
Peer to Peer Microlending

A Charitable Donation Management Platform on Blockchain

by

Sourabh Siddharth

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2020 by the
Graduate Supervisory Committee:

Dragan Boscovic, Co-Chair
Srividya Bansal, Co-Chair
Javier Gonzalez Sanchez

ARIZONA STATE UNIVERSITY

August 2020

 i

ABSTRACT

Microlending aims at providing low-barrier loans to small to medium scaled family run

businesses that are financially disincluded historically. These borrowers might be in third

world countries where traditional financing is not accessible. Lenders can be individual

investors or institutions making risky investments or willing to help people who cannot

access traditional banks or do not have the credibility to get loans from traditional sources.

Microlending involves a charitable cause as well where lenders are not really concerned

about what and how they are paid.

This thesis aims at building a platform that will support both commercial microlending

as well as charitable donation to support the real cause of microlending. The platform is

expected to ensure privacy and transparency to the users in order to attract more users to

use the system. Microlending involves monetary transactions, hence possible security

threats to the system are discussed.

Blockchain is one of the technologies which has revolutionized financial transactions

and microlending involves monetary transactions. Therefore, blockchain is viable option

for microlending platform. Permissioned blockchain restricts the user admission to the

platform and provides with identity management feature. This feature is required to ensure

the security and privacy of various types of participants on the microlending platform.

 ii

ACKNOWLEDGMENTS

I express my sincere gratitude towards Dr. Dragan Boscovic who gave me the

opportunity to work under him and continuously guided me throughout my entire research

work. He continuously supported me and also provided me with knowledge that would be

helpful to me in the real-world industry. His experience and knowledge have been the

helping hands all through my thesis.

I would like to thank Dr. Srividya Bansal for agreeing to co-chair my thesis and taking

the time to provide me with constructive feedback for writing my thesis. I would also like

to thank Dr. Javier Gonzalez Sanchez for agreeing to be a member of my thesis committee

and reviewing my work and providing me with valuable feedback for successful

completion of my thesis.

I would like to thank Sasa Pesic from Vizlore LLC for helping me with understanding

ChainRider and providing continuous hands-on support with the tool.

I would also like to thank the members of the Blockchain Research Lab at ASU

especially Raj Sadaye for helping me get started with hyperledger fabric development,

Kaushal Mhalgi and Manish Vishnoi for supporting me throughout the research.

Lastly, I would like to thank my family and friends who have been a constant support

for me throughout the course work and were my pillars of support through thick and thin.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

Introduction to Blockchain .. 1

Types of Blockchain .. 3

Introduction toMicrolending ... 4

Problems with existing Microlending Platforms .. 5

Why Private Blockchain is Useful for Microlending Application 5

Introduction to Hyperledger Fabric .. 7

Components of Hyperledger Fabric .. 8

Transaction Flow and Ordering in Hyperledger Fabric 10

Hypothesis ... 12

Organization of Thesis .. 12

2 RELATED WORK ... 14

Blockchain for Financial Transactions ... 14

Peer to Peer Transfer Using Cryptocash by Everex 15

Platform for Microlending - Kiva ... 17

Our Solution for Problems with Existing Application 18

 iv

CHAPTER Page

3 DESIGN AND IMPLEMENTATION .. 19

Components of our System ... 20

Implementation .. 27

Framework Used ... 32

4 EXPERIMENTAL SETUP AND RESULTS ... 35

Experimental Setup ... 35

Transparency and Privacy of Data .. 38

Survey of Smart Contract Security ... 48

5 CONCLUSION ... 69

Privacy, Transparency and Security Symmary .. 69

Future Work ... 70

REFERENCES .. 73

 v

LIST OF TABLES

Table Page

1. Chaincode Policies for Actors for Endorsement of Transactions on Assets 26

2. Attributes of Project Asset for Borrower in Open State. 39

3. Attributes of Project Asset for Donor in Open State. ... 40

4. Attributes of Pool Asset for Donor in Voting State. .. 41

5. Attributes of Project Asset for Donor in Voting State. .. 42

6. Attributes of Project Asset for Donor in Pool Fund State. 44

7. Attributes of Project Asset for Bank in Ext_Fund State. 45

8. Attributes of Project Asset for Borrower in Funded State. 46

9. Attributes of Project Asset for Bank in Funded State. ... 47

10. Attributes of Project Asset for Donor in Funded State. 48

11. Comparison of a Few Popular Ethereum Smart Contract Analyzers 54

12. Potential Risks for Chaincodes due to Non-Deterministic Programming. 62

13. Attributes for Payload of JWT. ... 67

 vi

LIST OF FIGURES

Figure Page

1. Transaction Flow in Blockchain ... 2

2. Example of Component Interaction for Transaction Execution 11

3. Channelization for Organization and Asset Management 24

4. Transactional State Diagram for Project Asset .. 28

5. State Diagram of Cycles for Project Asset .. 28

6. State Diagram for Scenario 1 ... 28

7. State Diagram for Scenario 2 ... 29

8. State Diagram for Scenario 3 ... 30

9. State Diagram for Scenario 4 ... 31

10. Component Diagram for Experimental Setup .. 37

11. Snapshot of Chaincode Interface for fabric-shim Package 52

12. Questionnaire with Answers to Generate Lint Configuration File 56

13. Generated Configuration File .. 56

14. Output for Initial Execution of lint for Pool Contract .. 57

15. Output After Syntactic Correction by lint for Pool Contract 58

16. Output After All Corrections for Pool Contract ... 58

17. Output for Initial Execution of lint for Borrower Contract 59

18. Output After Syntactic Correction by lint for Borrower Contract 59

19. Output After All Corrections for Borrower Contract ... 60

20. Output for Initial Execution of lint for Bank Contract ... 60

21. Output After Syntactic Correction by lint for Bank Contract 60

 vii

Figure Page

22. Output After All Corrections for Bank Contract .. 60

23. Output for Initial Execution of lint for Token Contract ... 61

24. Output After Syntactic Correction by lint for Token Contract 61

25. Output After All Corrections for Token Contract .. 62

26. Current Architecture of Pool per Charity Basis .. 71

27. Architecture for a Common Fund Pool for All Charities 71

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction to Blockchain

Blockchain is a chain of immutable records of transactions. Blocks store the

information about the transaction and also store a hash code to distinguish each block from

another. With the help of blocks, a ledger of transactions is created. This ledger of

transactions is not centrally stored but distributed among all the participating entities. These

entities run and maintain physical nodes for the blockchain and have copies of the ledger.

The integrity and reliability of this distributed ledger is ensured via standard consensus

protocols. Since the data is distributed, it makes this technology highly secure and scalable.

[1]

Blockchain consists of 3 major components:

• Blocks: Every chain consists of blocks. The data is stored in the blocks. A 32-bit

whole number is called nonce is generated when a new block is created. A 256- bit

hash is also combined with the nonce. Hash helps to distinguish the blocks.

• Miners: Miners create new blocks on the chain. For mining new blocks i.e. adding

new information to the ledger, there has to be consensus from all other miners as

well. Every block contains the reference to the hash of the previous block. So, for

mining new block this information is important. Making any changes to a block not

only requires remining the block but also all the blocks after it. Hence block chain

is considered to be very secure.

 2

• Nodes: Blockchain is distributed via the nodes in the chain. Every node has a copy

of the blockchain. Since every node has its own copy of the data, if any changes are

made all other nodes will be notified making it impossible to change any

information. This enables immutability in blockchain. Each node validates each of

the transactions and only if the new transaction is verified it is added to the chain.

Figure 1 gives an overview of the flow of a transaction in any blockchain application.

Figure 1. Transaction Flow in Blockchain. Source: Nadeem, Sara & Rizwan, Muhammad
& Manzoor, Jaweria & Ahamd, Fahad. (2019). Securing Cognitive Radio Vehicular Ad
Hoc Network with Fog Node based Distributed Blockchain Cloud Architecture.
International Journal of Advanced Computer Science and Applications. 10.
10.14569/IJACSA.2019.0100138.

 3

1.2 Types of Blockchain

Public Blockchain: A public blockchain network is completely open and anyone can join

the network. There are no permissions or roles involved. Since there are no permissions

involved, the data is accessible by all the participants. No particular participant has control

over the data. It is completely decentralized. There are a couple of issues with the public

blockchain. Since the network is open, the computational power required to manage the

ledger is huge. Every node has to solve a complex, computationally intensive problem such

as proof of work (PoW) to join the network. Also, there is no privacy in transactions and

hence it is considered to be less secure. Bitcoin [4] and Ethereum [5] are examples of public

blockchain. [2]

Private Blockchain: A private blockchain is also known as permissioned blockchain. In

this we can set up access control and restrict who can participate in the network.

Participants need to have an invitation or permission to join the network. There is some

central management involved in private blockchain. Only the participants involved in a

transaction are aware about the details of the transaction. It is useful for commercial

businesses where it is important to keep the transaction information private. It is not

completely decentralized but is considered to ensure more privacy and security. Since the

number of participants in the network is limited, it is more scalable. Hyperledger fabric [6]

is an example of a private blockchain. [2]

 4

1.3 Introduction to Microlending

Microlending is a type of financing that provides small amounts of money to very poor

fledgling entrepreneurs to encourage self-sufficiency and to end destitution, particularly in

developing countries. It is similar to small business loans, but also different based on the

motivation behind it, size of the loan and the people involved. Customary lenders

exclusively center on procuring a benefit by charging interest. Microlenders have a greater

amount of enthusiasm for improvement. Some of them unquestionably want to make profit,

but the fundamental objective is to help create organizations for small entrepreneurs who

might not have the available opportunity.

Microlending began in 1974 by one man, Muhammed Yunus, who gave a small loan

to a Bangladeshi lady. That lady used the money to make and sell bamboo stools to take

care of her family. The idea then spread globally. Numerous banks and non-bank

institutions presently offer small scale loaning services. It has reformed aid efforts in third-

world countries. [3]

Microlending in its purity is viewed as a charitable cause. The lenders don’t concern

themselves with the money being repaid. The primary motivation is the opportunity to help

people who want to work hard but don’t have access to affordable business capital. But in

the present world, microlending has also become a business idea. Some individuals

consider it as a means to earn more money by charging high interest rates from the

borrowers.

 5

1.4 Problems with Existing Microlending Platforms

With the existing microlending platforms most people take loan to fulfill their basic

necessities and cannot repay the loan later due to missing sources of returns. Microlending

is criticized for creating debt by complex schemes for poor borrowers. The loan amount is

small and the overhead to manage the process is huge. Trust requirements and corruption

represent numerous issues in the present lending scenario. Below mentioned are some of

the issues associated with existing microlending platforms:

• No transparency of information and transactions involved in the lending process

• Missing legit donors who support the cause of microlending

• High interest rate imposed by donors

• No verifiability of information provided by the borrowers or the lenders making

the process prone to corruption

• Vulnerable to security threats

1.5 Why Private Blockchain is Useful for Microlending Application?

Different types of users are a part of a microlending application, and they have different

roles. Various transactions are involved in the lending process. We want to build an

application which can support the following requirements:

• Identify and manage different user roles such as borrowers, donors etc.

• Maintain the privacy of data being shared with different users

• Provide transparency of transactions to the users

 6

• Security of data

Private/Permissioned blockchain provide us with features which will helps in achieving

these requirements. Following an invite only approach, only approved users can join the

network. This helps in determining the identity of the users. Separate rules for transactions

can be defined based on the user roles. Borrowers and Donors will have separate rules

governing their transactions. Self-executing contracts which is the terms and conditions for

a transaction to take place between the users are stored across the blockchain network in

the form of lines of code. These are known as smart contracts, one of the critical

components of blockchain technology. Smart contracts allow trusted transactions to be

carried out between the participants. It works on the principle IFTTT i.e. if this then that.

If the terms and conditions are met, then the transaction is completed. The smart contracts

cannot be changed or deployed without all the participants of the contract being aware

about it. We can also limit the amount of information given to the user based on their roles.

This helps in ensuring privacy.

Each of the participants in the blockchain network has accessibility to the blocks of

information. These blocks contain all the transactional information. With the help of this

donors will always have an update about how and where their money is being used.

Traceability of transactions is possible by using the hash address of the block.

 Having the ability to add users on demand basis restricts the number of users that can

use the network, improving the efficiency of transactions. Hyperledger Fabric is a

permissioned blockchain framework which we will be using for our application.

Hyperledger Fabric is explained in detail in the section 1.6.

 7

1.6 Introduction to Hyperledger Fabric

Hyperledger Fabric is an open source permissioned framework used to develop

enterprise-grade blockchain applications. It has a modular and highly configurable

architecture. It follows plug and play components architecture which enables the platform

to be customized effectively and support the business needs of different applications. The

charitable microlending application is designed using this technology. [6]

The various features of hyperledger fabric are:

Modularity: Hyperledger fabric has a modular architecture. It ensures separation of

transaction processing into three different phases: [7]

• Distributed logic processing and ordering of system

• Transaction ordering

• Transaction validation and commitment

This separation improves the network scalability and helps in increasing the overall

performance of the network.

Privacy and Confidentiality: Hyperledger fabric supports privacy with the help of

channels. Participants in the fabric network can establish channels between subsets of

participants. The visibility of transactions can be restricted using these channels. Only the

participants involved in the channel will have access to the smart contract and the data

involved in the transaction. [8]

Performance and Scalability: Hyperledger being a permissioned blockchain framework,

it is easier to restrict the number of participants involved in the network which helps in

 8

better performance of the network. As discussed above, the transaction processing is split

into phases which ensure fewer levels of trust and validation across the nodes reducing any

overhead cost. [9]

1.7 Components of Hyperledger Fabric

Organization: Organizations are basically the participating members in the network.

Organizations are invited to join the blockchain network. The membership service provider

(MSP) manages the members of the organization. A collection of organizations is known

as consortium. [10]

Membership Service Provider: This component defines the rules by which members are

allowed access to the network. It provides the credentials, manages the user ids and

authenticates the users as well. Clients use the credentials for authentication of transactions

and peers use for authentication of transaction processing results. [11]

Ordering Service: All the transactions are written on the shared ledger in a consistent

manner. The order of transactions has to be established for ensuring that only valid

transactions are entered into the ledger and bad transactions can be rejected by the network.

[12] Hyperledger fabric allows choosing the organization mechanism which is most suited

for the network. Three different ordering mechanisms are provided by HLF which are

SOLO, Kafka, and Simplified Byzantine Fault Tolerance (SBFT).

• SOLO - Transactions are ordered in chronological order. It involves a single

ordering node.

• Kafka - This uses apache kafka. It provides a crash fault tolerant ordering service.

 9

• Simplified Byzantine Fault Tolerance - This ordering mechanism is both crash

fault-tolerant and byzantine fault-tolerant. [13]

Peers: A peer is a type of node. It maintains the ledger and also performs the read/write

operations on the ledger. Organizations interact via the peers hosted on their systems. Peers

can also have a special role i.e. the endorsing peer. They execute the transactions and return

responses to the client application. Endorsing peers are specified in the endorsement

policies corresponding to the chaincode implementation. [14]

Clients: Clients are the nodes that submit the transaction invocation to the endorsers, and

also broadcast transaction-proposals to ordering service. They communicate with both the

peer and ordering service.

Channels: Channels help in partitioning the network to enable data insolation and

confidentiality. They segregate interactions amongst organizations in the network. Each

channel has its own ledger space and hosted smart contracts that operate on its ledger. This

ensures business rules and data access limitations across channels. Channels can only get

a read only access to other channel’s ledger via smart contracts with proper credentials.

Same chaincode logic can be used by multiple channels and also single user can participate

in multiple channels. [15]

Chiancode (Smart Contracts): In hyperledger fabric ecosystem, smart contracts are

known as chaincodes. Chaincode provides the business logic for the hyperledger network.

It is written using either one of these programming languages Go, NodeJS or Java. It is

installed on the peer nodes and instantiated onto one or more channels. It contains the

business rules for the application with consent from the organizations involved. Chaincode

interacts with the world state and updates it if the transactions are valid. [16]

 10

Ledger: Ledger stores the information about the validated transactions. The information is

stored in the form of key value pairs. This information is immutable, once added to the

ledger it cannot be modified. Each peer has its own copy of the ledger. [17]

1.8 Transaction Flow and Ordering in Hyperledger Fabric

The transaction process is divided into below 3 phases:

1. Transaction proposal: In this step the client application sends a transaction

proposal to the endorsing peers. This proposal consists of the client id, payload,

timestamp, and client signature. Each endorsing peer then executes an individual

chaincode on the proposal and generates a proposal response. The transaction is not

written in the ledger yet. It is returned to the application along with the response.

2. Ordering and block formation: All the transaction proposal responses from

phase1 are sent to the ordering service. The ordering service is responsible for

packaging the responses into blocks. The blocks are stored on the orderer’s ledger

and also distributed among the peers of the channel. The transactions are put in a

strict order making hyperledger fabric’s blocks to be final. Peers will use these

blocks in the next phase to validate and commit.

 11

Figure 2 Example of component interaction for transaction execution. Source: Liang,
Xueping, Juan Zhao, Sachin Shetty, Jihong Liu and Danyi Li. “Integrating blockchain for
data sharing and collaboration in mobile healthcare applications.” 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC) (2017): 1-5.

3. Validate and commit: The orderer distributes the blocks generated in phase2 to all

the peers connected to it. Each peer validates the blocks independently maintaining

the consistency of the ledger as well. The peer validates that the transactions are

endorsed by the required organizations using the endorsement policy defined in the

chaincode. If the transaction is valid, then the peer will try writing it to the ledger.

Once written to the ledger, the transaction is final.

 12

1.9 Hypothesis

The motivation behind traditional microlending is to support the financially deprived. But

these days microlending has become more of a business venture. With the advancement in

technology and blockchain there is an opportunity to revisit economies of microlending by

combining charitable and commercial financing. Hence, is it possible to develop a platform

that will support both commercial microlending as well as charitable donation to support

the real cause of microlending. The model proposed and implemented supports this

capability. Both individuals as well as financial institutions can participate in the platform.

The objective of the model is to:

1. Increase the efficiency of the funding process by reducing the time taken for

borrowers to receive funds.

2. Enhancing the transparency of how funds are disbursed along with providing

visibility of project progress and how the funds are being utilized.

3. Ensuring privacy of information shared by the participants.

4. Identifying potential security threats and ensuring that our model addresses those

threats.

1.10 Organization of Thesis

The remaining section of the thesis is organized as follows:

Chapter 2 contains the related work, problems with existing technologies and our solution

to overcome those problems. Chapter 3 describes the design and the implementation of the

 13

application using hyperledger fabric. It explains how the design supports the objectives of

our platform. It describes the various components in our system. Different scenarios to

explain the flow of transactions is also stated in this chapter. It also discusses about

ChainRider[20], an important service used for the blockchain network setup. Chapter 4

explains the experimental setup of the platform and then discusses the results for

transparency and privacy. It then explains a detailed survey of security analysis for our

system. Chapter 5 concludes the thesis along with mentioning some possible future work

scenarios.

 14

CHAPTER 2

RELATED WORK

2.1 Blockchain for Financial Transactions

Blockchain has revolutionized the process of financial transactions. Blockchain

increases the transparency of transactions and has helped in making systems much more

secure. Since blockchain has a decentralized architecture, it eliminates the risk of a

vulnerable centralized database. The immutable ledger makes it unhackable and hence it is

difficult to fake a transaction which makes it safer.

In finance, all transactions have to follow some contract. These contracts define the

rights and the duties involved. Traditional contracts written on paper are time consuming

and can be forged. Smart contracts help in automating the process. With no intermediaries

involved, transactions become faster and more reliable. All the transactions can be tracked

and verified. Different parties involved in the business can validate the transactions. There

is no centralized authority so there is no single point for failure. Banks are also able to

reduce any transaction fees or any overhead costs since no middleman is involved. This

also increases the efficiency of the system. The entire transactional process is automated

reducing any delays. [18]

With so many benefits of this technology, IBM partnered with we.trade [19] to create

a platform based on IBM Blockchain platform to provide trading solutions. It simplifies

cross border trading and provides a platform to perform smooth international transactions.

we.trade is a joint venture between twelve major European banks - CaixaBank, Deutsche

 15

Bank, Erste Group, HSBC, KBC, Natixis, Nordea, Rabobank, Santander, Société Générale,

UBS and UniCredit. Companies are brought to the platform by the banks for the purpose

of trading which ensures trust between the users. Since the platform is based on blockchain,

there is no single point of failure or a single controlling entity. All the relevant parties have

the same information regarding the trade deals which is stored on the ledger. If some

company attempts to make any changes to the terms and conditions of the trade, all other

companies involved in the trade will be informed about the changes. Smart contracts ensure

that if one company has fulfilled the requirements of a transaction then the payment process

will be executed immediately. This avoids any delay of payment for the companies. These

contracts are built into the system and hence no third-party legal systems are involved. [19]

The users of this platform are mostly big financial institutions who want to trade

internationally. It is not meant for peer to peer transactions and no charitable cause is

involved.

2.2 Peer to Peer Transfer Using Crypto Cash by Everex

Blockchain capital transfer using crypto cash: Everex, a financial technology company

supports peer to peer money transfers, payments using blockchain. They use Ethereum

blockchain technology to support financial transactions. Ethereum is an open source,

decentralized, public blockchain software platform.

Everex supports financial inclusion of unbanked individuals using crypto cash. Crypto

cash is a cryptocurrency, where each unit has its value pegged to, and a name based on, the

fiat currency it represents. Users convert their local currency to crypto cash at their banks

 16

and then transfer this crypto cash using blockchain. This process supports cross border

remittance, online payments and microlending as well. But all this is peer to peer. They use

a credit scoring algorithm to determine the borrower’s credit worthiness. Then based on

the result of the algorithm borrower and lender negotiate the terms and conditions for the

contract. On agreement the lender transfers the money to the borrower in the form of crypto

cash. The loan should be returned in the form of cryptocurrency as well.

Their system consists of four major components, the Account management component,

Everex services component, the Ethereum parser application and the database component.

The account management component is responsible for user registration, account creation

and crypto cash wallet setup. The Everex services component comprises all the services

involved in the money transfer process. The lending API is responsible for the micro

lending service. The Ethereum parser application is responsible for tracking all the crypto

cash transactions involved in the lending process. The database component stores all the

user data as well as the transaction data. [20]

One of the major issues with the Everex platform is that it is based on public

blockchain. Any number of users can use the platform and there is no privacy involved in

transactions. With the increase in number of users, the load on the network also increases

reducing the efficiency of the network. Moreover, we cannot add any third-party

institutions like lender institutions and law bodies while securely ensuring privacy of data.

This platform is business oriented which does not support the moral cause behind

microlending.

 17

2.3 Platform for Microlending – Kiva

Numerous platforms have been developed for microlending offering some or other

features. Kiva was among the first few platforms developed for microlending. Kiva

supports only person to person lending. Kiva provides a platform where borrowers can

share their story about why they need money and lenders browse through different

borrower profiles to choose whom they want to lend money. Borrowers include various

types of information in their profile such as: why they need money, how much amount they

need and for how long. Kiva works with local organizations known as field partners to

monitor the lending process. The field partners look out for borrowers who are in need of

money. [21]

The unique feature of this platform is that the field partners disburse loans to the

borrowers as soon as they find one. Most of the funds are disbursed even before the

borrower's story is posted on Kiva’s platform. Lenders browse through these stories and

choose borrowers they want to support. They can lend as small as $25. All these small

amounts are aggregated to backfill the already disbursed loan by the field partners. Field

partners are responsible for collecting the loan repayments from the borrowers. They might

also charge some interest from borrowers to cover their operation costs. The field partner

then gives back this money to Kiva and Kiva in turn returns it to the lenders. All the

transactions are done using wire transfers.

One of the major problems with this platform is transparency. Lenders are not aware

where their money is actually going. The field partners provide the money to borrower, so

it defies the idea of person to person lending. If the field partners are capable of lending

 18

the money to borrowers, then there is no actual requirement for a platform like Kiva. The

loans are disbursed to the users even before there are donors available. There is no defined

way for transactions to take place and hence making the platform not reliable.

2.4 Our Solution for Problems with Existing Applications

To solve the problems with existing applications we have tried to incorporate the

features of blockchain to make a secure and reliable platform for microlending. Our

application supports both charitable donation as well as commercial funding. The

individual donors of our application are motivated to help the underprivileged borrowers

without expecting any monetary returns. We are using hyperledger fabric to build our

application which is a private blockchain framework. Being a permissioned framework,

the users are added to the application only on invite basis. With the help of smart contracts,

we can clearly define the set of rules and regulations for any transaction between the

borrower and donor. The transactions are stored on the ledger and donors have the copy of

this ledger. With the help of this ledger donors can track where their money is actually

being invested providing complete transparency to the users. We are also using multiple

channels in our platform for making the interaction between the actors much more secure.

Only the actors who are a part of the channel will be aware about the assets and transactions

on that channel. By incorporating the above-mentioned features our application accounts

for the cause of microlending.

 19

CHAPTER 3

DESIGN AND IMPLEMENTATION

A peer to peer approach

 We introduce a peer to peer application where we have both individuals as well as

financial institutions as lenders. The platform is operated by charity organizations who are

motivated to extend the application’s outreach to third world economically deprived small

sized businesses. These NGOs should actively search and verify the identities of such

entities and genuineness of their business models either through physical visits or sources

like credit history and valid business registrations (if available). These verification steps

are out of scope of our implementation and handled externally by the charity.

The individual donors who wish to participate in this charitable cause should be

motivated to help the borrowers without expecting any monetary returns. They get to have

a detailed view of a project plan and the loan requirements and accordingly decide to

contribute. Their donations may provide the initial seed money to start a project. The

repayments from the borrowers are then saved into a pool of funds managed by the charity

which can be reused to loan other borrowers. We aim to provide these loans at no interest

to the borrowers but a very small fraction of the loan as operational fees for the platform.

There might be times when the contributions by the donors are not sufficient to fund a

project and even the pool of funds (donation pool) falls short of funds. Financial institutions

such as banks come into play in such scenarios. The charity can enroll banks that can

provide loans at preferably low to reasonable interest rates on separate channels. Channels

 20

are discussed in section 1.7. This ensures restricted access to user and loan data. The charity

deducts an enrollment fee and small transaction fees per loan as its operation costs.

The charity may ensure transaction traceability for donors and banks by motivating the

borrowers to actively update fund utilizations and progress on project milestones on the

application platform. Donors and banks can have a view of the transactions on the project

asset and trace their tokens by their hash addresses at any point of time. This provides them

a sense of trust towards the charitable organization and the platform while gratifying their

willingness of benevolence as they can see their contributions to provide essential

resources to those in need. This in turn might motivate them to contribute more to the cause.

3.1 Components of our System

3.1.1 Actors

Monetary transactions are involved in our application. Hence, it is difficult to find legit

borrowers or donors. We need to have some central authority governing the addition of the

users to the system as wells as monitoring the transactions involved. I have used four

different actors for the application.:

1. Borrower: The borrowers are the beneficiaries of our platform. They are the

economically underserved small to medium scale family run businesses who

propose their business plans to the charity in order to obtain micro loans. The

provide the details of the project along with the project milestones to Charity.

 21

2. Charity: Charity is the central authority of our platform. They add the all the other

3 actors to the platform. They provide the infrastructure to the borrowers and the

donors to perform transaction in the platform. They govern the transactions of our

platform. They are also responsible for maintaining a pool fund. This pool fund is

used when premium donors vote to donate for a project.

3. Donor: Donors are the benevolent actors of the system who wish to donate to this

social cause and are ensured that the effects of their efforts are visible. They

contribute by evaluating the project proposal provided by the borrowers. There also

exists a class of donors called premium donors. These are the donors who are given

a special advantaged because of their good donation history. When normal donors

refuse to fund a project, the premium donors are given an opportunity to vote and

fund a project.

4. Bank: Banks are third party institutions of the platform. In case the donations fall

short of the required loan amount, or no individual donors want to fund a project

the bank can authorize a loan and provide funds to the borrower. The banks do

charge some additional interest from the borrowers.

 3.1.2 Assets in our system

We have the following assets in our application:

1. Project: The project asset records the basic information about the project and its

loan needs. It is frequently updated in our system to record all the donation

 22

transactions, repayment info and milestone progress. The key attributes of a project

record are listed below:

• Project Id

• Project Name

• Fund available

• Fund deadline

• Fund required

• Owner

• State description

• Timeline

• Unutilized funds

• Vote Yes Count

• Voting deadline

• Loan Balance

2. Pool: Pool asset records the information and transactions on the fund pool. It also

holds the records of individual donors and their transactions. The key attributes of

a pool object are:

• Pool Id

• State Description

• Donors

• Fund Available

• Owner

 23

• Pool Records

• Premium Donors

• Unutilized Funds

• User Records

3. Token: Token represents real world currency on the platform. Registered users on

this platform use token to donate and repay funds. Each token is associated with a

user id. Only the owner of the token can make the transfer making it highly secure.

The main elements of a token are listed as follows:

• Balances

• Name

• Symbol

• Total Supply

• Value

3.1.3 Endorsement policies

Endorsement policies are a set of rules for a chaincode that allow peers from various

organizations to endorse a transaction proposal. If an endorser peer from an organization

is required by an endorsement policy of a chaincode, the peer needs to have that chaincode

installed on it. The peer can then simulate the proposal and send the proposal to the orderer

with its signature. In case a member with a malicious intent tries to inconsistently modify

the state of an asset, the ordering node can identify the conflict in the Read-Write data set

and reject the transaction proposal. We have set the endorsing policies to require one

 24

endorsement form each organization from that channel. Table 1 provides the details of

endorsement policies for the chaincode in our system.

Figure 3 Channelization for organization and asset management

3.1.4 Channels

In an enterprise application like this, actors from different organizations often need to

exchange and modify data while isolating data from other organizations. I have used 4

different channels in my platform. Charity being ad admin needs to interact with all other

actors. Hence 3 channels one for each, Borrower, Donor and Bank. The common channel

is used for monetary transactions. An overview of channel organization for the design is

presented in figure 3. This makes sense in a peer to peer permissioned architecture. For

example, a borrower doesn’t need to access the information related to the fund pool in the

 25

donor channel. A channel provides a medium to secure asset states and regulate privacy of

transactions by providing a local scope to each chaincode hosted on the channel. Only the

members specified in the policy at the time of chaincode instantiation in a channel are

authorized to endorse or sign transactions. At times, a transaction data needs to be

propagated between members of two different channels, for e.g., a transaction where a bank

loans fund to a project proposal, the borrower just needs to know the amount of funds

loaned by bank and the rate of interest without knowing the state of the actual pool asset.

In this case, the charity who has seen this transaction in a channel with the bank can update

the filtered information on the charity-borrower channel. Thus, channels strengthen the

confidentiality of data.

3.1.5 Smart Contracts (Chaincodes)

The smart contracts embed the business rules of transactions for assets on our

microlending platform. The endorsing peers running a valid version of the chaincode can

simulate the correct transaction which can be further validated by each individual peer by

matching the signatures on the proposal against the policy before committing the proposal

to their copy of the ledger. The endorsing peers belonging to each organization for a

chaincode specified in table 1 should have a valid copy of the smart contract for the

transactions to be recorded in a consistent manner on their ledgers. The smart contracts on

our system are:

• Borrower Contract: Specifies transaction rules for borrowers to create a project

and repay the loan to charity.

 26

• Pool Contract: Donations and pool-based voting and fund cycle management

[figure 3 below] must be securely transacted on the donor channel. Functionalities

like user activity and project level activity management are essential for our

transparency goals.

• Bank Contract: Banks are able to provide loans to charity and a set of project

details are published for the banks to accept/reject a loan request.

• Token Contract: Tokens must be handled very securely amongst all the parties.

This contract is critical in the sense that it specifies rules to manage tokens as it

represents real world money.

Our setup has 4 channels, 4 members and 4 chaincodes deployed under certain policy
restrictions as specified below:

Table1. Chaincode Policies for Actors for Endorsement of Transactions on assets

Channel Actors Chaincode Assets Policy

Bank
Channel Charity, Bank

Bank
Contract Project

AND (bankMSP.member,
charityMSP.member)

Borrower
Channel

Charity,
Borrower

Borrower
Contract Project

AND (bankMSP.member,
borrowerMSP.member)

Common
Channel

Charity,
Bank,
Borrower,
Donor

Token
Contract Token

AND (bankMSP.member,
borrowerMSP.member,
charityMSP.member,
donorMSP.member)

Donor
Channel

Charity,
Donor

Pool
Contract

Project,
Pool

AND (charityMSP.member,
donorMSP.member)

To restrict transactions on pool asset to donors and the charity, we have created a

separate channel called the Donor Channel. Similarly, there is a Bank Channel to make

transactions between the bank and the charity private. Only the actors who are a part of the

channel are allowed by the policy to endorse the transactions on assets specified and

 27

mapped against the channel name in the table 1. The And() operator in the hyperledger

fabric policy specification requires all the actors passed to it to endorse and sign a

transaction during the transaction proposal phase mentioned in section 1.8.1.

3.2 Implementation

The objective of our application is to provide funding to the borrowers efficiently at

low interest rates. Since the individual donors are not charging any interests from the

borrowers, I have given them the opportunity to donate first in my implementation. If there

are no donors available, then the project will be passed on to the banks for funding. There

are two strict deadlines defined for any project:

Funding deadline: Individual donors have to donate before the funding deadline.

Voting deadline: Premium donors have to decide to vote in favor or against the project

before the voting deadline.

If the total amount of fund is not available until these deadlines, then the project is

passed on to the banks for funding. Banks will charge some interest for funding the project.

We want to ensure that the borrowers are charged with minimal to no interest rates along

with providing them funds within a limited time. All the projects will always reach an end

state. It will either be funded or dropped by the application. Below section 3.2.2 explain in

detail the flow of transactions in our application.

The implementation can be found on https://github.com/sidd1811/P2PMicrolending.

 28

3.2.1 Transaction Flow for Assets

The state diagram Figure 4 describes the transactional states for the Project asset. The

project asset is a key asset to establish transparency in our system as it holds all the

information required to fund a project, its loan information, fund utilization data and

progress report. The project asset contains all the information to attract a donor as well as

keep them updated. Its end to end transaction flow based on different scenarios can be

described as below:

Figure 4 Transactional state diagram for project asset

Figure 5 State diagram of cycles for project asset

 29

A project is proposed and is set to ‘open’ state Figure 4, this marks the beginning of

the donation cycle Figure 5. Once donation period ends Figure 5, there can be multiple

scenarios; these have been described using subsets of Figure 4 in the state transition

diagrams below:

Scenario 1: Donors contribute to fulfill loan requirements

Figure 6 State diagram for scenario 1

1. The donors contribute enough funds that match the proposed loan amount and the

project state is set to ‘funded’. As soon as the state is set, corresponding token transfers

happen in the common channel and the repayment cycle starts.

2. The borrower pays off the tokens in the common channel and the status of the project

is set to ‘repaid’. This is the final state for the project.

Scenario 2: Insufficient funds by donors, successful voting and fund pool contribution.

Figure 7 State diagram for scenario 2

 30

1. When the donations are not sufficient to match the loan asked, the voting phase starts

as shown in Figure 5. State of the project asset is set to ‘voting’. The premium donors

of the pool vote against the project proposal.

2. The votes are evaluated at the end of the voting period as shown in Figure 5. If 3/4th

of the number of premium members agrees, the proposal is accepted by the pool and

the project state is set to ‘pool_fund’.

3. Enough pool funds are consumed to suffice the remaining loan amount and the related

token transactions are made in the common channel. The state of the project is now

‘funded’.

4. The borrower pays off the tokens in the common channel and the status of the project

is set to ‘repaid’. This is the final state for the project.

Scenario 3: Funds donated by donors not enough, premium donors of pool reject proposal

and loan request forwarded to bank.

Figure 8 State diagram for scenario 3

1. When the donations are not sufficient to match the loan asked, the voting phase starts

as in Figure 5. State of the project asset is set to ‘voting’. The premium donors of the

pool vote against the project proposal.

 31

2. The votes are evaluated at the end of the voting period as shown in Figure5. If more

than 1/4th of the number of premium members disagrees, the proposal is rejected by

the pool and the project state is set to ‘ext_fund’.

3. Bank approves the loan proposal and transfers the corresponding tokens for the

required loan amount in the common channel.

Scenario 4: Same as scenario 3, except the bank rejects project proposal

Figure 9 State diagram for scenario 4

1. When the donations are not sufficient to match the loan asked, the voting phase starts

as shown in Figure 5. State of the project asset is set to ‘voting’. The premium donors

of the pool vote against the project proposal.

2. The votes are evaluated at the end of the voting period as shown in Figure5. If more

than 1/4th of the number of premium members disagrees, the proposal is rejected by

the pool and the project state is set to ‘ext_fund’.

3. Bank rejects the loan proposal and the project state is set to ‘dropped’ and any donor

token contributions are reverted in the common channel.

 32

3.3 Framework Used

ChainRider: ChainRider [22] an online service built upon Hyperledger Framework. It

offers different services to build blockchain applications quickly. We are using ChainRider

to generate skeleton blockchain network. It provides the options to choose the modules

necessary to run a hyperledger network on cloud such as orderer service, certificate

authority, MSPs, skeleton rest API and blockchain explorer. We design and provide the

necessary network configurations such as channel configuration, choice of consensus

protocol, number of peers per actor, endorsement policies for chaincodes. We have built

our application using these services provided by chain rider. Below are the services offered

by ChainRider.

1. Blockchain Network Generator: This service is responsible for setting up a

permissioned blockchain network. It supports networks with multiple organizations

and channels. This service generates all the configuration files and cryptographic

for a fully functional network. It provides a streamlined and well documented

mechanism for network deployment and startup process. The extracted network

configuration files are structures in such a way that the configuration file of each

physical machine is in a separate folder. These machine specific files can then be

deployed on physical or virtual machines to create blockchain nodes.

2. Smart Contract Generator: This service creates a hyperledger smart contract

which can be built and deployed in less than a minute. The smart contracts are

written in NodeJS. It provides an efficient way to create basic and advanced

 33

functionalities for managing an asset object such as insert, query and update. After

deploying the smart contract on the blockchain network, it can immediately write

on its data ledger.

3. Smart Contract Marketplace: This service provides advanced smart contracts

offering some sophisticated functionalities for the network. These contracts are

available for free of charge. There are 10 smart contracts with 4 different categories

available on the marketplace.

4. RestAPI: The REST API service can run on any machine in the blockchain

network. The API is the form of NodeJS application which provides different APIs

to interact with the blockchain application. It can be used to perform different tasks

such as registering users, installing smart contracts, creating channels, querying

smart contracts, invoking transactions and many more.

5. Blockchain Explorer: This service provides analytics of the private blockchain

network. It can be optionally setup on each of the machines in the form of web

application and provide information such as peer information, block information,

transaction information, installed smart contracts, available channels.

3.3.1 Advantages of Using ChainRider for our Application

1. Token authentication for rest API

ChainRider provides in-built user authentication mechanism using json web tokens

for all requests. This prevents any malicious user that may try to assume other user's

identity.

 34

2. Trusted environment configuration

Any system is always prone to human errors. Hyperledger Fabric being a new and

complex technology involving a multitude of configurations and components

involves tedious network setup especially for beginners. A platform like

ChainRider can be a blessing to businesses and result oriented developers to quickly

setup and start playing around a fully-fledged network. ChainRider has automated

scripts to setup and easily modify the network which ensures avoiding a human

error which can eventually lead to compromising the security of the users or the

business.

3. Cloud enabled

A hyperledger fabric network generally comprises of actors running their own peers

on their physical systems. ChainRider’s cloud-based deployment service prevents

users from using faulty or improperly configured machines which might lead to a

hacked and therefore a compromised network entity.

 35

CHAPTER 4

EXPERIMENTAL SETUP AND RESULTS

4.1 Experimental Setup

4.1.1 Blockchain Infrastructure Setup

The setup for this infrastructure is driven by the transactions performed by the actors

(discussed in section 3.1.1) who interact with the application following specific sets of

rules as laid out in our requirements. Amongst these four, Charity is one such key

organization operating, maintaining and overseeing any transaction that occurs in the

system.

Hyperledger Fabric is an open source permissioned blockchain framework. I have used

hyperledger fabric sdk for NodeJS for my application. The fabric-client [23] package

provides API’s to interact with the peers and the orderers of the network and the fabric-

shim [24] package provides API’s for the chaincode interface. The hyperledger fabric

components (discussed in section 1.7) for the microlending application are configured as

follows:

1. Peers: Peers hold the ledger data and host chaincodes. The peers are run and

maintained by each actor in the system. Peers can be added dynamically and at least

one peer should be interacting with the system for each actor. Charity and Banks

host their own peers. The infrastructure for hosting peers for the borrowers and

 36

donors is also provided by Charity. Let us say peers are denoted as Actor.peer0 then

Donor.peer0 depicts a peer with peer id peer0 running on a system accessible by a

donor.

2. Clients: The actors can interact with the system peers using REST API. This

interaction is established using REST or GRPC protocol. Each actor has a

corresponding REST API client. We denote them using the convention Actor API.

3. Ordering Service: Kaka ordering mechanism is used to ensure that the transactions

from endorsing peers are validated and ordered in a consistent manner before they

are committed onto the ledgers.

4. Channels: The setup implements segregation of actor roles and hosting of specific

chaincodes running on the peers enrolled on 4 channels. The actors in a channel

transact over the assets that are managed by each channel and read-written on the

channel’s ledger. The endorsement policies for these chaincodes defines the actors’

ability to view and endorse a transaction. As discussed in the beginning of this

section, we have Charity as the common actor enrolled in all the channels as they

are a medium of transacting data between channels. Therefore, we have named the

channels using the other actor’s role that is enrolled in the channel except the

common channel that has all the actors.

5. Ledger Data: Ledger in the hyperledger framework is comprised of two parts. The

World State which holds the current key-value relations of assets and the

blockchain transaction logs which has the history of all the transactions. The world

state is held in a choice of database used by the chaincodes hosted in a channel to

fetch the latest values of assets and transact on them rather than following the entire

 37

blockchain transaction logs to get the required information. We are using CouchDB

[25] as the World State db as it allows data to be stored in JSON format, rich queries

to be executed against the world state data, and indexes to support queries.

The figure below depicts the organization of above components for the experiments:

Figure 10 Component diagram for Experimental Setup

 38

4.2 Transparency and Privacy of Data

Transparency and privacy of data are the key aspects for the platform. Project and pool

are the two key assets for which transparency needs to be established on this platform.

1. Project Asset: Comprises of the key features of a borrower’s proposal. It originates

from the borrower in the borrower channel and is published on all the key channels.

These private copies of the asset are updated at many stages before the accumulated

donation or loan is finally paid back to the borrower and it repays the sum back to

the system. At the very same time, the privacy of Project asset needs to be ensured

and only the required attributes need to be published to all the channels.

Maintaining a proper view of this asset for all actors in each channel is extremely

crucial bearing in mind that any private information updated or added by an

organization is not viewable to other actors. Endorsement feature of hyperledger

fabric makes sure that actors view and endorse transactions on assets they are

concerned with as shown in table 1 in chapter 3. These policies are bound to

chaincodes which are in turn bound to run on designated channels for this platform.

Further, this asset also has a section where the borrower updates the status and their

progress against the proposed project milestones once the loan is paid out. This is

a key data to be kept transparent to the donors for their motivation as described in

the hypothesis section of this document.

2. Pool Asset: This asset is privately owned and managed by the Charity and only the

Donor actor can access it. It comprises of important data related to the fund pool

 39

and donors’ activity and is a key aspect to provide a transparent view of these

activities to the users concerned actors in the system.

We will go through different states of the project and the pool asset in the lending

process and discuss its views for different actors in the system to understand how data

privacy and transparency is maintained. Different actors involved are Borrower, Donor,

Charity and Bank. Charity actor is common on all the channels. It acts like an operator of

the platform.

1. Open: Project is in open state when the borrower first proposes a project.

API endpoints involved: propose and publish

Borrower calls the propose API to give the project details for which funding is

needed.

View for the actors on the borrower channel:

Actors involved: Borrower and Charity

 Table2. Attributes of Project Asset for Borrower in Open State

Project Id 0001

Project Name Weave Baskets

Fund Available 0

Fund Required 450

Loan Balance 0

Owner user1@borrower.com

State Description OPEN

Timeline

Description SNO Available Required

Get Raw
Materials

1 0 100

Machine Setup 2 0 350

Charity calls the publish API and the project is published on the donor channel.

 40

View for the actors on the donor channel:

Actors involved: Donor and Charity

 Table3. Attributes of Project Asset for Donor in Open State

Project Id 0001

Project Name Weave Baskets

Create Date Tue Jul 06 2020

Fund Available 0

Fund Required 450

Fund Deadline Thu Jul 9 2020

Charity user1@charity.com

Owner user1@borrower.com

State
Description

OPEN

Timeline

Description SNO Donors Available Required Status

Get Raw
Materials

1 0 100 OPEN

Machine Setup 2 0 350 OPEN

Voting Deadline Fri Jul 11 2020

From table2 and table3 we can see the different views of the open state of the project

asset for the borrower and the donor. When borrower proposes a project, he gives

the necessary details about the project and its timeline. Charity then modifies this

asset and adds new project attributes which is provided to the donor and is not

visible to the borrower.

2. Voting: If a project is unable to fetch the amount of money required, then that

project goes to the voting state. The premium donors will vote and decide whether

to fund a project or not.

API endpoints involved: endCycle

View of pool asset for the actors on donor channel:

Actors involved: Donor and Charity

 41

 Table4. Attributes of Pool Asset for Donor in Voting State

Create Date Tue Jul 06 2020

Name Pool fund

Fund Available 100000

Owner user1@charity.com

State Description ACTIVE

Donors

user1@donor.com

user2@donor.com

user3@donor.com

user4@donor.com

Pool Records

user1@charitycom

Project Id 0003

Fund 610

Milestone Id 2

Premium Donors

user1@donor.com

user3#@donor.com

User Records

user1@donor.com

Project Id 0001

Fund 100

Milestone Id 1

Fund 2

Milestone Id 10

user2@donor.com

Project Id 0003

Fund 45

Milestone Id 1

user3@donor.com

Project Id 0002

Fund 50

Milestone Id 1

Project Id 0004

Fund 80

Milestone Id 2

user4@donor.com

Project Id 0003

Fund 50

Milestone Id 2

 42

When funding deadline is reached the endCycle API is triggered by a scheduler

service maintained by charity and the project asset status changes to Voting. This

will start the voting phase and premium donors can vote.

View of project asset for the actors on donor channel:

Actors involved: Donor and Charity

 Table5. Attributes of Project Asset for Donor in Voting State

Project Id 0001

Project
Name

Weave Baskets

Create Date Tue Jul 06 2020

Fund
Available

110

Fund
Required

450

Fund
Deadline

Thu Jul 9 2020

Charity user1@charity.com

Owner user1@borrower.com

State
Description

VOTING

Timeline

Description SNO Donors Available Required Status

Get Raw
Materials

1 user1@donor.com 100 100 FUNDED

Machine
Setup

2 user1@donor.com 10 350 OPEN

User Records

user1@donor.com

Project Id 0001

Fund 100

Milestone Id 1

Fund 2

Milestone Id 10

Vote Yes Count 2

Voter List

user1@donor.com

user3@donor.com

Voting Deadline Fri Jul 11 2020

 43

Pool asset contains the details of the premium donors and the pool record. Pool

record attribute provides information about the projects funded by the pool. It stores

all the information about the donors and hence pool asset is visible only to the

donors and the charity. The information is not shared with any other actors of the

system. Charity is responsible for updating the information in the pool asset.

Project did not get the sufficient funding before the deadline and went to voting

phase. Donors get a complete view of the project asset and its timeline which will

motivate them to whether vote in favor or against. Borrowers and Bank don’t have

any view of this state of project asset as this information is of no use to the bank or

the borrower. The voterList and userRecord attributes are updated which were

blank in the open state as shown in table 5.

3. Pool fund: If a project is in voting state and the premium donors agree to provide

the funds for the project, it goes in pool fund state.

When voting deadline is reached endCycle API called by charity. This will end

the voting period and internally call the assessVotes method to check if the voting

criteria is met. Currently the criteria for successful voting is that the at least 80% of

premium donors should vote in favor. If the voting is successful, then project asset

state changes to pool_fund.

API endpoints involved: endCycle, assessVotes

View of project asset for the actors on donor channel:

Actors involved: Donor and Charity

 44

 Table6. Attributes of Project Asset for Donor in Pool Fund State

Project Id 0002

Project
Name

COVID local relief

Create Date Tue Jul 06 2020

Fund
Available

425

Fund
Required

930

Fund
Deadline

Thu Jul 9 2020

Charity user1@charity.com

Owner user1@borrower.com

State
Description

POOL_FUND

Timeline

Description SNO Donors Available Required Status

Acquire
health kits

1 user1@donor.com 380 380 FUNDED

Rent space
for medical
urgency

2 user1@donor.com 45 550 OPEN

User Records

user1@donor.com

Project Id 0002

Fund 200

Milestone Id 1

Project Id 0002

Fund 45

Milestone Id 2

user3@donor.com

Project id 0002

Milestone id 1

Fund 180

Vote Yes Count 2

Voter List

user1@donor.com

user3@donor.com

Voting Deadline Fri Jul 11 2020

In table 6 the project was successfully voted by the premium donors. Here the

donors have a clear visibility of the fund required by the project, milestones that

 45

need to be funded and the other donors who have funded for the project. This

transparency of information is helpful for the donors in deciding their vote. Voter

List attribute contains the information about the premium donors who successfully

voted for the project. Borrowers or banks will not have any view of all this

information to ensure the privacy of donors and the fund pool maintained by

charity.

4. External fund: If a project from the voting state is not selected by the premium

donors to be funded, then the state of the project changes to external funds. Banks

will decide to whether fund or reject the project.

API Endpoints involved: publish, loan

View of project asset for the actors on bank channel:

Actors involved: Bank and Charity

 Table7. Attributes of Project Asset for Bank in Ext_Fund State

Project Id 0001

Project Name Weave Baskets

Create Date Tue Jul 06 2020

Fund Available 110

Fund Required 450

Fund Deadline Thu Jul 9 2020

Charity user1@charity.com

State
Description

EXT_FUND

Timeline

Description SNO Available Required Status

Get Raw
Materials

1 100 100 FUNDED

Machine Setup 2 10 350 OPEN

Bank Records

 46

Charity calls the publish API and the project attribute information is published on

the bank channel. If the bank agrees to fund the project the loan API is called by

the bank.

As shown in table 7 the entire donor related information is removed. Bank doesn’t

need to know about the donors involved in the lending process. Based on the find

required bank will decide to fund or not. Bank records field is added and will be

updated accordingly.

5. Funded: Once the amount of money required by project is completely provided by

the donors, the state of the project changes to funded.

API Endpoints involved: donate, loan, publish

View for the actors on the borrower channel:

Actors involved: Borrower and Charity

 Table8. Attributes of Project Asset for Borrower in Funded State

Project Id 0001

Project Name Weave Baskets

Fund Available 450

Fund Required 450

Loan Balance 340

Owner user1@borrower.com

State Description FUNDED

Timeline

Description SNO Available Required

Get Raw
Materials

1 100 100

Machine Setup 2 350 350

Project attributes are updated showing that the project is completely funded. Bank

or donor related information is not given to the borrower to maintain the privacy of

the donors and the bank.

 47

 View for the actors on the bank channel:

Actors involved: Bank and Charity

 Table9. Attributes of Project Asset for Bank in Funded State

Project Id 0001

Project Name Weave Baskets

Create Date Tue Jul 06 2020

Fund Available 450

Fund Required 450

Loan Balance 340

Fund Deadline Thu Jul 9 2020

Charity user1@charity.com

State
Description

FUNDED

Timeline

Description SNO Available Required Status

Get Raw
Materials

1 100 100 FUNDED

Machine Setup 2 10 350 FUNDED

Bank Records

user1@bank.com

Fund 340

If the bank funds, the project then loan API is called. Bank information is updated

in the attributes.

 The project attributes are updated in table 10 to show that the project is

funded. Even though this project was funded by bank as well, that information is

not visible to the donor. The donor will be shown the progress of the project

milestones. This transparency of data to show the project progress to the donors

will help in attracting more donors for the platform. The donors can always track

the progress and see where their money is being used.

 48

View for the actors on the donor channel:

Actors involved: Donor and Charity

 Table10. Attributes of Project Asset for Donor in Funded State

Project Id 0001

Project
Name

Weave Baskets

Create Date Tue Jul 06 2020

Fund
Available

450

Fund
Required

450

Fund
Deadline

Thu Jul 9 2020

Charity user1@charity.com

Owner user1@borrower.com

State
Description

FUNDED

Timeline

Description SNO Donors Available Required Status

Get Raw
Materials

1 user1@donor.com 100 100 FUNDED

Machine
Setup

2 user1@donor.com 10 350 FUNDED

4.3 Survey of Smart Contract Security

Ensuring security of chaincode in the system

The key feature of any private blockchain application is the security it brings along

with it. Despite this, developing such an application requires manually written code on

top of the blockchain platform. The proposed microlending system involves

transactions of token asset which represents real world currency on the platform.

 49

Ensuring that the monetary transactions are carried out in a secure and verifiable

manner becomes a priority in an enterprise grade application like this.

Chaincodes embed the business rules for the application. This means each transaction

is governed by a chaincode. Hence, writing the chaincode in a secure manner and

assessing the code against possible breaches in mind are two essential aspects for

developing an enterprise application like this.

4.3.1 Security Features Provided by Chaincode

Hyperledger fabric is developed with the focus of enabling enterprises to create and

deploy their applications with ease rather than spend effort and money towards

ensuring security of the chaincode. As opposed to a public blockchain like Ethereum

where an anonymous user can join and access any sensitive data, hyperledger fabric is

built from top to bottom to ensure security of data and transactions and to restrict

interactions of authenticated users with data (using MSP) based on their roles. As a

result, most of the security features are spread out across various components on the

entire fabric network as opposed to the focus on deploying highly secure smart

contracts as in a public blockchain. Let us discuss some of these key security features

provided by hyperledger fabric:

1. ACL (Access Control List) and endorsement policies

In hyperledger fabric, admin of the network can set access control of resources using

policies. Each resource policy is associated with certain sets of identities and are simple

 50

rules that evaluate to true or false [26]. The resources like user chaincode and events

stream source [27] are used by the users to interact with a blockchain network.

Resources like system chaincode [6] are run within peer processes and are called in the

background. These policies are a fundamental way for hyperledger fabric to ensure that

an identity who is trying to access a system resource has the respective rights provided

by the admin in order to do so. Endorsement policy set at a chaincode level is one such

important policy to ensure that a peer has rights to endorse a transaction.

Using Endorsement Policies for Transactional Security:

When a transaction is proposed by a user on a channel, the transaction is executed

by a subset of peers assigned to this channel. These peers have a copy of the chaincode

required to run this transaction. This set of peers is called endorser peers. The

endorsement capability can be activated by the admin for any peer on the network. The

endorsers sign this transaction block with their private key and send this transaction to

the ordering service. The transaction is then sent to the ordering service which orders

the transactions received into blocks. This block is then broadcasted to other peers of

the channel who validate the signatures on the block against the endorsement policy of

the chaincode set by the admin before its deployment. This policy specifies the number

of endorsements required on a transaction to be deemed valid. Finally, the block is

written into their local ledgers only if the transactions sent by each endorser match.

This helps us to make sure that each endorser has a valid copy of the chaincode.

The endorsement policy can be used to select these endorsers and can be configured

to require validation from a given set of peers from specific organizations. We have set

the endorsing policies to require one endorsement form each organization from that

 51

channel. This will ensure that each organization has a correct set of rules and

agreements for each possible transaction on an asset.

2. Run in a dockerized environment

In hyperledger fabric, chaincode is run inside a docker container. This helps in isolating

the chaincode from other chaincodes and the peer process. This also makes the

chaincode lifecycle (starting, upgrading and aborting) manageable. The peer and the

chaincode dockers communicate via the gRPC protocol. This creates a loose coupling

between these processes and results in loose coupling between the chaincode language

and the peer.

3. Chaincode interface is strictly defined and cannot be changed

The packages for fabric libraries provide an interface for chaincode developers to

implement for writing chaincode in any of the three supported languages. This interface

adds to the security by providing a blueprint or a rule for implementing a chaincode.

The input and output formats are determined before-hand to ensure deterministic

behavior. We will discuss the deterministic behavior in section 4.3.3.

A sample interface for NodeJS fabric-shim [24] package is shown in figure 11. The

Init method is called via a client by an admin for the first time after the chaincode is

installed. The instantiation call initializes the internal data including initialization of

the application state. The Invoke method is generally called by the users of the

application to perform transactions.

 52

 Figure 11 Snapshot of Chaincode Interface for fabric-shim Package

4. Chaincode deployment scenarios

Here we present some common deployment scenarios [28] where the expectations of

the channel members are not in line with others. This may cause some serious security

issues, however hyperledger fabric handles these scenarios.

• An organization that disagrees on chaincode definition: In this scenario, the

organization won’t install the chaincode on its peers, resulting in the organization

not being able to use the chaincode for performing any transaction endorsement.

This will in turn lead to the transactions being declined as the endorsement policy

will not be met due to our AND policy as described in point 4.3.1.1 above.

• The channel members do not agree on a chaincode definition: The chaincode

definition will not be installed on any peer of the channel.

• Organizations install different chaincode packages: Organizations can

install/instantiate a chaincode with a different package id. Fabric allows peers to

install different chaincode binaries which will read and write into the same

chaincode namespace.

 53

We have enforced the scenario where peers have to download chaincode binaries

and install the chaincode with the same id. This will ensure that chaincode binaries

maintained by each peer in a channel is the same at a point of time.

4.3.2 Tools for Chaincode Security Assessment

Smart contract on public blockchain Vs Chaincode Security

Smart contracts in public blockchain differ completely from that in private as it is

designed to run securely on an open network with anonymous participation. This requires

them to be highly secure. However, as mentioned in section 4.3.1, fabric is designed for

secure enterprise applications, the responsibility to ensure security is shifted towards the

entire infrastructure rather than on the smart contract. The types of risks associated with

both the types of smart contracts are different as well [30].

Many DSLs (Domain Specific Language) have been introduced to ensure security of

smart contracts on public blockchains. These DSLs aim to minimize risks from user written

smart contract codes by restricting instructions or adding specific features on top of the

languages they are derived from. Solidiy influenced by C++, python and JavaScript is the

most popular smart contract DSL for Ethereum. Vyper, a derivative of python, restricts

instructions such as infinite looping and recursive calls. Flint introduced a definition of

function access and created asset type to avoid inheritance and overloading. However,

private blockchain like hyperledger fabric uses general purpose languages to avoid learning

costs. The risks are shifted to other components of the network. [30]

 54

Tools for validating smart contracts security:

Even when developers use such specific languages for smart contracts, vulnerabilities

may still exist. There are many smart contract scanners and analyzers available to assess

and avoid security risks. There are a variety of tools to assess security for public

blockchain. Some of the popular tools for Ethereum smart contracts are listed below.

Table 11 Comparison of a Few Popular Ethereum Smart Contract Analyzers [34]

Tool Concept Issues Detectable Drawback

Mythril
Symbolic execution of
EVM bytecode

• Reentrancy
• Mishandled

exceptions
• Transaction

order
dependence

• Timestamp
dependence

• Can miss critical
violations because of
under-approximation

Oyente
Symbolic execution of
EVM bytecode

• Reentrancy
• Mishandled

exceptions
• Transaction

order
dependence

• Timestamp
dependence

• Can miss critical
violations because of
under-approximation

Securify

• Define
compliance
patterns

• Define violation
patterns, which
imply its
negation

• Analyzes the
dependency
graph of the
smart contract

• Dependency
issues

• Identify
violations of
satisfaction of
property

• Missing numerical
analysis such as
overflows

• Reachability:
Assumes all
instructions in the
contract to be
reachable

However, hyperledger with its inherently guaranteed security as described in section

4.3.1, does not motivate the open source community to create such analyzers. As a result,

 55

there does not exist any such tool as of now. [28] Chaincode scanner [31] is one such tool

that does some verification for go chaincodes but we confirmed after a proper analysis that

the tool doesn’t work correctly and moreover only supports chaincode written in Go

language. Therefore, developers who write smart contracts using general-purpose

languages need to take care of their code. Static analysis of the code is the appropriate way

to ensure that coding best practices are being followed.

4.3.3 Static Analysis Assessment Results

With the understanding that chaincodes are inherently very secure and hence require

basic checks for programming errors, we perform static analysis of our chaincode and also

look at some hyperledger fabric specific deterministic programming conventions as

suggested in an external study [30].

We use static analysis to verify programming conventions and standards against

general language level. This will ensure that the contract creator does not introduce any

programmatic security vulnerabilities in the code.

Tool used: ESLint [32] A npm package to identify problematic patterns in a given

JavaScript code by comparing it against ECMAScript [33] standards.

Test Scenario:

We start by creating a config file required for the tool. When we run the command to

initialize this configuration, it asks few questions based on the test scenario. A screenshot

of the questionnaire and the resultant configuration file for the tool are shown in figure 12

and figure 13 respectively.

 56

Figure 12 Questionnaire with Answers to Generate Lint Configuration File

Figure 13 Generated Configuration File

This configuration file contains the environment related configuration for the files to

analyze. The parserOptions is an important field and defines the JavaScript version to be

used for parsing the smart contract files. The ecmaVersion defines the ECMAScript [33]

standards to be checked while parsing these files.

Next, we run the analyzer for each of the 4 smart contracts for our application. We have

shown the result of the run for each smart contract in figure 14, 17, 20 and 23.

 57

Now we use the --fix option provided by the tool to fix potentially fixable errors and

warnings. These corrections are mostly to enforce language standards and correct any

syntax issues. The tool generates a new set of warnings and errors unhandled by the tool.

These are shown in figure 15, 18, 21 and 24.

Finally, we fix the remaining semantic errors like the existence of an unused variable

or not using camel cases. These errors require programmer intervention as the tool is not

smart enough to detect and fix semantic errors. We re-run the analyzer on these files and

try to find more errors. If the check passes and no warnings or errors are detected, the tool

just exits without any output as shown in figure 16, 19, 22 and 25.

Test Outputs:

1. Pool Contract

Figure 14 Output for Initial Execution of lint for Pool Contract

 58

Figure 15 Output After Syntactic Correction by lint for Pool Contract

Figure 16 Output After All Corrections for Pool Contract

 59

2. Borrower Contract

Figure 17 Output for Initial Execution of lint for Borrower Contract

Figure 18 Output After Syntactic Correction by lint for Borrower Contract

 60

Figure 19 Output After All Corrections for Borrower Contract

3. Bank Contract

Figure 20 Output for Initial Execution of lint for Bank Contract

Figure 21 Output After Syntactic Correction by lint for Bank Contract

Figure 22 Output After All Corrections for Bank Contract

 61

4. Token Contract

Figure 23 Output for Initial Execution of lint for Token Contract

Figure 24 Output After Syntactic Correction by lint for Token Contract

 62

Figure 25 Output After All Corrections for Token Contract

Static analysis tools are widely available for all languages and as we can see in the

above testing scenarios, we see that it helps in a proper implementation of the language in

use. It helps remove syntactic errors completely as well as semantic errors up to a certain

extent. This is one way of making sure that we write the smart contract code in a verifiable

manner and would be recommended to be used as a handy tool for developers before each

deployment iteration of their smart contracts.

Common best practices for writing chaincode with respect to hyperledger fabric

environment:

Table 12 Potential Risks for Chaincodes due to Non-Deterministic Programming [30]

Category Risks Rationale Behind the Risk

Non-determinism
Arising
From Language
Instructions

Global Variable Global variable can be changed inherently

Key-Value
Structure Iteration

Key-value returned in random order

Reified Object
Addresses

Addresses of memory depend on execution
environment

Concurrency of
Program

Can lead to non-deterministic behavior
e.g. race condition

Generating
Random Number

Peers can obtain different results based on
random number value generated

System Timestamp Difficult to ensure timestamp functions are
executed at same time for different peers

Non-determinism
Caused
From Accessing
Outside

Web Service Need to ensure that the results of calling the
web service is not different among peers

System Command
Execution

Need to ensure systems hosting the peer
return same output for each peer

 63

of Blockchain External File
Accessing

Need to ensure files are synced for all peers

External Library
Calling

Need to consider external library behavior

State Database
Specification

Range Query Risk Two functions to call range query cause
phantom
read of the ledger. Phantom read reads data that
other transactions add or delete and changes
the
result of the process.

Fabric
Specification

Cross Channel
Chaincode
Invocation

Addresses of memory depend on execution
environment, endorsing peer needs to be hosted
on the machine hosting the peer for second
channel

Read Your Write A value written for a key cannot be read within
the same transaction call

Practices Unchecked Input
Arguments

Should verify input arguments for every
method

Unhandled Errors Should handle every error, even on
unsuccessful returns

Approach to avoid non-determinism:

To avoid the above categories of non-deterministic practices for our platform, we confirm

having made sure all our chaincodes comply with the following conventions:

1. Non-determinism Arising from Language Instructions

• No use of global variables

• No key-value iteration inside any transaction call

• No use of memory dependent objects

• Zero concurrency, concurrency at API level if any

• Send timestamps from API while invoking a chaincode method rather than reading

timestamps within chaincode

2. Non-determinism Caused from Accessing Outside of Blockchain

 64

• No external services called or returned from

• No system command execution

• Files packed within the chaincode package for any reference

• Use verified libraries from fabric sample projects [35] for any external operation

3. Fabric Specification

• Made sure chaincodes for the two channels are hosted on the same peer for

transactions where cross chaincode invocation is required

• Not reading the value from ledger before the transaction on that key is committed

4. Common Practices

• Hyperledger Fabric makes sure a method is invoked with the correct number and

types of arguments

• Handled all errors, or throwing an empty error when an invoked method is exiting

without any execution

4.3.4 Common Security Attacks and its Prevention

Below mentioned are some of the common attacks possible on the application and their

corresponding preventive measures.

1. 51% attack: 51% attack refers to such an attack where a single entity is capable of

taking the entire decision of what should happen next in the network. [36] Since

hyperledger is a private blockchain framework, it is not completely decentralized

which introduces the possibility of such type of attack. Charity acts like an operator

in our application and is available on all the channels. Charity can be vulnerable to

 65

this type of attack and can be hacked. To prevent this type of attacks in our

application, each chaincode has endorsement policies that involve all the actors for

that channel. This ensures that the task of proposing a new transaction is shared

amongst the actors involved in the chaincode’s policy.

Malicious charity nodes can try to obtain the complete access of project and

pool asset. The pool asset is owned by charity and can be exploited. To avoid this,

we have implemented a voting-based mechanism to determine the usage of pool

funds. Further to ensure that the voting process is legitimate, we only allow donors

who have a good donation record to participate.

2. Invalid id attack: In this attack a user with invalid id or who is unauthorized tries

to gain access to the transactions and data in the system. [37] When multiple

actors/users are operating on the same channel such type of attack is easily possible.

Consider the scenario where a borrower is not able to get sufficient funds for its

project. The project goes to ext_fund state and bank has to decide whether or not

fund the project. Since all the actors are operating on same channel, the borrower

will have the complete view of the project asset and the pool asset. Two scenarios

are possible here:

• Borrower will have the view of the pool asset and can try contacting the

charity directly to provide the funds.

• Borrower will have the access to banks information and can try reaching

out to the bank to negotiate the terms and conditions for the loan.

Both these scenarios are not acceptable as, as the security and confidentiality of the

system is compromised.

 66

To prevent from such a scenario to arise in our application, we have 4 different

channels. Any updates happening to the project or the pool asset during the lending

process are not visible to the borrower as depicted in the transparency section

above. If the charity decided to fund the project, the borrower will only receive the

information that the project is funded. They cannot know how or by whom. If the

project is funded by bank, then also the bank details are not shared with the

borrower. Only the information that the project is funded, and loan amount is shared

with the borrower.

3. Spoofing: Spoofing is a method whereby a user can pretend to be an authenticated

user and act on behalf of them. This is the most classic case for blockchain based

cryptocurrencies. To alleviate this situation, our approach follows a two layered

user authentication process. Chainrider provides a way to enable user

authentication on the rest APIlevel using JSON web tokens or simply JWT. JWTs

are comprised of three parts that are encoded and clubbed to form the token. Header

which consists of the signing algorithm, payload which consists of information such

as application level identification attributes held by a user and signature part is a

signature constructed using the encoded forms of header and payload, a secret and

the signing algorithm. Once the user logs in with the proper payload, a JWT is

returned by the application which needs to be passed with subsequent API calls.

Further, it expires overtime making sure the JWTs are not stolen or reused by any

other individual. We are using the following parts for creating payload for

registering users for JWTs:

 67

Table13. Attributes for payload of JWT

User Name user1@charity.com

Org Name charity

Role client

Attributes ""

MSP Secret xyz

The organization name and the Membership Service Provider secret are used to

make sure that the user is registered and enrolled with the correct MSP on the

network. Now the network level security comes into picture. The Certificate

Authority issues X.509 certificates for every component as well as members on the

system. X.509 certificates are the basis for protocols like TLS and SSL. Each entity

and module on the network interact using their public key certificates. Any member

of an organization is supposed to sign a transaction with their private key before

they can propose or commit a transaction. This is verified by the orderer node and

rest of the participating peers with the public key of the member before it can be

committed to the chain.

As mentioned in the beginning of this section, token asset is basically the money

on our platform. Spoofing attacks can affect the token asset management and

compromise the motive behind this platform of attracting donors by ensuring trust

and transparency. A user who is exercising this attack can steal a member’s owned

token assets. To prevent this, we have associated token assets to a member’s X.509

certificate-based fingerprint. Any user who tries to access their token should have

a valid certificate issued by the CA and enrolled by their MSP. The two-layered

 68

authentication protocol described in above paragraph therefore plays a key role in

establishing user and token asset’s security.

 69

CHAPTER 5

CONCLUSION

5.1 Privacy, Transparency and Security Symmary

In this thesis, I investigated on why and how to use blockchain to make a secure

application for peer to peer microlending. I have used private blockchain to build my

application as it provides with features that help in ensuring the objectives stated in the

hypothesis discussed in section 1.9.

The use of charity as an actor to the application helped in ensuring that only valid

projects are introduced in the system, the different project and pool attributes are updated

continuously as the assets state change and it also ensure that cause of microlending is

supported by providing funds to the borrowers from pool fund if no donors are available.

The different views of the assets discussed in the section 4.2 helps us in visualizing how

the information from different actors is being shared and how the transparency is

maintained while the project states change.

The project into multiple milestones and progress of the milestones is shown to the

donors which will help them in tracking their donations and will also motivate them to

provide funds for other milestones. If donors have good donation record, we entitle them

as premium donors in the system which helps in enforcing trust between the application

and the donors and in turn helps in attracting more donors. These premium donors govern

the voting process as well not giving the complete monopoly to the charity.

 70

Summarizing the discussion from section 4.3 it mentions the various security features

provided by chaincode and steps taken to ensure the chaincode’s security. The use of

multiple channels, different endorsement policies, use of tokens in combination with the

certificate authority helps in minimizing some of the common security threats to the

system.

5.2 Future Work

Currently our design supports multiple charity institutions enrolled onto the network,

but each charity can manage only their individual pools of funds and donors. This is a

limitation in the sense that each charity might have limited funds and a small group of

donors enrolled in their pool, not turning out to be trustable and eventually inefficient for

the borrowers. We can rather allow multiple charity organizations to club their pool of

funds and have a common pool of donors. This will result in a large sum of pool funds and

a better reach for the borrowers.

Assets are recorded on the blockchain as key-value pairs. Currently our pool asset’s

key is constructed by combining a pool name and the owner id that is the charity. We can

remove the singularity of these pools by having a common key for the pool, so that it can

be accessed by any charity organization on the donor channel. The formula below shows

this where f is a concatenation type function:

Current POOL_KEY = f(pool_name, CharityID)

Future POOL_KEY = f(pool_name)

 71

The figures below show an overview of current and future architecture for pool

management where C denotes a charity actor, P denotes the pool and D denotes a donor.

 Figure 26. Current Architecture of Pool per Charity Basis

Figure 27 Architecture for a Common Fund Pool for All Charities

 72

This can come along with security threats like some charity institution exploiting

pool resources and probable disagreements amongst them regarding their decisions on

their extents to support a project. We will have to establish new rules for voting

mechanisms for this common shared pool. This can be resolved by revising the terms

encoded in the smart contracts and an external monitoring system for our pool asset.

Hyperledger’s private data collections can also be used to manage private data if any

for charity organizations within the same channel.

 73

REFERENCES

1. Patel, Raj, Akhil Sethia, and Shyam Patil. “Blockchain - Future of Decentralized
Systems.” In 2018 International Conference on Computing, Power and

Communication Technologies (GUCON), 369–374. IEEE, 2018.

2. “Public Vs. Private Blockchain: A Comprehensive Comparison.” 2019.
Blockchain-Council.Org. August 7, 2019. https://www.blockchain-
council.org/blockchain/public-vs-private-blockchain-a-comprehensive-
comparison/

3. "What Is Microlending? Definition And Examples". 2020. The Balance.

https://www.thebalance.com/microlending-315625.

4. “Bitcoin - Open Source P2P Money.” 2009. Bitcoin.Org. 2009.

https://bitcoin.org/en/.

5. “Home.” n.d. Ethereum.Org. https://ethereum.org/en/.

6. Androulaki, Elli, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, et al. 2018. “Hyperledger

Fabric.” Proceedings of the Thirteenth EuroSys Conference on - EuroSys ’18.

https://doi.org/10.1145/3190508.3190538.

7. “Introduction — Hyperledger-Fabricdocs Master Documentation.” n.d.

Hyperledger-Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.2/whatis.html#modularity.

8. “Introduction — Hyperledger-Fabricdocs Master Documentation.” n.d.

Hyperledger-Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/whatis.html#privacy-and-confidentiality.

9. “Introduction — Hyperledger-Fabricdocs Master Documentation.” n.d.

Hyperledger-Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/whatis.html#performance-and-scalability.

10. “Glossary — Hyperledger-Fabricdocs Master Documentation.” n.d. Hyperledger-

Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.2/glossary.html#organization.

 74

11. “Membership Service Provider (MSP) — Hyperledger-Fabricdocs Master

Documentation.” n.d. Hyperledger-Fabric.Readthedocs.Io. Accessed June 25,

2020. https://hyperledger-fabric.readthedocs.io/en/release-

1.4/membership/membership.html.

12. “The Ordering Service — Hyperledger-Fabricdocs Master Documentation.” n.d.

Hyperledger-Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html.

13. Paul, Moses Sam. 2018. “Hyperledger — Chapter 6 | Hyperledger Fabric

Components — Technical Context.” Medium. December 19, 2018.

https://medium.com/swlh/hyperledger-chapter-6-hyperledger-fabric-components-

technical-context-767985f605dd.

14. “Peers — Hyperledger-Fabricdocs Master Documentation.” n.d. Hyperledger-

Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/peers/peers.html.

15. “Channel Capabilities — Hyperledger-Fabricdocs Master Documentation.” n.d.

Hyperledger-Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/capabilities_concept.html.

16. “Smart Contracts and Chaincode — Hyperledger-Fabricdocs Master

Documentation.” n.d. Hyperledger-Fabric.Readthedocs.Io. Accessed June 25,

2020. https://hyperledger-fabric.readthedocs.io/en/release-

1.4/smartcontract/smartcontract.html.

17. “Ledger — Hyperledger-Fabricdocs Master Documentation.” n.d. Hyperledger-

Fabric.Readthedocs.Io. Accessed June 25, 2020. https://hyperledger-

fabric.readthedocs.io/en/release-1.4/ledger/ledger.html.

18. Rijmenam, Dr Mark van. 2019. “5 Blockchain Benefits for the Financial Services

Industry.” Medium. August 28, 2019. https://medium.com/@markvanrijmenam/5-

blockchain-benefits-for-the-financial-services-industry-20b760d4bb3a.

19. “We.Trade.” n.d. Www.Ibm.Com. Accessed June 25, 2020.

https://www.ibm.com/case-studies/wetrade-blockchain-fintech-trade-finance.

20. Norta, Alex, et al. “Lowering Financial Inclusion Barriers with a Blockchain-

Based Capital Transfer System.” IEEE INFOCOM 2019 - IEEE Conference on

 75

Computer Communications Workshops (INFOCOM WKSHPS), 2019,

doi:10.1109/infcomw.2019.8845177.

21. Choo, Jaegul, Changhyun Lee, Daniel Lee, Hongyuan Zha, and Haesun Park.

2014. “Understanding and Promoting Micro-Finance Activities in

Kiva.Org.” Proceedings of the 7th ACM International Conference on Web Search

and Data Mining - WSDM ’14. https://doi.org/10.1145/2556195.2556253.

22. “ChainRider Private Blockchain Documentation.” n.d. Chainrider.Io. Accessed

June 25, 2020. https://chainrider.io/docs/private-blockchain/#blockchain-as-a-

service.

23. “Fabric-Client.” n.d. Npm. Accessed July 16, 2020.

https://www.npmjs.com/package/fabric-client.

24. “Fabric-Shim.” n.d. Npm. Accessed July 16, 2020.

https://www.npmjs.com/package/fabric-shim.

25. “Apache CouchDB.” n.d. Couchdb.Apache.Org. Accessed July 16, 2020.

https://couchdb.apache.org/.

26. "Access Control Lists (ACL)" Hyperledger. Accessed July 16, 2020.

https://hyperledger-fabric.readthedocs.io/en/release-2.0/access_control.html.

27. “Peer Channel-Based Event Services — Hyperledger-Fabricdocs Master

Documentation.” n.d. Hyperledger-Fabric.Readthedocs.Io. Accessed July 16,

2020. https://hyperledger-fabric.readthedocs.io/en/release-

2.0/peer_event_services.html.

28. “Fabric Chaincode Lifecycle — Hyperledger-Fabricdocs Master Documentation.”

n.d. Hyperledger-Fabric.Readthedocs.Io. Accessed July 16, 2020.

https://hyperledger-fabric.readthedocs.io/en/release-

2.0/chaincode_lifecycle.html#deployment-scenarios.

29. “Fabric Chaincode Lifecycle — Hyperledger-Fabricdocs Master Documentation.”

n.d. Hyperledger-Fabric.Readthedocs.Io. Accessed July 16, 2020.

https://hyperledger-fabric.readthedocs.io/en/release-

2.0/chaincode_lifecycle.html#install-and-define-a-chaincode.

 76

30. Yamashita, Kazuhiro, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and Sun Jun.

“Potential Risks of Hyperledger Fabric Smart Contracts.” 2019 IEEE

International Workshop on Blockchain Oriented Software Engineering

(IWBOSE), 2019. https://doi.org/10.1109/iwbose.2019.8666486.

31. “ChainSecurity Chaincode Scanner Analyse Hyperledger Fabric Chaincode for

Vulnerabilities.” n.d. Chaincode.Chainsecurity.Com. Accessed July 16, 2020.

https://chaincode.chainsecurity.com/.

32. “ESLint.” 2020. Wikipedia. June 27, 2020. https://en.wikipedia.org/wiki/ESLint.

33. “Standard ECMA-262.” n.d. Www.Ecma-International.Org. Accessed July 16,

2020. https://www.ecma-international.org/publications/standards/Ecma-262.htm.

34. Durieux, Thomas, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. “Empirical

Review of Automated Analysis Tools on 47,587 Ethereum Smart

Contracts.” ArXiv:1910.10601 [Cs], February.

https://doi.org/10.1145/3377811.3380364.

35. Hyperledger. “Hyperledger/Fabric-Samples.” GitHub. Accessed July 16, 2020.
https://github.com/hyperledger/fabric-samples.

36. Frankenfield, Jake. n.d. “What Is a 51% Attack?” Investopedia.

https://www.investopedia.com/terms/1/51-

attack.asp#:~:text=A%2051%25%20attack%20refers%20to.

37. Dabholkar, Ahaan & Saraswat, Vishal. (2019). Ripping the Fabric: Attacks and

Mitigations on Hyperledger Fabric. 10.1007/978-981-15-0871-4_24.

