
Stochastic Analysis of Networked Systems

by

Hairi

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved May 2020 by the
Graduate Supervisory Committee:

Lei Ying, Chair
Weina Wang

Junshan Zhang
Yanchao Zhang

ARIZONA STATE UNIVERSITY

August 2020

ABSTRACT

This dissertation presents a novel algorithm for recovering missing values of co-

evolving time series with partial embedded network information. The idea is to

connect two sources of data through a shared low dimensional latent space. The

proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm,

and uses the Kalman filter and matrix factorization approaches to infer the missing

values both in the time series and embedded network. The experimental results on

real datasets, including a Motes dataset and a Motion Capture dataset, show that

(1) NetDyna outperforms other state-of-the-art algorithms, especially with partially

observed network information; (2) its computational complexity scales linearly with

the time duration of time series; and (3) the algorithm recovers the embedded network

in addition to missing time series values.

This dissertation also studies a load balancing algorithm, the so called power-

of-two-choices(Po2), for many-server systems (with N servers) and focuses on the

convergence of stationary distribution of Po2 in the both light and heavy traffic

regimes to the solution of mean-field system such that the load of system is λ = 1− γ
Nα

for γ > 0 and 0 ≤ α < 1
18
. The framework of Stein’s method and state space collapse

(SSC) are used to analyze both regimes.

In both regimes, the thesis first uses the argument of state space collapse to show

that the probability of the state being far from the mean-field solution is small enough.

By a simple Markov inequality, it is able to show that the probability is indeed very

small with a proper choice of parameters.

Then, for the state space close to the solution of mean-field model, the thesis

uses Stein’s method to show that the stochastic system is close to a linear mean-

field model. By characterizing the generator difference, it is able to characterize the

dominant terms in both regimes. Note that for heavy traffic case, the lower and

i

upper bound analysis of a tridiagonal matrix, which arises from the linear mean-field

model, is needed. From the dominant term, it allows to calculate the coefficient of

the convergence rate.

In the end, comparisons between the theoretical predictions and numerical simu-

lations are presented.

ii

To my family.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude towards my supervisor, Professor

Lei Ying. His rigorous thinking in scientific research have deeply influenced me.

Throughout the training of group meetings, every question he asked to my presenta-

tions made me think deeper about the topic and hence made me understand more.

If I have to choose one thing that I’m most grateful for learning during my PhD time

is the critical thinking ability. He has always been a great mentor who dedicated a

great amount of time and lots of efforts in my doctoral study. I am eternally grateful

for him as being my supervisor who changed my view towards scientific research.

I would like to thank Professors Weina Wang, Junshan Zhang and Yanchao Zhang

for serving on my committee. I would also like to thank Professor Tong who served

on my qualifying exam committee. Their their valuable insights and feedback on my

research have made my thesis more complete.

The past several years would not have been as enjoyable without the company

of terrific colleagues at INLAB and friends. The valuable and passionate discussions

with Dr. Zhen Chen, Dr. Xin Liu, Mr. Dheeraj Narasimha, Mr. Yiqiu Liu, Mr.

Pengfei Jiang, Mr. Honghao Wei and Mr. Weichang Wang. Thank you for all of help

and happiness brought to me in this long journey.

Finally, I would like to thank my familiy, i.e. my parents and my brother for

their unconditional support and love. And last but not the least, many thanks to my

girlfriend Zona, who have been with me along this journey though thousands of miles

apart. Thank you for believing in me all these years.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Background . 2

1.2 Literature Review . 3

1.3 Summary of Contributions . 6

2 MISSING VALUE RECOVERY . 8

2.1 Model and Problem Formulation . 8

2.1.1 Joint Embedding of Coevolving Time Series 8

2.1.2 Missing Values Recovery Problem and Maximum Likelihood

Formulation . 10

2.2 Proposed Algorithm: NetDyna. 12

2.2.1 The E-Step . 12

2.2.2 The M-Step . 17

2.2.3 Recovering Missing Values . 18

2.2.4 NetDyna . 18

2.3 Experimental Results . 19

2.3.1 Experimental Setup . 20

2.3.2 Effectiveness . 22

2.3.3 Sensitivity Results . 25

2.3.4 Network Data Recovery . 28

2.3.5 Efficiency Results . 29

3 LIGHT TRAFFIC CONVERGENT COEFFICIENT 35

v

CHAPTER Page

3.1 Load Balancing System . 35

3.2 Main Idea . 37

3.3 Higher Moment Bounds . 39

3.4 State Space Collapse . 45

3.5 Linear Mean-Field Model . 45

3.6 Stein’s Method . 48

3.6.1 Generator for the Stochastic System . 48

3.6.2 Function f̃(s) . 49

3.6.3 Generator Difference . 49

3.7 Main Results . 54

3.8 Simulation Results . 56

4 HEAVY TRAFFIC FOR FINITE BUFFER SIZE . 59

5 HEAVY TRAFFIC CONVERGENCE RATE COEFFICIENT 75

5.1 Higher Moment Bounds . 75

5.2 State Space Collapse . 80

5.3 Linear Mean-Field Model . 81

5.4 Upper Bound on Hessian Matrix ∇2g(s) . 83

5.5 Lower Bound on Hessian Matrix ∇2g(s) . 86

5.6 Stein’s Method . 88

5.6.1 Generator for the Stochastic System . 88

5.6.2 Function f̃(s) . 89

5.6.3 Generator Difference . 89

5.7 Main Results . 95

5.8 Simulation Results . 98

vi

CHAPTER Page

6 CONCLUSION . 100

REFERENCES . 102

vii

LIST OF TABLES

Table Page

2.1 Room Temperature Data of a Smart House . 9

2.2 Symbols and Definitions . 30

2.3 Root-Mean-Square-Error (RMSE) with the Motes Dataset under Miss-

ing as a Block . 32

2.4 Root-Mean-Square-Error (RMSE) with the Motes Dataset under Miss-

ing Uniformly Random . 32

2.5 Root-Mean-Square-Error (RMSE) with the Motion Capture Dataset

under Missing as a Block . 33

2.6 Root-Mean-Square-Error (RMSE) with the Motion Capture Dataset

under Missing Uniformly Random . 34

2.7 Root-Mean-Square-Error (RMSE) with the Motes and Motion Capture

Datasets under One Time Series Is Entirely Missing 34

3.1 λ = 0.1, b = 10 . 57

3.2 λ = 0.5, b = 40 . 57

3.3 λ = 0.9, b = 40 . 57

5.1 γ = 0.1, α = 0.05 . 99

5.2 γ = 0.01, α = 0.05 . 99

viii

LIST OF FIGURES

Figure Page

2.1 The Network Associated with Room Temperature Data 9

2.2 Time Series and Network Joint Embedding . 10

2.3 Quantative Results for Motes Dataset . 23

2.4 The Impact of Network Weight on the Performance for Motes Dataset . 26

2.5 The Impact of Network Weight on the Performance for Motion Capture

Dataset . 26

2.6 The Impact of Sparsity of Network Information on the Performance

for Motes Dataset . 27

2.7 The Impact of Sparsity of Network Information on the Performance

for Motion Capture Dataset . 28

2.8 Network Data Sparsity on Network Data Recovery 28

2.9 Running Time Versus the Sequence Length . 29

3.1 Po2 Load Balancing Algorithm . 36

3.2 b = 2 Illustration of Inside Region and Outside Region 38

ix

Chapter 1

INTRODUCTION

In this dissertation, we studied two parts of networked system. The first one is about

sensor network, where we want to recover missing value problem. The second problem

is to show the convergence rate coefficient analysis of queueing system.

Co-evolving time series are common in many real world applications such as tem-

perature monitoring in smart buildings, mobile object tracking, and motion capturing

for environmental monitoring. These co-evolving time series are generated from a col-

lection of system components (such as sensors) over an extended time period. In many

cases, because of reasons such as sensor duty cycling, packet losses in transmissions,

and hardware malfunctions, we only observe incomplete time series with many miss-

ing values. Recovering missing values is important but challenging problem for many

applications, e.g. for determining whether certain chemical level in the drinking water

exceeds a threshold.

Large-scale and complex stochastic systems are ubiquitous in the real world, from

the hospital beds to food deliver requests, to massive online platform like Zoom and

Netflix. Moreover, in a global pandemic like Covid-19, the requests in such systems

has been very high, where in queueing system we call a heavy traffic scenario. In this

dissertation, we consider a queueing system called supermarket model, where jobs are

allocated to servers according to a load balancing algorithm called power-of-the-two

choices. The arrival process is a Poisson process and the service time is a random

variable. Moreover, the power-of-the-two choices load balancing algorithm is also an

algorithm in a randomized fashion in it. So our system is a stochastic system.

1

1.1 Background

A novel approach to recover missing values in co-evolving time series is to explore

the correlation of different data sources (i.e. the co-evolution) instead of treating

time series as independent processes. In particular, an embedded network may be

constructed for co-evolving time series. For a wireless sensor network, the embedded

network is a graph in which an edge exists between two nearby sensors to indicate the

correlation of their measurements. In epilepsy study, measurements collected from

different brain regions of a patient can be connected via a brain graph that describes

the correlation of brain activities. While exploiting the underlying correlation of time

series is proven to be very effective, learning the underlying embedded network itself

can be a daunting task. Often, similar to the time series data, we only have partial

information of the embedded network.

A good load balancer should have a critical feature of low latency. For example,

in a call center, it’s unpleasant for a customer to receive a service while have to

wait a significant long time. However, in a large-scale server system (N servers), the

communication overhead is very costly. In other words, it takes too much time to

ask each server on how many jobs are waiting in line. Thus, in a large-scaled system,

it’s not ideal to apply the famous Joint the Shortest Queue algorithm. On the other

hand, power-of-the-two choices algorithm has a relatively small overhead, yet it can

effectively balance out the disparity in the system.

In order to characterize the latency, it’s critical to characterize the system in the

steady state. It’s important to mention that the arrival traffic plays an important role

in the analysis of such load balancing system. When the arrival rate is independent

of the system size, it’s relatively straightforward; However, when the arrival rate is

dependent of system size, the system quantities are often entangled.

2

In this thesis, we consider when the arrival rate is λ = 1− γ
Nα for some 0 < γ ≤ 1

and 0 ≤ α. This form include both the constant arrival rate case and the system size

dependent rate case.

1.2 Literature Review

Missing value recovery problem is closely related to the low-rank matrix factor-

ization Koren et al. (2009), which has been extensively studied for recommendation

systems. Mnih and Salakhutdinov (2008) proposed a probabilistic matrix factoriza-

tion (PMF) method for user item rating matrix, which scales linearly with the number

of observations. PMF performs well on large, sparse and imbalanced Netflix dataset.

However, sequential dependence, which is the intrinsic difference of time series data

from other data, is not encoded in the PMF. Srebro and Jaakkola (2003) proposed

MSVD, a SVD based missing value recovery method, where missing values are initial-

ized using a linear interpolation first. Ma et al. (2008) proposed probabilistic matrix

factorization with the social network information. SoRec considered recovering miss-

ing values in user item matrix utilizing a social network, where it’s been shown that

social network information can help improve the recovery result.

Yi et al. (2000) proposed an online algorithm, which discovers the correlation

among multiple time series and jointly recover the missing values. Papadimitriou

et al. (2005); Li (2011) provided general frameworks for data mining tasks, including

missing value recovery. For recovering missing values in time series, Papadimitriou

et al. (2005) proposed Spirit, a PCA based learning model. Li et al. (2009) proposed

DynaMMo, which learns the dynamics of latent variables. By filling missing values

using linear interpolation or some other methods, DynaMMo uses Kalman filtering

to estimate system parameters. However, there’s no network data is used. Cai et al.

(2015a) proposed DCMF, an algorithm that combines partially observed time series

3

data with a fully observed embedded network. In Cai et al. (2015b), the authors have

further developed DCMF into a higher dimension model by considering more than

one type of measurements. However, both papers assume complete knowledge of the

embedded network. Our work considers partially observed network information.

Neural network approach has been introduced to time series problem. Lipton et al.

(2016); Che et al. (2018); Cao et al. (2018) proposed recurrent neural network based

algorithms. However, they are looking at classification problems with missing values

in time series. In this chapter, we studied the problem of recovering the missing value

itself.

We note that Ma et al. (2008); Cai et al. (2015a,b) proposed to connect two differ-

ent data resources via a shared latent feature space, which motivated our algorithm,

NetDyna, which use a common latent feature space for both time series and the

embedded network. Finally, Little and Rubin (2014) introduces different types of

missing value patterns. In our work, we considers three different patterns including

missing uniformly, missing as a block, and missing entirely. Our experimental results

show that our algorithm outperforms other algorithms in most cases under these three

different missing patterns.

On the other hand, performance analysis of load balancing algorithms in many-

server systems is one of the most fundamental and widely-studied problems in queue-

ing theory. The key to these analysis is to characterize the stationary distribution

once the system reaches the steady state. If the stationary distribution is known,

the expected queue length and the average waiting time can be easily calculated.

However often times, for a large scaled stochastic system, it’s either hard to precisely

characterize it or computationally very much expensive. For example, in a queueing

system with N homogeneous servers and b buffer size, the state space is in the or-

der of O(N b). And for such a system, the transition rate is state dependent, thus

4

it’s hard to apply the elementary knowledge used in probability theory to calculate

it. Therefore, an approximation to the stationary distribution is a reasonable and

practical approach.

The stationary distribution of a stochastic system has been approximated by using

the solution of the corresponding mean-field model. The convergence of distribution

in finite time to the corresponding mean-field model has also been studied Kurtz

(1971)Kurtz (1981). However, it differs from our focus of interest, which is the sta-

tionary distribution where the system has achieved the steady state. Besides, in order

to have it applicable to the steady state situations, interchange of the limits has to

be applied, where the convergence rate can’t be specified. Especially the mean-field

solution for Po2 algorithm have been addressed in Mitzenmacher (1996)Vvedenskaya

et al. (1996). However, the study of convergence rate of mean-field solution to steady

state distribution wasn’t clear.

In order to tackle it, Stein’s method, Stein (1972) Stein (1986), has been intro-

duced into queueing systems to characterize the convergence rate. Ying (2016) has

first shown the Po2 convergence results in light traffic for constant buffer size. Later

Ying (2017) has derived the results to infinite buffer case including both light and

heavy traffic regimes. Gast (2017) Gast and Van Houdt (2018) have refined the re-

sults by calculating the 1
N

coefficient for general distance functions based on previous

convergence results in light traffic regime. However, our work differs from this paper

by considering heavy traffic regime and mean square distance function specifically.

Liu and Ying (2018) has applied a simple linear mean-field model in the neigh-

borhood of the mean-field solution and the idea of state space collapse Bertsimas

et al. (1998) for other regions to show that the zero waiting time results of many

load balancing algorithms in the heavy traffic regime. The results in this work also

5

share similar spirit with it. However, they considered a collection of load balancing

algorithms, including power-of-d-choices, where d has to large enough.

1.3 Summary of Contributions

In Chapter 2 ,we formulate the missing value problem as maximum likelihood

problem, which can be solved using the Expectation Maximization (EM) method for

recovering time series and embedded network data. We propose an effective algorithm

NetDyna for recovering missing values and evaluated the performance of NetDyna

using real datasets under different missing settings. The experimental results showed

the effectiveness and efficiency when comparing with the-state-of-the-art algorithms.

In particular, NetDyna outperforms other algorithms for recovering missing time

series when the embedded network is partially known.

In Chapter 3 through 5, we study power-of-2-choices load balancing systems (N

servers) assuming exponential service time. Each server has a buffer of size b−1 i.e. a

server can have at most one job in service and b−1 jobs in queue, where b = O(logN).

Jobs are served in first-come-first-serve (FIFO) order.

In Chapter 3, we focus on the steady-state convergence of load balancing algo-

rithms in the light traffic regime such that the load of system is λ is constant, where

0 < λ < 1. We calculate the the coefficient term in front of convergent 1/N term.

The proof of the main result is based on Stein’s method and state space collapse.

In Chapter 4, we focus on the steady-state convergence of load balancing algo-

rithms in the heavy traffic regime such that the load of system is λ = 1− γ
Nα , where

γ > 0 is constant and 0 < α < 0.25. We establish a convergent bound. The proof of

the main result is based on Stein’s method and propagation of chaos.

In Chapter 5, we focus on the steady-state convergence of load balancing algo-

rithms in the heavy traffic regime such that the load of system is λ = 1− γ
Nα , where

6

γ > 0 is constant and 0 < α < 0.25. We calculate the the coefficient term in front

of the dominant convergent term. The proof of the main result is based on Stein’s

method and state space collapse.

We would emphasis the analysis framework in the dissertation combines two tools

for steady-state analysis: Stein’s method and state space collapse.

7

Chapter 2

MISSING VALUE RECOVERY

In this chapter, we first formulate the problem, present our algorithm and then present

the experiment results.

2.1 Model and Problem Formulation

In this section, we present our model and formulate the problem of recovering

coevolving time series under our model as a maximum likelihood problem.

2.1.1 Joint Embedding of Coevolving Time Series

We assume the coevolving time series are associated with a network where each

node is the source of a time series and time series are correlated if the two sources

are neighbors. Our goal is to recover missing values of coevolving time series with

partial time series and partial network information.

Example: Consider a smart house with six rooms as shown in Figure 2.1, where

sensors are placed in each room to track the temperature. A directed edge (i, j)

represents the dependency of the temperature of room j on that of room i. The time

series data are partially observed, as shown in Table 2.1. Our goal is to recover

missing values in time series data and missing edges of the network. �

Consider coevolving time series with N sources and over T time slots. Each source

creates one measurement at each time slot. The coevolving temperature data can be

represented by an N × T matrix X. The weighted adjacency matrix of the network

is an N ×N matrix, denoted by S. Note that without imposing any structure on the

time series data, missing measurements can be arbitrary values, so it is impossible

8

Table 2.1: Room Temperature Data of a Smart House

t1 t2 t3 t4 t5

room 1 72 73 74

room 2 74 73 72

room 3 71 73 75

room 4 76 73 74

room 5 74 71

room 6 75 73 72

Figure 2.1: The Network Associated with Room Temperature Data

to recover these missing values. A widely observed structure in real-world datasets

is that high-dimensional data can often be embedded into a low-dimensional space,

which makes recovery of missing values possible. For example, matrix completion

algorithms such as collaborative filtering are often based on this assumption. By

leveraging this observation, we propose joint time series and network embedding. In

particular, we assume each node (say node i) is associated with an L-dimensional

latent vector Ui ∈ RL. We define U to be an L×N matrix such that the ith column

Ui , U(:,i) is the latent vector of object i. In addition, there is L-dimensional time

series Zt ∈ RL which evolves as a linear system such that

Zt = BZt−1 + Wt

9

where B is an L× L transition matrix, Z1 ∼ N (z0,Ψ0) and Wt ∼ N (0, σ2
ZI) . Note

that Z1 is an L-dimensional Gaussian vector with a general distribution and Wt is

zero mean Gaussian vector with i.i.d. components, representing i.i.d. Gaussian noise.

The time series data Xt (an N -dimensional vector) is generated based on U and

Zt such that

Xt = U′Zt + εt,

where εt ∼ N (0, σ2
XI) is a N -dimensional zero mean Gaussian noise.

The network matrix S is generated based on U such that

S = V′U + τ (2.1)

where V is an L×N matrix such that the ith column Vi , V(:,i) ∼ N (Ui, σ
2
V I) and

τi , τ(:,i) ∼ N (0, σ2
SI).

Figure 2.2 summarizes the joint embedding model, where U and Z are latent

variables and X and S are observed variables.

Figure 2.2: Time Series and Network Joint Embedding

2.1.2 Missing Values Recovery Problem and Maximum Likelihood Formulation

With the model and notation defined above, we introduce the maximum likelihood

formulation for tackling the missing value recovery problem defined below. We define

an N × T matrix M such that Mnt = 1 when Xnt is observed and Mnt = 0 if Xnt is

missing; and define an N ×N matrix M̃ such that M̃ij = 1 if the edge weight (i, j)

10

is observed and M̃ij = 0 otherwise. These two matrices specify the entries of missing

values.

Summarizing the model we have introduced, we have

Zt = BZt−1 + Wt (2.2)

Xt = Mt � (U′Zt + εt) (2.3)

S = M̃� (V′U + τ), (2.4)

where Mt = M(:,t) is the tth column of matrix M.

Let X̂ and Ŝ denote the observed time series and weighted adjacency matrix,

where the missing values are set to be zero. The missing value recovery problem is

defined below.

Missing Value Recovery:

Input: Partially observed time series from a networked data sources and a partially

observed network, i.e. X̂, M, Ŝ, M̃.

Output: Complete time series data and network data X and S that match the

observed data, i.e. X�M = X̂ and S� M̃ = Ŝ.

Note that the co-evolving time series is a high-dimensional random process defined

by (2.2)-(2.4), which is characterized by the parameter set

θ = {U,B, z0,Ψ0, σZ , σX , σV , σS} .

We propose the following maximum likelihood problem for recovering the missing

values:

max
X,S,θ

p
(

X,S| θ, X̂, Ŝ
)

(2.5)

Note that the condition X̂ and Ŝ mean

X�M = X̂ and S� M̃ = Ŝ.

Table 2.2 summarizes the key notations to be used throughout the chapter.

11

2.2 Proposed Algorithm: NetDyna

Since directly maximizing likelihood (2.5) is intractable Goodfellow et al. (2016);

Bishop (2006), we first use the expectation-maximization (EM) algorithm to maximize

the evidence lower bound, defined below, to find θ based on the observed data

EZ,V|θ,X̂,Ŝ[ln p(X̂, Ŝ, Z, V |θ)]. (2.6)

After obtaining θ, and distributions of latent variables Z and U, we then recover the

missing time series and network data by solving the maximum likelihood problem.

The EM algorithm first initializes parameter set θ. In the expectation step, we

compute the distributions of latent variables Z and V conditioned on the current

parameter set θ and observed data and then calculate (2.6). In the maximization

step, we iteratively update the parameter set θ based on the current distribution of

latent variables. The algorithm terminates after the value of the evident lower bound

converges.

2.2.1 The E-Step

In this step, parameter set θ is fixed. According to Figure 2.2, time series data X

and network data S are conditionally independent given U, so can be inferred sepa-

rately. In particular, we have To calculate expectation, the first step is to calculate

the distributions of latent variables Z and V given the parameter set θ and observed

data X̂ and Ŝ.

Distributions of Latent Variables for Time Series Data

Equations (2.2) and (2.3) show the dynamic of latent process {Zt}Tt=1 and partially

observed {Xt}Tt=1. To simplify the notation, for each time slot t = 1, · · · , T, define

Ot = {i|Mit > 0, i = 1, · · · , N}

12

X∗t = Xt(Ot)

Ht = U′(Ot, :) (2.7)

where Ot is the index set of observed entries at time t, X∗t is the observed entries at

time t and Ht is a compressed version of matrix U′ at time t. For example, suppose

U′ =


1 0

0.5 0.5

0 1

 , Zt =

 0.7

0.3

 ,

Xt =


0.7

0.5

0

 and Mt =


1

1

0

 .

Then we have

Ot = {1, 2}, X∗t =

 0.7

0.5

 , and Ht =

 1 0

0.5 0.5

 .

We can rewrite equation (2.3) as follows:

X∗t = HtZt + εt. (2.8)

Since noises and the initial condition are Gaussian, so are the posteriors of latent

variable {Zt}Tt=1. Then, we apply the forward-backward algorithm Bishop (2006)

or Kalman filter and smoother Gelb et al. (1974); Byron et al. (2004) to calculate

the posteriors. Define the following two posterior distributions, one conditioned on

observations up to time t and the other on all observations:

p(Zt|X∗1, · · · ,X∗t) = N (Zt|µt,Ψt)

p(Zt|X∗1, · · · ,X∗T) = N (Zt|µ̃t, Ψ̃t).

13

By applying the forward algorithm (or the Kalman filter) to estimate µt and Ψt, we

have

Pt−1 = BΨt−1B
′ + σ2

ZI

Kt = Pt−1H
′
t(HtPt−1H

′
t + σ2

XI)−1

µt = Bµt−1 + Kt(X
∗
t −HtBµt−1)

Ψt = (I−KtHt)Pt−1 (2.9)

with initial conditions

K1 = Ψ0H
′
1(H1Ψ0H

′
1 + σ2

XI)−1

µ1 = z0 + K1(X∗1 −H1Bz0)

Ψ1 = (I−K1H1)Ψ0. (2.10)

Then, by applying the backward algorithm (or Kalman smoother), we have

Jt = ΨtB
′(Pt)

−1

µ̃t = µt + Jt(µ̃t+1 −Bµt)

Ψ̃t = Ψt + Jt(Ψ̃t −Pt)J
′
t. (2.11)

The expectations are

E[Zt] = µ̃t

E[ZtZ
′
t−1] = Ψ̃tJ

′
t−1 + µ̃tµ̃

′
t−1

E[ZtZ
′
t] = Ψ̃t + µ̃tµ̃

′
t (2.12)

which are needed for parameter update in maximization step.

14

Distributions of Latent Variables for Network Data

Now the posterior distributions of network latent variables can also be similarly de-

rived. Rewrite (2.4)

S′ = M̃′ � (U′V + τ), (2.13)

and define

Õj = {i|M̃′
ij = M̃ji > 0, i = 1, · · · , N}

S∗j = S′j(Õj)

Gj = U′(Õj, :) (2.14)

where Õj is the index set of observed entries of column M̃′
j(or row M̃(j, :)), S∗j is the

observed entries of column vector S′j and Gj is the compressed version of U′. Further

rewrite (2.4) as follows:

S∗j = GjVj + τj

Noises for network data are also Gaussian, so are the posteriors of latent variables

{Vi}Ni=1. Note that we assume that for V, columns are independent of each other.

Define

p(Vj|S∗j) = N (Vj|νj,γj)

By applying Bayes’ theorem, we have

γj = (σ−2
V I + σ−2

S G′jGj)
−1

νj = γj(σ
−2
S G′jS

∗
j + σ−2

V Uj). (2.15)

The expectations are

E[Vj] = νj

15

E[VjV
′
j] = γj + νjν

′
j (2.16)

which are also used in the maximization step.

After obtaining the distributions of latent variables, we can obtain the following

approximation for the evidence lower bound. The details are omitted due to the

page limit. Note that we add a scalar λ into the approximation which balances the

contributions of observed network data and time series data in inferring the latent

variable U, which turns out to be important as we will see in the numerical evaluation.

Q(θ) ,EZ,V|θ,X̂,Ŝ[ln p(X̂, Ŝ,Z,V|θ)] (2.17)

=(1− λ)

(
−1

2
tr(Ψ−1

0 (E[Z1Z
′
1]− E[Z1]z′0 − z0E[Z′1]

+ z0z
′
0)) +

1

2
ln |Ψ−1

0 |+
σ−2
Z

2

T∑
t=2

(− tr(E[ZtZ
′
t])

+ tr(B′E[ZtZ
′
t−1] + tr(BE[Zt−1Z

′
t]))

− tr(B′BE[Zt−1Z
′
t−1]))− L(T − 1)

2
lnσ2

Z

− 1

2σ2
Z

T∑
t=1

((X∗t)
′X∗t − 2(X∗t)

′HtE[Zt]

+ tr(H′tHtE[ZtZ
′
t]))−

1

2

T∑
t=1

N∑
i=1

Mit lnσ2
S

)

+ λ

(
σ−2
V

2

N∑
i=1

(tr(E[ViV
′
i])− 2U′iE[Vi] + U′iUi)

− NL

2
lnσ2

V −
1

2σ2
S

N∑
i=1

((S∗i)
′S∗i − 2(S∗i)

′GiE[Vi]

+ tr(G′iGiE[ViV
′
i]))−

1

2

N∑
i=1

N∑
j=1

M̃ji lnσ
2
S

)

+ const

16

2.2.2 The M-Step

In the M step, we iteratively update the parameter set

θ = {U,B, z0,Ψ0, σZ , σX , σV , σS}

by fixing the distributions of the latent variables. In particular, to update their

values, we sequentially setting the derivative of the parameters in parameter set θ =

{U,B, z0,Ψ0, σZ , σX , σV , σS} to be 0.

In a summary, after the E-step, we update the parameter set θ with the following

update rules:

znew
0 = E[Z1]

Ψnew
0 = E[Z1Z

′
1]− E[Z1]E[Z′1]

Bnew = (
T∑
t=2

E[ZtZ
′
t−1])(

T∑
t=2

E[Zt−1Z
′
t−1])−1

(σ2
Z)new =

1

L(T − 1)

T∑
t=2

tr(E[ZtZ
′
t]− E[ZtZ

′
t−1](Bnew)′

−BnewE[ZtZ
′
t−1] + BnewE[Zt−1Z

′
t−1](Bnew)′)

(σ2
V)new =

1

NL

N∑
i=1

(tr(E[ViV
′
i])− 2U′iE[Vi] + U′iUi)

Unew
i = A1A

−1
2

A1 =
λ

σ2
S

N∑
j=1

M̃jiSjiE[Vj]
′ +

(1− λ)

σ2
X

T∑
t=1

MitXitE[Zt]
′

+
λ

(σ2
V)new

E[Vi]
′

A2 =
λ

σ2
S

N∑
j=1

M̃jiE[VjV
′
j] +

(1− λ)

σ2
X

T∑
t=1

MitE[ZtZ
′
t]

+
λ

(σ2
V)new

I

17

(σ2
X)new =

1∑T
t=1

∑N
i=1 Mit

T∑
t=1

((X∗t)
′X∗t − 2(X∗t)

′Hnew
t E[Zt]

+ tr(Hnew
t E[ZtZ

′
t](H

new
t)′))

(σ2
S)new =

1∑N
j=1

∑N
i=1 M̃ij

N∑
j=1

((S∗j)
′S∗j − 2(S∗j)

′Gnew
j E[Vj]

+ tr(Gnew
j E[VjV

′
j](G

new
j)′)) (2.18)

The new parameter set

θ = {Unew,Bnew, znew
0 ,Ψnew

0 , σnew
Z , σnew

X , σnew
V , σnew

S }

will be used in the next E-step.

2.2.3 Recovering Missing Values

After the EM algorithm converges, we set Z = (µ̃1, · · · , µ̃T) and V = (ν1, · · · , νN).

Then, we recover the missing values by setting

X =M� X̂ + (1N×T −M)�U′Z

S =M̃� Ŝ + (1N×N − M̃)�V′U.

Note that these recovery rules are obtained based on the fact that the means are the

maximum likelihood solutions given Z, V and U.

2.2.4 NetDyna

The proposed algorithm is summarized in Algorithm 1 named NetDyna. And the

following two theorems summarize the time complexity and the memory complexity

of the algorithm.

Theorem 1. The time complexity of NetDyna is O(#iteration · (TL3 + NL3 +∑
t(ntL

2 + n2
tL+ n3

t) +
∑

j(n
2
jL+ njL

2)).

18

Here, nt denotes the number of observed entries in Xt, i.e. cardinality of Ot, and

nj denotes the number of observed entries in S(j, :), i.e. cardinality of Õj.

Proof. The overall time complexity is composed of 4 parts, computing time series

data in E step, computing network data in E step, updating parameter set in M step

and computing the evidence lower bound.

For each iteration, the complexity for time series in E step is O(L3T +
∑

t L
2nt +

Ln2
t + n3

t), including computation for forward algorithm, backward algorithm and

expectations; the complexity for network data is O(L3N +L2
∑

j nj), including com-

putation for inferring and expectations; the complexity for updating parameter set is

O(TL3 +NL3 + L2
∑

j nj + L2
∑

t nt + L
∑

t n
2
t + L

∑
j n

2
j); the complexity for com-

puting evidence lower bound is O(L3 +L2T +L
∑

t nt +NL+L
∑

j nj). So, for each

iteration, the complexity is O(TL3 +NL3 +
∑

t(ntL
2 +n2

tL+n3
t) +

∑
j(n

2
jL+njL

2)).

Thus, the overall complexity is the result in the theorem.

Theorem 2. The memory complexity of NetDyna is O(NT + L2T +N2 + L2N).

Proof. The space complexity is composed of 4 parts, storing input dataset, parameter

set, intermediate values in E step and loglikelihood values. For input dataset, the

space complexity is O(NT + N2); for parameter set, the complexity is O(LN); for

intermediate values in E step, the complexity is O(L2T +L2N); for loglikelihood, the

complexity is O(1).

Thus, overall space complexity is O(NT + L2T +N2 + L2N).

2.3 Experimental Results

This section presents a comprehensive experimental evaluation of NetDyna, in

terms of its effectiveness, sensitivity and efficiency, with two real datasets; and its

comparison with five existing algorithms.

19

2.3.1 Experimental Setup

To evaluate the reconstruction performance of NetDyna, we use the root mean

squared error(RMSE) for both time series data and network data

RMSEtime =

√√√√∑i,t(1−Mit)(Xit − X̂it)2∑
i,t(1−Mit)

RMSEnet =

√√√√∑i,j(1− M̃ij)(Sij − Ŝij)2∑
i,j(1− M̃ij)

where X̂it, Ŝij are observed values and Xit,Sij are reconstructed values. Note that

we will divide the dataset into training and test parts, the metrics are on test data.

Motes Dataset

The Motes dataset 1 consists of temperature measurements from 54 sensors deployed

at the Intel Berkeley Research Lab over a month. The temperature measurements

are the time series data. The dataset also contains locations of the sensors and the

connectivity probabilities among sensors. So using these information, we define each

entry of the network matrix as following:

Sij = α · (1− dij
maxi,j(dij)

) + (1− α) · cij

where dij is the Euclidian distance between sensor i and sensor j, cij is the connectivity

probability between sensor i and sensor j, and α is weight control of the two parts.

In the experiment, we set α = 0.5. In all the Motes dataset related simulations, we

use data from all 54 sensors and time slots from 1 to 2880. Note that 2880 time slots

is roughly duration of a whole day.

1http://db.csail.mit.edu/labdata/labdata.html

20

Motion Capture Dataset

Motion Capture dataset 2 consists of body movement measurements from markers

placed on human body. We used the Mawashi Geri data, a ”spin kick” martial art

movement, in which 41 markers have been used and there are 1472 frames. Each

marker has 3-dimensional coordinates so we have 123 features. Using these data, we

define each entry of network matrix as following:

Sij = α · (1− dij
maxi,j(dij)

)

where dij is the Euclidian distance between two markers, while α = 1 if i and j are

the same coordinate, otherwise α = 0.5.

Note that we have standardized, i.e. subtracted the mean and divided by the

standard deviation, both datasets before applying NetDyna and other state-of-the-

art algorithms.

We consider three types of synthetic missing value patterns for time series data:

missing as a block fashion, missing uniformly and missing entirely. For the network

data, we assume each entry is missing uniformly at random.

• Missing as a block, also called occlusion in Li et al. (2009): We randomly pick

a sensor j and a starting time slot t for this marker. Then, we choose the

duration of the missing block for the selected sensor and starting time as a

Poisson distributed random variable according to the observed statistics. We

repeat this step until the percentage of missing values reaches the threshold we

set.

• Missing uniformly: For each observed value, we uniformly at random remove it

according to a pre-selected probability.

2http://mocap.cs.cmu.edu

21

• Missing entirely: Randomly choose one of the time series and remove it entirely.

2.3.2 Effectiveness

For effectiveness, we compared NetDyna with the following algorithms.

1. Dynamical Contextual Matrix Factorization(DCMF) Cai et al. (2015a): It is a

time series data mining algorithm with fully observed embedded network infor-

mation. DCMF infers the missing values based on both observed values in time

series data and complete network data. However, the fully observed network

information is based only a zero mean prior, which is lack of accountability for

network information.

2. Dynamical Matrix Factorization(DMF) Cai et al. (2015a): DMF is also a special

case of DCMF, where missing values are inferred solely based on observed time

series data. If we set λ = 0, NetDyna becomes DMF. We omit the result of

that when comparing the algorithms.

3. DynaMMo Li et al. (2009): It is a time series data mining algorithm with no

network information. DynaMMo utilizes only time series data X, where missing

values are filled by interpolation or other methods first. Then, learn the system

parameter by maximizing the likelihood of time series data, which include both

observed data and interpolated data. Note that interpolated data are also used

in the objective; however, in a missing as a block setting, where missing values

are evolving far from linear interpolation, the learning process will be misled.

4. Missing value Singular Value Decomposition(MSVD) Srebro and Jaakkola (2003):

It combines the idea of SVD with interpolation. The method first uses linear in-

terpolation to fill the missing values, then iteratively applies SVD to the time se-

22

ries matrix and updates the missing values accordingly. Again, like DynaMMo,

MSVD will also be potentially misled by interpolated data.

5. Probabilistic Matrix Factorization(PMF) Mnih and Salakhutdinov (2008): PMF

is a collaborative filtering algorithm, where it learns the latent variables by max-

imizing a posteriori of the observed values. However, PMF does not consider

the dynamics of time series evolution.

Throughout the simulations, we set L = 15 for all algorithms for both Motes dataset

and Motion Capture dataset.

0 500 1000 1500 2000 2500 3000

time

16

18

20

22

24

te
m

p
e

ra
tu

re
 o

n
 t

h
e

 4
8

th
 s

e
n

s
o

r/
 °

C

PMF

MSVD

DCMF

DynaMMo

NetDyna

original

missing

Figure 2.3: Quantative Results for Motes Dataset

Figure 2.3 shows the results of recovering missing time series values under the

algorithms mentioned above and NetDyna. We selected the 48th sensor in the

Motes dataset, two consecutive parts are missing, whose true values are denoted by

blue dashed lines; three consecutive parts are observed, which are denoted by green

lines. In this case, all algorithms are trying to recover the missing values and the

algorithm that tracks blue dashed curve the closest is the best. PMF, MSVD, DCMF,

DynaMMo and NetDyna are denoted by shiny green, blue, red, yellow and purple

curves respectively. As we can see that in the first missing parts, NetDyna i.e. the

purple curve tracks the missing values the best. Although in the second missing parts

23

DCMF is very close to NetDyna, the overall performance of NetDyna beats all

state-of-the-art algorithms.

From Table 2.3 to Table 2.7, we will show the quantitative comparisons of time se-

ries data error of different algorithms with different missing patterns on both datasets.

The quantitative comparisons with the state-of-the-art algorithms are shown in

Table 2.3 and Table 2.4 under different missing percentages for the Motes dataset.

In the missing column, the first number is the missing percentage of the time series

data and the second number is the missing percentage of network data. Note that the

DCMF algorithm also considers network information, however it only allows complete

network information. Therefore, for partially observed network information, we set

network value to be 0, i.e. no connection, for the unobserved entries.

Under the missing as a block model with different missing percentage settings,

NetDyna outperforms other algorithms almost in all cases. We note that with fully

observed network information, DCMF performs closely to NetDyna; however, with

partially observed network, NetDyna outperforms significantly. Also, under different

percentages of partially observed network information, the RMSEs are similar to that

of completely observed network information. Under the missing uniformly model,

NetDyna slightly outperforms DCMF and outperforms other algorithms in almost

all cases by a larger margin.

Table 2.5 and Table 2.6 summarize the results using the Motion Capture dataset.

Under missing as a block setting, NetDyna outperforms all other algorithms up

to missing 50% missing time series data. With sparse Motion Capture data such as

when 90% time series data are missing, NetDyna is not as accurate as DynaMMo and

MSVD. Under the missing uniformly model, NetDyna outperforms other algorithms.

Table 2.7 shows the results when one time series is completely missing and the

number in the missing column denotes the percentage of missing network data. In

24

this case, DynaMMo, MSVD and PMF algorithms are not defined. To have more

comparisons, we introduced two more heuristic baselines.

• heuristic average: Recover the missing time series as the average of other time

series whose sensors are connected with the missing sensor.

• heuristic weighted average: Recover the missing time series as the weighted

average of other time series whose sensors are connected with the missing sensor.

As a result, NetDyna outperforms all the algorithms in the Motes dataset under all

settings; with the Motion Capture dataset, NetDyna also outperforms in most of

the cases, especially with partially observed network.

2.3.3 Sensitivity Results

The experimental studies in section focus on the performance of NetDyna with

different network weights and different levels of network sparsity.

Network Weight

We will first show that considering network data helps the recover missing time series

data. Besides, the impact of network weight on NetDyna will be seen.

Figure 2.4 shows the performance with different network weights under the missing

as a block model, missing uniformly model and missing entirely model, respectively,

for the Motes dataset. Here we set network data to be fully observed for all these

missing patterns. From the results, we can see that considering network information,

i.e. λ > 0, in general improve the accuracy compared with only considering time

series data, i.e. λ = 0.

Under the missing as a block mode, the best λ is between (0.97, 0.99) in our

experiments. Under the missing uniformly model, utilizing network information, i.e.

25

0 0.2 0.4 0.6 0.8 1

network weight

0

0.2

0.4

0.6

0.8

1

R
M

S
E

10% missing

50% missing

90% missing

(a) under missing as a

block fashion

0 0.2 0.4 0.6 0.8 1

network weight

0

0.05

0.1

0.15

R
M

S
E

10% missing

50% missing

90% missing

(b) under missing

uniformly fashion

network weight
0 0.2 0.4 0.6 0.8 1

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

(c) under missing entirely

fashion

Figure 2.4: The Impact of Network Weight on the Performance for Motes Dataset

λ ∈ (0, 1], helps improve the performance significantly when time series data is sparse,

e.g. when 90% are missing as shown in Figure 2.4b. Under the missing entirely

model, we can see that considering network data significantly improves the recovery

results.We have similar results for Motion Capture dataset as well in Figure 2.5.

0 0.2 0.4 0.6 0.8 1

network weight

0

0.1

0.2

0.3

0.4

R
M

S
E

10% missing

30% missing

50% missing

(a) under missing as a

block fashion

0 0.2 0.4 0.6 0.8 1

network weight

0

0.1

0.2

0.3

0.4

R
M

S
E

10% missing

50% missing

90% missing

95% missing

(b) under missing

uniformly fashion

network weight
0 0.2 0.4 0.6 0.8 1

R
M

S
E

0.2

0.4

0.6

0.8

1

(c) under missing entirely

fashion

Figure 2.5: The Impact of Network Weight on the Performance for Motion Capture

Dataset

Network Sparsity

The experiment results focus on using partially observed network data for recovering

missing values of time series data.

26

0 0.2 0.4 0.6 0.8 1

network weight

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
E

no missing

10% missing

20% missing

30% missing

(a) under missing as a

block fashion

0 0.2 0.4 0.6 0.8 1

network weight

0

0.05

0.1

0.15

0.2

R
M

S
E

no missing

10% missing

20% missing

30% missing

40% missing

(b) under missing

uniformly fashion

network weight
0 0.2 0.4 0.6 0.8 1

R
M

S
E

0

0.2

0.4

0.6

0.8

1

1.2

1.4
no missing
10% missing
20% missing

(c) under missing entirely

fashion

Figure 2.6: The Impact of Sparsity of Network Information on the Performance for

Motes Dataset

Figure 2.6 shows the performance with different amounts of network data under

the missing as a block model, missing uniformly model and missing entirely model,

respectively, for the Motes dataset.

From Figure 2.6a, we can see that even missing up to 30% of the network informa-

tion, NetDyna performs closely to that of with fully observed network information.

The best empirical network weights are in the interval (0.9, 1).

For the uniformly missing case, we can observe from Figure 2.4b that network

data is more helpful in the sparse time series data case, thus the result shown is

when 90% time series data are missing. Similarly, with partially observed network

information, the performance of NetDyna can also be enhanced. The best empirical

network weight is in interval (0.4, 0.6). For the entirely missing model, Figure 2.4c

shows that with partially observed network information, the recovery results are as

good as that of full network information. For the Motion Capture dataset, we have

similar results as shown in Figure 2.7.

27

0 0.2 0.4 0.6 0.8 1

network weight

0.15

0.2

0.25

0.3

0.35

R
M

S
E

no missing

10% missing

20% missing

30% missing

(a) under missing as a

block fashion

0 0.2 0.4 0.6 0.8 1

network weight

0

0.1

0.2

0.3

0.4

R
M

S
E

no missing

10% missing

20% missing

30% missing

(b) under missing

uniformly fashion

network weight
0 0.2 0.4 0.6 0.8 1

R
M

S
E

0.2

0.4

0.6

0.8

1

1.2
no missing
10% missing
20% missing

(c) under missing entirely

fashion

Figure 2.7: The Impact of Sparsity of Network Information on the Performance for

Motion Capture Dataset

2.3.4 Network Data Recovery

In addition to recovering time series data, NetDyna can also recover the embed-

ded network. In the presence of missing values in network information, it is inferred

from observed network data and observed time series data. With 95% of time series

data missing, we vary the sparsity of network data for Motes dataset. The reconstruc-

tion error for network data is shown in Figure 2.8. For network data recovery, the

accuracy of recovering network data can increase when the network weight increases

as shown in the figure.

network weight
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10% missing
30% missing
60% missing

Figure 2.8: Network Data Sparsity on Network Data Recovery

28

2.3.5 Efficiency Results

As we discussed in Section 4 that the complexity of NetDyna is O(#iteration ·

(TL3 + NL3 +
∑

t(ntL
2 + n2

tL + n3
t) +

∑
j(n

2
jL + njL

2)). Figure 2.9 shows the run-

ning time of the algorithm on the Motes dataset versus the sequence length under

missing as a block setting with different time series missing percentages and fully

observed network information. We can see that the running time is almost linear to

the sequence duration; and the algorithm is faster with sparser time series data.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sequence length

0

10

20

30

40

50

60

70

80

90

100

ru
n

n
in

g
 t

im
e

(s
)

10% missing

50% missing

90% missing

Figure 2.9: Running Time Versus the Sequence Length

29

Table 2.2: Symbols and Definitions

Symbol Definitions and Descriptions

A matrix (bold upper case)

Aij the element at row i and column j of matrix A

A(:, j) the jth column of matrix A

A(i, :) the ith row of matrix A

AT transpose of matrix A

a column vector (bold lower case)

� Hadamard product

X time series matrix

M indicator matrix for time series matrix

S embedded network matrix

M̃ indicator matrix for embedded network matrix

Z time series latent matrix

V network latent matrix

B transition matrix

U object latent matrix

T time duration

N number of measurements in system

L dimension of latent space

N (z|µ,Σ) Gaussian distribution random variable

with mean µ and covariance matrix Σ

30

Algorithm 1: NetDyna

Input : Data set {X,M,S, M̃}, latent dimension L and network weight λ

Output: Parameter set θ and estimated X,S

1 repeat

2 for t = 1 : T do

3 Construct Ht based on Eq.(2.9);

4 Estimate µt,Ψt based on Eq.(2.11) and Eq.(2.12);

5 end

6 for t = T : 1 do

7 Estimate µ̃t, Ψ̃t based on Eq.(2.13);

8 Estimate E[Zt], E[ZtZ
′
t−1], E[ZtZ

′
t] based on Eq.(2.14);

9 end

10 for j = 1 : N do

11 Construct Gj based on Eq.(2.16);

12 Estimate νj, γj based on Eq.(2.17);

13 Estimate E[vj], E[vjv
′
j] based on Eq.(2.18);

14 end

15 Update parameter set θ based on Eq.(2.20);

16 until converge;

17 Set Z = (µ̃1, · · · , µ̃T) and V = (ν1, · · · , νN);

18 Reconstruct X = M� X̂ + (1N×T −M)�U′Z and

S = M̃� Ŝ + (1N×N − M̃)�V′U;

31

Table 2.3: Root-Mean-Square-Error (RMSE) with the Motes Dataset under Missing

as a Block

Missing NetDyna DCMF DynaMMo PMF MSVD

(10%,0%) 0.1581 0.1604

(10%,10%) 0.1628 0.2603 0.4190 0.9118 0.6000

(10%,20%) 0.1487 0.2696

(50%,0%) 0.3191 0.3173

(50%,10%) 0.3186 0.3765 0.6599 0.9736 0.7735

(50%,20%) 0.3082 0.4417

(90%,0%) 0.6420 0.7238

(90%,10%) 0.6198 0.6722 0.8990 1.0284 0.9834

(90%,20%) 0.6108 0.7239

Table 2.4: Root-Mean-Square-Error (RMSE) with the Motes Dataset under Missing

Uniformly Random

Missing NetDyna DCMF DynaMMo PMF MSVD

(10%,0%) 0.0135 0.0133

(10%,10%) 0.0134 0.0134 0.0140 0.0436 0.0257

(10%,20%) 0.0135 0.0133

(50%,0%) 0.0141 0.0145

(50%,10%) 0.0142 0.0148 0.0490 0.0614 0.0237

(50%,20%) 0.0142 0.0145

(90%,0%) 0.0226 0.0243

(90%,10%) 0.0234 0.0236 0.1684 0.4160 0.0214

(90%,20%) 0.0226 0.0237

32

Table 2.5: Root-Mean-Square-Error (RMSE) with the Motion Capture Dataset

under Missing as a Block

Missing NetDyna DCMF DynaMMo PMF MSVD

(10%,0%) 0.0486 0.0487

(10%,10%) 0.0476 0.0626 0.0676 0.8291 0.2350

(10%,20%) 0.0484 0.0838

(30%,0%) 0.0808 0.1035

(30%,10%) 0.0823 0.1206 0.1591 0.8443 0.2661

(30%,20%) 0.0867 0.1072

(50%,0%) 0.1991 0.2520

(50%,10%) 0.1813 0.2562 0.1854 0.8792 0.2797

(50%,20%) 0.1750 0.2654

(90%,0%) 0.8720 0.9981

(90%,10%) 0.7780 0.7241 0.3358 0.9618 0.3092

33

Table 2.6: Root-Mean-Square-Error (RMSE) with the Motion Capture Dataset

under Missing Uniformly Random

Missing NetDyna DCMF DynaMMo PMF MSVD

(10%,0%) 0.0139 0.0139

(10%,10%) 0.0139 0.0139 0.0139 0.9995 0.0152

(10%,20%) 0.0140 0.0139

(50%,0%) 0.0142 0.0142

(50%,10%) 0.0142 0.0142 0.0145 0.9998 0.0177

(50%,20%) 0.0142 0.0142

(90%,0%) 0.0267 0.0297

(90%,10%) 0.0268 0.0299 0.1193 1.0010 0.0280

(90%,20%) 0.0260 0.0299

Table 2.7: Root-Mean-Square-Error (RMSE) with the Motes and Motion Capture

Datasets under One Time Series Is Entirely Missing

RMSE NetDyna DCMF Average Weighted Average

Motes(0%) 0.1133 0.1375 0.3603 0.3354

Motes(10%) 0.1154 0.1356 0.3637 0.3407

Motes(20%) 0.1155 0.2805 0.3627 0.3311

Motion(0%) 0.2248 0.2216 0.9287 0.7113

Motion(10%) 0.2185 0.2351 0.9247 0.7106

Motion(20%) 0.2183 0.3061 0.9386 0.7152

34

Chapter 3

LIGHT TRAFFIC CONVERGENT COEFFICIENT

In this chapter, we first introduce the original stochastic system that we are interested

in, i.e. supermarket model with power-of-two-choices load balancing algorithm. The

main interested of ours is that the stationary distribution of such a system in the

steady state.

Then, we introduce the traditional mean-field model, of which the solution, i.e.

the equilibrium point, is approximation of our interested quantity, the stationary

distribution at steady state. Also, we will present the results from related literatures.

3.1 Load Balancing System

Consider a many-server system with N homogeneous servers, where job arrivals

follows a Poisson process with rate λN and service times are i.i.d. exponential random

variables with rate one. We consider λ = 1 − γ
Nα for some 0 < γ ≤ 1 and 0 ≤ α.

When α = 0, λ is just a constant and we call it light traffic regime; When λ > 0, the

arrival rate is depend on N and we call it heavy traffic regime.

We study a specific load balancing algorithm called power-of-two-choices algo-

rithm.

Definition 1. Power-of-Two-Choices(Po2): Po2 samples 2 servers uniformly at ran-

dom and dispatches the job to the least loaded server among the 2 servers.

Let Si(t) denote the fraction of servers with queue size at least i at time t. Under

the finite buffer assumption with buffer size b, Si = 0,∀i ≥ b+ 1. Define S to be

S = {s|1 ≥ s1 ≥ · · · ≥ sb ≥ 0},

35

Figure 3.1: Po2 Load Balancing Algorithm

and S(t) = [S1(t), S2(t), · · · , Sb(t)]. S is a continuous time Markov chain(CTMC)

with the following transition rate

Rss′ =



N(sk − sk+1), if s′ = s− 1k
N

and 1 ≤ k ≤ b− 1

Nsb, if s′ = s− 1b
N

λN(s2
k−1 − s2

k), if s′ = s+ 1k
N∑b

k=1−λN(s2
k−1 − s2

k)−N(sk − sk+1), if s′ = s

0, otherwise

where 1k is a b−dimensional vector such that the kth element is 1 and the others

are 0. Note that the first and second terms are a departure occurs with size k so sk

decreases by 1
N

. The third term is for the event that an arrival occurs and it is routed

to a queue size k − 1. Define a normalized transition rate

qss′ =
1

N
Rss′

Define the traditional mean-field model Ying (2017), we have

ṡ = f(s) =
∑
s′:s′ 6=s

Rss′(s
′ − s) = N

∑
s′:s′ 6=s

qss′(s
′ − s)

36

more specifically

ṡk = fk(s) =


λ(s2

k−1 − s2
k)− (sk − sk+1), b− 1 ≤ k ≤ 1

λ(s2
b−1 − s2

b)− sb, k = b.

Denote the equilibrium point as s∗ and it satisfies the conditions:

s∗0 = 1

λ[(s∗k−1)2 − (s∗k)
2)− (s∗k − s∗k+1) = 0 1 ≤ k ≤ b− 1

λ[(s∗b−1)2 − (s∗b)
2]− s∗b = 0

The existence and uniqueness of the equilibrium point has been proved in Mitzen-

macher (1996). And define

g(s) = −
∫ ∞

0

d(s(t), s∗)dt, s(0) = s.

where d(s(t), s∗) is a distant function. Then the Stein’s Equation holds

E[d(S(∞), s∗)] = −E[
∑
s′

RS(∞),s′Γ(S(∞), s′)]

where Γ(s, s′) = g(s′) − g(s) − ∇g(s) · (s′ − s). Also by the definition of g(s), the

Poisson equation holds

∇g(s) · f(s) = d(s, s∗)

In the previous results Ying (2016, 2017), we only have order-wise convergence

results of mean square error for the stationary distribution, i.e. S(∞) and mean-field

solution, i.e. s∗. However, based on the order-wise results, we can actually calculate

the convergence constant in front of the convergence rate.

3.2 Main Idea

The previous results tell us that as N increases, the state space will concentrate

around the mean-field solution. Thus, we can divide the state space into two regions

37

Figure 3.2: b = 2 Illustration of Inside Region and Outside Region

based on the closeness to the mean-field solution, i.e. the region close to the equilib-

rium point and the region far from the equilibrium point. And for the two regions,

we apply different techniques. The ideas are following:

1)We first establish higher moments bound for mean field approximation. The

purpose is to bound the probability of the states being far away from equilibrium

point so that make the probability suitably small.

2)And then for states closer to equilibrium point, instead of the traditional mean-

field model, we use a linearized mean-field model to approximate the generator of the

original stochastic system. By carefully choosing the parameters, i.e. the order of

higher moment and the size of ball, which defines the closeness from equilibrium point,

we can look into the generator and calculate the coefficient in front of convergence

rate.

For example in the case of b = 2, we have the state space to be {(p
N
, q
N

)|p, q ∈

{0, 1, · · · , N}} ⊂ [0, 1]2. As in Figure, 3.2, we split the state space into two regions

by the red circle. The grey area outside of red circle is the outside region. And the

38

green area inside the red circle is the inside region. And the size of the circle is the

parameter of our design.

Our main idea is that, in steady state, the probability of state being in outside

region, i.e. grey area, is small; on the basis of that, we choose a simple linear function

to approximate the generator of the stochastic system in the inside region, i.e. the

green area. By doing so, we can more precisely quantify the stead state when N is

sufficiently large.

3.3 Higher Moment Bounds

In this section, we assume the arrival rate λ is a constant and independent of

system size N . First, we establish higher moment bounds, which will be utilized to

show that the probability of being far from equilibrium point is small.

Let g(s) be the solution to the Poisson equation, for r ∈ N,

∇g(s) · ṡ = ∇g(s) · f(s) = ||s− s∗||2r (3.1)

Then, the solution has the following form

g(s) = −
∫ ∞

0

||s(t)− s∗||2rdt

= −
∫ ∞

0

[
b∑
i=1

(si(t)− s∗i)2]rdt

We have for the stationary distribution of S

E[Gg(S)] = E[N
∑
s′ 6=S

RS,s′(s)(g(s′)− g(S))] = 0 (3.2)

Then, we will have

E[||S − s∗||2r]

=E[∇g(S) · f(S)−N
∑
s′ 6=S

qS,s′(g(s′)− g(S))]

39

=E[∇g(S) · f(S)−∇g(S) ·
∑
s′ 6=S

qS,s′N(s′ − S) +∇g(S) ·
∑
s′ 6=S

qS,s′N(s′ − S)

−N
∑
s′ 6=S

qS,s′(g(s′)− g(S))]

=E[∇g(S) ·

(
f(S)−

∑
s′ 6=S

qS,s′N(s′ − S)

)
−
∑
s′ 6=S

qS,s′N(g(s′)− g(S)−∇g(S) · (s′ − S))]

=E[−
∑
s′ 6=S

qS,s′N(g(s′)− g(S)−∇g(S) · (s′ − S))]

where g(s) = −
∫∞

0
[
∑b

i=1(si(t)− s∗i)2]rdt.

We next focus on the following term

− (g(s′)− g(s)−∇g(s) · (s′ − s))

=

∫ ∞
0

[
b∑
i=1

(si(t, s
′)− s∗i)2]rdt−

∫ ∞
0

[
b∑
i=1

(si(t, s)− s∗i)2]rdt

− 2r(s′ − s) ·
∫ ∞

0

[
b∑
i=1

(si(t, s)− s∗i)2]r−1

b∑
i=1

(si(t, s)− s∗i)∇si(t, s)dt

=

∫ ∞
0

(
[
b∑
i=1

(si(t, s
′)− s∗i)2]r − [

b∑
i=1

(si(t, s)− s∗i)2]rdt

−2r(s′ − s) · [
b∑
i=1

(si(t, s)− s∗i)2]r−1

b∑
i=1

(si(t, s)− s∗i)∇si(t, s)

)
dt (3.3)

Let

ei(t) = si(t, s
′)− si(t, s)−∇si(t, s) · (s′ − s)

i.e.,

si(t, s
′) = ei(t) + si(t, s) +∇si(t, s) · (s′ − s)

so

(si(t, s
′)− s∗i)2

=(ei(t) + si(t, s) +∇si(t, s) · (s′ − s)− s∗i)2

40

=(si(t, s)− s∗i)2 + e2
i (t) + [∇si(t, s) · (s′ − s)]2

+ 2ei(t)(si(t, s)− s∗i) + 2(si(t, s)− s∗i)∇si(t, s) · (s′ − s) + 2ei(t)∇si(t, s) · (s′ − s)

By summing over all i, we have

b∑
i=1

(si(t, s
′)− s∗i)2

=
b∑
i=1

(si(t, s)− s∗i)2 +
b∑
i=1

e2
i (t) +

b∑
i=1

[∇si(t, s) · (s′ − s)]2 + 2
b∑
i=1

ei(t)(si(t, s)− s∗i)

+ 2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s) + 2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)

By raising to the rth order, we have

[
b∑
i=1

(si(t, s
′)− s∗i)2]r

=[
b∑
i=1

(si(t, s)− s∗i)2 +
b∑
i=1

e2
i (t) +

b∑
i=1

[∇si(t, s) · (s′ − s)]2 + 2
b∑
i=1

ei(t)(si(t, s)− s∗i)

+ 2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s) + 2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r

=
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

ei(t)(si(t, s)− s∗i)]r4

[2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s)]r5 [2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r6

Note that when r1 = r and ri = 0 for i = 2, · · · , 6, the summand is [
∑b

i=1(si(t, s) −

s∗i)
2]r, which is the inside term of second integral equation (3.3); and when r1 =

r − 1, r5 = 1 and ri = 0 for i = 2, 3, 4, 6, the summand is 2r[
∑b

i=1(si(t, s) −

s∗i)
2]r−1

∑b
i=1(si(t, s) − s∗i)∇si(t, s) · (s′ − s), which is the inside term of third in-

tegral equation (3.3). These terms will cancel out after taking integrals, thus we only

41

consider the case {ri}1,··· ,6 other than the two cases above. Let Σ be the collection of

combination of all {ri}i=1,··· ,6 that excludes above two cases, i.e.

Σ = {ri, i = 1, · · · , 6|
6∑
i=1

= r}

\ {{r1 = r, ri = 0, for i = 2, · · · , 6}, {r1 = r − 1, r5 = 1, ri = 0, for i = 2, 3, 4, 6}}.

We have that, from Ying (2016),

|ei(t)| ≤ ||e(t)|| = O(
1

N2
)

and the state transition condition

||s′ − s|| = 1

N

Also, we can show that

||∇si(t, s)|| ≤ c̃

where c̃ is independent of system size N , the proofs are the same as the case in light

traffic with constant buffer size.

Then, for the term inside integral, we have

[
b∑
i=1

(si(t, s
′)− s∗i)2]r − [

b∑
i=1

(si(t, s)− s∗i)2]r

− 2r(s′ − s) · [
b∑
i=1

(si(t, s)− s∗i)2]r−1 ·
b∑
i=1

(si(t, s)− s∗i)∇si(t, s)

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

ei(t)(si(t, s)− s∗i)]r4

[2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s)]r5 [2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r6

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

42

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

|ei(t)(si(t, s)− s∗i)|]r4

[2
b∑
i=1

|(si(t, s)− s∗i)∇si(t, s) · (s′ − s)|]r5 [2
b∑
i=1

|ei(t)∇si(t, s) · (s′ − s)|]r6

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

|ei(t)| · |si(t, s)− s∗i |]r4

[2
b∑
i=1

|si(t, s)− s∗i | · |∇si(t, s) · (s′ − s)|]r5 [2
b∑
i=1

|ei(t)| · |∇si(t, s) · (s′ − s)|]r6

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1O(
1

N2(2−2α−4ξ)r2
)O(

1

N2r3
)O(

1

N (2−2α−4ξ)r4
)[

b∑
i=1

|si(t, s)− s∗i |]r4

O(
1

N r5
)[

b∑
i=1

|si(t, s)− s∗i |]r5O(
1

N (3−2α−4ξ)r6
)

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

O(
1

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)[

b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

|si(t, s)− s∗i |]r4+r5

(3.4)

Then, substitute into the following equation

− (g(s′)− g(s)−∇g(s) · (s′ − s))

=

∫ ∞
0

[
b∑
i=1

(si(t, s
′)− s∗i)2]rdt−

∫ ∞
0

[
b∑
i=1

(si(t, s)− s∗i)2]rdt

− 2r(s′ − s) ·
∫ ∞

0

[
b∑
i=1

(si(t, s)− s∗i)2]r−1

b∑
i=1

(si(t, s)− s∗i)∇si(t, s)dt

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

43

O(
1

N4r2+2r3+2r4+r5+3r6
)

∫ ∞
0

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

|si(t, s)− s∗i |]r4+r5dt

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

1

N4r2+2r3+2r4+r5+3r6
)

∫ ∞
0

(||s− s∗||κe−αt)2r1 [bκ||s− s∗||e−αt]r4+r5dt

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

1

N4r2+2r3+2r4+r5+3r6
)br4+r5k2r1+r4+r5

1

α(2r1 + r4 + r5)
||s− s∗||2r1+r4+r5

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N4r2+2r3+2r4+r5+3r6
)||s− s∗||2r1+r4+r5 .

Therefore,

E[||S − s∗||2r]

=E[−
∑
s′ 6=S

qS,s′N(g(s′)− g(S)−∇g(S) · (s′ − S))]

≤E[
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N4r2+2r3+2r4+r5+3r6−1
)||S − s∗||2r1+r4+r5

∑
s′ 6=S

qS,s′]

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N4r2+2r3+2r4+r5+3r6−1
)E[||S − s∗||2(r1+

r4+r5
2

)]

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N4r2+2r3+2r4+r5+3r6−1
)O(

1

N r1+
r4+r5

2

)

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N r1+4r2+2r3+2.5r4+1.5r5+3r6−1
)

44

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N r+3r2+r3+1.5r4+0.5r5+2r6−1
)

=O(
1

N r(1−ξ))

where ξ can be chosen arbitrarily small for sufficiently large N . The last equality

happens when r1 = r − 1, r3 = 1 and the rest is 0, i.e. ri = 0 for i = 2, 4, 5, 6

and r1 = r − 2, r5 = 2 and the rest is 0, i.e. ri = 0 for i = 2, 3, 4, 6. Note that

we used the assumption that
∑

s′ 6=s qs,s′ < 2. The second inequality, we assumed

that E[||S − s∗||2(r−1)] ≤ O(1
N(r−1)(1−ξ)) and by Lyapunov inequality we have E[||S −

s∗||2(r1+
r4+r5

2
)] ≤ (E[||S − s∗||2(r−1)])

2(r1+
r4+r5

2)

r−1 .

When r1 = r4 = r5 = 0, we have similar analysis based on the fact that∫∞
0
||e(t)||dt = O(1

N2).

3.4 State Space Collapse

Let ρ be a positive number. Hence, applying Markov inequality, we have

P{||S − s∗||2r ≥ ε} ≤ E[||S − s∗||2r]
ρ

=
1

ρ
O(

1

N r(1−ξ))

Let ρ = 1
Nε , where ε > 0. Then, the above inequality will become

P{||S − s∗||2r ≥ 1

N ε
} ≤ O(

1

N r(1−ξ)−ε) (3.5)

3.5 Linear Mean-Field Model

Define a set of states to be B = {s | ||s−s∗||2r ≤ 1
Nε}, which is close to equilibrium

point. Let d(s, s∗) = ||s− s∗||2 as the distance function. We consider a simple linear

system

ṡ = l(s) = J(s∗)(s− s∗), (3.6)

45

where J(s∗) is the Jacobian matrix of f(s) at the equilibrium point s∗.

The Jacobian matrix at a point s, is following

J(s) =



−2λs1 − 1 1 0

2λs1
.

. 1

0 2λsb−1 −2λsb − 1


We first introduce a lemma that matrix J(s∗) is invertible, i.e. J(s∗)−1 exists.

Lemma 1 (Invertibility). For any s ∈ S, the Jacobian matrix J(s) is invertible.

Proof. Since it’s a tridiagonal matrix, we can write down the determinant in a recur-

sive form

Pi = −(2λsi + 1)Pi−1 − 2λsi−1Pi−2

where

Pi =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2λs1 − 1 1 0

2λs1
.

. 1

0 2λsi−1 −2λsi − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Furthermore, we can verify that in fact, Pi can be written in the following form

Pi = (−1)i − 2λsiPi−1 (3.7)

with P1 = −(2λs1 + 1). We can conclude 2 things from equation (5.5), for any s ∈ S,

• the sign of Pi alternates: when i is odd, Pi < 0; when i is even, Pi > 0.

• the absolute value of Pi is no less than 1, i.e. |Pi| ≥ 1

Because the determinant is nonzero, J(s) is invertible.

46

Consider a function g : S → S such that it satisfies the following equation

Lg(s)=̇
dg(s)

dt
= ∇g(s) · l(s) = ||s− s∗||2. (3.8)

According to the definition of the linear mean-field model in (3.6), we have

∇g(s) · J(s∗)(s− s∗) = ||s− s∗||2. (3.9)

Lemma 2 (Solution of Poisson Equation). The solution of the Poisson equation (3.9)

is

∇g(s) = [JT (s∗)]−1(s− s∗) (3.10)

and furthermore

∇2g(s) = [JT (s∗)]−1

∇3g(s) = 0

�

Proof. According to Poisson equation (3.9), we have

∇g(s)TJ(s∗)(s− s∗) = (s− s∗)T (s− s∗).

It implies

[∇g(s)TJ(s∗)− (s− s∗)T](s− s∗) = 0

holds for all s in the neighborhood of s∗. If we set

∇g(s)TJ(s∗)− (s− s∗)T = 0

then, we can solve that

∇g(s) = [JT (s∗)]−1(s− s∗)

and the higher derivatives as in the lemma.

47

3.6 Stein’s Method

We have the generator difference as following

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] = E[Lg(S)−Gg(S)

∣∣||S − s∗||2r ≤ 1

N ε
]

We will expand the terms in generator equation and analyze the terms one by one.

3.6.1 Generator for the Stochastic System

Lemma 3. The generator of function g(s) is following

Gg(s) = ∇g(s) · f(s) +
1

N

b∑
i=1

∇2g(s)iif̃i(s) (3.11)

where ∇2g(s)ii is the i-th diagonal element of the Hessian matrix ∇2g(s) and f̃i(s) =

1
2
[λ(s2

i−1 − s2
i) + (si − si+1)].

Proof. Take a closer look at the generator by Taylor expansion around a state s

Gg(s)

=
b∑
i=1

λN(s2
i−1 − s2

i)[g(s+ ei)− g(s)] +N(si − si+1)[g(s− ei)− g(s)]

=
b∑
i=1

λN(s2
i−1 − s2

i)[∇g(s) · ei +
1

2
eTi ∇2g(s)ei]

+N(si − si+1)[∇g(s) · (−ei) +
1

2
eTi ∇2g(s)ei]

=
b∑
i=1

∇g(s) · [λ(s2
i−1 − s2

i)− (si − si+1)]Nei

+
1

2
NeTi ∇2g(s)ei[λ(s2

i−1 − s2
i) + (si − si+1)]

= ∇g(s) · f(s) +
1

N

b∑
i=1

∇2g(s)iif̃i(s)

Note that the second equality is because ∇3g(s) = 0 from Lemma 2.

48

3.6.2 Function f̃(s)

Since when s is close to equilibrium point s∗, define xi = si − s∗i , we can further

make a Taylor expansion at the equilibrium point s∗ as following

f̃i(s) =
1

2
[λ(s2

i−1 − s2
i) + (si − si+1)]

=
λ

2
[(s∗i−1 + xi−1)2 − (s∗i + xi)

2] +
1

2
(s∗i + xi − s∗i+1 − xi+1)

=
λ

2
[(s∗i−1)2 + 2xi−1s

∗
i−1 + x2

i−1 − (s∗i)
2 − 2xis

∗
i − x2

i] +
1

2
(s∗i + xi − s∗i+1 − xi+1)

=
λ

2
[(s∗i−1)2 − (s∗i)

2] +
1

2
(s∗i − s∗i+1) +O(

1

N
ε
2r

)

= f̃i(s
∗) +O(

1

N
ε
2r

) (3.12)

The last equality is because of the fact that ||s−s∗||2r ≤ 1
Nε , which implies |xi| ≤ 1

N
ε
2r

.

3.6.3 Generator Difference

The mean square error close to the equilibrium point is

E[d(S, s∗)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[Lg(S)−Gg(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · J(s∗)(S − s∗)−∇g(S) · f(S)− 1

N

b∑
i=1

∇2g(S)iif̃i(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · (J(s∗)(S − s∗)− f(S))− 1

N

b∑
i=1

∇2g(S)ii

(
f̃i(s

∗) +O(
1

N
ε
2r

)

)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · (J(s∗)(S − s∗)− f(s))− 1

N

b∑
i=1

∇2g(S)iif̃i(s
∗)− 1

N

b∑
i=1

∇2g(S)iiO(
1

N
ε
2r

)

∣∣ ||S − s∗||2r ≤ 1

N ε
].

According to Lemma 2, we have

∇g(s) = [JT (s∗)]−1(s− s∗),

49

∇2g(s) = [JT (s∗)]−1

to be the functions of J(s∗), which is a function of N.

And in fact, since the traditional mean-field is a second-order system, we can write

it down as

f(s) =f(s∗) + J(s∗)(s− s∗) +
1

2
< s− s∗,∇2f(s∗)(s− s∗) >

where ∇2f(s∗) is the Hessian of f(s) at equilibrium point. For any s ∈ S and

i = 1, · · · , b, the Hessian has following form for fi

∇2fi(s)kj =
∂2fi(s)

∂sj∂sk
=


−2λ, if j = k = i

2λ, if j = k = i− 1

0, otherwise

Substituting back to generator difference, we have

E[d(S, s∗)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[Lg(S)−Gg(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E
[
[JT (s∗)]−1(S − s∗) · (1

2
< S − s∗,∇2f(s∗)(S − s∗) >)− 1

N

b∑
i=1

∇2g(S)iif̃i(s
∗)

− 1

N

b∑
i=1

∇2g(S)iiO(
1

N
ε
2r

)
∣∣ ||S − s∗||2r ≤ 1

N ε

]
. (3.13)

There are 3 terms in equation (3.13). We will characterize the upper bounds of each

term and a lower bound for the second term in equation (3.13).

Lemma 4 (Upper Bound on the First Term). For the first term in equation (3.13),

we have an upper bound on its 2-norm, when ||s− s∗||2r ≤ 1
Nε ,

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > || = O(
1

N
3ε
2r

) (3.14)

50

Proof. We have the 2-norm of the first term as following

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ ||[JT (s∗)]−1(s− s∗)|||| < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ ||[JT (s∗)]−1||||s− s∗|||| < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ 2
√

2λ||[JT (s∗)]−1||||s− s∗||3 (3.15)

where the third inequality is because of followings

|| < s− s∗,∇2f(s∗)(s− s∗) > ||

=

√√√√ b∑
i=1

[(s− s∗)∇2fi(s∗)(s− s∗)]2

=

√√√√ b∑
i=1

(
2λ[(si−1 − s∗i−1)2 − (si − s∗i)2]

)2

=2λ

√√√√ b∑
i=1

[(si−1 − s∗i−1)2 − (si − s∗i)2]2

≤2λ

√√√√ b∑
i=1

(si−1 − s∗i−1)4 + (si − s∗i)4

≤2
√

2λ

√√√√ b∑
i=1

(si − s∗i)4

≤2
√

2λ

√√√√[
b∑
i=1

(si − s∗i)2]2

=2
√

2λ||s− s∗||2

Note that for light traffic, the entries of the Jacobian matrix J(s∗) are a constant

that is independent of system size N . Since ||s − s∗||2r ≤ 1
Nε , combining with the

inequality (3.15), we have

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > ||

51

≤ 2
√

2λ×O(1)× 1

N
3ε
2r

= O(
1

N
3ε
2r

)

Lemma 5 (Lower Bound on the Second Term). For the second term in equation

(3.13), we have a lower bound as following

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) ≥ λ(1− λ2)

3N
(3.16)

Proof. It’s easy to check, for i = 1, · · · , b, f̃i(s∗) ≥ 0. From lemma 21, ∇2g(s)ii < 0,

for i = 1, · · · , b, so we have

−∇2g(s)iif̃i(s
∗) ≥ 0

And we also have

f̃i(s
∗) =

1

2
[λ((s∗i−1)2 − (s∗i)

2) + (s∗i − s∗i+1)]

= λ[(s∗i−1)2 − (s∗i)
2]

the second equality is because s∗ is the equilibrium point. Thus, for i = 1, we have

f̃1(s∗) = λ[1− (s∗1)2] ≥ λ(1− λ2)

So, we have

1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) ≥ − 1

N
J−1

11 (s∗)f̃1(s∗) ≥ λ(1− λ2)

3N

Lemma 6 (Upper Bound on the Second Term). For the second term in equation

(3.13), we have an upper bound as following

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) = O(

1

N1−ξ) (3.17)

52

Proof. It’s easy to check that fi(s
∗) ≤ 1 for i = 1, · · · , b. Therefore

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) =

b

N
O(1) = O(

1

N1−ξ)

The last equality is from the assumption b = O(logN).

Lemma 7 (Upper Bound on the Third Term). For sufficiently large N , we have an

upper bound for the third term in equation (3.13) as following

|| − 1

N

b∑
i=1

∇2g(s)iiO(
1

N
ε
2r

)|| = O(
1

N1+ ε
2r

) (3.18)

Proof. We have

|| − 1

N

b∑
i=1

∇2g(s)iiO(
1

N
ε
2r

)|| ≤ b

N
O(1) ·O(

1

N
ε
2r

) = O(
1

N1+ ε
2r

)

Based on these lemmas, we are now able to characterize the dominant term among

the three in equation (3.13).

Lemma 8. For sufficiently large N , we have for equation (3.13)

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] = − 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N
) (3.19)

where the parameters satisfy following

r = 4 ,
8

3
< ε < 3

Proof. For the given condition of the parameters, it’s easy to check that the upper

bounds of the first and third term in equation (3.13) is order-wise smaller than the

lower bounds of the second term, i.e.

3ε

2r
> 1

53

and

1 +
ε

2r
> 1

which show that the lower bound of the second term is order-wise larger than upper

bounds of the first and third terms.

3.7 Main Results

In this section, we present our main results using 3 theorems. These are the results

based on the observation that the second term in equation (3.13) is the dominant term.

Theorem 3 (Heavy Traffic Convergence). For sufficiently large N , we have that

E[||S − s∗||2] = − 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N
) (3.20)

where J(s∗) is the Jacobian matrix of traditional mean-field model f(s) at equilibrium

point s∗ and f̃i(s
∗) = 1

2
[λ
(
(s∗i−1)2 − (s∗i)

2
)

+ (s∗i − s∗i+1)] for i = 1, 2, · · · , b.

Proof. Let parameters satisfy following conditions

r = 4 , ε =
17

6

and ξ > 0 is arbitrarily small. Then, for sufficiently large N , the mean square distance

is

E[||S − s∗||2]

=E[||S − s∗||2
∣∣||S − s∗||2r ≥ 1

N ε
] · P{||S − s∗||2r ≥ 1

N ε
}

+ E[||S − s∗||2
∣∣||S − s∗||2r ≤ 1

N ε
] · P{||S − s∗||2r ≤ 1

N ε
}

=O(logN) ·O(
1

N r(1−ξ)−ε) + [− 1

N

b∑
i=1

∇2g(s)iif̃i(s
∗) + o(

1

N
)] · [1−O(

1

N r(1−ξ)−ε)]

=O(
1

N r(1−ξ)−ε−ξ)− 1

N

b∑
i=1

∇2g(s)iif̃i(s
∗) +O(

1

N1−ξ) ·O(
1

N r(1−ξ)−ε) + o(
1

N
)

54

=− 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N
)

where the second equality is because ||s − s∗||2 ≤ b = O(logN). We note that with

the choice of parameters r, ε and the fact ξ > 0 is arbitrarily small, it’s easy to check

that non-dominant terms are strictly upper bounded by 1
N

order.

The theorem shows the mean square error E[||S− s∗||2] consists of two terms: the

first term − 1
N

∑b
i=1[JT (s∗)]−1

ii f̃i(s
∗) is the dominant term and is calculated explicitly;

the second term o(1
N

) is “small” when N is sufficiently large.

Theorem 4 (Convergence Upper Bound). For sufficiently large N , we have that

E[||S − s∗||2] ≤ − 4

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) (3.21)

Proof. From lemma 8 with the same parameter conditions, it’s easy to check that for

sufficiently large N , we have

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] ≤ − 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

For sufficiently large N , it’s easy to check,

P{||S − s∗||2r ≥ 1

N ε
} ≤ O(

1

N r(1−ξ)−ε) ≤
1

N1+2ξ

Then from the above two inequalites, for sufficiently largeN , the mean square distance

is

E[||S − s∗||2]

=E[||S − s∗||2
∣∣||S − s∗||2r ≥ 1

N ε
] · P{||S − s∗||2r ≥ 1

N ε
}

+ E[||S − s∗||2
∣∣||S − s∗||2r ≤ 1

N ε
] · P{||S − s∗||2r ≤ 1

N ε
}

≤ b

N1+2ξ
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

55

≤ 1

N1+ξ
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

≤− 4

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

where the last inequality holds for sufficiently large N .

This result tells us that we can have a calculable upper bound for light traffic

convergence for mean square error.

3.8 Simulation Results

We provide the results of some simulations for various arrival rates and system

sizes. The results are based on the average of 10 runs, where each run simulates

108 time steps. And the first 9 × 107 are ignored to let the system to reach steady

state. We compared the results from the simulations to our predictions. The simu-

lations are the results of empirical mean square error times the system size N . And

our predictions and upper bounds are the results for the dominant term times sys-

tem size, i.e. −
∑b

i=1[JT (s∗)]−1
ii f̃i(s

∗) and calculable upper bound times system size

−4
∑b

i=1[JT (s∗)]−1
ii f̃i(s

∗).

Table 3.1, 3.2 and 3.3 show the comparisons of simulation results and predictions

for arrival rates range from 0.1 to 0.9. For λ = 0.1, our prediction is close to the

simulation results, especially when the system size increases. For λ = 0.5, our pre-

diction result is not as close as that of in the case of λ = 0.1, but the trend that as

the system size increases the simulation results are getting closer to our prediction

result. For λ = 0.9, the simulation results and prediction result are off by a factor

close to 2, but the trend is still as the system size increases, the discrepancy between

simulation results and prediction decreases.

Note that as the arrival rate increases, the entries in matrix J−1(s∗) becomes

56

Table 3.1: λ = 0.1, b = 10

N 10 100 1000 10000

Simulation 0.1464 0.1041 0.0998 0.0998

Prediction 0.099

Upper Bound 0.3960

Table 3.2: λ = 0.5, b = 40

N 10 100 1000 10000

Simulation 0.5818 0.5414 0.5393 0.5369

Prediction 0.4341

Upper Bound 1.7364

Table 3.3: λ = 0.9, b = 40

N 10 100 1000 10000

Simulation 3.7527 2.9673 2.8632 2.9572

Prediction 1.4882

Upper Bound 5.9528

57

larger. So the first term in Eq.(3.13) becomes larger as a result, which causes larger

discrepancy for larger arrival rates.

On the other hand, the upper bounds are enough for even moderately large system

size like N = 10, which shows the effective of our refined analysis. And from a prac-

tical point of view, the upper bounds are calculable as compared to the convergence

results in Ying (2016).

58

Chapter 4

HEAVY TRAFFIC FOR FINITE BUFFER SIZE

For finite buffer size, b = O(logN), the mean-field model is following

ṡk =


λ(s2

k−1 − s2
k)− (sk − sk+1), b− 1 ≤ k ≤ 1

λ(s2
b−1 − s2

b)− sb, k = b.

where s0(t) = 1 and sb+1(t) = 0 for t ≥ 0. There exists a unique equilibrium points

{s∗k}k=1,··· ,b. We next establish the upper bound on

E[||X(∞)||2]

where X(∞) = S(∞)− s∗ and the expectation is taken over stationary distribution.

Theorem 5. For λ = 1− γ
Nα and λ > 0.75, given 0 < α < 0.25, 0 < γ ≤ 1, we have

E[||S(∞)− s∗||2] ≤ 1

N1−4α−ξ′

where ξ
′
> 0 can be chosen arbitrarily small,

The proof and analysis follow from heavy traffic infinite buffer caseYing (2017).

Define x = s− s∗, so

ẋk = fk(x) :=


λ[(xk−1 + s∗k−1)2 − (xk + s∗k)

2)]− [(xk + s∗k)− (xk+1 + s∗k+1)],

1 ≤ k ≤ b− 1

λ[(xb−1 + s∗b−1)2 − (xb + s∗b)
2]− (xb + s∗b), k = b

=


−λ(x2

1 + 2s∗1x1)− (x1 − x2), k = 1

λ[(x2
k−1 + 2s∗k−1xk−1)− (x2

k + 2s∗kxk)]− (xk − xk+1), 2 ≤ k ≤ b− 1

λ[(x2
b−1 + 2s∗b−1xb−1)− (x2

b + 2s∗bxb)]− xb, k = b.

(4.1)

59

The unique equilibrium point for the system is x∗ = 0. Consider d(x, x∗) =
∑b

i=1 x
2
k.

In this case,

g(x) = −
∫ ∞

0

b∑
k=1

x2
k(t, x)dt

where x(t, x) is the solution for the dynamical system defined above. By combining

the Poisson equation and the steady-state equation, we have

E[
b∑

k=1

X2
k(∞)] = E[∇g(X(∞)) · f(X(∞))−Gg(X(∞))]

From the definitions of fk and Rx,y, we have

fk(x) =
∑
y 6=x

Rx,y(yk − xk)

for k = 1, · · · , b. So

∇g(x) · f(x) =
b∑

k=1

∂g

∂xk
[
∑
y 6=x

Rx,y(yk − xk)]

=
∑
y 6=x

Rx,y

b∑
k=1

∂g

∂xk
(yk − xk)

=
∑
y 6=x

Rx,y∇g(x) · (y − x)

Therefore, we have the following equation

E[
b∑

k=1

X2
k(∞)] = E[−

∑
y 6=X(∞)

RX(∞),yΓ(X(∞), y)] (4.2)

where Γ(X(∞), y) = g(y)−g(X(∞))−∇g(X(∞)) ·(y−x). We just need to establish

a bound on Γ(X(∞), y).

Given an arbitrarily small ξ > 0, define

k̃ = (α + ξ) log2N.

and WLOG, we assume b ≥ k̃.

60

Lemma 9. According to the definition of k̃, for sufficiently large N , we have for any

k ≥ k̃

λ(s∗k + 1) ≤ λ(λ2k−1 + 1) ≤
√
λ.

Proof. For the equilibrium point finite buffer sized system, it satisfies the following

equations

λ[(s∗k−1)2 − (s∗k)
2]− (s∗k − s∗k+1) = 0, 1 ≤ k ≤ b− 1

λ[(s∗b−1)2 − (s∗b)
2]− s∗b = 0, k = b.

For any k that is 1 ≤ k ≤ b− 1, by adding equation (k) to (b), we have

λ[(s∗k−1)2 − (s∗b)
2]− s∗k = 0

Thus, we have

s∗k = λ[(s∗k−1)2 − (s∗b)
2] ≤ λ(s∗k−1)2.

For the case k = b, we consider the equation (b)

s∗b + λ(s∗b)
2 = λ(s∗b−1)2

For k = b, we also have inequality

s∗k ≤ λ(s∗k−1)2

So iteratively, given s∗0 = 1, for all 1 ≤ k ≤ b,

s∗k ≤ λ2k−1.

The first inequality follows as a result.

61

For the second inequality, note that

λ2k ≤ λ2k̃ = λN
α+ξ

= (1− γ

Nα
)N

α+ξ

,

so

log λ2k ≤ Nα+ξ log(1− γ

Nα
) ≤(a) −γN ξ = −Θ(N ξ),

where inequality (a) is a result of the Taylor expansion. Furthermore,

log(
√
λ− λ) = log

√
λ+ log(1−

√
λ) = −Θ(α logN).

Therefore, for sufficiently large N , we have

λ2k ≤
√
λ− λ,

and the lemma holds.

Now define a sequence of {wk} such that for some ε > 0

w0 = 0

w1 = 1

wk = 1 +
1

2

k∑
j=1

1

(2λ+ ε)j−1
, 2 ≤ k ≤ k̃

wk = wk̃ +
k − k̃

2(2λ+ ε)k̃
, k̃ < k ≤ b.

We choose a constant ε independent of N such that

min{0.5, 2
α+2ξ
α+ξ − 2λ} > ε > 2− 2λ.

Such an ε exists when λ > 0.75. We further define

δ0 =
1−
√
λ

6(2λ+ ε)k̃

62

Lemma 10. When N is sufficiently large, for any 1 ≤ k ≤ b, 1 ≤ wk ≤ 3. And

δ0 ≥
1

12N2α+2ξ

Proof. To prove the result, we note that for k ≤ k̃,

wk ≤ wk̃ ≤ 1 +
1

2

1

1− 1
2λ+ε

≤ 2

where the last inequality holds because 2λ+ ε > 2. For k > k̃,

wk ≤ wk̃ +
b

2(2λ+ ε)k̃
≤ 2 + 0.5 < 3,

where the second inequality holds because

(2λ+ ε)k̃ > 2k̃ = Nα+ξ

which is larger than b = O(logN) for sufficiently large N .

For the second inequality, we have

δ0 =
1−
√
λ

6(2λ+ ε)k̃

=
1− λ

6(1 +
√
λ)(2λ+ ε)k̃

≥ 1− λ
6(1 +

√
λ)(2

α+2ξ
α+ξ)k̃

=
γ

6(1 +
√
λ)NαNα+2ξ

≥ γ

12N2α+2ξ

In the following analysis, we verify the condition in lemma 2.2 in Ying (2017). We

define V (x) =
∑b

k=1wk|xk(t)|.

63

Lemma 11. (Proof of C1). For the dynamical system defined in (4.1), we have

V̇ (x) ≤ −δ0V (x)

which implies that

|x(t)| ≤ V (x(t)) ≤ 3|x(0)|e−δ0t

Proof. Note that V (x) is Lipschitz continuous function. We now consider regular

points such that d|xk(t)|
dt

exists for all k at time t. Define V̇ (x) =
∑b

k=1 Wk(t) such

that Wk(t) includes all the terms involving xk(t). The lemma is proved by showing

that

Wk(t) ≤ −δ0wk|xk(t)| (4.3)

When xk(t) > 0, we have

Wk(t) ≤ wk+1λ|xk|(xk + 2s∗k)− wkλ|xk|(xk + 2s∗k)− wk|xk|+ wk−1|xk|

The same inequality holds for xk(t) < 0. So (4.3) holds if

wk+1λ|xk|(xk + 2s∗k)− wkλ|xk|(xk + 2s∗k)− wk|xk|+ wk−1|xk| ≤ −δ0wk|xk|

in other words, if

wk+1 − wk ≤
(1− δ0)wk − wk−1

λ(xk + 2s∗k)
(4.4)

For 1 ≤ k ≤ k̃, we have

wk+1 − wk =
1

2(2λ+ ε)k

(1− δ0)wk − wk−1

λ(xk + 2s∗k)
≥ wk − wk−1 − δ0wk

λ(1 + λ)
≥

1
2(2λ+ε)k−1 − δ0wk

2λ

64

So the inequality (4.4) holds if

2λ ≤ 2λ+ ε− 2δ0wk(2λ+ ε)k

which can be established by proving

2δ0wb(2λ+ ε)k̃ ≤ ε.

It can be verified that the inequality holds according to the definition of δ0 and the

fact that ε > 2− 2λ ≥ 1−
√
λ.

When b ≥ k ≥ k̃ + 1, according to lemma 9,

λ(xk + 2s∗k) ≤ λ(1 + s∗k) ≤
√
λ.

Therefore, we have

wk+1 − wk =
1

2(2λ+ ε)k̃

(1− δ0)wk − wk−1

λ(xk + 2s∗k)
≥ wk − wk−1 − δ0wk√

λ
=

1

2(2λ+ε)k̃
− δ0wk
√
λ

.

So inequality (4.4) holds if

√
λ ≤ 1− 2δ0wk(2λ+ ε)k̃,

in other words, if

wk ≤
1−
√
λ

2δ0(2λ+ ε)k̃
,

which holds because wk ≤ 3 according to lemma 10 and 1−
√
λ

2δ0(2λ+ε)k̃
= 3 according to

the definition of δ0.

From the discussion above, we conclude that

V̇ (t) ≤ −
b∑

k=1

δ0wk|xk(t)| = −δ0V (t)

.

65

We further have the following first-order system for system (4.1):

ẋ
(1)
k = gk(x

(1)) = 2λ(xk−1 + s∗k−1)x
(1)
k−1 − 2λ(xk + s∗k)x

(1)
k − x

(1)
k + x

(1)
k+1, (4.5)

where 0 < k ≤ b and we define x
(1)
0 = x

(1)
b+1 ≡ 0.

Lemma 12. (Proof of C2). Under the dynamical system defined by (4.5), we have

|x(1)(t)| ≤ |x(1)(0)| = 1.

Proof. First recall that sk(t) = xk(t) + s∗k(t) ≥ 0 for any t ≥ 0 and k. Define

V (t) =
b∑

k=1

|x(1)
k (t)|.

Note that

d|x(1)(t)|
dt

≤ 2λ(xk−1 + s∗k−1)|x(1)
k−1| − 2λ(xk + s∗k)|x

(1)
k | − |x

(1)
k |+ |x

(1)
k+1|

So

V̇ (t) ≤ −2λ(xb + s∗b)|x
(1)
b | − |x

(1)
1 | ≤ 0

Also

|x(1)(0)| = |N(z − y)| = |N1k| = 1

where 1k is the b dimensional vector with kth element being 1
N

the rest is 0. Because

we are only interested in transition where Rxy 6= 0, from Stein’s equation (4.2). Hence

the lemma holds.

Define

δ̃ =
ε

6(2λ+ ε)k̃

66

Lemma 13. For sufficiently large N , we have

δ̃ ≥ γ

3N2α+2ξ

Proof.

log δ̃ = log ε− log 6− k̃ log(2λ+ ε)

≥ log(2− 2λ)− (α + ξ) logN log(2λ+ ε)− log 6

≥ log γ − α logN − (α + ξ) logN · α + 2ξ

α + ξ
− log 3

= −(2α + 2ξ) logN + log
γ

3
.

So, δ̃ ≥ γ
3N2α+2ξ .

Lemma 14. (Proof of C3). For sufficiently large N and for all x, we have

|x(1)| ≤ V (x(1)) ≤ 3|x(1)|

V̇ (x(1)(t)) ≤ −δ̃V (x(1)(t)), if |x(t)| ≤ 1

8

Proof. Define the Lyapunov function

V (x(1)) =
b∑

k=1

wk|x(1)
k |

Following the proof of lemma 11, we obtain that

V̇ (x(1)) ≤
b∑

k=1

−[2wkλ(xk + s∗k) + wk − 2λwk+1(xk + s∗k)− wk−1]|x(1)
k |

So the lemma holds by proving

−[2wkλ(xk + s∗k) + wk − 2λwk+1(xk + s∗k)− wk−1] ≤ −δ̃wk

i.e. by proving

wk+1 − wk ≤
wk − wk−1 − δ̃wk

2λ(xk + s∗k)
(4.6)

67

For 1 ≤ k ≤ k̃, we have

wk+1 − wk =
1

2(2λ+ ε)k

wk − wk−1 − δ̃wk
2λ(xk + s∗k)

≥
1

2(2λ+ε)k−1 − δ̃wk
2λ

so inequality (4.6) holds if

2λ ≤ 2λ+ ε− δ̃2wk(2λ+ ε)k̃,

which holds according to the definition of δ̃ and the fact 1 ≤ wk ≤ 3.

When b ≥ k ≥ k̃ + 1, according to the definition of k̃,

s∗k ≤ s∗
k̃
≤ λN

α+ξ−1.

If λ ≥ 64
81

, then

s∗k ≤
1√
λ
− 1 ≤ 1

8

according to lemma 9; otherwise, we can find a sufficiently large N such that

s∗k ≤ λN
α+ξ−1 ≤ 1

8
.

Now given |xk| ≤ |x| ≤ 1
8
, we have

wk+1 − wk =
1

2(2λ+ ε)k̃

(1− δ̃)wk − wk−1

2λ(|xk|+ s∗k)
≥ wk − wk−1 − δ̃wk

λ
2

=

1

2(2λ+ε)k̃
− δ̃wk

λ
2

So inequality (4.6) holds if

λ

2
≤ 1− δ̃2wk(2λ+ ε)k̃.

Note that according to the definition of δ̃,

δ̃2wk(2λ+ ε)k̃ ≤ 6δ̃(2λ+ ε)k̃ = ε.

68

So the inequality holds because ε < 0.5 from its definition. From the above, we

conclude V̇ (t) ≤ −δ̃V (t) when |x(t)| ≤ 1
8
.

Lemma 15. Given |e(t)| ≤ 1
N

, we have

d|e(t)|
dt

≤ 4(λ+ 4)
1

N2

Proof. We first have for 1 < k < b,

ėk(t) =fk

(
x(t) +

1

N
x(1)(t) + e(t)

)
− fk(x(t))− 1

N

b∑
j=1

∂fk
∂xj

(x(t))x
(1)
j (t)

=λ

(
(xk−1(t) +

1

N
x

(1)
k−1(t) + ek−1(t))2 + 2s∗k−1(xk−1(t) +

1

N
x

(1)
k−1(t) + ek−1(t))

)
− λ

(
(xk(t) +

1

N
x

(1)
k (t) + ek(t))

2 + 2s∗k(xk(t) +
1

N
x

(1)
k (t) + ek(t))

)
−
(
xk(t) +

1

N
x(1)(t) + ek(t)

)
+

(
xk+1(t) +

1

N
x

(1)
k+1(t) + ek+1(t)

)
− λ(x2

k−1(t) + 2s∗k−1xk−1(t)) + λ(x2
k(t) + 2s∗kxk(t)) + (xk(t)− xk+1(t))

− 2

N
λ(xk−1 + s∗k−1)x

(1)
k−1 +

2

N
λ(xk + s∗k)x

(1)
k +

1

N
x

(1)
k −

1

N
x

(1)
k+1

=λ

(
e2
k−1 + 2(xk−1 + s∗k−1 +

1

N
x

(1)
k−1)ek−1 − e2

k − 2(xk + s∗k +
1

N
x

(1)
k)ek

)
− (ek − ek+1) + λ

1

N2

(
(x

(1)
k−1)2 − (x

(1)
k)2

)
=2λ(xk−1 + s∗k−1)ek−1 − 2λ(xk + s∗k)ek − (ek − ek+1)

+ λ

(
e2
k−1 + 2

1

N
x

(1)
k−1ek−1 − e2

k − 2
1

N
x

(1)
k ek

)
+ λ

1

N2

(
(x

(1)
k−1)2 − (x

(1)
k)2

)
=gk(e) + λ

(
e2
k−1 + 2

1

N
x

(1)
k−1ek−1 − e2

k − 2
1

N
x

(1)
k ek

)
+ λ

1

N2

(
(x

(1)
k−1)2 − (x

(1)
k)2

)
where the last equality holds according to the definition of gk(·). The same equation

holds for k = 1 and k = b. From the equality from above and following the proof

lemma 12, we can further obtain

d|e(t)|
dt

≤
b∑

k=1

2λ(e2
k + 2

1

N
|x(1)
k ||ek|) + 2λ

1

N2
(x

(1)
k)2 ≤ 2λ|e(t)|2 +

4

N
|e(t)|+ 2λ

N2

(4.7)

69

Given |e(t)| ≤ 1
N

, we conclude

d|e(t)|
dt

≤ (4λ+ 4)
1

N2
(4.8)

Lemma 16. For Lyapunov function V (e(t)) =
∑b

k=1wk|ek(t)|, we have

V̇ (e(t)) ≤ δ̃V (e(t)) +
6λ

N2
(|x(1)(t)|)2

Proof. Recall that

ėk(t) =λ

(
2(xk−1 + s∗k−1 +

ek−1

2
+

1

N
x

(1)
k−1)ek−1 − 2(xk + s∗k +

ek
2

+
1

N
x

(1)
k)ek

)
− (ek − ek+1) + λ

1

N2

(
(x

(1)
k−1)2 − (x

(1)
k)2

)
Again consider

V̇ (e(t)) =
b∑

k=1

Wk(t) +W (t)

where Wk(t) includes all the terms involving ek(t) and W (t) includes all the remaining

terms.

Wk(t) ≤wk+1[2λ(xk + s∗k)|ek|+ λ|ek|2 +
2λ

N
|x(1)
k | · |ek|]

− wk[2λ(xk + s∗k)|ek|+ |ek| − λ|ek|2 −
2λ

N
|x(1)
k | · |ek|] + wk−1|ek| ≤ −δ̃wk|ek|

i.e., just need to prove that

wk+1[2λ(xk + s∗k) + λ|ek|+
2λ

N
|x(1)
k |]− wk[2λ(xk + s∗k) + 1− λ|ek| −

2λ

N
|x(1)|] + wk−1

=wk+12λ(xk + s∗k)− wk2λ(xk + s∗k) + wk−1 + λ|ek|(wk−1 + wk) +
2λ

N
|x(1)
k |(wk−1 + wk)

− wk ≤ −δ̃wk

Note that |ek(t)| and 1
N
|x(1)
k | can be made arbitrarily small by choosing sufficiently

large N . Thus, for a sufficiently large N , following analysis of lemma 5, we have

b∑
k=1

Wk(t) ≤ −δ̃V (t) (4.9)

70

Since 1 ≤ wk ≤ 3 for all k ≥ 1,

V̇ (e(t)) ≤ −δ̃V (e(t)) + max
k
wk

2λ

N2
||x(1)||2 ≤ −δ̃V (e(t)) +

6λ

N2
|x(1)|2

The analysis above verifies conditions C1-C5 in Lemma 2.2 Ying (2017) with

c1 = cl1 = cle = 1, cu1 = cue = 3, d1 = de = 1
8
, δ1 = δe = δ̃ and ce = 4λ + 4.

Furthermore, |x(1)(0)| = |N(z − y)| = 1 =: bu, and t̃d,z = 1
δ0

max{0, ln 24|x(0)|}

according to lemma 11. Parameter α = 2 in condition 5, according to lemma 8.

Therefore, both C6 and C7 hold. Hence, we conclude that there exists a constant κ

such that when N is sufficiently large, the following two inequalities hold∫ ∞
0

|x(1)(t)|2dt ≤ κ(t̃d,z +
1

2δ1

)

= κ(
max{0, ln 24|x(0)|}

δ0

+
1

2δ1

)

≤ κ(
12

γ
N2α+2ξ max{0, ln 24|x(0)|}+

6

γ
N2α+2ξ)∫ ∞

0

|e(t)|dt ≤ κ(
t̃2d,z
N2

+
t̃d,z
δe

1

N2
+

1

δ1δe

1

N2
)

≤ κ(
max2{0, ln 24|x(0)|}

δ2
0N

2
+

max{0, ln 24|x(0)|}
δ0δe

1

N2
+

1

δ1δe

1

N2
)

≤ κ(
144

γ2

max2{0, ln 24|x(0)|}
N2−4α−4ξ

+
36

γ2

max{0, ln 24|x(0)|}
N2−4α−4ξ

+
36

γ2

1

N2−4α−4ξ
)

(4.10)

Therefore, we will have bound on 2-norm as following

|Γ(z, y)| ≤
∫ ∞

0

(3xmax|e(t)|+
1

N2
|x(1)|2)dt

≤ 3κ

γ2
(144

max2{0, ln 24|x(0)|}
N2−4α−4ξ

+ 36
max{0, ln 24|x(0)|}

N2−4α−4ξ
+ 36

1

N2−4α−4ξ
)

+
κ

γ
(12N2α+2ξ max{0, ln 24|x(0)|}+ 6N2α+2ξ)

1

N2

≤ 3κ

γ2
(144 max 2{0, ln 24|x(0)|}+ 36 max{0, ln 24|x(0)|}+ 36)

1

N2−4α−4ξ

71

+
κ

γ
(12 max{0, ln 24|x(0)|}+ 6)

1

N2−2α−2ξ

≤ max 2{0, ln 24|x(0)|} 1

N2−4α−5ξ
+

1

N2−4α−5ξ
(4.11)

where the last inequality holds for sufficiently large N . Therefore, by equation (4.2),

we have

E[
b∑

k=1

X2
k(∞)] ≤ E[(max 2{0, ln 24|x(0)|} 1

N2−4α−5ξ
+

1

N2−4α−5ξ
)(
∑

y 6=X(∞)

RX(∞),y)]

By choosing the initial condition to be the stationary distribution, and rewriting the

above equation, we have

E[
b∑

k=1

X2
k(∞)] ≤ E[(max 2{0, ln 24|X(∞)|} 1

N2−4α−5ξ
+

1

N2−4α−5ξ
)(
∑

y 6=X(∞)

RX(∞),y)]

Note that

√
b||X(∞)|| =

√
b

√√√√ b∑
k=1

X2
k(∞) ≥

b∑
k=1

|Xk(∞)| = |X(∞)|

which implies that

max 2{0, ln 24|X(∞)|} ≤ (24|X(∞)|)2 ≤ 576b||X(∞)||2

Recall that b = O(logN) and
∑

y 6=X(∞)RX(∞),y ≤ 2N , then Therefore, in the end,

we have

E[
b∑

k=1

X2
k(∞)] ≤ 1152b

N1−4α−5ξ
E[

b∑
k=1

X2
k(∞)] +

2

N1−4α−5ξ

≤ 1

N1−4α−6ξ
E[

b∑
k=1

X2
k(∞)] +

1

N1−4α−6ξ

the second inequality holds for a sufficiently large N . By moving the first term to the

left-hand-side and then dividing both sides by 1− 1
N1−4α−6ξ , we get

E[
b∑

k=1

X2
k(∞)] ≤ 1

1− 1
N1−4α−6ξ

1

N1−4α−6ξ

72

≤ 1

N1−4α−7ξ
(4.12)

Recall that 0 < α < 0.25, so 1
N1−4α−6ξ can be made arbitrarily small when choosing

sufficiently large N . So when N is sufficiently large and by choosing ξ
′
= 7ξ.

Lemma 17. For t ≥ 0 and sufficiently large N , we have following bound on term

e(t)

|et| ≤
1

N2−2α−4ξ
(4.13)

Proof. According to C4 and C6, and the fact e(0) = 0, we have that for t ≤ t̃d,z,

|e(t)| ≤ ce
N2

t

≤ ce
N2

td,z

≤ ce
N2

1

δ0

max{0, log 24|x(0)|}

≤ ce
N2
· 12N2α+2ξ · 24|x(0)|

≤ 288ce
N2−2α−2ξ

b

≤ 1

N2−2α−3ξ

The last inequality is because b = O(logN).

For t ≥ t̃d,z, from C5, based on comparison principle, we obtain

|et| ≤
1

cle
Ve(e(t)) ≤

1

cle
Ve(e(t))

≤ Ve(e(t̃d,z))e
−δe(t−t̃d,z) +

c

N2
e−δe(t−t̃d,z) 1

αδ1 − δe
(1− exp(−(αδ1 − δe)(t− t̃d,z)))

where t̃d,z = 1
δ0

max{0, log 24|x(0)|}, δ1 = δe = δ̃, α = 2(in lemma 2.2) and c =

cer(
cu1c1
cl1

)α, so

|et| ≤ Ve(e(t̃d,z)) +
c

N2

1

δ̃

73

≤ cue|e(t̃d,z)|+
c

N2

1

δ̃

≤ cue
1

N2−2α−3ξ
+

c

N2
3N2α+2ξ

≤ 1

N2−2α−4ξ
(4.14)

where the last inequality holds for sufficiently large N .

We note that with the assumption of b = O(logN), we can actually achieve a

larger range of α ∈ (0, 0.25) compared to that of Ying (2017), which is α ∈ (0, 0.2) in

heavy traffic.

74

Chapter 5

HEAVY TRAFFIC CONVERGENCE RATE COEFFICIENT

In this chapter, we characterize the convergence dominant term in the heavy traffic

case. Similar to the procedures in chapter 3, we first show the probability of being far

from the solution of the mean-field model is small and use a linear mean-field model

to characterize for the state space close to the solution of mean-field model.

Since the arrival rate is a function of N , the solution of mean-field model is also an

N dependent value. Thus, we need a more sophisticated analysis of the tridiagonal

matrix for the linear meal-field model in order to characterize the dominant term.

5.1 Higher Moment Bounds

Previously, for any 0 < α < 0.25 and a sufficiently large N , we have

E[||S − s∗||2] ≤ 1

N1−4α−7ξ

Also

||e(t)|| ≤ |e(t)| ≤ 1

N2−2α−4ξ

and∫ ∞
0

|e(t)|dt ≤ κ

γ2
(144

max2{0, ln 24|x(0)|}
N2−4α−4ξ

+ 36
max{0, ln 24|x(0)|}

N2−4α−4ξ
+ 36

1

N2−4α−4ξ
)

≤ 1

N2−4α−5ξ

Then, we consider the higher moment E[||S − s∗||2r] for r ∈ N

E[||S − s∗||2r] ≤ 1

N r(1−4α−ξ′)
(5.1)

75

where ξ
′
= 7ξ.

We continue to analyze the term in equation (3.3). Similar to light traffic case,

by raising to the rth order, we have

[
b∑
i=1

(si(t, s
′)− s∗i)2]r

=[
b∑
i=1

(si(t, x)− s∗i)2 +
b∑
i=1

e2
i (t) +

b∑
i=1

[∇si(t, s) · (s′ − s)]2 + 2
b∑
i=1

ei(t)(si(t, s)− s∗i)

+ 2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s) + 2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r

=
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

ei(t)(si(t, s)− s∗i)]r4

[2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s)]r5 [2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r6

We have that

|ei(t)| ≤ |e(t)| ≤
1

N2−2α−4ξ

and the state transition condition

||s− s′|| = 1

N

Also

s(1)(t) = ∇s(t, s) ·N(s′ − s)

So, we have

∇s(t, s) · (s′ − s) =
1

N
s(1)(t)

therefore, |∇s(t, s) · (s′ − s)| = 1
N
|s(1)(t)| ≤ 1

N
|s(1)(0)| = 1

N
, by lemma 4 in Chaper 4.

Also

||∇s(t, s) · (s′ − s)||2 =
b∑
i=1

[∇si(t, s) · (s′ − s)]2

76

=
b∑
i=1

| 1
N
s

(1)
i (t)|2

=
1

N2

b∑
i=1

|s(1)
i (t)|2

≤ 1

N2

b∑
i=1

|s(1)
i (t)|

≤ 1

N2
|s(1)(t)| ≤ 1

N2
|s(1)(0)| = 1

N2

The first inequality is because |s(1)(t)| ≤ |s(1)(0)| = 1. So, for any i ∈ {1, · · · , b} ,we

have

|∇si(t, s) · (s′ − s)| ≤ ||∇s(t, s) · (s′ − s)|| ≤
1

N

[
b∑
i=1

(si(t, s
′)− s∗i)2]r

=
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

ei(t)(si(t, s)− s∗i)]r4

[2
b∑
i=1

(si(t, s)− s∗i)∇si(t, s) · (s′ − s)]r5 [2
b∑
i=1

ei(t)∇si(t, s) · (s′ − s)]r6

≤
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

|ei(t)(si(t, s)− s∗i)|]r4

[2
b∑
i=1

|(si(t, s)− s∗i)∇si(t, s) · (s′ − s)|]r5 [2
b∑
i=1

|ei(t)∇si(t, s) · (s′ − s)|]r6

≤
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1 [
b∑
i=1

e2
i (t)]

r2 [
b∑
i=1

[∇si(t, s) · (s′ − s)]2]r3 [2
b∑
i=1

|ei(t)| · |si(t, s)− s∗i |]r4

77

[2
b∑
i=1

|si(t, s)− s∗i | · |∇si(t, s) · (s′ − s)|]r5 [2
b∑
i=1

|ei(t)| · |∇si(t, s) · (s′ − s)|]r6

≤
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

[
b∑
i=1

(si(t, s)− s∗i)2]r1O(
1

N2(2−2α−4ξ)r2
)O(

1

N2r3
)O(

1

N (2−2α−4ξ)r4
)[

b∑
i=1

|si(t, s)− s∗i |]r4

O(
1

N r5
)[

b∑
i=1

|si(t, s)− s∗i |]r5O(
1

N (3−2α−4ξ)r6
)

≤
∑

∑6
k=1 rk=r,rk≥0

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

O(
1

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)[

b∑
i=1

(si(t, s)− s∗i)2]r1

[
b∑
i=1

|si(t, s)− s∗i |]r4+r5 (5.2)

When r1 = r and ri = 0 for i = 2, · · · , 6, the summand is [
∑b

i=1(si(t, s)− s∗i)2]r; and

when r1 = r−1, r5 = 1 and ri = 0 for i = 2, 3, 4, 6, the summand is 2r[
∑b

i=1(si(t, s)−

s∗i)
2]r−1

∑b
i=1(si(t, s) − s∗i)∇si(t, s) · (s′ − s). Let Σ be the collection of combination

of all {ri}i=1,··· ,6 that excludes above two cases, i.e.

Σ = {ri, i = 1, · · · , 6|
6∑
i=1

= r}

\ {{r1 = r, ri = 0, for i = 2, · · · , 6}, {r1 = r − 1, r5 = 1, ri = 0, for i = 2, 3, 4, 6}}.

Then, substitute into the following equation

− (g(s′)− g(s)−∇g(s) · (s′ − s))

=

∫ ∞
0

[
b∑
i=1

(si(t, s
′)− s∗i)2]rdt−

∫ ∞
0

[
b∑
i=1

(si(t, s)− s∗i)2]rdt

− 2r(s′ − s) ·
∫ ∞

0

[
b∑
i=1

(si(t, s)− s∗i)2]r−1

b∑
i=1

(si(t, s)− s∗i)∇si(t, s)dt

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

78

O(
1

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)

∫ ∞
0

[
b∑
i=1

(si(t, s)− s∗i)2]r1

[
b∑
i=1

|si(t, s)− s∗i |]r4+r5dt

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

1

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)

∫ ∞
0

(||s− s∗||κe−αt)2r1

[bκ||s− s∗||e−αt]r4+r5dt

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

1

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)br4+r5k2r1+r4+r5

1

α(2r1 + r4 + r5)

||s− s∗||2r1+r4+r5

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6
)||s− s∗||2r1+r4+r5

Therefore,

E[||S − s∗||2r]

=E[−
∑
s′ 6=S

qS,s′N(g(s′)− g(S)−∇g(S) · (s′ − S))]

≤E[
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6−1
)||S − s∗||2r1+r4+r5

∑
s′ 6=s

qs,s′]

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6−1
)E[||S − s∗||2(r1+

r4+r5
2

)]

≤
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)

79

O(
br4+r5

N2(2−2α−4ξ)r2+2r3+(2−2α−4ξ)r4+r5+(3−2α−4ξ)r6−1
)O(

1

N (r1+
r4+r5

2
)(1−4α−ξ′)

)

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N (1−4α−ξ′)r1+2(2−2α−4ξ)r2+2r3+(2.5−4α−4ξ−0.5ξ′)r4+(1.5−2α−0.5ξ′)r5+(3−2α−4ξ)r6−1
)

=
∑

Σ

(
r

r1

)(
r − r1

r2

)(
r − r1 − r2

r3

)(
r − r1 − r2 − r3

r4

)(
r − r1 − r2 − r3 − r4

r5

)
O(

br4+r5

N (1−4α−ξ′)r+(3−8ξ+ξ′)r2+(1+4α+ξ′)r3+(1.5−4ξ+0.5ξ′)r4+(0.5+2α+0.5ξ′)r5+(2+2α−4ξ−ξ′)r6−1
)

≤O(
log2N

N (1−4α−ξ′)r+4α+ξ′
) ≤ 1

N (1−4α−ξ′)r

where in the first inequality we used the fact that
∑

s′ 6=s qs,s′ ≤ 2; the second in-

equality, we assumed that E[||S − s∗||2(r−1)] ≤ O(1

N(1−4α−ξ′)(r−1)
) and by Lyapunov

inequality we have E[||S − s∗||2(r1+
r4+r5

2
)] ≤ (E[||S − s∗||2(r−1)])

2(r1+
r4+r5

2)

r−1 ; the second

from the last inequality is because order-wise it’s the smallest when r1 = r−2, r5 = 2

and ri = 0 for i = 2, 3, 4, 6. And the last inequality holds for sufficiently large N .

When r1 = r4 = r5 = 0, we have similar analysis based on the fact that∫∞
0
|e(t)|dt = O(1

N2−4α−5ξ).

Therefore, Eq.(25) holds for all r ∈ N, by mathematical induction.

5.2 State Space Collapse

Let ε be a positive number. Applying Markov inequality we have

P{||S − s∗||2r ≥ ε} ≤ E[||S − s∗||2r]
ε

=
1

ε

1

N r(1−4α−ξ′)

Let ε = 1
Nβ , where β > 0. Then, the above inequality will become

P{||S − s∗||2r ≥ 1

Nβ
} ≤ 1

N r(1−4α−ξ′)−β
(5.3)

80

5.3 Linear Mean-Field Model

Define a set of states to be B = {s | ||s−s∗||2r ≤ 1
Nε}, which is close to equilibrium

point. Let d(s, s∗) = ||s− s∗||2 as the distance function. We consider a simple linear

system

ṡ = l(s) = J(s∗)(s− s∗), (5.4)

where J(s∗) is the Jacobian matrix of f(s) at the equilibrium point s∗. In the heavy

traffic, the entries of J(s∗) is generally also a function of N as is s∗ itself.

The Jacobian matrix at a point s, is following

J(s) =



−2λs1 − 1 1 0

2λs1
.

. 1

0 2λsb−1 −2λsb − 1


We first introduce a lemma that matrix J(s∗) is invertible, i.e. J(s∗)−1 exists.

Lemma 18 (Invertibility). For any s ∈ S, the Jacobian matrix J(s) is invertible.

Proof. Since it’s a tridiagonal matrix, we can write down the determinant in a recur-

sive form

Pi = −(2λsi + 1)Pi−1 − 2λsi−1Pi−2

where

Pi =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2λs1 − 1 1 0

2λs1
.

. 1

0 2λsi−1 −2λsi − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
81

Furthermore, we can verify that in fact, Pi can be written in the following form

Pi = (−1)i − 2λsiPi−1 (5.5)

with P1 = −(2λs1 + 1). We can conclude 2 things from equation (5.5), for any s ∈ S,

• the sign of Pi alternates: when i is odd, Pi < 0; when i is even, Pi > 0.

• the absolute value of Pi is no less than 1, i.e. |Pi| ≥ 1

Because the determinant is nonzero, J(s) is invertible.

Consider a function g : S → S such that it satisfies the following equation

Lg(s)=̇
dg(s)

dt
= ∇g(s) · l(s) = ||s− s∗||2. (5.6)

According to the definition of the linear mean-field model in (5.4), we have

∇g(s) · J(s∗)(s− s∗) = ||s− s∗||2. (5.7)

Lemma 19 (Solution of Poisson Equation). The solution of the Poisson equation

(5.7) is

∇g(s) = [JT (s∗)]−1(s− s∗) (5.8)

and furthermore

∇2g(s) = [JT (s∗)]−1

∇3g(s) = 0

�

Proof. According to Poisson equation (5.7), we have

∇g(s)TJ(s∗)(s− s∗) = (s− s∗)T (s− s∗).

82

It implies

[∇g(s)TJ(s∗)− (s− s∗)T](s− s∗) = 0

holds for all s in the neighborhood of s∗. If we set

∇g(s)TJ(s∗)− (s− s∗)T = 0

then, we can solve that

∇g(s) = [JT (s∗)]−1(s− s∗)

and the higher derivatives as in the lemma.

5.4 Upper Bound on Hessian Matrix ∇2g(s)

In the following two sections, we will characterize both Hessian matrix ∇2g(s)

and function f̃(s) for states s that are close to equilibrium point s∗.

Lemma 20 (Upper Bound on Elements of Matrix J(s∗)). For all i, j = 1, · · · , b and

sufficiently large N , we have

|[J(s∗)]−1
ij | ≤

12

γ
N2α+2ξ

Proof. First, we show that for any Φ ∈ Rb \ {0}, we have

||J(s∗)Φ||
||Φ||

≥ δ0

where δ0 is the absolute value of the negative drift of the traditional mean-field model

and δ0 = 12
γ
N2α+2ξ. For details, please refer to the technical report.

Since J(s∗) is a tridiagonal matrix that satisfies J(s∗)i,i+1J(s∗)i+1,i > 0 for all i,

we know that J(s∗) can be diagonalized and the eigenvalues are all real. Also, we

know eigenvalues are negative from the fact J(s∗) is a Hurwitz matrix.

83

Define following Lyapunov functions

L2(s) =

√√√√ b∑
k=1

(sk − s∗k)2

Lw(s) =
b∑

k=1

wk|sk − s∗k|

where wk ≥ 1, k = 1, · · · , b are defined in technical report. We have following in-

equalities

L2(s) ≤ Lw(s)

And we have the immediate result from the exponential convergence, for x(t) of linear

dynamical system ṡ(t) = J(s∗)(s(t)− s∗), that

L2(s(t)) =

√√√√ b∑
k=1

(sk(t)− s∗k)2 ≤ κ exp(−δ0t)

for some κ > 0 and t ≥ 0. The proof for exponential convergence of the linear system

to the equilibrium point is very similar to that of traditional mean-field system.

Since J(s∗) is diagonalizable, then any vector in an b-dimensional space can be

represented by a linear combination of the orthonormal eigenvectors rk, k = 1, · · · , b

of the matrix J(s∗). Suppose the eigenvalues are µ1 ≤ µ2 ≤ · · · ≤ µb < 0.

s0 − s∗ = x0 =
b∑
i=1

αiri

for some αi ∈ R and i = 1, · · · , b. Therefore, the general solution, for s(t) of linear

dynamical system ṡ(t) = J(s∗)(s(t) − s∗), is a linear combination of the individual

solutions for the eigenvectors

s(t)− s∗ =
b∑
i=1

αiri exp(µit).

84

So

L2(s(t)) = ||
b∑
i=1

αiri exp(µit)|| ≤ κ exp(−δ0t)

Since this is true for all x0 ∈ Rb, we can choose an initial condition such that αi = 0

for i = 1, · · · , b− 1 such that for all t ≥ 0

L2(s(t)) = ||αb exp(µbt)|| ≤ κ exp(−δ0t)

Thus we conclude

µb ≤ −δ0.

As a result, for any Φ ∈ Rb \ {0}, we have,for some βi ∈ R and i = 1, · · · , b,

Φ = β1r1 + β2r2 + · · ·+ βbrb

J(s∗)Φ = β1J(s∗)r1 + β2J(s∗)r2 + · · ·+ βbJ(s∗)rb

= β1µ1r1 + β2µ2r2 + · · ·+ βbµbrb

so

||J(s∗)Φ||
||Φ||

=

√∑b
i=1 β

2
i µ

2
i√∑b

i=1 β
2
i

≥

√
µ2
b

∑b
i=1 β

2
i√∑b

i=1 β
2
i

= |µb| ≥ δ0

Based on the paper of Robinson and Wathen Robinson and Wathen (1992), let

x = y = 0 for both diagonal element Eq.(4.5) and non-diagonal elements Eq.(4.7).

We will have upper bound for any i, j = 1, · · · , b

|[J(s∗)]−1
ij | ≤

1

δ0

≤ 12

γ
N2α+2ξ

85

5.5 Lower Bound on Hessian Matrix ∇2g(s)

Lemma 21 (Lower Bounds on Diagonal Elements of Matrix J−1(s∗)). For tridiagonal

matrix J−1(s∗), we have that

|J−1
11 (s∗)| ≥ 1

3
(5.9)

and for all i = 1, · · · , b, we have J−1
ii (s∗) < 0.

Proof. Given an n× n tridiagonal matrix Gn with entries denoted as following

Gn =



x1 y1 0

z1 x2
. . .

. yn−1

0 zn−1 xn


.

According to the paper of Kılıç (2008), define a backward continued fraction Cn by

the entries of Gn as follows:

Cn = [x1 +
−y1z1

x2+

−y2z2

x3+
· · · −yn−1zn−1

xn
]

= xn +
−yn−1zn−1

xn−1 + −yn−2zn−2

...
x2+

−y1z1
x0

Let the sequence {Pn} be for 1 ≤ k ≤ n− 1

Pk+1 = xk+1Pk − ykzkPk−1

where P0 = 1, P1 = x1. From the proof of Lemma , we know the sequence is also the

iterative equation to calculate the determinant of J(s∗). We introduce the following

theorems from Kılıç (2008) to apply to our case.

Theorem 6. Let the n×n tridiagonal matrix Gn have the form above. Let G−1
n = [wij]

denote the inverse of Gn. Then

wii =
1

Ci
+

n∑
k=i+1

(
1

Ck

k−1∏
t=i

ytzt
(Ct)2

)

86

Theorem 7. Let the matrix Gn be as above. Then for n ≥ 1

detGn = Pn

Theorem 8. Given a general backward continued function A = [a0 + b1
a1+

b2
a2+
· · · bn

an
].

If 0 ≤ k ≤ n and Ck is the kth backward convergent to A, that is Ck = [a0 +

b1
a1+

b2
a2+
· · · bk

ak
], then Ck = Pk

Pk−1
.

Thus some of the convergents of Cn are

C1 = [x1] =
P1

P0

= x1,

C2 = [x1 +
−y1z1

x2

] =
P2

P1

=
x1x2 − y1z1

x1

,

So in our case, we have that for i = 1, · · · , b− 1

yi = 1

zi = 2λs∗i

and for i = 1, · · · , b

xi = −2λs∗i − 1

Thus, we have

C1 = x1 = −2λs∗1 − 1,

C2 =
x1x2 − y1z1

x1

= −2λs∗2 − 1 +
2λs∗1

2λs∗1 + 1
= −2λs∗2 −

1

2λs∗1 + 1
,

Note that the sequence {Pn} is the n × n size of Jacobian matrix’s determinant,

and we know that the sign of Pn alternates, thus Ck = Pk
Pk−1

< 0 for all k = 1, · · · , n.

Furthermore, from theorem 4 and 6, we know that J−1(s∗)ii < 0 for all i = 1, · · · , b.

Therefore, we have

J−1(s∗)11 =
1

C1

+
n∑
k=2

(
1

Ck

k−1∏
t=1

2λs∗t
(Ct)2

) < 0

87

and

|J−1(s∗)11| ≥
1

|C1|
≥ 1

3

the last inequality is because 0 ≤ s∗1 ≤ 1.

Therefore, J−1(s∗)11 ≥ 1
3
.

5.6 Stein’s Method

We have the generator difference as following

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] = E[Lg(S)−Gg(S)

∣∣||S − s∗||2r ≤ 1

N ε
]

We will expand the terms in generator equation and analyze the terms one by one.

5.6.1 Generator for the Stochastic System

Lemma 22. The generator of function g(s) is following

Gg(s) = ∇g(s) · f(s) +
1

N

b∑
i=1

∇2g(s)iif̃i(s) (5.10)

where ∇2g(s)ii is the i-th diagonal element of the Hessian matrix ∇2g(s) and f̃i(s) =

1
2
[λ(s2

i−1 − s2
i) + (si − si+1)].

Proof. Take a closer look at the generator by Taylor expansion around a state s

Gg(s)

=
b∑
i=1

λN(s2
i−1 − s2

i)[g(s+ ei)− g(s)] +N(si − si+1)[g(s− ei)− g(s)]

=
b∑
i=1

λN(s2
i−1 − s2

i)[∇g(s) · ei +
1

2
eTi ∇2g(s)ei]

+N(si − si+1)[∇g(s) · (−ei) +
1

2
eTi ∇2g(s)ei]

88

=
b∑
i=1

∇g(s) · [λ(s2
i−1 − s2

i)− (si − si+1)]Nei

+
1

2
NeTi ∇2g(s)ei[λ(s2

i−1 − s2
i) + (si − si+1)]

= ∇g(s) · f(s) +
1

N

b∑
i=1

∇2g(s)iif̃i(s)

Note that the second equality is because ∇3g(s) = 0 from Lemma 19.

5.6.2 Function f̃(s)

Since when s is close to equilibrium point s∗, define xi = si − s∗i , we can further

make a Taylor expansion at the equilibrium point s∗ as following

f̃i(s) =
1

2
[λ(s2

i−1 − s2
i) + (si − si+1)]

=
λ

2
[(s∗i−1 + xi−1)2 − (s∗i + xi)

2] +
1

2
(s∗i + xi − s∗i+1 − xi+1)

=
λ

2
[(s∗i−1)2 + 2xi−1s

∗
i−1 + x2

i−1 − (s∗i)
2 − 2xis

∗
i − x2

i] +
1

2
(s∗i + xi − s∗i+1 − xi+1)

=
λ

2
[(s∗i−1)2 − (s∗i)

2] +
1

2
(s∗i − s∗i+1) +O(

1

N
ε
2r

)

= f̃i(s
∗) +O(

1

N
ε
2r

) (5.11)

The last equality is because of the fact that ||s−s∗||2r ≤ 1
Nε , which implies |xi| ≤ 1

N
ε
2r

.

5.6.3 Generator Difference

The mean square error close to the equilibrium point is

E[d(S, s∗)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[Lg(S)−Gg(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · J(s∗)(S − s∗)−∇g(S) · f(S)− 1

N

b∑
i=1

∇2g(S)iif̃i(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · (J(s∗)(S − s∗)− f(S))− 1

N

b∑
i=1

∇2g(S)ii

(
f̃i(s

∗) +O(
1

N
ε
2r

)

)

89

∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[∇g(S) · (J(s∗)(S − s∗)− f(S))− 1

N

b∑
i=1

∇2g(S)iif̃i(s
∗)− 1

N

b∑
i=1

∇2g(S)iiO(
1

N
ε
2r

)

∣∣ ||S − s∗||2r ≤ 1

N ε
].

According to Lemma 19, we have

∇g(s) = [JT (s∗)]−1(s− s∗),

∇2g(s) = [JT (s∗)]−1

to be the functions of J(s∗), which is a function of N.

And in fact, since the traditional mean-field is a second-order system, we can write

it down as

f(s) =f(s∗) + J(s∗)(s− s∗) +
1

2
< s− s∗,∇2f(s∗)(s− s∗) >

where ∇2f(s∗) is the Hessian of f(s) at equilibrium point. For any s ∈ S and

i = 1, · · · , b, the Hessian has following form for fi

∇2fi(s)kj =
∂2fi(s)

∂sj∂sk
=


−2λ, if j = k = i

2λ, if j = k = i− 1

0, otherwise

Substituting back to generator difference, we have

E[d(S, s∗)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E[Lg(S)−Gg(S)
∣∣ ||S − s∗||2r ≤ 1

N ε
]

=E
[
[JT (s∗)]−1(S − s∗) · (1

2
< S − s∗,∇2f(s∗)(S − s∗) >)− 1

N

b∑
i=1

∇2g(S)iif̃i(s
∗)

− 1

N

b∑
i=1

∇2g(S)iiO(
1

N
ε
2r

)
∣∣ ||S − s∗||2r ≤ 1

N ε

]
. (5.12)

90

There are 3 terms in equation (5.12). Based on the two lemmas 20 and 21, we will

characterize the upper bounds of each term and a lower bound for the second term

in equation (5.12).

Lemma 23 (Upper Bound on the First Term). For the first term in equation (5.12),

we have an upper bound on its 2-norm, when ||s− s∗||2r ≤ 1
Nε ,

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > || = O(
1

N
3ε
2r
−2α−3ξ

) (5.13)

Proof. We have the 2-norm of the first term as following

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ ||[JT (s∗)]−1(s− s∗)|||| < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ ||[JT (s∗)]−1||||s− s∗|||| < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ 2
√

2λ||[JT (s∗)]−1||||s− s∗||3 (5.14)

91

where the third inequality is because of followings

|| < s− s∗,∇2f(s∗)(s− s∗) > ||

=

√√√√ b∑
i=1

[(s− s∗)∇2fi(s∗)(s− s∗)]2

=

√√√√ b∑
i=1

(
2λ[(si−1 − s∗i−1)2 − (si − s∗i)2]

)2

=2λ

√√√√ b∑
i=1

[(si−1 − s∗i−1)2 − (si − s∗i)2]2

≤2λ

√√√√ b∑
i=1

(si−1 − s∗i−1)4 + (si − s∗i)4

≤2
√

2λ

√√√√ b∑
i=1

(si − s∗i)4

≤2
√

2λ

√√√√[
b∑
i=1

(si − s∗i)2]2

=2
√

2λ||s− s∗||2

And from Lemma 20, for sufficiently large N , we have that

||[JT (s∗)]−1|| = ||[J(s∗)]−1|| ≤max
ij
|[J(s∗)]−1

ij | × b2

=O(N2α+2ξ)×O(log2N)

=O(N2α+3ξ) (5.15)

Since ||s− s∗||2r ≤ 1
Nε , combining inequalities (5.14) and (5.15), we have

||[JT (s∗)]−1(s− s∗)· < s− s∗,∇2f(s∗)(s− s∗) > ||

≤ 2
√

2λ×O(N2α+3ξ)× 1

N
3ε
2r

= O(
1

N
3ε
2r
−2α−3ξ

)

92

Lemma 24 (Lower Bound on the Second Term). For the second term in equation

(5.12), we have a lower bound as follwing

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) ≥ λγ

3N1+α
(5.16)

Proof. Recall that ∇2g(s) = [JT (s∗)]−1 and for i = 1, · · · , b, J−1(s∗)ii < 0, by lemma

21. And it’s easy to check, for i = 1, · · · , b, f̃i(s∗) ≥ 0.Therefore, for i = 1, · · · , b, we

have

−∇2g(s)iif̃i(s
∗) ≥ 0

And we also have

f̃i(s
∗) =

1

2
[λ((s∗i−1)2 − (s∗i)

2) + (s∗i − s∗i+1)]

= λ[(s∗i−1)2 − (s∗i)
2]

the second equality is because s∗ is the equilibrium point. Thus, for i = 1, we have

f̃1(s∗) = λ[1− (s∗1)2] ≥ λ(1− λ2)

= λ(1− λ)(1 + λ) ≥ λγ

Nα

So, we have

1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) ≥ − 1

N
J−1

11 (s∗)f̃1(s∗) ≥ λγ

3N1+α

Lemma 25 (Upper Bound on the Second Term). For the second term in equation

(5.12), we have an upper bound as following

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) = O(

1

N1−2α−3ξ
) (5.17)

93

Proof. It’s easy to check that fi(s
∗) ≤ 1 for i = 1, · · · , b. And recall that |∇2g(s)ii| ≤

O(N2α+2ξ). Therefore

− 1

N

b∑
i=1

∇2gii(s)f̃i(s
∗) =

b

N
O(N2α+2ξ) = O(

1

N1−2α−3ξ
)

Lemma 26 (Upper Bound on the Third Term). For sufficiently large N , we have an

upper bound for the third term in equation (5.12) as following

|| − 1

N

b∑
i=1

∇2g(s)iiO(
1

N
ε
2r

)|| = O(
1

N1+ ε
2r
−2α−3ξ

) (5.18)

Proof. Recall that |∇2g(s)ii| = O(N2α+2ξ) for i = 1, · · · , b. Thus, we have

|| − 1

N

b∑
i=1

∇2g(s)iiO(
1

N
ε
2r

)|| ≤ b

N
O(N2α+2ξ) ·O(

1

N
ε
2r

) = O(
1

N1+ ε
2r
−2α−3ξ

)

Based on these lemmas, we are now able to characterize the dominant term among

the three in equation (5.12).

Lemma 27. For 0 < α < 1
18

and sufficiently large N , we have for equation (5.12)

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] = − 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N1+α
) (5.19)

where the parameters satisfy following

3(1 + α)

1− 18α− 27ξ
< r

2r(1 + 3α + 3ξ)

3
< ε < r(1− 4α− 7ξ)− 1− α− ξ

94

Proof. For the given condition of the parameters, it’s easy to check that the upper

bounds of the first and third term in equation (5.12) is order-wise smaller than the

lower bounds of the second term, i.e.

3ε

2r
− 2α− 3ξ > 1 + 3α + 3ξ − 2α− 3ξ = 1 + α

and

1 +
ε

2r
− 2α− 3ξ > 1 +

1

3
+ α + ξ − 2α− 3ξ

> (1 + α) + (
2

9
− 2ξ)

where the last inequality is by the fact 0 < α < 1
18

.

5.7 Main Results

In this section, we present our main results using 3 theorems. These are the results

based on the observation that the second term in equation (5.12) is the dominant term.

Theorem 9 (Heavy Traffic Convergence). For 0 < α < 1
18

and sufficiently large N ,

we have that

E[||S − s∗||2] = − 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N1+α
) (5.20)

where J(s∗) is the Jacobian matrix of traditional mean-field model f(s) at equilibrium

point s∗ and f̃i(s
∗) = 1

2
[λ
(
(s∗i−1)2 − (s∗i)

2
)

+ (s∗i − s∗i+1)] for i = 1, 2, · · · , b.

Proof. Let parameters satisfy following conditions

3(1 + α)

1− 18α− 27ξ
< r

2r(1 + 3α + 3ξ)

3
< ε < r(1− 4α− 7ξ)− 1− α− ξ

95

and ξ > 0 is arbitrarily small. Then, for sufficiently large N , the mean square distance

is

E[||S − s∗||2]

=E[||S − s∗||2
∣∣||S − s∗||2r ≥ 1

N ε
] · P{||S − s∗||2r ≥ 1

N ε
}

+ E[||S − s∗||2
∣∣||S − s∗||2r ≤ 1

N ε
] · P{||S − s∗||2r ≤ 1

N ε
}

=O(logN) · 1

N r(1−4α−7ξ)−ε + [− 1

N

b∑
i=1

∇2g(s)iif̃i(s
∗)

+O(
1

N2+ε−α−3ξ
) + o(

1

N1+α
)] · (1− 1

N r(1−4α−7ξ)−ε)

=O(
1

N r(1−4α−7ξ)−ε−ξ)− 1

N

b∑
i=1

∇2g(s)iif̃i(s
∗)

+O(
1

N1−2α−3ξ
) · 1

N r(1−4α−7ξ)−ε + o(
1

N1+α
)

=− 1

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) + o(
1

N1+α
)

where the second equality is because ||s − s∗||2 ≤ b = O(logN). We note that with

the choice of parameters r, ε and the fact 0 < α < 1
18

, the lower bound of the term

− 1
N

∑b
i=1[JT (s∗)]−1

ii f̃i(s
∗) + o(1

N1+α) is O(1
N1+α), while the other terms are strictly

upper bounded by this order for sufficiently large N .

The theorem shows the mean square error E[||S− s∗||2] consists of two terms: the

first term − 1
N

∑b
i=1[JT (s∗)]−1

ii f̃i(s
∗) is the dominant term and is calculated explicitly;

the second term o(1
N1+α) is “small” when N is sufficiently large.

Theorem 10 (Convergence Upper Bound). For 0 < α < 1
18

and sufficiently large N ,

we have that

E[||S − s∗||2] ≤ − 4

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗) (5.21)

96

Proof. From lemma 27 with the same parameter conditions, it’s easy to check that

for sufficiently large N , we have

E[d(S, s∗)
∣∣||S − s∗||2r ≤ 1

N ε
] ≤ − 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

Also, it’s easy to check

P{||S − s∗||2r ≥ 1

N ε
} ≤ 1

N r(1−4α−ξ′)−ε
≤ 1

N1+α+ξ

Then from the above two inequalites, for sufficiently largeN , the mean square distance

is

E[||S − s∗||2]

=E[||S − s∗||2
∣∣||S − s∗||2r ≥ 1

N ε
] · P{||S − s∗||2r ≥ 1

N ε
}

+ E[||S − s∗||2
∣∣||S − s∗||2r ≤ 1

N ε
] · P{||S − s∗||2r ≤ 1

N ε
}

≤ b

N1+α+ξ
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

≤ 1

N1+α
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

≤− 4

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

where the second from the last inequality is because the first term is larger than RHS

of the inequality (5.16).

This result tells us that we can have a calculable upper bound for heavy traffic

convergence for mean square error.

Theorem 11. For 0 < α < 1
12

and sufficiently large N , we have that

E[||S − s∗||2] = O(
1

N1−2α−3ξ
)

where ξ > 0 is arbitrarily small.

97

Proof. Let parameters satisfy following conditions

3(1− 2α− 2ξ)

1− 12α− 21ξ
< r

2r

3
< ε < r(1− 4α− 7ξ)− 1 + 2α + 2ξ

Then for sufficiently large N , we have

E[||S − s∗||2]

=E[||S − s∗||2
∣∣||S − s∗||2r ≥ 1

N ε
] · P{||S − s∗||2r ≥ 1

N ε
}

+ E[||S − s∗||2
∣∣||S − s∗||2r ≤ 1

N ε
] · P{||S − s∗||2r ≤ 1

N ε
}

≤ b

N1−2α−2ξ
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

≤ 1

N1−2α−3ξ
− 3

N

b∑
i=1

[JT (s∗)]−1
ii f̃i(s

∗)

=O(
1

N1−2α−3ξ
)

where the last inequality is by inequality (5.17).

This result tells us an order-wise upper bound on mean square error for a slightly

larger range of α.

5.8 Simulation Results

We provide the results of some simulations for various γ and system sizes when

α = 0.05. The results are based on the average of 10 runs, where each run simulates

108 time steps. And the first 9 × 107 are ignored to give the system to reach steady

state. We compared the results from the simulations to our dominant terms and

upper bounds. The simulations are the results of empirical mean square error times

the system size N . And our dominant terms and upper bounds are multiplied by

system size, i.e. −
∑b

i=1[JT (s∗)]−1
ii f̃i(s

∗) and −4
∑b

i=1[JT (s∗)]−1
ii f̃i(s

∗) respectively.

98

Table 5.1: γ = 0.1, α = 0.05

N 10 100 1000 10000

λ 0.9109 0.9206 0.9292 0.9369

Prediction 1.6366 1.80 1.9886 2.1970

Upper Bound 6.5464 7.20 7.9544 8.7880

Simulation 4.2687 3.6443 4.0438 4.2011

Table 5.2: γ = 0.01, α = 0.05

N 10 100 1000 10000

λ 0.9911 0.9921 0.9929 0.9937

Prediction 13.7883 15.4351 17.2826 19.3546

Upper Bound 55.1532 61.7404 69.1304 77.4184

Simulation 30.4452 48.8215 36.0871 35.5646

Table 5.1 and 5.2 show the comparisons between predictions and simulation results

for γ = 0.1, α = 0.05 and γ = 0.01, α = 0.05 for different system sizes. The arrival

rate is not only the function of system size and approaching 1 as N gets larger. As N

increases, the simulation results are in the same order with the dominant terms and

are bounded by the upper bounds. As we can see, the upper bound is enough for even

moderately large system size, e.g. N = 10, which shows the effectiveness our refined

upper bound. And from a practical point of view, the upper bound is calculable as

compared to the convergence results in Ying (2017), where the upper bound contains

an arbitrarily small number.

99

Chapter 6

CONCLUSION

In this dissertation, we studied the missing value recovery problems in time series

data with the present of partially observed network information. Also, we studied

the stationary distribution of the power-of-two-choices load balancing for many-server

systems (N servers) to the solution of corresponding mean-field model in both light

and heavy traffic regimes. We developed Stein’s method and state space collapse

framework to analyze the systems in steady state and characterized the convergence

dominant terms and corresponding coefficients in both light and heavy traffic regimes.

Chapter 2 studied the missing value recovery problem in time series data. We

first defined and formulated problem into a likelihood maximization problem. Then,

using Kalman filtering and matrix factorization methods to tackle time series data

and network data respectively, as a result proposed NetDyna algorithm. In the end,

we experimented on real world datasets to show the efficiency of our algorithm in

comparison with the state-of-the-art algorithms.

Chapter 3 studied the convergence rate coefficient of the Po2 load balancing algo-

rithm to the solution of mean-field model in light traffic regime. Stein’s method and

state space collapse (SSC) are introduced and applied in this chapter and demon-

strated to be a potential framework in steady-state analysis of such system. By using

higher moment bounds based state space collapse argument, we are able to show

that the state space concentrates around the solution of the mean-field model. And

then using a linear mean-field model, we are able to characterize the convergence

term mean square error distance. And the simulation result shows the theoretical

prediction is close for light traffic case.

100

Chapter 4 studied the stochastic system converges to the mean-field model under

the finite buffer size assumption where b = O(logN) in heavy traffic regime. A con-

vergence result is derived using stein’s method and propagation of chaos arguments.

This is a convergence result needed for the next chapter in order to characterize the

convergence dominant term.

Chapter 5 studied convergent rate coefficient in the heavy traffic regime. We used

the similar Stein’s method and state space collapse argument. And with a more so-

phisticated tridiagonal matrix analysis, we are still able to characterize the dominant

term in the mean square error. And we are able to characterize the correspond-

ing coefficient. The simulation result shows that the predictions are within 2 factor

simulation results and as N becomes larger, the prediction is closer.

101

REFERENCES

Bertsimas, D., D. Gamarnik and J. N. Tsitsiklis, “Geometric bounds for stationary
distributions of infinite markov chains via lyapunov functions”, (1998).

Bishop, C. M., Pattern recognition and machine learning (springer, 2006).

Byron, M. Y., K. V. Shenoy and M. Sahani, “Derivation of kalman filtering and
smoothing equations”, (2004).

Cai, Y., H. Tong, W. Fan and P. Ji, “Fast mining of a network of coevolving time se-
ries”, in “Proceedings of the 2015 SIAM International Conference on Data Mining”,
pp. 298–306 (SIAM, 2015a).

Cai, Y., H. Tong, W. Fan, P. Ji and Q. He, “Facets: Fast comprehensive mining
of coevolving high-order time series”, in “Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining”, pp. 79–88
(ACM, 2015b).

Cao, W., D. Wang, J. Li, H. Zhou, L. Li and Y. Li, “Brits: Bidirectional recurrent im-
putation for time series”, in “Advances in Neural Information Processing Systems”,
pp. 6775–6785 (2018).

Che, Z., S. Purushotham, K. Cho, D. Sontag and Y. Liu, “Recurrent neural networks
for multivariate time series with missing values”, Scientific reports 8, 1, 6085 (2018).

Gast, N., “Expected values estimated via mean-field approximation are 1/n-
accurate”, Proc. ACM Meas. Anal. Comput. Syst. 1, 1, 17:1–17:26 (2017).

Gast, N. and B. Van Houdt, “A refined mean field approximation”, in “Proc. Ann.
ACM SIGMETRICS Conf.”, (Irvien, CA, 2018).

Gelb, A., A. S. C. T. Staff and A. S. Corporation, Applied Optimal Estimation,
Applied Optimal Estimation (MIT Press, 1974).

Goodfellow, I., Y. Bengio and A. Courville, Deep learning, vol. 1 (MIT press Cam-
bridge, 2016).

Kılıç, E., “Explicit formula for the inverse of a tridiagonal matrix by backward con-
tinued fractions”, Applied Mathematics and Computation 197, 1, 345–357 (2008).

Koren, Y., R. Bell and C. Volinsky, “Matrix factorization techniques for recommender
systems”, Computer 42, 8 (2009).

Kurtz, T. G., “Limit theorems for sequences of jump markov processes approximating
ordinary differential processes”, J. Appl. Probab. 8, 2, 344–356 (1971).

Kurtz, T. G., Approximation of population processes, vol. 36 (SIAM, 1981).

Li, L., Fast algorithms for mining co-evolving time series, Ph.D. thesis, Carnegie
Mellon University (2011).

102

Li, L., J. McCann, N. S. Pollard and C. Faloutsos, “Dynammo: Mining and summa-
rization of coevolving sequences with missing values”, in “Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining”,
pp. 507–516 (ACM, 2009).

Lipton, Z. C., D. C. Kale and R. Wetzel, “Modeling missing data in clinical time
series with rnns”, Machine Learning for Healthcare (2016).

Little, R. J. and D. B. Rubin, Statistical analysis with missing data, vol. 333 (John
Wiley & Sons, 2014).

Liu, X. and L. Ying, “On achieving zero delay with power-of-d-choices load balanc-
ing”, in “Proc. IEEE Int. Conf. Computer Communications (INFOCOM)”, (Hon-
olulu,Hawaii, 2018).

Ma, H., H. Yang, M. R. Lyu and I. King, “Sorec: social recommendation using
probabilistic matrix factorization”, in “Proceedings of the 17th ACM conference
on Information and knowledge management”, pp. 931–940 (ACM, 2008).

Mitzenmacher, M., The Power of Two Choices in Randomized Load Balancing, Ph.D.
thesis, University of California at Berkeley (1996).

Mnih, A. and R. R. Salakhutdinov, “Probabilistic matrix factorization”, in “Advances
in neural information processing systems”, pp. 1257–1264 (2008).

Papadimitriou, S., J. Sun and C. Faloutsos, “Streaming pattern discovery in multiple
time-series”, in “Proceedings of the 31st international conference on Very large data
bases”, pp. 697–708 (VLDB Endowment, 2005).

Robinson, P. D. and A. J. Wathen, “Variational bounds on the entries of the inverse
of a matrix”, IMA journal of numerical analysis 12, 4, 463–486 (1992).

Srebro, N. and T. Jaakkola, “Weighted low-rank approximations”, (ICML, 2003).

Stein, C., “A bound for the error in the normal approximation to the distribution
of a sum of dependent random variables”, in “Proc. Sixth Berkeley Symp. Math.
Stat. Prob.”, pp. 583–602 (1972).

Stein, C., “Approximate computation of expectations”, Lecture Notes-Monograph
Series 7, i–164 (1986).

Vvedenskaya, N. D., R. L. Dobrushin and F. I. Karpelevich, “Queueing system
with selection of the shortest of two queues: An asymptotic approach”, Problemy
Peredachi Informatsii 32, 1, 20–34 (1996).

Yi, B.-K., N. D. Sidiropoulos, T. Johnson, H. Jagadish, C. Faloutsos and A. Biliris,
“Online data mining for co-evolving time sequences”, in “Data Engineering, 2000.
Proceedings. 16th International Conference on”, pp. 13–22 (IEEE, 2000).

Ying, L., “On the approximation error of mean-field models”, in “Proc. Ann. ACM
SIGMETRICS Conf.”, (Antibes Juan-les-Pins, France, 2016).

103

Ying, L., “Stein’s method for mean field approximations in light and heavy traffic
regimes”, Proc. ACM Meas. Anal. Comput. Syst. 1, 1, 12:1–12:27 (2017).

104

