Remove the insulation 

from the valve 

Site A/B 

Insulators 30 3 

Task 2 
De-term, the motor 

operator 
Electricians 45 4.5 

Task 3 
Perform valve 

maintenance 
Mechanics 60 6 

Task 4 
Re-term the motor 

operator 
Electricians 45 4.5 

Task 5 
Re-install the 

insulation 
Insulators 30 3 

 

Turbine Maintenance Workflow – A Non-Linear Schedule (Plan B) 

The tasks simulated in the experiment are turbine maintenance at Site A, Site B, and 

handoff at an indoor workspace. Maintenance of a turbine at one job site requires four 

steps, 1) Tension Inner Casing, Closing Doors & Heat Shields; 2) Weld Hood Spray 

Union Lock Tabs; 3) Install Cone Extension, and 4) Remove Decking from Around 

Casing. Figure 7 visualizes the entire as-designed workflow at Site A and Site B. Blocks 

with the same color are tasks using the same worker team that is part of the same labor 

team (e.g., Mechanic: black, Welder: blue, Turbine Operator: orange). Tasks sharing the 

same worker team cannot be executed at the same time. Table 5 summarizes detailed task 

information and the associated uncertainties.  



34 

 
Figure 7. Turbine Maintenance Workflow at Site A/B (Plan B) 

 

Table 5. Task Information for the Turbine Maintenance Workflow (Plan B) 

Task # Task name Location 
Worker 

Team 

Planned 

Duration 

(min) 

Scaled 

Task 

Duration 

(min) 

Task 1 
Tension Inner Casing, Closing 

Doors & Heat Shields 

Site A/B 

Mechanic 45 4.5 

Task 2 
Weld Hood Spray Union Lock 

Tabs 
Welder 60 6 

Task 3 Install Cone Extension 
Turbine 

Operator 
45 4.5 

Task 4 
Remove Decking from Around 

Casing 

Turbine 

Operator 
60 6 

 

Handoff activities in the valve/turbine maintenance workflow 

Handoffs are “transitions” between tasks during NPP outages. The indoor workspace 

(Figure 8) simulates the handoff processes inside the RPI. The designed indoor 

workspace aims to prepare worker teams for conducting scheduled tasks inside the 

containment. The handoff processes inside the indoor workspace include checking 

available work packages, dosimetry checking, getting technical debrief, picking up tools 

(e.g., earplugs). All worker teams need to go through a specific handoff process (different 

worker teams will have a different sequence of station visiting) in an indoor workspace to 

be ready to work inside the containment for valve maintenance.  
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Figure 8. The Layout of the RPI at Palo Verde NPP Station 

 

Within the indoor workspace, the author set up four stations (station 1, station 2, 

station 3, and station 4) in the lab at the Polytechnic campus of Arizona State University 

(ASU) for representing the workstations (Dosimetry Checking, Tool Pick-up/Drop-off, 

Technical Debrief, and Work Package Display) (Figure 9). All worker teams need to go 

through RPI for 1) checking available work packages, 2) getting the technical debrief, 

and 3) picking up tools (e.g., earplugs) before they start their work at Site A. Besides, 

once a worker team completes a task, they need to 1) get back to RPI for dosimetry 

checking; 2) dropping off tools, and 3) check other available work packages (see Table 

11 and Table 12). The waiting time of RPI is thus essential to 1) estimate the delays to 

the valve maintenance activities at Site A caused by handoff in RPI and 2) estimate the 

delays of the entire outage workflow caused by delayed valve maintenance. 
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Figure 9. Lab Layout (Similar Layout with an RPI) 

 

According to the real practice of handoff processes during NPP outages, worker 

teams may have different objectives when they enter into the indoor workspace. For 

example, the electricians are pick-up electrical tools and get debriefing about which 

motor need to be de-termed during valve maintenance. Thus, different worker teams 

could have different moving patterns in the indoor workspace during handoff. Besides, 

the time for each worker team spent at different stations might be different. The author 

asked different worker teams who were working on different work packages to follow 

different handoff processes in the lab. Another purpose is to test how the developed 

computer vision algorithms could estimate the overall waiting time even when different 

workers visit the indoor stations in different orders due to the nature of their tasks. Such 

waiting-time estimation for different types of workers mixed in a room is complex due to 

the interwoven workflows of task preparations of multiple workers in the RPI. 
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Table 6 and Table 7 illustrates all station visiting sequences of worker teams while 

entering or exiting the indoor workspace in Plan A and Plan B. Besides, once a worker 

team completes a task and travel back from the containment, they need to go through 

certain processes in the RPI for dosimetry checking, drop off tools, and check other 

available work packages. According to the practice of handoff processes between tasks, 

the author found out from the interview that workers might have different objectives 

before/after they start working on the scheduled tasks. Thus, different worker teams can 

have different moving patterns in the indoor workspace during handoff. Besides, the time 

for each worker team spent at different stations might be different. Table 8 and Table 9 

indicates detailed handoff activity information for different worker teams in Plan A and 

Plan B. 

Table 6. Handoff Processes in the Indoor Work Environment (Plan A) 

Worker Enter/Exist containment Sequences of station visiting 

Insulator 
Enter 4 → 1 → 2 → 3 

Exit 1 → 2 → 4 

Electrician 
Enter 4 → 2 → 1 → 3 

Exit 1 → 4 

Mechanic 
Enter 4 → 2 → 3 

Exit 1 → 2 

 

Table 7. Tasks during Handoff for Valve Maintenance (Plan A) 

Task name Station Resource 

Avg. task 

duration: Enter 

(min) 

Avg. task 

duration: Exit 

(min) 

Dosimetry 

checking 
Station 1 Insulator/Electrician/Mechanic 5/5/NA 5/5/5 

Pick-up/Drop-off 

tools 
Station 2 Insulator/Electrician/Mechanic 5/10/15 3/NA/5 

Technical 

debrief 
Station 3 Insulator/Electrician/Mechanic 5/10/15 NA 

Check work 

packages 
Station 4 Insulator/Electrician/Mechanic 5/5/5 3/3/NA 
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Table 8. Handoff Processes in the Indoor Work Environment (Plan B) 

Worker Enter/Exist containment Sequences of station visiting 

Mechanic 
Enter 4 → 1 → 2 → 3 

Exit 1 → 2 → 4 

Welder 
Enter 4 → 2 → 1 → 3 

Exit 1 → 4 

Turbine Operator 
Enter 4 → 2 → 3 

Exit 1 → 2 

 

Table 9. Tasks during Handoff for Turbine Maintenance (Plan B) 

Task name Station Resource 

Avg. task 

duration: Enter 

(min) 

Avg. task 

duration: Exit 

(min) 

Dosimetry 

checking 
Station 1 

Mechanic/Welder/Turbine 

Operator 
5/5/5 5/5/5 

Pick-up/Drop-off 

tools 
Station 2 

Mechanic/Welder/Turbine 

Operator 
5/10/15 3/5/5 

Technical debrief Station 3 
Mechanic/Welder/Turbine 

Operator 
5/10/15 3/5/5 

Check work 

packages 
Station 4 

Mechanic/Welder/Turbine 

Operator 
5/5/5 3/3/3 

 

Human Activity Modeling 

Worker teams and the supervisor need to communicate to exchange the as-is 

workflow information. The supervisor first needs to collect field information by 

communicating with all work teams and assign available tasks to corresponding teams 

based on the task availabilities. Worker teams can receive phone calls from the supervisor 

if tasks became available. The author introduced the “worker” and “supervisor” agents in 

human activity modeling to model the behaviors of the worker teams and the supervisor. 

In particular, the author modeled the communication behaviors for exchanging task 

information between two agents. Such information contains two parts: 1) the amount of 

all tasks in the workflow for a work team, technical details of the tasks, and general 
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timing and resource needs; and 2) notifications on the completion of predecessors of the 

tasks assigned to a work team.  

The communication behaviors in the model include 1) task completion notifications 

from workers to the supervisor, and 2) task available notifications from supervisor to 

workers. For the worker agent, each work team has four functions, namely, working, 

communicating, traveling, and waiting (see Figure 10). After that, the workers may enter 

into the working status to execute the scheduled task once they receive the notifications 

from the supervisor. When in working status, the timer of the current task starts counting 

down. After the timer of the current task becomes zero, the worker should switch to 

communicating status. The communicating status specifies the worker needs to report to 

the supervisor on the completeness of the current task so that the supervisor can mark 

complete on the task. When the worker enters the communicating status, the 

communication timer of this worker starts to countdown until the communication with 

the supervisor is over. After that, the status of the work team becomes waiting if no 

incoming calls from the supervisor. The worker will remain waiting status until he/she 

receives a phone call from the supervisor on the available work packages. The work can 

start to travel to different job sites or workstations at the same job site. 

 
Figure 10. The Status Transition of the Worker Agent 

 

In this NPP outage case, the supervisor agent should 1) answer the phone calls from 

the work team and record the information on the completed tasks and 2) inform the work 
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team that specific tasks are ready to be worked on after the supervisor receives a phone 

call reporting a finished task (see Figure 11).  

The supervisor will continue monitoring the progress of the workflow by acquiring 

field information from workers and check which task is available. After that, the 

supervisor will make a phone call to inform the worker agent who is responsible for the 

available task. If no tasks are available, then the supervisor will remain in the waiting 

status. At the beginning of the workflow, the supervisor is responsible for initiating the 

workflow by informing the workers that the first task is available, thereby enabling the 

workers to start working on the first task. 

 
Figure 11. The Status Transition of the Supervisor Agent 

 

Automated communication system module in valve/turbine maintenance workflow 

The developed automatic communication system is based on group chat software – 

WeChat – installed on four iPods. The author then distributed the iPods to the experiment 

participants. The developed automated communication system includes information on 

all worker teams, facilitating the logical construction of the sub-tables, and facilitating the 

experimental organization to view the progress of the workflow in real-time. Figure 12 

visualizes the group chatting interface that participants were using during the lab 

experiment. All NPP outage participants are required to send out voice messages within 

the group chat.  
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Figure 12. The User Interface of the Communication Software (WeChat) 

 

The developed automated communication platform includes a master sheet for 

showing the overall workflow status and individual sheets for different worker teams to 

indicate specific tasks status (whether a task is available or not) (see Figure 13). As with 

the master list, the table is also divided into Site A and Site B based on the work location. 

Tasks are arranged in order of the work order of the staff in each workplace. For 

example, each Insulator needs to work on Task 1 and Task 5 in turn at each work 

location. Tasks 1, 2, 3, 4, and 5 all need to be performed in sequence, so each work task 

is followed by the Start Checking section, which provides information to the staff 

member whether the task can be achieved. The last column is to record the completion of 

the work, Mark (Finished = 1) means that if the work is completed, enter “1” in the 

highlighted area to mark the completion of the work. Through the built-in function, when 

the previous work is completed, the successor tasks will be automatically changed to the 

“Ready” state to notify the next worker to start work preparation. 
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Figure 13. The Excel Table Developed for Automatic Communications 

 

Collecting human behavior data during air traffic control of aircraft landing processes 

The aircraft landing processes during the approach phase within the TRACON 

airspace involves tedious aircraft handling processes (e.g., adjust flight direction, reduce 

speed, and descend), which always require timely communications. However, limited 

data exist to fully understand the impacts of tedious communications and air traffic 

control safety and efficiency. The goal of this study is to understand how communication 

errors occur in the approach phase of aircraft and how these errors eventually lead to LoS 

through Human-in-the-loop (HITL) simulations. This study has three sub-objectives 

related to the overall goal. First, the author developed a process model for understanding 

how LoS arise during the aircraft approach phase by analyzing aviation accident reports. 

Second, the author conducted HITL simulations in the Phoenix (PHX) radar simulators 

(TRACON) for collecting communication data between ATCs and pilots and conduct 

detailed communication analysis. Third, the author established a Bayesian Network (BN) 

model based on the process model and features of communications derived from HITL to 

quantify the correlations between communication features, communication errors, and 

LoS. The overall framework of the proposed approach show in Figure 14. 
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Figure 14. An Automatic Communication Error Detection Framework 

 

Aircraft Landing Process Modeling 

The author used a radar simulator (shown in Figure 15) to simulate air traffic control 

processes at the Phoenix (PHX) TRACON. The ATC at the PHX often handles arrival 

flows coming from the west (e.g., arrivals from San Francisco) or north. The author 

expanded the sector to include a second flow for aircraft coming from Tucson, El Paso, 

and México. The aircraft will follow the STAR flight procedure instrument flight rules 

(IFR) flight plan for approaching the destination airport. The author recruited a retired 

ATC with extensive TRACON experiences as the test subject to participate in the 

simulations for ensuring the reliability of the results. During the simulation, one ATC 

(station 1) must collaborate with three pseudo pilots (stations 5, 6, and 7) and provide 

instructions for 15 aircraft in the approach phase (each pseudo pilot will be flying four to 

six aircraft). 
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Figure 15. Experiment Environment at a Radar Simulator 

 

According to the literature review, a typical landing process of an aircraft involves 

several phases (e.g., approach phase, landing on a runway, taxi). The HITL simulation 

focused on the approach phase, which is controlled by the TRACON (shown in Figure 

16). TRACON controllers are responsible for guiding pilots to adjust flight direction, 

smoothly descend to specified altitudes, and reduce speed until the aircraft is handed over 

to the control tower for landing.  

 
Figure 16. Landing Process used in the HITL Experiments 

 

Human Activity Modeling (interpersonal communications between ATC and pilots) 

First, the author collected accident reports related to communication errors in ATC-

pilot communications and retrieve documented communication transcripts (or audio data) 

when accidents occurred. The author identified communication processes and specific 

error categories involved in the studied accidents and incidents. Then a process model has 
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been created based on the standard terminal arrival route (STAR) flight procedure to 

represent how communication errors occurred and contributed inevitable 

accidents/incidents at different steps of the approach process per the reviewed accident 

reports.  

Next, the author conducted HITL simulations to simulate the landing processes in 

TRACON airspaces, which involve a great number of communications between ATC and 

pilots. In this step, the author collected audio data and event log data during the 

simulation for detailed communication analysis to understand how communications 

affect the LoS (shown in Figure 17). The author used IBM Watson Speech to Text (IBM 

2019) to automatically transcribe the collected audio files into text documents for both 

ATC and pilots. Such a tool takes recorded audio files as input and provides an output, 

which contains information of the speaker (“Speaker #” in the transcripts) and the content 

of a sentence.  The author manually checked transcripts of all audio files for ensuring the 

accuracy of the transcription process. Then, the author used Natural Language Processing 

tools (e.g., LinguaKit and Cortical.io) (Numenta’s HTM technology 2011; ProLNat@GE 

Group et al. 2018) to help extract communication features (e.g., number of words per 

message) automatically. The author also classified communication errors using data 

collected from HITL. Besides, the author recorded the simulation log data for recording 

the coordinates (latitude, longitude, and altitude) of each aircraft for calculating LoS 

according to FAA standards. The author then constructed a BN model based on the 

extracted communication parameters, classified communication errors, and LoS. The 

developed BN aims at deriving the conditional probabilities of communication errors 

based on multiple features and LoS caused by communication errors.  
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Figure 17. The Audio Data Processing Pipeline 

 

Data Collection Results and Discussion 

Collecting human behavior data during valve/turbine maintenance processes 

In this section, the author presents results include 1) number of experiments 

conducted; 2) delays captured during experiments, and 3) comparative analysis between 

human and automatic communication system 

Experiments carried out by the author and the recruited participants 

The author used the valve/turbine maintenance workflow to conduct lab experiments 

between workflow with and without a supervisor. The author ran the experiment for 20 

sessions in total (see Table). During the experiment, the author collected data from two 

aspects, 1) task relation data (individual task duration, overall workflow duration), and 2) 

human/team behavior data (e.g., human errors). 

The author hired participants from the Fulton School of Engineering at Arizona State 

University to join the experiments. Before each session of the experiment, the author 

went through a 30-minutes training to all the participants involved in this session to get 

them to be familiar with the workflow and requirement. After each session, the author 

asked each participant to fill out the NASA TLX questionnaire for the later analysis of 

the workload. Figure 18 visualizes the scenarios during one session of the experiment 
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with the supervisor involved. The captured images indicate that workers were having 

tedious voice communications with the supervisor and cause waiting lines and 

propagative delays. Table 10 summarized all lab experiments carried out. 

Table 10. Number of Lab Experiments Carried Out 

Schedule Types 
Communication Methods 

Supervisor Automatic System  

Valve Maintenance Workflow – Plan A 8 sessions 10 sessions 

Turbine Maintenance Workflow – Plan B 1 session 1 session 

 

Delays captured during valve/turbine workflows 

The author carried out a series of lab experiments with participants recruited from the 

construction engineering program at Arizona State University. All participants have 

profound knowledge about the construction schedule and were provided with training 

sessions to get familiar with the experiments. The experiment was set up based on the 

established spatial and temporal relationship between tasks in the outage workflow 

(Figure 6 and Figure 7) and the human behavior models (Figure 10 and Figure 11). The 

supervisor will coordinate with three workers (insulator, electrician, and mechanic) to 

complete five tasks at two job sites (Table 4 and Table 5). Besides, all workers have to go 

through RPI for completing the handoff activities (Figure 9, Table 6, Table 7, Table 8, 

and Table 9). Each task will have an as-planned task duration that requires the participant 

to follow (participants will use the timer provided to count the time for their tasks).  

However, different behaviors of participants will create variations to the as-planned 

task duration and cause delays. Besides, such delays could be critical if the successor 

tasks are on the critical path of the schedule. According to the as-planned schedule, the 
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author derived the critical path of this workflow to better interpret the delays captured 

during the experiments. According to the experiment results, the author found that 

participants may not be able to complete the task by following the as-planned task 

duration, and such variation was the primary cause of delays in the entire workflow. The 

author then recorded all delays found during the experiments compare to the as-planned 

task duration and incorporated these delays into the simulation model to simulate the 

impact of task duration variations. 

The author tried to understand the potential impact of the delays caused by individual 

tasks during the workflows. The last columns of Table 11 and Table 12 indicate the 

average delays captured during the lab experiments and the delays during the simulation 

(duration in the lab experiments are scaled). The average total duration of is 11.57 hours 

of Plan A. Compare to the scheduled duration, the delay is 0.29 hours (2.5%). The 

average total duration of is 10.63 hours of Plan B. Compare to the scheduled duration, the 

delay is 0.10 hours (1%). 

 
Figure 18. Images Captured during Lab Experiments 
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Table 11. Average Delays Captured during Lab Experiments (Plan A) 

 Worker 

Team 

As-planed  

Duration 

(min) 

Avg. Delay 

(min) 

Delays in  

Simulation 

(min) 

Task 1 (Site A) Insulator 3 0:25 4:10 

Task 2 (Site A) Electrician 4.5 0:20 3:20 

Task 3 (Site A) Mechanic 6 0 0 

Task 4 (Site A) Electrician 4.5 0 0 

Task 5 (Site A) Insulator 6 0 0 

Task 1 (Site B) Insulator 3 0:37 6:10 

Task 2 (Site B) Electrician 4.5 0:21 3:30 

Task 3 (Site B) Mechanic 6 0 0 

Task 4 (Site B) Electrician 4.5 0 0 

Task 5 (Site B) Insulator 6 0:20 3:20 

Total Duration 11.86 (hour) 

Delay 0.29 (hour) 2.5% 

 

Table 12. Average Delays Captured during Lab Experiments (Plan B) 

 Worker Team 

As-planed  

Duration 

(min) 

Avg. Delay 

(min) 

Delays in 

Simulation (min) 

Task 1 (Site A) Mechanic 4.5 0 0 

Task 2 (Site A) Welder 6 0 0 

Task 3 (Site A) Turbine Operator 4.5 0 0 

Task 4 (Site A) Turbine Operator 6 0 0 

Task 1 (Site B) Mechanic 4.5 0:40 6:40 

Task 2 (Site B) Welder 6 0:12 2:00 

Task 3 (Site B) Turbine Operator 4.5 0 0 

Task 4 (Site B) Turbine Operator 6 0 0 

Total Duration 10.63 (hour) 

Delay 0.10 (hour) 1% 

 

Comparative analysis between human and automatic communication system 

Results indicate the average workflow duration of supervisor condition and 

automation system are 79.97 minutes and 68.39 minutes (Plan A). Hence, the use of an 

automatic communication system can significantly reduce workflow duration. Tedious 

communication between supervisor and worker teams takes a lot of effort and will 
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increase the risks of communication errors. Three types of communication errors have 

been observed during the data collection. Type 1 (late communication) communication 

errors resulted in the late information exchanged between the supervisor and workers that 

directly induce delays. Type 2 (wrong information) and Type 3 (missing information) 

communication errors may require examinations of incorrect or incomplete information 

and cause additional communications that accumulate delays. Delays could happen due to 

these communication errors. Thus, an automatic communication system will help with 

reducing the risks of delays.  

By investigating the detailed information of the workflow, average, and variances of 

individual task duration are critical to understanding which task and which worker is 

more comfortable while using the automatic communication system and can perform 

better. Results (see Figure 19) indicate that whether the use of an automatic 

communication system, the impact on individual tasks is minimum. There is no 

significant difference in the average task duration when compare the workflow with and 

without a supervisor. The results also indicate that the time wasted in the communication 

process is significant and becomes one of the major causes of causing delays.  

 
Figure 19. Comparison of Average Task Durations between Supervisor Condition and 

Automation System (Plan A) 
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Figure 20 indicates that the variances of tasks are quite different while implementing 

the automatic communication system. The variance of Task 2A, task 4A, task4B, and 

task 5B show that the variance of using an automated communication system is much 

higher than using a supervisor. The variance of Task 1B, task 2B, and 3B show that the 

variation of using a supervisor is much higher than using an automatic communication 

system. Such result findings indicate that the adaptabilities of individuals on an 

automated system are different. The workload of a worker could arise due to the use of an 

automated system at independence that has aroused without help from a supervisor in a 

workflow. Worker teams that are working on tasks (i.e., Task 2A, Task 4A) that have 

more correlated sequential tasks tend to rely more on the supervision of a supervisor, and 

their performances are more stable. Automated technologies could induce risks by 

creating a distraction to worker teams, who have to pay more attention to the use of such 

technologies. However, worker teams who work on tasks at the final stage of a workflow 

might feel comfortable with such technologies as few tasks were left in the workflow. 

 
Figure 20. Comparison of Variances of Task between Supervisor Condition and 

Automation System (Plan A) 
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To better understand the adaptability of using such an automation system, the author 

distributed the NASA TLX workload questionnaire to all participants to understand 

participants’ cognitive demands during their tasks better. Additionally, the author was 

interested in whether the perceived workload between the two groups differed. The 

author conducted a two-sample t-test to compare the workload measures between the two 

groups. The two-sample t-test (95% CI) is one of the most commonly used tests. The test 

is applied to compare whether the average difference between the two groups is 

significant or if it is due instead to random chance. The test helps to answer questions like 

whether the average success rate is higher after implementing a new tool than before.  

 
Figure 21. NASA TLX Mean Comparison 
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In the t-test, the P-value, or calculated probability, is the probability of finding the 

observed, or more extreme results when the null hypothesis (H0) of a study question is 

true. The results show that there are statistical differences (p-value smaller than 0.05) 

between the supervisor and automation group condition in the rating of easy/demanding, 

simple/complex, and discouraged/gratified.  Results (see Figure 21) show that 

participants using the automatic communication system found the experimental tasks 

more comfortable and more straightforward than participants who worked with a 

supervisor.  These results indicate that automating the communication process would 

lower the cognitive demands of NPP outage workers. 

Collecting human behavior data during air traffic control of aircraft landing processes 

In this section, the author presents results include 1) communication feature analysis, 

2) communication error classification, and 3) detection of LoS. 

Detailed communication feature analysis 

The author conducted the communication analysis at two levels: communication 

process structures and features of communication content. The communication process 

structures contain two types of information, the number of people on the radio and the 

communication patterns between people within the communication network. 95.8% of 

communications in the simulation occurred only between ATC and one pilot for 

exchanging information. Only 4.2% of communications contain interruptions from 

another pilot when the ATC is talking with a pilot. For example, the communication 

between ATC and FDX 971 was interrupted by SWA3277 at 14:09.5 when the ATC is 

assigning heading direction to FDX 971. The interruption resulted in additional 

communications between ATC and FDX 971 to clarify the required heading direction. 



54 

Table 13. Communication Patterns Observed from the HITL Experiments 

Patterns Explanations Examples 

A-P-A  

(85.42 %) 

ATC issues correct 

clearances;  

pilot provides 

correct read-back;  

ATC confirms the 

read-back. 

ATC: “Alaska four sixty-seven descending 

maintain six thousand.” 

ASA 467: “Dropdown to six thousand Alaska four 

sixty-seven.” 

The pilot requests 

ATC to repeat the 

clearance. 

ATC: “Envoy twenty-three fifty flies in zero niner 

zero descending maintain four thousand, contact 

approach one two zero point niner.” 

ENY 2350: “Could you repeat that, please?” 

ATC: “Sure. Envoy twenty-three fifty flight in zero 

niner zero maintain four thousand, contact 

approach one two zero point niner.” 

A-P-A-P  

(11.46%) 

ATC issues correct 

clearances;  

Pilot provides 

incorrect read-

back; 

ATC makes 

corrections. 

ATC: “Southwest seven forty-three fly in zero 

seven zero speed one seven zero.” 

SWA 743: “Roger, heading zero seven zero speed 

two one zero Southwest seven forty-three.” 

ATC: “Southwest seven forty-three speed one 

seven zero.” 

SWA 743: “Sorry, one seven zero Southwest seven 

forty-three.” 

A-A-P 

 (2.08 %) 

ATC issues 

incorrect 

clearances with 

self-correction. 

ATC: “Speed bird two eighty-one heavy flight in 

zero seven zero maintain six thousand.” 

ATC: “Speed bird two eighty-one heavy 

descending maintain five thousand.” 

BAW 281: “Roger, descending maintain five 

thousand speed bird two eighty-one.” 

A-P-P-A-P  

(1.04 %) 

ATC issues long 

clearance;  

The pilot provides 

incomplete read-

back and asks for a 

repeat of the 

clearance. 

ATC: “FedEx nine seventy-one heavy your 

assigned altitude is one zero thousand.” 

FDX 971: “Our altitude is….but…” 

FDX 971: “Can you repeat that…FedEx nine 

seven one?” 

ATC: “Southwest, correction, FedEx nine seventy-

one make your altitude to eight thousand.” 

FDX 971: “Making altitude eight thousand FedEx 

nine seventy-one.” 

 

For the communication patterns, ATC and pilots are required to follow standard 

procedures to exchange information during air traffic operations. ATC (A) needs to issue 
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(I) clear clearances to pilots (P) with specific instructions for guiding pilots to avoid LoS. 

Pilots (P) should provide prompt responses to the ATC’s clearance with a full read-back 

(R) on the clearance. ATC (A) then needs to confirm (C) the read-back to ensure that the 

pilot has a clear understanding of that clearance. An improper read-back from a pilot or 

missed confirmation from an ATC could induce risks of misunderstanding on the 

clearance. Such erroneous communication patterns could thus be indicators for predicting 

communication errors. For example, according to the communication data collected in 

the HITL simulation, 11.46 percent of communications are in a pattern “A-P-A-P.” Such 

communications usually involve repeated communications due to in-correct read-back or 

misunderstanding of the clearance (see Table 13). 

Communication during air traffic control processes may involve abundant uses of 

numerous numerical information. Certain communication contents during 

communications could also lead to misunderstandings. For instance, FAA has specified 

that numbers (e.g., altitude, speed) contained in a clearance shall be spoken by separating 

the digits preceding the word "thousand” (e.g., “maintain altitude at one zero thousand”). 

Communications involve descent altitude, speed reduction, and heading direction always 

involve the use of numbers.  

Results (see Table 14) indicate 18.75 percent of communications involves descent 

altitude during the aircraft landing processes, 10.42 percent of communications involve 

with speed reduction, 39.58 percent of communications with adjustment of heading 

direction (adjust the heading angle), and 31.5 percent of communications that ATC 

provides instructions that require pilots to comply with assigned descend altitude, speed 

reduction, and direction adjustment in one single clearance. 
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Table 14. Communication Content Discovered from the HITL Experiments 

Communication 

Content 
Explanation Example 

Descent Altitude 

(18.75%) 

The ATC provides instruction 

for pilots to descend or maintain 

at a certain altitude. 

ATC: “Southwest thirty-two 

seventy-seven descending 

maintain one zero 

thousand.” 

Reduce Speed 

(10.42%) 

The ATC provides instruction 

for pilots to reduce the speed to 

prepare for landing. 

ATC: “Southwest seven 

forty-three flight in zero 

seven zero speed one seven 

zero.” 

Adjust Heading 

Direction 

(39.58%) 

The ATC provides instruction 

for pilots to adjust their heading 

direction to prepare for landing. 

ATC: “Southwest seven 

forty-three turn right, 

heading one one zero.” 

All Information 

(Descent Altitude, 

Reduce Speed, 

Adjust Heading 

Direction) 

(31.5%) 

The ATC provides instructions 

that require pilots to comply 

with assigned descend altitude, 

speed reduction, and direction 

adjustment at the same time. 

ATC: “Southwest seven 

forty-three fly in one zero, 

reduce speed to two one 

zero, descending maintain 

one zero thousand.” 

 

Communication error analysis 

As for the communication error classification, the author classified the 

communication error according to the “three-step” communication protocol (I-R-C) 

(Risser 2005). There are eight total possibilities of communication errors, as shown in the 

table. A cross mark indicates the error while a checkmark indicates the correction of 

certain steps. For instance, 16.67 percent (Type 5) of communications involve incorrect 

read-back by the pilot with no confirmation or correction by the ATC (see Table 15). One 

example of such read-back errors is that the pilot of SWA 743 read-back (SWA 743: 

“Roger, reduce speed to one one zero.”) the speed information incorrectly compare to the 

clearance issued by the ATC (ATC: “Southwest seven forty-three fly in one one zero 

reduce speed to two one zero.”). Results also suggest that most communication errors 

(Type 5 and Type 6) involve read-back issues between the ATC and pilots. 
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Table 15. Communication Errors 

Errors Type Explanations Examples 

IXRXCX 
E_1 

(2.08%) 

ATC issues incorrect 

clearance  incorrect 

read-back  

 uncorrected 

ATC: “UPS four forty-seven heavy fly 

in one zero zero contact approach one 

zero point niner.” (should contact 

approach one two zero point niner) 

UPS 447: “Going to two niner zero 

UPS four forty-seven.” 

IXRXC√ 
E_2 

(0.00%) 

ATC issues incorrect 

clearance  incorrect 

read-back 

 ATC correction 

N/A 

IXR√CX 
E_3 

(2.08%) 

ATC issues incorrect 

clearance  correct 

read-back  

 unconfirmed 

ATC: “Air shuttle four sixty-seven 

turn right heading zero niner zero 

contact approach one two zero point 

niner.” 

ASA 467: “Heading zero niner zero 

one two zero point niner for Alaska 

four sixty-seven thanks.” 

IXR√C√ 
E_4 

(0.00%) 

ATC issues incorrect 

clearance  correct 

read-back  ATC 

confirmed 

N/A 

I√RXCX 
E_5 

(16.67%) 

ATC issues correct 

clearance  Incorrect 

read-back  

 uncorrected 

ATC: “Southwest seven forty-three fly 

in one one zero reduce speed to two 

one zero.” 

SWA 743: “Roger, reduce speed to 

one one zero.” 

I√RXC√ 
E_6 

(3.13%) 

ATC issues correct 

clearance   

 Incorrect read-back  

 ATC correction 

ATC: “American two fifty-four speed 

two one zero heading three zero 

zero.” 

AAL 254: “Speed two one zero knots 

heading three four zero American two 

fifty-four.” 

ATC: “American two fifty-four 

heading three zero zero.” 

I√R√CX 
E_7 

(0.00%) 

ATC issues correct 

clearance  

 correct read-back  

 unconfirmed 

N/A 

I√R√C√ 
E_8 

(76.04%) 

All communications 

are correct 

ATC: “UPS four forty-seven heavy 

turn left heading two seven zero.” 

UPS 447: “Turn left two seven zero 

UPS four forty-seven.” 

*N/A: The collected data does not contain this type of communication errors. 
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Loss of separation 

An LoS between aircraft occurs whenever predefined separation minima in controlled 

airspace are breached. Minimum separation standards for airspace are specified by air 

traffic service (ATS) authorities, based on ICAO standards. For airspace between the 

surface (FL000) and 29,000 ft. (FL290), the minimum vertical separation is 1,000 ft. and 

the horizontal separation is 3 NM. Due to the irregularity in the surface of the earth, only 

a few methods are widely used to calculate the ellipsoidal distance between two 

coordinates. The author used the spherical law of cosines and Haversine formulas to 

calculate the distance between two aircraft by assuming that the earth is spherical. The 

formulas below illustrate how the author computed the distances between aircraft.  

 

                    𝜶 =  𝒔𝒊𝒏𝟐 (
𝝋𝟏− 𝝋𝟐

𝟐
) + 𝒄𝒐𝒔𝝋𝟏 ∗ 𝒄𝒐𝒔𝝋𝟐 ∗ 𝒔𝒊𝒏𝟐 (

𝝀𝟏− 𝝀𝟐 

𝟐
)                             (1) 

 

                    𝒄 = 𝟐 ∗ 𝜶𝒕𝒂𝒏𝟐(√𝜶, √𝟏 − 𝜶)                                                                      (2) 

 

                     𝒅 = 𝑹 ∗ 𝒄                                                                                                     (3) 

 

Where 𝝋 is latitude, 𝝀 is longitude, R is earth’s radius (mean radius = 6,371 km), d is 

the distance between two aircraft. 

Results in Table 16 show six LoS occurred within a 25-minute simulation. For 

instance, an LoS occurred at 13:04.3 that Speed Bird 281 and Alaska 467 due to the 

wrong heading direction of BAW281. At 15:14.4, an LoS occurred between SWA3277 

and AAL561. The pilot of AAL561 read-back incorrectly about the descend altitude and 

entered the incorrect horizontal airspace that assigned to SWA3277 and causes LoS. In 

addition, AAL254 has been involved in multiple breaches that occurred in the session 



59 

that due to its communication errors, such as incorrect read-backs about the speed 

reduction, descending altitude, or heading direction. 

Table 16. LoS Occurred in the HITL Experiments 

Time 

Stamp 

Traffic 

Density 

within the 

Airspace 

Pair of Aircraft that breach 

the Separation Minima 
Communication Issues 

13:04.3 4 aircraft BAW 281 ASA 467 
Speed Bird 281: missed 

heading direction in read-back 

15:14.4 6 aircraft NAX 994  AAL254 
American 254: incorrect 

speed in read-back 

19:19.6 4 aircraft SWA 3277  AAL 561 
American 561: incorrect 

descend altitude in read-back 

19:39.6 4 aircraft NAX 994 AAL 254 

American 254: missed 

heading direction and 

descending altitude in read-

back 

20:54.6 4 aircraft AAL 8921 NAX 994 
No. messages/minute is 

greater than average. 

23:44.8 3 aircraft SWA 743 AAL 254 

American 254: missed 

heading direction and 

descending altitude in read-

back 

 

The results indicate that even with only a few aircraft present in the TRACON 

controlled airspace during their approach phase, LoS still occurs due to communication 

errors. For example, when LoS occurs between SWA743 and AAL254 at 23:44.8, only 3 

aircraft presented in the airspace, and two of them breached the separation minima. 

Besides, the author expanded the Phoenix terminal section in the simulation by adding a 

second arrival flow of aircraft coming from Tucson, El Paso, and México. Such 

expansion will increase the difficulty and workload of ATC when handling two arrival 

flows. Moreover, three pseudo pilots must communicate with ATC and control 15 

aircraft, which causes additional workload of pilots and lead to a high frequency of LoS. 
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Conclusion 

Timely capturing anomalous human behaviors for estimating workflow duration and 

risk assessment is essential for ensuring CIS O&M safety and efficiency. However, the 

uncertainties of communication errors bring significant challenges to achieve a precise 

estimation and reliable assessments. Even experienced CIS O&M participants could 

hardly provide reliable assessments on the CIS O&M condition based on tedious field 

observations. However, CIS O&M participants allocate more resources and spend more 

data collection efforts to reveal risky parts of CIS O&M processes. Identifying such risky 

CIS O&M processes can thus provide guidance to the CIS O&M management team to 

achieve resilient NPP outage control. Collecting such human behavior data could help 

reveal 1) what communication features are more likely to cause communication errors 

and 2) what communication behaviors are more likely to cause CIS O&M risks. 
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CHAPTER 4 

COMMUNICATION ERROR CLASSIFICATION AND PREDICTION THROUGH 

CONSTRAINT-BASED BAYESIAN NETWORK MODELING 

Introduction 

Accurate and effective interpersonal communications between the CIS O&M 

participants are crucial for ensuring safety and efficiency. For example, communications 

between pilots and ATCs are critical to ensuring safe coordination during air traffic 

control processes. ATCs need to communicate with pilots through radio to provide 

instructions or clearances regarding altitudes, speeds, weather, and air traffic conditions 

(Immanuel and Candace 2013). ATC/Pilot communications also need to employ read-

back/hear-back procedures for ensuring that the information could be properly 

understood. Several challenges still exist and prevent the safe and efficient CIS O&M, 

such as 1) lack of comprehensive characterization of the communication errors in making 

team decisions under a dynamic work environment of CIS O&M., and 2) lack of 

comprehensive characterization of the impacts of communication errors in changing 

decision contexts on teamwork performance. 

Communication errors have been identified as one of the most common human errors 

and are threatening the safety and efficiency of the nuclear and aviation industries 

(Geacăr 2016; Molesworth and Estival 2015; Wu et al. 2017). For example, 

communications during NPP outages usually involves exchanging task completion status, 

field observations, abnormal indicators in the NPP outage control room, and assignment 

of additional work packages. However, communication errors always cause severe delays 

during NPP outages and result in significant cost overrun. Unfortunately, limited studies 
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have revealed such communication error propagation processes and quantitatively assess 

the impacts of communication errors on the safety and efficiency of CIS O&M. 

Existing studies of accidents/incidents during CIS O&M focus on detailed process 

modeling of complex CIS O&M processes to simulate possible patterns that deviate from 

the specified procedures (Graziano et al. 2016). Previous studies examined text mining 

algorithms for automatic communication error detection using communication transcripts 

(Chierichetti et al. 2014; Johnson et al. 2013; Skaltsas et al. 2013). Some studies 

synthesized communication errors during NPP outages (Kim et al. 2007). Limited studies 

have quantitatively assessed how communication issues arise, and trigger propagated CIS 

O&M risks. An effective control system that can reduce such risks by detecting erroneous 

communications could be beneficial for safe CIS O&M.  

The overall goal of this section is to 1) understand how communication contexts and 

features affect the occurrences of communication errors in two CIS O&M processes and 

2) how communication errors lead to workflow delays and safety risks. The proposed 

constraint-based BN Modeling method focuses on 1) constructing a BN model based on 

the data collected from the lab experiments, 2) using the developed BN model for 

predicting communication errors and CIS O&M risks (LoS, delays); and 3) using the 

Maximum-Entropy method to encode expert knowledge as constraints to update the 

posterior distributions derived based on lab experiments data and improve the prediction 

accuracy of the BN model. 

Previous Research 

Previous research on the accidents/incidents during CIS O&M focused on two 

questions (i) what are the contributing factors that cause the miscommunications and the 
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CIS O&M risks; (ii) what are the accident occurrence processes. Most studies use the 

Fault Tree Model or Event Tree Model to quantify the causal relationship between 

contextual factors and communication errors in certain aviation accident scenarios (e.g., 

runway incursion) (Lower et al. 2016). Some studies synthesized factors that cause 

various of CIS O&M accidents. Some studies showed that a safety ontology-based 

framework could help to formalize the safety management knowledge (Zhang et al. 

2014). El-Gohary has developed a set of construction ontologies to better understand the 

processes of project development (El-Gohary and El-Diraby 2010). These previous 

studies show the potential of using process models along with BN learning methods for 

synthesizing mechanisms about how accidents occurred during CIS O&M.  

A recent study tried to establish methods to predict the likelihood of structure defect 

based on field observations through constraint-based Bayesian Entropy Network (BEN) 

modeling (Wang and Liu 2020). The study requires quantifiable knowledge or experience 

to be used as constraints to update the BN model to achieve reliable prediction. This 

section presents a constraint-based Bayesian Network (BN) modeling approach that first 

create process models for showing processes of air traffic control that gradually lead to 

LoS during aircraft landing processing. A Bayesian network-learning algorithm then uses 

this process model and the data collected during lab experiments to generate a BN that 

captures histories about how various contextual and human factors influence the 

probabilities of certain events and miscommunications that lead to LoS. Then the author 

used the knowledge and opinion solicited from the domain expert as constraints to update 

the posterior distribution of the developed BN for achieving better prediction accuracy of 

communication errors and associated CIS O&M risks. 
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The goal of this study is to understand how communication errors occur in the CIS 

O&M workflow by using two cases.  The valve maintenance workflow case during NPP 

outage is to reveal how communication errors arise and cause delays to the workflow. 

The aircraft landing case in air traffic control is to reveal how communication errors arise 

and cause LoS between aircraft.  

Research Methodology 

BN modeling is an ideal statistical tool for taking an event that occurred and 

predicting the likelihood of any one of several possible successor events. In this case, the 

BN model used the data from the lab simulation and quantitatively assessed 1) the 

conditional probabilities of communication errors in certain types of communications; 

and 2) the conditional probabilities of safety (LoS) and efficiency (delays) due to 

different types of communication errors. The goal of this section is to understand how 

communication errors occur during CIS O&M and how these errors eventually lead to 

safety and efficiency concerns.  

To achieve the goal, the four sub-objectives are 1) Data collection from human-in-

the-loop experiments; 2) Synthesizing historical records (e.g., aviation accident reports, 

NPP outage inspection reports) from multiple sources (NTSB database, ASRS database) 

for better understating the occurrence of communication errors and propagated risks; 3) 

Establish a BN model based on the collected data to predict the CIS O&M risks, and 4) 

Synthesize knowledge from domain experts as constraints on updating the developed BN 

for achieving better prediction accuracy. This section presents a BN modeling approach 

with a focus on 1) modeling of delays of a valve maintenance workflow during NPP 

outages and how communication errors arise and result in delays; and 2) modeling LoS 
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that occur during aircraft landing process and how different factors contribute to the 

accident occurrences. 

Bayesian Network (BN) Modeling based on historical records and data collected in lab 

experiments  

The proposed BN modeling approach aims at 1) predicting communication errors 

during valve maintenance workflow and aircraft landing process for given 

communication contexts and features; 2) predicting delays caused by communication 

errors during valve maintenance workflow in NPP outages, and 3) predicting LoS caused 

by communication errors during the aircraft landing process. 

 
Figure 22. Constraint-based Bayesian Network (BN) Model Updating Method 

 

The proposed method consists of three steps (Figure 22). The first step is to collect 

accident/incident reports of valve maintenance workflow and aircraft landing process that 

involved with communication errors from the multiple data sources. This step aims at 

revealing the causal relationships between contextual factors, communication errors, and 

delays or LoS. The second step is to extract information from the collected data during 

the lab experiment (i.e., communication features, environmental conditions). The third 
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step is to classify the types of communication error based on the protocol violations. The 

author then constructed a BN model to represent how anomalous events arise and 

propagate that lead to different types of communication errors and lead to delays or LoS. 

The model provides the capability to quantify risks by calculating the probabilistic 

dependence between anomalies represented in the BN. 

The Maximum-Entropy (ME) method is an alternative method to update the 

posterior distribution (conditional probabilities) derived from conventional BN by 

integrating the expert knowledge as constraints (Wang et al. 2018). The ME method aims 

at maximizing the entropy term under constraints so that the updated probability 

distribution, which best represents the current state of knowledge (Guan et al. 2012). The 

form of entropy term is defined as the negative of Kullback-Leibler (KL) divergence 

between the updated conditional probability distribution 𝑃′(𝜃|𝑥) and the original 

conditional probability distribution 𝑃(𝜃|𝑥). Where θ represents the predicted events (e.g., 

communication errors), and x represents the given condition. 

                               𝑺[𝑷′, 𝑷] = − ∬ 𝑷′(𝜽|𝒙) 𝐥𝐨𝐠
𝑷′(𝜽|𝒙)

𝑷(𝜽|𝒙)
𝒅𝒙 𝒅𝜽

𝚾×𝚯
                           (1) 

While maximizing entropy, the author introduced two constraints 1) normalization 

constraint (Wang and Liu 2020); and 2) mean constraint (Giffin and Caticha 2007). The 

normalization constraint specifies that the integral of the probability function over the 

domain is unity. The mean constraint uses the expectation value of the (𝜃|𝑥) to encode 

the expert opinion or knowledge solicited from experienced field engineers. 

                                  ∑ 𝑷′(𝜽|𝒙)𝒌
𝒏
𝒌=𝟏 = ∬ 𝑷′(𝜽|𝒙) 𝒅𝒙 𝒅𝜽 = 𝟏

𝚾×𝚯
                            (2) 

            𝑬(𝜽|𝒙) = ∑ 𝑷′(𝜽|𝒙)𝒌(𝜽|𝒙)𝒌
𝒏
𝒌=𝟏 = ∬ 𝑷′(𝜽|𝒙)(𝜽|𝒙) 𝒅𝒙 𝒅𝜽 = 𝑴

𝚾×𝚯
           (3) 
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To maximize the entropy under these two constraints, the author used the Lagrange 

method to derive the optimal solution of  𝑃′(𝜃|𝑥). 

    𝓛 = 𝑺 + 𝜶[∬ 𝑷′(𝜽|𝒙) 𝒅𝒙 𝒅𝜽 − 𝟏]
𝚾×𝚯

+ 𝜷[∬ 𝑷′(𝜽|𝒙)(𝜽|𝒙) 𝒅𝒙 𝒅𝜽 − 𝑴]
𝚾×𝚯

      (4) 

                                               𝑷′(𝜽|𝒙) =  𝑷(𝜽|𝒙)𝒆−𝟏+𝜶+𝜷(𝜽|𝒙)                                  (5) 

Where 𝛼 and 𝛽 are the Lagrangian multipliers.  

 From the above equation, it is evident that the result from the ME method has an 

additional exponential term added to the Bayes’ rule. The exponential term represents the 

additional expert opinion or knowledge that encoded in the BN as constraints. 

Validation 

BN constructed using the data collected during lab experiments of an NPP outage 

workflow 

The author constructed a BN model by using the schedule features, communication 

errors, and delays captured during the lab experiments of the valve/turbine maintenance 

workflows during NPP outages (Figure 23) (Section “Collecting human behavior data 

during valve/turbine maintenance processes” provides detailed information about the 

workflow). The features (Table 17) selected are based on extensive literature review and 

expert opinion that all such features have a great impact on causing communication errors 

and lead to delays during outages. The overall goal of this BN is trying to understand the 

cause of delays due to communication errors by answering four questions, 1) is the task 

in critical-path; 2) is the task has too many connected tasks; 3) is the task in a linear or 

complex schedule, and 3) how the worker communicate during valve/turbine 

maintenance workflow. 
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Figure 23. BN Modeling for Predicting Communication Errors and Delays during NPP 

Outages 
 

Table 17. Explanations of Communication Features 

Features Symbol Variables 

Critical Path a Yes (a0) No (a1) 

# of Connected Tasks b 2 (b0) 3 (b1) 

Schedule Type c Linear (c0) Non-linear (c1) 

Communication Method d Automation (d0) Supervisor (d1) 

Table 18. Conditional Probabilities of Communication Errors (E) on Communication 

Features (a, b, c, and d) 

  (E_1)  (E_2)  (E_3) TOTAL 

a0b0c0d0  0.67 0.33 0 1.0 

a0b0c1d0  1.00 0 0 1.0 

a0b0c0d1 0.72 0.14 0.14 1.0 

a0b0c1d1  1.00 0 0  1.0 

a0b1c0d0 0.60 0.40 0 1.0 

a0b1c1d0  1.00 0 0 1.0 

a0b1c0d1  0.56 0.13 0.31 1.0 

a1b0c0d0 1.00 0 0 1.0 

a1b0c0d1  0.89 0 0.11 1.0 

a1b0c1d1 1.00 0 0 1.0 

a1b1c0d0 1.00 0 0 1.0 

a1b1c0d1 1.00 0 0 1.0 

a1b1c1d1  1.00 0 0 1.0 
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The above results indicate that when the workers are working on critical-path 

activities, the workers and the supervisor committed more communication errors in all 

three categories (E_1, E_2, and E_3) compared with workers working on non-critical 

path activities. The reason could be that critical-path activities tend to pose more stringent 

time limits so that workers could have less time for ensuring the timeliness and content 

correctness. Besides, the workers made fewer communicating errors (E_1, E_2, and E_3) 

when communicating through the automatic communication system. The reason could be 

the workers only need to input task completion status into the automatic communication 

system, which can automatically update the task availability information based on inputs 

from workers. Using such technology may potentially reduce communication errors that 

often occur during verbal communications. 

As for the impacts of communication errors on workflow delays, results (Table 19) 

indicate that type 2 and type 3 communication errors caused higher probabilities of 

delays. The observations also indicate all communication errors result in workflow delays 

in different manners. For example, Type 1 communication errors resulted in the late 

information exchanged between the supervisor and workers that directly induce delays. 

Type 2 and Type 3 communication errors may require examinations of incorrect or 

incomplete information and cause additional communications that accumulate delays. For 

example, the human supervisor has to double-check with all collected information to 

make sure certain tasks are available based on the as-is condition of the workflow. 

Besides, the workers may go to the wrong job site to find out the information they 

received from the “supervisor” is incorrect. All such communication errors lead to a 

significant amount of non-value-added travels, waiting, and delays. 
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Table 19. Conditional probabilities of Delays on Communication Errors (E) 

Delay in Communication Errors Probability of Delay 

P (Delay | E_1) 0.670 

P (Delay | E_2) 1.000 

P (Delay | E_3) 0.875 

 

Constraints synthesized from expert opinion and literature 

The author conducted a series of interviews with experienced NPP outage 

engineers and through literature review to acquire additional knowledge about the human 

error-related outage delays based on their field experiences. Then the author encoded 

these rules into the BN as constraints to update the conditional probabilities for predicting 

the causes based on field observations. 

1) When the task is on a critical path, the workers are more likely to make type 2 

communication errors. 

2) Traditional interpersonal communications between supervisors and workers are more 

likely to cause type 2 communication errors. 

BN constructed using the data collected during lab experiments of air traffic control of 

aircraft landing processes 

The author constructed a BN model by using the data collected in the lab 

experiments of air traffic control of the aircraft landing process. The data includes 

communication features, communication errors, and LoS that occurred during the aircraft 

approach phase in the landing process (Figure 24). The features (Table 20.) selected are 

based on extensive literature review and expert opinion that all such features have a great 

impact on causing communication errors and LoS. The goal of this BN is trying to 

understand how communication errors arise and lead to LoS.  
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Figure 24. BN Modeling for Predicting Communication Errors and LoS 

 

This section summarizes the research findings. Table 20 provides detailed 

explanations of symbols of communication features derived from the communication data 

collected during lab experiments. Table 21 and Table 22 illustrate the probabilistic 

relationships 1) between different communication errors and different combinations of 

communication features and 2) between LoS and communication errors. 

Table 20. Explanations of Communication Features 

Features Symbol Variables 

# of Messages/Minute a < Avg. (a0) > Avg. (a1) 

# of words/Message b < Avg. (b0) > Avg. (b1) 

Pattern c APA (c0) APAP (c1) AAP (c2) APPAP (c3) 

# of People d 2 (d0) 3 (d1) 

Content e Descend (e0) Speed (e1) Direction (e2) ALL (e3) 

 

Table 21 illustrates the probabilistic relationship between communication errors 

and combinations of communication features. Each issuance of clearance shows a 

combination of communication features and one type of communication error. For 
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instance, Type 3 (E_3) communication error will have 20 percent probability to occur 

when the ATC-pilots communication satisfies the following conditions (a0b0c0d0e0): 1) 

the No. messages per minutes smaller than the average (12.87); 2) the No. words per 

message smaller than the average (13.03); 3) the communication pattern is “A-P-A”; 4) 

only two people are in the communication channel, and 5) the communication is related 

to descend altitude.  

Table 21. Conditional Probabilities of Communication Errors (E) on Communication 

Features (a, b, c, d, and e) 

  (E_3)  (E_5)  (E_6)  (E_8) TOTAL 

a0b0c0d0e0 0.2 0.2 0 0.6 1.0 

a0b1c0d0e0 0 0.5 0 0.5 1.0 

a0b1c0d0e1 0 0.5 0 0.5 1.0 

a0b1c0d0e2 0.1 0.1 0 0.8 1.0 

a0b1c0d0e3 0 0.33 0 0.67 1.0 

a0b1c1d0e3 0 0.33 0 0.67 1.0 

a1b0c0d0e1 0 0.17 0 0.83 1.0 

a1b0c1d0e2 0 0 0.5 0.5 1.0 

a1b0c1d0e3 0 0 0.5 0.5 1.0 

 

Table 22 illustrates the probabilistic relationship between LoS and eight types of 

communication errors. Results indicate that LoS is more likely to occur when the E_5 

and E_6 communication errors occur. Both errors involve incorrect read-backs of pilots 

during the aircraft approach phase. Results indicate with a correction from the ATC 

(E_6), more communications are needed to make sure the pilot can fully understand the 

correct clearance. 

However, as ATC-pilot communication is time-sensitive, excessive 

communications will delay the pilot’s reaction to the clearance and increase risks of LoS. 

Results also indicate a 13.7 percent probability of LoS when no communication error 
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occurred but rather involves high talking frequency and large information volume. The 

major findings are that incorrect pilots’ read-backs are implicated with a majority of LoS 

when ATC does not correct the in-correct read-backs from pilots. 

Table 22. Conditional Probabilities of LoS on Communication Errors (E) 

LoS on Communication Errors Probability of LoS 

P (LoS | E_1) 0 

P (LoS | E_2) 0 

P (LoS | E_3) 0 

P (LoS | E_4) 0 

P (LoS | E_5) 0.250 

P (LoS | E_6) 0.333 

P (LoS | E_7) 0 

P (LoS | E_8) 0.137 

 

Constraints synthesized from expert opinion and literature 

The author conducted interviews with experienced ATCs and through literature 

review to acquire additional knowledge about the aircraft landing processes in the 

TRACON airspace based on their field experiences. Then the author encoded these rules 

into the BN as constraints to update the conditional probabilities for predicting the causes 

based on field observations. Since all the variables are categorical nodes, integer values 

are assigned accordingly. 

1) When the clearance issued by the ATC contains too much information, pilots are 

more likely to read-back the clearance incorrectly; 

2) When there are many people in the radio channel, ATC is more likely to issue 

incorrect clearance and cause incorrect read-back from pilots; 

3) When the communication pattern is “A-P-A-P”, ATC is more likely correcting the 

read-back error from the pilot; 
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4) When the communication is too frequent, ATC is more likely to forget to confirm the 

read-back from the pilot. 

Discussions 

The author has examined and cross-validated the proposed framework using the 

data collected from the lab experiments with the ground truth obtained through interviews 

with engineers who have a profound experience with NPP outage control and air traffic 

control processes. The prediction results (see Table 23) show that the constraint-based 

BN provides higher accuracy compare to the conventional BN with only limited data 

sources. Although the accuracy is still not satisfactory yet partially due to the limited 

number of data collected, the constraint-based BN model shows substantial improvement 

compared with the classical Bayesian method.  

Using communication contexts and features for predicting communication errors is 

crucial to ensure CIS O&M safety and efficiency. The established quantitative 

relationship between communication features and errors has the potential of aiding ATCs 

for timely detection and the faster reaction to erroneous communications. Specifically, 

implementing the developed algorithms into existing ATC-pilot communication 

auxiliaries (e.g., Data Comm) could help generate alerts about erroneous 

communications.  

On the other hand, the current communication practices of TRACON training 

programs may also benefit from the developed algorithms. For instance, existing training 

programs may improve the ATC-pilot communication practices by incorporating more 

communication regulations (e.g., using fewer words for clearances; speak slowly and 

clearly; using standard phraseologies). Implementing such specified communication 
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practices into the TRACON training programs may increase the ATCs’ situation 

awareness of good communication practices and reduce risks of having erroneous 

communications that could lead to LoS. 

Table 23. Classification Accuracy Improvement of the Constraint-based BN Model 

BN Model Training/Testing 
Communication Error Prediction 

NPP Outage Air Traffic Control 

Conventional BN 

Model 

50:50 64.2857% 70.8333% 

70:30 64.7059% 75.8621% 

85:15 77.7778% 78.5714% 

Constraint-based 

BN Model 

50:50 75.0000% 79.1667% 

70:30 76.4706% 89.6552% 

85:15 88.8889% 85.7142% 

 

Results indicate the proposed method could help predict the probabilities of LoS 

when certain communication errors occur. However, due to the limited data collected, the 

quantitative relationship derived in this study still requires further improvement through 

advanced statistical approaches. These approaches could increase the reliability of the 

developed BN model by introducing engineering knowledge as constraints for updating 

the probability distribution when dealing with a small dataset. The derived results could 

be essential for ATC training in the TRACON training programs as ATC could get 

additional alerts from the algorithm that LoS will occur, and they need to put more 

attention on certain aircraft. 

 

Conclusion 

Results indicate the proposed method is capable of integrating observations and 

domain knowledge to achieve reliable estimation on the efficiency and safety during NPP 

outages and air traffic control. The limitations of the proposed method remain. The main 
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reasons behind the limited accuracy of the BN model could be 1) manually summarizing 

engineering “rules” from historical documents is time-consuming, and 2) human errors 

during CIS O&M are always case-by-case and might not be the same. Future directions 

of this research could focus on 1) integrating advanced machine learning algorithms for 

processing imbalanced dataset, 2) integrating more engineering knowledge as constraints 

into the BN model for improving the reliability of the correlation model, and 3) expand 

the proposed framework to fully consider data inconsistencies when conflict information 

exists among multiple data sources.  
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CHAPTER 5 

COMMUNICATION RISK MITIGATION THROUGH COMPUTATIONAL AGENT-

BASED MODELING AND OPTIMIZATION 

Introduction 

Handoffs between scheduled tasks during NPP outages are time-consuming and 

error-prone. Such handoffs typically involve travels between job sites and 

communications between the management team and workers to exchange information on 

the task status (Zhang et al., 2017). Human and team cognition during handoffs could 

accumulate delays during NPP outages (see Figure 25). However, the outage manager 

could hardly track and analyze the time consumption caused by late communication and 

wrong information exchanged during handoffs (i.e., waiting time caused by late 

communication on available tasks). Thus, late communications and wrong information 

exchanged during communications could interrupt outage workflows by causing rework 

and results in severe delays (Sun et al., 2018b). An improved understanding of how 

delays arise during handoffs are necessary and crucial to predict delays for the outage 

workflow. 

 
Figure 25. Framework for Assessing the Impact of Cognitive and Communication Factor 

on Workflow Delays 
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Several challenges impede the existing scheduling, and process simulation tools fail 

in diagnosing handoff management issues that cause delays in accelerated CIS O&M 

(Wang et al., 2018). Current construction scheduling tools only include as-planned tasks 

in CIS O&M workflows without considering handoffs between tasks (Zhang et al., 2017). 

Furthermore, these tools entail difficulty in representing a communication network along 

with the schedule network (Rozinat et al., 2009). Moreover, the use of conventional 

simulation tools is even more difficult in representing uncertain communication 

behaviors and analyzing its impact on workflow delays.  

The majority scheduling software only simulates a fixed sequence of tasks in a pre-

defined CIS O&M schedule. Frequent schedule changes/updates that often arise due to 

uncertainties are difficult to formalize into representations in the existing scheduling 

software. The limitations of schedule modeling and simulation tools prevent the 

mathematical modeling of handoffs in the workflow. Moreover, engineers and 

researchers are impeded from simulating the potential impact of communication errors on 

workflow efficiency and determining optimized scheduling strategies. 

NPP outages desire a more resilient outage control system for reducing delays. 

Such a system should automatically identify human errors or unexpected discoveries 

during field operations to avoid delays. Given the complexity of the interwoven 

relationships between the workflow and interpersonal communication processes between 

outage participants. Agent-based simulation modeling is a powerful tool to simulate 

uncertainties and predict changes in task sequences and efficiency variations in outage 

workflows (Zhang et al., 2002; Lu, 2003). The author developed a simulation model to 

examine the impact of communication behaviors on NPP outage delays.  
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The developed simulation platform consists of 1) a workflow model based on a 

previous NPP outage schedule, 2) a developed handoff model according to the handoff 

process observed during NPP outages, and 3) a developed simulation-based 

communication protocol optimization approach for reducing delays caused by 

communication errors. In particular, the workflow model specifies the spatiotemporal 

relationships between tasks of the outage workflow. Such relationships specify the 

precedence relationship between tasks, locations, and random task durations that follow 

uniform distributions. The developed handoff model represents human activities (i.e., 

travel, communication) that fills in the gap between the connected tasks. 

Previous Research 

Advanced technologies and properly designed communication protocols are crucial 

for predictive outage control that reduces the time wastes and error rates in the NPP 

workflows. This section focuses on summarizing research reports and published literature 

that 1) advanced technologies in NPP outage control, and 2) the use of simulation for 

examining control strategies on workflow efficiency. The focus is to synthesize the 

background knowledge about the current practice in NPP outage control for identifying 

knowledge gaps.  

Advanced technologies in NPP outage control 

NPP outages are complex and challenging projects due to a large number of 

maintenance and refueling activities that need to be completed in a short period (Germain 

et al. 2013). All tasks conducted in an NPP are guided by well-designed procedures to 

help ensure the safety and efficiency of NPP operations (Oxstrand and Blanc 2017). The 

paper-based procedures are widely used during NPP operations (Oxstrand and Blanc 
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2017). Recent interest in using advanced systems has aroused for improving NPP outage 

safety and efficiency by automating the operational procedures during NPP outages (i.e., 

initiation of work request) (Germain 2015; Rashdan et al. 2015).  

Advance outage control center (AOCC) implemented in the current practice of NPP 

outage control enables real-time work status updates from automated tools tracking 

individual workers' workflows (i.e., Computer-Based Procedures, CBPs, and Automated 

Work Packages, AWPs) (Zhang et al. 2017a). Previous studies have demonstrated the 

potential of using CBPs for increasing NPP operation efficiency and safety (Le Blanc and 

Oxstrand 2012; Oxstrand and Blanc 2017). Other studies have examined the effectiveness 

of using AWPs among field workers and supervisors for exchanging updated information 

on work packages according to the dynamic NPP conditions (Rashdan et al. 2015; 

Rashdan and Agarwal 2016; Rashdan and Oxstrand 2017). Unfortunately, these advanced 

tools provide limited capability of predicting delays due to communication errors. 

Besides, a properly designed communication protocol is missing in these advanced tools. 

Simulation for examining control strategies on workflow efficiency 

Construction simulation is the science of developing and experimenting with 

computer-based representations of construction systems to understand their underlying 

behavior (AbouRizk 2010). However, on many occasions, existing project scheduling 

methods failed to provide a precise depiction of the dynamic project conditions and its 

real behaviors. Using computer simulation tools, the overall logic relationships of various 

activities during CIS O&M can be represented by formalized representations. Such 

representations include the changing states of a physical facility and the resources 

(workforce, tools) involved in carrying out the work. 
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Existing construction simulation tools have limited capability to precisely model 

the complicated spatiotemporal interactions between human, tasks, and resources to 

support risk assessment. Currently, project managers use a Gantt chart or PERT model to 

represent and analyze workflows (Alzraiee et al. 2015). These workflow representations 

could hardly describe how human behaviors influence task executions as well as the 

complex interaction between different tasks and resources. New simulation models are 

thus necessary to integrate representations of human behaviors, and unexpected events 

into schedule analysis methods. 

Research Methodology 

This study proposed a novel control system for smoothing the communication 

processes and reduce outage delays. The system includes an automated communication 

platform with proactive communication protocols to reduce the risks of communication 

errors. The author developed an automated communication system through lab 

experiments and computational simulations. Specifically, the author has examined 1) the 

performance and reliability when using advanced technologies during NPP outage 

control, and 2) the performance of developed “early-call” strategies in reducing delays. 

The developed proactive control system hence can provide two control strategies that can 

be implemented into the practice of NPP outage control and resolve the efficiency issues. 

The first control strategy is to use an automatic communication system to notify workers 

automatically about the completion of relevant tasks so that the supervisor does not need 

to inform workers and avoid communication errors manually. The second control strategy 

is to adopt an “early call” strategy that needs supervisors to call the workers of following 

tasks in advance before the completion of a task.  
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In general, the proposed simulation-based model input the as-planned schedule and 

uncertainties found from the interview and documented historical records, and calculate 

the delays caused by the identified uncertainties. The proposed model represents and 

simulates the detailed spatiotemporal interaction between tasks (e.g., processor and 

successor task relationships) and human resources (e.g., management team and work 

teams). These relationships are constraints that determine how the detailed 

spatiotemporal interaction between tasks and human occur within the workflow model. 

Moreover, the model represents information flows across multiple teams in a centralized 

communication network. 

The proposed simulation-based modeling method (see Figure 26) integrates a 

workflow model based on the NPP outage schedule and a developed handoff model 

according to the handoff process observed from the field. The workflow model aims to 

represent the detailed interactions among tasks in an accelerated construction workflow. 

However, the handoff model simulates detailed human activities during handoff 

processes (i.e., communication, travel, and wait). The developed handoff model 

represents detailed interactions among individuals within and across groups 

(communications between the supervisor and worker teams). 

 
Figure 26. Overall Methodology 
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Scenario 1: Assessing the influence of late communications on a valve maintenance 

workflow during an NPP outage 

This section presents a simulation model based on a valve maintenance workflow 

(Plan A) for the main turbine system maintenance operations. The developed model 

includes the developed handoff model for assessing the impact of late communications on 

workflow delays (Section “Collecting human behavior data during valve/turbine maintenance 

processesCollecting human behavior data during valve/turbine maintenance processes” 

provides detailed information about the workflow). Valve maintenance is a critical 

activity that needs worker teams to enter the containment for conducting maintenance 

activities. Moreover, worker teams need additional handoff activities (i.e., technical 

briefing, dosimetry checking, tool pick-up/return, and check available work package) in 

the radiation protection island before and after the scheduled tasks. However, the RPI is a 

compact place where different workstations should be shared among all work teams (i.e., 

work teams cannot pick-up tools if another worker team has already occupied the tool 

pick-up station). Thus, communications between supervisor and worker teams are 

important to deliver the message and avoid additional waiting times during handoff. The 

author introduced a substantially comprehensive handoff model to evaluate how late 

communication affects the handoff processes and eventually lead to workflow delays. 

Figure 27 visualizes the overall workflow for this scenario. In this scenario, worker teams 

have to go through the indoor workspace and complete the handoff processes to get 

prepared for the valve maintenance activities at Sites A and B.  

The tasks simulated in the experiment are valve maintenance at Sites A and B and 

handoff at an indoor workspace. Figure 6 visualizes the entire as-designed workflow at 



84 

Sites A, and B. Blocks with the same color are the tasks using the same worker team (i.e., 

insulator—black; electrician—blue; mechanic—orange). Tasks sharing the same team 

cannot be executed simultaneously. The detailed task information is presented in Figure 6 

and Table 4.  

 
Figure 27. The Overall Workflow for Scenario 1 

 

The indoor workspace (see Figure 28) simulates the handoff processes within the 

radiation protection island and prepare worker teams for working within the containment. 

Such handoff processes include checking available work packages, dosimetry checking, 

getting technical debrief, and picking up tools (e.g., earplugs). All worker teams should 

go through a specific handoff process in an indoor workspace to be ready to work inside 

the containment for valve maintenance. Table 6 illustrates all sequences of station 

visiting for work teams while entering or exiting the indoor workspace. 
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Figure 28. Indoor Workspace Setup for Handoff Processes 

 

Once a worker team completes a task and travel back from the containment, all 

team members should go through certain processes in the RPI for dosimetry checking, 

drop off tools, and check other available work packages. According to the practice of 

handoff processes among tasks, the author found out from the interview that workers 

might have different objectives before/after they start working on scheduled tasks. Thus, 

different worker teams may have different moving patterns in the indoor workspace 

during handoff. For example, the insulator typically goes to Station 4 first to check the 

work packages; then goes to Station 1 for dosimetry checking; pick-up their tools at 

Station 2; and goes to Station 3 for technical debrief before they enter into the 

containment. However, the mechanic does not need to go to Station 1 for dosimetry 

checking before entering the containment. The time that each work team spends at 

different stations may also be different from one another. Table 7 presents detailed 

handoff activity information for different worker teams. 
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Communication during handoffs can be challenging. Worker teams may forget to 

report to the supervisor on the completion of current tasks, thereby causing delays. The 

observations indicate that three major types of uncertainties involved during the handoffs 

and caused late communications between the supervisor and workers. For example, 

workers may miss the voice message from the supervisor and do not realize an available 

work package for them to work on. Moreover, the supervisor could send out the available 

task information late to the workers of the successor tasks when the supervisor is 

simultaneously coordinating several tasks with different workers.  

In this scenario, the author has simulated the late report of workers for assessing its 

impacts on workflow delays. The author modeled the late report by modifying the 

communication function of the worker agent. Accordingly, workers are allowed to report 

the completion of their tasks after a certain time once they complete certain tasks. This 

modification will set up a specified timer and ask workers to report to the supervisor for 

the task completion when the countdown of the timer reaches zero. In this case, the 

workers will be able to report to the supervisor when they are either traveling, waiting, or 

in the handoff processes in the indoor workspace. 

Scenario 2: Assessing the influence of automatic “early-call” protocol in reducing 

workflow delays 

This section presents a simulation model based on a valve maintenance workflow 

(Plan A) for the main turbine system maintenance operations. The model includes the 

developed handoff model for examining the “early-call” protocol in reducing workflow 

delays (Section “Collecting human behavior data during valve/turbine maintenance processes” 

provides detailed information about the workflow). The communication protocols for the 
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valve maintenance workflow generally defines a centralized communication network, the 

direction of the information flow, and the timing of the communication. In the developed 

simulation model, two agents play the leading roles for representing human behaviors of 

different types of participants of the handoff and maintenance processes. The worker 

agent captures the behaviors of workers who carry out tasks in the field. The supervisor 

agent captures behaviors of supervisors who are communicating across multiple teams 

and coordinate the works of various workers and the works related to other teams’ tasks.  

In the current practice, typical handoffs occur between the predecessor task and the 

successor task. Such handoffs usually involve communication, travel activities, and 

waiting time. However, such handoffs could induce severe delays when the “float” 

between tasks is limited. “Hot handoff” allows the worker teams to pre-prepare their 

successor tasks in advance to avoid delays, especially when the task is on the critical 

path. The author then modeled an overlapped handoff (“hot handoff”), which allows the 

“early-call” strategies to help mitigate the risks of delays (see Figure 29). The author is 

trying to understand how such a “hot handoff” can help reduce the risk of delays during 

an outage workflow. 

 

Figure 29. “Hot handoff” Modeled in the Simulation 
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In the current communication protocol (see Figure 30), multiple communications 

are required for workers and supervisors to allow a fast information exchange during a 

workflow. Workers are required to acknowledge all messages sent by the supervisor. For 

example, workers need to acknowledge to the supervisor that they receive the available 

task information. This communication is trying to help the supervisor know that the 

worker has successfully received their message. The supervisor will regularly check the 

message sent by workers about their progress of work, and send out a notification to 

workers about tasks that are ready to be working on. Since all the workers and the 

supervisor are on the same communication channel, the supervisor is required to send out 

a notification to workers with specified worker names and the task information (i.e., 

@insulator, task 1 at site A is available for you). Hence, the worker will be notified that 

there is a message for him/her. 

 

Figure 30. Improved Communication Protocol with “Early-call” 
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The designed “early-call” protocol allows workers to report their current task 

progress early (e.g., the worker can call 15 minutes ahead of time to notify the supervisor 

that they are about to complete the current task). Thus, the supervisor can ask the worker 

team who work for the successor task to start preparations. As for the optimized 

communication protocol, additional communications are required for the worker, which 

is to send a notification to the supervisor about the progress of their work. In the lab 

experiment, the author required the worker teams to send a notification about the 

completion of their current tasks to the supervisor so that the supervisor will know which 

task has completed and decide which task can become available. In the computer 

simulation, the author added another function to allow workers to report their work 

progress so that the supervisor can notify the successor task team to get prepared. 

Validation 

Impact of late communication during handoffs on workflow delays 

Late communications can accumulate time wastes and cause severe delays to the 

handoff processes. For example, given that handoff processes involve traveling, 

communications, and task preparation activities (e.g., tool pick-up/return, technical 

briefing, security checking), late communication would cause conflicts between workers 

in resource sharing (e.g., different workers may simultaneously come to a station for tool 

pick-up) and result in delays. Moreover, a scheduled task on the critical path has zero-

tolerance of delays during the handoff process. To better understand how late 

communication affects the workflow delays, the author 1) conducted 20 trials of 

laboratory experiments using the developed workflow and handoff model to capture 

workers’ late-report behaviors (i.e., the worker reports the completion of each task late to 
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the supervisor); and 2) conducted computational simulations to simulate how such late-

report behaviors affect overall workflow delays. The author hired participants from the 

construction management program of Arizona State University and provided detailed 

training on the experiment. During the experiment, the author observed and captured the 

late-report behaviors by the participants (Table 24). 

Table 24. Late-report Captured during the Lab Experiments 

Task Worker 
Late report 

(delayed time: min) 
Trial 

Task 1 (A) Insulator 2.6 2 

Task 3 (A) Mechanic 1.5 2 

Task 4 (A) Electrician 1.8 7 

Task 1 (A) Insulator 0.5 12 

Task 3 (B) Mechanic 3.0 14 

Task 4 (A) Electrician 1.2 18 

Task 1 (B) Insulator 0.8 18 

 

According to the field observations, the captured average delays caused by late-

report can be up to 30 minutes (durations in the laboratory experiment are scaled back ten 

times). After that, the author simulated a 30-min late-report during the handoff process in 

the simulation model. For example, a 30-min late-report behavior is simulated after the 

insulator finished Task 1 (A) due to the insulator forgetting to report to the supervisor 

that Task 1 (A) has completed. That 30-min late-report behavior eventually leads to a 

nearly 30-min delay to the overall schedule because Task 1 (A) was a critical-path task. 

Table 25 shows that Task 4 (B) is more vulnerable because the workflow is more 

sensitive to the delays of handoff (30 min, 5.28%). Delays on Task 5 at Sites A and B had 

the least impact on the overall workflow duration. Given that a 30-min late-report has 

been added to one of the tasks in the workflow, the extension on the task duration will 

affect the actual task and the handoff process of other tasks. In particular, the supervisor 
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will receive the field information late owing to the late-report and cause delays to the 

successor task. Such late-report behaviors may also cause extended occupation on a 

certain station during the handoff processes by having a phone call.  

Table 25. The Sensitivity of the 30-min Late-report of Each Task 

Site Task Worker 
As-planed task 

duration (min) 

Late 

report 

(min) 

Workflow 

delays 

(min) 

Probability 

A 

Task 1 Insulator 30 

30 

29 5.10% 

Task 2 Electrician 45 16 2.82% 

Task 3 Mechanic 60 9 1.58% 

Task 4 Electrician 45 17 2.99% 

Task 5 Insulator 30 0 0% 

B 

Task 1 Insulator 30 9 1.58% 

Task 2 Electrician 45 2 0.35% 

Task 3 Mechanic 60 18 3.17% 

Task 4 Electrician 45 30 5.28% 

Task 5 Insulator 30 0 0% 

 

The extended occupation on the shared stations will eventually cause additional 

waiting time for other workers who are waiting to use the station. If specific tasks are 

delayed, then the probability of having conflicts among different work teams while in the 

handoff process would increase. The waiting time during handoff will also increase 

owing to the conflict, thereby causing additional delays to the workflow. For example, 

additional waiting times may occur, while Task 4 (B) is delayed. The reason is that the 

tool returning process of the electrician team may conflict with the tool pick-up process 

of the insulator team that is about to start on Task 5 (B). 

Assessing developed automatic “early-call” protocol in reducing workflow delays 

To validate the proposed “early-call” strategies in reducing workflow delays, the 

author created several scenarios according to the characteristics of the individual tasks 

and different “early-call” strategies. For example, a task that has more links to other tasks 
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may need more attention, and “early-call” strategies might be more effective in reducing 

delays in such tasks. Besides, tasks with more successor tasks could also be critical since 

delays of such tasks could lead to the late start of all linked successor tasks. Thus, the 

author first classified the tasks in the valve maintenance workflow (see Figure 6) into 

four types (Figure 31) based on 1) the number of connections (links); and 2) 

configurations of the predecessor/successor tasks. Then, given the shorted task duration is 

30 minutes, the author set the maximum time for an early call to the supervisor as 25 

minutes. In the simulation, the author simulated the time for an early-call at 10 minutes, 

15 minutes, 20 minutes, and 25 minutes. In the end, the author ran the simulation 

depending on the task types and “early-call” strategies to validate how the “early-call” 

protocols performed within different tasks in the valve maintenance schedule.  

 

Figure 31. Task Classifications 

 

Simulation results (Table 26) indicate that “early-call” strategies worked for most 

of the tasks in the valve maintenance workflow in reducing delays up to 28.8 minutes. 

For Type I tasks, since Task 1 (A) is the start of the schedule, “early-call” on this task 

only means an early start of the workflow and does not contribute to reducing delays. 
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However, for Task 5 (B), which is the last task in the workflow, calling 10/15 minutes 

early will even cause more delays to the workflow. Results indicate that for Type I tasks, 

the more early the supervisor notifies the worker team, the more delays can be reduced. 

The author found out that calling the insulator when the current task (Task 4B) is about to 

complete in 10 to 15 minutes resulted in additional travel time for the insulator and 

conflicts in the indoor workspace. Specifically, the start times for Type I tasks depend on 

the end times of both predecessor tasks. However, if a large deviation exists between the 

end times for predecessor tasks, workers for Type I tasks will have to get back to the shop 

and wait until further notice. Calling early allows the workers to stay at the job site and 

wait instead of going back to the shop, which add more travel time.  

For Type II tasks, which are typical tasks that have one predecessor and one 

successor task, the “early-call” strategies can reduce delays up to 10 minutes. However, it 

is clear to see that such tasks are not sensitive to different “early-call” strategies. The 

author found out that Type II tasks are close to the start and the end of the workflow, 

where only a few workers are occupying the resources in the indoor workspace. Thus, 

workers for Type II tasks can smoothly go through the handoff processes without conflict 

with other workers and start the task in time. Such smooth handoff processes are the main 

reason that contributes to reducing delays.  

For Type III tasks, which contain one predecessor task and two successor tasks, 

results indicate that the more early that workers are notified about the task, the more 

delays can be reduced. The author found out that any delays to Type III tasks could be 

disasters since the two successor tasks could be affected and aggravate the delays to the 

workflow. An “early-call” to Type III tasks allows the workers to pre-prepare the tasks 
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and get ready for the task immediately. Besides, an aggressive “early-call” (i.e., calling 

25 minutes early) allow buffers for any conflicts, which the worker team might encounter 

during the resource sharing processes in the indoor workspace.  

Table 26. Delays Reduced by “Early-calls” in the Valve Maintenance Workflow 

 Task 10 minutes 15 minutes 20 minutes 25 minutes 

Type 

I 
Task 1 (A) 
Task 5 (B) 

-10.2 minutes - 4.8 minutes 4.2 minutes 11.4 minutes 

Type 

II 
Task 1 (B); 
Task 5 (A) 

10.2 minutes 10..8 minutes 7.2 minutes 9.6 minutes 

Type 

III 

Task 2 (A); 

Task 3 (A); 

Task 4 (A) 
15.6 minutes 20.4 minutes 28.2 minutes 28.8 minutes 

Type 

IV 

Task 2 (B); 
Task 3 (B); 
Task 4 (B) 

26.4 minutes 23.4 minutes 20.4 minutes 17.4 minutes 

 

For Type IV tasks, which contains two predecessor tasks and one successor task, 

results indicate that calling too early might not be necessary. Similarly, the start time for 

Type IV tasks also depends on the end times of both predecessor tasks. However, unlike 

Type I and Type II tasks that are close to the start/end of the workflow, Type IV tasks are 

in the middle of the schedule. Besides, workers on such tasks usually stay at the job site 

for getting ready for the tasks. Since the indoor workspace is a “hot” area during the 

middle of the workflow where resource-sharing processes could induce workflow delays. 

Calling too early could result in unnecessary conflicts during the handoff processes in the 

indoor workspace and cause delays to other tasks.  

The author used the developed “early-call” model to test the optimal time to call-in 

worker teams for early preparation for the successor tasks and reduce delays. However, 
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such overlapped handoffs due to the “early-call” strategy could have different impacts on 

schedules given the different task characteristics. One thing is that resources during 

handoff are designed not to be shared – one station can only serve one worker at a time. 

In that way, overlapped handoffs will get more workers waiting at some stations for 

workers already using that resource during handoff. Since the waiting time is hard to 

estimate due to the variances of task duration in a workflow, reducing the handoff 

duration through overlapping can create more spaces for accommodating task 

uncertainties. On the other hand, given different task characteristics, tasks with more 

links to other tasks, and those tasks in the middle of the schedule require more attention. 

Calling early to some tasks might not be necessary but rather create conflicts during the 

handoff processes. Thus, the developed simulation-based method could help evaluate to 

what extent the “early-call” protocol can help reduce workflow delays under different 

circumstances. 

Discussions 

The proposed handoff modeling resolved the primary concerns in detailed 

workflow modeling to understand the impact of human factors on workflow efficiency. 

In particular, the developed simulation platform has integrated communication and 

traveling activities into an interwoven workflow for revealing the impact of late 

communication on workflow delays. Such a simulation platform represents the detailed 

interactions among human, workspace, and tasks, and serves as a powerful tool to 

simulate human and task-related uncertainties. By using the developed simulation 

platform, users will be able to predict changes in task sequences and efficiency variations 

in a workflow. The author envisions that the extensions of the developed simulation 
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platform could 1) benefit the project manager to better assess potential delays and 

economic losses; 2) assist the project scheduler in updating the schedule accordingly 

based on the simulation results (i.e., find an optimal slot to insert new tasks); 3) help 

examine optimal communication protocols to ensure efficient communication between 

project participants (i.e., supervisors, workers); and 4) help develop better training 

programs that prepare workers with sufficient knowledge for scheduled tasks. 

The developed simulation platform could also be useful for outage control and 

other types of project schedule analysis where communications during handoffs between 

tasks cause main delays. For example, the developed handoff modeling platform could 

help simulate the communication between ATCs and pilots during air traffic controls to 

assess and predict the delays and accidents (i.e., runway incursion, LoS) in air traffic 

operations. Moreover, bridge inspection requires the cognitive capabilities of an engineer 

to recognize structure defects and describe in detail to ensure that the management team 

has a proper understanding of the bridge condition. Misunderstandings or 

misinterpretations of the inspection results could lead to the improper design of 

maintenance strategies during bridge maintenance. The developed platform could also 

serve to help estimate the potential failures of field inspection operations. 

Conclusion 

Precise estimations of workflow durations are critical to maintain the safety and 

efficiency of NPP outages. However, numerous uncertainties of tasks and human 

behaviors bring significant challenges to achieve precise estimations of workflow 

durations. However, identifying the list of vulnerable tasks in the as-planned schedule can 

guide the management team to allocate resources better during the planning phase of the 
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outage. Such improved resource allocation can thus help to achieving resilient NPP 

outage control. According to the simulation results, task deviations and delays during 

handoffs of certain tasks play a significant role in affecting the overall duration of the 

workflow. The result also shows that the proposed handoff modeling can provide a 

reliable reference to improve the monitoring strategies in outage workflows. 

The research findings indicate that the detailed interactions among tasks, 

individuals, and resources are significant concerns that cause delays during outages. 

Hence, reducing the time wasted and error rates caused by uncertainties (e.g., 

communication error, time for communication, travel activities) in the schedule 

maintenance workflows and handoff processes are critical to ensure the on-time 

completion of outages. The author used the developed simulation platform to 1) examine 

whether additional communication can help increase workers’ familiarity with tasks, and 

2) examine whether the early-call during handoff process could reduce delays (supervisor 

will call work team 15 min ahead of time, according to the as-planned schedule, to 

inform the work team that his/her successor task is about to finish). 

This study explores the potential of implementing an automated communication 

system with proactive communication protocols to help reduce delays during outage 

workflows. An automated communication system was developed and examined that such 

a system could significantly reduce delays caused by redundant communications and 

avoid delays due to miscommunications. The author also modeled the “early-call” 

strategy to mitigate the risks of delays by shortening the handoff processes and providing 

additional supervision to critical tasks. The simulation results about the “early-call” 

strategy indicate the reduced delays in workflows compared with manual communication 
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about task completions and random progress checking. All these simulation and 

communication data analysis results show the potential of proactively monitor and 

control the efficiency of the workflows in NPP outages through automation and 

simulation. 
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CHAPTER 6 

CONCLUSION AND FUTURE RESEARCH 

Summary of Research Contributions 

CIS requires safe and effective O&M, which involves significant human efforts. 

The reliability of interpersonal communication processes during CIS O&M is the key for 

the assurance of safety and efficiency. Poor interpersonal communication behaviors 

during CIS O&M could induce delays and safety concerns. Previous studies fell short in 

providing quantitative representations of to formalize numerous categories of 

communication reliability issues during CIS O&M and assess the impacts on CIS O&M 

safety and efficiency. This study proposed a predictive control method for 1) identifying 

risky communication contexts and features, 2) using the identified risky communication 

contexts and features for predicting communication errors and CIS O&M risks, and 3) 

examining mitigation strategies to reduce the CIS O&M risks due to communication 

errors. 

Precise estimation of CIS O&M workflow duration and reliable prognosis of CIS 

O&M risks are extremely important to maintain the safety and efficiency of CIS O&M. 

However, numerous task-related uncertainties and abnormal human behaviors become 

obstacles for effective and reliable CIS O&M risk prognostics. Such prognostics require 

excessive human efforts and resources for 1) discovering vulnerable sections of CIS 

O&M, and 2) resolving the identified risks to ensure CIS O&M safety and efficiency. 

Thus, identifying a list of vulnerable tasks with high uncertainties during the planning 

phase of CIS O&M can guide the management team to better allocate resources and 

improve CIS O&M resilience.  
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In the NPP outage case, the author first identified the risky communication contexts 

and features based on an extensive review of NPP accident reports and literature. Then 

the author uses a constraint-based BN model expert knowledge encoded for predicting 

communication errors and delays for given communication contexts and features. The 

author then proposed an agent-based simulation platform based on a typical NPP outage 

schedule. Simulation results indicate that the significance of different “early-call” 

strategies heavily depends on the task characteristics (e.g., number of links, location 

within the schedule). For example, applying “early-call” strategies on tasks with more 

links can reduce more delays. Such findings provide a basis for the management team of 

NPP outages to refine their existing communication protocols by better allocating the 

managing efforts on critical tasks.  

In the air traffic control case, the author first identified the risky communication contexts 

and features based on an extensive review of air traffic control accident reports and 

literature. Then the author used a constraint-based BN model expert knowledge encoded 

for predicting communication errors and LoS for given communication contexts and 

features. The proposed method aims at supporting automatic communication error 

detection through 1) aircraft landing process modeling, 2) communication error 

classification, and 3) speech recognition for communication data analytics. Major findings 

show that the incorrectness of pilots’ read-backs contributes to most LoS.  The ATC should 

correct the in-correct read-backs from pilots to avoid LoS.  

Limitations 

The proposed method provides the potential for identifying risky communication 

contexts and features based on literature and accident reports. Using this method, the author 



101 

would be able to identify these risky communication contexts and features while processing 

the audio communication data and use the identified contexts and features for predicting 

communication errors through Bayesian Network modeling. The simulation model then 

allows examining potential mitigation strategies in reducing the impacts of communication 

errors on CIS O&M safety and productivity. The proposed method has been validated using 

two cases. However, as the contribution of the proposed method would be methodological, 

limitations still exist and require more data collection efforts and data analysis for further 

validating the proposed method in more complex CIS O&M scenarios. 

Limitations of the proposed method still exist as the communication behaviors of CIS 

O&M participants vary in different CIS O&M scenarios. How to implement the proposed 

method in other CIS O&M scenarios is still challenging. For example, the author only 

identified a list of risky communication contexts and features in the context of NPP outage 

and air traffic control environments. These identified risky communication contexts and 

features might not be the same in other CIS O&M scenarios (e.g., building construction 

projects). A systematic summarization of risky linguistic and grammatical features in 

numerous CIS O&M scenarios for predicting communication errors is necessary but 

challenging. Some studies have examined automatic text processing methods for extracting 

causal factors and features of risky events and from a huge amount of accident reports 

(Chokor et al. 2016; Tixier et al. 2016). Other studies examined automatic speech 

recognition methods detecting communication errors (Johnson et al. 2013; Kopald et al. 

2013; Krajewski et al. 2008). These studies could support the automatic summarization of 

risky linguistic and grammatical features from communication data collected in various 

CIS O&M scenarios. 
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On the other hand, the communication behaviors modeled in this dissertation only 

consider the two-way communications between CIS O&M participants. For example, the 

communication behaviors in the NPP outage case only consider the two-way 

communications between the supervisor and the workers. However, communication 

behaviors may vary under different CIS O&M scenarios. For example, informal 

communications through phone calls or text messages may be used among workers in 

typical construction projects to exchange information. Such communication may not have 

a specific protocol to specify 1) when to call, and 2) who to call. It is necessary to consider 

a formal method to model various communication behaviors in different contexts. However, 

establishing formalized representations of communication behaviors for modeling such 

communication behaviors within and across teams in various CIS O&M contexts is 

challenging. Some studies have synthesized the communication behaviors in different CIS 

O&M scenarios (Abdel-Monem and Hegazy 2013; Lee and Doran 2017; Liao et al. 2014b; 

Pan and Bolton 2015). The communication behaviors synthesized could help to form a 

basis for establishing formalized representations of communication behavior. 

Besides, different CIS O&M workflows may have different requirements and face 

various challenges. In this dissertation, one of the impacts of communication errors on CIS 

O&M safety and efficiency is delays. Specifically, NPP outages are extremely sensitive to 

such delays, which could result in huge financial costs. However, the minute-level delays 

might not be sensitive to building construction projects compare to NPP outages (e.g., 

building construction projects may only concern about delays in months). It is thus 

necessary to consider the impacts of communication errors on different CIS O&M 

workflows by tailoring the proposed method. Some studies have studies the impacts of 
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communication behaviors on the safety and efficiency of various CIS O&M scenarios (Lee 

and Doran 2017; Sambasivan and Soon 2007; Skaltsas et al. 2013). These studies could 

help to establish a comprehensive characterization of the impacts of communication errors 

in various CIS O&M scenarios. Such a comprehensive characterization could then help 

future modeling efforts for examining the impacts of communication errors on CIS O&M 

safety and efficiency. 

Future Research Directions 

Communication issue during CIS O&M is only one aspect of the human reliability 

challenge that will affect CIS O&M safety and efficiency. Human reliability contains three 

aspects of systems reliability that collectively consider a balance between time for 

processes and the time limits posed by the development of natural or engineering processes. 

Specifically, the three aspects of systems reliability are 1) Human-Physical reliability (HP), 

2) Human-Human reliability (HH), and 3) Human-Cyber reliability (HC). While this 

dissertation aims at addressing the challenges in the HH aspect (communication) of human 

reliability issues in CIS O&M, the other two human reliability aspects need to be addressed 

accordingly as well. These three human-related reliability issues involve interwoven 

interactions between human, cyber, and physical elements of CIS O&M, which pose 

challenges to state-of-the-art data analytics techniques and mathematical models.  

The interwoven interactions between workers and teams during cognition, decision-

making, and task execution activities are elements that form the CIS O&M processes. 

When these elements of CIS O&M processes demand more time and result in processes 

that exceed the time needed for preventing specific incidents or accidents, the systems enter 

into an unsafe state. A better understanding of these human-cyber-physical interactions is 
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critical for reducing the impacts of uncertain human factors on the safety and efficiency of 

CIS O&M (Boring 2009, 2010; Shi et al. 2019). Future directions of this dissertation will 

focus on addressing the challenges in the HP and HC aspects of human reliability to ensure 

CIS O&M safety and efficiency. 

Future Research Directions (I) – Human-Physical Reliability for Ensuring CIS O&M 

Safety and Efficiency 

Human-physical (HP) reliability refers to human reliability during the engagement with 

the physical environment of CIS O&M. Human cognitive and task execution behaviors are 

critical to ensure the safety and efficiency of CIS O&M; inappropriate behaviors could lead 

to operation errors and result in severe damage to the physical infrastructure (e.g., NPPs) 

(French et al. 2011). This section summarizes three aspects of HP-reliability issues based 

on the three-stage process (Patterson et al. 2009). Specifically, such three-stage process 

includes 1) cognition – perceptions of human individuals when collecting data and 

information from physical environments; 2) decision-making – choice selections of human 

individuals based on the available information about the states of tasks and environments, 

and the knowledge and experiences of human individuals; 3) physical process execution – 

actions carried out by human individuals on physical environments. 

The human cognition stage of field workers involves the perception of the raw data from 

the physical environment (i.e., workspace), such as the physical objects (e.g., valve, pumps, 

wires, machinery), and workspace layout (Alvarenga and e Melo 2019).  Existing studies 

focused on 1) effective workspace layout design, 2) process modeling of workflows 3) 

object detection using computer vision techniques, and 4) leveraging human senses for 

ensuring the safety and efficiency of CIS O&M (AbouRizk and Hajjar 2011; Luo et al. 
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2019; Zhang et al. 2016a). These studies captured field operation anomalies (e.g., abnormal 

human cognitive and task execution behaviors, the wrong object moving patterns) by 

checking the compliance of the specified operation procedures. Besides, studies on human 

senses (e.g., visual, audio, smell) identified the root cause of fault, such as human olfactory, 

auditory, and tactile senses (e.g., the smell of the leaking gas, sounds of equipment 

vibrations) (Purarjomandlangrudi and Nourbakhsh 2013).  However, few studies provide 

quantitative assessments of the impacts of human cognition on HP reliability during CIS 

O&M. 

The decision-making stage of field workers often can be knowledge-based and related 

to specific operation goals. Some studies developed process models to investigate the 

mechanisms behind the field workers’ decision-making processes during extreme events 

(Lu and Sy 2009). Other studies focused on enhancing the field workers’ knowledge and 

skills by utilizing advanced technologies to improve the training methods (Weick 1989). 

Some more recent studies examined the use of electroencephalogram (EEG) to investigate 

the influence of information perception on human individual’s decision making (Cha and 

Lee 2019). Nevertheless, how to predict the decision-making mechanisms of field workers 

in the dynamic operation process is challenging (Alvarenga and e Melo 2019).  

The execution stage of field workers involves the actions applied to the physical 

environment to ensure the safety and efficiency of the CIS O&M (Kontogiannis and 

Malakis 2009). Such execution reliability could greatly affect the physical environment. 

For example, the large number of similar instruments and devices densely located in the 

mechanical rooms of NPPs raise significant difficulties for field workers to identify the 

correct instruments to operate (Preischl and Hellmich 2013, 2016). Some researchers 
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adopted augmented reality that provides operation procedures and animation information 

to improve the human operation reliability in dynamic changing workspaces, such as 

mechanical rooms of NPPs (Palmarini et al. 2018). However, field workers still make 

mistakes while conducting schedule tasks and raise elevated risks. 

Overall, existing studies conducted extensive explorations of many aspects of the 

reliability of human individuals. However, limited studies provided 1) quantitatively 

assessment on the impacts of HP reliability (e.g., cognition, decision-making, and 

execution) on the CIS O&M safety and efficiency in the changing environments and 

facilities; 2) a systematic characterization of smell, taste, self-motion, temperature, and 

humidity sensing performance of workers and the impacts of anomalous human sense 

performance on the CIS O&M safety and efficiency in diverse environments encountered 

in civil engineering projects, and 3) a systematic approach based on historical training data 

with full environmental condition records for better designing personalized operator 

training for mitigating the risks of HP reliability in highly demanding tasks in working 

environments that change rapidly and influence team performance. 

Future studies should focus on conducting an extensive review of existing cognitive 

analyses and informal interviews with domain experts for synthesizing numerous 

categories of human errors during CIS O&M. Besides, future studies should aim to 

establish formal representations to create mathematical models of interwoven relationships 

in the human-cyber-physical systems for examining the impacts of human behaviors on 

CIS O&M safety and efficiency under various CIS O&M scenarios. Moreover, future 

studies should collect more human behavior data to study the performance of teams of 

human individuals in various decision contexts. 
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Future Research Directions (II) – Human-Cyber Reliability for Ensuring CIS O&M 

Safety and Efficiency 

Deriving information from a tremendous amount of data to support decision-

making is critical to ensure the safety and efficiency of CIS O&M. Human-Cyber (HC) 

reliability refers to the reliability issues of the data analysis processes with a human in the 

loop during CIS O&M. Previous data analysis reliability studies capture how various 

factors influence the quality of information derived from the data. Such data analysis 

usually involves sequential three stages that gradually derive various information from 

raw data sources (e.g., indicators on the digital information displays, images, historical 

records): 1) data pre-processing (Lopes et al. 2017), 2) data processing (Sun et al. 2019a), 

and 3) data interpretation (Reiman and Oedewald 2006; Sun et al. 2019b).  

With human-in-the-loop of data analysis processes, inappropriate selections of 

algorithms and parameters (e.g., poor subsampling methods) during the data pre-

processing and data processing stages could result in missing critical data  (Chen et al. 

2017). Besides, interpreting the data into information for decision-making may also 

heavily subject to domain knowledge and experience. How to better understand the 

impacts of human cognitive behaviors in the data analysis processes on HC reliability is 

thus necessary to ensure CIS O&M safety and efficiency. 

The HC reliability issues of control operators in typical control room operations 

involve the interactions with the data from digital information displays, such as the 

control objects (e.g., valves, pumps, water tank), indicators (e.g., temperature, pressure, 

coolant flow rate), and alarms (Alvarenga and e Melo 2019).  Human errors occur 

frequently due to the high proximity of similar control instruments located closely on the 



108 

digital control panel (Smidts et al. 1997). Besides, high repeatability of control actions 

while switching between multiple tasks creates obstacles for control operators to stay 

focus on the task (Braver et al. 2003; Goffaux et al. 2006; Sohn and Anderson 2001).  

For example, control operators are required to execute a plant cool-down protocol 

in a Loss-of-coolant-accident (LOCA) event during NPP operations (Pettersson et al. 

2009; Terrani et al. 2014). The control operators have to continuously monitor and 

maintain the reactor temperature and pressure of the reactor. Omitting in the temperature 

checking could occur and cause LOCA response failures. Previous studies focus on 

establishing contingency procedures and better training programs in responding to NPP 

accidents (Kaplan et al. 2013; Kim et al. 2010). However, limited studies examined the 

impacts of such omission errors on NPP safety and efficiency quantitatively.  

Information visualization during the control process during CIS O&M is also 

critical and affects the cognitive behaviors of control operators. Previous cognition 

studies on information visualization research focus on improving the delivery of 

information to information or data users in a way that minimizes human individuals’ 

mental workloads and misunderstandings. Some studies focused on designing a better 

information visualization system, which enables human individuals to perceive 

information quicker and more precisely (Hogenboom et al. 2020; Jia et al. 2013). Recent 

efforts in the NPP industry focus on the implementation of advanced NPP outage control 

centers to enable real-time work status updates (Zhang et al. 2017a). Compare with the 

paper-based and computer-based procedure that widely used in the current NPP control, 

the automatic work packages are effective in exchanging information on plant conditions, 

resource status, and user progress (Rashdan et al. 2015; Rashdan and Agarwal 2016; 
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Rashdan and Oxstrand 2017). However, few studies provide a quantitative assessment of 

the impacts of excessive amounts of digital information delivered on such advanced 

control tools on HC reliability during CIS O&M.  

Future studies should focus on 1) conducting data collections of human-in-the-loop 

simulations comprehending such processes in highly uncertain CIS O&M scenarios, 2) 

developing human-in-the-loop data analysis workflows for examining data analysis 

reliability due to data analysts’ behaviors (e.g., algorithm selection, parameter setup), and 

3) developing and testing data analytic methods for encoding physics/experiences from 

human knowledge and data with field observations to improve data analysis reliability. 

  



110 

REFERENCES 

Abdel-Monem, M., and Hegazy, T. (2013). “Enhancing construction as-built 

documentation using interactive voice response.” Journal of Construction 

Engineering and Management, 139(7), 895–898. 

AbouRizk, S. (2010). “Role of Simulation in Construction Engineering and 

Management.” Journal of Construction Engineering and Management. 

AbouRizk, S. M., and Hajjar, D. (2011). “A framework for applying simulation in 

construction.” Canadian Journal of Civil Engineering. 

Akca, S. S. (2020). “Team Cognition and Outage Management: Improving Nuclear 

Power Plant Resilience.” ARIZONA STATE UNIVERSITY. 

Alvarenga, M. A. B., and e Melo, P. F. F. (2019). “A review of the cognitive basis for 

human reliability analysis.” Progress in Nuclear Energy, Elsevier, 117, 103050. 

Alzraiee, H., Zayed, T., and Moselhi, O. (2015). “Dynamic planning of construction 

activities using hybrid simulation.” Automation in Construction, Elsevier B.V., 49, 

176–192. 

Bailey, L. L., Schroeder, D. J., and Pounds, J. (2005). The Air Traffic Control 

Operational Errors Severity Index: An Initial Evaluation. 

Le Blanc, K., and Oxstrand, J. (2012). “Computer-Based Procedures for Field Workers in 

Nuclear Power Plants: Development of a Model of Procedure Usage and 

Identification of Requirements.” (April). 

Borghini, G., Aricò, P., DI Flumeri, G., Cartocci, G., Colosimo, A., Bonelli, S., Golfetti, 

A., Imbert, J. P., Granger, G., Benhacene, R., Pozzi, S., and Babiloni, F. (2017). 

“EEG-Based Cognitive Control Behaviour Assessment: An Ecological study with 

Professional Air Traffic Controllers.” Scientific Reports, 7(1), 1–16. 

Boring, R. L. (2009). “Reconciling resilience with reliability: The complementary nature 

of resilience engineering and human reliability analysis.” Proceedings of the Human 

Factors and Ergonomics Society, 1589–1593. 

Boring, R. L. (2010). “Bridging resilience engineering and human reliability analysis.” 

10th International Conference on Probabilistic Safety Assessment and Management 

2010, PSAM 2010, 1353–1360. 

Boring, R. L. (2015). “Defining Human Failure Events for Petroleum Applications of 

Human Reliability Analysis.” Procedia Manufacturing, 3, 1335–1342. 

Braver, T. S., Reynolds, J. R., and Donaldson, D. I. (2003). “Neural mechanisms of 

transient and sustained cognitive control during task switching.” Neuron. 



111 

Castle, M. W., Trinh, T., Mayer, C., and Parry, C. (2010). “Evaluation of separation 

performance with ADS-B at the Philadelphia key site.” AIAA/IEEE Digital Avionics 

Systems Conference - Proceedings, IEEE, 2.C.2-1-2.C.2-15. 

Cha, K.-M., and Lee, H.-C. (2019). “A novel qEEG measure of teamwork for human 

error analysis: An EEG hyperscanning study.” Nuclear Engineering and 

Technology, Elsevier, 51(3), 683–691. 

Chang, Y. H., and Wong, K. M. (2012). “Human risk factors associated with runway 

incursions.” Journal of Air Transport Management, Elsevier Ltd, 24, 25–30. 

Chen, J., Zhang, C., and Tang, P. (2017). “Geometry-based optimized point cloud 

compression methodology for construction and infrastructure management.” 

Congress on Computing in Civil Engineering, Proceedings. 

Chierichetti, F., Kleinberg, J., and Kumar, R. (2014). “Event Detection via 

Communication Pattern Analysis.” Proceeding of the 8th International AAAI 

Conference on Weblogs and Social Media, 51–60. 

Chokor, A., Naganathan, H., Chong, W. K., and Asmar, M. El. (2016). “Analyzing 

Arizona OSHA Injury Reports Using Unsupervised Machine Learning.” Procedia 

Engineering, Elsevier B.V., 145, 1588–1593. 

Cooke, N. J., and Gorman, J. C. (2009). “Interaction-Based Measures of Cognitive 

Systems.” Journal of Cognitive Engineering and Decision Making, 3(1), 27–46. 

Cooke, N. J., Gorman, J. C., and Kiekel, P. A. (2017). “Communication as team-level 

cognitive processing.” Macrocognition in Teams: Theories and Methodologies. 

Cooke, N. J., Gorman, J. C., Myers, C. W., and Duran, J. L. (2013). “Interactive Team 

Cognition.” Cognitive Science, Blackwell Publishing Ltd, 37(2), 255–285. 

Cooke, N. J., Salas, E., and Kiekel, P. A. (2004). Advances in Measuring Team 

Cognition. 

Cooke, N. J., Salas, E., Kiekel, P. A., and Bell, B. (2005). “Advances in measuring team 

cognition.” Team cognition: Understanding the factors that drive process and 

performance., (January), 83–106. 

Dao, A. Q. V., Brandt, S. L., Bacon, L. P., Kraut, J. M., Nguyen, J., Minakata, K., Raza, 

H., and Johnson, W. W. (2011). “Conflict resolution automation and pilot situation 

awareness.” Lecture Notes in Computer Science (including subseries Lecture Notes 

in Artificial Intelligence and Lecture Notes in Bioinformatics), 473–482. 

Darwazeh, I., Xu, T., and Grammenos, R. C. (2017). “Bandwidth-compressed 

multicarrier communication: SEFDM.” Signal Processing for 5G: Algorithms and 

Implementations, 90–114. 



112 

Demir, M., McNeese, N. J., and Cooke, N. J. (2017). “Team situation awareness within 

the context of human-autonomy teaming.” Cognitive Systems Research, Elsevier 

B.V., 46, 3–12. 

Demner-Fushman, D., Chapman, W. W., and McDonald, C. J. (2009). “What can natural 

language processing do for clinical decision support?” Journal of Biomedical 

Informatics, Elsevier Inc., 42(5), 760–772. 

El-Gohary, N. M., and El-Diraby, T. E. (2010). “Domain Ontology for Processes in 

Infrastructure and Construction.” Journal of Construction Engineering and 

Management, 136(7), 730–744. 

Elliott, G. (2013). “Misunderstandings in Air Traffic Communication.” HindSight 18 

Winter. 

Federal Aviation Administration. (2015). Air Traffic Organization 2015 Safety Report. 

Air Traffic Organization. 

Federal Aviation Administration. (2019). Air Traffic by the Numbers. 

French, S., Bedford, T., Pollard, S. J. T., and Soane, E. (2011). “Human reliability 

analysis: A critique and review for managers.” Safety Science, 49(6), 753–763. 

Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., and Rozier, K. Y. (2016). “Model 

checking at scale: Automated air traffic control design space exploration.” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 3–22. 

Geacăr, C. M. (2016). “Reducing Pilot / Atc Communication Errors Using Voice 

Recognition.” 27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL 

SCIENCES REDUCING, 1–7. 

Germain, S., Farris, R., Whaley, A., Medema, H., and Gertman, D. (2014). “Guidelines 

for Implementation of an Advanced Outage Control Center to Improve Outage 

Coordination, Problem Resolution, and Outage Risk Management.” Idaho National 

Laboratory. 

Germain, S. S. (2015). “Use of Collaborative Software to Improve Nuclear Power Plant 

Outage Management Technologies.” 

Germain, S. S., Farris, R., and Medema, H. (2013). Development of Methodologies for 

Technology Deployment for Advanced Outage Control Centers that Improve Outage 

Coordination , Problem Resolution and Outage Risk Management Ronald Farris 

Heather Medema. 

Giffin, A., and Caticha, A. (2007). “Updating probabilities with data and moments.” AIP 

Conference Proceedings, 74–84. 



113 

Gillan, D. J., Breedin, S. D., and Cooke, N. J. (1992). “Network and multidimensional 

representations of the declarative knowledge of human-computer interface design 

experts.” International Journal of Man-Machine Studies, 36(4), 587–615. 

Goffaux, P., Phillips, N. A., Sinai, M., and Pushkar, D. (2006). “Behavioural and 

electrophysiological measures of task switching during single and mixed-task 

conditions.” Biological Psychology. 

Golparvar-Fard, M., Peña-Mora, F., and Savarese, S. (2009). “Monitoring of 

Construction Performance Using Daily Progress Photograph Logs and 4D As-

Planned Models.” Computing in Civil Engineering (2009), American Society of 

Civil Engineers, Reston, VA, 53–63. 

Gorman, J. C., Cooke, N. J., and Winner, J. L. (2006). “Measuring team situation 

awareness in decentralized command and control environments.” Ergonomics, 

49(12–13), 1312–25. 

Graziano, A., Teixeira, A. P., and Guedes Soares, C. (2016). “Classification of human 

errors in grounding and collision accidents using the TRACEr taxonomy.” Safety 

Science, Elsevier Ltd, 86, 245–257. 

Guan, X., Jha, R., and Liu, Y. (2012). “Probabilistic fatigue damage prognosis using 

maximum entropy approach.” Journal of Intelligent Manufacturing, 23(2), 163–171. 

Guzman, A., Dominguez, C., Olivares, J., and Computación, C. D. I. E. (2002). 

“Reacting to Unexpected Events and Communicating in spite of Mixed Ontologies.” 

377–386. 

Hadavi, S. M. H. (2008). “Risk-Based, genetic algorithm approach to optimize outage 

maintenance schedule.” Annals of Nuclear Energy, 35(4), 601–609. 

Herrmann, J. W. (2004). “Information flow and decision-making in production 

scheduling.” IIE Annual Conference and Exhibition 2004, 1811–1816. 

Hobbins, S., Cooke, N. J., and Tang, P. (2016). “Analyzing Licensee Event Reports for 

Improved Teamwork and Nuclear Power Plant Safety During Outages.” The 22nd 

Occupational Health Week “Knowledge-Based Networks, Worldwide Connections 

for the Global Workplace.” 

Hogenboom, S., Rokseth, B., Vinnem, J. E., and Utne, I. B. (2020). “Human reliability 

and the impact of control function allocation in the design of dynamic positioning 

systems.” Reliability Engineering & System Safety, Elsevier, 194, 106340. 

IBM. (2019). “IBM Watson Speech to Text.” 

Immanuel, B., and Candace, F. (2013). Misunderstandings in ATC Communication: 

Language, Cognition, and Experimental Methodology. Ashgate Publishing. 



114 

Jara, A. J., Lopez, P., Fernandez, D., Zamora, M. A., Ubeda, B., and Skarmeta, A. F. 

(2014). “Communication protocol for enabling continuous monitoring of elderly 

people through near field communications.” Interacting with Computers, 26(2), 

145–168. 

Jia, Q., Liu, Y., and Zhang, L. (2013). “A design of the alarm system in digital control 

room of HTR-PM.” 2013 21st International Conference on Nuclear Engineering, 

American Society of Mechanical Engineers Digital Collection. 

Johnson, D. R., Nenov, V. I., and Espinoza, G. (2013). “Automatic speech semantic 

recognition and verification in air traffic control.” AIAA/IEEE Digital Avionics 

Systems Conference - Proceedings, 1–14. 

Kaplan, S., Laport, K., and Waller, M. J. (2013). “The role of positive affectivity in team 

effectiveness during crises.” Journal of Organizational Behavior, 34(4), 473–491. 

Kim, J., and Park, J. (2012). “Progress in Nuclear Energy Reduction of test and 

maintenance human errors by analyzing task characteristics and work conditions.” 

Progress in Nuclear Energy, Elsevier Ltd, 58, 89–99. 

Kim, M. C., Park, J., Jung, W., and Kim, H. (2007). “DEVELOPMENT OF 

STANDARD COMMUNICATION PROTOCOL FOR EMERGENCY 

MANAGEMENT OF MAIN CONTROL ROOM OPERATORS IN NUCLEAR 

POWER PLANTS.” IFAC Proceedings Volumes, 40(16), 235–238. 

Kim, M. C., Park, J., Jung, W., Kim, H., and Kim, Y. J. (2010). “Development of a 

standard communication protocol for an emergency situation management in nuclear 

power plants.” Annals of Nuclear Energy, 37(6), 888–893. 

Kim, W., Ryu, D., and Jung, Y. (2014). “Application of linear scheduling method (LSM) 

for nuclear power plant (NPP) construction.” Nuclear Engineering and Design, 

Elsevier B.V., 270, 65–75. 

Kontogiannis, T., and Malakis, S. (2009). “A proactive approach to human error 

detection and identification in aviation and air traffic control.” Safety Science, 

Elsevier Ltd, 47(5), 693–706. 

Kopald, H. D., Chanen, A., Chen, S., Smith, E. C., and Tarakan, R. M. (2013). “Applying 

automatic speech recognition technology to Air Traffic Management.” 

Krajewski, J., Wieland, R., and Batliner, A. (2008). “An acoustic framework for 

detecting fatigue in speech based human-computer-interaction.” Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 5105 LNCS, 54–61. 

Krivonos, P. D. (2007). Communication in Aviation Safety : Lessons Learned and 

Lessons Required. 



115 

Laakso, K., Rosqvist, T., and Paulsen, J. L. (2002). The Use of Condition Monitoring 

Information for Maintenance Planning and Decision-Making. 

Lee, C. T. S., and Doran, D. M. (2017). “The Role of Interpersonal Relations in 

Healthcare Team Communication and Patient Safety: A Proposed Model of 

Interpersonal Process in Teamwork.” The Canadian journal of nursing research = 

Revue canadienne de recherche en sciences infirmieres, 49(2), 75–93. 

Lee, S. H., Kim, H. E., Son, K. S., Shin, S. M., Lee, S. J., and Kang, H. G. (2015). 

“Reliability modeling of safety-critical network communication in a digitalized 

nuclear power plant.” Reliability Engineering and System Safety, Elsevier, 144, 285–

295. 

Liao, P. C., Lei, G., Fang, D., and Liu, W. (2014a). “The relationship between 

communication and construction safety climate in China.” KSCE Journal of Civil 

Engineering, 18(4), 887–897. 

Liao, P. C., Lei, G., Fang, D., and Liu, W. (2014b). “The relationship between 

communication and construction safety climate in China.” KSCE Journal of Civil 

Engineering. 

Lopes, A. T., de Aguiar, E., De Souza, A. F., and Oliveira-Santos, T. (2017). “Facial 

expression recognition with Convolutional Neural Networks: Coping with few data 

and the training sample order.” Pattern Recognition. 

Love, P. E. D., and Li, H. (2000). “Quantifying the causes and costs of rework in 

construction.” Construction Management and Economics, 18(4), 479–490. 

Lower, M., Magott, J., and Skorupski, J. (2016). “Analysis of Air Traffic Incidents using 

event trees with fuzzy probabilities.” Fuzzy Sets and Systems, Elsevier B.V., 293, 

50–79. 

Lu, K. Y., and Sy, C. C. (2009). “A real-time decision-making of maintenance using 

fuzzy agent.” Expert Systems with Applications, Elsevier Ltd, 36(2 PART 2), 2691–

2698. 

Luo, X., Li, H., Wang, H., Wu, Z., Dai, F., and Cao, D. (2019). “Vision-based detection 

and visualization of dynamic workspaces.” Automation in Construction, 104, 1–13. 

Madni, A. M., and Jackson, S. (2009). “Towards a Conceptual Framework for Resilience 

Engineering.” IEEE Systems Journal, 3(2), 181–191. 

Mo, J. W. (2007). “Model for construction project scheduling and updating considering 

the dependent randomness of activities.” 2007 International Conference on Wireless 

Communications, Networking and Mobile Computing, WiCOM 2007, (2), 5171–

5174. 



116 

Molesworth, B. R. C., and Estival, D. (2015). “Miscommunication in general aviation: 

The influence of external factors on communication errors.” Safety Science, 73–79. 

Neboyan, V., and Lederman, L. (1987). “Human factors in the operation of nuclear 

power plants Improving the way man and machines work together.” IAEA Bulletin, 

29(4), 27–30. 

Numenta’s HTM technology. (2011). “Cortical.io.” 

Oxstrand, J., and Blanc, K. Le. (2017). “SUPPORTING THE INDUSTRY BY 

DEVELOPING A DESIGN COMPUTER-BASED PROCEDURES FOR FIELD 

WORKERS.” 10th International Topical Meeting on Nuclear Plant Instrumentation, 

Control and Human Machine Interface Technologies, Idaho National Laboratory. 

Palmarini, R., Erkoyuncu, J. A., Roy, R., and Torabmostaedi, H. (2018). “A systematic 

review of augmented reality applications in maintenance.” Robotics and Computer-

Integrated Manufacturing, Elsevier, 49, 215–228. 

Pan, D., and Bolton, M. L. (2015). “Properties for formally assessing the performance 

level of human-human collaborative procedures with miscommunications and 

erroneous human behavior.” International Journal of Industrial Ergonomics, 

Elsevier B.V, 1–14. 

Park, J., Jung, W., and Yang, J. (2012). “Investigating the effect of communication 

characteristics on crew performance under the simulated emergency condition of 

nuclear power plants.” Reliability Engineering and System Safety, 101, 1–13. 

Patterson, R., Pierce, B., Bell, H. H., Andrews, D., and Winterbottom, M. (2009). 

“Training robust decision making in immersive environments.” Journal of Cognitive 

Engineering and Decision Making, SAGE Publications Sage CA: Los Angeles, CA, 

3(4), 331–361. 

Petronas, Z. G. G., Shamim, A., and Teknologi, U. (2016). “Managing People in Plant 

Turnaround Maintenance : the Case of Three Malaysian Petrochemical Plants.” 

(March). 

Pettersson, K., Billone, M.Fuketa, T., Grandjean, C., Hache, G., and Heins, L. (2009). 

Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions. Nuclear 

Energy Agency, Organisation for Economic Co-operation and Development. 

Preischl, W., and Hellmich, M. (2013). “Human error probabilities from operational 

experience of German nuclear power plants.” Reliability Engineering & System 

Safety, Elsevier, 109, 150–159. 

Preischl, W., and Hellmich, M. (2016). “Human error probabilities from operational 

experience of German nuclear power plants, Part II.” Reliability Engineering & 

System Safety, Elsevier, 148, 44–56. 



117 

Prinzo, O. V., and Britton, T. W. (1993). “ATC/Pilot Voice Communications - A Survey 

of Literature.” 

ProLNat@GE Group, University of Santiago de Compostela, G., and CiTIUS. (2018). 

“Linguakit.” 

Promsorn, P., Soponsakulrat, P., Adulyanukosol, C., Kaiyarit, P., and Chinda, T. (2015). 

“Identifying Root Causes of Construction Accidents : Non – Human Error Factors.” 

International Journal of Computing, Communications & Instrumentation Engg. 

(IJCCIE), 2(1), 1–5. 

Purarjomandlangrudi, A., and Nourbakhsh, G. (2013). “Acoustic emission condition 

monitoring: an application for wind turbine fault detection.” International Journal of 

Research in Engineering Technology, 2(5), 907–918. 

Pyy, P. (2001). “An analysis of maintenance failures at a nuclear power plant.” 

Reliability Engineering & System Safety, 72(3), 293–302. 

Rashdan, A. Al, and Agarwal, V. (2016). “Automated Work Package : Initial Wireless 

Communication Platform Design , Development , and Evaluation.” ANS Annual 

Meeting, Idaho National Laboratory. 

Rashdan, A. Al, and Oxstrand, J. (2017). “AUTOMATED WORK PACKAGE : 

CAPABILITIES OF THE FUTURE.” 10th International Topical Meeting on 

Nuclear Plant Instrumentation, Control and Human Machine Interface 

Technologies, Idaho National Laboratory. 

Rashdan, A. Al, Oxstrand, J., and Agarwal, V. (2015). Automated Work Package 

Prototype : Initial Design , Development , and Evaluation. 

Reiman, T., and Oedewald, P. (2006). “Assessing the maintenance unit of a nuclear 

power plant – identifying the cultural conceptions concerning the maintenance work 

and the maintenance organization.” Safety Science, 44(9), 821–850. 

Risser, M. R. (2005). “Acknowledgement response and interference timing during the 

processing of voice and datalink ATC commands.” Dissertation Abstracts 

International: Section B: The Sciences and Engineering. 

Rodríguez-Sánchez, A. M., and Vera Perea, M. (2015). “The secret of organisation 

success.” International Journal of Emergency Services, 4(1), 27–36. 

Sambasivan, M., and Soon, Y. W. (2007). “Causes and effects of delays in Malaysian 

construction industry.” International Journal of Project Management, 25, 517–526. 

Shappell, S., Detwiler, C., Holcomb, K., Hackworth, C., Boquet, A., and Wiegmann, D. 

a. (2007). “Human error and commercial aviation accidents: an analysis using the 

human factors analysis and classification system.” Human factors, 49(2), 227–242. 



118 

Shi, Y., Du, J., Ahn, C. R., and Ragan, E. (2019). “Impact assessment of reinforced 

learning methods on construction workers’ fall risk behavior using virtual reality.” 

Automation in Construction, 104, 197–214. 

Sites, C., Mosic, C., and Khelifi, A. (2016). “A Mobile Device Software to Improve A 

Mobile Device Software to Improve Construction Sites Communications " MoSIC 

".” 7(December), 51–58. 

Skaltsas, G., Rakas, J., and Karlaftis, M. G. (2013). “An analysis of air traffic controller-

pilot miscommunication in the NextGen environment.” Journal of Air Transport 

Management, Elsevier Ltd, 27, 46–51. 

Smart, P. R., and Shadbolt, N. R. (2012). “Modelling the dynamics of team sensemaking: 

A constraint satisfaction approach.” Knowledge Systems for Coalition Operations, 

1–10. 

Smidts, C., Shen, S. H., and Mosleh, A. (1997). “The IDA cognitive model for the 

analysis of nuclear power plant operator response under accident conditions. Part I: 

problem solving and decision making model.” Reliability Engineering & System 

Safety, 55(1), 51–71. 

Smith, E. C. (2005). “Impact of RNAV terminal procedures on controller workload.” 

AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 1, 1–12. 

Sohn, M. H., and Anderson, J. R. (2001). “Task preparation and task repetition: Two-

component model of task switching.” Journal of Experimental Psychology: General. 

Stelkens-Kobsch, T. H., Hasselberg, A., Mühlhausen, T., Carstengerdes, N., Finke, M., 

and Neeteson, C. (2015). “Towards a more secure ATC voice communications 

system.” AIAA/IEEE Digital Avionics Systems Conference - Proceedings. 

Sun, Z., Shi, Y., Xiong, W., and Tang, P. (2019a). “Knowledge-based Registration for 

Reliable Correlated Change Detection on High-pier Curved Continuous Rigid Frame 

Bridge.” EG-ICE 2019 Workshop on Intelligent Computing in Engineering. 

Sun, Z., Tang, P., Shi, Y., and Xiong, W. (2019b). “Visual-Semantic Alignments for 

Automated Interpretation of 3D Imagery Data of High-Pier Bridges.” Proceeding of 

the 2019 ASCE International Conference on Computing in Civil Engineering. 

Sun, Z., Zhang, C., and Tang, P. (2018a). “Simulation-Based Optimization of 

Communication Protocols for Reducing Delays during Nuclear Power Plant 

Outages.” Construction Research Congress 2018: Infrastructure and Facility 

Management - Selected Papers from the Construction Research Congress 2018. 

Sun, Z., Zhang, C., and Tang, P. (2018b). “Simulation-Based Optimization of 

Communication Protocols for Reducing Delays during Nuclear Power Plant 

Outages.” 455–464. 



119 

Sun, Z., Zhang, C., and Tang, P. (2020). “Modeling and simulating the impact of 

forgetting and communication errors on delays in civil infrastructure shutdowns.” 

Frontiers of Engineering Management. 

Sun, Z., Zhang, C., Tang, P., Wang, Y., and Liu, Y. (2018c). “Bayesian Network 

Modeling of Airport Runway Incursion Occurring Processes for Predictive Accident 

Control.” Advances in Informatics and Computing in Civil and Construction 

Engineering. 

Tang, P., Zhang, C., Yilmaz, A., and Cooke, N. (2016). “Automatic Imagery Data 

Analysis for Diagnosing Human Factors in the Outage of a Nuclear Plant.” Lecture 

Notes in Computer Science - Digital Human Modeling and Applications in Health, 

Safety, Ergonomics and Risk Management, 9745. 

Terrani, K. A., Wang, D., Ott, L. J., and Montgomery, R. O. (2014). “The effect of fuel 

thermal conductivity on the behavior of LWR cores during loss-of-coolant 

accidents.” Journal of Nuclear Materials. 

Tiferes, J., Bisantz, A. M., and Guru, K. A. (2015). “Team interaction during surgery: A 

systematic review of communication coding schemes.” Journal of Surgical 

Research, 195(2), 422–432. 

Tixier, A. J. P., Hallowell, M. R., Rajagopalan, B., and Bowman, D. (2016). “Automated 

content analysis for construction safety: A natural language processing system to 

extract precursors and outcomes from unstructured injury reports.” Automation in 

Construction, Elsevier B.V., 62, 45–56. 

U.S. Department of Transportation. (2013). FAA Efforts to Track and Mitigate Traffic 

Losses of Separation are Limited by Data Collection and Implementation 

Challenges. 

Wang, Y., Bu, J., Han, K., Sun, R., Hu, M., and Zhu, C. (2016). “A novel network 

approach to study communication activities of air traffic controllers.” 

Transportation Research Part C: Emerging Technologies, Elsevier Ltd, 68, 369–

388. 

Wang, Y., and Liu, Y. (2020). “Bayesian entropy network for fusion of different types of 

information.” Reliability Engineering and System Safety. 

Wang, Y., Liu, Y., Sun, Z., and Tang, P. (2018). “A Bayesian-entropy Network for 

Information Fusion and Reliability Assessment of National Airspace Systems.” 

Proceeding of the 10th Annual Conference of the Prognostics and Health 

Management Society. 

Weick, K. E. (1989). “Mental models of high reliability systems.” Industrial Crisis 

Quarterly, Sage Publications Sage CA: Thousand Oaks, CA, 3(2), 127–142. 



120 

Wilke, S., Majumdar, A., and Ochieng, W. Y. (2014). “Airport surface operations: A 

holistic framework for operations modeling and risk management.” Safety Science, 

Elsevier Ltd, 63, 18–33. 

Witowski, S. (2018). Safety Wire. PRISM SOLUTIONS. 

Wu, C.-H., Su, M.-H., and Liang, W.-B. (2017). “Miscommunication handling in spoken 

dialog systems based on error-aware dialog state detection.” EURASIP Journal on 

Audio, Speech, and Music Processing, EURASIP Journal on Audio, Speech, and 

Music Processing, 2017(1), 9. 

Yoo, W. S., Yang, J., Kang, S., and Lee, S. (2016). “Development of a computerized risk 

management system for international NPP EPC projects.” KSCE Journal of Civil 

Engineering, 21, 1–16. 

Zeng, Q., and Yang, Z. (2009). “Integrating simulation and optimization to schedule 

loading operations in container terminals.” Computers and Operations Research. 

Zhang, C., Sun, Z., Tang, P., St. Germain, S. W., and Boring, R. (2018). “Simulation-

based optimization of resilient communication protocol for nuclear power plant 

outages.” Advances in Intelligent Systems and Computing, 20–29. 

Zhang, C., Tang, P., Cooke, N., Buchanan, V., Yilmaz, A., Germain, S., Boring, R., 

Akca-Hobbins, S., and Gupta, A. (2017a). “Human-centered automation for resilient 

nuclear power plant outage control.” Automation in Construction, 82, 179–192. 

Zhang, C., Tang, P., Cooke, N., Buchanan, V., Yilmaz, A., St. Germain, S. W., Boring, 

R. L., Akca-Hobbins, S., and Gupta, A. (2017b). “Human-centered automation for 

resilient nuclear power plant outage control.” Automation in Construction, 82. 

Zhang, C., Tang, P., Yilmaz, A., Cooke, N., Buchanan, V., Chasey, A., Boring, R. L., 

Germain, S. W. S., Vaughn, T., and Jones, S. (2016a). “Automatic crane-related 

workflow control for nuclear plant outages through computer vision and 

simulation.” International Symposium on Automation and Robotics in Construction. 

Zhang, C., Tang, P., Yilmaz, A., Cooke, N., Chasey, A., and Jones, S. (2016b). 

“Automatic Crane-Related Workflow Control for Nuclear Plant Outages through 

Computer Vision and Simulation.” International Symposium on Automation and 

Robotics in Construction (ISARC), Auburn, AL. 

Zhang, S., Boukamp, F., and Teizer, J. (2014). “Ontology-Based Semantic Modeling of 

Safety Management Knowledge.” COMPUTING IN CIVIL AND BUILDING 

ENGINEERING, 455–462. 

Zhang, X., Bakis, N., Lukins, T. C., Ibrahim, Y. M., Wu, S., Kagioglou, M., Aouad, G., 

Kaka, A. P., and Trucco, E. (2009). “Automating progress measurement of 

construction projects.” Automation in Construction, Elsevier B.V., 18(3), 294–301. 



121 

Zou, Y., Kiviniemi, A., and Jones, S. W. (2017). “Retrieving similar cases for 

construction project risk management using Natural Language Processing 

techniques.” Automation in Construction, Elsevier, 80(September 2016), 66–76. 


