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ABSTRACT

Due to the increase in computer and database dependency, the damage caused by

malicious codes increases. Moreover, gravity and the magnitude of malicious attacks

by hackers grow at an unprecedented rate. A key challenge lies on detecting such

malicious attacks and codes in real time by the use of existing methods, such as a

signature-based detection approach. To this end, computer scientists have attempted

to classify heterogeneous types of malware on the basis of their observable charac-

teristics. Existing literature focuses on classifying binary codes, due to the greater

accessibility of malware binary than source code. Also, for the improved speed and

scalability, machine learning-based approaches are widely used. Despite such merits,

the machine learning-based approach critically lacks the interpretability of its out-

come, thus restricts understandings of why a given code belongs to a particular type

of malicious malware and, importantly, why some portions of a code are reused very

often by hackers. In this light, this study aims to enhance understanding of malware

by directly investigating reused codes and uncovering their characteristics.

To examine reused codes in malware, both malware with source code and malware

with binary code are considered in this thesis. For malware with source code, reused

code chunks in the Mirai botnet. This study lists frequently reused code chunks

and analyzes the characteristics and location of the code. For malware with binary

code, this study performs reverse engineering on the binary code for human readers to

comprehend, visually inspects reused codes in binary ransomware code, and illustrates

the functionality of the reused codes on the basis of similar behaviors and tactics.

This study makes a novel contribution to the literature by directly investigating

the characteristics of reused code in malware. The findings of the study can help

cybersecurity practitioners and scholars increase the performance of malware classi-

fication.
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Chapter 1

INTRODUCTION

Code reusing saves resources and improves efficiency in software development. A

reused code helps reduce development time, cost, and labor because programmers do

not need to start from scratch nor to test the reused part. Consequently, programmers

can spend more time and labor on their core tasks. Furthermore, the reused code is

already tested and proved efficient. In this light, programmers can expect the same

or higher level of performance by reusing existing codes for time saving and efficiency

gain.

As much as code reuse is a common practice among programmers, it is a viable

strategy for malicious actors, such as malware developers. Despite the apparent merit

of code reusing, it comes with inevitable risks. For example, a reused code may entail

bugs and backdoor issues and can be detected by a signature-based detection method

with ease. If the benefit of code reusing outweighs its risk, reused code components

would be observed in malware. There are many reported cases of code reusing in

various malicious programs [1][2][3][4][5].

In light of rampant code reusing practices, it is imperative to understand and

analyze reused codes in malware detection. First, the identification of reused codes

can help malware scientists understand new malware that contains the same reused

code. By investigating the reused code embedded in the new malware, malware

scientists can ever infer the functionality of the new malware. Second, a reused code

chunk can be used for detecting malicious programs. When a malicious program

reuses the same vulnerability or the same strategy, it contains an exclusive string, such

as error code, text, and methods. If the exclusive string is contained in the signature
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of the malicious program, such malicious programs can be detected by signature-based

detection tools. Lastly, the reused code can help predict the evolution of a malicious

program. Reused code chunks in a malicious program. Provides valuable information

for malware classification by projecting the evolution of the malicious program over

time and geography.

A key challenge in analyzing reused codes in the malware context is obtaining

malware source codes. Naturally, malware authors do not reveal or share their source

codes. Thus, malicious programs are often analyzed with binary code files. To an-

alyze binary codes, reverse-engineering is needed as a malware binary code is an

already compiled code. There are several reverse-engineering tools, such as IDA-pro

and Ghidra. However, it is practically impossible to obtain intact source code from

reverse-engineering tools. For this reason, it is difficult to analyze a copied code in

different malware with binary code. Therefore, a reused code in malware binary code

can be detected not only clone code but also reused knowledge and strategies. These

reused knowledge and strategies can be recognized via certain strings, flows of API

calls and behaviors.

Even if malware uses the similar knowledge and strategy from another malware,

the reused idea is hard to be detected for the following reasons. First, malware code

is often modified, making it difficult to detect reused codes and threads in malware.

Second, malware source is constantly improved for better functionality. Third, the

expression is different because they do not know the expression of previous samples.

This thesis examines reused codes and investigates a modification of reused code,

makes important practical and scholarly contributes. If the reused codes are possible

to be classified by common characteristics over the modifications and different expres-

sions, this information helps to detect classify the malware family. Moreover, it will
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advance our knowledge as to how to recognize and to understand the new malware

and to predict a future attack.

The rest of this thesis is organized as follows: Chapter II presents background

information on reused codes and malware samples, followed by a practical example of

reused code in malware source code and malware binary code in Chapter III. Chapter

IV discusses limitations and future work. Chapter V concludes the thesis.
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Chapter 2

BACKGROUND

This thesis analyzes reused cases with malware source code and malware binary code.

For a reused code in malware source code, Mirai botnet variants source code is used.

For reused code cases in malware binary code, Petya, WannaCry, and NotPetya binary

code are considered. This chapter defines the reused code and discusses why Mirai

botnet, Petya, WannaCry, and Notpetya binary code are chosen for this study.

2.1 Definition of Reused Code

A reused code is a code chunk that is reused multiple times for different malware

or different purposes. Knight and Dunn mentioned [6] “Although software code is

notable explicit knowledge that is both readable by humans and enables a computer

to perform specific functions, knowledge reused may cover more than code reuse”.

Accordingly, a reused code concept can include reused knowledge or reused idea. In

this thesis, a reused code is defined as a broad concept of reused code, which includes

not only reused actual code but also reused ideas and knowledge such as tactics and

vulnerabilities.

2.2 Reused Code in Malware Source Code

This thesis investigate Mirai botnet for reused source code. Mirai botnet is a

self-propagating botnet virus and performs a large scale network attack by using

controlled bots. The primary target is the IoT(internet-of-things). The Mirai botnet

is an excellent platform to collect reused code chunks, since the first appearance of

the Mirai botnet in August 2016, the author has released its source code to the public
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to avoid surveilling eyes. After the release, many variants of the Mirai botnet have

been created. Therefore, Mirai is a malware which I obtain source code and recognize

the source code change via diverse variants with ease.

2.3 Reused Code in Malware Binary Code

Petya, WannaCry and NotPetya are frequently considered when reused code is

discussed. Due to their discovery data and the similar behaviors, reused codes therein

are studied. They are ransomware and emerged in March 2016, May 2017, and June

2017, respectively. Their functionality can be divided by four-parts: propagation,

encryption, decryption, and payload. Due to their functional similarities and the

similar time line of discovery, it is assumed that they contain reused code parts with

each other. For example, Petya and NotPetya show very similar behaviors in terms

of encryption and a ransom message. WannaCry and NotPetya attack the same

vulnerability, which is Eternal Blue.

2.4 Motivations for Code Reusing in Malware

The benefits of code reusing in malware are in multi-folds. First, programmers

can reduce their resources such as time, cost, and labors because there is no need to

develop new functions from scratch and to test them. From such benefits, malware

developers can reallocate their time and resources to more important tasks. NotPetya

is a good case in point. From code reusing, NotPetya mimics Petya’s behavior. Thus,

NotPetya focused more on protecting its own code. NotPetya has a function that is

detecting a sandbox and debugging an environment. When it detects a sandbox and

a debugging environment, it does not show its normal behavior and terminates the

program. This function makes it hard for detecting systems to understand and to see

inside of the NotPetya program as well as to follow its’ execution with a debugger.
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Second, some tasks are to be accomplished in a specific manner. In this case, the

code reusing is inevitable for any authors who wish to implement the function therein.

Even though the source code is unavailable, the final code will be similar because

there is only one way to do the task. WannaCry and Notpetya attack the same

vulnerability which is EternalBlue. In doing so, it creats specific error code, which

means “out of resource.” Therefore, the same error code can be detected in both type

of malware. The last common benefit is efficiency gain. Even if there are multiple

ways to carry out a task, malware authors prefer to use only one method for high

efficiency. For instance, Mirai botnet uses the brute force attack to enslave vulnerable

devices. Interestingly, Mirai botnet uses a pre-saved ID and password table which

contains frequently used ID and password set information. The brute force attack

with the table is efficient than the one without it. Even though a normal brute force

attack is possible, it may take longer time to achieve the task. Therefore, many Mirai

botnet variants use the same tactic in targeting select vulnerable devices.

2.5 Related Work

Several studies have investigated reused codes in software and documented their

merites for programmers [7][8][9][10]. In the case of detecting reused code in benign

software, the literature focuses on source codes. Due to the inaccessibility of malware

source code, however the method to detect reused code in benign software cannot

be readily applied for malware. For the malware, binary code is more available and

accessible than the actual source code. Thus binary code analysis is considered in

malware studies. Many scholars have reported effectively classified malware based on

the common part in their binary code.

A stream of studies conducting malware classification[11][12][13][14][15][16]. How-

ever, many of them use machine learning to analyze the malware binary code. So,
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the exact functionalities of reused code in malware are difficult to understand and

often not interpretable. Moreover, if the reused code has few modifications, it cannot

be detected as a cloned chunk. Therefore, even if malware analysis based on machine

learning supports the speed and the scalability, the in-depth study of reused code is

still necessary . This area is a burgeoning field. Only a few scholars have researched

the reused code in malware. For example, Pfeffer et al. [17] introduced a novel sys-

tem, MAAGI, based on the malware genetic information. He used diverse kinds of

analyse such as header analysis, dynamic analysis, and trace analysis with API calls.

Gregio et al. [18] detects code reuse based on tracking memory writes. Farhadi et

al. [19] suggests BinClone, which is a new detecting code clone in malware, based

on assembly code and clone database. By using the aformentioned systems, reused

code detection is possible in malware to same extent. However, these methods cannot

handle reused code that have little modification and use different expressions. For

example, Manuel [1] reported a reused code in Mirai and ’Hide and Seek(hereinafter

HNS)’ malware, which changes reused code. According to the report, HNS malware

reused part of the Mirai code. However, HNS changed ”for loop” to ”while loop,” so

it was not detected. Since detecting reused code in malware is relatively new, this

study makes unique contribution to the malware classification field.
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Chapter 3

EXPERIMENTS AND FINDINGS

Two different experiments were conducted about reused code cases for malware: one

for reused code in malware source code and the other for reused code in malware

binary code. This thesis investigates reused source code in the Mirai botnet vari-

ant. After the disclosure of the source code, the Mirai botnet has been changed by

diverse malware authors. Thus, the Mirai botnet is a good example to recognize

code reusing and modification. For reused code cases in malware binary code, Petya,

WannaCry, and NotPetya binary codes are considered. Their alike behaviors and the

same vulnerability attack demonstrate the code reusing practices among them.

3.1 Functionality and Vulnerability

3.1.1 Mirai Botnet

Mirai botnet is composed of two parts: loader and bot. The loader is designed to

make a connection with vulnerable devices and to load binary. The bot is assumed

as a worker, searching for vulnerable devices and taking an attack to a victim server

when it gets an attack command from the CNC server( hereinafter the CNC server

) [20].

When Mirai botnet is installed, it starts from a loader(see Figure 3.1). When the

loader server is initialized, the loader creates a designated number of threads. These

threads work as a worker in Mirai. The workers start to search for vulnerable devices

with brute-force attacks. A brute-force attack is a method by which an attacker

explores all possible combinations of a password until finding the correct one. The
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Mirai botnet uses a brute-force attack to find vulnerable devices, but modifies the

original brute-force attack to increase efficiency. It also uses a brute-force attack based

on statistical information to recruit vulnerable devices. A Mirai server has a pre-saved

‘ID-Password’ set table in the program and it executes brute-force attack accordingly.

A Mirai author exploits on two regularities. First, many people do not change the

default setting of a router. Second, there are some popular ‘ID-Password’ sets. In this

light, Mirai authors target the popular ‘ID-Password’ sets. Because devices are more

likely to have the pre-saved ‘ID-Password’ sets as their ‘ID-Password’, this brute-

force attack shows high efficiency in detecting vulnerable devices. Once a worker

recognizes vulnerable devices, it saves the information of the vulnerable devices, such

as ‘ip: port’ and ‘id: password’. Each bot sends the vulnerable device information to

the loader to install a binary program and it shares the information with the CNC

server to enslave the device as a bot.

Figure 3.1: A Loader Structure

After installing binary, a bot initializes a attacker, a killer, and a scanner(see

Figure 3.2). The killer inspects any pre-installed malicious programs in the device.

The Mirai botnet can terminate the pre-installed malicious program for better perfor-

mance. The scanner creates a random IP address to find the next vulnerable victim.
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Scanning the next victim with an IP address is very similar to a worm process. How-

ever, the Mirai botnet uses a pre-defined IP address range rather than creates a

random IP for high performance. After creating the IP, it attempts to connect the

device with pre-saved ‘ID-Password’ sets. When it succeeds, it stores and sends the

information of the device. This information is sent to the loader and the CNC server.

The attacker participates in an actual attack to the victim server to some extent. The

used attack to the victim is a Denial-of-service (hereinafter DDoS) attack. When the

CNC server has an attack order with victim server IP, the CNC server creates an

attack command with the victim IP and send it to all bots involved. Then the bots

start to attack the target IP server in unison. Due to the superfluous requests which

are created in a short burst of time period, the victim server becomes out of service.

To sum up, the final goal of the Mirai botnet is to execute DDoS attacks to a tar-

get server and to cause the server down. For the DDoS attack, Mirai needs many

bots that can participate in attacks. Thus, bots search vulnerable devices who can

be a candidate for the next bot. The vulnerability of the Mirai botnet is devices

that use common ‘ID-Password’ sets. Since the Mirai botnet takes a brute-force at-

tack based on the frequently used ‘ID-Password’ sets. Therefore, devices with default

‘ID-Password’ sets, factory ‘ID-Password’ setting, and popular ‘ID-Password’ sets are

most prone to attacks.

3.1.2 WannaCry and NotPetya

WannaCry and NotPetya are ransomware. Ransomware is a type of malicious

program that aims to block access to a victim’s system or files as a hostage, and

asks money for unlocking the hacked data and system. When a victim pays the

required money, the hacker gives the handle of their data back to the victim. Oth-

erwise, ransomware destroys the data. A notable difference between WannaCry and

10



Figure 3.2: Bots and CNC Server

NotPetya is that WannaCry locks all the files in the system with special passwords

while NotPetya blocks the access to the OS system to modify the master bootstrap.

Two ransomware programs show little difference in the process, in that they attack

the same vulnerability, Eternal Blue, to search new victims in the propagation stage.

Eternal Blue is a vulnerability using the error code of the Server Message Block (here-

inafter SMB) protocol. It exploits the fact that SMB server1 shows a malfunction

with the special crafted packet from remote attackers in a certain version of Microsoft

Windows, allowing attackers to execute random code on the target computer. When

remote attackers send an SMB packet creating overflow, the SMB server sends an

error message, STATUS INSUFF SERVER RESOURCES(0xc0000205). When the

error code is created, the attacker can execute an arbitrary code on the victim com-
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puter. Following this process, WannaCry and NotPetya can infect many computer

systems automatically.

3.2 Mirai Botnet – Reused Code in Malware Source Codes

To find clone code chunks among Mirai botnet variants, this study employs ‘Deckard’,

a source code clone detector. One can access it at ‘skyhover/Deckard (https://

github.com/skyhover/Deckard)’ [21]. Mirai botnet source code is downloaded from

’threadland/TL-BOTS’ in github (https://github.com/threatland/TL-BOTS). There

are 62 types of Mirai botnet variants and 118 versions of source codes exist. ‘Deckard’

executes 118 Mirai botnet variants source codes. From the experiment, ‘Deckard’ de-

tects 28,721 duplicated code chunks from 692 C program source codes. These cloned

source code chunks are then classified into 1,424 different reused code chunks. From

the result of the ‘Deckard,’ valuable information of reused chunk is extracted such as

file location, line information, and reused number. The extracted data set is repre-

sented by graphs using python. According to the graphs, the location of code chunks

is presented and the relation among reused code chunks is recognized. To learn about

the functionality of the reused code chuck, Akiru.Mirai is chosen.

Since there are 118 Mirai variants, the code clusters which are reused more than

100 times are considered and the result is reported in Table 3.1. From the table, some

notable reused patters are observed. First, some files are reused without any changes

in all 118 Mirai variants. Telnet info.c file is responsible to obtain telnet information

‘IP:port’ and ‘ID:password’ and transmits information to the program with telnet info

structure. This file is composed with 64 lines and two functions: telnet info new()

and telnet info parse(). In this file, line 9 to 25 (telnet info new()) and line 26 to

65 (telnet info parse()) are detected 121 times as cloned code chunks. That is, the

Telnet info.c file is reused in all Mirai variants without any modification. Second,
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some clone code chunks are observed in different functions. Cluster 609 is found in

both scanner.c and connection.c files. The reused chunk is Consume iacs() function

in scanner.c file and Connection consume iacs() function in connection.c file. The

scanner.c file is used to connect a bot and the CNC server. In the Mirai architecture, a

bot needs to set a connection with the CNC server to communicate. The connection.c

file serves to connect the loader and bots. The loader tries to connect with a bots to get

vulnerable device information. This reused code chunk is used for different functions.

However, the Mirai botnet uses the same method to connect the CNC server and

the loader, and this code chunk is reused. Last, some code chunks are reused many

times for the same function. For example, cluster 1418 is recognized twice in lines

547 to 560 and lines 519 to 534, which are indicate functions connection upload tftp()

and connection upload wget(), respectively. They upload binary files to vulnerable

devices. One differences is, however, the method used to transport a binary file:

ftp vs. wget. Therefore, these functions share the similar structure and have little

difference (see Appendix A.1).

In a similar reason, attack method.c file has many reused code chunks. At-

tack method.c file is a core function of attacking of an assigned victim server. It

involves several attacking functions, such as greip, greeth, std, tcpsyn, and tcpack.

Because these functions perform a same goal of attacking the victim server, many

parts of their codes are similar. Therefore, attack method.c contains many reused

code chunks. Another example is Amakano.Mirai. Amakano.Mirai uses a special

scanner depending on the router. So, scanner files for different routers have clone

code chunks. Lastly, diverse code chunks are founded in various versions of Mirai

variants. Table 3.1 presents that 41 code chunks are observed more than 100 times in

different Mirai botnet variants. Since we execute 118 Mirai variants, the code chunk

which is founded more than 100 times means that it was founded from more than
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Table 3.1: Reused Code in Mirai Variant
Cluster Count Location Line Functions

1 609 240
/Akiru/bot/scanner.c

/Akiru/loader/src/connection.c

863:916(53)

94:147(53)

Consume iacs()

Connection consume iacs()

2 990 232 /Akiru/bot/scanner.c 169:196(27)
In a scanning while loop scanner

process initializing.

3 1418 168
/Akiru/loader/src/connection.c

/Akiru/loader/src/connection.c

547:560(13)

519:534(15)

Connection upload tftp()

Connection upload wget()

4 789 155

/Akiru/bot/attack method.c

/Akiru/bot/attack method.c

478:510(32)

380:411(31)

In attack method tcpack()

while loop to send to sockets

In attack method tcpsyn()

while loop send to sockets

5 950 135

/Amakano/bot/linksys scanner.c

/Amakano/bot/scanner.c

/Amakano/bot/thinkphp.c

418:441(23)

678:701(23)

415:439(24)

Linksysscanner get random ip()

Get random ip()

Thinkphp get random ip()

6 1067 125
/Akiru/bot/attack method.c

/Akiru/bot/attack method.c

266:293(27)

1079:1106(27)

In attack method std() for loop

In attack method udpplain() for loop

7 1086 121 /Akiru/loader/src/binary.c 63:90(27) Load function()

8 1383 121 /Akiru/loader/src/connection.c 465:481(16) Connection consume upload methods()

9 1384 121 /Akiru/loader/src/telnet info.c 9:25(16) telnet info new()

10 806 121 /Akiru/loader/src/telnet info.c 26:65(26) telnet info parse

11 1019 121 /Akiru/dlr/main.c 218:246(28) Xconnect()

12 585 121
/Akiru/bot/attack method.c

/Akiru/bot/attack method.c

249:304(55)

1062:1117(55)

Attack method std()

Attack method udpplain()

13 1023 119 /Akiru/bot/scanner.c 920:939(19) Consume any prompt()

14 1455 119 /Akiru/bot/scanner.c 1031:1044(13) Add auth entry()

15 611 118

/Amakano/bot/gpon443.c

/Amakano/linksys scanner.c

/Amakano/bot/thinkphp.c

167:220(53)

165:217(53)

163:216(53)

In Gpon443 scanner()

In Scanner init() insie of scanning process,

waiting SYN+ACKs

In thinkphp scanner()

16 1164 118 Akiru/bot/scanner.c 1006:1030(24) Consume resp prompt()

17 1006 117 Akiru/bot/checksum.c 24:54(30) Checksum tcpudp()

18 1099 117 Akiru/bot/killer.c 329:350(21) In killer kill by port() killing previous process

19 583 116 Akiru/bot/util.c 99:154(55) Util atioi()

20 1155 116 Akiru/bot/util.c 232:256(24) Util stristr()
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Cluster Count Location Line Functions

21 936 114 Akiru/loader/src/main.c 47:94(47) Watchdog maintain()

22 1096 114 Akiru/bot/scanner.c 321:347(26) In Scanner Init() trying to connect.

23 880 113

Amakano/bot/gpon443.c

Amakano/bot/linksys scanner.c

Amakano/bot/thinkphp.c

225:260(35)

222:251(29)

221:250(29)

In gpon443 scanner() scanning Ip part

In linksysscanner scanner init()

In thinkphp scanner()

24 279 113

/Akiru/bot/attack method.c

/Akiru/bot/attack method.c

684:778(94)

539:633(94)

In attack method tcpxmas while loop to wait

receiving socket

Attack method tcpstomp while loop to wait

receiving socket

25 861 113

Amakano/bot/gpon443.c

Amakano/bot/linksys scanner.c

Amakano/bot/thinkphp.c

454:490(36)

379:412(33)

376:409(33)

Gpon443 setup connection()

Linksysscanner setup connection()

Thinkphp setup connection()

26 1069 108
/Akiru/bot/attack method.c

/Akiru/bot/attack method.c

778:800(22)

633:655(22)

In attack method tcpxmas() last for loop

In attack method tcpstomp() last for loop

27 1159 110 /Akiru/bot/resolv.c 21:45(24) Resolv domain to hostname()

28 471 108 /Akiru/bot/resolv.c 152:211(59) In Resolve lookup() while loop

29 1283 110 /Akiru/bot/resolv.c 46:66(20) Resolv skip name()

30 526 108 /Akiru/bot/attack method.c 333:380(47) Attack method tcpsyn()

31 860 108 /Akiru/bot/attack method.c 383:410(27) Attack method tcpsyn()

32 380 106 /Akiru/bot/attack.c 41:110(69) In attack parse()

33 574 114 /Akiru/bot/scanner.c 198:253(55) In scanner init while loop to recv socket

34 1072 105 /Akiru/bot/scanner.c 596:623(27) Setup connection()

35 624 105 /Akiru/bot/scanner.c 256:307(51) In scanner init to try connect

36 291 103 /Akiru/bot/resolv.c 94:214(120) In resolv lookup() while loop 5 times try

37 227 103 /Akiru/bot/killer.c 317:351(34) In killer kill by port() explorer directory

38 896 102 /Akiru/bot/scanner.c 535:568(33)
In scanner init() case waiting token resp

and wrong auth or correct auth.

39 932 101 /Akiru/bot/scanner.c 976:1005(29) Donsume pass prompt()

40 455 101 /Akiru/bot/attack method.c 1117:1174(57) Get dns resolver()

41 1188 100 /Akiru/bot/rand.c 34:57(23) Rand str()
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Table 3.2: Functionality of Files

File name functionality

Bot

Main.c

Initializing watchdog, attack, kill, and scanner

Connecting with the CNC server and monitoring a connection with CNC

This file has the attack parse function

Killer.c Scanning the device. If there are pre-installed programs, kill them

Scanner.c Searching for vulnerable devices with pre-saved id and password sets

Attacker.c Parsing an attack command and starting an attack

Attack method.c Diverse functions depend on attack methods

Loader

Main.c

Creating threads for bots.

Waiting for vulnerable device information form a bot

When the loader gets a report from a bot,

it creates a connection with the vulnerable device then installs a binary

Connection.c Creating a connection with vulnerable devices

Binary.c Read the binary file and Load the binary file

Telnet info.c Parsing the telnet information

Util.c Binding a socket address

84.74 percent of Mirai variants. It indicates that large parts of Mirai botnet codes

are recycled across diverse Mirai variants.

In sum up, Miria botnet source codes are reused many different ways. They are

reused not only in one program but also across different programs. The frequently

reused program code chunk is likely to be reused in different programs. Also, these

popular code chunks can be reused with little modification. For example, the ‘while

loop’ can be used instead of the ‘for loop’, and the ‘if - else’ statement can be changed

to ‘switch’ statement. These small modifications can cause a nontrivial impact and be

an obstacle in detecting cloned codes. As remembers to categorize frequently reused

code chunks and classify modified versions of reused code in one category, reused code

chunk detection rate can increase significantly.
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3.3 Petya, WannaCry, and NotPetya - Reused Code in Binary Code

A malware binary file is an executable malicious program. A malware binary file

is created after compiling. Thus, a malware binary file cannot be analyzed itself. To

analyze a malware binary file, reverse engineering is widely used. Reverse engineering

of a malware binary involves a process to reveal deconstructed object’s designs and

architecture. However, during compilation, a program loses much of detailed infor-

mation such as variable names and function names. Even if a binary code is reverse

engineered, the result cannot be the same as the original source code. Therefore, the

meaning of reused code in malware binary code only includes reused knowledge and

attacking tactics. This thesis uses Ghidra for reverse engineering and compares the

similarity among different malware programs after manual analysis. To understand

the process of three different ransomware, OllyDbg is used to inspect the operation,

and WireShark is used to examine the packet exchange. Moreover, Cuckoo sandbox

is used to obtain the API calls and perform dynamic analysis.

From the manual analysis after reverse engineering, some code chunks were un-

covered and thry exhibit the following regularities.

First, Petya and Netpetya shares similar behaviors. They both write on physical

drive, encrypt with XOR, and shut down the program at the end of the execution.

Even though they demonstrate many identical behaviors, the expressions are different.

In the case of encrypting demonstrate data, Petya xors with ‘0x37’ which is ASCII

number ‘7’ while NotPetya uses number ‘07.’ Also, the shutdown method is different.

Petya uses an API call, LookupPrivilegeValueA-shutdownPrivilege, but NotPetya

sets a time to shut down when it creates a process. After certain amount of time

past, the scheduler comment for shut down is issued. Then, the OS is shut down. In
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Table 3.3: Similar Behaviors Between Petya and NotPetya

Function Malware Code

Writing on Physical Drive
Petya Save the “PhysicalDrive” string in the param 1 array

NotPetya Save the “PhysicalDrive” string in the local 168 stack

Encrypt the data
Petya XORing with ‘0x37’ which is ASCII value of number ‘7’

NotPetya XORing with number ‘7’

Shutdown the OS
Petya

Using API

‘LookupPrivillegeValueA – SeShutdownPrivilege.’

If GetLastError API return a value ‘0’,

it raise ‘ntdll.ZwRaiseHardError’ and shut down.

NotPetya

Schedules a rebute by issuing the command

“shutdown.exe /r/f”

at a set time using CreateProcessW API

Table 3.4: Vulnerability of WannaCry and NotPetya

Malware
Code

Similarity Difference

WannaCry Both using EternalBlue

vulnerability.

They expect returning

‘0xc0000205.’

Comparing the return value in each location

Ex) It compares ‘05’,’02’,’00’,’04’ respectably.

NotPetya

Comparing the return as a whole.

Ex) It compares ‘-0x3ffffdfb.’ This is 1’s complement

of ‘0xc0000205.’

summary, Petya and NotPetya show very similar behaviors but the actual codes are

different.(Table 3.3 and Appendix A.2)

WannaCry and NotPetya use the same vulnerability, EternalBlue. Because both

use the same vulnerability, the expected error code is the same (0xc0000205). How-

ever, the way to detect the error code differs. WannaCry compares each byte where

the error code is saved. In contrast, NotPetya compares the error code(4bytes) di-

rectly (see Table 3.3 and Appendix A.3). Thus, even if different malware programs
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use the same vulnerability, the expression can be different. These different expres-

sions for the identical behavior pose a great challenge for malware classification. As

a result, these same behavior is hard to recognized as identical. However, if these

diverse expressions for the similar behaviors are recognized and are classified in the

same category, it can reduce the false positive and true negative rates in malware

classification.
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Chapter 4

LIMITATIONS AND FUTURE WORK

This study investigated, four different malware programs from two distinct cat-

egories: malware with source code and malware with a binary file. In both cases,

static analysies were mainly performed to examine reused codes. For the malware

analysis with source code, it is possible to detect reused code chunks among the same

version of a source file and across the different versions of a source file. As a result,

scanner.c, connector.c, and attack method files have many reused code chunks. Such

frequently reused code chunks can be used to detect another kind of malware that

has similar functionality. This result can offer practical benefits in detecting reused

code in different malware because the frequently reused codes are more likely to be

detected. If there were notable patters of code reusing across malware program, it

can help predict a future attack. This is an interesting avenue for future research.

Since obtaining malware source code is a key obstacle for malware analysis, detecting

reused code in malware source code remains as a limitation.

In many cases, malware binary code is available, but it is impossible to get the

original source code from binary code. The binary code is hard to read and difficult to

understand because much essential information, such as function name and variable

names, is removed. To this end, static analysis with binary code is conducted but is

time-consuming, and difficult to understand the underlying operation. To overcome

the obstacle, dynamic analysis can be a potential remedy. According to the dynamic

analysis, extracting API calls by chronological order will help understand the func-

tions and predict behaviors of malware. Moreover, it requires less time than manual

analysis. The information from the dynamic analysis will be essential to recognize the
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reused code in binary code. Hence, a consolidated approach of static and dynamic

analysis is expected to be more valuable to detect reused codes and improve malware

classification.
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Chapter 5

CONCLUSION

This thesis documents and investigates reused codes in diverse malware programs.

For the malware with source code, Mirai botnet variants are investigated. Petya,

WannaCry, and Notpetya are used for malware with binary code.

Results from Mirai botnet variants reveal that reused code chunks are detected

many times in connection.c, scanner.c, and attack method.c files. These files are

used to connect between two devices and to execute DDoS attacks. These frequently

reused code chunks are more likely to be recycled in a variety of malware. Since the

original code checks can be modified for various reasons, many reused code chunks

are difficult to detect with machine learning methods because the machine learning

methods cannot recognize a reused code chunk with little modification as an identical

code chunk. Consequently, malware classification with machine learning methods

may result in poor performance (i.e. a high false-positive rate).

Due to the difficulty to understand binary files and the required time to manually

analyze them, this thesis focuses on four malware binary files. Results show that

there exists a behavioral similarity between Petya and Notpetya. WannaCry and

Notpetya use the same vulnerability. However, the codes are different because they

use different expressions. It poses an unique challenge for researches and practition-

ers to detecting reused source codes. This thesis elucidates the differences between

ransomware programs for reused behaviors. From the analysis, it demonstrated that,

even if the expressions are different, modified reused codes can be detected as the

same in nature for the purpose of malware classification.
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In conclusion, this thesis is a case study of reused codes and diverse expressions

of reused codes. This study provides practitioners with actionable insights as to how

to identify the reused codes with different expressions and to classify into the same

category. The methodological framework and empirical findings in this thesis can

help increase the accuracy rate of malware classification.
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[18] André Ricardo Abed Grégio, Paulo Ĺıcio De Geus, Christopher Kruegel, and
Giovanni Vigna. Tracking memory writes for malware classification and code
reuse identification. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 134–143. Springer, 2012.

[19] Mohammad Reza Farhadi, Benjamin CM Fung, Philippe Charland, and Mourad
Debbabi. Binclone: Detecting code clones in malware. In 2014 Eighth Inter-
national Conference on Software Security and Reliability (SERE), pages 78–87.
IEEE, 2014.

[20] Joel Margolis, Tae Tom Oh, Suyash Jadhav, Young Ho Kim, and Jeong Neyo
Kim. An in-depth analysis of the mirai botnet. In 2017 International Conference
on Software Security and Assurance (ICSSA), pages 6–12. IEEE, 2017.

[21] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th In-
ternational Conference on Software Engineering (ICSE’07), pages 96–105. IEEE,
2007.

25



APPENDIX A

REUSED CODE IN AKIRU MIRAI CONNECTION.C FILE
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A.1 Reused Code in Wget

int connect ion upload wget ( struct connect ion ∗conn )
{

int o f f s e t = uti l memsearch ( conn−>rdbuf , conn−>rdbuf pos ,
TOKEN RESPONSE, s t r l e n (TOKEN RESPONSE) ) ;

i f ( o f f s e t == −1)
return 0 ;

i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” Permiss ion denied ”
, 17) != −1)
return o f f s e t ∗ −1;

else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” nva l id opt ion
” , 13) != −1)
return o f f s e t ∗ −1;

else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” l l e g a l opt ion
” , 13) != −1)
return o f f s e t ∗ −1;

else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ”No space l e f t
on dev i c e ” , 23) != −1)

{
conn−>c l e a r u p = 1 ;
return o f f s e t ∗ −1;

}

return o f f s e t ;
}

A.2 Reused Code in Tftp

int c o n n e c t i o n u p l o a d t f t p ( struct connect ion ∗conn )
{

int o f f s e t = uti l memsearch ( conn−>rdbuf , conn−>rdbuf pos ,
TOKEN RESPONSE, s t r l e n (TOKEN RESPONSE) ) ;

i f ( o f f s e t == −1)
return 0 ;

i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” Permiss ion denied ”
, 17) != −1)
return o f f s e t ∗ −1;

else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” timeout ” , 7)
!= −1)
return o f f s e t ∗ −1;
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else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” nva l id opt ion
” , 13) != −1)
return o f f s e t ∗ −1;

else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ” l l e g a l
opt ion ” , 13) != −1)

return o f f s e t ∗ −1;
else i f ( ut i l memsearch ( conn−>rdbuf , o f f s e t , ”No space l e f t

on dev i c e ” , 23) != −1)
{

conn−>c l e a r u p = 1 ;
return o f f s e t ∗ −1;

}

return o f f s e t ;
}
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APPENDIX B

REUSED CODE IN PETYA AND NOTPETYA
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B.1 Writing on Physical Drive

B.1.1 Petya

i f ( hDevice != (HANDLE) 0 x f f f f f f f f ) {
DeviceIoContro l ( hDevice , 0 x560000 , (LPVOID) 0x0 ,

0 , l o c a l 2 4 , 0 x20 ,& l o c a l 3 0 , (LPOVERLAPPED) 0
x0 ) ;

CloseHandle ( hDevice ) ;
∗param 1 = 0 x5c2e5c5c ;
param 1 [ 1 ] = 0x73796850 ;
param 1 [ 2 ] = 0 x6c616369 ;
param 1 [ 3 ] = 0x76697244 ;
∗(char ∗) ( param 1 + 4) = ’ e ’ ;
∗(char ∗) ( ( int ) param 1 + 0x11 ) = l o c a l 1 c + ’ 0 ’ ;
∗( undef ined ∗) ( ( int ) param 1 + 0x12 ) = 0 ;
return 1 ;

}

1000 a26c 5c 5c 2e ds ” \\\\ .\\ Phys ica lDr ive ”
5c 50 68
79 73 69

B.1.2 NotPetya

memset ( param 1 , 0 , 0 x104 ) ;
l o c a l 1 6 8 = 0 x5c2e5c5c ;
uStack356 = 0x73796850 ;
uStack352 = 0 x6c616369 ;
uStack348 = 0x76697244 ;
cStack344 = ’ e ’ ;
l o c a l 1 5 7 = 0 ;

1000 f f 3 8 5c 5c 2e ds ” \\\\ .\\ Phys ica lDr ive ”
5c 50 68
79 73 69

B.2 Encrypt the Data

B.2.1 Petya

do {
l o c a l c 4 0 = ( undef ined ∗) ( ( int ) uVar8 >> 0 x1f ) ;
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FUN 100088ee ( (LPCSTR) l o c a l c 3 c , l o c a l a 0 8 , uVar8 , ( int )
l o c a l c 4 0 ) ;

uVar3 = 0 ;
do {
l o c a l a 0 8 [ uVar3 ] = l o c a l a 0 8 [ uVar3 ] ˆ 0x37 ;
uVar3 = uVar3 + 1 ;
} while ( uVar3 < 0x200 ) ;
uVar3 = FUN 10008963 ( (LPCSTR) l o c a l c 3 c , l o c a l a 0 8 , uVar8

, ( int ) l o c a l c 4 0 ) ;
i f ( uVar3 == 0) {
return 0 ;
}
uVar8 = uVar8 + 1 ;

} while ( ( int ) uVar8 < 34) ;

B.2.2 NotPetya

do {
∗( byte ∗) ( ( int ) l o c a l 7 9 c + uVar8 ) = ∗( byte ∗) ( ( int )

l o c a l 7 9 c + uVar8 ) ˆ 7 ;
uVar8 = uVar8 + 1 ;

} while ( uVar8 < 0x200 ) ;
memset(& l o c a l 9 9 c , 7 , 0 x200 ) ;

B.3 Shutdown the OS

B.3.1 Petya

i f (BVar1 != 0) {
LookupPrivi legeValueA ( (LPCSTR) 0x0 , ” SeShutdownPrivi lege

” , (PLUID) l o c a l 1 c . P r i v i l e g e s ) ;
l o c a l 1 c . Pr iv i l egeCount = 1 ;
l o c a l 1 c . P r i v i l e g e s [ 0 ] . At t r ibu te s = 2 ;
AdjustTokenPr iv i l eges

( l o c a l 8 , 0 , (PTOKEN PRIVILEGES)&l o c a l 1 c , 0 , (
PTOKEN PRIVILEGES) 0x0 , (PDWORD) 0x0 ) ;

Des i redAccess = GetLastError ( ) ;
i f ( Des i redAccess == 0) {

lpProcName = ” NtRaiseHardError ” ;
hModule = GetModuleHandleA ( ”NTDLL.DLL” ) ;
pFVar2 = GetProcAddress ( hModule , lpProcName ) ;

/∗ n t d l l . ZwRaiseHardError ∗/
(∗pFVar2 ) (0 xc0000350 , 0 , 0 , 0 , 6 , l o c a l c ) ;
return 1 ;
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}
}

B.3.2 NotPetya

FUN CreateProcessorFor cmd100083bd (3) ;
i f ( ( DAT MFlag AdjustedPrivi leges1001f144 & 1) != 0) {

hModule = GetModuleHandleA ( ” n t d l l . d l l ” ) ;
i f ( ( hModule != (HMODULE) 0x0 ) &&

( pFVar4 = GetProcAddress ( hModule , ” NtRaiseHardError ”
) , pFVar4 != (FARPROC) 0x0 ) ) {

(∗pFVar4 ) (0 xc0000350 ,0 ,0 ,0 ,6 ,& param 3 )
;

}
BVar2 = InitiateSystemShutdownExW ( (LPWSTR) 0x0

, (LPWSTR) 0x0 , 0 , 1 , 1 , 0 x80000000 ) ;
i f (BVar2 == 0) {

ExitWindowsEx (6 , 0 ) ;
}

}

/∗ Function f o r cmd . exe ∗/
uVar7 = 0 ;
GetLocalTime ( (LPSYSTEMTIME)&l o c a l 1 4 ) ;
uVar1 = FUN 10006973 ( ) ;
i f ( uVar1 < 10) {

uVar1 = 10 ;
}
uVar6 = ( ( u int ) l o c a l 1 4 . wHour + ( uVar1 + 3) / 60) % 24 ;
iVar8 = ( u int ) l o c a l 1 4 . wMinute + ( uVar1 + 3) % 60 ;
UVar2 = GetSystemDirectoryW ( l o c a l 6 2 c , 0 x30c ) ;
i f (UVar2 != 0) {

BVar3 = PathAppendW( l o c a l 6 2 c , L”shutdown . exe / r / f ” ) ;
i f (BVar3 != 0) {

iVar4 = FUN 10008494 ( ) ;
i f ( iVar4 == 0) {

wsprintfW ( l o c a l e 2 c , L” at %02d:%02d %ws” , uVar6 ,
iVar8 , l o c a l 6 2 c ) ;

}
else {

pwVar5 = L”/RU \”SYSTEM\” ” ;
i f ( ( ( byte ) DAT MFlag AdjustedPrivi leges1001f144

& 4) == 0) {
pwVar5 = L”” ;

}
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wsprintfW ( l o c a l e 2 c , L” s chta sk s %ws/ Create /SC
once /TN \”\” /TR \”%ws\” /ST %02d:%02d” ,

pwVar5 , l o c a l 6 2 c , uVar6 , iVar8 ) ;
}

l o c a l 6 2 e = 0 ;
uVar7 = FUN CreateProcessorFor cmd100083bd (0) ;
}

}
return uVar7 ;
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APPENDIX C

REUSED CODE IN WANNACRY AND NOTPETYA
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C.1 Vulnerability

C.1.1 WannaCry

l en = send ( s ,&DAT 0042e4f4 , 0 x4e , 0 ) ;
i f ( l en != −1) {

/∗ Check re turn value o f prev ious recv func t i on . When
0 xc0000205 i s returned ,

the propagat ion i s s t a r t e d ∗/
l en = recv ( s ,& l o c a l 4 0 0 , 0 x400 , 0 ) ;
i f ( ( ( ( l en != −1) && ( cStack1015 == 5) ) && (

cStack1014 == 2) ) &&((cStack1013 == 0 && (
cStack1012 == −0x40 ) ) ) ) {

c l o s e s o c k e t ( s ) ;
return 1 ;

}
}

C.1.2 NotPetya

iVar6 = FUN EternerBlueTriger100035fa
(0 x2801 , l o c a l 2 c , l o c a l 3 4 , 0 x f e f f ,

l o c a l 3 c , l o c a l 3 8 , 2 , 0 x f f , 0 ) ;
i f ( iVar6 != −0 x 3 f f f f d f b ) goto LAB 10006618 ;

35


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Definition of Reused Code
	Reused Code in Malware Source Code
	Reused Code in Malware Binary Code
	Motivations for Code Reusing in Malware
	Related Work

	EXPERIMENTS AND FINDINGS
	Functionality and Vulnerability
	Mirai Botnet
	WannaCry and NotPetya

	Mirai Botnet – Reused Code in Malware Source Codes
	Petya, WannaCry, and NotPetya - Reused Code in Binary Code

	LIMITATIONS AND FUTURE WORK
	CONCLUSION
	REFERENCES
	REUSED CODE IN AKIRU MIRAI CONNECTION.C FILE
	Reused Code in Wget
	Reused Code in Tftp

	REUSED CODE IN PETYA AND NOTPETYA
	Writing on Physical Drive
	Petya
	NotPetya

	Encrypt the Data
	Petya
	NotPetya

	Shutdown the OS
	Petya
	NotPetya


	REUSED CODE IN WANNACRY AND NOTPETYA
	Vulnerability
	WannaCry
	NotPetya







