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ABSTRACT

Hyperbolic geometry, which is a geometry which concerns itself with hyperbolic space,

has caught the eye of certain circles in the machine learning community as of late.

Lauded for its ability to encapsulate strong clustering as well as latent hierarchies

in complex and social networks, hyperbolic geometry has proven itself to be an en-

during presence in the network science community throughout the 2010s, with no

signs of fading into obscurity anytime soon. Hyperbolic embeddings, which map a

given graph to hyperbolic space, have particularly proven to be a powerful and dy-

namic tool for studying complex networks. Hyperbolic embeddings are exploited in

this thesis to illustrate centrality in a graph. In network science, centrality quantifies

the influence of individual nodes in a graph. Eigenvector centrality is one type of

such measure, and assigns an influence weight to each node in a graph by solving

for an eigenvector equation. A procedure is defined to embed a given network in

a model of hyperbolic space, known as the Poincaré disk, according to the influence

weights computed by three eigenvector centrality measures: the PageRank algorithm,

the Hyperlink-Induced Topic Search (HITS) algorithm, and the Pinski-Narin algo-

rithm. The resulting embeddings are shown to accurately and meaningfully reflect

each node’s influence and proximity to influential nodes.
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4.14 PageRank Poincaré Embedding After Iteration t = 6 . . . . . . . . . . . . . . . . . 70
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Chapter 1

INTRODUCTION

1.1 Outline of Problem

Complex networks encapsulate many of the intricate relationships that character-

ize the natural world. In particular, an elegant and mathematically rigorous procedure

to quantify individual node influence in complex networks has long been the subject

of study. The multitude of attempts at formalizing such a system throughout the

twentieth century like Pinski and Narin (1976) and Page et al. (1998) demonstrates

the endless utility of a computationally sound ranking scheme. Dubbed centrality

measures, these measures quantify the importance of a node in a complex network

in terms of traits involving the network as a whole, like connectedness or number of

shortest paths.

This thesis is concerned with one type of centrality measure: eigenvector centrality.

Eigenvector centrality quantifies a node’s influence based on the number of links the

node has to other nodes in the network, while taking into account the connectedness

of the node, the connectedness of said node’s neighbors, and so on. Computing the

eigenvector centrality for a given network entails solving some eigenvector equation,

but algorithms to compute eigenvector centrality are typically iterative in practice.

As the number of iterations increases, because a complex network can be viewed

as a closed system, the influence of a given node based on its neighbors’ collective

influence eventually “stabilizes”, and the centrality score for each node converges to

its respective value, similar to the way a Markov chain converges to a steady state

distribution (Durrett (2012)).
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As of late, hyperbolic geometry has become somewhat of a hot button topic among

certain circles in the computer science research community. It has been applied to

a myriad of fields like link prediction, most notably in Kitsak et al. (2019), whose

work has been expanded to include multiplex networks (multilayer networks with the

same set of nodes in each layer) in Samei and Jalili (2019). Hyperbolic geometry

has even been extended to neural networks, as shown by Ganea et al. (2018) at

NeurIPS. Chami et al. (2019) and Liu et al. (2019) further stoked the fire by continuing

the aforementioned work on hyperbolic neural networks at NeurIPS the following

year. It is apparent more and more computer scientists are finding useful applications

for hyperbolic geometry, particularly via hyperbolic embeddings (Chamberlain et al.

(2017), Nickel and Kiela (2017)), with no signs of slowing down.

Hyperbolic embeddings entail embedding, or mapping, a given complex or social

network in hyperbolic space, wherein the postulates of hyperbolic geometry are ad-

hered to instead of those of Euclidean geometry. Doing so can not only preserve

intrinsic properties like distance, but also elucidate latent features like hierarchies

and cliques. It is no wonder hyperbolic embeddings have become a subject of intrigue

in the machine learning community, as they bear the potential to illuminate idiosyn-

crasies of complex and social networks while respecting the integrity of the original

network, as opposed to embeddings in traditional Euclidean space.

In a hyperbolic embedding, each node in a given network is assigned coordinates

to be mapped to in the specified hyperbolic space. The challenge in performing

hyperbolic embeddings lies in producing a mapping for each node in the network

such that the (hyperbolic) distance between any given pair of nodes accurately reflects

their relationship in the greater context of the actual network itself.

This thesis exclusively focuses on three existing eigenvector centrality measures:

PageRank (Page et al. (1998)), the HITS algorithm (Kleinberg (1998)), and the
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Pinski-Narin algorithm (Pinski and Narin (1976)). Each of these algorithms dif-

fers in how they initialize and compute the nodes’ influence weights. As such, if the

computation of a complex network’s influence weight eigenvector were to be repre-

sented in terms of a hyperbolic embedding, the computation of the nodes’ weights

until convergence should (ideally) manifest differently in hyperbolic space for each

algorithm. However, there is a noticeable lack of data visualization techniques for

eigenvector centrality measures in the realm of hyperbolic embeddings. This is an

issue that can be ameliorated. The problem this thesis aims to address is as follows:

Given a complex network, how can each node in the network be embedded in hyper-

bolic space according to its eigenvector centrality score in a way that meaningfully

reflects both its respective influence and its relationship with influential nodes in the

broader network as a whole?

1.2 Aims and Objectives

This thesis marries eigenvector centrality measures with hyperbolic embeddings

by devising a mathematically rigorous and sound mapping of a complex network

to hyperbolic space based on the influence weight output computed by PageRank,

HITS, and Pinski-Narin. This endeavor is ultimately a data visualization task using

hyperbolic geometry.

Recall that algorithms to calculate eigenvector centrality are usually iterative, and

the three algorithms this thesis is concerned with are no exception. Each iteration

of each algorithm until convergence is accompanied by an appropriate hyperbolic

embedding. The objective is to devise a procedure to map each node in a given

network to hyperbolic space for a given iteration so that the hyperbolic distance

between any pair of nodes accurately reflects each node’s influence in terms of the

3



entire network at that moment. The goal is to, hopefully, offer a novel and fresh way

to visualize a number of (relatively) old algorithms.

4



Chapter 2

BACKGROUND

This chapter covers the background knowledge necessary to comprehend the pro-

posed hyperbolic embedding scheme in the following section. First the three eigenvec-

tor centrality algorithms to be studied in this thesis are discussed: PageRank, HITS,

and Pinski-Narin. Then the reader is familiarized with hyperbolic geometry with a

crash course in the topic. Finally, the reader’s background in hyperbolic geometry

is extended to the concept of hyperbolic embeddings in the context of complex and

social network analysis.

2.1 PageRank Algorithm

Probably the most well-known eigenvector centrality measure, PageRank was pub-

lished in 1998 by Larry Page, Sergey Brin, Rajeev Motwani, and Terry Winograd

(Page et al. (1998)). No explanation is necessary to convey PageRank’s significance

and long-term impact on network science. Only a discussion of the set-up and imple-

mentation of PageRank is needed for this thesis.

The authors acknowledge the large body of literature on academic citation analy-

sis at the time, but point out that measuring the influence of a web page in the World

Wide Web poses a different set of challenges compared to measuring the influence of

a publication in a citation network. For one, academic papers are painstakingly re-

viewed before being published, while web pages are completely unregulated in terms

of quality control. This discrepancy means the reader is reasonably rest assured of

the quality of an academic publication with many citations, while the reader has no

systematic way of verifying whether a web page with many citations is a reliable
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source. One may easily generate astronomical numbers of web pages to artificially

inflate citation counts. On the other hand, researchers in select circles who purposely

cite each other’s papers in disproportionate numbers (sometimes known as citation

cartels) are more easily detected, as academic publications are peer-reviewed. Sec-

ondly, the features by which the influence of web pages is measured must not be

replicable, or else profit seeking ventures can easily exploit said features to increase

their citation numbers. For example, if one of the criteria for an influential web page

is number of clicks, a greedy individual can simply produce a large number of web

pages inundated with attention-grabbing features to attract hits, although the pages

themselves may have very little informative value.

Furthermore, academic papers are generally consistent in quality and their intent:

to widen the knowledge of their respective field. A paper in a biochemistry journal

is different from a paper in an astrophysics journal, but both are nonetheless held

in high regard. In contrast, web pages vary widely in quality, usage, citations, and

length. An obscure user question on a niche forum about an IBM computer should

be treated differently than the IBM home page. Most web pages, in fact, are of poor

quality and receive very few citations, with a few select pages dominating in terms of

influence for a given search term.

Like their predecessors Pinski and Narin, the authors of PageRank realize the

importance of not only including citation count in quantifying influence, but also the

influence of the actual citations. The authors realize that a large number of citations

for a web page does not necessarily indicate said page is highly influential, which

can be attributed to factors which are not present in academic citation databases.

They claim PageRank is capable of distinguishing a citation from a highly influential

page from a number of citations from insignificant pages via propagation of influence

through links. That is, a page has high rank if the sum of the ranks of its citations,
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or backlinks, is high. In turn, if another page has a backlink from the aforementioned

page, then its own rank is appropriately rewarded. A consecutive series of backlinks

can thus be viewed as a domino effect in terms of transfer of influence, as long as

the backmost page in the backlink chain has high rank. This concept is illustrated in

Figure 2.1 below.

· · ·123· · ·

High rank

Figure 2.1: PageRank Transfer of Influence in a Backlink Chain

If node 1 above has high rank, then node 2’s rank in turn increases accordingly because

of node 2’s backlink from node 1, and likewise node 3’s rank receives a boost from

node 3’s backlink from node 2. Alternatively, a node may have high rank by having

many backlinks in general. PageRank allows a page to have high rank if it has a few

highly ranked backlinks and also if it has many backlinks.

The original PageRank paper offers two versions of the algorithm: a simplified

version and the full version. Both are defined, starting with the simplified version. If

u is a web page, define Fu as the set of pages u points to, and Bu as the set of pages

that point to u. Then define Nu = |Fu| as the number of links from u as well as a

normalization factor c (the significance of c is elaborated on shortly). The rank of

node u is defined as

R(u) = c
∑
v∈Bu

R(v)

Nv

.

So the rank of node u, R(u), is the sum of the ranks of all of its backlinks, with

each rank divided by the number of outgoing links corresponding to the node of

said rank, and with the entire sum normalized by the factor c. A page’s rank is

divided by its number of forward links so its rank is evenly distributed among all of

its forward links. So if a page u links to four other pages, R(u) is divided into quarters
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when computing the rank of each of u’s outgoing neighbors: R(u)/4. Note that the

normalization factor c < 1 because there may exist pages with no forward links, and

so their weight is lost from the system. Define dangling links, which are links that

point to a page with no outgoing links. A page with no outgoing links is known as

a sink: once a web surfer reaches a sink, the surfer has no way of leaving the page

via link. Dangling links are problematic in the aforementioned model because it is

unclear where or how their weight should be distributed. In other words, the rank

of a sink gets stuck in a vacuum, and cannot be transferred to other nodes in the

system. To remedy this issue, and since dangling links do not directly affect other

pages’ ranks, the authors simply remove any dangling links from the system when

applying PageRank, and then restore them after all of the PageRanks are calculated.

Before explaining the role of the normalization factor c, better known as the

damping factor, the random surfer model must be introduced. The intuition behind

PageRank is based on a random walk on the World Wide Web. The actor in this

random walk is dubbed a “random surfer”. The random surfer in the model explores

the World Wide Web by clicking on successive links at random, and theoretically

eventually stops clicking. The damping factor can be interpreted as the probability

that the random surfer continues clicking, which is now often assumed to be 0.85,

which is also the value used for c in the implementation of PageRank in this thesis.

Multiplying the sum of a node u’s backlink ranks divided by their respective number of

forward links by c in R(u) above somewhat lessens any adverse effects of the existence

of dangling links.

The simplified version of PageRank can be modeled as an eigenvector equation.

If the given network consists of n nodes, define the n×n square matrix A, where entry

8



Au,v =


1/Nu if there is an edge from u to v

0 else

is defined. The value 1/Nu can be interpreted as the probability the random surfer

jumps to page v if they are at page u and randomly choose one of u’s outgoing links.

A is a row-stochastic matrix, as each row sums to one. Define the n × 1 column

vector R, where each entry of R corresponds to the rank of a node (which was defined

earlier). Then the equation R = cAR can be formulated. It is seen that R is an

eigenvector of A with eigenvalue c. The dominant eigenvalue of A is wanted, and this

value can be found by repeatedly multiplying A by any non-degenerate start vector

R. The primary shortcoming of the simplified version of PageRank is that it cannot

account for the case where two web pages point to each other but to no other page.

If there is a page which points to one of these two pages, this loop accumulates rank

but never distributes any rank throughout iterations of simplified PageRank. This

loop ends up forming a trap which is dubbed a rank sink. This downfall segues over

to the full version of PageRank, which overcomes the problem of rank sinks.

The full version of PageRank is defined as follows. Let E be some n × 1 column

vector over the web pages which corresponds to a source of rank. Then the PageRank

of a set of pages is an assignment, R′, to the pages where

R′(u) = c
∑
v∈Bu

R′(v)

Nv

+ cE(u)

such that c is maximized and ‖R′‖1 = 1, where ‖R′‖1 =
∑

u |R(u)| is the L1 norm of

R′. The latter condition means the ranks of the pages can be viewed collectively as a

probability distribution: the rank of a page also denotes the probability the random

surfer clicks on said page. The authors point out that if E is all positive, c must

be reduced to balance the aforementioned equation. This technique corresponds to
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a decay factor. In matrix notation, the expression above can be written as R′ =

c(AR′ + E), or alternatively R′ = c(A + E × 1)R′ where 1 is the 1 × n row vector

consisting of all ones, since ‖R′‖1 = 1. To be specific, E × 1 is simply an n × n

matrix where all of the entries in the row corresponding with some node u are E(u).

Because ‖R′‖1 = 1, multiplying E×1 by R′ is simply equivalent to E. This equation

is an eigenvector equation, as R′ is an eigenvector of (A + E × 1) with eigenvalue

c. Recall the random surfer model. If the case occurs where the surfer gets stuck in

a loop of web pages, the behavior where the surfer randomly jumps to some other

page to escape the loop is modeled via the additional factor E in the full version

of PageRank. The purpose of the vector E is to enable the random surfer to jump

to a random page chosen based on the distribution in E whenever the surfer gets

“bored”. Note that there is a slight discrepancy between the original definition of

the full version of PageRank and implementations of PageRank in practice, as seen

shortly.

The full version of PageRank as an eigenvector equation was just defined, but only

the iterative procedure was implemented for this thesis, which differs from the formal

definition above. The iterative procedure to compute PageRank is as follows. Given

a graph of n nodes, with the nodes enumerated from 1 to n, at iteration t = 0, assign

the graph an initial probability distribution of R(0) = [ 1
n
, ..., 1

n
]T , where R is an n×1

column vector denoting the influence weight of every node in the graph, with Ri(t)

representing the influence weight of node i after iteration t, or just the ith entry of

R(t). For following iterations t ≥ 1, the PageRank of a page i is computed using the

formula

Ri(t) = c
∑
j∈Bi

Rj(t− 1)

Nj

+
1− c
n

, 1 ≤ i ≤ n

where c is the damping factor, Bi is the set of pages that point to node i, and Nj is

the number of outgoing links from node j. In matrix notation, this procedure is
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R(t) = cMR(t− 1) +
1− c
n

1

where 1 is the n× 1 column vector consisting of all ones and M is the n× n square

matrix where

Mij =


1/Nj if there is an edge from j to i

0 else

is the ith row, jth column entry of M , 1 ≤ i, j ≤ n. Another way to define M is M =

(K−1A)T , where A is the adjacency matrix of the graph and K is the diagonal matrix

with the outdegrees in the diagonal. The definition of A here may be confusing, as A

in this context is the adjacency matrix of the graph, whereas in the prior eigenvector

equation defined for the full version of PageRank, A is equivalent to the transpose of

M itself, MT . It may be beneficial to the reader to make this clarification. R was

continually computed until

|R(t)−R(t− 1)| < ε

where ε > 0 is arbitrary but fixed. This concludes this section on PageRank.

2.2 HITS Algorithm

Published in the same time frame as PageRank (with PageRank being published

shortly after HITS in 1998), Jon Kleinberg’s Hyperlink-Induced Topic Search algo-

rithm, better known by the acronym HITS, also defines a systematic method of quanti-

fying web page influence in a hyperlinked environment (Kleinberg (1998)). The intent

of the paper is to construct a focused subgraph of the World Wide Web with respect

to a broad search topic. In other words, the objective is to distill the vast expanses of

the World Wide Web into a concise network of pages deemed relevant to a given search

query in terms of their authority. The entirety of this endeavor is predicated on a
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user input query. Kleinberg delineates different categories of queries: specific queries

(e.g., “Does Netscape support the JDK 1.1 code-signing API?”), broad-topic queries

(e.g., “Find information about the Java programming language”), and similar-page

queries (e.g., “Find pages ‘similar’ to java.sun.com”). The paper discusses the first

two query types comparatively, only to hone in on the second type for the proposed

algorithm: broad-topic queries. The challenge in identifying relevant pages for spe-

cific queries lies in the fact that there exist very few pages that hold the required

information, and it is often difficult to actually find these pages. On the other hand,

identifying relevant pages for broad-topic queries poses the opposite problem: there

are simply too many candidate pages for a human user to reasonably intake at once.

In this scenario, the most “authoritative” pages must be filtered from the collection

of relevant pages for a given broad-topic query.

Kleinberg strives to attach a specific metric to the concept of authority in a hy-

perlinked environment. A hyperlink from one page to another ideally represents an

endorsement from one page to another. This endorsement, according to Kleinberg,

involves some degree of latent human judgment, which is what the notion of authority

is formulated on. When the creator of a web page p includes a link to page q, the

creator has in some measure conferred authority on q via their “endorsement”. This

logic means links enable the identification of authoritative pages through the pages

that point to them. Some potential downsides include the fact that links do not

necessarily indicate conferral of authority. For example, a link can exist for purely

navigational purposes (“Click here to return to the main menu”) or represent paid

advertisements. Another downside is finding an equilibrium between relevance and

popularity in the definition of authority.

The procedure as defined in the original paper is a link-based model for the con-

ferral of authority. It highlights the relationship between authoritative pages for a
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broad-topic query and the pages that link to many related authorities, dubbed hubs,

noting that there exists a sort of organic equilibrium between hubs and authorities

based on the link structure of the graph. A focused subgraph of the World Wide

Web is constructed for a specified broad-topic query by identifying both hubs and

authorities in the hyperlinked environment simultaneously. To do so, a collection V

of hyperlinked pages is first established as a directed graph G, which is defined by

the pair G = (V,E), where V is the set of vertices, denoting web pages, and E is the

set of directed edges, where (p, q) ∈ E indicates a link from page p to page q. The

out-degree of a node p is the number of nodes p has links to, and the in-degree of p

is the number of nodes that have links to p. The aim of this algorithm is to define

a subgraph of G as follows: if W ⊆ V is a subset of the pages, G[W ] is called the

graph induced on W , where G[W ]’s nodes are the pages in W and G[W ]’s edges are

the links between pages in W .

Let σ be an arbitrary but fixed broad-topic query string. Before identifying au-

thoritative pages in the hyperlinked environment based on the link structure, the

induced subgraph on the World Wide Web on which the algorithm is applied must

be determined first. The purpose of this initial step is to lessen the computational

burden of the task by isolating the pages relevant to the query σ. This specific col-

lection of pages is given a variable name, Sσ, which satisfies the following properties:

(1) Sσ is relatively small; (2) Sσ is rich in relevant pages; (3) Sσ contains most (or

many) of the strongest authorities. Keeping Sσ small in turn keeps computational

costs reasonable and facilitates the task of finding authoritative pages. To find Sσ, a

parameter t is given, which is usually set to around 200. The t highest-ranked pages

for the query σ from a text-based search engine are collected. These t pages are called

the root set Rσ, and satisfy properties (1) and (2) above, but usually not (3). So these

t pages in Rσ are not enough. Note that the top t pages returned by the text-based
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search engines all contain the query string σ, so Rσ ⊆ Qσ, where Qσ is the set of all

pages containing σ. However, Qσ itself often does not satisfy condition (3), and also

there are often very few links between pages in Rσ, so the current subgraph lacks

the sufficient structure to identify authoritative pages. From here, the root set Rσ

is expanded to produce Sσ, which satisfies the three required conditions. Say there

exists an authoritative page p for the query σ. p may not be in the root set Rσ, but

there is likely a page in Rσ that links to p. So starting with Rσ, the subgraph can be

expanded to include more authoritative pages via the links that enter and leave Rσ.

This procedure is formalized as follows.
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Subgraph(σ, E , t, d)

σ : a query string

E : a text-based search engine

t, d : natural numbers

Let Rσ denote the top t results of E on σ.

Set Sσ := Rσ

For each page p ∈ Rσ

Let Γ+(p) denote the set of all pages p points to.

Let Γ−(p) denote the set of all pages pointing to p.

Add all pages in Γ+(p) to Sσ.

If |Γ−(p)| ≤ d then

Add all pages in Γ−(p) to Sσ.

Else

Add an arbitrary set of d pages from Γ−(p) to Sσ.

End

Return Sσ

In short, Sσ is constructed by growing Rσ to include any page pointed to by a page

in Rσ and any page that points to a page in Rσ, with the restriction that a single

page in Rσ is allowed to bring at most d pages pointing to it into Sσ. This d ceiling

value is necessary to avoid blowing up the size of Sσ in the case where a page in Rσ

is pointed to by a huge number of pages.

15



Sσ is called the base set for a broad-topic query σ. In Kleinberg’s experiments,

he uses the (now defunct) search engine AltaVista and sets t = 200 and d = 50.

He finds that Sσ typically satisfies conditions (1), (2), and (3) above, and its size is

usually in the range 1000-5000. His experiment results are not discussed here, as only

comprehension of the implementation of HITS is necessary for this thesis. The actual

HITS algorithm is set up for computing hubs and authorities in the newly-acquired

base set Sσ.

Just as the authors of PageRank offer a solution for handling dangling links,

Kleinberg offers a way to offset the effect of links that solely exist for navigational

purposes, and do not contribute to the notion of authority here. Let G[Sσ] denote the

subgraph induced on the pages in the base set Sσ. Partition the links in G[Sσ] into

two categories: traverse links and intrinsic links. Traverse links connect pages with

different domain names, while intrinsic links connect pages with the same domain

name. Intrinsic links often exist for purely navigational purposes, and so do not

necessarily confer authority in any meaningful way in this study. Hence, delete all

intrinsic links from the subgraph G[Sσ], keeping only traverse links. This action bears

the final desired graph Gσ.

Both PageRank and HITS recognize that a large number of incoming links do not

necessarily translate into a high influence weight. The influence of the pages attached

to the incoming links must be considered in the weighting scheme. Indeed, Kleinberg

points out that pages with high in-degree values (a large number of links pointing to

them) even in Gσ, which was so painstakingly defined, are not necessarily authorita-

tive regarding the query σ. A page p in Gσ with a large in-degree can still have many

incoming links from pages which are not relevant to σ. Such endorsements are thus

hollow and should not be counted in p’s influence weight. The distinction between

genuinely authoritative pages and pages that are simply “universally popular” lends
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itself to the symbiotic relationship between authoritative pages and hub pages. Au-

thoritative pages relevant to the query σ should have both large in-degree and many

incoming links from pages that have links to multiple relevant authoritative pages.

The latter pages are called hub pages. Hub pages point to many authoritative pages,

while authoritative pages are pointed to by many hub pages. This idea seems to

employ circular logic, but this equilibrium actually comprises a mutually reinforcing

relationship in the formal definition of HITS.

Finally, now that the necessary background knowledge is amassed, an iterative

algorithm for HITS can be defined as follows. Each page p is assigned two numerical

weights: a non-negative authority weight x〈p〉 and a non-negative hub weight y〈p〉.

Normalize the weights of each type for all of the pages so their squares sum to one:∑
p∈Sσ

(x〈p〉)2 = 1 and
∑
p∈Sσ

(y〈p〉)2 = 1.

A larger x-value denotes a strong authority, while a larger y-value denotes a strong

hub. The reciprocal relationship between hubs and authorities can be numerically

described as follows: If a page p points to many pages with large x-values, then p

should receive a large y-value, and if p is pointed to by many pages with large y-

values, then p should receive a large x-value. Two operations are defined, labeled I

and O. Given the authority weights {x〈p〉} and hub weights {y〈p〉} of the graph, the

I operation updates the x-values as follows:

x〈p〉 ←
∑

q:(q,p)∈E

y〈q〉

while the O operation updates the y-values as follows:

y〈p〉 ←
∑

q:(p,q)∈E

x〈q〉.

The I and O operations are how hubs and authorities reinforce one another. The

iterative procedure to compute the authority and hub weights for the nodes entails
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applying operations I and O in an alternating fashion until (ideally) a fixed state is

reached.

Represent the set of authority weights {x〈p〉} as a vector x, where each coordinate

corresponds with the authority weight of its respective page in Gσ. Likewise, represent

the set of hub weights {y〈p〉} as a vector y. Now define the procedure

Iterate(G, k)

G : a collection of n linked pages

k : a natural number

Let z denote the vector (1, 1, 1, . . . , 1) ∈ Rn.

Set x0 := z

Set y0 := z

For i = 1, 2, . . . , k

Apply the I operation to (xi−1, yi−1), obtaining new x-weights x′i.

Apply the O operation to (x′i, yi−1), obtaining new y-weights y′i.

Normalize x′i, obtaining xi.

Normalize y′i, obtaining yi.

End

Return (xk, yk)

This procedure can be applied to pinpoint the top c authorities and top c hubs via

the procedure
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Filter(G, k, c)

G : a collection of n linked pages

k, c : natural numbers

(xk, yk) := Iterate(G, k)

Report the pages with the c largest coordinates in xk as authorities.

Report the pages with the c largest coordinates in yk as hubs.

For his experiments, Kleinberg applies the Filter procedure with Gσ for the G pa-

rameter and with c ≈ 5− 10.

As with PageRank, HITS in theory involves solving some eigenvector equation,

which is how the value to pass for k in the Filter procedure above can be determined.

It can be shown that the sequences of vectors {xk} and {yk} converge to fixed points x∗

and y∗, respectively, when the Iterate procedure is applied with arbitrarily large values

of k. However, for this thesis, solely the iterative versions of PageRank, HITS, and

Pinski-Narin are implemented. Unlike the explanation of PageRank, which necessarily

entails setting up its respective eigenvector equation first before segueing into its

iterative version, the matrix equation formulation for HITS is omitted. Instead of

solving for an eigenvector equation to determine what value to use for k in the Filter

procedure, for the experimentation phase, the Iterate procedure was simply repeatedly

applied until |xi − xi−1| < ε and |yi − yi−1| < ε, where ε > 0 is arbitrary but fixed.

And with that, this section on the HITS algorithm is concluded.

2.3 Pinski-Narin Algorithm

Somewhat more obscure than the latter two algorithms, but nonetheless pivotal

in its contribution to network science, the Pinski-Narin algorithm was published in
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the Information Processing and Management journal by Gabriel Pinski and Francis

Narin in 1976 (Pinski and Narin (1976)). Originally intended for citation networks of

scientific publications, the authors make three observations on the limitations of the

centrality measures that occupied the network science zeitgeist of the time. Firstly,

they do not account for the average length of individual papers appearing in a given

scientific journal, so centrality measures are skewed in favor of journals which publish

longer papers, namely review journals. Secondly, all citations are considered equal:

they grant equal weight to all citations, regardless of the citing journal. Pinski and

Narin posit that higher weight should be granted to a citation from a more prestigious

journal over one from a less prestigious journal. This idea has also been advanced

by Manfred Kochen in his book Principles of Information Retrieval (Kochen (1974)).

Finally, centrality measures at the time did not have a normalization procedure for

the discrepancies between different subsets of the scientific literature community. Bio-

chemistry, for example, is noted for its high publication frequency, while astronomy

tends to output much fewer publications in general and at a much slower rate. Hence,

a citation from a biochemistry journal may differ greatly in value compared to a ci-

tation from an astronomy journal.

Pinski and Narin argue their algorithm ameliorates the three aforementioned

shortcomings by considering the following three factors: (1) the (size-independent)

influence weight of the journal, which both weights the citations received from other

journals and also normalizes itself using the number of references given to other jour-

nals; (2) the influence of the individual publications which comprise the journal, which

consists of the weighted number of citations each publication receives; (3) the influ-

ence of the journal as a whole which is the product of the influence per publication

and the total number of publications. In short, Pinski and Narin deem a journal in-

fluential if it is frequently cited by other influential journals, and they wish to reflect
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this weighting scheme in their algorithm. This recursive intuition is also exercised by

Kleinberg in his HITS algorithm when computing the authority and hub weights.

Before defining the actual Pinski-Narin algorithm, the problem is set up. Say a

citation network consisting of n nodes is given, with the nodes enumerated from 1 to

n, where each node denotes a member of some set of publishing entities (a journal, a

publication, etc.). Avoid attaching a specific type of publication to a node to allow

for generality in the universe of scientific publications. Each edge signifies a citation

from one unit to another. The network is represented by its respective n×n citation

matrix C, which is defined as follows.

C =



C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

...

Cn1 Cn2 · · · Cnn


where the ith row, jth column entry Cij denotes the number of citations node j

receives from node i, and alternatively the number of references node i gives to node

j, 1 ≤ i, j ≤ n. Note the difference in the definition of “citation” versus that of

“reference”. A simple way to distinguish between the two terms is to remember that

a citation is received, while a reference is given.

Define the row sum

Si =
n∑
j=1

Cij

which is the sum of the entries in the ith row of the citation matrix C. Si may be

interpreted as the total number of references given out by node i. Then the influence

weight, Wi, of node i is defined as

Wi =
n∑
k=1

WkCki
Si

, i = 1, . . . , n. (2.1)
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In other words,

Wi =
n∑
k=1

WkCki
Si

=

∑n
k=1WkCki∑n
j=1 Cij

,

so the influence weight of node i can be thought of as the weighted sum of its citations

divided by the number of its references. If all nodes are considered equally, if node i

receives more citations than it gives out references, then i has a higher weight than a

node that has fewer citations than references. However, Pinski-Narin does not weigh

all nodes equally, which is precisely the role of weighting the sum of citations in the

numerator of Wi,
∑n

k=1WkCki. The idea is that a citation from a more influential

node is considered more highly than a citation from a less influential node. So if node

i receives a citation from a very prestigious node l, node i’s influence weight Wi is

rewarded accordingly. Likewise, if node i receives a citation from an obscure node m,

Wi is not as handsomely compensated, so WlCli > WmCmi, so long as Cli = Cmi. An

exception may occur when Cmi � Cli. It may be the case that a significant number of

citations from a less influential node may be weighed equally as or even more highly

than a small number of citations from a more influential node.

The aforementioned definition of Wi can be viewed as a special case of the general

system of equations

n∑
k=1

Wkγki − λWi = 0, i = 1, . . . , n (2.2)

where γki = Cki/Si. Equation (2.1) is an instance of equation (2.2) where λ = 1. The

values of λ that satisfy the equation immediately above are called the eigenvalues of

the system. λ = 1 itself is an eigenvalue, so it is guaranteed there exists at least

one non-zero solution for equation (2.2). γki denotes the number of citations node

i receives from node k divided by the total number of references given by node i.
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Define the n× n matrix

γ =



γ11 γ12 · · · γ1n

γ21 γ22 · · · γ2n

...
...

...

γn1 γn2 · · · γnn


.

Then the column sum i, 1 ≤ i ≤ n, represents the ratio between the number of cita-

tions received by node i and the number of references given by node i. In particular,

γ1i + γ2i + . . .+ γni =
n∑
k=1

γki

=
n∑
k=1

Cki
Si

=

∑n
k=1Cki∑n
j=1Cij

=
total number of citations to node i from other nodes

total number of references from node i to other nodes

Let γT denote the transpose of γ:

γT =



γ11 γ21 · · · γn1

γ12 γ22 · · · γn2

...
...

...

γ1n γ2n · · · γnn


Then γTik = γki. Employ the Kronecker delta symbol

δik =


1 if i = k

0 if i 6= k

so it is possible to write

n∑
k=1

(γTik − λδik)Wk = 0, i = 1, . . . , n. (2.3)
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Equation (2.3) is simply another way to write equation (2.2). Equation (2.3) bears a

system of n homogeneous equations for the influence weights. To find a solution for

this system, solve for eigenvalue λ in the nth order equation

det



γ11 − λ γ21 · · · γn1

γ12 γ22 − λ · · · γn2

...
...

...

γ1n γ2n · · · γnn − λ


= 0 (2.4)

known as the characteristic equation. A non-zero solution for the weights can be

found by finding values of λ which satisfy equation (2.4). Given the n × 1 column

vector W = [W1, . . . ,Wn]T of influence weights, the eigenvalue equation above can

be expressed as a vector equation

γT ·W = λW . (2.5)

Now the normalization procedure of Pinski-Narin is described. The condition is

imposed that the size-weighted average of the weights is one:∑n
k=1 SkWk∑n
k=1 Sk

= 1.

This condition grants the weights both an absolute and a relative meaning, since the

value one represents an average value. Each root λ of the characteristic equation

(2.4) (or alternatively, equation (2.5)) determines an eigenvector–a potential solu-

tion vector–of the equation, but only the eigenvector corresponding with the largest

eigenvalue is desired.

The iterative procedure to compute Pinski-Narin, which is what is actually imple-

mented to produce the experimentation results, is as follows. Start with equal weights

of one for all of the nodes, just like HITS. The values W
(0)
i = 1, i = 1, . . . , n, can be

considered as zeroth order approximations to the weights. The first order weights are
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W
(1)
i =

∑n
k=1 Cki
Si

=
total number of citations to node i from other nodes

total number of references from node i to other nodes
,

which are precisely the column sums of the matrix γ defined earlier. To acquire the

next order of approximation, substitute the values W
(1)
i into the right hand side of

equation (2.1). In general, the mth order approximation is

W
(m)
i =

n∑
k=1

W
(m−1)
k Cki
Si

=
n∑
k=1

W
(m−1)
k γki =

n∑
j=1

(γm)ji.

To find the exact weights, essentially continually square the γ matrix to obtain

Wi = W
(∞)
i =

n∑
j=1

(
lim
m→∞

γm
)
ji
.

λ = 1 is the dominant eigenvalue (that is, the largest eigenvalue) for the characteristic

equation (2.4), so instead of actually solving the eigenvector equation, just repeated

squarings of the γ matrix can be performed. For this thesis, γ was continually squared

until |W (t)
i −W

(t−1)
i | < ε, i = 1, . . . , n, where ε > 0 is arbitrary but fixed.

A follow-up paper by Nancy Geller was published in 1978 (Geller (1978)), in which

Geller sheds further insight into the Pinski-Narin algorithm using Markov chain the-

ory. Geller observes that the influence weights computed by Pinski-Narin correspond

to the stationary distribution of the following random process: starting with an ar-

bitrary academic publication j, randomly choose one of j’s references and move to

said reference, and so on. This process mimics the random surfer model for PageR-

ank, except instead of exploring web pages in the World Wide Web, publications in

a citation network are being explored.

As is the case with PageRank and HITS, Pinski and Narin’s experiment results

are not discussed. This section on the Pinski-Narin algorithm is concluded with the
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following observation: while Kleinberg cites Pinski and Narin’s paper in his HITS

paper, Page, Brin, Motwani, and Winograd do not do so in their PageRank paper.

The latter party, however, cite Kleinberg’s HITS paper in their PageRank paper.

2.4 Hyperbolic Geometry

At this point, the reader has a general understanding of the three eigenvector

centrality algorithms implemented in this thesis. Now the fundamental principles this

entire thesis is predicated on must be explained: hyperbolic geometry. The literature

on hyperbolic geometry is boundless, but the information provided in this section is

primarily derived from Birger Iversen’s book Hyperbolic Geometry (Iversen (1992)).

In short, hyperbolic geometry is a geometry which concerns itself with non-Euclidean

space. Euclidean space is governed by Euclid’s five axioms, which are as follows.

1. A straight line can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as

radius and one endpoint as center.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the sum of

the inner angles on one side is less than two right angles, then the two lines

inevitably must intersect each other on that side if extended far enough. This

postulate is equivalent to what is known as the parallel postulate.

The fifth postulate can be reworded as follows: Given a straight line and a point not

on the line, there exists exactly one straight line intersecting the point that is parallel

to the given line. Investigations of the parallel postulate by mathematicians like
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János Bolyai (1802-1860), Carl Friedrich Gauss (1777-1855), and Nikolai Lobachevsky

(1793-1856) have revealed the axiom is independent of the preceding four axioms in

that there exists a space, now called hyperbolic space, which satisfies the first four of

Euclid’s axioms, but not the fifth.

The discovery of hyperbolic space arose from attempts to prove the parallel pos-

tulate independently of the other four postulates. Giovanni Saccheri (1667-1733)

was the first to make serious headway in this pursuit, followed by Johann Heinrich

Lambert (1728-77), who made notable speculations on the nature of a non-Euclidean

geometry. By 1850 most of the properties of such a new geometry were known to

Bolyai, Gauss, and Lobachevsky. The main issue at the time was proving the exis-

tence of this geometry, but twenty years later this mystery was resolved, thanks to

the work of Eugenio Beltrami (1835-1900), Arthur Cayley (1821-95), and Felix Klein

(1849-1925). Before the reader falls asleep from this history lecture, the reader is be-

seeched to push onward for the exciting details on hyperbolic space and its geometry.

This concludes the historical background of hyperbolic geometry (pinky promise).

In hyperbolic space, given a straight line and a point not on the line, it is possible

for there to be more than one straight line intersecting the point that is parallel

to the given line. In fact, there are infinitely many such lines. This phenomenon

can be seen in the following Figure 2.2, which exhibits a set of straight lines in the

Poincaré disk that intersect a given point but are also all parallel to the bolded blue

line (Chamberlain et al. (2017)).
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Figure 2.2: A Set of Straight Lines in the Poincaré Disk that All Pass Through a
Given Point and are All Parallel to the Blue Line.

What the Poincaré disk is and its relation to hyperbolic space are explained shortly.

If the reader is confused by how the straight lines in Figure 2.2 appear to be curved,

this is also clarified shortly.

To spare the reader the tedious journey of trying to navigate mathematical jargon,

in short, hyperbolic space is the space dictated by the axioms of hyperbolic geometry,

which are identical to the five postulates of Euclidean geometry listed above, but

with the fifth postulate relaxed so that given a line and a point that does not lie on

it, there is more than one line going through the given point that is parallel to the

given line. There are only three types of isotropic spaces: Euclidean space, spherical

space, and hyperbolic space. Isotropy means “uniformity in all orientations”, and in

this context means the axioms which govern each space hold true in any orientation

in the respective space. The notion of curvature is used to differentiate between the
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isotropic spaces. As the name implies, the curvature of a surface is a metric which

numerically quantifies how curved the surface is. Euclidean geometry concerns itself

with spaces of zero curvature (also known as flat spaces), spherical geometry handles

spaces of constant positive curvature, and hyperbolic geometry deals with spaces of

constant negative curvature. The following Table 2.1 explaining basic differences

among Euclidean, spherical, and hyperbolic geometries is pulled from Krioukov et al.

(2010).

Property Euclidean Spherical Hyperbolic

Curvature K 0 > 0 < 0

Parallel lines 1 0 ∞

Triangles are normal thick thin

Shape of triangles

Sum of ∆ angles π > π < π

Circle length 2πr 2π sin ζr 2π sinh ζr

Disk area 2πr2/2 2π(1− cos ζr) 2π(cosh ζr − 1)

Table 2.1: Characteristic Properties of Euclidean, Spherical, and Hyperbolic Ge-
ometries

Each entry in the row for “Parallel lines” indicates the number of lines that are parallel

to a given line and intersect a point not belonging to the given line for the specified

geometry. The variable ζ =
√
|K|. In the implementation of this thesis, ζ = 1.

Hyperbolic space and hyperbolic geometry are the focus for the remainder of

this section. The reasons why hyperbolic geometry is preferred in this context are

discussed in the following section on hyperbolic embeddings. In practice, hyperbolic

geometry is rarely explored in hyperbolic space alone. This is frightening, unfamiliar

territory. Rather, one of various models that embed hyperbolic space in Euclidean
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space is selected. This way, hyperbolic geometry can be physically observed in action

in a familiar, warm, friendly environment. Such models include the Poincaré ball

model, the Poincaré half-space model, the hyperboloid model, and the Klein model,

among others. The Poincaré ball model is opted for for this thesis. In particular,

two-dimensional hyperbolic space H2, also known as the hyperbolic plane, is the sole

concern. As such, the two-dimensional case of the Poincaré ball model, which is called

the Poincaré disk model, is defined.

The Poincaré disk model represents the entire infinite hyperbolic plane H2 inside

the finite unit disk D = {z ∈ R2 : ‖z‖ < 1}, where ‖·‖ denotes the L2 norm. The

boundary of the unit disk, the Euclidean circle ∂D = {z ∈ R2 : ‖z‖ = 1}, is not part

of the hyperbolic plane H2, but rather represents its infinitely distant points, known

as the boundary at infinity ∂H2. The distance between two points (x, y) and (x′, y′)

in the Euclidean plane R2 is determined by the two-dimensional Euclidean metric

‖(x, y) − (x′, y′)‖ =
√

(x− x′)2 + (y − y′)2. Although the Poincaré disk resides in

R2, the distance between points zi = (xi, yi) and zj = (xj, yj) is dictated by the

two-dimensional hyperbolic metric, the hyperbolic distance

cosh d(zi, zj) = 1 + 2
‖zi − zj‖2

(1− ‖zi‖2)(1− ‖zj‖2)
(2.6)

where d(zi, zj) denotes the hyperbolic distance between points zi and zj. To actually

compute d(zi, zj), simply take the cosh−1 of both sides of the above expression. Note

that the Poincaré disk model can easily be generalized to the Poincaré ball model

of n dimensions by adjusting for the unit ball Dn. Also note that equation (2.6) is

expressed in terms of rectangular coordinates. Equation (2.6) can be rewritten in

terms of polar coordinates (r, θ), where r is the radial coordinate and θ is the angular

coordinate. Say zi has polar coordinates (ri, θi), while zj has polar coordinates (rj, θj).
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Then it may be written

cosh d(zi, zj) = cosh ri cosh rj − sinh ri sinh rj cos ∆θ (2.7)

where ∆θ = π −
∣∣π − |θi − θj|∣∣ is the angle between zi and zj.

The circumference and the area of a circle in hyperbolic space are defined as

functions of the circle’s radius r,

C(r) = 2π sinh r and A(r) = 2π(cosh r − 1),

respectively. Recall that

cosh r =
er + e−r

2
and sinh r =

er − e−r

2
.

An important characteristic of the hyperbolic plane H2 can be observed when the

derivative of A(r), A′(r), is taken:

A′(r) =
dA

dr
= 2π

d

dr
(cosh r − 1)

= 2π
d

dr

(
er + e−r

2
− 1

)
= π(er − e−r)

= 2π sinh r = C(r).

When the value of r blows up (that is, r → ∞), A′(r) ≈ er. That is, the rate of

change in the area of a circle is exponential in terms of its radius r. This growth

rate is in stark contrast to the rate of change in the area of a circle in conventional

R2: since A(r) = πr2 and C(r) = 2πr in this case, A′(r) = 2πr = C(r). In other

words, the rate of change in the area of a circle in R2 is polynomial (linear, to be

exact) in terms of r. H2 is then, in some sense, “larger” than R2: the area of a circle

grows exponentially with its radius, rather than linearly. More generally, hyperbolic
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spaces expand faster than Euclidean spaces: the former expand exponentially, while

the latter expand polynomially.

Every model of hyperbolic space has its pros and cons. The Poincaré disk model

for H2 is conformal, meaning it preserves angles, so Euclidean angles between lines

in the Poincaré disk are equal to the hyperbolic angles between said lines. However,

areas and distances are warped in the Poincaré disk. In fact, hyperbolic distances

grow exponentially towards the boundary ∂D. If re equals the Euclidean distance

from the disk center (also known as the origin of H2) and rh equals the hyperbolic

distance from the disk center, then the two quantities are related by

re = tanh
rh
2
.

This distortion explains why straight lines in the Poincaré disk, like in Figure 2.2,

appear curved: when seeking the shortest path (in terms of hyperbolic distance) from

one point on the disk to another, it is faster to move close to the disk center, where

distances are shorter, than closer to the edge. In fact, hyperbolic geodesic lines in the

Poincaré disk, i.e., shortest paths between two points at the boundary ∂D, consist

of disk diameters and arcs of Euclidean circles intersecting ∂D perpendicularly. The

image in Figure 2.3 below illustrates what traversing geodesics in the Poincaré disk

is like. Each tile is of constant area in hyperbolic space, but vanishes in Euclidean

space at the boundary ∂D.
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Figure 2.3: A Hyperbolic Tiling in the Poincaré Disk Model

Hyperbolic geometry is a beautifully dynamic and fascinating way to make sense of

space. In the next section, it is explained how to exploit this powerful set of tools to

study complex and social networks in the form of hyperbolic embeddings.

2.5 Hyperbolic Embeddings

Now hyperbolic geometry may be contextualized for this thesis specifically. Ge-

ometry naturally lends itself to network science as a way to quantify and compare

characteristics of complex and social networks. A primary objective of network ge-

ometry is to describe and define the continuous hidden metric behind the inherently

discrete structure of complex networks, and researchers are increasingly finding hy-

perbolic geometry to be the golden ticket (Bianconi and Rahmede (2017)). Chapter

one of the book Big Data in Complex and Social Networks provides an overview of big
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data analytics based on hyperbolic space as well as recent developments in the field

(Thai et al. (2016)). Hyperbolic geometry has not only been used to perform data

embeddings, but also to perform greedy routing and decision-making optimization,

among other applications. This thesis is only concerned with embeddings of complex

networks in hyperbolic space.

Recall from the prior section that hyperbolic space expands exponentially. In

particular, that the area of a circle grows exponentially in terms of its radius r. This

property easily lends hyperbolic space to modeling complex networks because such

networks are often scale-free. If the degree of a node in a given network denotes

its number of incident edges, the degree distribution of the network indicates the

probability distribution of the node degrees over the entire network. A scale-free

network is one where its degree distribution follows a power law. A power law is

a functional relationship between two quantities x, y that can be modeled as y ∝

xa, where a is a constant and ∝ stands for “proportional to”. Because scale-free

networks expand exponentially, such networks contain latent hierarchies, i.e., tree-

like structures (Boguna et al. (2009)), and since hyperbolic geometry is known as

the geometry of trees, the marriage between them is an amicable one. In fact, the

exponent of the power law function modeling the degree distribution of a scale-free

complex network ends up being a function of the hyperbolic space curvature (Krioukov

et al. (2010)). DeSa et al. (2018) shows how to embed arbitrary graphs as trees into

hyperbolic space, specifically the Poincaré ball.

Hyperbolic space models are well-suited for modeling hierarchical data. Recall

that a tree in graph theory is defined as an undirected, connected, and acyclic graph.

In other words, a connected graph that contains zero cycles. Say a b-ary tree is given,

which is a tree with branch factor b. The branch factor of a tree indicates the number

of children at each node, the outdegree. Then the tree has (b+ 1)b`−1 nodes at level
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` and (b+1)b`−2
b−1

nodes on a level less than or equal to `. Note that as ` → ∞, the

aforementioned quantities (b + 1)b`−1 ≈ b` and (b+1)b`−2
b−1

≈ b`, respectively. It is seen

that the number of children grows exponentially with their distance from the root

of the tree. This tree-like behavior can be easily modeled using a circle of radius r,

modeling the hyperbolic plane H2, by mapping nodes which are exactly ` levels below

the root directly on the circle’s boundary, with r ∝ `, and mapping nodes which are

less than ` levels below the root within the circle (Nickel and Kiela (2017)). Since

hyperbolic space expands exponentially, hyperbolic space can be viewed as just a

continuous version of a tree. Likewise, trees can be viewed as “discrete hyperbolic

spaces”, in a way. Figure 2.4 below, pulled from Nickel and Kiela (2017), shows an

embedding of a regular tree (a tree where every node has equal degree, in this case

three) in the Poincaré disk so that all connected nodes are spaced equally far apart

in terms of hyperbolic distance. Krioukov et al. (2010) even proves that assuming an

underlying hyperbolic geometry for a complex network yields heterogeneous degree

distributions (huge variability between node degrees) and strong clustering in the

network topology.

Faloutsos et al. (1999) and Boguna et al. (2010) further demonstrate the utility of

hyperbolic space for modeling complex networks. Faloutsos et al. (1999) shows that

the growth rate of the Internet can be modeled in terms of power laws. In other words,

the Internet, when considered as a complex network, increases in size exponentially.

Boguna et al. (2010) extends the aforementioned work considerably by devising an

efficient greedy routing scheme for autonomous systems (AS’s) in the Internet which

lessens overhead costs via hyperbolic embeddings. AS in this paper is a name for

a part of the Internet owned and administered by the same organization. Because

the complex network comprising the Internet expands exponentially, handling rapidly

growing overhead costs, which in this case deal with routing information packets be-
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Figure 2.4: An Embedding of a Regular Tree in the Poincaré Disk so that All
Connected Nodes are Spaced Equally Far Apart

tween computers, is a recurring headache for the people in charge of Internet routing.

The procedure outlined in this paper consists of mapping the Internet to hyperbolic

space and exploiting its properties to perform greedy forwarding efficiently. More

specifically, the authors use statistical inference techniques to find coordinates for

each AS in the hyperbolic space underlying the Internet. An AS holding a packet

in-transit reads its destination AS’s coordinates, calculates the hyperbolic distance

between the destination and each of its neighbors, and forwards the packet to the

neighbor closest to the destination (i.e., greedy forwarding). The authors show their

embedding achieves both efficiency and robustness using a number of performance

metrics. The benefits of using hyperbolic geometry to study complex networks are

endless.

This thesis focuses exclusively on Poincaré embeddings, which are hyperbolic em-

beddings in the Poincaré disk model. The Poincaré disk model is the second most

commonly used model for the hyperbolic plane H2 among mathematicians, behind

the Poincaré half-plane model (the two-dimensional case of the Poincaré half-space
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model) (Iversen (1992)). This order of preference among hyperbolic space models is

contrary to that employed by computer scientists, who, in most of the network sci-

ence papers encountered, opt for the Poincaré disk model. This discrepancy can be

attributed to the visual compactness of the Poincaré disk, making it more attractive

to computer scientists when performing visualization tasks. On the other hand, the

Poincaré half-plane model has certain properties which are useful for applications of

hyperbolic geometry to number theory, making it the first choice among mathemati-

cians. Or perhaps mathematicians and computer scientists are mortal enemies.

Two such Poincaré embeddings are the framework proposed in Papadopoulos et al.

(2012) and the HyperMap embedding algorithm (Papadopoulos et al. (2015)). Pa-

padopoulos et al. (2012) offers an algorithm which actively grows a complex network

in the Poincaré disk model based on the nodes’ popularity and similarity with one

another. With every iteration, a new node is added to the network embedded in

the model, forming links with existing nodes in the embedding, taking into account

the popularity of the existing nodes and the similarity between the new node and

the existing nodes. The procedure is formally defined as follows, assuming an empty

network is initially given.

1. At time t ≥ 1, add a new node t to the embedded network by assigning it the

polar coordinates (rt, θt) where the angular coordinate, θt, is sampled uniformly

at random from [0, 2π] and the radial coordinate, rt, relates to the birth date of

node t via the relation rt(t) = ln t. Then increase the radial coordinate of every

existing node s < t to rs(t) = βrs(t) + (1− β)rt(t), β ∈ [0, 1].

2. Connect the new node t with a subset of existing nodes {s}, where s < t, ∀s,

consisting of the m nodes with the m smallest values of product s · θst, where

m is a parameter controlling the average node degree (i.e., the extent of the
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correlations among nodes), and θst is the angular distance between nodes s and

t.

It is found that when constructing a network using the steps outlined above, the nodes

simply connect to their closest m nodes in terms of hyperbolic distance. To summarize

the intent of this algorithm, the radial coordinate represents the popularity of a node,

while the angular coordinate represents the similarity between a node and other nodes

in the network. HyperMap is an extended version of the previous algorithm in that

it permits adding links between existing nodes, while the other algorithm only allows

links to be added between a newcomer and an existing node. It should be noted

that a network conceived from either Papadopoulos et al. (2012) or Papadopoulos

et al. (2015) exhibits two characteristics: (1) the nodes appear to be very clustered

since the links added between close nodes lead to the formation of a large number

of triangles; (2) the degree distribution of the network adheres to a power law (the

network is scale-free!).

The core of this thesis is in a similar vein as Papadopoulos et al. (2012) and

Papadopoulos et al. (2015), although the hyperbolic coordinates in the proposed em-

bedding are tailored to reflect the respective objective, which is to illustrate eigenvec-

tor centrality. At this point, the reader has accumulated the background knowledge

necessary for understanding the essence of this thesis: a hyperbolic embedding of

a complex network in the Poincaré disk model based on the PageRank, HITS, and

Pinski-Narin eigenvector centrality algorithms. The purpose of explaining the two

aforementioned hyperbolic embedding algorithms is to get the reader’s toes wet in

regards to Poincaré embeddings. Now an original embedding is introduced.
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Chapter 3

IMPLEMENTATION

Each node in the network is assigned a pair of hyperbolic coordinates (r, θ) in the

Poincaré disk model, where r is the radial coordinate, denoting the node’s distance

from the origin, and θ is the angular coordinate, denoting the node’s angle from the

positive x-axis. A node’s hyperbolic coordinates should be chosen so that said node’s

position in the Poincaré disk in relation to the other nodes in the network accurately

reflects the node’s respective influence.

PageRank initializes the nodes’ influence weights differently from HITS and Pinski-

Narin. As such, PageRank’s initial hyperbolic embedding should vary from those for

HITS and Pinski-Narin. In particular, while PageRank and Pinski-Narin offer only

one general, all-encompassing categorization of the nodes’ influence weights, HITS

produces two types of weights: hub weights and authority weights. Each iteration of

HITS is hence accompanied by two influence weight vectors, so each iteration of HITS

is accompanied by two corresponding hyperbolic embeddings as well. After each itera-

tion of one of the algorithms PageRank, HITS, and Pinski-Narin, the nodes’ influence

weights are updated accordingly, along with the hyperbolic embeddings.

The network in the experimentation is defined as an unweighted, directed graph,

which is defined as a pair G = (V,E). V is the set of vertices, while E is the set of

edges. G is represented in terms of an adjacency matrix A. If the network in question

consists of n nodes (that is, |V | = n), and the nodes are enumerated from 1 to n, the

adjacency matrix A is defined as an n× n square matrix where
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aij =


1 if there is a directed edge from node i to node j

0 else

=


1 if (i, j) ∈ E

0 else

is the ith row, jth column entry in A, 1 ≤ i, j ≤ n.

Before formally defining the implementation of the proposed hyperbolic embed-

ding, the logic behind the hyperbolic coordinate mappings is first explained. Two such

mappings are defined: a radial mapping for the radial coordinate r, and an angular

mapping for the angular coordinate θ. Both are determined based on the specified

node’s computed influence weight after a given iteration of one of PageRank, HITS,

and Pinski-Narin. Now the setup for each mapping is explained.

The radial mapping for some node i, 1 ≤ i ≤ n, after iteration t of a given

algorithm is ri(t) = e−xi(t), where xi(t) is the influence weight of node i after iteration

t. When the nodes’ influence weights are initialized by one of PageRank, HITS, and

Pinski-Narin, the nodes’ radial coordinates would then be ri(0) = e−xi(0), i = 1, . . . , n.

The reason why the radial coordinate is defined using this function is because its rate

of growth as xi(t) → ∞ is well-suited for the Poincaré disk model, as seen in the

graph in Figure 3.1 below.
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Figure 3.1: Graph of Radial Coordinate Function f(x) = e−x

In this graph, it can be seen that as x → ∞ (in other words, as a given node’s

influence increases without bound), the corresponding node’s radial coordinate (or

distance from the origin) r → 0. If a node is more influential, it is ideally granted a

higher influence weight by its respective eigenvector centrality algorithm, and hence

is rewarded by being assigned a smaller radial coordinate, so it is located closer to the

origin of the Poincaré disk. Likewise, if a node is less influential, it should be granted

a lower influence weight by the given algorithm, and subsequently is penalized by

being assigned a larger radial coordinate, so it is located farther away from the origin

of the Poincaré disk. The idea is that more influential nodes are mapped closer to

the origin, while less influential nodes are mapped farther away from the origin. The

hope is that this discrepancy determined by the function ri(t) = e−xi(t) allows “more
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important” nodes to be easily distinguished from “less important” nodes in a network.

When one of PageRank, HITS, and Pinski-Narin is applied to a network’s adjacency

matrix, until convergence, the algorithm produces hyperbolic embeddings where more

influential nodes eventually migrate towards the origin, while less influential nodes

gradually migrate away from the origin, all in real time.

All of the graphs worked with in this thesis are assumed to be strongly connected,

which is when every vertex is reachable from every other vertex. That is, there exists

a directed path between any pair of vertices in the graph. Hence, a node’s influence

weight is always nonzero, as each node is guaranteed to have at least one outgoing and

one incoming edge. This assumption is necessary because the Poincaré disk consists

of the unit disk dictated by the hyperbolic metric. Recall that the unit disk is defined

as D = {z ∈ R2 : ‖z‖ < 1}, which comprises the points in R2 occupying the interior of

x2 +y2 = 1. The fact that the network is guaranteed to be strongly connected further

strengthens the case for ri(t) = e−xi(t) as the radial mapping because no matter how

insignificant a node may be in terms of influence, said node always resides within

the unit disk. An unimportant node can get arbitrarily close to the border of the

unit disk, but never actually touches it. Figure 3.1 shows that the radial coordinate

is 1 in the case where a node’s influence weight is 0. In other words, a node with

absolutely no influence would be mapped to the border of the unit disk. Rest assured

this scenario never occurs, as only strongly connected graphs are provided.

Another motivation for the choice of radial mapping ri(t) = e−xi(t) is the fact

that the hyperbolic sine and cosine functions, which are used to calculate angles and

distances in hyperbolic geometry, are defined in terms of the exponential functions ex

and e−x, as seen below.

coshx =
ex + e−x

2
sinhx =

ex − e−x

2
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The behavior of a node’s migration towards or away from the origin in the Poincaré

disk as the node’s influence waxes or wanes, respectively, thus closely mimics what

such a journey would actually look like in hyperbolic space.

Now the angular mapping θi(t) is defined and elaborated on, 1 ≤ i ≤ n, where

t is the number of iterations of one of PageRank, HITS, and Pinski-Narin after ini-

tialization. This mapping entails considerably more effort computation-wise than the

radial mapping. While the radial mapping is easily and directly calculated, the angu-

lar mapping demands comparative deliberation based on the specified node’s hyper-

bolic distance from its neighbors. In the initial hyperbolic embeddings for PageRank,

HITS, and Pinski-Narin, the angular coordinates are selected as follows: node 1’s

angular coordinate is chosen uniformly at random from the interval [0, 2π]. From

here, node i’s angular coordinate is defined as θi(t) = θi−1(t) + 2π/n, i = 2, . . . , n.

This way, all of the nodes are initially equiangular based on their enumeration. That

is, the angle between nodes 1 and 2 is equal to the angle between nodes 2 and 3, and

so on. Choosing only the first node’s initial angular coordinate randomly, instead

of choosing all of the nodes’ initial angular coordinates randomly, somewhat allevi-

ates the errors that may stem from random initialization, which curse many machine

learning algorithms.

For iterations t ≥ 1, a node’s angular coordinate must be selected in a way that

is sensitive to both the node’s computed influence weight and the node’s distance

to more influential nodes in the network. After iteration t of one of PageRank,

HITS, and Pinski-Narin, the radial coordinate of node i is updated using the function

ri(t) = e−xi(t). If node i becomes more influential after this iteration, its influence

weight xi(t) increases accordingly, so its radial mapping value ri(t) decreases, and

hence the node migrates towards the origin of the Poincaré disk to indicate its elevated

importance in the network. Analogously, if node i becomes less influential after this
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iteration, xi(t) decreases, and so ri(t) increases in value, and the node migrates away

from the origin in the embedding.

As for the angular coordinate of node i, it is adjusted as follows. Fix a node i with-

out loss of generality. Parse through node i’s neighbors and identify two quantities:

the neighbor with the highest influence weight, called node k, and the neighbor with

the smallest hyperbolic distance from node i, called node l. It should be emphasized

that that the latter quantity is computed using the hyperbolic coordinates from the

prior iteration. Given node i and its neighbors, which are represented via the set

Ni = {1 ≤ m ≤ n : (i,m) ∈ E}, these two quantities are formally defined as follows.

k := arg max
j∈Ni

xj(t) l := arg min
j∈Ni

dij

where dij is the hyperbolic distance between node i and node j, which recall is found

using the formula

cosh dij = cosh (ri(t− 1)) cosh (rj(t− 1))−sinh (ri(t− 1)) sinh (rj(t− 1)) cos (θij(t− 1))

where θij(t − 1) = π −
∣∣π − |θi(t − 1) − θj(t − 1)|

∣∣ is the angular distance between

nodes i and j, and (ri(t − 1), θi(t − 1)) and (rj(t − 1), θj(t − 1)) are the hyperbolic

coordinates of nodes i and j, respectively. Recall that node i’s closest neighbor l is

identified using the hyperbolic coordinates from the prior iteration.

With node i’s most influential neighbor k and node i’s closest neighbor l, define

the value

dnew := min{dil, δ} = min

{
min
j∈Ni

dij, δ

}
where δ > 0 is an arbitrarily small positive number chosen by the user. After iteration

t of one of PageRank, HITS, and Pinski-Narin, if node i’s influence weight is higher

than that of all of node i’s neighbors (to be specific, xi(t) > xj(t) for all j ∈ Ni, or

simply xi(t) > xk(t)), do not update θi(t) and leave it with the same value as that of

44



the previous iteration. Otherwise, choose node i’s updated angular coordinate, θi(t),

to be the angle such that the hyperbolic distance between node i and node k is equal

to dnew. In other words, the value of θi(t) ∈ [0, 2π] where

cosh dik = cosh (ri(t− 1)) cosh (rk(t− 1))− sinh (ri(t− 1)) sinh (rk(t− 1)) cos (θik)

= cosh dnew

is desired, if θik = π−
∣∣π− |θi(t)− θk(t− 1)|

∣∣ is the angular distance between nodes i

and k. Note that all hyperbolic coordinates in the expression above are derived from

the prior iteration, save for θi(t), which is the variable being solved for.

The reason why the δ value is included in the definition of dnew is to ensure the

new hyperbolic distance between node i and its most influential neighbor k is small,

in the case where dil is not a small value. So if node i’s neighbors are all relatively

far away, δ guarantees that node i migrates towards its most influential neighbor in

the case where node i is not more influential than all of its neighbors.

Now the way to compute θi(t) is outlined as follows.

cosh dnew = cosh (ri(t− 1)) cosh (rk(t− 1))− sinh (ri(t− 1)) sinh (rk(t− 1)) cos (θik)

sinh (ri(t− 1)) sinh (rk(t− 1)) cos (θik) = cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

cos (θik) =
cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

sinh (ri(t− 1)) sinh (rk(t− 1))

θik = cos−1

(
cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

sinh (ri(t− 1)) sinh (rk(t− 1))

)
Now θik = π −

∣∣π − |θi(t)− θk(t− 1)|
∣∣ is substituted into the left-hand side, giving

π −
∣∣π − |θi(t)− θk(t− 1)|

∣∣ = cos−1

(
cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

sinh (ri(t− 1)) sinh (rk(t− 1))

)
∣∣π − |θi(t)− θk(t− 1)|

∣∣ = π − cos−1

(
cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

sinh (ri(t− 1)) sinh (rk(t− 1))

)
For convenience, set

(∗) =
cosh (ri(t− 1)) cosh (rk(t− 1))− cosh dnew

sinh (ri(t− 1)) sinh (rk(t− 1))
.
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Then there are multiple ways to solve for θi(t), as seen below.

1.

π − |θi(t)− θk(t− 1)| = π − cos−1(∗)

|θi(t)− θk(t− 1)| = cos−1(∗)

There are two ways to solve for θi(t) from here.

(a)

θi(t)− θk(t− 1) = cos−1(∗)

θi(t) = θk(t− 1) + cos−1(∗) (1a)

(b)

θi(t)− θk(t− 1) = − cos−1(∗)

θi(t) = θk(t− 1)− cos−1(∗) (1b)

2.

π − |θi(t)− θk(t− 1)| = cos−1(∗)− π

|θi(t)− θk(t− 1)| = 2π − cos−1(∗)

There are another two ways to solve for θi(t) from here.

(a)

θi(t)− θk(t− 1) = 2π − cos−1(∗)

θi(t) = 2π − cos−1(∗) + θk(t− 1) (2a)

(b)

θi(t)− θk(t− 1) = cos−1(∗)− 2π

θi(t) = cos−1(∗)− 2π + θk(t− 1) (2b)
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Define the set

Θ := {(1a), (1b), (2a), (2b)}

to be used later. Now there are four possible values for θi(t). Which should be chosen

to be node i’s angular coordinate? The first constraint is that θi(t) ∈ [0, 2π]. Note that

since node i’s most influential neighbor k’s hyperbolic coordinates, (rk(t−1), θk(t−1)),

are fixed, there are two possible ways to shift node i: to the left or to the right side of

node k. The second constraint, then, is that the value of θi(t) that is closer (in terms

of hyperbolic distance) to θi(t− 1) using ri(t− 1) is chosen. The latter constraint is

particularly important because this would mean the shift node i would have to make

to its new position in the Poincaré disk after iteration t is more intuitive regarding

the behavior of a node’s migration towards more influential nodes. Imagine that a

given network represents a social network of people, where each person, represented

by a node, is a social climber: they crave to be near popular and powerful people,

and also desire to be popular and powerful themselves. If each node in the network

was sentient in the most primitive, greediest sense, a node is expected to make the

shortest trip possible to be closer to its most influential neighbor. Unless, of course,

node i is more influential than all of its neighbors, in which case node i stays put and

does not move at all angular-wise.

Recall the definition of the set Θ above. If node i is not more influential than all

of its neighbors, for the coordinate θi(t), choose the element θ ∈ Θ that lies in the

interval [0, 2π] and minimizes the hyperbolic distance between (ri(t − 1), θi(t − 1))

and (ri(t− 1), θ):

arg min θ∈Θ
θ∈[0,2π]

cosh−1
(

cosh (ri(t− 1)) cosh (ri(t− 1))− sinh (ri(t− 1)) sinh (ri(t− 1)) cos (π −
∣∣π − |θ − θi(t− 1)|

∣∣))

For convenience, set the aforementioned expression equal to (∗∗). Thus, the formal

definition of node i’s angular coordinate after iteration t ≥ 1 of one of PageRank,
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HITS, and Pinski-Narin, θi(t), is as follows.

θi(t) :=


θi(t− 1) if xi(t) > xk(t)

(∗∗) else

1 ≤ i ≤ n.

The idea behind this definition of θi(t) is to move node i closer to its most influential

neighbor, if node i itself is not the most influential node out of all of its neighbors.

Furthermore, the hyperbolic distance between node i and its most influential neighbor

k should be at least as small as that between node i and its closest neighbor l, in the

case where node i is not more influential than all of its neighbors.

Ideally, as the nodes’ influence weights approach their “steady state” values as the

number of iterations increases, the objective of a given node’s journey until conver-

gence is twofold: migrate towards the origin and migrate towards influential nodes.

The hope is that this greedy behavior from the nodes (if the analogy of the network

of social climbers from earlier is recalled) not only echos the greedy behavior of nodes

in a network in studies like Boguna et al. (2010), Boyd et al. (2006), and Kleinberg

(2007), but also highlights any clusters in the embeddings themselves. By the time a

given algorithm has converged, the nodes have “settled” into their respective cliques,

with the most popular and powerful nodes at or near the center of said cliques.

To conclude the definition of the hyperbolic coordinate mappings, the functionality

of the two mappings can be summarized by viewing the radial coordinate r as a

reflection of a node’s influence, and the angular coordinate θ as a reflection of a node’s

proximity to more influential nodes in the network. The three eigenvector centrality

algorithms implemented here all attempt to include both influence and proximity

to influential nodes in their respective influence weighting schemes. Likewise, both

of these quantities are reflected in the hyperbolic embeddings. At last, the formal

definition of the hyperbolic embedding can be outlined.
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Say a complex network consisting of n nodes, enumerated from 1 to n, is given.

Let ε > 0 and δ > 0 be arbitrary but fixed. The procedure to produce hyperbolic

embeddings of the network for some algorithm until convergence is as follows.

• Initialization phase (t = 0): All of the nodes are initialized with centrality score

xi(0), 1 ≤ i ≤ n, which varies for PageRank, HITS, and Pinski-Narin. In the

case of HITS, each node is initialized with an authority weight xi(0) = 1 as

well as a hub weight yi(0) = 1. Compute the initial hyperbolic coordinates

(ri(0), θi(0)) for node i as follows.

1. Radial coordinate ri: ri(0) = e−xi(0), 1 ≤ i ≤ n.

2. Angular coordinate θi:

θi(0) :=


uniform random value in [0, 2π] if i = 1

θi−1(0) + 2π/n if 2 ≤ i ≤ n

.

• t ≥ 1: Compute iteration t of the given algorithm. Update node i’s hyperbolic

coordinates as follows.

1. Radial coordinate ri: ri(t) = e−xi(t), where xi(t) is the influence weight of

node i after iteration t, 1 ≤ i ≤ n.

2. Angular coordinate θi: If Ni is the set of node i’s neighbors, identify i’s

most influential neighbor k and closest neighbor (hyperbolic distance-wise)

l,

k := arg max
j∈Ni

xj(t) l := arg min
j∈Ni

dij

where dij is the hyperbolic distance between node i and node j, computed

via the formula

cosh dij = cosh (ri(t− 1)) cosh (rj(t− 1))− sinh (ri(t− 1)) sinh (rj(t− 1)) cos (θij(t− 1))
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where θij(t− 1) = π −
∣∣π − |θi(t− 1)− θj(t− 1)|

∣∣ is the angular distance

between nodes i and j, and (ri(t−1), θi(t−1)) and (rj(t−1), θj(t−1)) are

the hyperbolic coordinates of nodes i and j after iteration t−1, respectively.

Compute

dnew := min{dil, δ}.

Compute (1a), (1b), (2a), and (2b) and define the set

Θ := {(1a), (1b), (2a), (2b)}.

Set

θi(t) :=


θi(t− 1) if xi(t) > xk(t)

(∗∗) else

1 ≤ i ≤ n

where

(**) = arg min θ∈Θ
θ∈[0,2π]

cosh−1
(

cosh (ri(t− 1)) cosh (ri(t− 1))− sinh (ri(t− 1)) sinh (ri(t− 1)) cos (π −
∣∣π − |θ − θi(t− 1)|

∣∣)).
• Repeat the last step until |xi(t)− xi(t− 1)| < ε for all i = 1, . . . , n. In the case

of HITS, repeat until both |xi(t)− xi(t− 1)| < ε and |yi(t)− yi(t− 1)| < ε for

all i = 1, . . . , n.
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Chapter 4

RESULTS AND OBSERVATIONS

The graph used in the experimentation is the following Figure 4.1.
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Figure 4.1: Graph Used in Experimentation

This graph comprises 25 nodes and 52 edges. The procedure outlined in the previous

section was applied with ε = 0.001 and δ = 0.1 to this graph’s adjacency matrix for
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PageRank, HITS, and Pinski-Narin, producing a series of hyperbolic embeddings for

all three algorithms. The results are as follows.

PageRank initializes all the nodes’ influence weights with 1/n, where n is the

number of nodes. In this case, the 25 nodes are each initialized with the weight 1/25.

Since PageRank normalizes the nodes’ weights so they always sum to one for any

given iteration, the collective weights can be viewed as a probability distribution.

This means initially, each of the 25 nodes has a 1/25 chance of being visited by

the actor in the random surfer model. In subsequent iterations, each node’s weight

reflects the node’s influence, but can also be viewed as the probability the node is

visited by the random surfer. The more influential a node is (so in the embedding,

the closer they are to the origin of the Poincaré disk), the higher their chance is of

being chosen.

HITS initializes the nodes’ authority and hub weights with one. For all subsequent

iterations, the authority weights in HITS are normalized so their squares sum to one,

as are the hub weights, so the weights cannot be viewed as a probability distribution

as with PageRank. Pinski-Narin also initializes the nodes’ influence weights with

one, but its normalization method is markedly different from those of the other two

algorithms: Pinski-Narin fixes the condition that the size-weighted average of the

weights is one, as explained in Section 2. One may notice by now that out of the

three algorithms, Pinski-Narin is the only algorithm that permits a node’s weight to

exceed one. This distinction is a driving factor behind the choice of radial mapping

ri(t) = e−xi(t). Nodes in Pinski-Narin can get arbitrarily close to the origin of the

Poincaré disk, because limx→∞ e
−x = 0 (as can be seen in Figure 3.1), while the

nodes in PageRank and HITS can never exceed a weight of one, and so the nodes

can never have a radial coordinate smaller than e−1 ≈ 0.3679. This discrepancy

means nodes in embeddings for PageRank and HITS typically never get very close to
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the origin at all. This distance is exacerbated when the given network is very large,

and so each node inevitably ends up with a very small value for its weight due to

the normalization methods in PageRank and HITS. To clarify, “very small value”

means when a node’s weight is considered as a numeric value in general. A more

influential node has a larger weight compared to other nodes in the network, but if

the network is very large and dense, said power player’s weight is still a mere drop in

the bucket. Lastly, note that although PageRank, HITS, and Pinski-Narin have very

different ways of treating the nodes’ influence weights, the definition of the proposed

embedding permits comparative analysis of the three algorithms.

Now that the differences in how PageRank, HITS, and Pinski-Narin initialize

and normalize the nodes’ influence weights have been discussed, these differences can

be viewed in the physical embeddings. All of the following embeddings have arrows

between nodes to denote outgoing edges, and are not related with hyperbolic distance

quantities in any way. The following image in Figure 4.2 is an initial embedding

for PageRank on the graph in Figure 4.1. It is known that the 25 nodes are each

initialized with the weight 1/25, so each node’s initial radial coordinate is ri(0) =

e−1/25 ≈ 0.9608, i = 1, . . . , n, mapping each node relatively close to the border of the

Poincaré disk. As per the embedding definition, node 1’s initial angular coordinate

is chosen uniformly at random from the interval [0, 2π], while every other node i’s

angular coordinate is θi(0) = θi−1(0) + 2π/25, i = 2, . . . , n. As such, the nodes are

all initially equiangular by their enumeration. The angle between nodes 1 and 2 is

identical to the angle between nodes 2 and 3, which is also identical to the angle

between nodes 3 and 4, and so on.
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Figure 4.2: Initial PageRank Poincaré Embedding

The following images Figure 4.3 and Figure 4.4 are initial embeddings for HITS

on the same graph. HITS initializes the authority weights and hub weights for all

nodes to one, so each node has an initial radial coordinate of ri(0) = e−1 ≈ 0.3679,

i = 1, . . . , n, placing the nodes considerably closer to the origin compared to the

initial PageRank embedding. Because node 1’s initial angular coordinate is chosen

uniformly at random from [0, 2π], the orientation of node 1 (as well as that of the

remaining 24 nodes) may vary for the authority weight and hub weight embeddings,

as well as for different executions of HITS.
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Figure 4.3: Initial HITS Authority Weight Poincaré Embedding
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Figure 4.4: Initial HITS Hub Weight Poincaré Embedding

55



The image following the initial HITS embeddings, Figure 4.3 and Figure 4.4, is

Figure 4.5, an initial embedding for Pinski-Narin on the same graph.
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Figure 4.5: Initial Pinski-Narin Poincaré Embedding

Pinski-Narin’s initialization procedure is identical to that of HITS. Like HITS, all of

the nodes’ initial radial coordinate is ri(0) = e−1 ≈ 0.3679, i = 1, . . . , n. Like HITS,

because node 1’s angular coordinate is chosen uniformly at random from [0, 2π], the

orientation of node 1 may vary for different executions of the algorithm. Figures

4.2-4.5 all illustrate what was already explained in words earlier: that PageRank

initializes the nodes’ weights differently than HITS and Pinski-Narin. It should be

clarified that the black dot in the center of all of the embeddings denotes the origin

(0, 0) of the Poincaré disk.
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Now the embedding images for the first-order weights computed by all three algo-

rithms are provided. The following Figure 4.6 is the embedding for PageRank after

one iteration.
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Figure 4.6: PageRank Poincaré Embedding After Iteration t = 1

Already a dramatic shift in the positions of the nodes is visible, but the new positions

of the nodes are not erratic or random at all. They are only reflecting the changes

in the calculated influence weights after one iteration. Clustering behavior based on

the new computed weights is also now evident. All of the nodes were initialized with

weight 1/25, but after one iteration of PageRank the weights are now as follows in

Table 4.1. The top five most influential nodes, in non-increasing order, are nodes 25,

12, 13, 4, and 15. Nodes 12 and 13 in particular are equally influential. Node 25’s

new position and the positions of its neighbors are specifically discussed.
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Node Weight Node Weight

1 0.034333333333333334 14 0.05133333333333333

2 0.028666666666666667 15 0.056999999999999995

3 0.023000000000000003 16 0.05133333333333333

4 0.06549999999999999 17 0.028666666666666667

5 0.023000000000000003 18 0.034333333333333334

6 0.034333333333333334 19 0.014500000000000002

7 0.017333333333333333 20 0.014500000000000002

8 0.028666666666666667 21 0.034333333333333334

9 0.05133333333333333 22 0.028666666666666667

10 0.04 23 0.023000000000000003

11 0.05133333333333333 24 0.05133333333333333

12 0.06833333333333333 25 0.07683333333333335

13 0.06833333333333333

Table 4.1: PageRank Weights After Iteration t = 1

Node 25’s (rectangular) coordinates changed very little after one iteration:

(−0.8718796578751445,−0.403661006997402) initially and then

(−0.8403496657973324,−0.38906331769728947) afterwards. This slight shift is eas-

ily explained by the fact that node 25’s weight increased from 1/25 = 0.04 to

0.07683333333333335, so node 25’s radial coordinate decreased and hence node 25

migrated closer to the origin. Furthermore, node 25’s only outgoing neighbor is

node 15, which is clearly not more influential than node 25 based on Table 4.1,

so node 25 has no reason to migrate towards another node. Node 25 has incom-

ing edges from four other nodes: nodes 14, 20, 23, and 24. Nodes 14 and 24 in-

creased in influence, while nodes 20 and 23 decreased in influence. Regardless of
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the changes, none of the four nodes are at this point more influential than node

25, so they gravitate towards their more influential neighbor node 25. Node 14’s

initial rectangular coordinates were (0.6620556767794402, 0.6962748216263124), and

are now (−0.8228329057755754,−0.47473544397836376). Node 20’s initial rectan-

gular coordinates were (−0.6533300624123761, 0.7044687189186446), and are now

(−0.8537056675036964,−0.4925475588597237). Node 23’s initial rectangular coor-

dinates were (−0.958499141602944, 0.06630039165084191), and are now

(−0.8464799222521894,−0.4883786475826334). Node 24’s initial rectangular coordi-

nates were (−0.9448743654314925,−0.17415160044360792), and are now

(−0.8228329057755754,−0.47473544397836376).

Node 14 in particular made quite the pilgrimage, migrating from nearly the oppo-

site end of the Poincaré disk as seen in the initial PageRank embedding Figure 4.2. If

the embeddings for PageRank reflect the actions of greedy social climbers in a social

network, the first-order embedding Figure 4.6 above would be showing that node 14

made the trek purely to get closer to its more popular and powerful neighbor node

25. The journeys made by nodes 14, 20, 23, and 24 to get closer to node 25 after one

iteration form a strong cluster in the lower left-hand side of the Poincaré disk. It is

visible from Figure 4.6 that node 19 migrated towards node 24, its most influential

(and only) neighbor after one iteration of PageRank. The migration behavior seen in

the nodes thus far is what was originally hoped for when creating the embedding.

Figures 4.7 and 4.8 below are the embeddings for the authority and hub weights

after one iteration of HITS, respectively. Like the first-order PageRank embedding

Figure 4.6, many of the nodes have shifted greatly compared to the initial HITS

embeddings Figures 4.3 and 4.4. Both the authority weights and hub weights were

initialized to one, but after one iteration Tables 4.2 and 4.3 below show they have

decreased, not because the nodes became less influential (which would be the case for

59



PageRank), but because of the normalization scheme implemented by HITS, which

means the authority and hub weights cannot be interpreted as a probability distri-

bution as with PageRank. Recall that HITS normalizes the weights by having the

squares of the authority weights sum to one, and the squares of the hub weights sum

to one. Since all of the nodes’ authority and hub weights decreased, Figures 4.7 and

4.8 above show that all of the nodes have migrated farther away from the origin.

However, only one iteration of HITS has been executed, and as HITS is executed

until convergence, eventually the nodes “settle” into their final authority and hub

weights.
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Figure 4.7: HITS Authority Weight Poincaré Embedding After Iteration t = 1

First examine the change in the authority weights and how they are reflected

in Figure 4.7. Based on Table 4.2 nodes 13 and 25 are tied for most influential

authority node, while nodes 4, 9, 12, and 14 are tied for second place. Figure
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Node Weight Node Weight

1 0.1781741612749496 14 0.2672612419124244

2 0.1781741612749496 15 0.1781741612749496

3 0.0890870806374748 16 0.1781741612749496

4 0.2672612419124244 17 0.1781741612749496

5 0.0890870806374748 18 0.1781741612749496

6 0.1781741612749496 19 0.0890870806374748

7 0.0890870806374748 20 0.0890870806374748

8 0.1781741612749496 21 0.1781741612749496

9 0.2672612419124244 22 0.1781741612749496

10 0.1781741612749496 23 0.0890870806374748

11 0.1781741612749496 24 0.1781741612749496

12 0.2672612419124244 25 0.3563483225498992

13 0.3563483225498992

Table 4.2: HITS Authority Weights After Iteration t = 1

4.7 exhibits clustering behavior, but is noticeably different from that in the first-

order PageRank embedding Figure 4.6. To highlight this distinction, again examine

node 25. Node 25’s rectangular coordinates in the initial HITS authority weight

embedding were (0.04008763440535052,−0.3656887540031764), but after one itera-

tion of HITS are now (0.07630356001007793,−0.6960588770079115). Despite this

migration away from the origin, when node 25’s only outgoing neighbor node 15 is

examined, node 15 is not more influential than node 25, so node 25 does not mi-

grate towards node 15, and hence it is seen in Figure 4.7 that node 25 has only

migrated outwards to reflect its “reduced” influence. Examine the change in the co-

ordinates for node 25’s incoming neighbors: nodes 14, 20, 23, and 24. Node 14’s coor-

61



1

23
4

5

6

78
9

10

11

12

13

14

15

16

17
18

19

20

21 22

23

24

25

Figure 4.8: HITS Hub Weight Poincaré Embedding After Iteration t = 1

dinates in the initial embedding were (−0.1718915488342151, 0.3252515621422707),

but are now (0.2809977590291964,−0.7120317990848298). Node 20’s coordinates

in the initial embedding were (−0.3354029121350334,−0.15112964556284691), but

are now (0.33580171626085464,−0.8509018043099291). Node 23’s coordinates in

the initial embedding were (−0.14104283900214393,−0.3397678631107245), but are

now (0.33580171626085464,−0.8509018043099291). Node 24’s coordinates in the ini-

tial embedding were (−0.05211488731600311,−0.3641693586185595), but are now

(−0.40231413396498206, 0.7337383797558849).

Compared to the first-order PageRank embedding, three of node 25’s incoming

neighbors, nodes 14, 20, and 23, have migrated towards node 25, but node 25’s other

incoming neighbor, node 24, has instead migrated towards its neighbor node 13,

despite nodes 13 and 25 having the same authority weight. This is because when a
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Node Weight Node Weight

1 0.21792981368764439 14 0.32689472053146656

2 0.21792981368764439 15 0.181608178073037

3 0.181608178073037 16 0.10896490684382219

4 0.10896490684382219 17 0.0726432712292148

5 0.10896490684382219 18 0.2542514493022518

6 0.0726432712292148 19 0.0726432712292148

7 0.2905730849168592 20 0.1452865424584296

8 0.2542514493022518 21 0.21792981368764439

9 0.2542514493022518 22 0.10896490684382219

10 0.10896490684382219 23 0.32689472053146656

11 0.181608178073037 24 0.2905730849168592

12 0.21792981368764439 25 0.0726432712292148

13 0.181608178073037

Table 4.3: HITS Hub Weights After Iteration t = 1

given node’s most influential neighbor is computed, the nodes are iterated through in

increasing order 1, . . . , 25, so node 24 gravitated towards node 13 over node 25. This

may seem like an error of negligence, but only one iteration of HITS has been executed

thus far, and until the authority weights converge the nodes continue shifting.

Now discuss the change in the hub weights and how they are reflected in Figure

4.8. From Table 4.3 nodes 14 and 23 are tied for most influential hub node, while

nodes 7 and 24 are tied for second place. Nodes 8, 9, and 18 are tied for third place.

Compared to the first-order HITS authority weight embedding just discussed, there

is noticeably weaker clustering for the hub weights. It is seen that nodes 14 and

23, the most influential hub nodes after one iteration, occupy opposite ends of the
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Poincaré disk, and seem to have each loosely attracted a number of nodes, but not to

the point where strong cluster membership can be pinpointed. Note that there is a

directed edge from node 23 to node 14, but since node 14’s weight is tied with node

23’s weight, there is no reason for node 23 to migrate towards node 14.

Figure 4.9 directly below depicts the embedding for Pinski-Narin after one itera-

tion, and Table 4.4 shows the computed weights after one iteration of Pinski-Narin.

Compared to the other first-order embeddings encountered thus far, the nodes are

significantly closer to the origin. It is also much more difficult to single out clus-

ters in Figure 4.9. Node 25 is the most influential node by far, so much so that

node 25 is covering the black dot denoting the origin of the Poincaré disk in Fig-

ure 4.9 above. This is fitting, as x25(1) = 4, so node 25’s radial coordinate is

r25(1) = e−x25(1) = e−4 ≈ 0.0183. Node 23’s position in this embedding should

be clarified. Node 23’s weight is tied for the lowest with node 7, so node 23 is placed

relatively far away from the origin. Node 23 has outgoing edges to two nodes: node

14 and node 25. Since node 25 is more influential, node 23 migrates as close as pos-

sible to node 25. However, in the embedding, it appears node 23 is closer to node 14

than node 25! This is because node 14 also has an outgoing edge to node 25, and so

node 14 has migrated as close as possible to node 25. Both nodes 14 and 23 have

migrated as close to node 25 as their radial coordinates allow, which in turn projects

the appearance that node 23 has chosen to gravitate towards node 14. But only one

iteration of Pinski-Narin has been examined at this point. Until the Pinski-Narin

algorithm converges, the nodes shift greatly until they “settle”.

Recall that Pinski-Narin is the only algorithm of the three being worked with

that permits a node’s weight to exceed one. The first-order weights for Pinski-Narin

especially mark its departure from PageRank and HITS in this regard: the fraction

consisting of the number of incoming edges over the number of outgoing edges. In
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Figure 4.9: Pinski-Narin Poincaré Embedding After Iteration t = 1

a citation network, a node’s first-order weight can be viewed as the ratio between

the number of citations received versus the number of references given. For instance,

if a node has 1 incoming edge and 5 outgoing edges, then said node’s first-order

influence weight according to Pinski-Narin is 1/5. If a node has 10 incoming edges

and 2 outgoing edges, then said node’s first-order weight is 10/2. A node can have

an influence weight of 0 in Pinski Narin, which occurs when a node has no incoming

edges. So if some node called i has 7 outgoing edges and no incoming edges, said

node’s first-order weight is xi(1) = 0/7 = 0, and one would say node i has absolutely

no influence in the network. In such a case, the node in question would have a first-

order radial coordinate of ri(1) = e−xi(1) = e0 = 1, which would map node i to the

border of the Poincaré disk. However, recall from earlier that it is assumed all of the

graphs worked with are strongly connected. Then each node is guaranteed to have
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Node Weight Node Weight

1 0.6666666666666666 14 0.75

2 0.6666666666666666 15 1.0

3 0.5 16 2.0

4 1.5 17 2.0

5 1.0 18 0.6666666666666666

6 2.0 19 1.0

7 0.3333333333333333 20 1.0

8 1.0 21 0.6666666666666666

9 1.5 22 1.0

10 1.0 23 0.3333333333333333

11 1.0 24 1.0

12 1.0 25 4.0

13 2.0

Table 4.4: Pinski-Narin Weights After Iteration t = 1

an incoming edge as well as an outgoing edge, and so a node is guaranteed to have

a nonzero weight, not only in Pinski-Narin, but in any of the three algorithms being

worked with.

Of the three algorithms, PageRank required the fewest number of iterations until

convergence: 8 iterations total. HITS converged after 17 iterations, while Pinski-

Narin converged after 28 iterations. Interestingly, the three algorithms differed in the

top five influential nodes they each identified, which are as follows.
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PageRank Pinski-Narin

Order Node Weight Order Node Weight

1 15 0.08129473823704451 1 25 2.7831786498186375

2 12 0.07540667108305212 2 15 2.573060827549414

3 10 0.06883967017942033 3 10 2.362637537084204

4 14 0.06778651427574965 4 5 2.3625832962390425

5 4 0.06634011281712254 5 16 2.2205277043232896

HITS authorities HITS hubs

Order Node Weight Order Node Weight

1 25 0.5676995100014323 1 14 0.505372124891322

2 13 0.5165609851460752 2 24 0.41269543983013635

3 4 0.37578080799433755 3 23 0.35858963111958697

4 14 0.2149641603324868 4 9 0.3396465982547808

5 9 0.21152366028751235 5 7 0.3270669931493054

Table 4.5: Five Most Influential Nodes Identified by PageRank, HITS, and Pinski-
Narin

For the rest of this section, the remaining embeddings until convergence for PageRank

are provided, and then only the final embeddings for HITS and Pinski-Narin are listed.
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Figure 4.10: PageRank Poincaré Embedding After Iteration t = 2
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Figure 4.11: PageRank Poincaré Embedding After Iteration t = 3
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Figure 4.12: PageRank Poincaré Embedding After Iteration t = 4
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Figure 4.13: PageRank Poincaré Embedding After Iteration t = 5
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Figure 4.14: PageRank Poincaré Embedding After Iteration t = 6
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Figure 4.15: PageRank Poincaré Embedding After Iteration t = 7
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Figure 4.16: PageRank Poincaré Embedding After Iteration t = 8
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Figure 4.17: Pinski-Narin Poincaré Embedding After Iteration t = 28
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Figure 4.18: HITS Authority Weight Poincaré Embedding After Iteration t = 17
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Figure 4.19: HITS Hub Weight Poincaré Embedding After Iteration t = 17
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Chapter 5

CONCLUSION

This thesis offers a hyperbolic embedding scheme that embeds the nodes in a given

complex network in the Poincaré disk based on their respective influence weights

computed by the PageRank, HITS, and Pinski-Narin algorithms. The embedding

procedure consists of computing a pair of hyperbolic coordinates (r, θ) for each node

after each iteration of a given algorithm. The radial coordinate r reflects a node’s

influence in the network as a whole, while the angular coordinate θ indicates a node’s

proximity to more influential nodes in the network. A more influential node is assigned

a smaller value for r, and hence the node is mapped closer to the origin of the

Poincaré disk. A less influential node is assigned a larger value for r, and so the

node is mapped farther away from the origin. The angular coordinate θ is chosen so

that the node in question is mapped relatively close to its most influential neighbor.

After formally defining the embedding procedure, the process was applied to the three

aforementioned eigenvector centrality algorithms and the results were discussed.

The intent of the embedding is to physically illustrate any greedy behavior from

the nodes as they compete for influence in the network. The nodes can be viewed as

self-serving social climbers in a social network: every node wishes to be influential as

well as to be near influential nodes. Each node’s influence weight computation until

convergence manifests in the form of a journey throughout the Poincaré disk as they

migrate towards or away from the origin and more influential nodes, depending on

their computed weight.

The work done for this thesis is far from complete, or even thorough for that

matter. There are many potential avenues to explore from here. Future work may
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include applying the defined embedding procedure to the Poincaré half-plane model,

or to more eigenvector centrality algorithms, like the Katz centrality Katz (1953).

The original intent was to apply this embedding procedure to a significantly larger

and more complex citation network (one with thousands of nodes and edges), but

constructing the network in addition to detecting and eliminating any sinks (nodes

with no outgoing edges) proved to be an insurmountable challenge given the time con-

straints. An even more ambitious effort is to construct an entirely original eigenvector

centrality.

The following final remark is marked by a shift to the first person. When the

general idea for this thesis was first pitched to me, my advisor suggested I find a

centrality measure that prioritizes quality over quantity: the influence of the node

attached to the incoming edge is prioritized over the number of incoming edges when

calculating a given node’s influence. In particular, my advisor suggested I find a cen-

trality measure that would deem a paper with fewer citations but more prestigious

citations more influential than a paper with more citations overall. This discrepancy

in quantifying influence can be traced back to the initialization stage: the nodes’

influence weights should be initialized so that nodes with more incoming edges are

considered more influential in the beginning, but over time the influence of the ci-

tations themselves are taken into account in the weight computation. As seen in

the different initialization methods for PageRank, HITS, and Pinski-Narin, as well

as the flood of network science research that followed since the inception of these al-

gorithms, this distinction between quality and quantity in measuring node centrality

is an ongoing challenge. This goal still unfortunately eludes me, so this thesis may

be considered a conciliatory prize for a failed mission. But this thesis has sparked a

driving curiosity and enthusiasm for network science that I am sure will follow me

throughout my PhD studies.
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