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ABSTRACT

The manufacturing process for electronic systems involves many players, from

chip/board design and fabrication to firmware design and installation. In today’s

global supply chain, any of these steps are prone to interference from rogue players,

creating a security risk. Manufactured devices need to be verified to perform only

their intended operations since it is not economically feasible to control the supply

chain and use only trusted facilities. It is becoming increasingly necessary to trust

but verify the received devices both at production and in the field.

Unauthorized hardware or firmware modifications, known as Trojans, can steal

information, drain the battery, or damage battery-driven embedded systems and

lightweight Internet of Things (IoT) devices. Since Trojans may be triggered in the

field at an unknown instance, it is essential to detect their presence at run-time.

However, it isn’t easy to run sophisticated detection algorithms on these devices due

to limited computational power and energy, and in some cases, lack of accessibility.

Since finding a trusted sample is infeasible in general, the proposed technique is

based on self-referencing to remove any effect of environmental or device-to-device

variations in the frequency domain. In particular, the self-referencing is achieved by

exploiting the band-limited nature of Trojan activity using signal detection theory.

When the device enters the test mode, a predefined test application is run on the

device repetitively for a known period. The periodicity ensures that the spectral

electromagnetic power of the test application concentrates at known frequencies,

leaving the remaining frequencies within the operating bandwidth at the noise level.

Any deviations from the noise level for these unoccupied frequency locations indicate

the presence of unknown (unauthorized) activity. Hence, the malicious activity can
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differentiate without using a golden reference or any knowledge of the Trojan activity

attributes.

The proposed technique’s effectiveness is demonstrated through experiments with

collecting and processing side-channel signals, such as involuntarily electromagnetic

emissions and power consumption, of a wearable electronics prototype and commercial

system-on-chip under a variety of practical scenarios.
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Chapter 1

INTRODUCTION

1.1 Motivation

Owning and operating a foundry with advanced capabilities can no longer be

afforded by most design companies. Splitting design and manufacturing into separate

businesses has enabled small and innovative design companies to flourish. However,

such a distributed flow is also vulnerable to various forms of security and quality

threats in the supply chain. These threats can include poor quality control, overbuild

ICs, reverse engineering, malicious modification, and so forth. Among these threats,

malicious modifications are arguably the most significant concern and have garnered

considerable attention (Tehranipoor and Koushanfar 2010; Yier Jin and Yiorgos

Makris 2008; Chakraborty, Narasimhan, and Bhunia 2009).

Systems-on-chip (SoC) design based on reusable IP is now a pervasive practice in

the semiconductor industry due to the dramatic reduction in design/verification cost

and time it offers. Cost and development time are two major problems faced by the

designers of low-volume SoCs. Hence, they utilize third-party IP cores from dozens of

different vendors to amortize the cost and shrink design turn-around time. Moreover,

the boards and firmware for these devices can also be developed and installed by

third-party vendors.

System integration is a big task, and no single company can do on their own.

With a global supply chain consisting of many players, as seen in Figure 1, ensuring

the security of wearable and IoT devices is a daunting challenge. It is becoming
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Figure 1: Major steps in the IC design flow.

increasingly necessary to trust but verify the received devices both at production and

in the field.

Battery-driven embedded systems and small form-factor devices such as wearable

and lightweight IoT devices are the resource-constrained embedded devices that only

have limited computing power and battery capacity. These limitations make existing

cybersecurity mechanisms, such as anti-virus software and anomaly detectors (Shila,

Geng, and Lovett 2016), too costly to implement. Thus, ensuring the security of

wearable devices with acceptable overhead is a new challenge that requires cost-

conscious solutions. The security of embedded devices becomes more critical with the

increasing interconnection of devices and the usual presence in any networks.
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1.2 Malicious Modifications

A Trojan is defined as a malicious, intentional modification of circuit design

or firmware code that results in undesired behavior when the circuit is deployed.

Attacks on IoT devices can be realized in the form of malicious hardware or firmware

modifications. The Trojans are designed in such a way that they trigger on rare

conditions. Due to the wide range of activation mechanisms and lack of knowledge of

Trojan’s architecture or effect, the detection of Trojans is a daunting task.

Figure 2: Hardware and Firmware Trojan taxonomy.
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Research in the past decade has shown that hardware or firmware modifications can

be inserted into the design without noticeable performance and hardware impact for

nefarious purposes, such as stealing information, or causing malfunction (Narasimhan

et al. 2012; Nowroz et al. 2014). An extensive taxonomy of hardware modifications

(called “Hardware Trojans”) and firmware modifications (called “Firmware Trojans”)

appears in Karri et al. 2010; Konstantinou, Keliris, and Maniatakos 2016 and presented

in Figure 2, respectively. The classification is happened according to the time at which

the Trojan is injected; how to insert the Trojans and impacted layer; activation types;

effects; and location. The Trojans are sorted based on the different attributes that

indicate several Trojans properties, such as potential impact and size of Trojan, etc.

1.3 Unauthorized Activity Detection Techniques

Malicious modifications have become a serious security threat for integrated circuits

(ICs), especially systems used in critical applications and cyberinfrastructure with

the globalization of semiconductor design and fabrication. Several malicious activity

detection techniques can address or mitigate potential threats in the supply chain

with recent research works over the past few years. Trojan detection aims to verify the

existing designs and fabricated ICs without any additional circuitry. Those detection

techniques are classified into two main categories, and can be organized into several

subcategories, as shown in Figure 3 (Xiao et al. 2016). They are performed either at

the design stage (i.e., pre-silicon) to validate IC designs or after the manufacturing

stage (i.e., post-silicon) to verify fabricated ICs. The manufactured ICs can be tested

with destructive or non-destructive techniques.

Destructive techniques generally use reverse-engineering techniques to obtain

4



Figure 3: Trojan Detection Classification.

the characteristic of a Trojan free ICs, which is referred to as a golden reference.

They promise a high percent rate to detect any malicious modification in the IC, as

they are costly and time-consuming. Furthermore, the process variations can have

a significant effect on the detection rate and Trojan free chips based on a golden

reference. Non-destructive techniques can be classified into run-time monitoring and

testing. Run-time monitoring is used to monitor for any abnormal behavior of IC

continuously. This approach can utilize any pre-existing redundancy or supplemental

on-chip structure to monitors the IC. However, this structure can increase the chip

area, power, and delay to reduced circuit performance. Any modification to a circuit

should be reflected in the parameters of the chip. Side-channel signal analysis is based
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on the parameters changes such as dynamic power, leakage current, path-delay, and

electromagnetic (EM) radiation. The advantage of the side-channel analysis over other

techniques is not having to activate the Trojan to detect. However, this technique

relies on trusted samples and does sensitivity to errors due to process variations and

noise. This research work is focused on the side-channel analysis method based on

self-referencing to remove any effect of environmental or device-to-device variations.

1.4 Contributions

The primary contributions of this research are summarized as follows:

• Proposed a self-referenced malicious activity detection technique applicable to

not only sinusoidal excitation, but also to repetitive patterns to remove the

effects of process and environmental variations.

• Introduced an algorithm for self-referencing the repetitive signature of the

authorized activity.

• Established a methodology for limited-bin spectral analysis to detect of unau-

thorized activity to reduce the computational burden of the detection technique.

• Presented a technique to place the design under test (DUT) in a repetitive state

to limit the frequency response of its authorized activity signature in a small

number of frequency bins.

• Experimented applicability of proposed self-referenced malicious activity de-

tection technique for power and electromagnetic (EM) parameter side-channel

analysis.

• Developed an algorithm for low-cost analytical classification that can flag unau-

thorized activity automatically without a golden reference.
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• Presented a methodology for time-domain signal stitching to collect side-channel

signal information on repetitive primary activity to reduce test duration.

• Modelled side-channel parameter (power and EM) as a sum of the primary

circuit, malicious activity, and environmental noise. Then, it showed how this

model could be used for self-referencing through signal processing techniques.

• Showed thorough experimental evaluation on an embedded platform with a

detection distance ranging from 30cm to 200cm for the stand-off methodology.

• Evaluated the proposed approach while running gesture recognition and Wi-Fi

applications without requiring a trusted sample.

• Performed extensive experiments using a wearable electronics prototype (Gupta,

Park, et al. 2017) and a multiprocessor system-on-chip (MpSoC) (ODROID,

n.d.), and demonstrate the effectiveness of the proposed detection technique.

1.5 Thesis Organization

This thesis is organized into four chapters other than the introduction chapter;

Chapter 2 discusses a review of relevant literature. Chapter 3 introduces remote

detection of unauthorized activity processing involuntarily available electromagnetic

emissions via spectral analysis on a separate detection apparatus, which is physically

decoupled from the device under test. Chapter 4 proposes a malicious activity

detection technique in lightweight wearable and IoT devices that relies on repetitious

side-channel sample collection of the device, time-domain stitching, and frequency

domain analysis. Finally, conclusions are discussed in Chapter 5.
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Chapter 2

LITERATURE REVIEW

Battery-driven embedded systems have limited computing power and battery

capacity. These constraints only worsen when the system is subject to the demands of

security. There is no available security mechanism for embedded devices like anti-virus

and anomaly detectors found on general-purpose computers, making them attractive

targets of present-day sophisticated and innovative attacks. Those attacks can be

realized in the form of hardware (Antonopoulos, Kapatsori, and Makris 2018) and

firmware modifications (Kocher et al. 2004) as known Trojans. This wide range of

attack space has resulted in exponentially increasing security problems.

Hardware Trojans are small scale circuit structures that perform a malicious

function not intended by the designer of the system (Tehranipoor and Koushanfar

2010). They can be inserted at multiple points in the supply chain, for instance, by

the production foundry (Xiao, Forte, and Tehranipoor 2014), or by a third-party IP

provider (Bidmeshki and Makris 2015). Techniques have been developed to detect

these Trojans at test time or at run time. Out of these, run-time detection approaches

are most relevant to our work. Run-time detection approaches for hardware Trojans

can modify the entire architecture of the structure that they aim to protect (Kim,

Villasenor, and Koç 2009), or use multiple modular redundancies at the software level

to enable accomplishing of a task even in the presence of malicious hardware (Yu

and Frey 2013). Test-time approaches can be based on either functional verification

(Kim, Villasenor, and Koç 2009) or side channel measurements (Agrawal et al. 2007;

Banga and Hsiao 2009). Functional verification based techniques aim at statistically
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determining test patterns that have the highest probability of detecting Trojans that

result in logic failure.

Side-channel measurement-based techniques aim to infer the presence of a Trojan

through measurement of parameters that would be modified by the Trojan’s presence.

These parameters can be path delays, transient supply current, or average supply

currents. A big challenge in side-channel measurement-based Trojan detection is the

lack of a known reference. This reference is generally established via transistor-level

simulations (Cha and Gupta 2013), or it is assumed that trusted samples of the

circuit under test can be obtained. Even when a reference can be created, noise in the

environment and measurement errors pose another daunting challenge. Often, the

symptom of the Trojan (in terms of delay deviation and/or current consumption) can

be comparable to variations due to process and environment noise. Most common

run-time detection approaches rely on statistical analysis on the measured side-channel

parameters (Du et al. 2010; Narasimhan et al. 2011), to suppress the effect of process

variations. Multi-dimensional analysis can be used to detect the presence of Trojan

under process variations (Hu et al. 2013; Xiao, Zhang, and Tehranipoor 2013). If

Trojan-free samples are available, more sophisticated training tools can be used

to enhance detection capability (Liu, Jin, and Makris 2013). However, statistical

techniques may fail if the deviation of the circuit parameters due to a Trojan’s presence

is comparable to that of differences with respect to within-die variations, and/or Trojan

response is comparable to noise. In Du et al. (2010) and Narasimhan et al. (2011), this

problem is alleviated by using the same input pattern and comparing the instantaneous

and average supply current. In He et al. (2015), the authors propose a side-channel

hardware Trojan detection method using frequency domain analysis based on a golden

reference.
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Side channel parameters include power consumption patterns, involuntary elec-

tromagnetic (Sauvage, Guilley, and Mathieu 2009; De Mulder et al. 2005), acous-

tic (Backes et al. 2010), and thermal emissions, network, cache, or memory access

patterns (Al Faruque et al. 2016), and even chassis vibrations (Genkin, Pipman, and

Tromer 2014). It has been shown that encryption keys can be extracted using EM

emissions (Sauvage, Guilley, and Mathieu 2009; De Mulder et al. 2005). In Standaert,

Malkin, and Yung 2009, the authors present a generic method to analyze security

algorithms in terms of their level of involuntary emissions. This study shows that

formal analysis methods can be used to quantitatively compare software blocks with

respect to their identifying properties when monitored non-intrusively. In (Peeters,

Standaert, and Quisquater 2007), the authors demonstrate that by placing the coil

near the CPU/memory connections, they can determine the time when an algorithm

transfers data. Similarly, the work presented in (Callan, Zajic, and Prvulovic 2014)

shows that by measuring multiple side-channel signals (EM emissions, power fluctu-

ations, and acoustic emissions), it is possible to determine program activity at the

instruction level. A metric that quantifies the side channel signal’s dependence on the

instructional-level program execution differences is presented. The authors propose

a measurement method to reduce the relative error and can be performed at much

lower frequencies using commercially available instruments. The proposed method

also relies on a periodic steady-state, which is created by altering instruction-level

codes. The analysis of golden signatures can help select what instruction sequences

provide the best spectral signatures to detect unauthorized activity. However, these

signatures will still be subject to process variations, the suppression of which is the

focus of this paper. Finally, it has been also demonstrated that acoustic emissions
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could be used to extract RSA keys (Genkin, Shamir, and Tromer 2014) and identify

activity in 3D printers (Faruque et al. 2016).

Most hardware Trojan detection techniques rely on an intimate knowledge of

architecture and circuit-level design of the design under test, require trusted samples,

or require direct hardware control. In the case of already deployed IoT nodes with

hardware supplied from many different vendors, this may be infeasible. In contrast

to prior work, our proposed techniques are based on signal processing and signal

detection theory and do not require an established baseline.

In contrast, the firmware is easily distributed, making a much easier target for

someone intent on compromising the embedded systems. Since embedded devices run

on firmware, we need to understand how the firmware works. The firmware provides

necessary information for how the hardware device communicates with other devices.

It is found on all kinds of computer hardware, but where it is the most vulnerable

is embedded devices that generate or exchange vast amounts of privacy-sensitive

and security-critical information (Ravi et al. 2004). Since an increasing demand

to connected embedded devices on the emerging IoT (O’Neill 2016), in addition to

continually evolving attack techniques in recent decades, firmware security has become

more critical than ever to organizations such as a bank, government, and businesses

(Keoh, Kumar, and Tschofenig 2014; Sadeghi, Wachsmann, and Waidner 2015).

We can basically classify firmware attacks as static and dynamic attacks. While

static firmware attack focuses on modifying the firmware code residing in memory

with hardware modification or during the firmware update or patching process (Miller

2011; Cui, Costello, and Stolfo 2013; Bachy et al. 2015), dynamic firmware attack tries

to exploit dynamic memory components like as stack and heap to change the behavior

of the control flow of firmware (Bletsch et al. 2011). The leveraged vulnerabilities in
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firmware for malicious modification has been addressed in several research studies from

battery-powered personal health monitor devices to conventional industrial control

systems (Rieck 2016; Konstantinou and Maniatakos 2015; McLaughlin et al. 2016).

Konstantinou and Maniatakos (2015) introduce firmware modifications as a new

class of cyber-physical attacks against the smart grid environment and demonstrate

how attackers can exploit design flaws and disrupt the operation of Circuit Breakers

(CBs) by injecting spurious data to the breaker controller. The authors present two

attack vectors based on the openings and closing status of CB vulnerability and the

inability of the relay to sense a fault and initiate a trip to the CB. The authors

further upload a modified firmware to the relay controller and reveal that the update

validation employs a trivial checksum function. The researchers analyze different

attack scenarios and conclude that maliciously firmware could cause a cascade of

power outages. Bencsáth, Buttyán, and Paulik (2011) demonstrate hidden firmware

modification attacks on embedded devices that have Web-based management interfaces

vulnerable to Cross-Site Scripting type attacks whereby some malicious code can be

injected in the Web pages stored on the device. They present a general framework

of firmware modification attacks to show how the malicious script can install an

arbitrarily modified firmware to enable botnet clients. The vulnerabilities indeed

exist in commercially available devices. The framework has been implemented on

Planex wireless routers to demonstrate how this vulnerability can create an entry

point to install malicious code to turn the devices into bots in coordinated botnets.

Programmable logic controllers (PLCs) are prevalent programmable devices that

manage and control physical system components based on user-provided inputs and

requirements. Basnight et al. (2013) investigate and assess the vulnerability of a

conventional industrial PLC to counterfeit firmware updates. The PLC vulnerability
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is examined by first using reverse engineering techniques to infer the firmware update

validation method. The firmware update validation method is then analyzed for

weaknesses that facilitate firmware modification and counterfeiting. The failings are

subsequently exploited to create a counterfeit firmware sample that is uploaded and

executed on a PLC. Tekeoglu and Tosun (2016) propose a low-cost testbed using

publicly available open source software and inexpensive off-the-shelf hardware for

investigation of a wide range of topics on security and privacy of IoT devices. The

proposed testbed is designed to investigate security and privacy issues in IoT devices

that use WiFi or Bluetooth by capturing transmitted packets. In Costin et al. (2014),

the authors conduct a detailed analysis of security threats in embedded firmware. A

correlation technique is used to determine whether the firmware contains any known

vulnerabilities. The analysis reveals 693 firmware images known to have been affected

by at least one vulnerability and reported 38 new firmware vulnerabilities. However,

this approach cannot notify previously unknown firmware modifications. Recent

research has revealed and exploited firmware update vulnerabilities in popular health

monitoring devices, such as FitBit or Withings Activite activity trackers, which can

be used to inject malicious code (Rieck 2016; Rahman, Carbunar, and Banik 2013).

Cui et al. present a case study of firmware modification attacks against HP LaserJet

printers that allow an adversary with only printing permission to update the printer

with modified firmware (Cui, Costello, and Stolfo 2013).

On the detection and identification side, however, there is no much research

work available. In these limited works, detection approaches are also classified as

signature-based that is looking for signatures of known attacks or anomaly-based

that is modeling the normal behavior of firmware and detecting deviations from

this referenced model. A recent study focused on a low-cost technique to detect
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the malicious firmware modification at the embedded devices using readily available

registers (Wang et al. 2015). The proposed framework needs exhausted offline profiling

for generating a referenced database. Moreover, this detection mechanism relies on

the write-protected memories components, which are still vulnerable to alteration

with hardware modification. The authors of Duflot et al. (2010) described a firmware

vulnerability in the network adapter that a remote attacker on the network can gain

full access to the victim’s machine. They propose practical detection techniques that

detect any unexpected change in the control flow when a return value is modified in the

network adapter (Duflot, Perez, and Morin 2011). In Shila, Geng, and Lovett (2016),

anomaly analysis for embedded firmware by employing source code instrumentation

techniques is proposed. Any deviation with used defined threshold from the referenced

run of the firmware is flagged as anomalous. The proposed technique needs to reference

model and run the instrumented firmware extensively offline. However, it has much

overhead for the computationally intensive tasks.

Our proposed technique fills the gap on the detection side of the malicious modifi-

cation that can not be detectable with the existing detecting mechanism. We prove

that how powerful our approach with applicable experiments.
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Chapter 3

REMOTE DETECTION OF UNAUTHORIZED ACTIVITY VIA SPECTRAL

ANALYSIS

3.1 Introduction

Today, there are about 20 billion devices in the world that interact with each

other, and by 2025 it is estimated to go up to 75 billion devices (Evans 2011). These

devices will have vastly different processing capabilities ranging from straightfor-

ward Internet of Things (IoT) end nodes, such as sensors, to high-end computing

systems (Bogdan et al. 2016). For example, smart objects are already in use for

supply chain management (Yan and Huang 2009), smart city management (Vlacheas

et al. 2013), health care (Dohr et al. 2010), industrial management (Aref et al. 2007),

and smart grid (North American Electric Reliability Council, New Jersey 2009). These

devices pose new security challenges, mainly due to hardware, computation, power

limitations, and, in some cases, lack of accessibility (Graves et al. 2015). Consequently,

securing them is a daunting task that developers are currently paying scant attention

to (Sklavos et al. 2017; Regazzoni and Polian 2017).

Research in the past decade has shown that small hardware or firmware modifi-

cations (also known as hardware Trojans) can be inserted into the design without

noticeable performance and hardware impact for nefarious purposes, such as stealing

information, or causing malfunction (Narasimhan et al. 2012; Nowroz et al. 2014).

Hardware Trojans can be inserted into the circuit at the layout, through third party

intellectual property (IP) cores, or at the firmware, such as FPGA codes.
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In addition to continually evolving attack techniques, the firmware has become a

popular target for security vulnerabilities (O’Neill 2016; Keoh, Kumar, and Tschofenig

2014; Sadeghi, Wachsmann, and Waidner 2015). With increasing complexity and

functionality added to the underlying hardware, IoT devices are commonly designed

with a firmware update feature (Kachman and Balaz 2016). This feature enables end-

users or vendors with appropriate access to patch bugs and upgrades firmware without

requiring physical changes to the hardware. Unfortunately, the same functionality

also leads to another form of attack, where malicious firmware code can be inserted

into the device via a firmware update. Sophisticated security mechanisms, such

as viruses and anomaly detectors found on general-purpose computers, are often

unavailable for embedded devices and IoT nodes, which makes them attractive targets

for innovative attacks (Kocher et al. 2004). Large scale deployment of these devices has

already occurred and exploited by attackers (Leander 2016; Costin et al. 2014). Such

malicious firmware modifications have been demonstrated for battery-powered personal

health monitor devices and industrial control systems (Rieck 2016; Konstantinou and

Maniatakos 2015).

We define unauthorized activity (malicious activity) as activity due to any firmware

or hardware modification not authorized by the user. The unauthorized activity, i.e.,

an attack, can be triggered at an unknown time during regular operation. Detection

of such unauthorized activity for IoT nodes requires a different approach than the pro-

tection of sophisticated computer systems. For IoT nodes, unauthorized modifications

to the policy may be below the operating system level, rendering most software-based

protection systems ineffective. Since we cannot rely on the hardware to be Trojan-free,

ideally, detection should be achieved in a manner decoupled from the device under

test (DUT).
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Figure 4: Stand-off security verification illustration of multiple IoT devices using
gateway EM capture.

Decoupled detection can be achieved via observing side-channel information, such as

current (power) consumption, electromagnetic (EM) emissions, and acoustic emissions.

While measuring power would provide the best resolution in terms of information, it

also requires contact with the IoT node, which may not be feasible. Other forms of

side-channel information have been used to learn information, such as encryption keys,

from the device (Ghosh et al. 2016; Heuser et al. 2016). The same type of involuntary

emissions, which have been used to attack the device, can also be used to protect it

from malicious activity. To this effect, using electromagnetic emissions as a signature

from the DUT is a potential solution for this problem that has received attention

recently (Standaert, Malkin, and Yung 2009). If the Trojan signature is known,

cross-correlation based techniques can be used for its detection (Bhasin et al. 2013).

However, reliance on this knowledge would limit the applicability of the detection
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and make this a reactive process. Similarly, if golden signatures of the DUT can be

obtained, a one-class classifier can be used to detect unknown Trojans (Bao, Forte,

and Srivastava 2014). However, obtaining golden (Trojan-free) samples of the DUT is

difficult if not infeasible. Moreover, process and environmental variations would limit

the efficacy of golden signatures. As illustrated in Figure 4, our vision to protect the

IoT devices is to have a separate detection device that serves many IoT devices, and

that can be used to scan the environment for EM signatures periodically.

The detection hardware communicates with each of the IoT devices to put them

into the test mode, run the test application, and capture and process the EM signature.

As an example, Figure 5 shows the EM emissions of two applications running on the

same device. These two applications are identical, except for a Trojan code that is only

a few lines. While there are minute differences in the signals, it would be challenging

to differentiate the unauthorized activity from an authorized event without knowledge

on Trojan or golden signature.

This work aims at filling this gap and proposes a method that relies on neither

golden signatures nor Trojan signatures for detection. We present a complete

stand-off detection system for unauthorized activity in IoT devices. We aim to detect

unexpected behavior, which can be due to any Trojan. The detection tool resides

on a separate piece of hardware, which is physically decoupled from the DUT. It

receives the EM emissions from the DUT using a low-frequency antenna located

within a 120 cm distance. Our key observation is that multiple runs of a predefined

application on the same IoT device produces similar EM emissions regardless of

process variations. We place the DUT into a test mode when it is not in use. During

this mode, we run a predefined test application repetitively with a fixed period.
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Figure 5: Comparison of measured electromagnetic emission from experimental
device under test with and without unauthorized activity. The test application run
time is around 3ms.

Figure 5 shows the time domain EM signature of repetitive authorized activity

(test application), along with the EM signature of the same application with a Trojan

that runs at random intervals. Environment noise and jitter would make detection

unreliable in the time domain. However, the EM response due to this authorized

activity occurs at known frequencies, which are the harmonics of the application

period. It is unlikely that the period of the Trojan activity will match the application

periodicity. Therefore, they will inevitably occupy other frequency bins. As a result,

we can infer the presence (or absence) of unauthorized activity by comparing the
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power in these bins with the noise level. Finally, we develop an analytical comparison

method that averages noise power in higher frequency bins and determines a threshold

for unoccupied frequency bins. This post-processing method enables self-referencing

using the repetitive signature as well as the noise level. We call this the analytical

detection method (ADM). We note that the test mode is a small fraction of the time

the DUT is used (<1 minute). Our approach does not place any requirements on the

applications running on the platform at other times. We performed our experiments

on a commercial system-on-chip which run Android OS (ODROID, n.d.).

The major contributions of this work are as follows:

• A technique to place the DUT in the repetitive state to limit the frequency

response of its authorized activity signature in a small number of frequency bins,

• An algorithm for self-referencing the repetitive signature of the authorized

activity,

• An algorithm for low-cost analytical classification that can flag unauthorized

activity automatically without a golden reference,

• Thorough experimental evaluation on an embedded platform with a detection

distance ranging from 30 cm to 200 cm.

The rest of the chapter is organized as follows. Section 3.2 describes the unautho-

rized activity detection framework in detail and compares the proposed classification

algorithm to a solid baseline classifier. Section 3.3 overviews the experimental setup

and presents detailed evaluations. Section 3.4 discusses the usage model of the pro-

posed stand-off detection technique. Finally, the limitations of the proposed approach

appear in Section 3.5.
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3.2 Unauthorized Activity Detection

Differentiating legitimate activity from an unauthorized activity is a daunting task

due to variations in the hardware behavior resulting from the process, voltage, and

environmental factors. To suppress these variations, we propose to use self-referencing,

where we compare the DUT response within one time period to its response at another

period for the same program phase. Unless there is an unauthorized activity, the

periodic execution should display near-identical behavior. Unauthorized activity,

however, is likely to cause variations from one execution to another. Our goal is to

identify these variations to detect potentially unauthorized activity.
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Figure 6: Measured current consumption when test application runs a single and
periodically run of the test application.

EM emissions are primarily due to current consumption. In order to detect any

unauthorized activity in the DUT with its EM response, we need to understand its

overall current consumption. The current consumption of the DUT, I(t), can be

expressed as:
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I(t) = Iapp(t) + Iua(t) + n(t) (3.1)

where n(t) is random noise, Iapp and Iua denote the currents drawn by test application

and unauthorized activity, respectively. As an example, the current consumption of

the single run of an application is shown in Figure 6a. Figure 6b shows measured

current consumption of the repetitive run of the application, which can be obtained

by repeating the single run after some fixed period of time, T0.

Iapp(t) = Isr(t) ∗

(
Mapp∑
m=1

δ(t−mT0)

)
(3.2)

Iapp(t) =

Mapp∑
m=1

Isr(t−mT0) (3.3)

The current consumption of the periodic run, Iapp, can be expressed in terms of

the current consumption of the single run, Isr, as in Equation 3.2, where Mapp is

the number of single runs in the measurement duration. For a given single run, the

current consumption, Isr, is a continuous function that is 0 everywhere except for the

duration of the run, T0: 0 ≤ t < T0. Thus, the convolution reduces to a Dirac train in

the time domain, as in Equation 3.3.

The spectrum of the overall current is the sum of the spectra of its components.

Since n(t) represents the noise, its power will be spread over the entire measurement

bandwidth. We denote the frequency domain representation of the single run of the

application with Ssr(f). Figure 7a plots the frequency spectrum of single run shown

in Figure 6a. The frequency-domain expression of the repetitive run of the application

is given in Equation 3.5 and plotted in Figure 7b.

22



0 0.33 0.66 0.99 1.32
Frequency (kHz)

-60

-40

-20

0

20

40

60
P

ow
er

 S
pe

ct
ra

l D
en

si
ty

 (d
B

)

Spectrum of the Single Run Application

(a) The single run

0 0.33 0.66 0.99 1.32
Frequency (kHz)

-60

-40

-20

0

20

40

60

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (d

B
)

Spectrum of the Periodic Run Application

(b) The periodic run

Figure 7: Current consumption spectrum of the single run and the periodic run of
test application.

Ssr(f) =

∫ +∞

−∞
Isr(t)e

j2πftdt (3.4)

Sapp(f) =
1

T0

Mapp−1∑
m=0

Ssr(f) · δ(f −mf0)) (3.5)

In a practical setting, there will be some variations in Isr(t) from period to period,

due to system clock jitter, and other unknown system or environmental changes.

This variation will result in the EM power of the application to be spread around its

original location. However, most of the application EM power will be concentrated

at or around harmonics of the fundamental frequency, f0. If the bins at and around

these harmonic frequencies are taken out of consideration, the remaining spectral

signature can be referred to as the self-referencing signature. In the absence of any

additional activity, this signature should display a flat frequency spectrum that is only

due to noise. The unauthorized activity current consumption, Iua(t), is an unknown
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signal. However, its switching speed is limited by the system clock. Therefore, the

unauthorized activity will present with a spectral signature that is different than noise.

Assuming that the unauthorized activity is uncorrelated with the test application,

its spectrum will also occupy bins that are expected to be unoccupied. This will

enable decoupling the signature of the unauthorized activity from the test application

activity (Karabacak, Ogras, and Ozev 2016). Figure 8 shows the self-referenced power

spectrum of the EM signatures with and without unauthorized activity.

3.2.1 Detection and Classification Algorithms
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Figure 8: Self-referenced power spectrum of the EM signal.

Visual inspection of Figure 8 clearly reveals that there is a significant difference

between the spectra with and without unauthorized activity. However, two issues need
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to be addressed to turn this visual inspection into a detection algorithm. First, we

need to develop a numerical metric to express this difference. Second, we need to avoid

reliance on any signature information from the application or unauthorized activity.

As noted earlier, once all occupied frequency bins are removed from consideration,

the remaining signature should display the same characteristics as noise (i.e., flat

spectrum). This expected behavior is the one that we will use for the detection of any

unauthorized activity.

DUT
EM

DAQ

1 Data Collection

Compute 

PSD

2 Data Processing

Raw EM Data

Noise 

Level

Self-Ref

PSD

3 Classification

Analytical Detection Method 

(ADM)

Figure 9: Flow cart of detection algorithm.

The proposed detection algorithm is presented in Figure 9. First, the EM signals
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Table 1: Confusion matrix of the one-class classification.

Actual Results
With Unauthorized

Activity
No Unauthorized

Activity

Detection
Results

Detected True Positive
(TP)

False Positive
(FP)

Not Detected False Negative
(FN)

True Negative
(TN)

captured by the antenna are saved to the data acquisition (DAQ) device. Then,

the power spectral density is computed using the recorded data. The EM spectrum

includes expected device frequency components, Sapp, measurement and environment

noise, as well as other unintended frequency components. It is evident in Figure 8

that the power in high-frequency bins is mainly due to noise. Therefore, we can use

the high-frequency fraction of the measurement bandwidth to produce the reference

noise level, which can be expressed as

µn =
8

NFFT

4
8
NFFT∑

f= 3
8
NFFT

SEM(f) (3.6)

where NFFT is the number of samples in Fourier transform, and SEM is the spectrum

of the EM signal. Due to random characteristics of the unauthorized activity and its

band-limited nature, its spectrum is condensed at the lower frequencies (Stepanov

and Venetsanopoulos 2008). In Section 3.3, we conduct experiments on various levels

of unknown activity and determine at which point the unknown activity cannot be

detected. These limitations are discussed in Section 3.5. The self-referenced data,

along with the extracted noise level, is used for the classification. This classification

can lead to both false negatives and positives, which are defined in the class-confusion

matrix given in Table 1.
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3.2.1.1 Analytical Detection Method (ADM)

In addition to the average noise power, we can also determine the the standard

deviation, σn, of noise power per bin using Equation 3.7.

σn =

√√√√√ 8

NFFT

4
8
NFFT∑

f= 3
8
NFFT

(SEM(f)− µn)2 (3.7)

To minimize false positives due to noise, we set a threshold of 3σn to process the

self-referenced EM frequency signature and determine the total number of frequency

bins with power exceeding this threshold level as shown in Figure 10. This is the

single numeric metric we will use for automated detection.

The selection of 3σ is based on statistical norms; 3σ covers 99.7% of samples when

samples exhibit Gaussian distribution. Since we are mostly concerned with noise, and

noise does exhibit Gaussian distribution, we chose 3σ for the threshold. However,

even with a Gaussian distribution, 0.3% of samples will naturally be outside of this

confidence threshold. We account for this statistical variation by allowing 0.5% of the

observed frequency bins to exceed the set threshold (0.5% stems from 0.3% with an

Check Spectral Comp.

ADM

nEM fSRv 3)(  if   8
%5.0 N FFTv 

Unauthorized Activity

)
8

0 ( NFFTf  Y

Figure 10: Flow cart of Analytical Detection Method.
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additional margin of 0.2%) without reporting suspicious activity. To explore further,

we conduct 500 tests, each ranging from 30 cm to 120 cm. The spectrum thresholds

are set by using the standard deviation ranging from 0 to 6σ. As expected, the false

positive rate reduces sharply around 3σ, as seen in Figure 11. Since increasing the

threshold also hampers the detection capability, this experiment confirms that the

choice of 3σ is justified.

Since the additional error is always possible due to unexpected frequency spurs,

we accept up to 0.5% violations in the self-referenced spectrum. If the violation

count is higher than this limit, we mark the DUT with unauthorized activity. This

classification algorithm that we call ADM is based on analytical analysis of expected

noise behavior without knowing the precise power levels of the application signature.
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3.2.1.2 One-Class Support Vector Machine (SVM)

We emphasize that the proposed ADM approach does not require any trusted

sample. To compare ADM to a solid baseline, we also implemented a one-class support

vector machine (SVM) classifier (Tax 2013), which has shown great potential in the

area of anomaly detection (Maglaras and Jiang 2014).
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Run Classification
Train Classifier

Classifier Training

Tune RBF Kernel 
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Figure 12: Flow cart of One-class Support Vector Machine.

In the SVM classifier, we used only the data sets without unauthorized activity

for the training. Hence, this classifier would need golden samples. We use a Gaussian

Radial Basis Function (RBF) kernel. The output of one-class SVM is binary, i.e.,

positive and negative. One of the important steps in the training phase is tuning a

set of parameters that is used in one-class RBF kernel SVM as shown in Figure 12.

Such parameters have significant impacts on the accuracy of the developed models.

For example, the γ parameter defines how far the influence of an individual training
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Figure 13: SVM one-class classifier.

example reaches, and the ν parameter basically sets an upper bound on the fraction

of training errors and a lower bound of the fraction of support vectors. We tuned the

rejection fraction ν in the range (0, 1) with step of 0.001 and the RBF kernel width γ
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in the range (0, 50) with step of 0.5. It should be noted that the training data did

not include any unauthorized activity. The trained classifier is shown Figure 13a. To

investigate its best achievable performance, we trained one-class SVM using the entire

training set, including multiple distances. The performance of the SVM classifier is

shown in Figure 13b.

3.3 Experimental Evaluation

The measurement setup has a big impact on the effectiveness of the analysis and

the data acquiring is one of the most important pieces of this setup. To evaluate the

proposed approach, we construct the experimental setup shown in Figure 14. The

experiments are performed in a standard lab setup without any specific attempt to

generate a low-noise environment to generate a realistic scenario. On the contrary,

there are numerous other devices and test equipment running in the lab during the

set of experiments.

The experimental setup consists of the DUT, a low-frequency antenna system,

and a digital oscilloscope. The loop antenna is used to provide higher gain at lower

frequencies. As the DUT, we employ a mobile hardware platform (ODROID, n.d.).

We position the antenna to measure the EM emissions from the DUT at distances

ranging from 30 cm to 200 cm. After acquiring the EM signal by the loop antenna,

the signal is transmitted to a receiver that consists of a current-mode amplifier and an

audio amplifier with broadband loop equalization (LF Engineering Company, n.d.).

The antenna receiver output is connected to the digital oscilloscope to capture and

transfer the EM signal to the PC.
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Figure 14: Experimental setup with the DUT, antenna with VLF receiver, and
digital storage oscilloscope.

3.3.1 Periodic Test Application

One of the critical features of the proposed approach is to run a test activity

periodically to concentrate the power spectrum on known harmonics. We achieve

this using the procedure outlined in Algorithm 1. The test duration is given as the

input to the periodic test application. After setting the required time flags, Lines

5-8 run the designated test application continuously with a period T0. The period

is set such that all activity of the test application completes within this duration.

The periodic test application can be invoked at different frequencies by changing
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the test application activation period, T0. This period can also be set following a

pseudo-random sequence at run-time, where the sequence is not known to anyone

other than the system integrator. Hence, the detection algorithm can be run at

arbitrary frequencies unknown to the attacker. Therefore, even if the attacker has

the design, s/he does not necessarily know the test strategy. As a result, it is very

unlikely that the test program repetition frequency will coincide with the attacker’s

repetition frequency. Moreover, it can be changed from one test period to another to

avoid any incidental coincidence.

ALGORITHM 1: Periodic Test Application
1 procedure PERIODIC APP (TestDuration, T0)
2 ttest_start ← tcurrent_time;
3 ttest_end ← tcurrent_time + TestDuration;
4 i← 1;
5 while tcurrent_time < ttest_end do
6 run The Test App;
7 while tcurrent_time < ttest_start + i ∗ T0 do
8 sleep
9 end

10 i← i+ 1;
11 end
12 return;
13 end

In our implementation, we used a simple matrix multiplication routine, whose

run-time ranges between 1 ms and 1.5 ms as the test application. We note that any

other routine that can run in the firmware could also be employed. The repetition

period needs to be larger than the duration of the application to avoid interference

between different periods. On the one hand, a larger period is desirable to better

separate the runs from each other. On the other hand, as the period increases, the

frequency harmonics are compressed, and the number of occupied frequency bins

33



increases. Hence, we set the repetition period to the minimum duration where the

application can safely enter and exit. Due to the application run overhead, we set the

repetition period to 3 ms. This test will be performed periodically for each IoT device.

The underlying trade-off in determining the period is the power consumption overhead

of the test application against the Trojan detection probability. If the testing is done

more frequently, there is a higher chance of having the Trojan activity during testing,

but also the power consumption overhead would be higher. For instance, if the test is

performed once daily, 10s-15s/1 day is the overhead. Many IoT platforms are active

only for a very short time separated by long idle intervals during which the system

can be placed low-power or sleep mode (Hrishikesh Jayakumar et al. 2014). Hence,

the test can be scheduled during an idle period.

3.3.2 Unauthorized Activity

To model the unauthorized activity, we implement a malicious modification that

reads the temperature sensor information and writes it to another memory location

that is accessible by the attacker. The malicious code takes only 6 lines of code to

implement. This unauthorized code may activate at random times and with a random

activation probability. We experiment with activation probability ranging from 1% (i.e

malicious code is active every 1 ms with a 1% probability) to 99% (i.e. the malicious

code is active every 1 ms with a 99% probability.)

We first average the acquired EM signal data of many data sets, to make possible the

detection of even small EM contribution from the infected device with unauthorized

activity compared to the genuine device. Also, the noise level can be reduced.

However, when we compare these measurements that are captured in the same testing
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Table 2: Lowest energy of malicious activity that can be detected.

30 cm 60 cm 90 cm 120 cm 150 cm
Unauthorized Activity Energy (mJ) 0.863 1.319 1.554 5.431 11.509
Foreground Application Energy (mJ) 11261.25

environment, which is shown in Figure 5. We cannot find any noticeable characteristics

between these measurements, which may result from the low activity level of the

unauthorized activity. Thus we cannot tell the infected device from the genuine device

by directly in time domain comparison.

Table 2 shows the analysis of detectable Trojan energy at various distances and

compares this to the energy of the foreground application. Typical applications on

the same platform consume around 1 to 2 W within 1 second this corresponds to

approximately 2 J/sec (Gupta, Patil, et al. 2017). Note that, unlike hardware Trojans,

firmware Trojans cannot run on extremely low power as they employ the entire system

even if it is for a few lines of code. Also, note that the foreground application energy is

more than 1000 times higher compared to the detectable Trojan energy. The proposed

technique detects EM activity due to the power consumption fluctuation during the

test time. If there is no switching activity due to the Trojan, there will be no spectral

signature. Under this circumstance, the Trojan cannot be detected.

3.3.3 Detection Capability as a Function of Distance

To evaluate the detection capability of the proposed techniques as a function of

distance, we vary the distance between the DUT and antenna from 30 cm to 200 cm,

while keeping the unauthorized activation probability at 50%. The number of captured
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Figure 15: Histogram of spectral violations for 30 cm, 60 cm, 90 cm, and 120 cm
distance between device under test and antenna with and without unauthorized
activity with ADM classifier.

data sets is primarily limited by the memory depth of the scope. This allowed us to

collect 95 different data sets with and 95 data sets without unauthorized activity for

a given distance.

Figure 15 shows the percentage of the self-referenced frequency spectrum bins that

are determined to be above the noise level using the detection algorithm outlined in

Section 3.2. Figure 15 clearly shows that the proposed approach is very effective in

detecting unauthorized activity for up to 120 cm distance. In particular, 100% of the

data sets without unauthorized activity are identified correctly. Furthermore, all of

the data sets with unauthorized activity present with a large number of frequency

bins above the noise level. The percentage of the unoccupied bins for all 95 data sets

is much higher than the 0.5% threshold to flag unauthorized activity. Hence, it is

36



0 . 5 % 8 %
0

2 0

4 0

6 0

8 0

1 0 0

( a )  1 5 0 c m  

Nu
mb

er 
of 

Te
st 

Ru
ns

( c )  2 0 0 c m  ( b )  1 8 0 c m  

 

%  o f  U n o c c u p i e d  F r e q u e n c y  B i n s  A b o v e  N o i s e  L e v e l
0 . 5 % 8 %

0

2 0

4 0

6 0

8 0

1 0 0

 

 
 w / o  U n a t h o r i z e d  A c t i v i t y
 w /  U n a t h o r i z e d  A c t i v i t y

H i s t o g r a m  o f  V i o l a t i o n s  D i s t r i b u t i o n  

0 . 5 % 7 % 1 4 % 2 1 %0

2 0

4 0

6 0

8 0

1 0 0

 

 

Figure 16: Histogram of spectral violations for (a) 150 cm, (b) 180 cm and (c)
200 cm distance between device under test and antenna with and without unauthorized
activity.

possible to detect unauthorized activities with 100% accuracy up to 120 cm, when the

unauthorized activity is 50%.

When we repeat the same experiment at a 150 cm distance, we observe that the

gap between the data sets with and without unauthorized activity starts reducing, as

shown in Figure 16 (a). In particular, the highest violation percentage of the frequency

bins is around 21% and the lowest is around 7% for the unauthorized activity. We

can still differentiate the data sets with unauthorized activities with 100% accuracy.

Increasing the distance further hampers detection capability, as seen in Figure 16 (b)

and (c). At 180 cm, we clearly see false positives and negatives, and at 200 cm, there

is no difference in the spectrum with or without unauthorized activity. It should be

noted that there are no false positives at any distance up to 150 cm.
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3.3.4 The Role of the Signal-to-Noise Ratio in Detection Precision and Accuracy

Signal-to-noise ratio (SNR) is a measure used to compare the level of the desired

signal to the background noise level. The signal-to-noise ratio often limits the accuracy

with which some measurements can be done. For our measured EM signals, it

can limit the reliability of detecting correctly. To this end, the proposed detection

technique is analyzed how the detection rate is changed with environment noise vary

the distance between the DUT and antenna. The main challenge to finding the

relation of signal-to-noise ratio with the detection accuracy is the calculation of the

initial signal-to-noise ratio of the data since the measured data includes signal and

noise of the environment. In this way, the signal power is calculated with the taking

first harmonic of the foreground signal, and the noise is calculated with the using

Equation 3.6 and Equation 3.7. Once signal and background noise power are found,

SNR can be calculated with the Equation 3.8.

SNR =
PSignal
PNoise

(3.8)

We can find the signal root mean square (RMS) voltage with Equation 3.9a.

The acquiring only signal power is not feasible for our measured EM data, we can
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Figure 17: Detection accuracy relation with SNR from 30 cm to 120 cm distance
between device and antenna.

assume the collected data as only signal power to calculate background noise standard

deviation with Equation 3.9b to sweep SNR value for finding the accuracy relation.

VSignal_RMS =

√√√√ 1

NFFT

NFFT−1∑
t=0

| V (t) |2 (3.9a)

Vnoise =
VSignal_RMS

10
SNR
20

(3.9b)

To sweep the signal to noise ratio, we add calculated standard deviation with

zero mean noise to our measured data. Figure 17 shows the analysis results for

measurement distances from 30 cm to 120 cm. The accuracy of the detection starts to

decrease around 30 dB and reaches the not detectable area around 13 dB. The results

give us an understanding of how SNR affects the detection rate of malicious activity

with EM side-channel data. Due to using the measured data that includes noise can

create some imperfection on the analysis, we have to aware of this assumption. In

39



conclusion, the detection and classification of measured EM signals can be solved,

maximizing the signal-to-noise ratio (SNR), as seen Figure 17.

3.3.5 Detection Accuracy as a Function of Activation Probability

Next, we analyze the effectiveness of the proposed approach when the activation

probability of the unauthorized activity varies. We collect and process 6365 data sets.

Figure 18 shows the box plot of percentage of bins above noise level as a function of

activation probability from 30 cm to 150 cm distance. We observe that with as little

as 3% activation probability, the unauthorized activity can be detected with almost

100% accuracy at 30 cm. As expected, with increasing distance, the unauthorized

activity is not detectable at the lower activation probability levels from 1% to 5%.

Table 3 provides detailed results on the false negatives for the proposed detection

method, at various activation probabilities and detection distances. We observe that

the proposed method achieves more than 90% detection rate for unauthorized activity

at or above 5% activation probability up to the 90 cm distance. The proposed approach

is still effective up to 120 cm distance for unauthorized activity with higher than 10%

activation probability.

To compare our analytical classification approach, we also used a one-class support

vector machine to classify EM signatures as explained in Section 3.2.1.2. Note that to

train the SVM, a golden signature is required. In other words, we need EM signatures

of the DUT that is known to be free of unauthorized activity.

Table 4 details the false negative rate using the same EM signatures, but with an
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Table 3: False negative of analytical detection method

DistanceFN (ADM) 30 cm 60 cm 90 cm 120 cm 150 cm
0.01 94.74% 100.00% 98.95% 100.00% 100.00%
0.02 67.37% 76.84% 89.47% 100.00% 100.00%
0.03 2.11% 44.21% 84.21% 100.00% 100.00%
0.04 1.05% 3.16% 42.11% 100.00% 100.00%
0.05 0.00% 0.00% 9.47% 86.32% 100.00%
0.10 0.00% 0.00% 0.00% 4.21% 98.95%
0.20 0.00% 0.00% 0.00% 0.00% 0.00%
0.30 0.00% 0.00% 0.00% 0.00% 0.00%
0.40 0.00% 0.00% 0.00% 0.00% 0.00%
0.50 0.00% 0.00% 0.00% 0.00% 0.00%
0.60 0.00% 0.00% 0.00% 0.00% 0.00%
0.70 0.00% 0.00% 0.00% 0.00% 2.11%
0.80 0.00% 0.00% 0.00% 0.00% 3.16%

A
ct
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at
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n

P
ro

b
ab

il
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y

0.90 0.00% 0.00% 0.00% 0.00% 4.21%

Table 4: False negative of Support Vector Machine One-class classifier

DistanceFN (SVM) 30 cm 60 cm 90 cm 120 cm 150 cm
0.01 29.47% 46.32% 67.37% 100.00% 100.00%
0.02 0.00% 9.47% 23.16% 100.00% 100.00%
0.03 0.00% 8.42% 14.74% 100.00% 100.00%
0.04 0.00% 0.00% 1.05% 100.00% 100.00%
0.05 0.00% 0.00% 0.00% 12.63% 100.00%
0.10 0.00% 0.00% 0.00% 0.00% 81.05%
0.20 0.00% 0.00% 0.00% 0.00% 0.00%
0.30 0.00% 0.00% 0.00% 0.00% 0.00%
0.40 0.00% 0.00% 0.00% 0.00% 0.00%
0.50 0.00% 0.00% 0.00% 0.00% 0.00%
0.60 0.00% 0.00% 0.00% 0.00% 0.00%
0.70 0.00% 0.00% 0.00% 0.00% 0.00%
0.80 0.00% 0.00% 0.00% 0.00% 0.00%

A
ct

iv
at

io
n

P
ro

b
ab

il
it
y

0.90 0.00% 0.00% 0.00% 0.00% 0.00%

42



Table 5: False positive and false negative rates at higher distances (180 cm and
200 cm).

α = 0.5
180 cm 200 cm

FP FN FP FN
ADM 6.32% 0.00% 1.05% 49.47%
SVM 11.58% 0.00% 3.16% 42.11%

SVM classifier. The SVM results are slightly better at higher distances, but the SVM

classifier is also limited to maximum 120 cm distance and minimum 5% activation

probability. This is due to the inherent lack of information at a higher distance. This

comparison shows that despite not having any golden signatures, and with only limited

knowledge of the test application, the proposed ADM classifier performs as well as

the SVM classifier that relies on the golden signature.

Table 5 details the results for higher measurements distances. As mentioned earlier,

the detection distance of the proposed approach is limited to 120 cm. The SVM

classifier is also limited to the same distance. This limitation is primarily due to signal

power falling below measurement sensitivity level. Finally, Table 6 compares the false

positive rates of the two classifiers, the ADM classifier, and the SVM classifier. Again,

the ADM classifier performs as well as the SVM classifier within the 120 cm distance.

Table 6: Comparison of false positive rates for the two classifiers.

FP 30 cm 60 cm 90 cm 120 cm 150 cm
ADM 0.00% 0.00% 0.00% 0.00% 0.00%
SVM 0.00% 0.00% 0.00% 0.00% 2.11%
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3.4 Usage Scenario of the Proposed Detection Technique

Unquestionably many industries can benefit from IoT technology. That is why

more and more businesses are beginning to embrace smart technology applications,

such as home automation, supply chain management, transportation, etc. On the one

hand, the enabling IoT systems are adaptive to meet the customers’ ongoing changing

needs, and the installation of smart products provides convenience and savings of

time, money, and energy. On the other hand, the growing presence and demand

of devices enables new attack methods and attack surfaces for attackers to exploit,

posing serious security and privacy issues. For instance, security researchers showed

how they could hack a smart home IoT device and used it as a back door to obtain

network password (Chapman 2014). It is very evident that the fact these devices are

poses serious threats, which could have significant real-world consequences. This is

one of the many challenges in providing IoT device security.

There are many new security technologies and solutions currently being developed

that can help to address IoT device security problems. Those solutions are like

isolating the IoT device from the network, reverse engineering the physical device, etc.

They may also need physical access to run their detection algorithm. Without losing

any benefits of the IoT systems, our proposed malicious activity detection technique

can relieve the security challenges of the lightweight IoT devices.

IoT devices are mostly installed at a fixed (permanent) location, and malicious

modifications may become active only the connected network and location. The

detection technique needs to run for any possible malicious change without removing

the IoT device at the environment to avoid losing the status of the questioned device.

The devices are installed in a close proximity environment due to their network
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Figure 19: Stand-off detection of unauthorized activity: Home Automation IoT.

protocol needs or device operating range. We install the proposed detection setup

(scanning apparatus) within a 1.5m radius to detect any abnormality of the encircling

IoT devices, as seen in Figure 19. The detection apparatus can enable the proposed

stand-off detection technique. And also, this decoupled device works with the gateway

to enable testing for surrounding IoT devices.

3.5 Limitations

The proposed technique relies on EM emissions by authorized and unauthorized

activities. As such, these EM emissions need to be above the measurement sensitivity.

This requirement sets a maximum distance requirement for detection. In our experi-

ments, we have found that the proposed detection works reasonably well up to the

120 cm distance. Detection capability is also limited by the overall energy consumed

by the unauthorized activity. This energy is spread within an observation bandwidth.
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Depending on the rate of operation, this energy, spread over a broad spectrum, may fall

below the measurement sensitivity. We have also found experimentally that activation

probabilities below 3% are rarely detectable.

We have made no assumptions on the functionality of the unauthorized activity or

the test application. However, as a limitation, we should note that if a Trojan that

is not activated within the test duration will not generate a spectral signature and

cannot be detected via the proposed method. Besides, a Trojan that is active in a

short burst can also escape detection since its energy will fall below the detectable

level. This scenario is analogous to the activation probability limitation.
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Chapter 4

DETECTING MALICIOUS ACTIVITY IN LIGHTWEIGHT WEARABLE AND

IOT DEVICES

4.1 Introduction

The Internet of Things (IoT) refers to the ever-growing network of computing

devices that have vastly different processing capabilities ranging from simple IoT

end nodes, such as sensors, to high-end computing systems. For example, smart

objects are already in use for supply chain management, smart city management,

health care, automation of various home chores, and smart grid. While IoT offers a

promising future for automation, convenience, and machine-to-machine interaction

without human intervention, thereby improving the quality of life, it poses new security

challenges, particularly due to its limitations on hardware, compute resource, and

power.

Systems-on-chip (SoC) design based on reusable IP is now a pervasive practice in

the semiconductor industry due to the dramatic reduction in design/verification cost

and time it offers. Cost and development time are two major problems faced by the

designers of low-volume SoCs. Hence, they utilize third-party IP cores from dozens of

different vendors to amortize the cost and shrink design turn-around time. Moreover,

the boards and firmware for these devices can also be developed and installed by

third-party vendors.

With a global supply chain consisting of many players, ensuring the security of
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Figure 20: Wearable Electronics Prototype.

wearable and IoT devices is a daunting challenge. It is becoming increasingly necessary

to trust but verify the received devices both at production time and in the field.

Battery-driven embedded systems and small form-factor devices such as wearable

devices are resource-constrained embedded devices, which have limited computing

power and battery capacity. These limitations make existing cybersecurity mechanisms

such as anti-virus software and anomaly detectors (Shila, Geng, and Lovett 2016) too

costly to implement. Thus, ensuring the security of wearable devices with acceptable

overhead is a new challenge that requires cost-conscious solutions. The security of

embedded devices becomes even more critical because the increased inter-connectivity

provides more space for attackers to introduce the Trojans (Hamdioui et al. 2014).
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Attacks on wearable devices can be realized in the form of malicious hardware or

firmware modifications, also known as Trojans. The wide range of attack space has

resulted in exponentially increasing security problems. To evade detection, Trojans

inflict damage through small, well-hidden circuitry or firmware modifications, which

activate either randomly, or after specific trigger incidents (Rostami et al. 2013).

Therefore, the symptoms of the Trojan are not always observable. Moreover, when

a Trojan is active, its impact on measurable factors such as system performance or

power consumption is typically negligible due to the subtle modification it makes.

Due to a wide range of trigger mechanisms that activate the Trojan and payload that

distorts the system under attack, detection of hardware Trojans is a daunting task.

This difficulty is multiplied due to the diversity of the IP cores on the chip. Hence,

ensuring the integrity of each resource is becoming increasingly difficult. Finally, the

behavior of a compromised chip cannot be compared against a trusted sample, since

finding a golden reference may not always be feasible.

This chapter presents a technique to detect malicious activity in lightweight

wearable and IoT devices. The proposed detection technique does not rely on trusted

samples; rather, it establishes a baseline for each individual device based on its

periodic steady-state (PSS) behavior. By referencing the detection threshold to

baseline characteristics of each individual device, environment, and process variations

can be removed.

In order to collect data without affecting the operation of the device, the proposed

technique uses a signal stitching technique in which side-channel information of

repetitious code sequences is sampled and processed to monitor device activity.

The proposed technique is demonstrated on the wearable device prototype shown

in Figure 20, which runs gesture recognition software, including an arbitrary repetitive
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Figure 21: (a) Zero padded data that is subjected to Trojan check. (b) Zero-padded
repetitive gesture recognition pattern with one period of zero padding at the starting.
(c) Stitched one period of data to repetitive gesture recognition data.

gesture recognition algorithm. By collecting data on repetitive patterns, side-channel

signals, such as power consumption, of the device are driven into a periodic steady-state

(PSS). By collecting data on this repetitious pattern and stitching it with existing

data, the overall operation pattern of the device can be established.

As an example, Figure 21a shows the run-time data collected from the device in

one instance with zero padding. This data is stitched to pre-existing data (collected
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earlier) shown in Figure 21b, to obtain the complete data sequence, shown in Figure

21c. The complete data can be analyzed in the frequency domain to establish criteria

for flagging suspicious activity.

The collected side-channel data can be expressed as the sum of the primary system

response (i.e., the power consumption without a Trojan), the Trojan activity, and

environment and measurement noise. Putting the device into a PSS concentrates the

primary signal power at a known frequency and its harmonics. This leaves a large

portion of the signal spectrum unoccupied and available for detection. The Trojan

activity, if there is any, would occupy a wider band since it is unlikely to be correlated

with primary activity. Thus, the unoccupied bins of the spectrum can be analyzed to

determine whether there is unauthorized activity.

The major contributions of this chapter are as follows:

• We present a methodology for time-domain signal switching to collect side-

channel signal information on repetitive primary activity to reduce test duration.

• We present a methodology for limited-bin spectral analysis for the detection

of unauthorized activity to reduce the computational burden of the detection

technique.

• We present a self-referenced malicious activity detection technique applicable

to not only sinusoidal excitation, but also to repetitive patterns to remove the

effects of process and environmental variations.

• We evaluate the proposed approach while running gesture recognition and Wi-Fi

applications without requiring a trusted sample.

• We perform extensive experiments using a wearable electronics prototype (Gupta,

Park, et al. 2017) and a commercial multiprocessor system-on-chip (Mp-
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SoC) (ODROID, n.d.), and demonstrate the effectiveness of the proposed

detection technique.

The rest of the chapter is organized as follows. The threat model is explained

in Section 4.2. The proposed malicious activity detection technique is described in

Section 4.4. Finally, extensive experimental evaluation is presented in Section 4.5.

4.2 Threat Model

IoT
Vendor

Foundry
Layout

Process model

+

Circuit 
modification

Manufactured chips

+

Firmware 
Installation

Firmware 
modification

Production Time Threats

In-Field Threats

Field Use

Firmware 
modification

Firmware 
Update+

Figure 22: Firmware threats can be added during firmware installation at the IoT
vendor or other third party company. The attacker can also make firmware changes
during field updates.

Many wearable electronic and IoT devices run their own operating system and

52



applications. As these devices become more common, they will also become bigger

targets for hackers. Trojans could be targeted at firmware to insert malicious code

that gains privileged access to steal information or cause harm to the device. They

could take the form of passive hardware entities which help malicious software bypass

pre-existing hardware protection systems.

Figure 22 illustrates possible attack models for potential hardware and firmware

Trojan threats. The IoT vendor receives the process model from the foundry and

produces layout of the circuit based on this process model. The malicious modifications

can be added at production time or while the device is in use in the field. The threats

can either originate at the foundry or during production firmware installation. There

can be circuit modifications and firmware modifications. Hardware threats originate

at the foundry from malicious attackers (third-party consultants, rogue employees,

etc.) who modify the hardware to insert a malicious circuit. Firmware threats can be

added during firmware installation at the IoT vendor or other third party company.

The attacker can also make firmware changes during field updates. Hence, all chips

manufactured by an untrusted foundry are suspect, and every product in field needs

periodic monitoring to verify recent changes made to the system.

4.3 Lightweight IoT Device Characteristics

The number of IoT devices is continually increasing for several different reasons

such as low production cost, easily fabricated and available electronics in the market,

improving the quality of life through technology, availability of wireless and wired

communication networks. The term things in the Internet of Things is a piece of

equipment having sensing, actuating, storage, or processing capability. These devices
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possess unique characteristics such as limited memory, battery capacity, and processing

power. They don’t have the memory in gigabytes, nor processing power in terms of

cores. Most devices have an MCU rather than a CPU, and that MCU is running at

speeds measured in megahertz, not gigahertz. Lightweight IoT devices have a fraction

of the computational power of a server, desktop, or even a smartphone.

The energy budget for IoT nodes usually consists of small battery sources or energy

harvesters. Thus battery life is frequently one of the most significant gating factors

in designing an IoT device. The limited power of an IoT device, and the need to

preserve that power impact MCU choice, RAM size, and network type. Storage is

on an embedded ROM chip, with ROM storage typically in the range of 96kB to

256kB, to perhaps 512kB. Table 7 shows an example of the hardware specification of

lightweight IoT devices for senior care ambient assisted living. We can itemize the

challenges that make it challenging to secure IoT devices.

• Limited Computational Power

• Limited Power

• Limited Memory (RAM) and Storage (ROM/Flash)

• Limited Network Speed and Bandwidth

• Limited Security Tools

The lightweight MCU/CPU limited-resource devices that make IoT devices so ver-

satile also limit the use of conventional security solutions. This lack of robust security

solutions is especially troubling because, by their very nature, IoT devices are generally

far removed from the traditional firewalls and layered security of the enterprise. IoT

Security has always been a challenge. But the problem is even more significant when

working within the resource constraints inherent to IoT devices (CENTRI IoTAS

2019).
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4.4 Malicious Activity Detection

4.4.1 Run-time Testing and Signal Stitching Technique

It is highly desirable to detect hardware or firmware Trojans before chips are

deployed in the field. Still, existing techniques cannot guarantee comprehensive

coverage for all types and sizes of Trojans. If a Trojan attack is introduced after

production, such as insertion during a firmware update, or was not detected at

production time, in-field activity monitoring and run-time testing can significantly

reduce its risk. In exchange for some performance overhead, these approaches can

flag the device or disable it upon detecting malicious activity. However, the challenge

is that these testing and monitoring activities, like measuring device current, power

consumption, or memory usage, should not interfere with regular device operation.

Many IoT platforms are active only for very short intervals, between which the

system is placed into a low-power or sleep mode (H. Jayakumar et al. 2014). Hence, the

idle periods can readily be used for test data collection. The same set of applications

that run during regular operation can be used for PSS generation in test mode during

idle time. Therefore malicious modification(s) cannot evade detection when testing is

performed.

The proposed detection approach uses a run-time signal stitching technique to

collect data without affecting regular operation. The device is monitored, and data is

collected during idle time. Although data could be collected during active periods, these

resource-constrained wearable or IoT devices have limited processing capability (Cheng

et al. 2015), so data collection while doing regular operation would reduce device

efficiency and usability. As long as the device reaches a periodic steady-state, it does
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Complete Data Sequence

ACTIVE

IDLE

IDLE TEST

Figure 23: Illustration of device usage in a day and measuring current of device in
idle stage for data stitching.

not matter when it is collected. Hence, we can select any suitable time-span for

testing, and the best choice is the idle stage of the device. By collecting data during

repetitive patterns and stitching it with existing data, the device’s overall operational

model can be established. After the entire data sequence is assembled, the proposed

detection algorithm can be run to determine whether the collected data contains

known or unknown authorized activity. The signal stitching technique also enables
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the collection of data during different times of the day. Hence the technique is able to

detect a Trojan that has a larger bandwidth than the length of a single measurement.

Memory in wearable devices, in particular, has always been a tricky balancing act.

Unlike memory for PCs, tablets, and other devices, memory for wearables is smaller

and less dense, but still must be adequate to support the functions of the device

and its firmware. With their expansive growth in popularity, users are expecting

more from wearable and IoT devices than ever before. And while developers are

always looking for new and exciting features to add, those features cannot come at

the expense of basic functionality. In other words, expanded or more accurate security

monitoring must also come with improved processing and memory. So the memory

is a requirement for the proposed malicious activity detection. However, performing

data collection and analysis during idle times means there will free memory that is

sufficient for running the detection algorithm.

As seen in Figure 23, the device is monitored, and during its idle time, part of

the data is measured. This data is stitched with previously collected data samples to

synthesize a complete data sequence. When the required data sequence is collected,

frequency domain analysis can be run.

4.4.2 Optimized Fast Fourier Transform (FFT) Algorithm for Zero-Padded Data

IoT or wearable devices typically run on limited battery-operated power and

therefore present unique challenges in terms of availability of computational resources.

Thus, a new challenge to ensuring the security of wearable devices is power aware-

ness (Leabman and Brewer 2018). Activity monitoring, measurement of complete
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data sequences, and detection algorithm computation add significant overhead that

requires further power-aware optimization.

First, the proposed detection method relies upon the identification of a repetitive

pattern in the main application to effectively decouple the fundamental frequency

and its harmonics from other unexpected activities. Thus, some monitoring time

is required for the detection algorithm to function. However, we can minimize the

monitoring time by reusing previously collected and analyzed data that has not been

flagged for suspicious activity. Figure 24a shows a shorter period of data that has

been collected and zero-padded to match the size of the complete data sequence for

Fourier transform analysis. In Figure 24b, the collected data is zero-padded for a

period of samples, and then its Fourier Transform is saved. The Fourier Transform

of saved and zero-padded data can be summed as seen in Figure 24c to assemble a

complete spectrum that can be analyzed for suspicious activity.

Second, the computation time and power consumption need to be minimized to

support a seamless, energy-efficient security monitoring system. The Recursive Fast

Fourier Transform (FFT) algorithm can be optimized by skipping zero-padded data in

Algorithm 2, where Input represents the zero-padded period of measured data, NFFT

represents the sample size of the test data, and Size represents the original number of

sample points before zero-padding. For optimal efficiency, the number of samples in

the stitched data set must be a power of two. The optimized FFT algorithm is 4.2

times faster than the standard recursive FFT algorithm for NFFT = 1024 and Size =

32 samples. We will discuss more the computation time of the FFT in experimental

data in Section 4.5.
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a)

b)

c)

FT

FT

FT

Figure 24: Illustration of superposition of Fourier Transform that is using saved and
a period of data to determine suspicious activity.
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ALGORITHM 2: Optimized Recursive Fast Fourier Transform for Zero-
Padded Data
1 procedure FFT (Input,N, Size)
2 for k = 0; k < N/2; k = k + 1 do
3 FFT 0 = Input[k];
4 FFT 1 = Input[2k + 1];
5 end
6 y0 ← FFT (FFT 0, N/2, Size);
7 y1 ← FFT (FFT 1, N/2, Size);
8 if NFFT/Size ≤ N then
9 if NFFT/Size == N then

10 for k = 0; k < N ; k = k + 1 do
11 yk ← FFT 0[0];
12 end
13 else
14 for k = 0; k < N/2; k = k + 1 do
15 if not(y0k == 0 AND y1k == 0) then
16 yk ← y0k + wy1k;
17 yk+N/2 ← y0k − wy1k;
18 else
19 yk ← 0;
20 yk+N/2 ← 0;
21 end
22 end
23 end
24 return y;
25 end

4.4.3 Proposed Detection Technique Overview

The major problem in detecting unauthorized activity is obtaining a golden

signature, which is extremely difficult, and in some cases, unfeasible. Moreover,

Process-Voltage-Temperature (PVT) variations and environmental noise can mask

the effect of the Trojan circuit on measured parameters (e.g, power (Narasimhan

et al. 2011), even if multi-dimensional analysis is used (Hu et al. 2013; Cha and Gupta
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2013)). Therefore, a decision on the presence (or absence) of a Trojan should ideally,

be made without the need for a golden or trusted reference. To detect small deviations

in power due to malicious activity, the primary circuit response needs to be decoupled

from that of the Trojan and any environmental noise. We achieve this by generating

a test sequence such that the signal (i.e., the response of the device) has spectral

properties that can be differentiated from the Trojan activity. We can denote the

measured power P (t) as follows:

P (t) = P0 · sin(ω0t) + ε(t) + n(t) + PTr(t) (4.1)

where P0 · sin(ω0t) is the sinusoidal power consumption of the primary circuit, ε(t)

denotes the error that we make in setting up the sine wave, n(t) is random noise, and

PTr(t) is the power consumption of the Trojan circuit (Karabacak, Ogras, and Ozev

2016). The power spectrum of the primary signal, i.e., P0sin(w0t) is concentrated

in one frequency location. The noise signal has a flat spectral signature. While the

specific details of the Trojan activity are unknown, its switching speed is clearly

limited by the system clock, and it is unlikely that the period of the Trojan activity

will match with the primary signal periodicity. Therefore, the FFTs of Trojan and

primary activity will inevitably occupy different frequency bins. As a result, the

bandwidth of the Trojan signal will be limited, making it different from white noise

as well as the primary signal. The spectrum of P (t) is the sum of the spectra of

its components. The primary signal, P0 · sin(ω0t) is concentrated in one frequency

location. The error signal, ε(t), can be modeled as a pulse train:

ε(t) = (

Np∑
i=1

εi · p(t− iTs)) ∗ (
Ns∑
k=1

δ(t− kT0)) (4.2)
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where Np is the number of samples in the sine wave, Ts is the sampling period, εi is

the magnitude of the approximation error, p(t) is a pulse with duration Ts, Ns is the

number of sine wave periods in the measurement duration, and T0 is the period of the

sine wave. Note that while the error of the sine wave approximation within a single

period can be random, the error signal itself is also periodic with the same period as

the original sine wave. Hence, the power of the error signal will be concentrated at

the harmonics of f0, as in Equation 4.3.

Sε(f) =

Np∑
i=1

2εi
Ns

δ(f) +
N−1∑
n=1

(

Np∑
i=1

2εi
nπ

sin(
nπ

Ns

))δ(f − nf0) (4.3)

n(t) is the noise signal, hence, its power will be spread through the entire spectrum.

Finally, PTr(t) is the unknown Trojan signal. While the specific details of the Trojan

activity is unknown, its switching speed is clearly limited by the system clock. We

can also safely assume that it is uncorrelated to the primary signal. As a result, the

bandwidth of the Trojan signal will be limited, making it different from white noise

as well as the primary signal as seen in Figure 25.

Figure 25 shows that Trojan activity has a distinct signature. However, we cannot

assume knowledge of this spectrum, since we do not know how the Trojan operates.

In order to detect an unknown signature, we will focus on what is expected from the

device and flag if there is any suspicious activity. This will enable us to determine

whether the spectrum deviates significantly from its expected form.

The detection algorithm uses a run-time signal stitching technique that eliminates

hardware variation, and the self-referencing procedure removes the effect of process

and environmental change. It can detect any activity which consumes power. The

detection method utilizes a periodic run of the device application(s) to create a steady-
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Primary Signal Harmonics

Figure 25: Spectrum of the Total Current.

state concentrating the known signal power at a known frequency. Moreover, using

the native app (s) of the device for steady-state characterization allows for regular

operation and triggering the Trojan conditions. In addition, coverage of triggering

conditions can be increased by designing patterns that enable different hardware

and firmware portions. In summary, if there is a Trojan that is activated while the

application is running, the proposed algorithm can detect this abnormal behavior.

The proposed detection algorithm is shown in Figure 26. We sample and process

the composite power signal P (t) in the digital domain. We first pass the power signal

through a low-pass filter, whose cut-off frequency is chosen to include harmonics

of the primary signal that are above the noise floor. The resulting signal Pref(t) is

64



V=  Pd(f)>3σ  

Pref(t)LPFP(t)

+
-∑  

Pd(f)FFTPd(t)

σ

Flag

size(V)>0.01N

Figure 26: Detection Algorithm

subtracted from that of P (t) to exclude primary signal components from the analysis.

The resulting residual time-domain signal Pd(t) contains noise, the majority of the

Trojan signal energy, and some additional components due to modeling effects. The

noise level, σn, can be determined from the residual spectrum Pd(f) by taking an

average of the spectrum. To avoid false positives due to noise, we set a spectrum

threshold of 3σn (corresponding to a confidence level of nearly 99.7%), and record

spectral components (V ) exceeding this threshold.

We extend the mathematical model to remove the need for sinusoidal excitation,

which may not be practical in an Internet of Things (IoT) context. Similarly, there is

a need for techniques to detect malicious activity in lower power IoT devices. To this

end, this work uses an arbitrary repetitive pattern to drive the device under test such

that its output, e.g., its power consumption, is driven into a PSS, while the Trojan
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is excited in an uncorrelated fashion. In this way, we decouple the response of the

device from that of the Trojan circuit and noise.

Sf (f) =
∞∑
n=1

2Pf
nπ

sin(
nπd

T
)δ(f − nf0) (4.4)

Detection of unknown malicious activity can be generalized to any periodic fore-

ground signal, including a periodic pulse train, as in Equation 4.4, where Pf represents

the power of each pulse, d represents the duration of each pulse, and T represents the

period of the pulse train. Hence, it is possible to use this self-referencing technique

where the foreground (legitimate) activity is repetitive, resulting in a power signature

in the shape of a pulse train. This can be achieved either by intentionally repeating a

program segment or identifying a program segment that repeats and adjusting the

sampling window accordingly. If the same foreground frame is captured several times,

it is possible to obtain a spectral signature of the foreground activity. The spectral

signature of each window then is compared to this average to determine whether the

signature contains the expected flat spectrum (due to noise) or unknown unauthorized

activity in addition to noise, which would result in a non-flat spectrum. We use the

high-frequency portion of the spectrum as a reference to judge the flatness of the

resulting signature. By placing a threshold on the spectral signature, we can determine

how many bins violate this threshold. The number of such bins should not exceed 1%

(due to the 3σ band). Hence, violations beyond this number are treated as evidence

of unauthorized malicious activity, as seen in Figure 28 (d).
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4.5 Experimental Evaluation

4.5.1 Experimental Setup

To evaluate the proposed approach, we perform two sets of experiments, one on

an IoT device prototype (Gupta, Park, et al. 2017) and another on a commercial

MpSoC (ODROID, n.d.). The wearable IoT device runs a gesture recognition algorithm

under a limited energy budget (Bhat, Park, and Ogras 2017) and is representative

of low-power IoT devices used for human-computer interaction and mobile health

monitoring. The second application scenario uses Wi-Fi communication, which is

omnipresent in many mobile application scenarios, ranging from smartphones to simple

Wi-Fi enabled IoT devices.

The wearable and IoT device is capable of performing multiple tasks and is

configured to fulfill one or more needs of a specific target group. It can support

applications such as gesture recognition, temperature reading, location reporting,

heart rate reading, and health/fitness monitoring, all of which create a periodic

steady-state without requiring any special arrangements during the design stage. We

have to remember that an exhaustive testing strategy is universally acknowledged as

prohibitive because designs of even moderate complexity need hundreds of years to

test comprehensively.

These various periodic applications can be selected to reduce test generation effort

and will adequately account for continuous working and environmental changes. In

addition to these functional applications, dedicated firmware that concentrates the

power spectrum on known harmonics can be added and run periodically. Such an

application can run at arbitrary frequencies unknown to the attacker, thereby obscuring
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the test strategy, even if the attacker has knowledge of the design. Changing the run

frequency from one test period to another will further help prevent compromising

the detection system. In our implementation, we use gesture recognition and Wi-Fi

applications, which are expected to create a repetitive pattern while the device is in

use in the environment.

4.5.2 Malicious Activity

A Trojan, when inserted into a chip, will most likely consume power. However, the

Trojan’s contribution to the total power consumption of the circuit depends heavily

on its size and type. We know that full activation of a Trojan uses structural and

functional patterns. It would be extremely challenging considering that the size and

type of Trojan are unknown to us. Trojans often consist of two parts: a trigger

circuit and a payload circuit. The trigger circuit judges whether the condition for the

Trojan payload is satisfied or not using the trigger inputs and/or internal states of the

circuit. The trigger part is often considered to be always-on circuitry that monitors

the operation of the contaminated system for the activation sequence. The payload

circuit creates malfunctions such as leakage of information, downgrading the circuit’s

performance, or catastrophic failure of the system.

At the system level testing or side-channel analysis, the output effect of the Trojan

that is the power consumption in our case is only the consideration for analysis.

For our analysis, we will consider the Trojan output effect on power consumption

while the trigger circuit or payload circuit is working. Based on observation of power

consumption, we are able to detect abnormalities or malicious activity at the device.

Thus, we must be able to separate the components of current that are likely to be
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Table 8: Types of Trojans.

Trojan Type Activity
Duration (∼ms) Trojan/Total Energy (%)

Type I 5 1
Type II 10 2
Type III 15 3
Type IV 30 6

consumed by a Trojan in the infested device. In this work, we present four types of

Trojans and their energy ratio in Table 8. From the viewpoint of the trigger circuit, the

Trojans tend to increase power consumption or redundant processes, and consequently,

they lead to faults or gradual degradation of the quality of the product. Their effect

on the regular circuit at a given time is minimal, and therefore their detection is

difficult.

In an ideal case, our malicious activity detection method applies circuit input

vectors, triggers the malicious activity, observes the unintended behavior, and reports

it to the design owner. However, in practice, the activation of malicious activity

is challenging and sometimes is impossible, as we do not have enough information

about the Trojan’s features, including its location (firmware or hardware), the trigger

condition, and the malicious functionality. Therefore, we propose focusing on Trojan’s

side-channel signal as the primary detection method as the power consumption of

the Trojan is a substantial side-channel signal analysis parameter. In this article,

we pay particular attention to determining the smallest detectable Trojan, i.e., the

lowest energy that a Trojan may have and still be detected, using one of these four

types of malicious activities that are enabled at random times. Instead of focusing on

identifying triggering and activation mechanisms, our proposed method is intended

to detect a malicious addition of any kind. We should also note that the always-on
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type of Trojan that shows constant DC current consumption is not the target of the

proposed detection method. This type of Trojan can easily be found by a time-domain

power trace detection method (Bhunia and Tehranipoor 2019).

4.5.3 Comparisons to Existing Trojan Detection Methods

By comparison, time-domain analysis of the same current measurement data for

our proposed Trojan types cannot distinguish between Trojan-free or Trojan-infested

runs. This occurs because the Trojan’s current consumption is hidden within the

margins allowed for process and environment variations (Y. Jin and Y. Makris 2010).

In this way, the malicious activity can be hidden within the run from the system level

examination. Figure 27a plots the current consumption when a period of gesture

recognition application is run by 100 of the Trojan-free runs, as well as the µ± 3σ

envelope of the current consumption for 500 of the Trojan-free runs. Figure 27b

and Figure 27c plot the current consumption when a period of gesture recognition

application run by the Type-III and Type-IV Trojan-infested runs, respectively. This

demonstrates that malicious activity is still within the µ± 3σ envelope and cannot be

detected by time-domain analysis.

4.5.4 Proposed Detection Algorithm Optimization

The assumption of rareness is explored in many Trojan detection proposals. The

objective is to reduce the monitoring and computation time of the test (i.e., the size

of the collected information from the device) while increasing the confidence level that

the device under test is Trojan-free. This is very desirable as it lessens the test time

70



(c)

(b)

(a)

Figure 27: The µ± 3σ current consumption envelope of 500 Trojan-free runs and
the current consumption of 100 Trojan-free runs (a), the current consumption of
100 Type-I Trojan-infested runs (b), and the current consumption of 100 Type-II
Trojan-infested runs (c).
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Table 9: Proposed Detection Method Test Modes.

Test
Mode

Signal
Stitching

Min
Monitoring
Time (s)

Computation
Time (s) FFT

Mode 1 No 20 60 Regular
Mode 2 Yes 0.8 60 Regular
Mode 3 Yes 0.8 14 Optimized

(faster testing is needed for resource-constrained device) and eliminates the stress of

continuous testing.

As seen in Table 9, our detection algorithm can be used with a different set of test

modes. To use the proposed detection algorithm, different test modes can be selected

based on device usage. We also evaluate the sensitivity of our detection method in

the presence of measurement and background noise. Our proposed test requires a

collection of 20 seconds of data that can be collected without system interruption

for Test Mode 1. When the complete data sequence is collected, the analysis of the

data takes approximately 60 seconds to run with a standard recursive FFT algorithm.

Since test Mode 1 may not be practical during periods when the device is in heavy

use, we apply a signal stitching technique to eliminate the need for continuous data

collection. Thus, the monitoring time can be reduced to approximately 0.8 seconds.

Once the full sequence of data is collected, a regular FFT can be run, which takes

approximately 60 seconds to complete the analysis for the Test Mode 2.

Battery-powered devices have limited resources to support regular operation, so

security or monitoring functions need to minimize their resource requirements. The

proposed technique consumes 80 seconds for Mode 1 testing, which can be done during

device idle time. The Mode 1 test also represents the most exhaustive method that

was explored. As seen in Table 9, other test modes require much less time and achieve
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acceptable coverage. The computation time of a regular FFT can be further optimized

for our proposed detection technique, as seen in Test Mode 3. Part of the data from

the Fourier Transform is saved, as seen in Figure 24b. A limited period of data is

measured and zero-padded to the same size as the complete data sequence. If the

Fourier Transform of the zero-padded data is added to the saved Fourier Transform,

which was previously analyzed and not flagged for any suspicious activity, we can

safely analyze one period of data using our proposed optimized FFT. Hence, the single

test computation time will go down approximately 4.2 times with optimized FFT,

as seen in Table 9. Test Mode 3 is used to analyze a short period of data collected

recently, while Mode 2 waits until the device gathers and stitches a full data sequence

for analysis. Test Mode 2 works effectively with data collected throughout the day

to detect the abnormalities and provides higher detection coverage. In contrast, test

Mode 3 can run the detection algorithm based on only a short period of available

data.

4.5.5 Gesture Recognition Application

The gesture recognition algorithm runs on the IoT prototype attached to the wrist

of a user with a period of 0.8 seconds (Park et al. 2018). The wearable prototype

includes a microprocessor TI CC2650 and a motion processing unit, Invensense MPU-

9250. It features test ports for the microprocessor power consumption, which was

measured using NI PXIe-4081 and PXIe-4080 digital multimeter systems with a 5 kHz

sampling frequency. During the recognition algorithm running, the motion processing

unit records the accelerometer and gyroscope readings. Then, the micro-controller

processes the sensor data using a neural network to recognize the user gesture. Finally,
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FFT

Figure 28: (a) The total current drawn by the IoT prototype. (b) The current signal
after the low-pass filter. (c) The resulting residual time domain signal, which contains
the noise signal and the majority of the malicious activity energy. (d) The residual
signal spectrum with calculated noise threshold levels.

the recognized gesture is transmitted via Bluetooth Low Energy (BLE) communication

protocol. While the application runs in the foreground, various malicious programs,

as seen in Table 8, are launched randomly on the micro-controller.

The total current is drawn by the IoT prototype with and without Trojan activity

are depicted in Figure 28a. We observe that the time domain signals are almost

identical, also highlighted by the zoomed-in section of the plot. The current signals
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after low-pass filtering are plotted in Figure 28b. The difference between the original

and filtered signal gives the residual signal, as shown in Figure 28c. This residual

time-domain signal contains the noise and the majority of the malicious activity

energy, but the malicious activity is still not differentiable. Finally, we provide

the power spectrum of the current with and without Trojan activity in Figure 28d.

The frequency-domain data clearly shows that malicious activity exhibits a unique

signature at low frequencies, which is easily differentiable from the spectrum without

any malicious activity.

To show the robustness of the detection technique, we ran our test with four

different Trojans for 5, 10, 20, 40, and 80 seconds. In our experiments, we collected

740 spectra data, which had no malicious activity and 110 different spectra for each

type of Trojan. The experiments were performed at different times of day to improve

confidence in detection techniques for environmental changes, such as temperature.

The signal stitching technique was used in these experiments to combine data gathered

at a different time during the day and, therefore, with different temperatures. In each

of these cases, the Trojans activate randomly, resulting in different time/frequency

signatures. The experiments were performed at different times of the day to improve

confidence in the fact that there are no false-positives generated by the system.

This ensures that potential changes in the environment do not affect the evaluation. As

mentioned earlier, even without malicious activity, a small percentage of the spectrum

may be polluted due to harmonics not related to the signal. Therefore, the threshold

level for violations is set to 1% of the compared bins of the lower frequency and will

flag suspicious activity only if violations exceed the limit.

As seen in Figure 29a, the red lines show the false-negative rate of Trojans, and the

blue lines depict the minimum violated bin percentage. The percentage of minimum
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(b)

Figure 29: (a) Relation of False negative rate (FNR) (red) and minimum number of
violated bin (blue) with respect to monitoring time. There are no false positives. (b)
Total time to detect malicious activity with respect to single observation time.
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Figure 30: Relation of False negative rate (FNR) (red) and minimum number of
violated bin (blue) with respect to Trojan energy. There are no false positives.

violated bin is flat if we go beyond 20 seconds of monitoring time. The number of

bins over the self-referenced threshold does not linearly increase with monitoring time.

Figure 29b plots the total detection time with respect to the duration of a single

observation to evaluate the cost of testing, based on the number of tests required

to detect unauthorized activity. In order to make sure the system is secure, the

confidence level is set to 99% for completely automated malicious activity detection.

The detection time decreases up to 20 seconds of observation, but increases after

that. Based on the observation, we see that a single test can detect type III and IV

Trojans if the monitoring time is 10 seconds or more. The Type I Trojans require

five repetitions, and Type II Trojans need only two repetitions of 20 seconds or more

to detect, as seen in Figure 29b. Based on our experimental outcome, we decided

to a monitoring time of 20 seconds, which is optimal for all types of Trojans under

consideration.
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Power consumption by malicious activity is minimal compared to the rest of the

operation of the original system. In particular, we focus on determining the smallest

detectable Trojan, i.e., the lowest energy that a Trojan may have and still be detected,

using one of these four types of malicious activities that are randomly enabled with

various activity duration. We run the Trojans standalone 1000 times and take the

average of the total to determine energy to calculate the energy of the Trojans. As

seen in Figure 30, the false-negative rate is drastically reduced when the Trojan energy

increased from 1% to 2%, and we reliably detect the Trojan if it is 3% or more of the

total power of the system. In addition, the percentage of violated bins significantly

increases when the Trojan energy increases from 2% to 3% but does not change much

after that.

4.5.6 Wi-Fi Application

This section demonstrates the proposed approach using a Wi-Fi application running

on a commercial MpSoC (Odroid-XU3) (ODROID, n.d.). The foreground application

reads sensor information and transmits the data over Wi-Fi to a target destination.

To model the malicious activity, we employ a simple firmware Trojan that copies the

sensor data to a separate location at random instances. We assume that the Trojan is

always active and does not rely on a particular trigger mechanism.

First, we randomize the patterns of the Wi-Fi application, just like the firmware

Trojan. Figure 31a shows the residual power pattern (after averaging) under this

scenario. Since there is no repeating pattern to the foreground application, the

signatures with and without Trojan are identical. Next, we repeat the Wi-Fi application

with the same frame, whereas the Trojan is unaltered. Figure 31b shows the residual
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Figure 31: (a) Residual spectrum of random WiFi activity signatures with and
without malicious activity are identical. (b) Residual spectrum of Periodic WiFi
activity clearly reveals that there is a significant difference. (c) Histogram of number
of spectrum violations for 1000 residual spectra out of which 500 had malicious
activity with minimum 36.97% of spectrum violation, while without malicious activity
experiments spectra with maximum 0.95% of spectrum violation.
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Table 10: Percentage of violations in Data Sets (DS) 1–5.

0.5 %
Threshold

w/Trojan (%) w/outTrojan (%) False (%)
Max Min Ave Max Min Ave Pos. Neg.

DS1 54.42 36.97 46.99 0.21 0.0 0.12 0.0 0.0
DS2 45.87 39.25 42.32 0.12 0.09 0.10 0.0 0.0
DS3 58.38 38.62 49.23 0.38 0.0 0.09 0.0 0.0
DS4 49.48 37.17 42.85 0.95 0.0 0.17 0.0 0.0
DS5 47.50 38.36 43.37 0.21 0.0 0.11 0.0 0.0

spectrum of the remainder signal after averaging and filtering. Due to the repetitive

nature of the foreground signal, it can be referenced with respect to itself, leaving

only small variations due to noise and other factors. The malicious activity due to

the Trojan is observable under this scenario. Note that, for detection, we do not need

to compare the spectrum with a golden signature; the expectation is to have a flat

spectrum, regardless of the power levels. We only need to analyze the spectrum of the

measured signal to deduce whether it contains only noise or if there is an unwanted

activity in addition to the primary circuit current signal and noise.

We performed 500 different experiments, with and without malicious activity. For

each experiment, the IoT device is driven into a periodic steady-state for approximately

30 seconds by sending repetitive Wi-Fi messages. We apply the noise threshold

explained in Section 4.4, and count the number of frequency bins above the noise

level, which are referred to as violations. The histogram of the number of violations is

depicted in Figure 31c. We can observe that the spectrum without malicious activity

had a significantly lower number of violations as expected. In fact, there is an apparent

separation between the histograms of spectrum violations with and without malicious

activity.

Table 10 shows the number of violations for five data sets as a percentage of the
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number of frequency bins. We set a threshold of 1% violations due to the random

nature of noise. In Figure 31c, we can clearly classify all the spectra with less than

1% violations as Trojan free.
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Chapter 5

CONCLUSIONS

In this thesis, we propose a self-referenced malicious activity detection method

with two different side-channel parameters. First, we present a complete stand-off

detection methodology for unauthorized activity in the Internet of things (IoT) nodes

and other lightweight embedded systems. The unauthorized activity can be due to

malicious modifications at the hardware, firmware, or software level.

We place the design under test (DUT) in a test mode by periodically running a

test application and measuring the EM emission from the DUT. The repetitive nature

of the test application produces a frequency spectrum where the power is concentrated

on the repetition period’s harmonics. We make no further assumptions on the test

application in terms of how much power is expected at a given frequency. Furthermore,

we assume that the periodicity of the unauthorized activity is different than that

of the test application. This assumption can be relaxed by using two different test

applications with different periods. By removing the harmonic frequencies of the test

application out of consideration and using noise at higher frequencies as a reference,

we develop an analytical detection methodology. Experimental results show that the

proposed method is effective in detecting unauthorized activity with an activation

probability above 5% at or below 120cm distance.

Second, we present a novel malicious Trojan activity detection technique using

noise-based self-referencing that utilizes a signal stitching technique to reduce test

time by a factor of 25 and analysis computation by more than four times with an

optimized recursive Fast Fourier Transform (FFT). Self-referencing enables the use of
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parametric measurements, such as power consumption and current, to detect malicious

Trojan activity without using a trusted golden reference. This is important, since

obtaining a golden signature is extremely difficult, and, in some cases, unfeasible.

Self-referencing is achieved by putting the design under test into a periodic steady

state. This periodic behavior concentrates the primary circuit signal power into a

known frequency and reveals malicious activity using spectral analysis.

We also evaluate the sensitivity of our detection method in the presence of measure-

ment and background noise. We have performed separate experiments on an IoT device

and a commercial system-on-a-chip (SoC) with randomly activated and randomly

switching Trojans. These experiments demonstrate that the proposed approach can

successfully detect Trojan activity without causing false alarms. Detection capability

is limited by the overall energy consumed by the unauthorized activity spread within

an observation bandwidth. Depending on the rate of activity, this energy, spread over

a wide spectrum, may fall below the measurement sensitivity. We should note that

a Trojan that is not activated within the test duration will not generate a spectral

signature and cannot be detected via the proposed method. In addition, a Trojan

that is active in a very short burst may also escape detection since its energy will fall

below the detectable level.
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