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ABSTRACT

Robot motion planning requires computing a sequence of waypoints from an ini-

tial configuration of the robot to the goal configuration. Solving a motion planning

problem optimally is proven to be NP-Complete. Sampling-based motion planners

efficiently compute an approximation of the optimal solution. They sample the con-

figuration space uniformly and hence fail to sample regions of the environment that

have narrow passages or pinch points. These critical regions are analogous to land-

marks from planning literature as the robot is required to pass through them to reach

the goal.

This work proposes a deep learning approach that identifies critical regions in the

environment and learns a sampling distribution to effectively sample them in high

dimensional configuration spaces. A classification-based approach is used to learn

the distributions. The robot degrees of freedom (DOF) limits are binned and a dis-

tribution is generated from sampling motion plan solutions. Conditional information

like goal configuration and robot location encoded in the network inputs showcase

the network learning to bias the identified critical regions towards the goal configura-

tion. Empirical evaluations are performed against the state of the art sampling-based

motion planners on a variety of tasks requiring the robot to pass through critical re-

gions. An empirical analysis of robotic systems with three to eight degrees of freedom

indicates that this approach effectively improves planning performance.
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Chapter 1

INTRODUCTION

1.1 Sampling Based Motion Planning

Motion planning is the process of finding a sequence of collision-free configura-

tions that lead the robot from an initial configuration to a goal configuration. Sam-

pling based planners such as Rapidly exploring Random Trees (RRT) (LaValle and

Kuffner Jr, 2001) solve the motion planning problem by sampling the configuration

space and then connecting samples by reachability. They are probabilistically com-

plete as the number of samples approaches infinity. However, environments have

regions which are critical such that the robot must pass through these critical region

in order to reach the goal. In cases where these regions comprise of narrow pas-

sageways, the uniform sampler requires a much longer time to establish connectivity.

The probability of such regions getting sampled reduces or they may be sampled at a

much later stage thereby increasing planning time. These critical regions are formally

defined in Chapter 2.

The efficiency of sampling based motion planners can be improved by augmenting

the sampling distribution to sample from such regions. Learn and Link Planners

(LLP) (Molina et al., 2019) expand subgraphs rooted at samples belonging to the

identified critical regions in the configuration space. This enables them to build a

biased roadmap that spreads across the environment. An example of such a region

would be a long narrow passage connecting two rooms. Figure 1.1 depicts such an

environment with a long narrow passage connecting 2 rooms. The depicted samples

are generated by RRT and LLP when the planner is given a time limit of 10s. It
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can be observed that LLP achieves better connectivity across the environment as

compared to RRT which seems to have trouble sampling the passageway. Learn and

Link provides 2 modes of operation:

1. Learn and Link Planner (LLP): A single query mode planner useful for planning

from a start to goal configuration. The planner builds a biased roadmap using

subgraphs rooted at the start and goal configurations as well the critical regions

identified by the network.

2. Learn and Link Roadmap (LL-RM): A multi query mode planner that builds a

roadmap of the environment using the generated samples and random samples

from the environment. The random samples are sampled uniformly from the

configuration space. This helps the environment achieve better connectivity

across the environment for general querying.

Once the graph is constructed and the start and goal configurations are reachable,

the planner uses Dijkstra’s algorithm to find a path.

Molina et al. (2019) use a network that generates a distribution of the critical

regions for base navigation i.e. 2 Degrees of freedom (DOFs) and append a collision

free configuration to the sampled configuration for remaining DOFs. We extend

this work further by building a network that generates a sampling distribution for

higher dimensional configuration spaces. Providing encoded information regarding

goal configuration and robot location showcase that the network learns to bias the

identified critical regions towards the goal configuration and focuses the sampling

distribution to sample configurations belonging to these regions. We use encoder-

decoder architectures for building the neural network. The methodology is tested

on 3 domains comprising of 11 unique environments: 7 SE(2) environments and 4

3D environments. We leverage the Learn and Link planners as described in (Molina

2



et al., 2019) to work with the samples generated by our network.

Figure 1.1: (a) Sampled states by RRT planner when given a planning time of 10s.
Each green point is a randomly sampled state (b) Sampled states by the LLP planner
when given a planning time of 10s. Each green point is a randomly sampled state
while red points are states predicted by our network

1.2 Related Works

Our work aims to improve sampling based motion planners by generating a sam-

pling distribution that biases the samples towards identified critical regions. Previous

works on improving sampling based motion planners include using better heuristics for

sampling. Urmson and Simmons (2003) improves the exploration of RRTs by biasing

their growth based on costs discovered from exploration. BIT* (Gammell et al., 2015)

uses heuristics to efficiently search a series of increasingly dense implicit random ge-

ometric graphs while reusing previous information. In adaptive sampling techniques,

Burns and Brock (2005) develop a utility guided strategy for sampling that approx-

imates the model of the configuration space and its connectivity. The sampler then

selects samples based on utility and the planning task. Learning based methods have

also been used to improve motion planning. Zhang et al. (2018) use a policy-search

3



based method to learn implicit sampling distributions for different environments from

past solutions and generalize it to novel environments. Havoutis and Ramamoorthy

(2009) learn a non-linear manifold subspace of the configuration space (C-space) to

improve distance measures and sample the C-space efficiently. Pan et al. (2013) use

instance based methods by storing previous colliding and non-colliding samples. This

past information is then leveraged to improve planning. Our network aims to en-

code this information into the sampling distribution itself. Zucker et al. (2008) use

reinforcement learning to learn the sampling distribution. Lehner and Albu-Schäffer

(2017) fits Gaussian Mixture Models to previous solutions to learn a better sampling

distribution. Kumar et al. (2019) provide a framework for training a CVAE with bi-

ased samples towards diverse regions to build a good reaching roadmap. Ichter et al.

(2018) learn sampling distributions through a Conditional Variational AutoEncoder

conditioned on environment data encoded as an occupancy grid. However they are

difficult to generalize due to the complex input requirements and also require high in-

ference computation times. Ichter et al. (2019) use graph theoretic techniques to learn

and predict the criticality of a sample from local environment features. They learn

the criticality of a sample by learning from shortest path problems. Their approach

requires predicting the criticality of a generated sample and then drawing samples

proportional to their criticality. Our approach can work with simple raster scans of

the environment and encodes conditional information along with the input while the

predicted distribution can be directly used for sampling.

4



Chapter 2

METHODOLOGY

Definition 1. Given a robot R, an environment E, and a class of motion planning

(MP) problems M , the measure of criticality of a Lebesgue-measurable open set r ⊆

Rn, µ(r), is defined as limsn→+r

f(r)
v(sn)

, where f(sn) is the fraction of observed motion

plans solving tasks from M that pass through sn, v(sn) is the measure of sn under a

reference (usually uniform) density, and →+ denotes the limit from above along any

sequence sn of sets containing r (r ⊆ sn for all n). (Molina et al., 2019)

Intuitively, these regions can be thought of as regions that are crucial to solve

motion planning problems in M however have low probability of being sampled uni-

formly. We aim to learn a distribution which samples these critical regions efficiently

by training our network on a train set Dtrain. Dtrain consists of Ntrain samples, where

each sample Ni is generated by solving p MP problems τ1 . . . τp. We use OpenRAVE

(Diankov and Kuffner, 2008) to simulate all p motion planning problems and solve

them using OpenRAVE’s implementation of the OMPL RRTConnect planner with a

time limit of 180s.

The input to the network is a raster scan of the environment along with encoded

conditional information about the goal configuration and the robot location. The

output of the network is the distribution that is further used for sampling configura-

tions from the critical regions. We discretize the configuration space of the robot by

binning the range of the respective DOFs. We then sample the p motion plan solu-

tions and for each bin assign the count of how many samples in the solution belong

to a given bin. We then normalize these bin values across each DOF to represent a
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distribution.

We demonstrate this approach on 3 domains:

1. 3 DOF Robot: A rectangular shaped robot with 3 DOFs in SE(2) environments

2. 4 DOF Robot: A L-shaped robot with 4 DOFs in SE(2) environments

3. 8 DOF Robot: A stationary fetch robot with 8 DOFs in 3D environments

Each domain involves 2 stages:

1. Data Generation

2. Network Training

Figure 2.1: (a) Rectangular 3 DOF robot (b) L-shaped 4 DOF robot (c) Fetch robot
with 8 DOFs

2.1 3 DOF Robot

We aim to identify the critical regions of the environment and build a distribution

that can be used to generate samples in these regions from the configuration space of

the robot. We perform multi-label classification to build the sampling distributions.

6



Figure 2.2: Training environments used in the 3 DOF and 4 DOF robot domains
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2.1.1 Data Generation

We hand-create the SE(2) environments used for training (Figure 2.2). For each

environment, we generate Ntrain = 100 data samples. For each Ni, we solve P =

50 motion planning problems from a random start configuration to a random goal

configuration.

The input is generated by performing a 2D raster scan of the environment at z = 0

to generate a 224×224 grayscale image shown in Figure 2.3. This is done by scanning

a pixel-sized body across the environment and assigning the image’s pixel a value of

0 if an obstacle collides with the pixel body. This generates a black and white image

with pixel values equal to 0(black) for obstacles and 1(white) for free space.

The labels are distributions constructed as 224×224 images with 5 channels. The

first 2 DOFs represent the x and y values of the robot in the SE(2) environment.

We divide these DOF ranges into bins equal to the number of pixels. Since a 2D

image’s pixel indices are in a row and column format similar to the xy axes in an

SE(2) environment, the first 2 DOFs are represented jointly in the first channel. The

third DOF represents the orientation of the robot. The range of the orientation is

[-π, π] which is divided into 4 equal sized bins such that the bins correspond to an

orientation of North, East, West, and South respectively. Each of the 4 remaining

channels correspond to one of the bins. Each pixel in a channel takes the value equal

to the fraction of the P motion plans that pass through it.

We generate motion traces of all P motion plans as seen in Figure 2.3 (b). Each

colored point in the image represents a sample from the p MP solutions for the sample.

The different colors imply different orientations in the sampled configurations. It can

be observed that the vertical passageway requires samples where the robot needs to

be oriented vertically and the same can be observed for the horizontal passageway.
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The first row in Figure 2.4 depicts the raw channels for a data sample. We can observe

that channels 2 and 5 have highlighted the passage where the robot must be oriented

vertically facing north/south while channels 3 and 4 highlight the passage where the

robot must be oriented horizontally facing east/west.

We then perform saliency mapping (Itti and Koch, 2000) on the individual chan-

nels to smoothen the salient regions as shown in the second row of Figure 2.4. We

then threshold the generated saliency maps and assign a value of 1 for values above

the threshold and 0 for values below the threshold. We experiment with various

thresholds as discussed in Appendex A and found a threshold of 27% to be optimal.

The final image obtained after thresholding can be seen in the third row of Figure

2.4. Finally, we also perform data augmentation by rotating each data sample by 90,

180, 270 degrees and flipping the image vertically and horizontally.

Figure 2.3: (a)A sample input image created after raster scanning the environment
(b) Motion traces of 50 motion plans. The different colored points imply the 4 dif-
ferent orientations of the rectangular robot. Red pixels imply oriented facing north,
yellow pixels imply oriented south, green pixels imply oriented west, blue pixels imply
oriented east. We can observe vertical passages are concentrated with red and yellow
pixels while the horizontal passageway has green and blue pixels

9



Figure 2.4: The three rows depict the 3 phases of data generation for the environment
shown in Figure 2.2. First row depicts the Motion traces plotted for the 4 channels
for 50 motion plans. Second row depicts the channels after applying saliency mapping
on them. Third row depicts the channels after thresholding the saliency maps by a
threshold of 27%.

2.1.2 Network Architecture

Our network is an Autoencoder architecture to perform pixel wise classification

on the 224 × 224 × 5 output image. As depicted in Figure 2.5, we use the same

architecture used in (Molina et al., 2019). The encoder consists of 3 encoding blocks.

The first and second block consists of 2 convolutional layers with 64 and 128 filters

respectively followed by a max pool layer. The third encoding block has 3 convo-

lutional layers with 256 filters each followed by a max pooling layer. The decoder

consists of corresponding 3 decoding blocks equivalent of the encoder blocks. The

first block consists of 3 deconvolution layers with 256 filters followed by an upsam-

pling layer. The second and third decoder blocks have 2 deconvolution layers of 128

and 64 filters respectively followed by an upsampling layer. All layers use a kernel

of shape [3,3]. The convolution and deconvolution layers have a stride of 1 while the
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maxpool and upsampling layers have stride 2. The output of each convolution and

deconvolution layer is batch normalized (Ioffe and Szegedy, 2015). Each layer uses

ReLU as it’s activation function. The loss function is weighted sigmoid cross entropy

with a weight of 2 for the positive class. This is due to class imbalance since the

number of pixels identifying critical regions are low as compared to the non-critical

regions. We experiment with weights of 2, 5, 10 and found 2 to be optimal.

Figure 2.5: Network architecture for the model used in the 3 DOF robot domain

2.1.3 Training

Our train set comprises a total 12000 samples. We use a batch size of 10 with

random shuffling applied. We use Adam (Kingma and Ba, 2014) for the optimizer

with a learning rate of 0.0001 and train for 10000 iterations. We build upon the data
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pipeline implemented using Tensorflow by (Azzini, 2017).

2.2 4 DOF Robot

In this domain, we include the goal configuration as part of our input to make

the network learn to plan towards the goal configuration. As seen in Figure 2.6, the

robot is an L-shaped robot where the primary rectangular body can rotate between

angles of range [-π, π]. The secondary rectangular body or the tail can rotate between

angles of range [-π/2, π/2] hinged at the end of the primary body. The first 2 DOFs

represent the x and y coordinate values in the SE(2) world and the 3rd and 4th

DOFs represent the orientation of the primary and secondary body respectively. We

perform multi-class classification to build the sampling distributions.

Figure 2.6: The L-shaped robot in a training environment

2.2.1 Data Generation

We use the same environments as shown in Figure 2.2. For each data sample Ni,

we solve P = 50 motion planning problems from a random start state to a fixed goal
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state.

The input is structured as 224× 224 images with 7 channels. The first 3 channels

are a grayscale image of the input generated by performing a 2D raster scan of the

environment as described in the Section 2.1. The next 4 channels encode the goal

configuration. The goal configuration here consists of a tuple of the 4 DOF values(x,

y, θ1, θ2) which are normalized to a range of [0, 1] based on the DOF bounds. We then

perform depthwise concatenation as demonstrated in (Choi et al., 2018) to encode

conditional information within the input. Each goal DOF configuration value is

repeated across every pixel in its respective channel. These channels are concatenated

to the input image channels.

The labels are distributions structured as 224× 224 images with 3 channels. The

first channel is created as described in the Section 2.1.1 and encodes the first 2 DOFs.

The remaining 2 channels encode the remaining 2 DOFs of the robot. The second

channel describes the orientation (θ1) of the primary rectangle body of the L shaped

bot (3rd DOF). This DOF has a range of [-π, π] which is divided into 8 bins. Each

pixel in this channel takes the value equal to the index number of the bin (ranging

0-7) with the most motion plans passing through it such that the DOF value lies

in the bin range. For pixels where no motion plans pass through, we set a value

of 8 implying an unknown class. The third channel describes orientation(θ2) of the

secondary rectangle of the L-shaped robot (4th DOF) and has a range of [-π/2, π/2].

The DOF range is divided into 9 bins. Similar to the previous DOF, each pixel in

this channel takes a value equal to the index of the bin (ranging from 0-8) with the

most motion plans passing through it such that the DOF value lies in the bin range.

For pixels where no motion plans pass through them, we set a value of 9 implying

an unknown class. Each pixel in these channels represents the bin corresponding to

the critical region in the C-space for the respective channel’s DOF. We then perform
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saliency mapping (Itti and Koch, 2000) to smoothen the salient regions. We then

threshold the generated saliency regions and assign a value of 1 for values above the

threshold and 0 for values below the threshold. The second and third channel are

masked using the first channel to have consistent identified critical regions across all

channels. Remaining pixels are set to their respective unknown class values. The

generated labels can be seen in the ground truth columns in Figure 3.5. Finally, we

perform data augmentation by rotating each data sample by 90, 180, 270 degrees and

flipping the image vertically.

2.2.2 Network Architecture

Our network is inspired from the U-Net architecture (Ronneberger et al., 2015)

depicted in Figure 2.7. The encoder consists of 5 encoding blocks with 64, 128, 256,

512, and 1024 filters respectively. Each encoding block consists of 2 convolutional

layers, the first layer has a stride of 1 while the second layer has a stride of 2. Sprin-

genberg et al. (2014) showcases the advantage of using convolutional layers in place

of pooling layers for better learning albeit at the cost of more training parameters.

The decoder consists of corresponding 5 decoding blocks. We concatenate the output

of the corresponding encoder block to the input of each decoding block except the

first one. All layers use a kernel of shape [3,3]. The output of each convolution and

deconvolution layer is batch normalized. We use ReLU as the activation function

for each layer. The loss function is a sum of 3 losses based on the predicted pixels

for the different channels. For the first channel, we calculate sigmoid cross entropy

since it performs binary classification. For the remaining 2 channels, we calculate the

softmax cross entropy loss since it performs multi-class classification.
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Figure 2.7: The network architecture for the model used in the 4 DOF robot domain

2.2.3 Training

Our training set comprises a total of 10000 samples. We use a batch size of 10

with random shuffling. We use Adam (Kingma and Ba, 2014) for the optimizer with

a learning rate of 0.0001 and train for 10000 iterations.

2.3 8 DOF Robot

In this domain, we include the robot’s location and the goal configuration as part

of our input so our network is conditioned to plan for a goal given the robot’s current

location in the environment. Since we plan for the robot’s arm in a 3D environment,

the location of the robot is also important to learn the sampling distribution based on

the obstacles around the robot at any given location. We use the fetch robot (Wise

et al., 2016) as our robot in this domain. The robot’s arm and torso makeup an 8

DOF configuration space.
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Figure 2.8: The training environments for the 8 DOF robot domain

Figure 2.9: (Left) The training environment (Right) The voxelized version of the
training environment shown on theleft. Each red pixel represents an obstacle

2.3.1 Data Generation

We generate 5 environments consisting of a table cluttered with immovable ob-

structions as shown in Figure 2.8. For each data sample, we solve for P = 50 MP

problems. The goal for a MP problem in this domain is for the robot to be able
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to grasp the blue rectangle object placed on a table in front of it where the table is

cluttered with immovable obstructions as seen in Figure 2.8. We randomly place the

object to be picked up on the table within reachable distance of the robot arm and

solve from a random start configuration to a randomly chosen pickup pose out of 8

possible pickup poses.

The input is structured as a 64×64×64 3D tensor with 17 channels (64×64×64×

17). The first 3 channels represent the 3D equivalent of a grayscale image. The 3D

environment is voxelized by scanning a voxel sized obstacle across the environment.

If a collision occurs, the voxel takes a value of zero, else a value of one for free space.

Figure 2.9 depicts a 3D environment and it’s voxelized version. We can observe that

the voxelization captures the floor, walls, table and obstructions in the environment.

The next 8 channels represent the goal configuration values of the robot’s DOF. As

described in Section 2.2, we perform depthwise concatenation (Choi et al., 2018) to

encode this information in the input tensor where each value is repeated across each

voxel in the respective channel. The last 6 channels represent the robot’s location as

its x, y, z coordinates and it’s 3 axis angles. The encoded goal configuration and robot

location values are normalized to [0,1] based on the DOF and environment bounds.

The labels represent a distribution of the robot’s DOF. Each DOF is divided into

10 equal sized bins. Since the fetch robot has 8 DOFs, our labels are shaped as 8x10

arrays. To build the distribution, we sample the path of each motion plan solution

τi and count how many samples lie in a given bin for each DOF. We then normalize

these counts to get a distribution.

We also perform data augmentation by rotating each input environment by 90,

180, 270 degrees.
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2.3.2 Network Architecture

The network consists of an encoder followed by a fully connected layer as shown

in Figure 2.10. The encoder consists of 6 encoding blocks. Each block consists of

a 3D convolution layer followed by a max pooling layer. The convolution layers in

each encoding block consist of 32, 64, 128, 256, 512, 1024 filters respectively. Each

convolution layer has a kernel of shape [3,3,3] and stride of 1. The max pooling layers

have a window of size 2 and stride of 2. The output of each convolution layer is batch

normalized. We use ReLu as the activation function for the convolutional layers. The

final layer outputs a 1024 vector encoding of the input which is connected to a fully

connected layer outputting a 80 length vector which is reshaped into a 8× 10 matrix

and a softmax layer is applied to this to get the final predicted probability distribution.

The loss function is the KL Divergence between our predicted distribution and the

ground truth.

Figure 2.10: Network architecture of the model used in the 8 DOF robot domain
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2.3.3 Training

Our training set comprises a total 6000 samples. We use a batch size of 5 with

random shuffling. We use Adam for the optimizer with a learning rate of 0.00001 and

train for 10000 iterations.
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Chapter 3

RESULTS

For evaluating the predictions, we run the LLP and LL-RM planners on various

test environments. LLP and LL-RM are set to use 5% of the samples generated by the

network. We use RRT, RRTConnect and RRT* as the baseline for our comparisons.

We use the implementations of baseline planners provided by (Şucan et al., 2012).

All planners are given a step size of 0.2. Each motion planning problem consists of

planning from a fixed start configuration to a fixed goal configuration within a given

time limit. We report the success rate out of 100 runs for each test environment.

3.1 3 DOF Robot

Figure 3.1: The test environments used for evaluation in the 3DOF robot domain.
(left) ENV - A (right) ENV - B

Figure 3.2 shows the predictions after training the model from the training set.

Figure 3.3 shows the predictions of the model on the 2 test environments shown in
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Figure 3.2: Predictions and ground truth for 3 training environments in the 3DOF
robot domain

Figure 3.1. We can observe in Figure that the network is able to correctly identify the

different orientations of the robot in the narrow passages of the test environments.

In ENV-A, for a planning time of 20s, RRT, RRTConnect and RRT* achieve 51%,

3% and 1% success rates while LLP and LL-RM achieve 97% and 91% success rates

respectively. In ENV-B, for a planning time of 4s, RRT, RRTConnect and RRT*

achieve 4%, 13% and 0% success rates respectively while LLP and LL-RM both

achieve 100% success rates. For both environments, LL-RM is given 1 second to

build the roadmap. Figure 3.4 illustrates the planning time vs success rate for the

four planners.

Figure 3.3: Predictions on the 2 test environments depicted in Figure 3.1
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Figure 3.4: (a) Planning Time(s) vs Success Rate(%) on ENV-A (b) Planning Time(s)
vs Success Rate(%) on ENV-B

3.2 4 DOF Robot

This domain consists of the goal configuration included as part of the input.

Figure 3.5 shows network predictions on the train set. Figure 3.6 shows network

predictions on the test environments. Different patches of grayscale colors in the

ground truth and predictions imply the different DOF bins for the channel at the

respective pixels. We also demonstrate results for different goal configurations and

show that the network is able to learn the concept of a goal region and directs sampling

towards it. ENV-C, ENV-D, ENV-E, and ENV-F are test environments consisting of

the same obstacle space but differ in the goal configuration. Figure 3.6 depicts the

results of the network for each test environment. We can observe that the identified

critical regions are directed towards the goal depicted by the green pixels. On ENV-E,

for a fixed planning time of 300 seconds, RRT, RRTConnect and RRT* achieve 7%,

2% and 1% success rates respectively while LLP and LL-RM achieve 100% success

rates. For ENV-G, for a fixed planning time of 60 seconds, RRT, RRTConnect and

RRT* achieve 25%, 82% and 25% success rates while LLP and LL-RM achieve 95%

and 97% success rates respectively. For both environments LL-RM is given 1 second

to build the roadmap. Figure 3.7 illustrates the planning time vs success rate for

ENV-E and ENV-G.
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Figure 3.5: Predictions and ground truth for 4 training environments in the 4 DOF
robot domain. The green square denotes the goal region for the given input

3.3 8 DOF Robot

This domain consists of the goal configuration and robot location included as

part of the input. The four test environments are shown in Figure 3.8. ENV-H

consists of a table with obstructions and the robot needs to reach the pose depicted

in Figure 3.8. For a fixed planning time of 30 seconds, RRT, RRTConnect and RRT*

achieve 23%, 83% and 40% success rates while LLP and LL-RM both achieve 100%

success rates. ENV-I is a kitchen environment where the robot needs to pick up the

rectangle object from the sink in front of it. For a fixed planning time of 30 seconds,

RRT, RRTConnect and RRT* achieve 0%, 4% and 21% success rates respectively

while LLP and LL-RM achieve 100% success rates. ENV-J consists of a common

cutting machine used in manufacturing environments and the robot needs to pick up

the rectangle object kept on the machine. For a fixed planning time of 30 seconds,

RRT, RRTConnect and RRT* achieve 0%, 1% and 49% success rates respectively
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Figure 3.6: Predictions on 2 test environments. The first 4 rows depict different goal
regions for the same environment and their corresponding predictions. The green
square denotes the goal region for the given input

Figure 3.7: (a) Planning Time(s) vs Success Rate(%) on ENV-E (b) Planning Time(s)
vs Success Rate(%) on ENV-G
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while LLP and LL-RM achieve 100% success rates. ENV-K consists of an autoclave

machine also used in manufacturing environments and the robot needs to pick up the

rectangle object kept inside the machine. For a fixed planning time of 30 seconds,

RRT, RRTConnect and RRT* achieve 0%, 79% and 2% success rates respectively

while LLP and LL-RM achieve 100% success rates. For both environments, LL-RM

is given 2 seconds to build the roadmap. We increase the time limit for building the

roadmap since the higher number of dimensions in the configuration space increases

complexity of the problem and time required for building a sufficiently space covering

roadmap. Figure 3.9 illustrates the planning time (seconds) vs success rate (%) for

the four environments.

Figure 3.8: The four test environments for the 8 DOF robot domain. The robot
needs to reach the shown arm and torso configuration to be able to pick up the blue
rectangular object
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Figure 3.9: (a) Planning Time(s) vs Success Rate(%) on ENV-H (b) Planning Time(s)
vs Success Rate(%) on ENV-I (c) Planning Time(s) vs Success Rate(%) on ENV-J
(d) Planning Time(s) vs Success Rate(%) on ENV-K
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Chapter 4

CONCLUSIONS AND FUTURE WORK

We developed and evaluated an approach to learn critical regions in the configura-

tion space of the robot. These regions have low probability of being sampled, however

most solutions require the robot pass through these regions. We use convolutional

encoder decoder networks to learn a distribution that can be used for sampling the

configuration space of the robot more efficiently. We used the Link and Learn plan-

ners to leverage the samples generated from the predicted distributions. Empirical

evaluations show that the generated samples help speed up motion planning and

provide better success rates at finding a solution than state of the art planners.

For future work, an ablation study can be performed to reduce the number of

parameters and network size from the proposed architectures. This can help achieve

faster inference and training time. The proposed architectures vary in different do-

mains so a unified architecture can be established for the provided approach. The

predicted critical regions for the 8 DOF domain albeit having improved the planning

time have scope of more refinement and structure to improve identification of the

critical regions. The ability of neural networks to identify critical regions for a mo-

tion planning problem can be generalized to a task and motion planning problem to

identify abstract states for performing the task.
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APPENDIX A

EXPERIMENTS WITH THRESHOLDING SALIENCY MAPPING OUTPUT
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For the 4 DOF domain, we also experiment with different thresholds on the out-
puts of the saliency mapping performed using (Itti and Koch, 2000). Figure A.1
depicts 3 different outputs after thresholding the given saliency mapping output. For
the experiments described in this thesis we use a threshold value of 70. However,
we also test our planners by training the model on data generated using a threshold
value of 40. Figure A.2 shows the plots for planning time in seconds vs the success
rate for the two test environments in the 4 DOF domain namely ENV-E and ENV-G
using this dataset. On Env-E, for a fixed planning time of 180 seconds, LLP and
LL-RM achieve 100% success rates when using a threshold of 40. For a threshold of
70, LLP and LL-RM achieve 96% and 99% success rates on Env-E. For Env-G, for
a fixed planning time of 20 seconds, LLP and LL-RM achieve 46% and 50% success
rates respectively when using a threshold of 40. For a threshold of 70, LLP and
LL-RM achieve 71% and 88% success rates respectively. On visual inspection of the
thresholded outputs, we observe that as threshold values decrease, the critical regions
expand and tend to become more noisy.

Figure A.1: Outputs of thresholding the saliency mapping output (second column)
using 3 different threshold values (100, 70, 40)
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Figure A.2: Planner results when using data generated with threshold value = 40
and 70 (a) Planning Time(s) vs Success Rate(%) on Env-E (b) Planning Time(s) vs
Success Rate(%) on Env-G
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APPENDIX B

EXPERIMENTS WITH CVAE AND GANS
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For the SE(2) - 4 DOF environment, we also experimented with another approach
where the network was tasked with predicting the precise DOF value rather than
classifying for a bin in the DOF’s limits. We took inspiration from (Ichter et al.,
2018) and experimented with a CVAE as well as DCGANs (Radford et al., 2015)
however the networks were difficult to stabilize and required much more training
time as compared to the classification approaches using encoder-decoder networks.
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APPENDIX C

RAW DATA
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The raw data for each of the domains can be found at the following urls:

• 3DOF:
https://drive.google.com/file/d/1JBYjZ2alczjK6tmX3y5mlfekMU77dvv-

• 4DOF:
https://drive.google.com/file/d/1zR4voKaFMncA5I9FaoFpJMK4lvvtmlrI

• 8DOF:
https://drive.google.com/file/d/1-6fBHWtL D8xYN2Hyw7Tx D80y04P-m37
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