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ABSTRACT 

   

The coordination of developing various complex and large-scale projects using computers 

has been well established and is the so-called computer-supported cooperative work 

(CSCW). Collaborative software development consists of a group of teams working 

together to achieve a common goal for developing a high-quality, complex, and large-scale 

software system efficiently, and it requires common processes and communication 

channels among these teams. The common processes for coordination among software 

development teams can be handled by similar principles in CSCW. The development of 

complex and large-scale software becomes complicated due to the involvement of many 

software development teams. The development of such a software system can be largely 

improved by effective collaboration among the participating software development teams 

at both software components and system levels. The efficiency of developing software 

components depends on trusted coordination among the participating teams for sharing, 

processing, and managing information on various participating teams, which are often 

operating in a distributed environment. Participating teams may belong to the same 

organization or different organizations. Existing approaches to coordination in 

collaborative software development are based on using a centralized repository to store, 

process, and retrieve information on participating software development teams during the 

development. These approaches use a centralized authority, have a single point of failure, 

and restricted rights to own data and software. In this thesis, the generation of trusted 

coordination in collaborative software development using blockchain is studied, and an 

approach to achieving trusted cooperation for collaborative software development using 
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blockchain is presented. The smart contracts are created in the blockchain to encode 

software specifications and acceptance criteria for the software results generated by 

participating teams. The blockchain used in the approach is a private blockchain because a 

private blockchain has the characteristics of providing non-repudiation, privacy, and 

integrity, which are required in trusted coordination of collaborative software development. 

This approach is implemented using Hyperledger, an open-source private blockchain. An 

example to illustrate the approach is also given.  
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CHAPTER 1 

INTRODUCTION 

Multiple teams participate in software development activities to achieve high quality and 

quick software delivery for a complex and large-scale software system. The coordination 

of developing complex and large-scale projects using computers has been well established 

and is the so-called computer-supported cooperative work (CSCW) [1]. Coordination 

becomes necessary in multiple ways in collaborative software development, such as in 

software specifications sharing, software data sharing, to understand software components 

with past data, and to verify proposed techniques for acceptance. The collaborative 

software development requires similar principles like CSCW to handle the coordination 

among participating software development teams. In the absense of a coordination 

environment, each participating team will likely to manage its software development 

activities on its own. Each team can have different data and software sharing policies, 

different tools to maintain information related to software, different development 

environments to carry out coordination. In such an environment, complex and large-scale 

software development becomes chaos due to heterogeneous tools, development 

environments, and delay in coordination among teams. These factors cause trust issues 

among participating teams in collaborative software development. In the development of 

complex and large-scale software, each software development phase needs input from the 

previous software development phase and passes essential data to the next software 

development phase. This information builds a history of the software component, which is 

a crucial piece of information to audit in the collaborative software development 

environment. Trusted coordination is necessary for all kinds of software development 



2 

paradigms, such as waterfall, spiral, or agile. Each team is coordinating with other teams 

directly if they need to collect information on any part of software development activities. 

Easy availability of complete and reliable auditable history of software components is 

difficult to obtain in centralized approaches [2-7]. Since the sharing information of 

software components among development teams is quite common in a complex and large-

scale software development project, a participating team cannot always trust the 

information on shared components provided by the other participating teams, especially 

when some participants may belong to competitors or possibly malicious groups involved 

in the collaboration [8][9]. The involvement of third-party vendors can create more severe 

trust issues because of different data sharing policies on software development and quality 

of software development. Hence the trust among the participating teams will be reduced 

due to the involvement of many participating teams.  

 The concerns on the trust issues can be significantly reduced by adequately utilizing 

blockchain [10] technology, which has properties of transparency, reliability, and 

auditability in data and software specification sharing. In this thesis, the generation of 

trusted coordination in collaborative software development using blockchain in presented. 

The smart contracts are created in the blockchain to encode software specifications and 

acceptance criteria for the software results generated by participating teams. The 

blockchain used in the thesis is a private blockchain because a private blockchain has the 

characteristics of providing non-repudiation, privacy, and integrity, which are required in 

the trusted coordination of collaborative software development. An approach to generating 

trusted coordination of collaborative software development is presented and implemented 
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using Hyperledger, an open-source private blockchain. An example to illustrate the 

approach is also presented in this thesis. 

 The organization of the thesis is presented in seven chapters. The first chapter 

provides an overview of the research on collaborative software development and the 

organization of the thesis document. The second chapter provides the necessary 

background to understand the research problem in collaborative software development and 

blockchain. The third chapter describes the problem statement and limitations of a few 

approaches in the current state of the art. The fourth chapter explains the blockchain-based 

overall approach in detail. Chapter five presents an approach to generate a smart contract 

and few sample smart contracts for different phases of the software development lifecycle. 

In the sixth chapter, an illustrative example is shown with a sample complex and large-

scale software development project. Chapter seven presents the discussion and conclusion 

of the approach. Chapter eight gives a brief overview of the future work on the blockchain-

based approach.  
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CHAPTER 2 

BACKGROUND 

2.1 Collaborative Software Development 

 Software development becomes a complex process due to the increasing demand 

for software in all possible domains. Software development comprises multiple software 

activities such as software requirement engineering, design, implementation, testing, and 

maintenance, and these activities may be performed by various teams based on the 

complexity and necessity of the software development project. Multiple teams need to 

come together to develop a complex and large-scale software system to produce a high-

quality software system. Collaboration helps software development teams to produce 

software quickly. Software development teams are adopting multiple paradigms to carry 

out software development activities, such as the waterfall model, spiral model, or agile 

methodologies. All these paradigms require multiple teams to coordinate to achieve their 

final goal. Participating teams in the collaborative software development project may 

belong to the same organization or different organization. A team collaborates with other 

teams to share software specifications, software results, and communication for other 

software development information. Various collaborative software development tools are 

developed to facilitate coordination among participating teams [2-7]. The collaborative 

software development environment has many advantages, such as teams can use past 

software information to audit or verify software components. The participating teams in 

the collaboration may distribute effort and share results for common components to lower 

cost and improve software quality. Teams can save efforts of software development 

significantly by sharing software component specification and its history, including 
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different phases of the software development lifecycle. The success of the complex and 

large-scale software development project relies on how well different participating teams 

are working collaboratively. All participating teams need to come to a consensus on useful 

tools, technologies, methodologies for an efficient and reliable software development 

environment. Various tools are available opensource, and on commercial platforms to 

manage coordination among software development teams. These tools use a centralized 

repository to share, process, and manage information regarding participating teams, as 

shown in Figure 1.  

 

Figure 1: A Centralized Tool or Repository to Handle Coordination 

in Collaborative Software Development 

 Centralized tools are useful to store information on different phases of software 

development activities and create a history of the software component. Software 

developers may use the history of the component to verify the reliability, efficiency, and 

usefulness of the software component. Furthermore, the software development team can 

significantly reduce the cost and build time for the new software component development 
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by utilizing results and history available for the past software component. Collaborative 

software development has shown promising results in the current demand for reliable and 

fast software development. There are few advantages of using centralized tools for 

collaborative software development, such as lower hardware resources, single-point 

authority, easy to change, easy to scale.  

           Centralized tools for the coordination in collaborative software development have 

the following limitations, use of a centralized authority, have a single point of failure, and 

restricted rights to own data and software. Due to current threats to software systems, every 

day, we see a new cyber-attack launched on such systems. As per recent study regarding 

cyber-attacks on software systems, 8,854 breaches are recorded between January 1, 2005, 

and April 18, 2018 [11]. Many commercial tools became a victim of such data breaches. 

Additionally, centralized tools do not provide a feature of data restrictions on the sharing 

of critical software component specifications and results. Due to these weaknesses, trust 

among participating teams may be reduced. 

           To overcome limitations on centralized tools, various decentralized and distributed 

tools, as shown in Figure 2, are developed to manage coordination in collaborative software 

development. The most popular open-source distributed version control tool for source 

code tracking is GitHub [12], and GitHub provides a platform for software developers to 

develop software collaboratively and in distribution fashion. However, when one takes an 

in-depth look into GitHub, it is a repository to store content with version control capability. 

GitHub provides few necessary features like immutable commit history, parallel workflow 

for software development projects, and pluggable merge strategies. Distributed tools like 

GitHub has the following limitation in collaborative software development, lack of access 
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management capability, mutable history, no consensus criteria for adding data into the tool. 

GitHub was attacked several times for arbitrary code executions and distributed denial of 

service (DDoS) in the past.   

 
Figure 2: A Decentralized Tool for Collaborative 

Software Development 

2.2 Blockchain 

 Blockchain is one of the expanding emerging technologies, which uses 

cryptographic techniques to build and maintain ever-growing immutable records in a 

distributed fashion. The Blockchain was first introduced in 2009 through Bitcoin’s 

initiation [13]. Blockchain eliminates the need for centralized authority due to its 

distributed nature. As blockchain’s name implies, it is a chain of blocks containing 

transactions. The transaction can be a record of tangible assets or intangible assets. 

Properties, cars, hardware can be considered as Tangible assets (having a physical form). 

Patents, intellectual properties, and copyrights can be considered as Intangible assets 

(having no physical form). Both kinds of assets can be recorded in the blockchain. 

Blockchain is a kind of advanced data structure, where blocks are connected with 
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cryptographic links, and it is an encrypted ledger of transactions.  Blockchain is tamper-

evident and tamper-resistant [14], which means it provides an immutable distributed ledger 

with an auditability feature. Blockchain was widely connected with a cryptocurrency like 

bitcoin [13] due to its origin, but the underlying technology is being used in many other 

applications.  

 Blockchain is a complex technology to understand and implement for a specific 

application. The following terms should be understood in detail to understand blockchain 

technology for applicability of any approach: 

• Blockchain network 

• Block structure 

• Cryptographic functions 

• Consensus Protocols 

Blockchain network 

 Blockchain network is the infrastructure of multiple nodes that provides distributed 

immutable ledger. A participant electronic device is called a node in the Blockchain. These 

nodes can store a complete copy of the blockchain ledger or partial copy based on the 

participation of the node in Blockchain [14]. If a node stores the complete copy, then it is 

called a Major node, and it is responsible for becoming online all the time to get the latest 

copy of the Blockchain. If a node stores a partial copy of the ledger, then it is called a minor 

node. The more major node joins the blockchain network, the better the tamper-resistant it 

becomes. When the blockchain data spread across many devices, it will be challenging for 

a hacker to update past data stored in the Blockchain. The sample infrastructure for the 

blockchain infrastructure is shown in Figure 3.   
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Figure 3: A Blockchain Infrastructure 

Block Structure 

 Each block in the blockchain has two components: Block header and Block body. 

Block header stores various information on the block, such as block number, block version, 

Merkle tree root, previous block’s hash, timestamp, size of the block, and nonce [14]. The 

Block body consists of blockchain transactions to be added to the blockchain. These 

transactions are not necessarily in sequence; it can be picked at any order. The Block 

structure is shown in Figure 4 with a block header and block body. Different parts of the 

block header are as follows: 

Block Number: Block number is the current height of the blockchain, how many blocks 

are already added in the blockchain plus one. 

Block Version: Version of the blockchain. 
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Figure 4: The Structure of the Block in Blockchain 

Merkle Tree Root Hash: In the blockchain, block data is hashed in the form of a Merkle 

tree root hash. Merkle tree is a data structure to store data in a way that a single root is 

found by hashing and combining data stored in leaf nodes [15]. In the blockchain, Merkle 

tree root hash is computed by hashing and combining transactions in the block body. 

Merkle tree root hash is then stored in the header of the block and used for providing 

features of tamper-resistance of the blockchain. If anyone changes data in the block, then 

Merkle tree root hash will be different from one stored in the block header. This data 

structure is useful to verify the consistency and integrity of the data stored in the 

blockchain.  

Previous Block’s Hash: The hash of the complete header of the previous block is stored in 

the latest block. Cryptographic chain the blockchain is created by storing previous block’s 

hash in the current block. This property creates a linked list like structure with linked 

blocks. The first block in the blockchain has no previous block, so it stores value 0 as the 

previous block’s hash. Previous block’s hash is also used for providing features of tamper-

resistance of the blockchain. If anyone changes data in the previous block, then computed 



11 

hash for the block will be different from one stored in the next block’s header. This data is 

useful to verify the consistency and integrity of the data stored in the blockchain. 

 

Timestamp: The current time in seconds in the format of the universal time since January 

1, 1970, when the current block is created. 

 

Size of the Block: stores size of the block, including block header and block body.  

 

Nonce: Nonce is the abbreviation for the Number Used Only Once. A nonce is used in the 

blockchain, which uses a consensus model “proof of work.” Only changing the nonce value 

provides a mechanism in blockchain mining for obtaining different digest values while 

keeping the same block data [14]. This digest value needs to be less than the target hash 

value.  

 

Target Hash: Target hash is a difficulty level from 0 to 2256 number, which is initialized in 

the genesis block. When a new block is added to a blockchain, the hash number Hn of the 

new block is computed as follows:  

 if Hn < Target Hash: 

  add a new block in the blockchain 

 else: 

  reject new block 

 



12 

Block Body: List of transactions stored in the current block. These transactions are picked 

randomly, and it is not mandatory to have sequential transactions.  

 

Genesis Block: The beginning block in the blockchain is called Genesis Block. It is a 

special block in the blockchain, which stores necessary configurations for the blockchain. 

Genesis block records the initial state of the blockchain [14] with configurations such as 

consensus protocol, target hash (difficulty level), block reward policy (optional), and rate 

of blockchain creation.   

 

Cryptographic Functions 

Hash functions: Hash function is a one-way and irreversible function that takes any size of 

the input and outputs it to fixed-sized message digest [14]. Example hash functions are the 

MD family (MD4, MD5), SHA family (SHA-0, SHA-1, SHA-256, SHA-512), SCrypt, 

BCrypt. One of the cryptographic hash function is SHA-256, which takes any arbitrary size 

of the input and map that to 256-bit size output. The output of the hash functions is 

generally rendered in hexadecimal form. Cryptographic hash functions are used in data 

integrity, to protect sensitive data, in the verification of digital signatures, and in the 

application of TLS, SSL, IPsec. The hash functions frequently used in blockchain platforms 

are SHA-256 and SCrypt.  

 

Asymmetric Key Pairs: Blockchain uses asymmetric key pairs, which is also known as 

public-key cryptography. Asymmetric key pairs are one of the vital components in 

blockchain technology. Public key cryptography utilizes a pair of keys (Public Key, Private 
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Key) for each participating user. The public key from the pair is broadcasted to all other 

members of the blockchain. The private key is a secret key for the node, and only known 

to the owner of the key. Public key cryptography is used for a digital signature on 

blockchain transactions and private communication channel setup.  Due to the usage of two 

keys in asymmetric cryptography, data is encrypted using one key and decrypted with 

others. It is a safer way to make sure that only allowable user receives key for 

communication. In the blockchain, each blockchain transaction is signed with the private 

key of the owner before adding that into the blockchain. Once it is added into the 

blockchain, anyone with the knowledge of the public key of the owner can verify the 

owner’s signature.  

  

Digital Signatures: In the real world, handwritten signatures are used to bind signatory to 

the handwritten or typed message. Similarly, digital signatures are used to bind signatory 

to digital documents or messages. Digital signatures use public-key cryptography in the 

blockchain. Digital signatures are used for data integrity, transaction authentication, and 

non-repudiation. For example, one node signed a blockchain transaction with its private 

key and added it to the blockchain. Any node in the blockchain can verify this blockchain 

transaction using the node’s public key. Few well-known signing algorithms are RSA-

based signature schemes, Digital Signature Algorithm (DSA), and Elliptic Curve Digital 

Signature Algorithm (ECDSA) [14]. 
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Consensus Protocols/Models 

 Blockchain uses different consensus protocols to verify the addition of new blocks 

in the blockchain. The consensus is agreement criteria or conflict resolution technique 

defined in the genesis block. Following is a detailed explanation of the consensus protocols 

used in the blockchain, and a brief overview of the advantages and disadvantages of each 

consensus protocol. 

 

Proof of Work (PoW): In proof of work model, a user can add a new block in the 

blockchain by solving a cryptographic puzzle. The cryptographic solving puzzle involves 

a resource-intensive process of finding a Nonce value, which is less than the target hash 

defined in the genesis block. The target value may be adjusted (up or down) to regulate 

how blocks are being published frequently [14]. The proof of work model is ideal for 

blockchains with nodes with less trust among them. This puzzle is designed in a way that 

solving puzzles is resource-intensive and challenging, but verifying the solution of the 

puzzle is very easy and intuitive. Available computing resources and time increases over 

time to enhance the difficulty of the puzzle. Finding nonce is a brute force method, and 

miner needs to try different nonce value to match the target hash value. Whichever node 

solves the puzzle first, that node broadcast nonce value with block data to all other nodes. 

Other nodes in the blockchain verify the solution and accept the result. If the nonce is 

accepted by other nodes, then the new block is appended to the blockchain. This entire 

process is known as blockchain mining. The user receives a reward for solving the 

cryptographic puzzle in the form of cryptocurrency. Bitcoin and Ethereum use proof of 
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work consensus model. Proof of work model is vulnerable to a classic 51% attack on the 

blockchain, where the majority of nodes collaborate to solve cryptographic puzzles [14].  

 

Proof of Stake (PoS): Proof of stake model uses the stake of the user in the blockchain 

mining process. Proof of stake was created as a replacement to Proof of work model in 

public blockchains. The user gets the reward in proportion to the stake he/she holds in the 

blockchain. Instead of utilizing intensive resources and computing power to solve PoW, a 

PoS miner is entitled to mine a percentage of transactions based on his or her ownership 

stake.  If a user has a 5% stake in blockchain mining, he will get 5% of the reward when a 

new block gets created. Proof of stake generates a situation where 51% attack does not give 

many advantages to the attacker because if someone already has a 51% share, they are not 

going to attack the network with this share. The value of an attacker’s cryptocurrency will 

be impacted if they perform such attacks. Ethereum is planning to switch to blockchain 

uses PoS consensus.  

 

Round Robin: Permissioned blockchain networks mostly use the round-robin consensus 

model. Just like the round-robin algorithm, nodes in the blockchain network take a turn to 

create the next block in the blockchain [14]. A time limit may be imposed to handle 

situations where publishing node is not available to publish the next block in its turn. Round 

robin model does not require intensive computing power or mining process like proof of 

work and proof of stake models. Each node takes a turn to create blocks; hence no node 

can create a majority of the nodes in this approach. This model requires nodes to trust each 

other to create nodes in turns, so permissionless or public blockchain networks cannot use 

this model due to trust issues among participants. 
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Proof of Authority/Identity: Proof of Authority consensus model is also known as Proof 

of Identity consensus model. This model needs publishing nodes to attach their real identity 

with it, so that node can be identified quickly and trace back to the human user. This model 

needs some trust in the blockchain system, where publishing nodes verifies and prove their 

identity before joining the blockchain network [14]. This model is widely used along with 

the reputation system. The reputation of the publishing node analyzed from its constant 

behavior in the blockchain. If any node behaves suspiciously, it is implausible that block 

from that node gets published. The proof of identity model is more suitable for 

permissioned blockchain.    

 

Practical Byzantine Fault Tolerance (pBFT): PBFT consensus model is based on the 

voting system among participating blockchain nodes. Publishing node needs to get two-

third of the votes to publish the next blockchain node. pBFT provides promising results 

even if one-third of the nodes are malicious in the blockchain. This model is more suitable 

for permissioned blockchain, where the identity of each node is known and verified before 

joining the network.  

 

Blockchain Classifications 

 Blockchain networks are categorized into two types based on the identification 

model of the participating nodes. These two types are public/permissionless blockchain 

and private/permissioned blockchain.  
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Public Blockchain: If anyone with the internet can participate in the blockchain network, 

then it is called public blockchain or permissionless blockchain. Anyone in the blockchain 

can add and verify a new block in the blockchain. Node does not require any prior 

permission to join public blockchain; it is more like working on an open-source project 

[14]. Establishing trust among blockchain nodes is difficult in public blockchain because 

any node on the internet can join blockchain with enough computing power and resources. 

Blockchain nodes are incentivized by any form of cryptocurrency in this model. Bitcoin 

and Ethereum are the popular blockchain platforms to use public blockchain. Most public 

blockchains are resource and computing-intensive due to the use of cryptocurrency and 

block mining process.  

 

Private Blockchain: If a node needs permission to participate in the blockchain network, 

then it is called private blockchain or permissioned blockchain. Private blockchain has a 

partial trust established among blockchain nodes due to their pre-verified identity; it is 

more like an enterprise network with known entities [14]. The private blockchain is not 

resource-intensive like public blockchain. Private blockchains can provide read-write 

restrictions for participating in the blockchain [14]. Various consensus models are used in 

private or permissioned blockchain to establish trust in publishing nodes.    

 

Smart Contracts 

Nick Szabo presented the notion of a smart contract in 1994 and defined a smart contract 

as “a transaction treaty that executes the terms of a contract automatically” [17].  Smart 

contracts are executable code in the blockchain environment and allow the maintenance of 
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transactions without third parties in the blockchain. The primary goal of the smart contract 

is to provide contractual conditions, handle its exceptions in the blockchain [17]. A smart 

contract contains asset data and executable code in the blockchain. The addition of the 

smart contract and each execution of a smart contract is stored in the blockchain as a 

transaction. Bitcoin and Ethereum blockchain platforms use smart contract functionality, 

and a node needs to spend cryptocurrency to execute this smart contract, whereas private 

blockchain like Hyperledger has the same functionality as chaincode without the need of 

any cryptocurrency.  

 

Traits of Blockchain 

Distributed: Nodes in the blockchain are connected through distributed fashion. Each node 

saves a complete or partial copy of the blockchain transactions. Data tampering becomes 

difficult due to the distributed design of the blockchain networks.  

Decentralized: Nodes in the blockchain need to come to a consensus to add any new block 

in the blockchain-based on the consensus model they use; this feature eliminates the need 

for centralized authority.  

Immutability: Blockchain has a hype of being immutable, but actually, blockchain is 

tamper-evident and tamper-resistant [14] due to cryptographic link between two nodes, and 

presence of Merkle tree root hash in each node header. Modifying any past transaction is 

difficult and requires so many cryptographic updates in the blockchain. Additionally, the 

distributed nature of the blockchain makes it nearly impossible to update previously added 

data.  
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Consensus: Consensus models decide who will add a new block in the blockchain. Nodes 

can participate in the blockchain without necessarily trusting each other due to the power 

of consensus models and creates a trustless environment.  

Auditability: Each node can verify all the transactions in the blockchain. This feature 

provides a node to validate or audit previous entries and provide transparent history for 

future use. 

 Blockchain has the hype of being an emerging technology with many promising 

characteristics. Though blockchain has many advantages due to its nature and 

cryptocurrency, one needs to carefully consider the benefits and limitations of using 

blockchain in its approach. Blockchain has several limitations like storage requirement, 

resource consumption, scalability, throughput, and latency of the transaction processing 

times. 

           There is a debate going on the topic of the use of a shared repository using GitHub 

vs. blockchain. Blockchain and GitHub are fundamentally different in their 

implementation. Github uses a tree structure, where hash data is stored in a tree structure 

with direct access to its predecessor. Blockchain uses the structure of LinkedList with 

cryptographic links and Merkle tree root hash for block data. Blockchain links all the data 

stored in blockchain from the very first block, and anyone can verify this data in the 

blockchain. Blockchain implementation requires verification of each newly added block 

by participating node based on various consensus models, and GitHub does not require 

verification of added data by multiple participants. Hence blockchain can be used in a case 

where multiple parties are collaborating with trust issues. Git provides facility to rewrite 

past data, delete existing data from GitHub, which is against the immutability feature of 
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the blockchain. Git also uses the cryptographic hash to store individual commit history, 

which provides characteristics of tamper-evident and tamper-resistance like blockchain. 

The significant difference between two technology is working structure; blockchain uses 

one chain to store it’s all data, where git uses different branches to store data, which will 

cause multiple forks in blockchain implementation. Lastly, blockchain implementation is 

distributed by nature, where git can be centralized or distributed as per the need of the user. 
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CHAPTER 3 

PROBLEM STATEMENT 

 In a collaborative software development environment, participating teams working 

with other teams to achieve larger goals of greater importance and generate better quality 

software [9]. So far, existing approaches to the coordination in collaborative software 

development [9] [13] [17-22] are for developing a single complex and large-scale software 

system.  Some existing approaches [19-21] use a shared repository to manage various 

versions of the software component and the dependency among their software components 

[19][20] and show how to monitor software quality matrices in collaborative software 

development [21]. Trust management is a critical issue in the complex and large-scale 

software development project, considering the current trend of increasing threats to 

software systems with important applications. With multiple teams and organizations 

involved in developing a complex and large-scale software project, the shared repository 

and tool for the collaboration must provide transparency, auditability, and reliability to 

handle software components without concerns about the trust issues.  

 Furthermore, shared repository and tool for collaboration should have the capability 

of sharing data through some private communication channels to protect certain critical 

information in software development and to provide data ownership to some participating 

teams as needed. If outsourced software or open-source software is used in the software 

development project, then it should be easy for all the participating teams to know the 

history of the outsourced or opensource software, if needed. In case a centralized solution 

for coordination in collaborative software development is used, concerns such as single 

point of failure, restricted data ownership, lack of verification for the data to be added, 
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private sharing of critical data, data tampering, and data auditability, may be raised. These 

concerns may be serious for collaborative software development.  

 As mentioned before, some approaches have used blockchain to verify blockchain 

transactions in collaborative software development, and do not address the coordination in 

collaborative software development. In this approach, blockchain is used to provide trusted 

coordination for collaboratively developing a complex and large-scale software system. 
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CHAPTER 4 

THE OVERALL APPROACH TO GENERATING TRUSTED COORDINATION  

OF COLLABORATIVE SOFTWARE DEVELOPMENT 

 

 In this section, the overall approach to generating trusted coordination in 

collaborative software development is presented. A blockchain-based approach is 

implemented using a private or permissioned blockchain for developing a complex and 

large-scale software system in a collaborative environment. 

           In the approach, a blockchain represents the entire collaborative software 

development project. Each participating software development team is represented by a 

distinct node in the blockchain. Only one of the participating teams is designated as the 

prime contractor team, which is responsible for negotiating and determining all the 

responsibilities of each participating team in the software development project. 

Participating teams may belong to different organizations or the same organization as the 

primary contractor. All software development activities are performed in a distributed way 

except role assignment and blockchain setup.  

           The approach is implemented in private blockchain to accommodate enterprise 

setup for collaborative software development. Each node in the blockchain is directly 

connected to other nodes, and this structure creates a complete graph of N nodes. Assume 

N be the number of nodes in the blockchain used in the approach. The initialization of the 

blockchain is shown in Figure 5. Each node saves an entire copy of the blockchain, which 

satisfy the consensus criteria of the blockchain. Each node has a designated member of the 

team as the administrator of the team to provide input and output of the software 

development activities to/from the team. Practical Byzantine Fault Tolerance (PBFT) 
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consensus model is used in the approach to collect agreement of participating nodes in a 

collaborative software development project.  

 
Figure 5: Blockchain Initialization for N Participating Software Development Teams 

 

Following are the notations used in the approach: 

• T: A participating team in the collaborative software development project. 

• N: The number of T’s in the collaborative software development project. 

• C: A smart contract generated by a T. 

• M: The number of software specifications, each of which will generate a smart 

contract by a T in the collaborative software development project. 

• R: A software result represented as a transaction in the blockchain. 

• S: The number of R’s in the blockchain. 

• G: The group of all the recipient teams for a smart contract. 
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Figure 6: The Software Activities Performed by Each Participating 

Team in the Approach 

The following steps describe the overall approach performed by each participating teams: 

Step 1: Ti | i = 1, 2, ... N, generates up to M software specifications, each in the form of 

a smart contract Ci,k, from Ti to Tk, k ≠ i, Tk  Gi, and Gi is the group of all recipient teams 

of Ci,k. Each Ci,k contains all the required specifications for the software developed by Tk, 

and satisfying the acceptance criteria of Ci,k. 

Repeat this process for Ti , i = 1, 2, …N. The generation of the smart contract will be 

presented in Chapter 5.  

Step 2: Tk  Gi, Tk performs the software activity specified in Ci,k generated in Step 1. 
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Step 2.1: If the result Rt ,1 ≤ t ≤ S, generated by Tk meets the acceptance criteria of Ci,k, Rt 

is added to the blockchain as a blockchain transaction. 

Step 2.2: If Rt generated by Tk does not meet the acceptance criterion of Ci,k, Ti is alerted 

by the blockchain that Rt is not successful, and added in the blockchain with the rejection 

message.  

Repeat Step 2, Tk  Gi. 

Transaction in Step 2.1 and 2.2 is added in the blockchain if it meets consensus criteria 

defined for the blockchain.  

Step 3: If a Ti, 1 ≤ i  ≤ N, requires to audit the development history of a software component, 

Ti verifies all the Rt’s 1 ≤ t ≤ S by querying Ci,k, k ≠ i, Tk  Gi. 

The software activities performed by each participating team in the approach are shown in 

Figure 6. 
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CHAPTER 5 

GENERATION OF SMART CONTRACTS 

 Smart contracts are executable code in the blockchain environment and allow the 

process of transactions without third parties in the blockchain. The primary goal of the 

smart contract is to provide contractual conditions, handle its exceptions in the blockchain 

[17]. A smart contract contains asset data and executable code in the blockchain but not 

include the information on how the transaction is processed or originated. The approach to 

generating trusted coordination of collaborative software development is implemented on 

the Hyperledger – open-source private blockchain. Hyperleger [23] supports many 

programming languages, including GoLang (go), java, NodeJS. The blockchain-based 

approach uses go for the smart contract implementation because Hyperledger’s internal 

development is done in go, and API for the go is more matured than other supported 

languages. Also, using go is useful to set up or modify an existing open-source Hyperledger 

platform for customization.  

 In this section, a process for generating smart contracts for software development 

specifications is presented with few examples. Smart contracts are executable code in the 

blockchain environment and maintain transactions without third parties in the blockchain. 

In the blockchain-based approach, each software team generates multiple software 

specifications in the form of smart contracts for each phase of the software development 

lifecycle. Each smart contract contains the following significant parts for software 

specification: 

a. Allowed Parties: All teams who can participate in this Smart Contract. 
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b. Contract Terms and Metadata: Required information to perform software activity 

and acceptance criteria for software specification in {Key, Value} format. Each 

{Key, Value} pair is being checked against the generated result by other allowed 

teams. 

c. Execution Terms for Result Compliance: team setup execution action for 

acceptance or rejection of the supplied software result. 

The creation of the Smart Contract require to implement the following major steps: 

Step1): create Structure (class or struct) with the following information: 

 AllowedParties (type list – holds recipient teams) 

Example:  [T1, T2, T3] (Assign responsibility of each team in software requisites) 

 ContractMetadata (type map – holds key-value pairs) 

Example: Owner: (variable type - String) 

SoftwareModule: (variable type - Number) 

 Version: (variable type - String) 

 CreationDate: (variable  type Date) 

 SourceLocation: (variable type String) 

 Software Requisites (variable type map: key-value pairs) 

• Key: Software specification conditions  

• Value: Expected value/s 

• Example: 

CyclicDependency: 0 (in class and package diagrams)  Assigned to which 

participating team 
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ExternalLibraries: [4-8] (number of external libraries allowed to be used in the 

code)  Assigned to which participating team 

… 

Step 2): Write implementation for the following two default methods to create a smart 

contract. 

 Init – to initialize the smart contract 

 Invoke – to call any method from the smart contract after initialization 

Following are the pseudocodes for the above default methods in the blockchain-based 

approach: 

function Init 

 # instantiate Structure created in Step 1) 

 struct SoftwareSpecs 

 

function Invoke(String functionName, String attributeName, var attributeValue, String 

softwareResult) 

 if functionName = “query” 

 return SoftwareSpecs [attributeName] 

else if functionName = “audit” 

              return “all transactions related to this smart contract” 

 else if functionName = “update” 

 SoftwareSpecs [attributeName] = attributeValue 

 # update attribute in the blockchain 

 else if functionName = “delete” 
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# delete the smart contract 

else if functionName = “processResult” 

  if softwareResult = SoftwareSpecs[attributeName] 

 # update blockchain with software result and success message  

 else 

 alert SoftwareSpecs[‘Owner’] through email  

        # update blockchain with an error message 

 

Note that if a smart contract is deleted from the blockchain, all the data input, output for 

the smart contract will remain in the blockchain. In addition, the blockchain-based 

approach is able to handle the dynamic nature of changing requirements in a smart contract 

through the “update” and “delete” method. The approach requires each team to create a 

separate smart contract for each major software versions. Minor versions are handled 

through updating acceptance criteria in the existing smart contract through the “update” 

and “delete” method.  

 The method to generate a smart contract is common for all phases of software 

development in a collaborative software development project.  Each software development 

phase does not mandate information from preceding or previous software development 

phases. In a nutshell, a smart contract for collaborative software development contains data 

(data and metadata of a software component) and actions (methods to perform different 

activities on software data). Each method in the smart contract is given certain privileges 

as per the requirement of the software component to prevent the deletion and modification 
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of smart contract attributes by malicious participants. Table 1 presents function level 

privileges for each method presented in the smart contract.  

Method Function level access assignment 

Init Owner of the smart contract 

Invoke query Any participant on the blockchain 

Invoke audit Any participant on the blockchain 

Invoke update Owner of the smart contract 

Invoke delete Owner of the smart contract 

Invoke processResult All participants in the smart contract 

Invoke alert All participants in the smart contract including Owner 
 

Table 1: The Function Level Privileges for Smart Contract Methods 

Three smart contracts are presented in this section to show how software development 

teams can generate smart contracts for various phases of the software development 

lifecycle. The smart contracts cover methods to generate a smart contract for the various 

phase of the software development lifecycle, as mentioned in Section 5.1. Software design 

and software testing smart contracts cover the quantifiable assessments of software results, 

and software requirement covers non-quantifiable assessments of the software result based 

on requirement traceability matrix. The generation of the smart contract for the requirement 

phase is complicated than other phases, and require more details, so design phase, and 

testing phase is presented in Section 5.1 and 5.2, and the generation of smart contract for 

requirement phase is presented in 5.3. The structure of the presentation does not change 

actual sequence of software development activities for any software development phases. 

The method to generate a smart contract for the remaining phases are equivalent to these 

three examples and presented in Section 5.  
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5.1 Software Design Smart Contract 

 A smart contract for the software design phase of a collaborative software 

development project, which includes the necessary information to perform software design 

assessment, and acceptance criteria for software design evaluation. Assessment matrices 

for the software design phase are decided based on the input from the previous phases, the 

requirement of the software component, and by collaborating software development teams. 

Software design can be assessed using several matrices, like the dependency of each class 

in a class diagram, package dependencies, cycle dependency in a class diagram, and 

abstractness of each class in the example. There are many assessment matrices available 

for the software design phase, and the selection of the matrix is decided by the participating 

team in the design phase. The participating teams decide which assessment matrix is 

suitable for that component. Encoding all possible matrices in a smart contract is beyond 

the scope of this thesis. Participating team decides consensus criteria from pBFT and 

round-robin based on the requirement of the software component and relation among 

participating teams. Following the above process Step 1) in Section 5.1 input (a, b, and c) 

are generated for the smart contract shown in Figure 7.  

According to Step 2) in Section 5 following methods are generated and implemented to 

carry out software activity mentioned in the smart contract for software design phase: 

• Init: Instantiate structure or class with required software specification metadata. 

Sample struct information is shown below with sample values required in the 

software design phase: 

Sample code in go programming language is shown as follows for the smart 

contract: 
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     Figure 7: The Smart Contract for Example 1 

type SoftwareSpec struct { 

 AllowedParties Element `json:"allowedParties"` 

 Owner  string `json:"owner"` 

 Colour string `json:"colour"` 

 SoftwareModule string `json:"softwareModule"` 

 Version string `json:"version"` 

 CreationDate time.Time `json:"creationDate"` 

 SourceLocation string `json:"sourceLocation"` 
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 designRequisites make(map[string]Element) string `json:"designRequisites"` 

 isDeleted bool `json:"isDeleted"` 

} 

// Define the Smart Contract structure 

type SmartContract struct { 

} 

// init method implementation 

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response 

{ 

 return shim.Success(nil) 

} 

Above struct is populated with the data for the software design phase at the time 

of instantiation, which look like follows:  

type SoftwareSpec struct {  

 var allowedParties = [T2] // contains list of allowed teams 

 var owner = ‘T1’  

 var softwareModule = ‘CB’ 

 var version = ‘1.0’ 

 date creationDate = ‘May 1, 2019’ 

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/classDiagram’ 

 var designRequisites = { // key-value pair of each acceptance criteria 

  var cyclicDependency = [0, T2]  

  var abstractnessOfPackage = [0.5, T2] 
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  var instabilityOfPackage = [(0,1), T2] 

 } 

 var isDeleted = False 

} 

Note that, each design requisites are assigned to one of the allowed parties. In case 

there are multiple parties involved in the same software development phase, each 

requisite is assigned to the same or a different party.  

• Invoke: invoke method is used to provide different actions in a smart contract. 

Based on the requirement of the software development project, the team can 

specify unique functionality in each corresponding method. For smart contract 

mentioned in Figure 7, the following methods are implemented: 

• query: query method implements logic to query specific attributes in the smart 

contract structure with current value stored in the blockchain. For example, if 

T2 needs to know who the owner of the smart contract is, T2 run query function 

to know owner information. Similarly, any information regarding the current 

status of the information is fetched using a query function.  

Implementation of query function in the go programming language is as 

follows: 

func (s *SmartContract) query(APIstub shim.ChaincodeStubInterface, 

  args []string) sc.Response { 

 if len(args) != 1 { 

  return shim.Error("Incorrect number of arguments.   

    Expecting 1") 
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 } 

 dataAsBytes, _ := APIstub.GetState(args[0]) 

 return shim.Success(dataAsBytes) 

} 

Sample query calls: 

 Invoke query owner (returns owner of the smart contract) 

 Invoke query designRequisites (returns list of design requisites for the 

 software component) 

 Invoke query souceLocation (returns location of software specification) 

• audit: audit method implements logic to pull entire history related to this smart 

contract. Audit is useful to get an immutable history of the software 

component regarding all previous software decisions and software results 

provided by the same or other teams.  

Implementation of audit function in the go programming language is as 

follows: 

func (s *SmartContract) audit(APIstub shim.ChaincodeStubInterface) 

sc.Response { 

 startKey := "SS0" 

 endKey := "SS999" 

 resultsIterator, err := APIstub.GetStateByRange(startKey, endKey) 

 if err != nil { 

  return shim.Error(err.Error()) 

 } 
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 defer resultsIterator.Close() 

 // buffer is a JSON array containing QueryResults 

 var buffer bytes.Buffer 

 buffer.WriteString("[") 

 bArrayMemberAlreadyWritten := false 

 for resultsIterator.HasNext() { 

  queryResponse, err := resultsIterator.Next() 

  if err != nil { 

   return shim.Error(err.Error()) 

  } 

  if bArrayMemberAlreadyWritten == true { 

   buffer.WriteString(",") 

  } 

  buffer.WriteString("{\"Attribute\":") 

  buffer.WriteString("\"") 

  buffer.WriteString(queryResponse.Key) 

  buffer.WriteString("\"") 

  buffer.WriteString(", \"Attribute Value\":") 

  buffer.WriteString(string(queryResponse.Value)) 

  buffer.WriteString("}") 

  bArrayMemberAlreadyWritten = true 

 } 

 buffer.WriteString("]") 



38 

 fmt.Printf("- audit All Software Specification results :\n %s \n", 

 buffer.String()) 

 return shim.Success(buffer.Bytes()) 

} 

• update: update method implements logic to query specific attribute in the 

smart contract structure with current value stored in the blockchain and then 

update that attribute with user-supplied value. For example, if T1 needs to 

update the owner of the smart contract, T2 run update function to know owner 

information and then update it with new user-supplied value. Similarly, any 

information regarding the current status of the information is updated using 

the update function.  

Implementation of audit function in the go programming language is as 

follows: 

func (s *SmartContract) update(APIstub shim.ChaincodeStubInterface, args 

[]string) sc.Response { 

 if len(args) != 2 { 

  return shim.Error("Incorrect number of arguments. Expecting 2") 

 } 

 dataAsBytes, _ := APIstub.GetState(args[0]) 

 softwareSpec := SoftwareSpec{} 

 json.Unmarshal(dataAsBytes, &softwareSpec) 

 softwareSpec.Owner = args[1] 

 dataAsBytes, _ = json.Marshal(softwareSpec) 
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 APIstub.PutState(args[0], dataAsBytes) 

 return shim.Success(nil) 

} 

Sample update calls: 

 Invoke update owner T3 (update the owner of the smart contract as T3 in the 

 blockchain) 

 Invoke update allowedParties [T2 , T4] (update list of allowed parties for the 

 software component) 

Note that, each update function query generates log and add that into the 

blockchain. Any team can verify how many times a specific smart contract got 

updated. Additionally, in the approach, all minor versions are handled by 

updating existing attributes. The approach suggests that team generates a separate 

smart contract for the major version change in the software component.  

• delete: delete method implements logic to remove specific attributes in the 

smart contract structure with current value stored in the blockchain or 

decommission the entire smart contract from the blockchain. If the team 

deletes any attribute or decommission smart contract, previous data related to 

smart contact will remain in the blockchain.  

Implementation of delete function in the go programming language is as 

follows: 

func (t *SmartContract) delete(stub shim.ChaincodeStubInterface, args 

[]string) pb.Response { 

 if len(args) != 1 { 
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  return shim.Error("Incorrect number of arguments. Expecting 1") 

 } 

 softwareSpec.Owner := args[0] 

 err := stub.DelState(softwareSpec.Owner) 

 if err != nil { 

  return shim.Error("Failed to delete state") 

 } 

 return shim.Success(nil) 

} 

Sample query calls: 

 Invoke delete owner (removes owner attribute from the blockchain 

 structure) 

 Invoke delete creationDate (removes creationDate attribute from the 

 blockchain structure) 

• processResult: processResult method implements logic to verify supplied 

software results by participating team. Each supplied result is compared with 

the requisite attribute of the blockchain structure. If the supplied result 

satisfies acceptance criteria, then the blockchain transaction is generated with 

a success message and added to the blockchain. If the supplied result does not 

satisfy acceptance criteria, then the current owner of the smart contract is 

alerted of the wrong result through email. Blockchain transaction with wrong 

supplied result is also recorded in the blockchain for future use. The 
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participating team’s reputation can be derived from the correct and wrong 

result supply.  

Implementation of processResult function in the go programming language is 

as follows: 

Func (s *SmartContract) processResult(APIstub 

shim.ChaincodeStubInterface, args []string) sc.Response { 

 if len(args) != 3 { 

  return shim.Error("Incorrect number of arguments. Expecting 3") 

 } 

 dataAsBytes, _ := APIstub.GetState(args[0]) 

 softwareSpec := SoftwareSpec{} 

 json.Unmarshal(dataAsBytes, &softwareSpec) 

 var softwareSpecAttribute = args[1] 

 

 var softwareSpecAttributeVal = args[2] 

 var designReqs = softwareSpec.designRequisites  

 for key, element := range designReqs { 

        fmt.Println("Key:", key, "=>", "Element:", element) 

        if key == softwareSpecAttribute{ 

         if element == softwareSpecAttributeVal{ 

          APIstub.PutState("Success", "Team has provided software  

   result compliant to acceptance criteria") 

         } 
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         else{ 

         s.alertOwner(APIstub, args) 

         APIstub.PutState("Failure", "Team has provided software   

  result not compliant to acceptance criteria with data -   

  "+softwareSpecAttribute + " - "+ softwareSpecAttributeVal) 

         } 

 } 

    } 

 return shim.Success(nil) 

} 

• alert: alert method implements logic to send an email message to the owner 

of the smart contract with a customized message. 

 

5.2 Software Testing Smart Contract 

 The Software testing phase of software development is a critical phase and requires 

a major amount of coordination. Software testing consists of the process of verification and 

validation of the developed software. Based on the criticality of the software project, this 

phase requires many teams to perform software testing activities on the software. The 

software testing phase plays a significant role in the success of the collaborative software 

development project. Software testing can be assessed using several matrices, like line 

coverage, branch coverage, number of medium and severe bugs. A smart contract for the 

software testing phase of a collaborative software development project includes the 

necessary information to perform software testing and acceptance criteria for software 
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testing evaluation. Participating team decides consensus criteria from pBFT and round-

robin based on the requirement of the software component and relation among participating 

teams. Following the above process Step 1) in Section 5.1 input (a, b, and c) are generated 

for the smart contract shown in Figure 8.  

 
 Figure 8: The Smart Contract for Example 2 

According to Step 2) in Section 5.1 following methods are generated and implemented to 

carry out software activity mentioned in the smart contract for software testing phase: 

Init: Instantiate structure or class with required software testing metadata, all 

assessment requirement for a software component can be added into one smart 

contract.  Sample code in go programming language is shown as follows for the 

smart contract: 

type SoftwareSpec struct { 

 AllowedParties Element `json:"allowedParties"` 
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 Owner  string `json:"owner"` 

 Colour string `json:"colour"` 

 SoftwareModule string `json:"softwareModule"` 

 Version string `json:"version"` 

 CreationDate time.Time `json:"creationDate"` 

 SourceLocation string `json:"sourceLocation"` 

 testingRequisites make(map[string]Element) string `json:"testingRequisites"` 

 isDeleted bool `json:"isDeleted"` 

} 

// Define the Smart Contract structure 

type SmartContract struct { 

} 

// init method implementation 

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response 

{ 

 return shim.Success(nil) 

} 

Above struct is populated with the data for the software testing phase at the time 

of instantiation, which look like follows:  

type SoftwareSpec struct {  

 var allowedParties = [T1, T2, T3] 

 var owner = ‘T1’ 

 var softwareModule = ‘CB’ 
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 var version = ‘1.0’ 

 date creationDate = ‘May 1, 2019’ 

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/homepage.java’ 

 var testingRequisites = { 

 var lineCoverage = [0.90, T2]  

 var branchCoverage = [0.5, T2] 

 var securityBugsSevere = [0, T3] 

 var securityBugsMedium = [0, T3] 

 } 

 var isDeleted = False 

} 

Note that, each testing requisites are assigned to one of the allowed parties. In case 

there are multiple parties involved in the same software development phase, each 

requisite is assigned to the same or different party.  

• Invoke: invoke method is used to provide different actions in a smart contract for 

the software testing phase. Based on the requirement of the collaborative software 

development project, the team can specify unique functionality in each 

corresponding method for software testing. For smart contract mentioned in Figure 

8, the following methods are implemented: 

• query: query method implements logic to query specific attributes in the smart 

contract structure with current value stored in the blockchain. For example, if 

T3 needs to know who are allowed parties for this smart contract, T3 run query 

function to know allowedParties information. Similarly, any information 
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regarding the current status of the information is fetched using a query 

function. Method implementation of the query method is shown in Section 

5.1 

Sample query calls: 

 Invoke query allowedParties (returns list of allowed parties for the smart 

 contract) 

 Invoke query souceLocation (returns location of software specification) 

• audit: audit method implements logic to pull entire history related to this smart 

contract. Audit is useful to get an immutable history of the software 

component regarding all previous software decisions and software results 

provided by the same or other teams. Method implementation of the audit 

method is shown in Section 5.1 

Sample audit calls: 

Invoke audit (return all blockchain transaction related to smart contract) 

• update: update method implements logic to query specific attribute in the 

smart contract structure with current value stored in the blockchain and then 

update that attribute with user-supplied value. For example, if T2 needs to 

update the owner of the smart contract, T2 run update function to know owner 

information and then update it with new user-supplied value. Similarly, any 

information regarding the current status of the information is updated using 

the update function. Method implementation of the update method is shown 

in Section 5.1 

Sample update calls: 
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 Invoke update owner T3 (update the owner of the smart contract as T3 in the 

 blockchain) 

 Invoke update isDeleted True (update attribute isDeleted to True and calls 

 blockchain method to decommission entire smart contract) 

Note that, each update function query generates log and add that into the 

blockchain. Any team can verify how many times a specific smart contract got 

updated.  

• delete: delete method implements logic to remove specific attributes in the 

smart contract structure with current value stored in the blockchain or 

decommission the entire smart contract from the blockchain. If the team 

deletes any attribute or decommission smart contract, previous data related to 

smart contact will remain in the blockchain. Method implementation of the 

delete method is shown in Section 5.1 

Sample query calls: 

 Invoke delete owner (removes owner attribute from the blockchain 

 structure) 

 Invoke delete creationDate (removes creationDate attribute from the 

 blockchain structure) 

• processResult: processResult method implements logic to verify supplied 

software results by participating team. Each supplied result is compared with 

the requisite attribute of the blockchain structure. If the supplied result 

satisfies acceptance criteria, then the blockchain transaction is generated with 

a success message and added to the blockchain. If the supplied result does not 
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satisfy acceptance criteria, then the current owner of the smart contract is 

alerted of the wrong result through email. Blockchain transaction with wrong 

supplied result is also recorded in the blockchain for future use. The 

participating team’s reputation can be derived from the correct and wrong 

result supply. Method implementation of the processResult method is shown 

in Section 5.1 

• alert: alert method implements logic to send an email message to the owner 

of the smart contract with a customized message. 

 

5.3 Software Requirement Smart Contract 

 The most difficult phase in any software development project is the requirement 

phase. It is crucial for software developers to do this phase correctly because all other 

phases depend on the result of this phase. The requirement phase apprehends user’s 

expectations out of software and showcases what is user’s need from the software. 

Software requirements are supplied in natural language to software development teams, 

and software development teams convert it to user stories (in the latest paradigms like 

agile) to breakdown requirements into technical tasks. The encoding of the requirement 

phase into a smart contract is most difficult for the blockchain-based approach.  

 The requirement phase is breakdown into several steps to manage in the 

blockchain-based approach as follows: 

• Collect inputs from stakeholders, users, and other software development actors. 

• Analyze requirement inputs and convert them into user story format like  

“As a user _____, I want to ______, so that _______.”  
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This format captures three important information on actor, task/action, and 

motivation behind the software requirement.  

• Enumerate all such software requirements into requirement traceability matrix and 

add required metadata information on each software requirement. [24] 

The blockchain-based approach is capturing the following information for each 

software requirement: 

 Requirement Id: unique enumeration id for the software requirement 

 Effort: effort required to develop the task mentioned in the requirement.  

Possible values - {Low, Medium, High} 

 Risk: risk associated with the requirement 

Possible values - {Low, Medium, High, Severe} 

 Stability: stability index for the requirement in whole software 

development 

Possible values - {Low, Medium, High} 

 Status: current status of the requirement in the software development 

Possible values - {Proposed, Ready, In-progress, Ready-for-Review 

(Validation-and-Verification), Completed, Need-Further-Information} 

 ReleaseDate: {Date or undefined} 

A smart contract for the software requirement phase of a collaborative software 

development project includes the necessary information to perform software requirement 

elicitation, requirement management, and acceptance criteria for software requirement 

evaluation. Following the above process, Step 1) generates input (a, b, and c) for the smart 

contract shown in Figure 9. 
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Figure 9: The Smart Contract for Example 3 

According to Step 2) of Section 5 following methods generate to carry out software activity 

mentioned in the smart contract: 

Init: Instantiate structure or class with required software specification metadata.  

Sample code in go programming language is shown as follows for the smart 

contract: 

type SoftwareSpec struct { 

 AllowedParties Element `json:"allowedParties"` 

 Owner  string `json:"owner"` 

 Colour string `json:"colour"` 

 SoftwareModule string `json:"softwareModule"` 

 Version string `json:"version"` 
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 CreationDate time.Time `json:"creationDate"` 

 SourceLocation string `json:"sourceLocation"` 

 requirementRequisites make(map[string]Element) string 

 `json:"requirementRequisites"` 

 isDeleted bool `json:"isDeleted"` 

} 

// Define the Smart Contract structure 

type SmartContract struct { 

} 

// init method implementation 

func (s *SmartContract) Init(APIstub shim.ChaincodeStubInterface) sc.Response 

{ 

 return shim.Success(nil) 

} 

Above struct is populated with the data for the software requirement phase at the 

time of instantiation, which look like follows:  

type SoftwareSpec struct {  

 var allowedParties = [T8, T9] 

 var owner = ‘T6’ 

 var softwareModule = ‘CC’ 

 var version = ‘2.1.0’ 

 date creationDate = ‘May 1, 2011’ 

 var sourceLocation = ‘/var/sdlc/cse599/projectcoll/requirementTraceability.xlsx’ 
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 var requirementRequisites = { 

 [ID: Req1, Effort: High, Risk: High, Stability: Medium, Status: Proposed, 

 ReleaseDate:10 May 2012, assignedTo: T8], 

 [ID: Req2, Effort: High, Risk: High, Stability: Low, Status: Completed, 

 ReleaseDate:2 March 2012, assignedTo: T9] 

 } 

 var isDeleted = False 

} 

Note that each requirement requisites are assigned to one of the allowed parties. In 

case there are multiple parties involved in the same software development phase, 

each requisite is assigned to the same or a different party.  

• Invoke: invoke method is used to provide different actions in a smart contract. 

Based on the requirement of the collaborative software development project, the 

team can specify unique functionality in each corresponding method. For smart 

contract mentioned in Figure 9, the following methods are implemented: 

• query: query method implements logic to query specific attributes in the smart 

contract structure with the current value stored in the blockchain. For 

example, if T8 needs to know who are allowed parties for this smart contract, 

T8 runs the query function to know the requirement requisites information. 

Similarly, any information regarding the current status of the information is 

fetched using the query function. Method implementation of the query 

method is shown in Section 5.1 

Sample query calls: 
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 Invoke query requirementRequisites (returns list of all requirement 

 requisites in the smart contract) 

• audit: audit method implements logic to pull entire history related to this smart 

contract. Audit is useful to get an immutable history of the software 

component regarding all previous software requirement decisions and 

software results provided by the same or other teams. Method implementation 

of the audit method is shown in Section 5.1 

Sample audit calls: 

Invoke audit (return all blockchain transaction related to requirement smart 

contract) 

• update: update method implements logic to query specific attribute in the 

smart contract structure with current value stored in the blockchain and then 

update that attribute with user-supplied value. For example, if T6 needs to 

update the owner of the smart contract, T6 run update function to know owner 

information and then update it with new user-supplied value. Similarly, any 

information regarding the current status of the information is updated using 

the update function. Method implementation of the update method is shown 

in Section 5.1 

Sample update calls: 

 Invoke update isDeleted True (update attribute isDeleted to True and calls 

 blockchain method to decommission entire smart contract) 
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Note that, each update function query generates log and add that into the 

blockchain. Any team can verify how many times a specific smart contract got 

updated.  

• delete: delete method implements logic to remove specific attributes in the 

smart contract structure with the current value stored in the blockchain or 

decommission the entire smart contract from the blockchain. If the team 

deletes any attribute or decommission smart contract, previous data related to 

smart contact will remain in the blockchain. Method implementation of the 

delete method is shown in Section 5.1 

Sample query calls: 

 Invoke delete owner (removes owner attribute from the blockchain 

 structure) 

 Invoke delete creationDate (removes creationDate attribute from the 

 blockchain structure) 

• processResult: processResult method implements logic to verify supplied 

software results by participating team. Each supplied result is compared with 

the requisite attribute of the blockchain structure. If the supplied result 

satisfies acceptance criteria, then the blockchain transaction is generated with 

a success message and added to the blockchain. If the supplied result does not 

satisfy acceptance criteria, then the current owner of the smart contract is 

alerted of the wrong result through email. Blockchain transaction with wrong 

supplied result is also recorded in the blockchain for future use. The 

participating team’s reputation can be derived from the correct and wrong 
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result supply. Method implementation of the processResult method is shown 

in Section 5.1 

• alert: alert method implements logic to send an email message to the owner 

of the smart contract with a customized message.  
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CHAPTER 6 

ILLUSTRATIVE EXAMPLE OF THE APPROACH 

In this section, an example to illustrate the overall approach is presented to generate trusted 

coordination of a collaborative software development project. 

 Consider the collaborative software development project, which has multiple major 

software components developed by multiple teams. In this example, the assumption in the 

approach is that the software system to be collaboratively developed has six major software 

components, Ca, Cb, … Cf, collaboratively developed by three teams T1, T2, and T3. The 

development of each software component is complex and requires input from multiple 

teams. Role assignment for each software component and various phases of software 

development phases are assigned at the time of blockchain initialization. Each software 

component is developed in various software development phases, such as requirement 

gathering and analysis, software design, software implementation, software testing, 

deployment, and maintenance.  

 
Figure 10: The Software Development Activities Required 

 for Each Software Component 
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 Software components used in the example are complex enough to have different 

teams participating in the collaborative software development. As shown in Figure 10, each 

of the six components will have various software development phases, and each phase is 

handled by one or more teams. This method is suitable for all kinds of software 

development paradigms, such as waterfall, spiral, agile. Coordination is an essential part 

of all kinds of collaborative software development.  

 The functional dependency relations among the six components, which are 

determined by the requirements of the software development project, are shown in Figure 

11. Each dependency relation in Figure 11 can be either mandatory or optional. 

Dependency information is essential information in complex and large-scale software 

development projects to understand the requirement of other components as well as to 

assess the reliability of frequently used software components. As shown in Figure 11, 

Component Ca is an end software product. To develop software component Ca, component 

Cd is mandatory, and either of Cb or Cc is required. Additionally, Component Ce is 

mandatory to develop component Cb and Cc. Cf is a mandatory component to develop Ce 

and Cd. Trusted coordination is required to build such a complex and large-scale software 

project.  

 It is assumed that T1 is the prime contractor, and T2 and T3 are subcontractors in 

the collaborative software development project. Based on the discussion of T1 with T2 and 

T3, the development tasks of this project will be performed by the three teams according to 

the software specifications listed in Table 2. T1, T2, and T3 manage all software 

development activities in a collaborative project. This example shows how the approach 
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can generate trusted coordination among the three teams using blockchain and smart 

contracts. 

 

* represents mandatory, and + represents optional dependency relation 

Figure 11: The Functional Dependency Graph of the Major  

Software Components in the Example Project. 

 

The coordination in a collaborative software development project consists of collaboration 

among multiple teams working for developing various software components in a complex 

and large-scale software project. Each software component, including the software 

specifications and results of the component, is stored in the blockchain. In this example, 

the only illustration of the coordination among the teams participating in the software 

development of Cf is shown. The same method can be extended for all remaining software 

components.  
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 According to Step 1 of the overall approach described in Chapter 4, T1 creates 

software specification for the software component Cf, and smart contract C1,k, Tk G1, G1 

= {T2, T3}. C1,k  is generated using the process presented in Chapter 5.  T2 and T3 use C1,k 

generated in Step 1 to carry out software activities for the Cf. According to Step 2 of the 

approach, T2 performs the software activity specified in C1,2 and generates the result R1.  

T3 performs the software activity specified in C1,3, and generates the result R2.   

Validation of this step to achieve trusted coordination: 

• R1 and R2 are recorded in the blockchain, and hence any team in the blockchain can 

verify them with known public keys of participating teams.  

• Once R1 or R2 is recorded in the blockchain, it is challenging to modify them; this 

provides tamper-evidence and tamper-resistant tool for coordination.  

• T2 and T3 cannot repudiate R1 or R2 because their identities are attached to 

transactions and available to verify in the blockchain.  

• T1, T2, and T3 cannot take control of the software development activities, due to 

decentralized and distributed properties of the approach.  

• T1 can clearly set up contract terms for T2 and T3 for collaboration, this will help to 

resolve any conflicts among teams, and teams need to adhere to acceptance criteria 

for created software development. 

Since the procedure, as mentioned above, applies to all software components in all software 

development phases, the entire history of the component is available in the blockchain in 

terms of smart contracts. Transaction R1 and R2 are added in the blockchain if it is meeting 

consensus criteria. The approach uses the Practical Byzantine Fault Tolerance consensus 

model to add the new next block. This consensus collects voting from all participants, and 
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if teams provide one-third of the agreement, the block will be added in the blockchain. The 

approach used round-robin consensus in a few smart contracts, but pBFT is more useful to 

establish trust among participating teams.  

 

Table 2: The Software Component Specifications of the Example Project 

 

Next, the auditability feature for software specifications and results in the project 

is shown. Because of the dependency relation between Cd and Cf, as shown in Figure 11, 

in order to develop Cd, T3 needs to verify the history of Cf for all software decisions taken 

and related history for different software development phases. According to Step 3, T3 
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verifies the history of Cf by querying smart contracts C1,k. The querying smart contract is 

performed by calling one of the smart contract methods discussed in Chapter 5. Since the 

complete record of the past development history of Cf is stored in the blockchain, any team 

in the blockchain can verify the entire history of Cf, which is useful to increase the 

trustworthiness of the coordination in collaborative software development.  

Private communication channels:  

Private channels are created to share the result of the critical project components. 

Private channels are established using asymmetric key pairs if teams want to establish 

private communication. They can share their public keys without sharing it with anyone 

else. Each team can encrypt software results with their private key, and other parties can 

see the test result by decrypting result using the public key of the transaction initiator.  

 The blockchain-based approach is implemented on a Hyperledger platform [23], 

which is a private/permissioned blockchain platform. The reason why the approach is 

implemented on the Hyperledger platform, as mentioned below: 

• The collaborative software development project is not open to the public, only 

approved and pre-verified teams can join the blockchain platform, so the selection 

of private blockchain is ideal for this approach. All participating team is known and 

pre-verified, this increases partial trust among software development teams and 

eliminates the anonymity feature of most blockchain platforms. 

• As more teams join the software development activity, blockchain should scale 

accordingly. Private blockchain scales easily as compared to the known public 

blockchain platform. 
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• Transaction processing is faster in private blockchain set up due to the absence of 

a resource-intensive mining process and proof of work consensus model. Private 

blockchain, like Hyperledger, provides low latency and high throughput for the 

blockchain transaction. 

• The various consensus is utilized and pluggable based on the requirement of the 

team.  

• Teams set up a private communication channel to share software data on a critical 

software project.  

• The team leverages the reputation system for producing high-quality collaborative 

software.  
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CHAPTER 7 

EVALUATION 

In this chapter, we will compare our approach to the existing approaches in the categories 

using centralized, [2-10] or decentralized [7][12] approaches to generating coordination in 

collaborative software development for complex and large-scale software systems.  

 The centralized approaches [2-10] have the disadvantages of a single point of 

failure, lack of data ownership, and mutable data. The centralized approaches have the 

advantages of providing much faster data processing speed, and higher efficiency of the 

setup of the distributed environment for collaborative software development.  

 The decentralized approaches [7][12] have the limitations on lack of data 

ownership, mutable data, and concentrated point of failure.  The decentralized approaches 

have moderate data processing speed, and moderate efficiency of the setup of the 

collaborative environment for collaborative software development.  

 Our approach using blockchain has limitations on low data processing speed, large 

storage overhead, and lower efficiency of the setup of the collaborative environment. The 

low data processing speed is due to the consensus protocols used for recording each 

transaction in the blockchain for data ownership, auditability, and the prevention of 

injection attacks in the software development process. The large storage overhead is due 

to many copies of information stored in the blockchain. The lower efficiency of the setup 

of the collaborative environment is due to the initial blockchain infrastructure setup, and 

cryptographic tools installation in the blockchain. 
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Our approach has the major advantages of the immutability, auditability, non-

repudiation, and acceptance criteria for automatic software assessment for generating 

trusted coordination for collaborative software development. 

Our approach has the advantage of immutability of data in blockchain due to 

cryptographic links and Merkle root hash in the blockchain.  The advantage of auditability 

of all blockchain transactions in our approach is due to the smart contract created to query 

all the blockchain transactions. Our approach has the advantage of non-repudiation because 

each blockchain transaction is cryptographically signed with its node’s identity. Our 

approach has the advantage of having acceptance criteria for automatic software 

assessment because the software specifications are encoded in each smart contract with 

software data and acceptance criteria. 

 

 
 

Table 3: A Summary of the Important Properties of Our Approach, Centralized, 

and Decentralized Approaches for Generating Trusted Coordination of 

Collaborative Software Development 
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Table 3 summarizes the important properties of our approach, centralized and decentralized 

approaches to generating trusted coordination of collaborative software development. The 

first four properties are needed to generate trusted coordination of collaborative software 

development because they are required to provide a secure, reliable, and transparent 

collaborative environment. The 5th property is optional because a private communication 

is required for critical software development activities only. The 6th, 7th and 8th properties 

are limitations of using blockchain in providing trusted coordination of collaborative 

software development. The 6th property can be reduced by storing partial data off-chain. 

The 7th property can be reduced by using various custom consensus protocols for the 

private blockchain. The impact of the 8th property is not large because it only affects the 

initialization phase for setting up the blockchain infrastructure. Based on the above 

discussion, our approach can achieve the generation of trusted coordination of 

collaborative software development because it has the first four properties, the impact of 

the 8th property is limited to the initialization phase, and the 6th and 7th properties may be 

reduced.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 In this thesis, the generation of trusted coordination in collaborative software 

development using blockchain has been studied, and an approach to generating trusted 

coordination of collaborative software development has been developed. This approach 

has been implemented using the private blockchain in open-source Hyperledger. The 

advantages of our approaches are immutability, auditability, non-repudiation, and 

acceptance criteria for automatic software assessment.  The limitations of our approach are 

large storage overhead, low speed of data processing, and large setup overhead.  

  Future work includes the development of efficient techniques to reduce the 

overhead of the data storage in blockchain and increase the speed of data processing.  In 

addition, the approach should be expanded to generate trusted coordination of multiple 

collaborative software development projects. 
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