
Generating Trusted Coordination of Collaborative

Software Development Using Blockchain

by

Jinal S. Patel

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2020 by the

Graduate Supervisory Committee:

Stephen S. Yau, Chair

Ajay Bansal

Jia Zou

ARIZONA STATE UNIVERSITY

August 2020

i

ABSTRACT

The coordination of developing various complex and large-scale projects using computers

has been well established and is the so-called computer-supported cooperative work

(CSCW). Collaborative software development consists of a group of teams working

together to achieve a common goal for developing a high-quality, complex, and large-scale

software system efficiently, and it requires common processes and communication

channels among these teams. The common processes for coordination among software

development teams can be handled by similar principles in CSCW. The development of

complex and large-scale software becomes complicated due to the involvement of many

software development teams. The development of such a software system can be largely

improved by effective collaboration among the participating software development teams

at both software components and system levels. The efficiency of developing software

components depends on trusted coordination among the participating teams for sharing,

processing, and managing information on various participating teams, which are often

operating in a distributed environment. Participating teams may belong to the same

organization or different organizations. Existing approaches to coordination in

collaborative software development are based on using a centralized repository to store,

process, and retrieve information on participating software development teams during the

development. These approaches use a centralized authority, have a single point of failure,

and restricted rights to own data and software. In this thesis, the generation of trusted

coordination in collaborative software development using blockchain is studied, and an

approach to achieving trusted cooperation for collaborative software development using

ii

blockchain is presented. The smart contracts are created in the blockchain to encode

software specifications and acceptance criteria for the software results generated by

participating teams. The blockchain used in the approach is a private blockchain because a

private blockchain has the characteristics of providing non-repudiation, privacy, and

integrity, which are required in trusted coordination of collaborative software development.

This approach is implemented using Hyperledger, an open-source private blockchain. An

example to illustrate the approach is also given.

iii

DEDICATION

This thesis is dedicated to my father, Sunil Patel, my sisters Pragati Patel and Princy Patel,

and Viraj Talaty wholeheartedly, to offer me constant unconditional love and support.

Thank you for encouraging me during my graduate studies with all help and inspiration to

succeed.

iv

ACKNOWLEDGMENTS

I would like to express my earnest appreciation to my advisor Dr. Stephen S. Yau, for his

encouragement and guidance throughout my thesis. He was always patient with me to give

useful insights and feedback on my research. I would like to thank Dr. Yau for giving me

the opportunity to do research under his guidance. I would also like to express gratitude to

my graduate supervisory committee members, Dr. Ajay Bansal and Dr. Jia Zou, to agree

to serve on the committee.

 I sincerely thank my colleagues, Chandralekha Yenugunti, Suli Adeniye, and

Brandon Anderson, in Dr. Yau’s research laboratory for their friendship and numerous

valuable discussions of the research.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION .. 1

2 BACKGROUND ..4

2.1 Collaborative Software Development ...4

2.2 Blockchain ..7

3 PROBLEM STATEMENT .. 21

4 THE OVERALL APPROACH TO GENERATING TRUSTED

COORDINATION OF COLLABORATIVE SOFTWARE DEVELOPMENT . 23

5 GENERATION OF SMART CONTRACTS ... 27

5.1 Software Design Smart Contract .. 32

5.2 Software Testing Smart Contract .. 42

5.3 Software Requirement Smart Contract ... 48

6 ILLUSTRATIVE EXAMPLE OF THE APPROACH 56

7 EVALUATION ... 63

8 CONCLUSION AND FUTURE WORK ... 66

REFERENCES .. 67

BIOGRAPHICAL SKETCH .. 69

vi

LIST OF TABLES

Table Page

1. The Function Level Privileges for Smart Contract Methods 31

2. The Software Component Specifications of the Example Project 60

3. A Summary of the Important Properties of Our Approach, Centralized, and

Decentralized Approaches for Generating Trusted Coordination of Collaborative

Software Development ... 64

vii

LIST OF FIGURES

Figure Page

1. A Centralized Tool or Repository to Handle Coordination in Collaborative

 Software Development ..5

2. A Decentralized Tool for Collaborative Software Development7

3. A Blockchain Infrastructure ...9

4. The Structure of the Block in Blockchain ... 10

5. Blockchain Initialization for N Participating Software Development Teams 24

6. The Software Activities Performed by Each Participating Team in the

 Approach .. 25

7. The Smart Contract for Example 1 ... 33

8. The Smart Contract for Example 2 ... 43

9. The Smart Contract for Example 3 ... 50

10. The Software Development Activities Required for Each Software Component 56

11. The Functional Dependency Graph of the Major Software Components in the

 Example Project ... 58

1

CHAPTER 1

INTRODUCTION

Multiple teams participate in software development activities to achieve high quality and

quick software delivery for a complex and large-scale software system. The coordination

of developing complex and large-scale projects using computers has been well established

and is the so-called computer-supported cooperative work (CSCW) [1]. Coordination

becomes necessary in multiple ways in collaborative software development, such as in

software specifications sharing, software data sharing, to understand software components

with past data, and to verify proposed techniques for acceptance. The collaborative

software development requires similar principles like CSCW to handle the coordination

among participating software development teams. In the absense of a coordination

environment, each participating team will likely to manage its software development

activities on its own. Each team can have different data and software sharing policies,

different tools to maintain information related to software, different development

environments to carry out coordination. In such an environment, complex and large-scale

software development becomes chaos due to heterogeneous tools, development

environments, and delay in coordination among teams. These factors cause trust issues

among participating teams in collaborative software development. In the development of

complex and large-scale software, each software development phase needs input from the

previous software development phase and passes essential data to the next software

development phase. This information builds a history of the software component, which is

a crucial piece of information to audit in the collaborative software development

environment. Trusted coordination is necessary for all kinds of software development

2

paradigms, such as waterfall, spiral, or agile. Each team is coordinating with other teams

directly if they need to collect information on any part of software development activities.

Easy availability of complete and reliable auditable history of software components is

difficult to obtain in centralized approaches [2-7]. Since the sharing information of

software components among development teams is quite common in a complex and large-

scale software development project, a participating team cannot always trust the

information on shared components provided by the other participating teams, especially

when some participants may belong to competitors or possibly malicious groups involved

in the collaboration [8][9]. The involvement of third-party vendors can create more severe

trust issues because of different data sharing policies on software development and quality

of software development. Hence the trust among the participating teams will be reduced

due to the involvement of many participating teams.

 The concerns on the trust issues can be significantly reduced by adequately utilizing

blockchain [10] technology, which has properties of transparency, reliability, and

auditability in data and software specification sharing. In this thesis, the generation of

trusted coordination in collaborative software development using blockchain in presented.

The smart contracts are created in the blockchain to encode software specifications and

acceptance criteria for the software results generated by participating teams. The

blockchain used in the thesis is a private blockchain because a private blockchain has the

characteristics of providing non-repudiation, privacy, and integrity, which are required in

the trusted coordination of collaborative software development. An approach to generating

trusted coordination of collaborative software development is presented and implemented

3

using Hyperledger, an open-source private blockchain. An example to illustrate the

approach is also presented in this thesis.

 The organization of the thesis is presented in seven chapters. The first chapter

provides an overview of the research on collaborative software development and the

organization of the thesis document. The second chapter provides the necessary

background to understand the research problem in collaborative software development and

blockchain. The third chapter describes the problem statement and limitations of a few

approaches in the current state of the art. The fourth chapter explains the blockchain-based

overall approach in detail. Chapter five presents an approach to generate a smart contract

and few sample smart contracts for different phases of the software development lifecycle.

In the sixth chapter, an illustrative example is shown with a sample complex and large-

scale software development project. Chapter seven presents the discussion and conclusion

of the approach. Chapter eight gives a brief overview of the future work on the blockchain-

based approach.

4

CHAPTER 2

BACKGROUND

2.1 Collaborative Software Development

 Software development becomes a complex process due to the increasing demand

for software in all possible domains. Software development comprises multiple software

activities such as software requirement engineering, design, implementation, testing, and

maintenance, and these activities may be performed by various teams based on the

complexity and necessity of the software development project. Multiple teams need to

come together to develop a complex and large-scale software system to produce a high-

quality software system. Collaboration helps software development teams to produce

software quickly. Software development teams are adopting multiple paradigms to carry

out software development activities, such as the waterfall model, spiral model, or agile

methodologies. All these paradigms require multiple teams to coordinate to achieve their

final goal. Participating teams in the collaborative software development project may

belong to the same organization or different organization. A team collaborates with other

teams to share software specifications, software results, and communication for other

software development information. Various collaborative software development tools are

developed to facilitate coordination among participating teams [2-7]. The collaborative

software development environment has many advantages, such as teams can use past

software information to audit or verify software components. The participating teams in

the collaboration may distribute effort and share results for common components to lower

cost and improve software quality. Teams can save efforts of software development

significantly by sharing software component specification and its history, including

5

different phases of the software development lifecycle. The success of the complex and

large-scale software development project relies on how well different participating teams

are working collaboratively. All participating teams need to come to a consensus on useful

tools, technologies, methodologies for an efficient and reliable software development

environment. Various tools are available opensource, and on commercial platforms to

manage coordination among software development teams. These tools use a centralized

repository to share, process, and manage information regarding participating teams, as

shown in Figure 1.

Figure 1: A Centralized Tool or Repository to Handle Coordination

in Collaborative Software Development

 Centralized tools are useful to store information on different phases of software

development activities and create a history of the software component. Software

developers may use the history of the component to verify the reliability, efficiency, and

usefulness of the software component. Furthermore, the software development team can

significantly reduce the cost and build time for the new software component development

6

by utilizing results and history available for the past software component. Collaborative

software development has shown promising results in the current demand for reliable and

fast software development. There are few advantages of using centralized tools for

collaborative software development, such as lower hardware resources, single-point

authority, easy to change, easy to scale.

 Centralized tools for the coordination in collaborative software development have

the following limitations, use of a centralized authority, have a single point of failure, and

restricted rights to own data and software. Due to current threats to software systems, every

day, we see a new cyber-attack launched on such systems. As per recent study regarding

cyber-attacks on software systems, 8,854 breaches are recorded between January 1, 2005,

and April 18, 2018 [11]. Many commercial tools became a victim of such data breaches.

Additionally, centralized tools do not provide a feature of data restrictions on the sharing

of critical software component specifications and results. Due to these weaknesses, trust

among participating teams may be reduced.

 To overcome limitations on centralized tools, various decentralized and distributed

tools, as shown in Figure 2, are developed to manage coordination in collaborative software

development. The most popular open-source distributed version control tool for source

code tracking is GitHub [12], and GitHub provides a platform for software developers to

develop software collaboratively and in distribution fashion. However, when one takes an

in-depth look into GitHub, it is a repository to store content with version control capability.

GitHub provides few necessary features like immutable commit history, parallel workflow

for software development projects, and pluggable merge strategies. Distributed tools like

GitHub has the following limitation in collaborative software development, lack of access

7

management capability, mutable history, no consensus criteria for adding data into the tool.

GitHub was attacked several times for arbitrary code executions and distributed denial of

service (DDoS) in the past.

Figure 2: A Decentralized Tool for Collaborative

Software Development

2.2 Blockchain

 Blockchain is one of the expanding emerging technologies, which uses

cryptographic techniques to build and maintain ever-growing immutable records in a

distributed fashion. The Blockchain was first introduced in 2009 through Bitcoin’s

initiation [13]. Blockchain eliminates the need for centralized authority due to its

distributed nature. As blockchain’s name implies, it is a chain of blocks containing

transactions. The transaction can be a record of tangible assets or intangible assets.

Properties, cars, hardware can be considered as Tangible assets (having a physical form).

Patents, intellectual properties, and copyrights can be considered as Intangible assets

(having no physical form). Both kinds of assets can be recorded in the blockchain.

Blockchain is a kind of advanced data structure, where blocks are connected with

8

cryptographic links, and it is an encrypted ledger of transactions. Blockchain is tamper-

evident and tamper-resistant [14], which means it provides an immutable distributed ledger

with an auditability feature. Blockchain was widely connected with a cryptocurrency like

bitcoin [13] due to its origin, but the underlying technology is being used in many other

applications.

 Blockchain is a complex technology to understand and implement for a specific

application. The following terms should be understood in detail to understand blockchain

technology for applicability of any approach:

• Blockchain network

• Block structure

• Cryptographic functions

• Consensus Protocols

Blockchain network

 Blockchain network is the infrastructure of multiple nodes that provides distributed

immutable ledger. A participant electronic device is called a node in the Blockchain. These

nodes can store a complete copy of the blockchain ledger or partial copy based on the

participation of the node in Blockchain [14]. If a node stores the complete copy, then it is

called a Major node, and it is responsible for becoming online all the time to get the latest

copy of the Blockchain. If a node stores a partial copy of the ledger, then it is called a minor

node. The more major node joins the blockchain network, the better the tamper-resistant it

becomes. When the blockchain data spread across many devices, it will be challenging for

a hacker to update past data stored in the Blockchain. The sample infrastructure for the

blockchain infrastructure is shown in Figure 3.

9

Figure 3: A Blockchain Infrastructure

Block Structure

 Each block in the blockchain has two components: Block header and Block body.

Block header stores various information on the block, such as block number, block version,

Merkle tree root, previous block’s hash, timestamp, size of the block, and nonce [14]. The

Block body consists of blockchain transactions to be added to the blockchain. These

transactions are not necessarily in sequence; it can be picked at any order. The Block

structure is shown in Figure 4 with a block header and block body. Different parts of the

block header are as follows:

Block Number: Block number is the current height of the blockchain, how many blocks

are already added in the blockchain plus one.

Block Version: Version of the blockchain.

10

Figure 4: The Structure of the Block in Blockchain

Merkle Tree Root Hash: In the blockchain, block data is hashed in the form of a Merkle

tree root hash. Merkle tree is a data structure to store data in a way that a single root is

found by hashing and combining data stored in leaf nodes [15]. In the blockchain, Merkle

tree root hash is computed by hashing and combining transactions in the block body.

Merkle tree root hash is then stored in the header of the block and used for providing

features of tamper-resistance of the blockchain. If anyone changes data in the block, then

Merkle tree root hash will be different from one stored in the block header. This data

structure is useful to verify the consistency and integrity of the data stored in the

blockchain.

Previous Block’s Hash: The hash of the complete header of the previous block is stored in

the latest block. Cryptographic chain the blockchain is created by storing previous block’s

hash in the current block. This property creates a linked list like structure with linked

blocks. The first block in the blockchain has no previous block, so it stores value 0 as the

previous block’s hash. Previous block’s hash is also used for providing features of tamper-

resistance of the blockchain. If anyone changes data in the previous block, then computed

11

hash for the block will be different from one stored in the next block’s header. This data is

useful to verify the consistency and integrity of the data stored in the blockchain.

Timestamp: The current time in seconds in the format of the universal time since January

1, 1970, when the current block is created.

Size of the Block: stores size of the block, including block header and block body.

Nonce: Nonce is the abbreviation for the Number Used Only Once. A nonce is used in the

blockchain, which uses a consensus model “proof of work.” Only changing the nonce value

provides a mechanism in blockchain mining for obtaining different digest values while

keeping the same block data [14]. This digest value needs to be less than the target hash

value.

Target Hash: Target hash is a difficulty level from 0 to 2256 number, which is initialized in

the genesis block. When a new block is added to a blockchain, the hash number Hn of the

new block is computed as follows:

 if Hn < Target Hash:

 add a new block in the blockchain

 else:

 reject new block

12

Block Body: List of transactions stored in the current block. These transactions are picked

randomly, and it is not mandatory to have sequential transactions.

Genesis Block: The beginning block in the blockchain is called Genesis Block. It is a

special block in the blockchain, which stores necessary configurations for the blockchain.

Genesis block records the initial state of the blockchain [14] with configurations such as

consensus protocol, target hash (difficulty level), block reward policy (optional), and rate

of blockchain creation.

Cryptographic Functions

Hash functions: Hash function is a one-way and irreversible function that takes any size of

the input and outputs it to fixed-sized message digest [14]. Example hash functions are the

MD family (MD4, MD5), SHA family (SHA-0, SHA-1, SHA-256, SHA-512), SCrypt,

BCrypt. One of the cryptographic hash function is SHA-256, which takes any arbitrary size

of the input and map that to 256-bit size output. The output of the hash functions is

generally rendered in hexadecimal form. Cryptographic hash functions are used in data

integrity, to protect sensitive data, in the verification of digital signatures, and in the

application of TLS, SSL, IPsec. The hash functions frequently used in blockchain platforms

are SHA-256 and SCrypt.

Asymmetric Key Pairs: Blockchain uses asymmetric key pairs, which is also known as

public-key cryptography. Asymmetric key pairs are one of the vital components in

blockchain technology. Public key cryptography utilizes a pair of keys (Public Key, Private

13

Key) for each participating user. The public key from the pair is broadcasted to all other

members of the blockchain. The private key is a secret key for the node, and only known

to the owner of the key. Public key cryptography is used for a digital signature on

blockchain transactions and private communication channel setup. Due to the usage of two

keys in asymmetric cryptography, data is encrypted using one key and decrypted with

others. It is a safer way to make sure that only allowable user receives key for

communication. In the blockchain, each blockchain transaction is signed with the private

key of the owner before adding that into the blockchain. Once it is added into the

blockchain, anyone with the knowledge of the public key of the owner can verify the

owner’s signature.

Digital Signatures: In the real world, handwritten signatures are used to bind signatory to

the handwritten or typed message. Similarly, digital signatures are used to bind signatory

to digital documents or messages. Digital signatures use public-key cryptography in the

blockchain. Digital signatures are used for data integrity, transaction authentication, and

non-repudiation. For example, one node signed a blockchain transaction with its private

key and added it to the blockchain. Any node in the blockchain can verify this blockchain

transaction using the node’s public key. Few well-known signing algorithms are RSA-

based signature schemes, Digital Signature Algorithm (DSA), and Elliptic Curve Digital

Signature Algorithm (ECDSA) [14].

14

Consensus Protocols/Models

 Blockchain uses different consensus protocols to verify the addition of new blocks

in the blockchain. The consensus is agreement criteria or conflict resolution technique

defined in the genesis block. Following is a detailed explanation of the consensus protocols

used in the blockchain, and a brief overview of the advantages and disadvantages of each

consensus protocol.

Proof of Work (PoW): In proof of work model, a user can add a new block in the

blockchain by solving a cryptographic puzzle. The cryptographic solving puzzle involves

a resource-intensive process of finding a Nonce value, which is less than the target hash

defined in the genesis block. The target value may be adjusted (up or down) to regulate

how blocks are being published frequently [14]. The proof of work model is ideal for

blockchains with nodes with less trust among them. This puzzle is designed in a way that

solving puzzles is resource-intensive and challenging, but verifying the solution of the

puzzle is very easy and intuitive. Available computing resources and time increases over

time to enhance the difficulty of the puzzle. Finding nonce is a brute force method, and

miner needs to try different nonce value to match the target hash value. Whichever node

solves the puzzle first, that node broadcast nonce value with block data to all other nodes.

Other nodes in the blockchain verify the solution and accept the result. If the nonce is

accepted by other nodes, then the new block is appended to the blockchain. This entire

process is known as blockchain mining. The user receives a reward for solving the

cryptographic puzzle in the form of cryptocurrency. Bitcoin and Ethereum use proof of

15

work consensus model. Proof of work model is vulnerable to a classic 51% attack on the

blockchain, where the majority of nodes collaborate to solve cryptographic puzzles [14].

Proof of Stake (PoS): Proof of stake model uses the stake of the user in the blockchain

mining process. Proof of stake was created as a replacement to Proof of work model in

public blockchains. The user gets the reward in proportion to the stake he/she holds in the

blockchain. Instead of utilizing intensive resources and computing power to solve PoW, a

PoS miner is entitled to mine a percentage of transactions based on his or her ownership

stake. If a user has a 5% stake in blockchain mining, he will get 5% of the reward when a

new block gets created. Proof of stake generates a situation where 51% attack does not give

many advantages to the attacker because if someone already has a 51% share, they are not

going to attack the network with this share. The value of an attacker’s cryptocurrency will

be impacted if they perform such attacks. Ethereum is planning to switch to blockchain

uses PoS consensus.

Round Robin: Permissioned blockchain networks mostly use the round-robin consensus

model. Just like the round-robin algorithm, nodes in the blockchain network take a turn to

create the next block in the blockchain [14]. A time limit may be imposed to handle

situations where publishing node is not available to publish the next block in its turn. Round

robin model does not require intensive computing power or mining process like proof of

work and proof of stake models. Each node takes a turn to create blocks; hence no node

can create a majority of the nodes in this approach. This model requires nodes to trust each

other to create nodes in turns, so permissionless or public blockchain networks cannot use

this model due to trust issues among participants.

16

Proof of Authority/Identity: Proof of Authority consensus model is also known as Proof

of Identity consensus model. This model needs publishing nodes to attach their real identity

with it, so that node can be identified quickly and trace back to the human user. This model

needs some trust in the blockchain system, where publishing nodes verifies and prove their

identity before joining the blockchain network [14]. This model is widely used along with

the reputation system. The reputation of the publishing node analyzed from its constant

behavior in the blockchain. If any node behaves suspiciously, it is implausible that block

from that node gets published. The proof of identity model is more suitable for

permissioned blockchain.

Practical Byzantine Fault Tolerance (pBFT): PBFT consensus model is based on the

voting system among participating blockchain nodes. Publishing node needs to get two-

third of the votes to publish the next blockchain node. pBFT provides promising results

even if one-third of the nodes are malicious in the blockchain. This model is more suitable

for permissioned blockchain, where the identity of each node is known and verified before

joining the network.

Blockchain Classifications

 Blockchain networks are categorized into two types based on the identification

model of the participating nodes. These two types are public/permissionless blockchain

and private/permissioned blockchain.

17

Public Blockchain: If anyone with the internet can participate in the blockchain network,

then it is called public blockchain or permissionless blockchain. Anyone in the blockchain

can add and verify a new block in the blockchain. Node does not require any prior

permission to join public blockchain; it is more like working on an open-source project

[14]. Establishing trust among blockchain nodes is difficult in public blockchain because

any node on the internet can join blockchain with enough computing power and resources.

Blockchain nodes are incentivized by any form of cryptocurrency in this model. Bitcoin

and Ethereum are the popular blockchain platforms to use public blockchain. Most public

blockchains are resource and computing-intensive due to the use of cryptocurrency and

block mining process.

Private Blockchain: If a node needs permission to participate in the blockchain network,

then it is called private blockchain or permissioned blockchain. Private blockchain has a

partial trust established among blockchain nodes due to their pre-verified identity; it is

more like an enterprise network with known entities [14]. The private blockchain is not

resource-intensive like public blockchain. Private blockchains can provide read-write

restrictions for participating in the blockchain [14]. Various consensus models are used in

private or permissioned blockchain to establish trust in publishing nodes.

Smart Contracts

Nick Szabo presented the notion of a smart contract in 1994 and defined a smart contract

as “a transaction treaty that executes the terms of a contract automatically” [17]. Smart

contracts are executable code in the blockchain environment and allow the maintenance of

18

transactions without third parties in the blockchain. The primary goal of the smart contract

is to provide contractual conditions, handle its exceptions in the blockchain [17]. A smart

contract contains asset data and executable code in the blockchain. The addition of the

smart contract and each execution of a smart contract is stored in the blockchain as a

transaction. Bitcoin and Ethereum blockchain platforms use smart contract functionality,

and a node needs to spend cryptocurrency to execute this smart contract, whereas private

blockchain like Hyperledger has the same functionality as chaincode without the need of

any cryptocurrency.

Traits of Blockchain

Distributed: Nodes in the blockchain are connected through distributed fashion. Each node

saves a complete or partial copy of the blockchain transactions. Data tampering becomes

difficult due to the distributed design of the blockchain networks.

Decentralized: Nodes in the blockchain need to come to a consensus to add any new block

in the blockchain-based on the consensus model they use; this feature eliminates the need

for centralized authority.

Immutability: Blockchain has a hype of being immutable, but actually, blockchain is

tamper-evident and tamper-resistant [14] due to cryptographic link between two nodes, and

presence of Merkle tree root hash in each node header. Modifying any past transaction is

difficult and requires so many cryptographic updates in the blockchain. Additionally, the

distributed nature of the blockchain makes it nearly impossible to update previously added

data.

19

Consensus: Consensus models decide who will add a new block in the blockchain. Nodes

can participate in the blockchain without necessarily trusting each other due to the power

of consensus models and creates a trustless environment.

Auditability: Each node can verify all the transactions in the blockchain. This feature

provides a node to validate or audit previous entries and provide transparent history for

future use.

 Blockchain has the hype of being an emerging technology with many promising

characteristics. Though blockchain has many advantages due to its nature and

cryptocurrency, one needs to carefully consider the benefits and limitations of using

blockchain in its approach. Blockchain has several limitations like storage requirement,

resource consumption, scalability, throughput, and latency of the transaction processing

times.

 There is a debate going on the topic of the use of a shared repository using GitHub

vs. blockchain. Blockchain and GitHub are fundamentally different in their

implementation. Github uses a tree structure, where hash data is stored in a tree structure

with direct access to its predecessor. Blockchain uses the structure of LinkedList with

cryptographic links and Merkle tree root hash for block data. Blockchain links all the data

stored in blockchain from the very first block, and anyone can verify this data in the

blockchain. Blockchain implementation requires verification of each newly added block

by participating node based on various consensus models, and GitHub does not require

verification of added data by multiple participants. Hence blockchain can be used in a case

where multiple parties are collaborating with trust issues. Git provides facility to rewrite

past data, delete existing data from GitHub, which is against the immutability feature of

20

the blockchain. Git also uses the cryptographic hash to store individual commit history,

which provides characteristics of tamper-evident and tamper-resistance like blockchain.

The significant difference between two technology is working structure; blockchain uses

one chain to store it’s all data, where git uses different branches to store data, which will

cause multiple forks in blockchain implementation. Lastly, blockchain implementation is

distributed by nature, where git can be centralized or distributed as per the need of the user.

21

CHAPTER 3

PROBLEM STATEMENT

 In a collaborative software development environment, participating teams working

with other teams to achieve larger goals of greater importance and generate better quality

software [9]. So far, existing approaches to the coordination in collaborative software

development [9] [13] [17-22] are for developing a single complex and large-scale software

system. Some existing approaches [19-21] use a shared repository to manage various

versions of the software component and the dependency among their software components

[19][20] and show how to monitor software quality matrices in collaborative software

development [21]. Trust management is a critical issue in the complex and large-scale

software development project, considering the current trend of increasing threats to

software systems with important applications. With multiple teams and organizations

involved in developing a complex and large-scale software project, the shared repository

and tool for the collaboration must provide transparency, auditability, and reliability to

handle software components without concerns about the trust issues.

 Furthermore, shared repository and tool for collaboration should have the capability

of sharing data through some private communication channels to protect certain critical

information in software development and to provide data ownership to some participating

teams as needed. If outsourced software or open-source software is used in the software

development project, then it should be easy for all the participating teams to know the

history of the outsourced or opensource software, if needed. In case a centralized solution

for coordination in collaborative software development is used, concerns such as single

point of failure, restricted data ownership, lack of verification for the data to be added,

22

private sharing of critical data, data tampering, and data auditability, may be raised. These

concerns may be serious for collaborative software development.

 As mentioned before, some approaches have used blockchain to verify blockchain

transactions in collaborative software development, and do not address the coordination in

collaborative software development. In this approach, blockchain is used to provide trusted

coordination for collaboratively developing a complex and large-scale software system.

23

CHAPTER 4

THE OVERALL APPROACH TO GENERATING TRUSTED COORDINATION

OF COLLABORATIVE SOFTWARE DEVELOPMENT

 In this section, the overall approach to generating trusted coordination in

collaborative software development is presented. A blockchain-based approach is

implemented using a private or permissioned blockchain for developing a complex and

large-scale software system in a collaborative environment.

 In the approach, a blockchain represents the entire collaborative software

development project. Each participating software development team is represented by a

distinct node in the blockchain. Only one of the participating teams is designated as the

prime contractor team, which is responsible for negotiating and determining all the

responsibilities of each participating team in the software development project.

Participating teams may belong to different organizations or the same organization as the

primary contractor. All software development activities are performed in a distributed way

except role assignment and blockchain setup.

 The approach is implemented in private blockchain to accommodate enterprise

setup for collaborative software development. Each node in the blockchain is directly

connected to other nodes, and this structure creates a complete graph of N nodes. Assume

N be the number of nodes in the blockchain used in the approach. The initialization of the

blockchain is shown in Figure 5. Each node saves an entire copy of the blockchain, which

satisfy the consensus criteria of the blockchain. Each node has a designated member of the

team as the administrator of the team to provide input and output of the software

development activities to/from the team. Practical Byzantine Fault Tolerance (PBFT)

24

consensus model is used in the approach to collect agreement of participating nodes in a

collaborative software development project.

Figure 5: Blockchain Initialization for N Participating Software Development Teams

Following are the notations used in the approach:

• T: A participating team in the collaborative software development project.

• N: The number of T’s in the collaborative software development project.

• C: A smart contract generated by a T.

• M: The number of software specifications, each of which will generate a smart

contract by a T in the collaborative software development project.

• R: A software result represented as a transaction in the blockchain.

• S: The number of R’s in the blockchain.

• G: The group of all the recipient teams for a smart contract.

25

Figure 6: The Software Activities Performed by Each Participating

Team in the Approach

The following steps describe the overall approach performed by each participating teams:

Step 1: Ti | i = 1, 2, ... N, generates up to M software specifications, each in the form of

a smart contract Ci,k, from Ti to Tk, k ≠ i, Tk  Gi, and Gi is the group of all recipient teams

of Ci,k. Each Ci,k contains all the required specifications for the software developed by Tk,

and satisfying the acceptance criteria of Ci,k.

Repeat this process for Ti , i = 1, 2, …N. The generation of the smart contract will be

presented in Chapter 5.

Step 2: Tk  Gi, Tk performs the software activity specified in Ci,k generated in Step 1.

26

Step 2.1: If the result Rt ,1 ≤ t ≤ S, generated by Tk meets the acceptance criteria of Ci,k, Rt

is added to the blockchain as a blockchain transaction.

Step 2.2: If Rt generated by Tk does not meet the acceptance criterion of Ci,k, Ti is alerted

by the blockchain that Rt is not successful, and added in the blockchain with the rejection

message.

Repeat Step 2, Tk  Gi.

Transaction in Step 2.1 and 2.2 is added in the blockchain if it meets consensus criteria

defined for the blockchain.

Step 3: If a Ti, 1 ≤ i ≤ N, requires to audit the development history of a software component,

Ti verifies all the Rt’s 1 ≤ t ≤ S by querying Ci,k, k ≠ i, Tk  Gi.

The software activities performed by each participating team in the approach are shown in

Figure 6.

27

CHAPTER 5

GENERATION OF SMART CONTRACTS

 Smart contracts are executable code in the blockchain environment and allow the

process of transactions without third parties in the blockchain. The primary goal of the

smart contract is to provide contractual conditions, handle its exceptions in the blockchain

[17]. A smart contract contains asset data and executable code in the blockchain but not

include the information on how the transaction is processed or originated. The approach to

generating trusted coordination of collaborative software development is implemented on

the Hyperledger – open-source private blockchain. Hyperleger [23] supports many

programming languages, including GoLang (go), java, NodeJS. The blockchain-based

approach uses go for the smart contract implementation because Hyperledger’s internal

development is done in go, and API for the go is more matured than other supported

languages. Also, using go is useful to set up or modify an existing open-source Hyperledger

platform for customization.

 In this section, a process for generating smart contracts for software development

specifications is presented with few examples. Smart contracts are executable code in the

blockchain environment and maintain transactions without third parties in the blockchain.

In the blockchain-based approach, each software team generates multiple software

specifications in the form of smart contracts for each phase of the software development

lifecycle. Each smart contract contains the following significant parts for software

specification:

a. Allowed Parties: All teams who can participate in this Smart Contract.

28

b. Contract Terms and Metadata: Required information to perform software activity

and acceptance criteria for software specification in {Key, Value} format. Each

{Key, Value} pair is being checked against the generated result by other allowed

teams.

c. Execution Terms for Result Compliance: team setup execution action for

acceptance or rejection of the supplied software result.

The creation of the Smart Contract require to implement the following major steps:

Step1): create Structure (class or struct) with the following information:

 AllowedParties (type list – holds recipient teams)

Example: [T1, T2, T3] (Assign responsibility of each team in software requisites)

 ContractMetadata (type map – holds key-value pairs)

Example: Owner: (variable type - String)

SoftwareModule: (variable type - Number)

 Version: (variable type - String)

 CreationDate: (variable type Date)

 SourceLocation: (variable type String)

 Software Requisites (variable type map: key-value pairs)

• Key: Software specification conditions

• Value: Expected value/s

• Example:

CyclicDependency: 0 (in class and package diagrams) Assigned to which

participating team

29

ExternalLibraries: [4-8] (number of external libraries allowed to be used in the

code)  Assigned to which participating team

…

Step 2): Write implementation for the following two default methods to create a smart

contract.

 Init – to initialize the smart contract

 Invoke – to call any method from the smart contract after initialization

Following are the pseudocodes for the above default methods in the blockchain-based

approach:

function Init

 # instantiate Structure created in Step 1)

 struct SoftwareSpecs

function Invoke(String functionName, String attributeName, var attributeValue, String

softwareResult)

 if functionName = “query”

 return SoftwareSpecs [attributeName]

else if functionName = “audit”

 return “all transactions related to this smart contract”

 else if functionName = “update”

 SoftwareSpecs [attributeName] = attributeValue

 # update attribute in the blockchain

 else if functionName = “delete”

30

delete the smart contract

else if functionName = “processResult”

 if softwareResult = SoftwareSpecs[attributeName]

 # update blockchain with software result and success message

 else

 alert SoftwareSpecs[‘Owner’] through email

 # update blockchain with an error message

Note that if a smart contract is deleted from the blockchain, all the data input, output for

the smart contract will remain in the blockchain. In addition, the blockchain-based

approach is able to handle the dynamic nature of changing requirements in a smart contract

through the “update” and “delete” method. The approach requires each team to create a

separate smart contract for each major software versions. Minor versions are handled

through updating acceptance criteria in the existing smart contract through the “update”

and “delete” method.

 The method to generate a smart contract is common for all phases of software

development in a collaborative software development project. Each software development

phase does not mandate information from preceding or previous software development

phases. In a nutshell, a smart contract for collaborative software development contains data

(data and metadata of a software component) and actions (methods to perform different

activities on software data). Each method in the smart contract is given certain privileges

as per the requirement of the software component to prevent the deletion and modification

31

of smart contract attributes by malicious participants. Table 1 presents function level

privileges for each method presented in the smart contract.

Method Function level access assignment

Init Owner of the smart contract

Invoke query Any participant on the blockchain

Invoke audit Any participant on the blockchain

Invoke update Owner of the smart contract

Invoke delete Owner of the smart contract

Invoke processResult All participants in the smart contract

Invoke alert All participants in the smart contract including Owner

Table 1: The Function Level Privileges for Smart Contract Methods

Three smart contracts are presented in this section to show how software development

teams can generate smart contracts for various phases of the software development

lifecycle. The smart contracts cover methods to generate a smart contract for the various

phase of the software development lifecycle, as mentioned in Section 5.1. Software design

and software testing smart contracts cover the quantifiable assessments of software results,

and software requirement covers non-quantifiable assessments of the software result based

on requirement traceability matrix. The generation of the smart contract for the requirement

phase is complicated than other phases, and require more details, so design phase, and

testing phase is presented in Section 5.1 and 5.2, and the generation of smart contract for

requirement phase is presented in 5.3. The structure of the presentation does not change

actual sequence of software development activities for any software development phases.

The method to generate a smart contract for the remaining phases are equivalent to these

three examples and presented in Section 5.

32

5.1 Software Design Smart Contract

 A smart contract for the software design phase of a collaborative software

development project, which includes the necessary information to perform software design

assessment, and acceptance criteria for software design evaluation. Assessment matrices

for the software design phase are decided based on the input from the previous phases, the

requirement of the software component, and by collaborating software development teams.

Software design can be assessed using several matrices, like the dependency of each class

in a class diagram, package dependencies, cycle dependency in a class diagram, and

abstractness of each class in the example. There are many assessment matrices available

for the software design phase, and the selection of the matrix is decided by the participating

team in the design phase. The participating teams decide which assessment matrix is

suitable for that component. Encoding all possible matrices in a smart contract is beyond

the scope of this thesis. Participating team decides consensus criteria from pBFT and

round-robin based on the requirement of the software component and relation among

participating teams. Following the above process Step 1) in Section 5.1 input (a, b, and c)

are generated for the smart contract shown in Figure 7.

According to Step 2) in Section 5 following methods are generated and implemented to

carry out software activity mentioned in the smart contract for software design phase:

• Init: Instantiate structure or class with required software specification metadata.

Sample struct information is shown below with sample values required in the

software design phase:

Sample code in go programming language is shown as follows for the smart

contract:

33

 Figure 7: The Smart Contract for Example 1

type SoftwareSpec struct {

 AllowedParties Element `json:"allowedParties"`

 Owner string `json:"owner"`

 Colour string `json:"colour"`

 SoftwareModule string `json:"softwareModule"`

 Version string `json:"version"`

 CreationDate time.Time `json:"creationDate"`

 SourceLocation string `json:"sourceLocation"`

34

 designRequisites make(map[string]Element) string `json:"designRequisites"`

 isDeleted bool `json:"isDeleted"`

}

// Define the Smart Contract structure

type SmartContract struct {

}

// init method implementation

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response

{

 return shim.Success(nil)

}

Above struct is populated with the data for the software design phase at the time

of instantiation, which look like follows:

type SoftwareSpec struct {

 var allowedParties = [T2] // contains list of allowed teams

 var owner = ‘T1’

 var softwareModule = ‘CB’

 var version = ‘1.0’

 date creationDate = ‘May 1, 2019’

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/classDiagram’

 var designRequisites = { // key-value pair of each acceptance criteria

 var cyclicDependency = [0, T2]

 var abstractnessOfPackage = [0.5, T2]

35

 var instabilityOfPackage = [(0,1), T2]

 }

 var isDeleted = False

}

Note that, each design requisites are assigned to one of the allowed parties. In case

there are multiple parties involved in the same software development phase, each

requisite is assigned to the same or a different party.

• Invoke: invoke method is used to provide different actions in a smart contract.

Based on the requirement of the software development project, the team can

specify unique functionality in each corresponding method. For smart contract

mentioned in Figure 7, the following methods are implemented:

• query: query method implements logic to query specific attributes in the smart

contract structure with current value stored in the blockchain. For example, if

T2 needs to know who the owner of the smart contract is, T2 run query function

to know owner information. Similarly, any information regarding the current

status of the information is fetched using a query function.

Implementation of query function in the go programming language is as

follows:

func (s *SmartContract) query(APIstub shim.ChaincodeStubInterface,

 args []string) sc.Response {

 if len(args) != 1 {

 return shim.Error("Incorrect number of arguments.

 Expecting 1")

36

 }

 dataAsBytes, _ := APIstub.GetState(args[0])

 return shim.Success(dataAsBytes)

}

Sample query calls:

 Invoke query owner (returns owner of the smart contract)

 Invoke query designRequisites (returns list of design requisites for the

 software component)

 Invoke query souceLocation (returns location of software specification)

• audit: audit method implements logic to pull entire history related to this smart

contract. Audit is useful to get an immutable history of the software

component regarding all previous software decisions and software results

provided by the same or other teams.

Implementation of audit function in the go programming language is as

follows:

func (s *SmartContract) audit(APIstub shim.ChaincodeStubInterface)

sc.Response {

 startKey := "SS0"

 endKey := "SS999"

 resultsIterator, err := APIstub.GetStateByRange(startKey, endKey)

 if err != nil {

 return shim.Error(err.Error())

 }

37

 defer resultsIterator.Close()

 // buffer is a JSON array containing QueryResults

 var buffer bytes.Buffer

 buffer.WriteString("[")

 bArrayMemberAlreadyWritten := false

 for resultsIterator.HasNext() {

 queryResponse, err := resultsIterator.Next()

 if err != nil {

 return shim.Error(err.Error())

 }

 if bArrayMemberAlreadyWritten == true {

 buffer.WriteString(",")

 }

 buffer.WriteString("{\"Attribute\":")

 buffer.WriteString("\"")

 buffer.WriteString(queryResponse.Key)

 buffer.WriteString("\"")

 buffer.WriteString(", \"Attribute Value\":")

 buffer.WriteString(string(queryResponse.Value))

 buffer.WriteString("}")

 bArrayMemberAlreadyWritten = true

 }

 buffer.WriteString("]")

38

 fmt.Printf("- audit All Software Specification results :\n %s \n",

 buffer.String())

 return shim.Success(buffer.Bytes())

}

• update: update method implements logic to query specific attribute in the

smart contract structure with current value stored in the blockchain and then

update that attribute with user-supplied value. For example, if T1 needs to

update the owner of the smart contract, T2 run update function to know owner

information and then update it with new user-supplied value. Similarly, any

information regarding the current status of the information is updated using

the update function.

Implementation of audit function in the go programming language is as

follows:

func (s *SmartContract) update(APIstub shim.ChaincodeStubInterface, args

[]string) sc.Response {

 if len(args) != 2 {

 return shim.Error("Incorrect number of arguments. Expecting 2")

 }

 dataAsBytes, _ := APIstub.GetState(args[0])

 softwareSpec := SoftwareSpec{}

 json.Unmarshal(dataAsBytes, &softwareSpec)

 softwareSpec.Owner = args[1]

 dataAsBytes, _ = json.Marshal(softwareSpec)

39

 APIstub.PutState(args[0], dataAsBytes)

 return shim.Success(nil)

}

Sample update calls:

 Invoke update owner T3 (update the owner of the smart contract as T3 in the

 blockchain)

 Invoke update allowedParties [T2 , T4] (update list of allowed parties for the

 software component)

Note that, each update function query generates log and add that into the

blockchain. Any team can verify how many times a specific smart contract got

updated. Additionally, in the approach, all minor versions are handled by

updating existing attributes. The approach suggests that team generates a separate

smart contract for the major version change in the software component.

• delete: delete method implements logic to remove specific attributes in the

smart contract structure with current value stored in the blockchain or

decommission the entire smart contract from the blockchain. If the team

deletes any attribute or decommission smart contract, previous data related to

smart contact will remain in the blockchain.

Implementation of delete function in the go programming language is as

follows:

func (t *SmartContract) delete(stub shim.ChaincodeStubInterface, args

[]string) pb.Response {

 if len(args) != 1 {

40

 return shim.Error("Incorrect number of arguments. Expecting 1")

 }

 softwareSpec.Owner := args[0]

 err := stub.DelState(softwareSpec.Owner)

 if err != nil {

 return shim.Error("Failed to delete state")

 }

 return shim.Success(nil)

}

Sample query calls:

 Invoke delete owner (removes owner attribute from the blockchain

 structure)

 Invoke delete creationDate (removes creationDate attribute from the

 blockchain structure)

• processResult: processResult method implements logic to verify supplied

software results by participating team. Each supplied result is compared with

the requisite attribute of the blockchain structure. If the supplied result

satisfies acceptance criteria, then the blockchain transaction is generated with

a success message and added to the blockchain. If the supplied result does not

satisfy acceptance criteria, then the current owner of the smart contract is

alerted of the wrong result through email. Blockchain transaction with wrong

supplied result is also recorded in the blockchain for future use. The

41

participating team’s reputation can be derived from the correct and wrong

result supply.

Implementation of processResult function in the go programming language is

as follows:

Func (s *SmartContract) processResult(APIstub

shim.ChaincodeStubInterface, args []string) sc.Response {

 if len(args) != 3 {

 return shim.Error("Incorrect number of arguments. Expecting 3")

 }

 dataAsBytes, _ := APIstub.GetState(args[0])

 softwareSpec := SoftwareSpec{}

 json.Unmarshal(dataAsBytes, &softwareSpec)

 var softwareSpecAttribute = args[1]

 var softwareSpecAttributeVal = args[2]

 var designReqs = softwareSpec.designRequisites

 for key, element := range designReqs {

 fmt.Println("Key:", key, "=>", "Element:", element)

 if key == softwareSpecAttribute{

 if element == softwareSpecAttributeVal{

 APIstub.PutState("Success", "Team has provided software

 result compliant to acceptance criteria")

 }

42

 else{

 s.alertOwner(APIstub, args)

 APIstub.PutState("Failure", "Team has provided software

 result not compliant to acceptance criteria with data -

 "+softwareSpecAttribute + " - "+ softwareSpecAttributeVal)

 }

 }

 }

 return shim.Success(nil)

}

• alert: alert method implements logic to send an email message to the owner

of the smart contract with a customized message.

5.2 Software Testing Smart Contract

 The Software testing phase of software development is a critical phase and requires

a major amount of coordination. Software testing consists of the process of verification and

validation of the developed software. Based on the criticality of the software project, this

phase requires many teams to perform software testing activities on the software. The

software testing phase plays a significant role in the success of the collaborative software

development project. Software testing can be assessed using several matrices, like line

coverage, branch coverage, number of medium and severe bugs. A smart contract for the

software testing phase of a collaborative software development project includes the

necessary information to perform software testing and acceptance criteria for software

43

testing evaluation. Participating team decides consensus criteria from pBFT and round-

robin based on the requirement of the software component and relation among participating

teams. Following the above process Step 1) in Section 5.1 input (a, b, and c) are generated

for the smart contract shown in Figure 8.

 Figure 8: The Smart Contract for Example 2

According to Step 2) in Section 5.1 following methods are generated and implemented to

carry out software activity mentioned in the smart contract for software testing phase:

Init: Instantiate structure or class with required software testing metadata, all

assessment requirement for a software component can be added into one smart

contract. Sample code in go programming language is shown as follows for the

smart contract:

type SoftwareSpec struct {

 AllowedParties Element `json:"allowedParties"`

44

 Owner string `json:"owner"`

 Colour string `json:"colour"`

 SoftwareModule string `json:"softwareModule"`

 Version string `json:"version"`

 CreationDate time.Time `json:"creationDate"`

 SourceLocation string `json:"sourceLocation"`

 testingRequisites make(map[string]Element) string `json:"testingRequisites"`

 isDeleted bool `json:"isDeleted"`

}

// Define the Smart Contract structure

type SmartContract struct {

}

// init method implementation

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response

{

 return shim.Success(nil)

}

Above struct is populated with the data for the software testing phase at the time

of instantiation, which look like follows:

type SoftwareSpec struct {

 var allowedParties = [T1, T2, T3]

 var owner = ‘T1’

 var softwareModule = ‘CB’

45

 var version = ‘1.0’

 date creationDate = ‘May 1, 2019’

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/homepage.java’

 var testingRequisites = {

 var lineCoverage = [0.90, T2]

 var branchCoverage = [0.5, T2]

 var securityBugsSevere = [0, T3]

 var securityBugsMedium = [0, T3]

 }

 var isDeleted = False

}

Note that, each testing requisites are assigned to one of the allowed parties. In case

there are multiple parties involved in the same software development phase, each

requisite is assigned to the same or different party.

• Invoke: invoke method is used to provide different actions in a smart contract for

the software testing phase. Based on the requirement of the collaborative software

development project, the team can specify unique functionality in each

corresponding method for software testing. For smart contract mentioned in Figure

8, the following methods are implemented:

• query: query method implements logic to query specific attributes in the smart

contract structure with current value stored in the blockchain. For example, if

T3 needs to know who are allowed parties for this smart contract, T3 run query

function to know allowedParties information. Similarly, any information

46

regarding the current status of the information is fetched using a query

function. Method implementation of the query method is shown in Section

5.1

Sample query calls:

 Invoke query allowedParties (returns list of allowed parties for the smart

 contract)

 Invoke query souceLocation (returns location of software specification)

• audit: audit method implements logic to pull entire history related to this smart

contract. Audit is useful to get an immutable history of the software

component regarding all previous software decisions and software results

provided by the same or other teams. Method implementation of the audit

method is shown in Section 5.1

Sample audit calls:

Invoke audit (return all blockchain transaction related to smart contract)

• update: update method implements logic to query specific attribute in the

smart contract structure with current value stored in the blockchain and then

update that attribute with user-supplied value. For example, if T2 needs to

update the owner of the smart contract, T2 run update function to know owner

information and then update it with new user-supplied value. Similarly, any

information regarding the current status of the information is updated using

the update function. Method implementation of the update method is shown

in Section 5.1

Sample update calls:

47

 Invoke update owner T3 (update the owner of the smart contract as T3 in the

 blockchain)

 Invoke update isDeleted True (update attribute isDeleted to True and calls

 blockchain method to decommission entire smart contract)

Note that, each update function query generates log and add that into the

blockchain. Any team can verify how many times a specific smart contract got

updated.

• delete: delete method implements logic to remove specific attributes in the

smart contract structure with current value stored in the blockchain or

decommission the entire smart contract from the blockchain. If the team

deletes any attribute or decommission smart contract, previous data related to

smart contact will remain in the blockchain. Method implementation of the

delete method is shown in Section 5.1

Sample query calls:

 Invoke delete owner (removes owner attribute from the blockchain

 structure)

 Invoke delete creationDate (removes creationDate attribute from the

 blockchain structure)

• processResult: processResult method implements logic to verify supplied

software results by participating team. Each supplied result is compared with

the requisite attribute of the blockchain structure. If the supplied result

satisfies acceptance criteria, then the blockchain transaction is generated with

a success message and added to the blockchain. If the supplied result does not

48

satisfy acceptance criteria, then the current owner of the smart contract is

alerted of the wrong result through email. Blockchain transaction with wrong

supplied result is also recorded in the blockchain for future use. The

participating team’s reputation can be derived from the correct and wrong

result supply. Method implementation of the processResult method is shown

in Section 5.1

• alert: alert method implements logic to send an email message to the owner

of the smart contract with a customized message.

5.3 Software Requirement Smart Contract

 The most difficult phase in any software development project is the requirement

phase. It is crucial for software developers to do this phase correctly because all other

phases depend on the result of this phase. The requirement phase apprehends user’s

expectations out of software and showcases what is user’s need from the software.

Software requirements are supplied in natural language to software development teams,

and software development teams convert it to user stories (in the latest paradigms like

agile) to breakdown requirements into technical tasks. The encoding of the requirement

phase into a smart contract is most difficult for the blockchain-based approach.

 The requirement phase is breakdown into several steps to manage in the

blockchain-based approach as follows:

• Collect inputs from stakeholders, users, and other software development actors.

• Analyze requirement inputs and convert them into user story format like

“As a user _____, I want to ______, so that _______.”

49

This format captures three important information on actor, task/action, and

motivation behind the software requirement.

• Enumerate all such software requirements into requirement traceability matrix and

add required metadata information on each software requirement. [24]

The blockchain-based approach is capturing the following information for each

software requirement:

 Requirement Id: unique enumeration id for the software requirement

 Effort: effort required to develop the task mentioned in the requirement.

Possible values - {Low, Medium, High}

 Risk: risk associated with the requirement

Possible values - {Low, Medium, High, Severe}

 Stability: stability index for the requirement in whole software

development

Possible values - {Low, Medium, High}

 Status: current status of the requirement in the software development

Possible values - {Proposed, Ready, In-progress, Ready-for-Review

(Validation-and-Verification), Completed, Need-Further-Information}

 ReleaseDate: {Date or undefined}

A smart contract for the software requirement phase of a collaborative software

development project includes the necessary information to perform software requirement

elicitation, requirement management, and acceptance criteria for software requirement

evaluation. Following the above process, Step 1) generates input (a, b, and c) for the smart

contract shown in Figure 9.

50

Figure 9: The Smart Contract for Example 3

According to Step 2) of Section 5 following methods generate to carry out software activity

mentioned in the smart contract:

Init: Instantiate structure or class with required software specification metadata.

Sample code in go programming language is shown as follows for the smart

contract:

type SoftwareSpec struct {

 AllowedParties Element `json:"allowedParties"`

 Owner string `json:"owner"`

 Colour string `json:"colour"`

 SoftwareModule string `json:"softwareModule"`

 Version string `json:"version"`

51

 CreationDate time.Time `json:"creationDate"`

 SourceLocation string `json:"sourceLocation"`

 requirementRequisites make(map[string]Element) string

 `json:"requirementRequisites"`

 isDeleted bool `json:"isDeleted"`

}

// Define the Smart Contract structure

type SmartContract struct {

}

// init method implementation

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response

{

 return shim.Success(nil)

}

Above struct is populated with the data for the software requirement phase at the

time of instantiation, which look like follows:

type SoftwareSpec struct {

 var allowedParties = [T8, T9]

 var owner = ‘T6’

 var softwareModule = ‘CC’

 var version = ‘2.1.0’

 date creationDate = ‘May 1, 2011’

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/requirementTraceability.xlsx’

52

 var requirementRequisites = {

 [ID: Req1, Effort: High, Risk: High, Stability: Medium, Status: Proposed,

 ReleaseDate:10 May 2012, assignedTo: T8],

 [ID: Req2, Effort: High, Risk: High, Stability: Low, Status: Completed,

 ReleaseDate:2 March 2012, assignedTo: T9]

 }

 var isDeleted = False

}

Note that each requirement requisites are assigned to one of the allowed parties. In

case there are multiple parties involved in the same software development phase,

each requisite is assigned to the same or a different party.

• Invoke: invoke method is used to provide different actions in a smart contract.

Based on the requirement of the collaborative software development project, the

team can specify unique functionality in each corresponding method. For smart

contract mentioned in Figure 9, the following methods are implemented:

• query: query method implements logic to query specific attributes in the smart

contract structure with the current value stored in the blockchain. For

example, if T8 needs to know who are allowed parties for this smart contract,

T8 runs the query function to know the requirement requisites information.

Similarly, any information regarding the current status of the information is

fetched using the query function. Method implementation of the query

method is shown in Section 5.1

Sample query calls:

53

 Invoke query requirementRequisites (returns list of all requirement

 requisites in the smart contract)

• audit: audit method implements logic to pull entire history related to this smart

contract. Audit is useful to get an immutable history of the software

component regarding all previous software requirement decisions and

software results provided by the same or other teams. Method implementation

of the audit method is shown in Section 5.1

Sample audit calls:

Invoke audit (return all blockchain transaction related to requirement smart

contract)

• update: update method implements logic to query specific attribute in the

smart contract structure with current value stored in the blockchain and then

update that attribute with user-supplied value. For example, if T6 needs to

update the owner of the smart contract, T6 run update function to know owner

information and then update it with new user-supplied value. Similarly, any

information regarding the current status of the information is updated using

the update function. Method implementation of the update method is shown

in Section 5.1

Sample update calls:

 Invoke update isDeleted True (update attribute isDeleted to True and calls

 blockchain method to decommission entire smart contract)

54

Note that, each update function query generates log and add that into the

blockchain. Any team can verify how many times a specific smart contract got

updated.

• delete: delete method implements logic to remove specific attributes in the

smart contract structure with the current value stored in the blockchain or

decommission the entire smart contract from the blockchain. If the team

deletes any attribute or decommission smart contract, previous data related to

smart contact will remain in the blockchain. Method implementation of the

delete method is shown in Section 5.1

Sample query calls:

 Invoke delete owner (removes owner attribute from the blockchain

 structure)

 Invoke delete creationDate (removes creationDate attribute from the

 blockchain structure)

• processResult: processResult method implements logic to verify supplied

software results by participating team. Each supplied result is compared with

the requisite attribute of the blockchain structure. If the supplied result

satisfies acceptance criteria, then the blockchain transaction is generated with

a success message and added to the blockchain. If the supplied result does not

satisfy acceptance criteria, then the current owner of the smart contract is

alerted of the wrong result through email. Blockchain transaction with wrong

supplied result is also recorded in the blockchain for future use. The

participating team’s reputation can be derived from the correct and wrong

55

result supply. Method implementation of the processResult method is shown

in Section 5.1

• alert: alert method implements logic to send an email message to the owner

of the smart contract with a customized message.

56

CHAPTER 6

ILLUSTRATIVE EXAMPLE OF THE APPROACH

In this section, an example to illustrate the overall approach is presented to generate trusted

coordination of a collaborative software development project.

 Consider the collaborative software development project, which has multiple major

software components developed by multiple teams. In this example, the assumption in the

approach is that the software system to be collaboratively developed has six major software

components, Ca, Cb, … Cf, collaboratively developed by three teams T1, T2, and T3. The

development of each software component is complex and requires input from multiple

teams. Role assignment for each software component and various phases of software

development phases are assigned at the time of blockchain initialization. Each software

component is developed in various software development phases, such as requirement

gathering and analysis, software design, software implementation, software testing,

deployment, and maintenance.

Figure 10: The Software Development Activities Required

 for Each Software Component

57

 Software components used in the example are complex enough to have different

teams participating in the collaborative software development. As shown in Figure 10, each

of the six components will have various software development phases, and each phase is

handled by one or more teams. This method is suitable for all kinds of software

development paradigms, such as waterfall, spiral, agile. Coordination is an essential part

of all kinds of collaborative software development.

 The functional dependency relations among the six components, which are

determined by the requirements of the software development project, are shown in Figure

11. Each dependency relation in Figure 11 can be either mandatory or optional.

Dependency information is essential information in complex and large-scale software

development projects to understand the requirement of other components as well as to

assess the reliability of frequently used software components. As shown in Figure 11,

Component Ca is an end software product. To develop software component Ca, component

Cd is mandatory, and either of Cb or Cc is required. Additionally, Component Ce is

mandatory to develop component Cb and Cc. Cf is a mandatory component to develop Ce

and Cd. Trusted coordination is required to build such a complex and large-scale software

project.

 It is assumed that T1 is the prime contractor, and T2 and T3 are subcontractors in

the collaborative software development project. Based on the discussion of T1 with T2 and

T3, the development tasks of this project will be performed by the three teams according to

the software specifications listed in Table 2. T1, T2, and T3 manage all software

development activities in a collaborative project. This example shows how the approach

58

can generate trusted coordination among the three teams using blockchain and smart

contracts.

* represents mandatory, and + represents optional dependency relation

Figure 11: The Functional Dependency Graph of the Major

Software Components in the Example Project.

The coordination in a collaborative software development project consists of collaboration

among multiple teams working for developing various software components in a complex

and large-scale software project. Each software component, including the software

specifications and results of the component, is stored in the blockchain. In this example,

the only illustration of the coordination among the teams participating in the software

development of Cf is shown. The same method can be extended for all remaining software

components.

59

 According to Step 1 of the overall approach described in Chapter 4, T1 creates

software specification for the software component Cf, and smart contract C1,k, Tk G1, G1

= {T2, T3}. C1,k is generated using the process presented in Chapter 5. T2 and T3 use C1,k

generated in Step 1 to carry out software activities for the Cf. According to Step 2 of the

approach, T2 performs the software activity specified in C1,2 and generates the result R1.

T3 performs the software activity specified in C1,3, and generates the result R2.

Validation of this step to achieve trusted coordination:

• R1 and R2 are recorded in the blockchain, and hence any team in the blockchain can

verify them with known public keys of participating teams.

• Once R1 or R2 is recorded in the blockchain, it is challenging to modify them; this

provides tamper-evidence and tamper-resistant tool for coordination.

• T2 and T3 cannot repudiate R1 or R2 because their identities are attached to

transactions and available to verify in the blockchain.

• T1, T2, and T3 cannot take control of the software development activities, due to

decentralized and distributed properties of the approach.

• T1 can clearly set up contract terms for T2 and T3 for collaboration, this will help to

resolve any conflicts among teams, and teams need to adhere to acceptance criteria

for created software development.

Since the procedure, as mentioned above, applies to all software components in all software

development phases, the entire history of the component is available in the blockchain in

terms of smart contracts. Transaction R1 and R2 are added in the blockchain if it is meeting

consensus criteria. The approach uses the Practical Byzantine Fault Tolerance consensus

model to add the new next block. This consensus collects voting from all participants, and

60

if teams provide one-third of the agreement, the block will be added in the blockchain. The

approach used round-robin consensus in a few smart contracts, but pBFT is more useful to

establish trust among participating teams.

Table 2: The Software Component Specifications of the Example Project

Next, the auditability feature for software specifications and results in the project

is shown. Because of the dependency relation between Cd and Cf, as shown in Figure 11,

in order to develop Cd, T3 needs to verify the history of Cf for all software decisions taken

and related history for different software development phases. According to Step 3, T3

61

verifies the history of Cf by querying smart contracts C1,k. The querying smart contract is

performed by calling one of the smart contract methods discussed in Chapter 5. Since the

complete record of the past development history of Cf is stored in the blockchain, any team

in the blockchain can verify the entire history of Cf, which is useful to increase the

trustworthiness of the coordination in collaborative software development.

Private communication channels:

Private channels are created to share the result of the critical project components.

Private channels are established using asymmetric key pairs if teams want to establish

private communication. They can share their public keys without sharing it with anyone

else. Each team can encrypt software results with their private key, and other parties can

see the test result by decrypting result using the public key of the transaction initiator.

 The blockchain-based approach is implemented on a Hyperledger platform [23],

which is a private/permissioned blockchain platform. The reason why the approach is

implemented on the Hyperledger platform, as mentioned below:

• The collaborative software development project is not open to the public, only

approved and pre-verified teams can join the blockchain platform, so the selection

of private blockchain is ideal for this approach. All participating team is known and

pre-verified, this increases partial trust among software development teams and

eliminates the anonymity feature of most blockchain platforms.

• As more teams join the software development activity, blockchain should scale

accordingly. Private blockchain scales easily as compared to the known public

blockchain platform.

62

• Transaction processing is faster in private blockchain set up due to the absence of

a resource-intensive mining process and proof of work consensus model. Private

blockchain, like Hyperledger, provides low latency and high throughput for the

blockchain transaction.

• The various consensus is utilized and pluggable based on the requirement of the

team.

• Teams set up a private communication channel to share software data on a critical

software project.

• The team leverages the reputation system for producing high-quality collaborative

software.

63

CHAPTER 7

EVALUATION

In this chapter, we will compare our approach to the existing approaches in the categories

using centralized, [2-10] or decentralized [7][12] approaches to generating coordination in

collaborative software development for complex and large-scale software systems.

 The centralized approaches [2-10] have the disadvantages of a single point of

failure, lack of data ownership, and mutable data. The centralized approaches have the

advantages of providing much faster data processing speed, and higher efficiency of the

setup of the distributed environment for collaborative software development.

 The decentralized approaches [7][12] have the limitations on lack of data

ownership, mutable data, and concentrated point of failure. The decentralized approaches

have moderate data processing speed, and moderate efficiency of the setup of the

collaborative environment for collaborative software development.

 Our approach using blockchain has limitations on low data processing speed, large

storage overhead, and lower efficiency of the setup of the collaborative environment. The

low data processing speed is due to the consensus protocols used for recording each

transaction in the blockchain for data ownership, auditability, and the prevention of

injection attacks in the software development process. The large storage overhead is due

to many copies of information stored in the blockchain. The lower efficiency of the setup

of the collaborative environment is due to the initial blockchain infrastructure setup, and

cryptographic tools installation in the blockchain.

64

Our approach has the major advantages of the immutability, auditability, non-

repudiation, and acceptance criteria for automatic software assessment for generating

trusted coordination for collaborative software development.

Our approach has the advantage of immutability of data in blockchain due to

cryptographic links and Merkle root hash in the blockchain. The advantage of auditability

of all blockchain transactions in our approach is due to the smart contract created to query

all the blockchain transactions. Our approach has the advantage of non-repudiation because

each blockchain transaction is cryptographically signed with its node’s identity. Our

approach has the advantage of having acceptance criteria for automatic software

assessment because the software specifications are encoded in each smart contract with

software data and acceptance criteria.

Table 3: A Summary of the Important Properties of Our Approach, Centralized,

and Decentralized Approaches for Generating Trusted Coordination of

Collaborative Software Development

65

Table 3 summarizes the important properties of our approach, centralized and decentralized

approaches to generating trusted coordination of collaborative software development. The

first four properties are needed to generate trusted coordination of collaborative software

development because they are required to provide a secure, reliable, and transparent

collaborative environment. The 5th property is optional because a private communication

is required for critical software development activities only. The 6th, 7th and 8th properties

are limitations of using blockchain in providing trusted coordination of collaborative

software development. The 6th property can be reduced by storing partial data off-chain.

The 7th property can be reduced by using various custom consensus protocols for the

private blockchain. The impact of the 8th property is not large because it only affects the

initialization phase for setting up the blockchain infrastructure. Based on the above

discussion, our approach can achieve the generation of trusted coordination of

collaborative software development because it has the first four properties, the impact of

the 8th property is limited to the initialization phase, and the 6th and 7th properties may be

reduced.

66

CHAPTER 8

CONCLUSION AND FUTURE WORK

 In this thesis, the generation of trusted coordination in collaborative software

development using blockchain has been studied, and an approach to generating trusted

coordination of collaborative software development has been developed. This approach

has been implemented using the private blockchain in open-source Hyperledger. The

advantages of our approaches are immutability, auditability, non-repudiation, and

acceptance criteria for automatic software assessment. The limitations of our approach are

large storage overhead, low speed of data processing, and large setup overhead.

 Future work includes the development of efficient techniques to reduce the

overhead of the data storage in blockchain and increase the speed of data processing. In

addition, the approach should be expanded to generate trusted coordination of multiple

collaborative software development projects.

67

REFERENCES

[1] Schmidt, K., and Bannon, L. (1992). Taking CSCW seriously. Computer Supported

Cooperative Work (CSCW), 1(1), 7-40.

[2] Hefner, R. H. (2001). Collaborative test management. 26th Annual NASA Goddard

Software Engineering Workshop, IEEE/NASA SEW 2001, 156–158.

[3] Zhu, H., & Zhang, Y. (2012). Collaborative testing of web services. IEEE Transactions

on Services Computing, 5(1), 116–130.

[4] Kukreja, S., Singhal, A., & Bansal, A. (2015). A critical survey on test management in

IT projects. International Conference on Computing, Communication and Automation,

ICCCA 2015, 791–796.

[5] Bogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S., & Zimmermann, A.

(2019). Towards a Collaborative Repository for the Documentation of Service-Based

Antipatterns and Bad Smells. In Proceedings - 2019 IEEE International Conference on

Software Architecture - Companion, ICSA-C 2019 (pp. 95–101). Institute of Electrical and

Electronics Engineers Inc.

[6] https://taiga.io/

[7] https://confluence.atlassian.com/

[8] Park, J. S., Suresh, A. T., An, G., & Giordano, J. (2006). A framework of multiple-

aspect component-testing for trusted collaboration in mission-critical systems. In 2006

International Conference on Collaborative Computing: Networking, Applications and

Worksharing, CollaborateCom.

[9] Jhala, K. S., Oak, R., & Khare, M. (2018). Smart collaboration mechanism using

blockchain technology. Proceedings - 5th IEEE International Conference on Cyber

Security and Cloud Computing and 4th IEEE International Conference on Edge Computing

and Scalable Cloud, CSCloud/EdgeCom 2018, 117–121.

[10] Zheng, Zibin, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. "An

overview of blockchain technology: Architecture, consensus, and future trends." In 2017

IEEE international congress on big data (BigData congress), pp. 557-564. IEEE, 2017.

[11] https://www.idtheftcenter.org/data-breaches/

[12] "Initial revision of "git", the information manager from hell". GitHub. 8 April 2005.

[13] Nakamoto S. (2008). Bitcoin: A peer-to-peer electronic cash system, Available at

http://bitcoin.org/bitcoin.pdf

https://confluence.atlassian.com/
https://www.idtheftcenter.org/data-breaches/
http://bitcoin.org/bitcoin.pdf

68

[14] Yaga, Dylan, Peter Mell, Nik Roby, and Karen Scarfone. "Blockchain technology

overview." arXiv preprint arXiv:1906.11078 (2019).

[15] Becker, Georg (2008-07-18). "Merkle Signature Schemes, Merkle Trees and Their

Cryptanalysis" (PDF). Ruhr-Universität Bochum. p. 16. Retrieved 2013-11-20.

[16] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi and A. Rindos, "Performance

Modeling of PBFT Consensus Process for Permissioned Blockchain Network

(Hyperledger Fabric)," 2017 IEEE 36th Symposium on Reliable Distributed Systems

(SRDS), Hong Kong, 2017, pp. 253-255.

[17] Szabo, N. “Smart Contracts,” 1994.

[18] Szabo N. (1997). Formalizing and securing relationships on public networks. First

Monday 2.9

[19] Long, T., Yoon, I., Memon, A., Porter, A., & Sussman, A. (2014). Enabling

collaborative testing across shared software components. CBSE 2014 - Proceedings of the

17th International ACM SIGSOFT Symposium on Component-Based Software

Engineering (Part of CompArch 2014), 55–64.

[20] Long, T., Yoon, I., Porter, A., Memon, A., & Sussman, A. (2016). Coordinated

Collaborative Testing of Shared Software Components. Proceedings - 2016 IEEE

International Conference on Software Testing, Verification and Validation, ICST 2016,

364–374.

[21] Wanderley, G. M. P., Abel, M. H., Barthes, J. P., & Paraiso, E. C. (2017). An advanced

collaborative environment for software development. 2016 IEEE International Conference

on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings, 2917–2922.

[22] Scott, B., Loonam, J., & Kumar, V. (2017). Exploring the rise of blockchain

technology: Towards distributed collaborative organizations. Strategic Change, 26(5),

423–428.

[23] https://www.hyperledger.org/

[24] M. Lang & J. Duggan, “A Tool to Support Collaborative Software Requirements

Management” Requirements Engineering Journal 6(3), 2001, pp. 161–172.

https://www.hyperledger.org/

69

BIOGRAPHICAL SKETCH

Jinal S. Patel is a graduate student in Software Engineering at Arizona State University.

She graduated with a BS degree from L. D. College of Engineering from Gujarat, India, in

2015. She is currently a research assistant at the Center for Cybersecurity and Digital

Forensics at ASU. She was teaching assistant for the course software security in the Spring

2020 semester at ASU. During her graduate program, she worked as an application security

intern at Silicon Valley bank in Summer 2019 and worked as a Software development

Engineer in Test at EdPlus from November 2018 to November 2019. She has worked as

Security Engineer at Wipro from 2015 to 2018. Her research interests include software

engineering, application security, blockchain, and cybersecurity. She has accepted a full-

time offer of Security Engineer at Amazon in the Information Security group at Amazon

HQ, Seattle.

