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ABSTRACT

This thesis addresses the following fundamental maximum throughput routing prob-

lem: Given an arbitrary edge-capacitated n-node directed network and a set of k

commodities, with source-destination pairs (si, ti) and demands di > 0, admit and

route the largest possible number of commodities – i.e., the maximum throughput

– to satisfy their demands. The main contributions of this thesis are three-fold:

First, a bi-criteria approximation algorithm is presented for this all-or-nothing mul-

ticommodity flow (ANF) problem. This algorithm is the first to achieve a constant

approximation of the maximum throughput with an edge capacity violation ratio that

is at most logarithmic in n, with high probability. The approach used is based on a

version of randomized rounding that keeps splittable flows, rather than approximat-

ing those via a non-splittable path for each commodity: This allows it to work for

arbitrary directed edge-capacitated graphs, unlike most of the prior work on the ANF

problem. The algorithm also works if a weighted throughput is considered, where

the benefit gained by fully satisfying the demand for commodity i is determined by

a given weight wi > 0. Second, a derandomization of the algorithm is presented

that maintains the same approximation bounds, using novel pessimistic estimators

for Bernstein’s inequality. In addition, it is shown how the framework can be adapted

to achieve a polylogarithmic fraction of the maximum throughput while maintaining

a constant edge capacity violation, if the network capacity is large enough. Lastly,

one important aspect of the randomized and derandomized algorithms is their sim-

plicity, which lends to efficient implementations in practice. The implementations of

both randomized rounding and derandomized algorithms for the ANF problem are

presented and show their efficiency in practice.
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Chapter 1

INTRODUCTION

A multi-commodity flow problem is a problem where one has to route multiple com-

modities or flow demands over a network to and from each commodity’s respective

source and destination. Such problems lie at the heart of many network optimiza-

tion models. With respect to this thesis, we are interested in the practically relevant

problem variant in which edges have capacities like is the case with any real world

network. This further enforces that not all requests between pairs of nodes may be

satisfied concurrently. Hence, in addition to assigning requests to paths, an admission

control mechanism is required which prevents violating the edge capacities and thus,

overloading the network.

The objective is to maximize the throughput, i.e., to transmit and satisfy the

requests of as many commodities as possible while keeping a check on the edge capac-

ities. We allow a request to be either transmitted as a whole or not at all. Also, in

our problem we are allowed to split flows on to multiple edges from a node; combin-

ing everything this is known as the All-or-Nothing (Splittable) Multicommodity Flow

(ANF) problem.
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More formally, the problem can be modelled as a flow network where a capacitated

directed graph G(V,E) has V as the set of nodes and E as the set of edges, and each

edge e has a capacity ce > 0 associated with it. Let n = |V | and m = |E|. We are

given a set of source-destination pairs (si, ti), where si, ti ∈ V , i ∈ [k]1, each with

given (non-uniform) demand di > 0 and weight wi > 0. The edge capacities ce, the

demands di and weights wi can be arbitrary positive functions on n and k, for any

e ∈ E.

A valid set of flows for commodities 1, . . . , k in G (i.e., a valid multicommodity

flow), must satisfy standard flow conservation constraints for each commodity i, which

imply that the amount of flow for commodity i entering a node v has to be equal to

the flow for commodity i leaving v, if v 6= si, ti. The load of an edge e, given by the

sum of the flows for all commodities on e, must not exceed the edge’s capacity ce. The

flow can be split along many branching routes, provided that flow conservation and

edge capacity constraints are satisfied. Commodity i is satisfied if di units of flow of

this commodity can be successfully routed in the network and adds wi amount to the

overall throughput. Later, we will discuss a mixed integer programming formulation

(MIP Formulation 1) for the ANF problem, which captures all of these constraints.

We aim to maximize the total number of commodities that are concurrently satis-

fied in a valid multicommodity flow. Specifically, we consider a weighted generaliza-

tion of this problem, where, in addition to the demands di, each commodity is given a

weight wi and the goal is to find a subset K ′ ⊆ [k] of commodities to be concurrently

satisfied such that the (weighted) throughput, given by
∑

i∈K′ wi, is maximized over

all possible K ′. The flow can be split arbitrarily along many branching routes (subject

to flow conservation and edge capacity constraints) and does not have to be integral.

1Let [x] denotes the set {1, . . . , x}, for any positive integer x.
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Explaining this through an example let us assume our network to be the internet,

our commodities as videos and the destination as the user who wants to view a

particular video. I have displayed the same through Figure 1.1 where the color of

the video matches the color of the figure I have depicted as the respective user. We

obviously want the internet to support the maximum number of users it can at the

same time but as we know in the real worlds there might be certain limitations like

bandwidth here. Also, this is a situation where the ”All-or-Nothing” aspect of the

problem clearly shows – when a video or file goes over the network it gets divided

into packets, for a file to be usable by the user it needs to have all its packets or

an incomplete file would be as bad as receiving nothing. Thus, we want to focus on

such problems where we want to transmit either the whole commodity or nothing at

all while aiming to maximize the throughput at the same time. The demands of the

commodities can be taken as the video or file sizes in this context and the weights

can be the priority the customer has for the streaming application.

Figure 1.1: Example
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The ANF problem has been shown to be APX-hard Chekuri et al. (2004); Garg

et al. (1997) (even if the underlying graph is an tree) and hard to approximate within

nΩ(1/c) in directed graphs even with unit demands and with congestion c as show by

Chuzhoy et al. (2007). Hence, the literature has followed a bi-criteria optimization

approach where one is allowed to violate the edge capacities slightly as one seeks a

good approximation on the throughput. For this thesis, we focused on an (α, β)-

approximation algorithm: For parameters α ∈ (0, 1] and β ≥ 1, we seek a polynomial

time algorithm that outputs a multicommodity flow solution satisfying flow conser-

vation constraints for each commodity i, whose throughput is at least an α fraction of

the maximum throughput and whose load on any edge e is at most β times the edge

capacity ce, with high probability2. The parameter β hence provides an upper bound

on the edge capacity violation ratio incurred by the algorithm. Following from Liu

et al. (2019) we formed a more general algorithm involving both varying demands

and weights. Further, we came up with a deterministic algorithm with the same

(α, β)-approximation by derandomizing the randomized algorithm from Liu et al.

(2019) using the method of pessimistic estimators. The implementations of both the

randomized and deterministic algorithms can be found in Appendix A.

2With probability at least 1− 1/nc, where c > 0 is a constant.
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Chapter 2

RELATED WORK

The study of routing and multicommodity flow problems is motivated by many

real-world applications — related to traffic networks, production lines, designing route

networks for container ships, etc. — as well as by the important role that flows

and cuts play in combinatorial optimization (e.g., see Chekuri and Ene (2015) and

references within).

In Liu et al. (2019), they present a (1/3, O(
√
k log n))-approximation algorithm

for the ANF problem for the case of uniform demands in directed graphs, where

k is the number of commodities. Our current work improves and generalizes the

randomized rounding framework outlined in Liu et al. (2019), in many ways: Our

bound on the edge capacity violation does not depend on the number of commodities

k and is better than that of Liu et al. (2019) when k = Ω(log n); we were also

able to accommodate arbitrary non-uniform demands and commodity weights, while

the results in Liu et al. (2019) hold for uniform demands and weights. In fact, one

could combine the algorithm in this paper with the one in Liu et al. (2019) to obtain

a (1/3,min{(3 log n + 1), O(
√
k log n)})-approximation algorithm, which is the best-

known result for the ANF problem on arbitrary directed networks G with uniform

demands and arbitrary number of commodities k.

Other work on bi-criteria (α, β)-approximation schemes for the ANF problem that

are closely related to ours aims at keeping β constant, while letting α be a function

of n. In this line of work, the paper by Chekuri et al. (2004) is the most relevant

and was the first to formalize the ANF problem. The authors present an approx-

imation algorithm for the general (weighted, non-uniform demands) ANF problem
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on undirected graphs with constant edge capacity violation ratio and a throughput

approximation ratio of Ω(1/(log3 n log log n)) based on Räcke’s hierarchical tree de-

composition as shown in Räcke (2008). A requirement of their algorithm is that

max di ≤ min ce, which implies that any commodity i can always be routed at de-

mand di through any single path in G. This is a strong assumption, since it eliminates

all (undirected) networks G where the above assumption fails but where the capacity

of a minimum (si, ti)-cut is at least di (i.e., where G could still sustain a di-flow for

commodity i), such as for example complete graphs with unit edge capacities and

demands 2 ≤ di ≤ n − 1, for all i. Hence, besides the fact that our approximation

guarantees differ from those of Chekuri et al. (2004) (we have constant α and loga-

rithmic β, while they achieve constant β at the expense of a polylogarithmic 1/α),

our results also apply to any directed graph G, without any assumptions on how di

compares to individual edge capacities or to the capacity of a minimum (si, ti)-cut. In

Section 6, we show how we can adapt our approach to yield polylogarithmic 1/α and

constant β approximation bounds for arbitrary directed networks provided that the

capacity of a minimum (si, ti)-cut is Ω(di log n), for all satisfiable flows i. More specif-

ically, we present a (1/Θ(log n),Θ(1))-approximation algorithm for the general ANF

problem on directed networks that have (s,ti)-cuts of capacity Ω(di log n), improving

the bounds by Chekuri et al. (2004) under these conditions.
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The ANF problem gets considerably more challenging in directed graphs. In Chekuri

and Ene (2015), they consider a variation of the ANF problem — the Symmetric All

or Nothing Flow (SymANF) problem — in directed graphs with symmetric demand

pairs, also aiming at constant β and polylogarithmic 1/α. In SymANF, the input

pairs are unordered and a pair (si, ti) is routed if only if the ordered pairs (ti, si) ais

also routed; the goal is to find a maximum subset of the given demand pairs that

can be routed. The authors provide a poly-logarithmic approximation with constant

congestion for SymANF, by extending the well-linked decomposition framework of

Chekuri et al. (2005) to the directed graph setting with symmetric demand pairs.

Our work differs from Chekuri and Ene (2015) in that their results depend on the

more restricted assumptions of unit edge capacity and symmetric unit demand. Our

work considers a more general network setting and our original aim was to obtain a

constant approximation of the throughput with polylogarithmic edge capacity viola-

tions (our constant edge capacity violation results in Section 6 would also apply here

if the capacity of the network is large enough). One can show that the throughput for

the SymANF with constant edge capacity violation c is hard to approximate within

a factor of (log |V |)Ω(1/c); Chekuri and Ene (2015); Arora et al. (1998).

The Maximum Edge-Disjoint Paths (MEDP) problem as presented by Erlebach

and Jansen (2001) considers a set of pairs of nodes to be routable if they can be con-

nected using edge-disjoint paths and aims at finding the largest number of routable

pairs. One can obtain the MEDP from ANF by requiring all flow to go on a single

path. That is, MEDP can be viewed as a restricted version of the ANF problem

when all di’s, wi’s and ce’s are equal to 1, and the flow on each edge is required

to be integral. For arbitrary directed graphs, the MEDP problem was shown to

be NP-hard to approximate within m1/2−ε, for any ε > 0 as shown in Guruswami

et al. (2003). Approximation algorithms with approximation ratio O(m1/2) are known

7



through Kleinberg and Goemans (1996); see also Kolliopoulos and Stein (1998); Srini-

vasan (1997). As for the ANF problem in general, better approximation ratios can

be achieved for restricted classes of graphs. For example, the MEDP problem can be

solved optimally in polynomial time for bidirected trees of constant degree; however it

is APX-hard for bidirected trees of arbitrary degree as shown in Erlebach and Jansen

(2001).

Finally, our work leverages randomized rounding techniques presented in work

by Rost and Schmid (2018) and Rost et al. (2019) through the different context of

virtual network embedding problems (i.e., in their context, flow endpoints are subject

to optimization).
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Chapter 3

PRELIMINARIES

In this chapter, we go over the preliminary theorems and facts which will be used

in the further chapters.

3.1 Some Convexity Arguments

Lemma 1. The following holds for any θ ∈ R and x ∈ [0, 1]:

exp(θ · x) ≤ 1 + (exp(θ)− 1) · x

Proof. The function f(x) = cx is convex as f ′′(x) = ln2(c) · cx > 0 holds for any c > 0

and any x ∈ R. As f is convex, the following holds for any z ∈ [x1, x2]

f(z) ≤ f(x2)− f(x1)

x2 − x1

· (z − x1) + f(x1)

Setting c = exp(θ), x1 = 0, and x2 = 1, the result is obtained for all z ∈ [0, 1]:

exp(θ · z) ≤ (exp(θ)− 1) · z + 1 .

Lemma 2. The following holds for any θ ∈ R and x ∈ [0, 1]:

1 + (exp(θ)− 1) · x ≤ exp((exp(θ)− 1) · x)

Proof. The inequality follows from the observation that 1 + z ≤ exp(z) holds for

z ∈ R, which follows from the convexity of f(z) = exp(z). By substituting z with

(exp(θ)− 1) · x the result is obtained

9



Lemma 3. Let Xl ∈ [0, 1] denote a single random variable of expectation µl = Ex (Xl).

For any θ ∈ R the following holds for the random variable Yl = exp(θ ·Xl):

Ex (Yl) ≤ exp((exp(θ)− 1) · µl) (3.1)

Proof. As the function f(x) = exp(θ · x) is convex for any t ∈ R, the following holds:

Ex (Yi) =Ex (exp(θ ·Xl))

≤Ex (1 + (exp(θ)− 1) ·Xl) [by Lemma 1]

=1 + (exp(θ)− 1) · Ex (Xl) [by linearity of expectation]

≤ exp((exp(θ)− 1) · µl) [by Lemma 2]

Lemma 4. The following inequality holds for any x ∈ [0, 1):

−x− (1− x) ln(1− x) ≤ −x2/2 . (3.2)

Proof. To start off, we note that the above inequality is satisfied for x = 0 and that

the inequality is preserved as long as the derivative of the left-hand side is less than the

derivative of the right-hand side. Considering the derivatives d
dx

(−x2/2) = −x and

d
dx

(−x− (1− x) ln(1− x)) = ln(1 − x), we note again that for x = 0 the respective

derivatives have the same value. Repeating the argument, the derivative of the left-

hand side is smaller than the derivative of the right-hand side if the second derivative

of the left-hand side is always smaller than the second derivative of the right-hand

side. Hence, as d2

dx
(−x− (1− x) ln(1− x)) = −1/(1 − x), d2

dx
(−x2/2) = −1, and

−1/(1 − x) ≤ −1 holds for x ∈ (0, 1), the second and first derivatives of the left-

hand side are smaller than the respective derivatives of the right-hand side. Hence,

Inequality 3.2 holds for any x ∈ [0, 1).
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3.2 Chernoff Bound

Fact 1. Let X be the sum of k independent random variables X1, . . . , Xk with Xl ∈

[0, 1] for l ∈ [k]. Denoting by µ̃l ≤ µl = Ex (X`) lower bounds on the expected value of

random variable Xl, l ∈ [k], the following holds for any δ ∈ (0, 1) with µ̃ =
∑

l∈[k] µ̃l

and θ = ln(1− δ);

Pr (X ≤ (1− δ) · µ̃)
(a)

≤ e−θ·(1−δ)·µ̃ ·
∏
l∈[k]

Ex
(
eθ·Xl

) (b)

≤ e−δ
2·µ̃/2 (3.3)

Proof. We first prove the inequality Pr (X ≤ (1− δ) · µ̃) ≤
(

e−δ

(1−δ)1−δ

)µ̃
for δ ∈ (0, 1).

Let Yl = exp(θ ·Xl), l ∈ [k], for θ = ln(1− δ). Note that θ < 0 holds.

By Lemma 3 Equality 3.1 holds. As exp(θ) − 1 = −δ < 0 holds for θ < 0, the

exponential function f(z) = exp((exp(θ)− 1) · z) is monotonically decreasing. Using

the lower bound µ̃l ≤ µl and µ̃ =
∑

l∈[k] µ̃l the following is obtained:

Ex (Yl) ≤ exp((exp(θ)− 1) · µ̃l) (3.4)

As the variables X1, . . . , Xk are pairwise independent, the variables Y1, . . . , Yk are

also pairwise independent. Accordingly, the following holds for Y = eθ·X :

Ex (Y ) = Ex
(
eθ·

∑
l∈[k]Xl

)
= Ex

∏
l∈[k]

eθ·Xl

 =
∏
l∈[k]

Ex (Yl) . (3.5)

Accordingly, the following is obtained:

Pr[X ≤ (1− δ) · µ̃] (3.6)

= Pr[eθ·X ≥ eθ·(1−δ)·µ̃] [as θ < 0] (3.7)

≤Ex (exp[θ ·X])

eθ·(1−δ)·µ̃
[by Markov’s inequality] (3.8)

=

∏
l∈[k] Ex (Yl)

eθ·(1−δ)·µ̃
[by Equation 3.5] (3.9)

≤
∏

l∈[k] e
(exp(θ)−1)·µ̃l

eθ·(1−δ)·µ̃
[by Equation 3.4] (3.10)

11



=e

(∑
l∈[k] e

θ−1·µ̃l
)
−
(
θ·(1−δ)·µ̃

)
[one exponent] (3.11)

=e

(∑
i∈[N ]((1−δ)−1)·µ̃l

)
−
(

ln(1−δ)·(1−δ)·µ̃
)

[using θ = ln(1− δ)] (3.12)

=e

(
−δ·µ̃
)
−
(

ln(1−δ)·(1−δ)·µ̃
)

[definition of µ̃ =
∑

l∈[k]
µ̃l] (3.13)

=

(
e−δ

(1− δ)1−δ

)µ̃
(3.14)

Given Equation 3.14, Inequality (b) is a corollary of Lemma 4, which showed the

following for δ ∈ (0, 1)

−δ − (1− δ) ln(1− δ) ≤ −δ2/2 . (3.15)

Multiplying both sides with µ̃ and exponentiating both sides yields the desired result.

Regarding the Inequality (a), we note that this follows by the above proof from

Equation 3.9.

3.3 Bernstein Bounds

To prove Theorem 4.3 of Page 21, we first prove the following general Bernstein

bound.

Theorem 1 (General Bernstein Concentration Bound Boucheron et al. (2013a)).

Given is a collection {Xl}l∈[k] of k ∈ N independent (positive) random variables and

a constant R > 0, such that the following holds for all l ∈ [k] and all n ∈ N, n ≥ 2:

Ex (|Xl − Ex (Xl) |n) ≤ n!

2
·Rn−2 · σ2

l (3.16)

The following holds for all t > 0:

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 ≤ exp

(
− t2/2

σ2 +R · t

)
(3.17)

Proof.

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 (3.18)
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=Pr
(
eθ·

∑
l∈[k]Xl−Ex(Xl) ≥ eθ·t

)
[for an arbitrary θ > 0] (3.19)

≤e−θ·t · Ex
(
eθ·

∑
l∈[k]Xl−Ex(Xl)

)
[Markov’s inequality] (3.20)

≤e−θ·t ·
∏
l∈[k]

Ex
(
eθ·(Xl−Ex(Xl))

)
[independence] (3.21)

Using the assumption of Equation 3.16, we now derive a bound for Ex
(
eθ·Xl

)
.

Ex
(
eθ·(Xl−Ex(Xl))

)
(3.22)

=
∞∑
n=0

Ex ((θ · (Xl − Ex (Xl)))
n)

n!
[definition of exp. function] (3.23)

=1 +
∞∑
n=2

θn

n!
· Ex ((Xl − Ex (Xl))

n) [splitting sum] (3.24)

≤1 +
∞∑
n=2

θn

n!
· n!

2
·Rn−2 · σ2

l [by Equation 3.16] (3.25)

=1 +
θ2 · σ2

l

2
·
∞∑
n=2

(θ ·R)n−2 (3.26)

=1 +
θ2 · σ2

l

2
· 1

1− θ ·R
[geometric series for θ ·R < 1] (3.27)

≤e
θ2·σ2l

2
· 1
1−θ·R = eθ

2·σ2
l /(2·(1−θ·R)) [as 1 + x ≤ ex for x ∈ R] (3.28)

Using the bound of Equation 3.28 within Equation 3.21, we obtain:

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 (3.29)

≤e−θ·t ·
∏
l∈[k]

eθ
2·σ2

l /(2·(1−θ·R)) [by Equation 3.28] (3.30)

=e−θ·t · eθ2/(2·(1−θ·R)) · e
∑
l∈[k] σ

2
l (3.31)

= exp

(
−θ · t+

θ2 · σ2

2 · (1− θ ·R)

)
(3.32)
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We now set θ = t/(σ2 + R · t). Notably, this choice satisfies θ · R < 1, which is

required in Equation 3.27. Accordingly, we obtain

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 (3.33)

= exp

(
− t2

σ2 +R · t
+ 1/2 ·

(
t

σ2 +R · t

)2

· σ2

(1− R·t
σ2+R·t)

)
(3.34)

= exp

(
− t2

σ2 +R · t
+ 1/2 ·

(
t

σ2 +R · t

)2

· (σ2 +R · t)

)
= exp

(
−t2/2

σ2 +R · t

)
(3.35)

which completes the proof.

Fact 2 (Bernstein Concentration Bound). Given is a collection {Yl}l∈[k] of k ∈ N

independent binary random variables, i.e., Yl ∈ {0, 1}, with µl = Ex (Yl) for l ∈ [k].

Let Xl = al · Yl for constant 0 < al ≤ M . The following holds for any t > 0 with

θ =
(

t∑
l∈[k] a

2
l ·(µl−µ

2
l )+M ·

t
3

)
:

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 (a)

≤e−θ·t ·
∏
l∈[k]

Ex
(
eθ·(Xl−Ex(Xl))

)
(3.36)

(b)

≤ exp

(
− t2/2∑

l∈[k] a
2
l · (µl − µ2

l ) +M · t/3

)
(3.37)

Proof. We will apply Theorem 1 to obtain the result and first prove inequality (b).

Choosing R = M/3, we first prove that the assumption of Equation 3.16 holds. We

first note the following for Ex (|Xl − Ex (Xl) |n):

Ex (|Xl − Ex (Xl) |n) =Ex
(
(Xl − Ex (Xl))

2 · |Xl − Ex (Xl) |n−2
)

(3.38)

≤Ex
(
(Xl − Ex (Xl))

2 ·Mn−2
)

(3.39)

=Mn−2 · σ2
l (3.40)
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Using the fact that n!/2 · (1/3)n−2 ≥ 1 holds for all n ≥ 2, we obtain:

Ex (|Xl − Ex (Xl) |n) ≤Mn−2 · σ2
l ≤

n!

2
· (M/3)︸ ︷︷ ︸

=R

n−2 · σ2
l (3.41)

Hence, we have proven that Equation 3.16 holds for each bounded random variable

Xl, l ∈ [k], and each n ≥ 2 when R = M/3.

Preparing to apply Theorem 1, we note that σ2
l = Var (Xl) = a2

l · (µl − µ2
l ) holds

for l ∈ [k] and that σ2 =
∑

l∈[k] a
2
l · (µl − µ2

l ) holds. Plugging these values into

Theorem 1, the inequality (b) is proven, i.e., we obtain:

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 ≤ exp

(
− t2/2∑

l∈[k] a
2
l · (µl − µ2

l ) +M · t/3

)
(3.42)

Regarding the inequality (a), we note that the right-hand side is a side-product of

the proof of Theorem 1. Specifically, the right-hand side of inequality (a) equals the

term of Equation 3.21. As Equation 3.21 eventually led to the inequality (b) under

the choice of θ as stated in this theorem, the theorem follows.
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Chapter 4

THE RANDOMIZED APPROACH

This chapter focuses on the randomized rounding algorithm by Liu et al. (2019) and

how we generalized it and strengthened the existing bounds. The generalization is

done in order to accommodate arbitrary demands and commodity weights. We then

show how we achieved an improved bound for the edge capacity violation ratio β,

logarithmic in n, while still keeping the throughput approximation α constant in the

generalized setting.

4.1 MIP Formulation

We are given an n-node flow network G(V,E) with edge capacities ce > 0. We

have k commodities that may be routed in this network, where each commodity i is

represented by (si, ti), where si, ti ∈ V denote the respective source and destination

nodes. Each commodity i also has an associated demand di and a weight wi, both

of which are positive constants. We use an indicator variable fi ∈ {0, 1} to indicate

whether a commodity i is successfully routed through G. Next, we denote fi,e ∈ [0, 1]

as the fraction of flow for commodity i allocated to a particular edge e ∈ E. The

total flow assigned to a fixed edge e is given by
∑

i di · fi,e and the total weighted

throughput is given by
∑

iwifi. We present this problem as an integer program in

MIP Formulation 1. Without loss of generality, we only consider commodities that

each can be satisfied if it were to be routed alone in G (any commodity that does not

satisfy this requirement will never be part of any feasible solution to the ANF problem,

and hence is irrelevant to the problem). This updated set of commodities forms the

input of the mixed integer program. Regarding the MIP formulation, Constraints 4.1
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define the value of the total flow for each commodity i, Constraints 4.2 enforce flow

conservation for each i, and Constraints 4.3 stipulate that no edge capacity is violated

by the flow assignments. Constraints 4.4 ensure that for a fixed commodity i, the

ratio of flow assigned to an edge e to the total flow of that commodity does not exceed

the capacity of e: These constraints are actually redundant for the MIP formulation,

but will strengthen the corresponding linear relaxation (LP) of MIP Formulation 1 —

in fact these constraints will be crucial in order to prove our approximation bounds,

which will be based on the optimal value of the LP-relaxation, as we will see below.

Constraints 4.5 are the non-negativity constraint for flow assignments to edges, and

Constraints 4.6 enforce an integral solution to the optimization problem.

MIP Formulation 1: Splittable All-or-Nothing Flow

wOPT = Maximize
k∑
i=1

wifi

Subject to∑
(si,v)∈E

fi,(si,v) = fi ∀i ∈ [k] (4.1)

∑
(u,v)∈E

fi,(u,v) =
∑

(v,u)∈E

fi,(v,u) ∀i ∈ [k], ∀v ∈ V − {si, ti} (4.2)

k∑
i=1

fi,(u,v) · di ≤ c(u,v) ∀(u, v) ∈ E (4.3)

fi,(u,v) · di ≤ fi · c(u,v) ∀i ∈ [k], ∀(u, v) ∈ E (4.4)

fi,(u,v) ≥ 0 ∀i ∈ [k],∀(u, v) ∈ E (4.5)

fi ∈ {0, 1} ∀i ∈ [k] (4.6)
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Note that it is safe to discard any commodity i such that i cannot be satisfied if

routed alone in G (i.e., if the capacity of min (si, ti)-cut is less than di), as we will do

in Algorithm 2, since such a commodity will never be part of any feasible solution to

the MIP.

Algorithm 2: Randomized Rounding Algorithm

Input : Directed Graph G(V,E) with edge capacities ce > 0,∀e ∈ E

Set of k distinct commodities 1, . . . , k

Source-sink pair (si, ti), demand di ≥ 0 and weight wi ≥ 0 ∀i ∈ [k]

Constant α ∈ (0, 1]

Output: The final values of fi and fi,e and wALG =
∑
wifi

1 Discard any commodity i that cannot be satisfied if routed alone in G (i.e., if

the capacity of min (si, ti)-cut is less than di).

2 Solve the LP to obtain optimal solution f̃i and f̃i,e, ∀i ∈ [k].

3 For each i ∈ [k], set fi = 1 with probability f̃i, otherwise set fi = 0.

4 Rescale the fractional flow f̃i,e from the LP solution on edge e for commodity

i by 1
f̃i

: i.e., fi,e =
f̃i,e

f̃i
· fi and the flow for commodity i on e is given by fi,edi.

5 If wALG =
∑

iwifi ≥ α
∑
wif̃i = α · wLP , return the corresponding flow

assignments given by fi and fi,e,∀i ∈ [k] and e ∈ E. Otherwise, repeat steps

3 and 4, at most Θ(log n) times.

Let f ∗i and f ∗i,e, ∀i ∈ [k], e ∈ E, be the optimal solution for MIP, and let wOPT =∑
iwif

∗
i be its optimal value. Let f̃i and f̃i,e, ∀i ∈ [k], e ∈ E, be the optimal solution

for the linear relaxation LP of MIP (i.e., when Constraints 4.6 are relaxed to 0 ≤

fi ≤ 1, ∀i); let wLP =
∑

iwif̃i denote the value of the optimal (fractional) solution

of LP.
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4.2 Algorithm

Algorithm 2 is a generalization of the algorithm in Liu et al. (2019) to accom-

modate non-uniform commodity demands and weights. First, we solve LP to obtain

an optimal relaxed solution for the total fractions of the flow for commodity i, f̃i,

being routed, and for the fractions of f̃i being routed through edge e, namely, f̃i,e,

for all i and e. We then use randomized rounding to round the fraction f̃i of di to

fi = 1, with probability f̃i, and to 0 otherwise. If we set fi to 1, then in order to

satisfy flow conservation constraints (Constraints 4.2), we need to rescale all the f̃i,e

values by 1/f̃i, obtaining the flows fi,e in accordance with the MIP constraints (if

fi = 0 then fi,e = 0, for all e ∈ E). We repeat the randomized rounding steps, Steps

3-4, in Algorithm 2 for Θ(log n) iterations until we obtain a throughput within the

desired α bound, amplifying the probability of getting a desired outcome (we will

show later that in each execution of Steps 3-4 of the algorithm, the probability of

violating some edge capacity by more than O(log n) is very small, basically at most

1/n). Algorithm 2 clearly runs in polynomial time overall.

4.3 Analysis

In this section, we analyze the theoretical bounds for both α and β in our gener-

alized framework. We state below (in Fact 3) the exact formulation of the variation

of Chernoff-type bounds that we will use in our analysis, both when proving the

approximation bounds on throughput for Algorithm 2 (Theorem 2) and when pre-

senting our derandomization framework in Section 5. The proofs of this variant of

Chernof’s bound for non-Poisson binary random variables is given in the Chapter 3

but similar bounds can also be found in classic textbooks as, e.g., Mitzenmacher and

Upfal (2017).
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Fact 3. Let X be the sum of k independent random variables X1, . . . , Xk with Xl ∈

[0, 1] for l ∈ [k]. Denoting by µ̃l ≤ µl = Ex (X`) lower bounds on the expected value of

random variable Xl, l ∈ [k], the following holds for any δ ∈ (0, 1) with µ̃ =
∑

l∈[k] µ̃l

and θ = ln(1− δ);

Pr (X ≤ (1− δ) · µ̃)
(a)

≤ e−θ·(1−δ)·µ̃ ·
∏
l∈[k]

Ex
(
eθ·Xl

) (b)

≤ e−δ
2·µ̃/2 (4.7)

We are now ready to state our main result bounding the throughput approxima-

tion, in the presence of non-uniform commodity demands and weights:

Theorem 2. The probability of achieving less than 1 − 2/3 ·
√
wmax/wLP ≥ 1/3 of

the maximum throughput is at most e−2/9 ≤ 65/81, for n ≥ 9.

Proof. We must calculate the difference between the throughput wALG and the ex-

pected throughput Ex (wALG) = wLP =
∑

iwif̃i of Algorithm 2 to observe α and the

related probabilities. Let wmax = maxiwi. We can w.l.o.g.1 assume that each of the

k commodities can be satisfied if routed by itself in G, and hence wOPT ≥ wmax.

We define the following (normalized) variables: Let Xi = wi/wmax if commodity i is

routed and Xi = 0 otherwise. Then Pr (Xi = wi/wmax) = f̃i and Pr (Xi = 0) = 1− f̃i.

Let X =
∑

iXi. Then we have Ex (X) =
∑

i Ex (Xi) =
∑

i f̃i · wi/wmax and that

wALG = X · wmax. Since Ex (wALG) = wLP is an upper bound on the optimal achiev-

able throughput wOPT , we also have wmax ≤ wOPT ≤ wLP .

Noting that the variables Xi conform with the requirements of Fact 3 and setting

δ = 2/3 ·
√
wmax/wLP and µ̃ = Ex (wALG) /wmax = wLP/wmax = Ex (X), we obtain

Pr
(
X < (1− 2/3 ·

√
wmax/wLP ) · Ex (X)

)
≤ e−2/9

1Without loss of generality.
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As wALG = X · wmax, we have

Pr (wALG < (1− δ) · wLP ) ≥ Pr (wALG < (1− δ) · wOPT )

which in turn implies that

Pr
(
wALG < (1− 2/3 ·

√
wmax/wLP ) · wOPT

)
≤ e−2/9

Lastly, by using the Taylor series expansion of the function f(x) = ex, we obtain that

ex ≤ 1 + x+ x2/2 holds for x < 0. Accordingly, e−2/9 ≤ 65/81 holds.

Now, we bound the edge capacity violation ratio of a single iteration of Steps

3-4 of Algorithm 2. We will use the Bernstein concentration bound (as stated in

Fact 4.3; Boucheron et al. (2013b)) in order to prove a logarithmic bound on the

edge capacity violation ratio while also handling non-uniform demands and weights,

generalizing and improving the bounds in Liu et al. (2019).

Bernstein Concentration Bound: Given is a collection {Yl}l∈[k] of k ∈ N

independent binary random variables, i.e., Yl ∈ {0, 1}, with µl = Ex (Yl) for l ∈ [k].

Let Xl = al · Yl for constant 0 < al ≤ M . The following holds for any t > 0 with

θ =
(

t∑
l∈[k] a

2
l ·(µl−µ

2
l )+M ·

t
3

)
:

Pr

∑
l∈[k]

(Xl − Ex (Xl)) ≥ t

 (a)

≤e−θ·t ·
∏
l∈[k]

Ex
(
eθ·(Xl−Ex(Xl))

)
(b)

≤ exp

(
− t2/2∑

l∈[k] a
2
l · (µl − µ2

l ) +M · t/3

)
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This brings us to our edge capacity violation theorem:

Theorem 3. Given an edge e ∈ E, consider the total flow F e =
∑

i difi,e on e, where

fi,e is the flow on edge e for commodity i, resulting from one iteration of Steps 3-4 of

Algorithm 2. The probability that F e exceeds ce by a factor of at least (1 + j log n) is

upper bounded by 1/nj, where j ≥ 6
logn

.

Proof. Fix an edge e ∈ E and a commodity i ∈ [k]. With probability 1− f̃i, the flow

on edge e for commodity i is set to 0, i.e., fi,e = 0. With probability f̃i, the flow on

edge e for commodity i is set to f̃i,e · 1
f̃i
· di. Then the expected value of fi and the

flow for commodity i on edge e are respectively

Ex (fi) = f̃i, and Ex (fi,e · di) = di · ((f̃i,e ·
1

f̃i
) · f̃i + 0 · (1− f̃i)) = f̃i,e · di (4.8)

We have that F e =
∑

i fi,e · di and that Ex (F e) =
∑

i,f̃i,e 6=0 f̃i,e · di ≤ ce. In

order to bound Pr (F e ≥ (1 + j log n) · ce), we apply Bernstein’s inequality as stated

in Fact 4.3 with

1. Indicator r.v. Yi, for all i ∈ [k], such that Yi = 1 if fi = 1, and 0 otherwise; it

follows that µi = Ex (Yi) = f̃i

2. Constants ai =
f̃i,e·di
f̃i

,∀i ∈ [k]

3. ConstantM = maxi ai = maxi
f̃i,e·di
f̃i
≤ ce (inequality follows from Constraint 4.4

of LP)

4. Parameter t = (j log n) · ce, where j is a positive constant.

Let the exponent on the upper bound given by Bernstein’s inequality in Equation 3.37

be z, which upon substituting the above values becomes

z = − (j log n)2 · c2
e

2
∑

i

f̃2i,e·d2i
f̃2i

(f̃i − f̃ 2
i ) + [2 maxi(

f̃i,e·di
f̃i

) · (j log n) · ce]/3
(4.9)
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Since
f̃i,e·di
f̃i
≤ ce, we obtain

z ≤ − (j log n)2 · c2
e

2
∑

i ce(
f̃i,e·di
f̃i

)f̃i(1− f̃i) + (2jc2
e log n)/3

≤ − (j log n)2 · c2
e

2ce
∑

i f̃i,e · di + (2jc2
e log n)/3

(4.10)

where we arrive at the second inequality by bounding (1− f̃i) by 1. Since
∑

i dif̃i,e ≤

ce, we obtain

z ≤− (j log n)2 · c2
e

2c2
e + (2jc2

e log n)/3
= − 3(j log n)2

6 + 2j log n
(4.11)

If we assume that 6 ≤ j log n, which holds e.g. for any j ≥ 2 and n ≥ 8, we have

z ≤− 3(j log n)2

j log n+ 2j log n
≤ −(j log n)2

j log n
= −j log n (4.12)

We now upper bound the failure probability as follows:

Pr

∑
i∈[k]

(Xi − Ex (Xi)) ≥ t

 = (4.13)

=Pr

∑
i∈[k]

(
f̃i,e · di
f̃i

· fi − Ex

(
f̃i,e · di
f̃i

· fi

))
≥ t

 = (4.14)

=Pr

∑
i∈[k]

fi,edi − Ex

∑
i∈[k]

fi,edi

 ≥ (j log n) · ce

 ≤ e−j logn (4.15)

Hence, since Ex (Fe) ≤ ce,

Pr (F e − Ex (F e) ≥ (j log n) · ce) ≤ e−j logn ⇒ Pr (F e ≥ (1 + j log n) · ce) ≤
1

nj

(4.16)

23



This result is for a particular edge e. To extend this result for the entire network

G, we compute the union bound over all edges, of which there are at most n2. Thus,

we obtain the following bound for the edge capacity violation ratio β:

Corollary 1. The probability that one execution of Steps 3-4 of Algorithm 2 exceeds

any of the edge capacity constraints by a factor of at least (j log n+ 1) is at most 1
nj−2

for any constant j ≥ 3 and all n ≥ 4.

Using Theorem 2 and Corollary 1, we have that for j = 3 and any n ≥ 9, the

failure probability for a single round of execution of Steps 3-4 of the algorithm — i.e.

the probability of not finding a solution with a 1/3-approximation on the throughput

and an edge capacity violation ratio of (3 log n + 1) within a single round of the

randomized algorithm — is bounded from above by 65/81 + 1/9 = 74/81 (since

1/nj−2 = 1/n ≤ 1/9). The probability of finding a feasible solution within c log n

rounds of Algorithm 2, where c is a constant, is then bounded from below by 1 −

(74/81)c logn = 1 − 1
nb

, where b is a constant. Hence, Algorithm 2 gives a solution

with a 1/3-approximation on the throughput and an edge capacity violation ratio of

at most 3 log n+ 1 with high probability.

Hence, choosing j = 3 and assuming the number of nodes to be at least 9 to

satisfy the requirements of Corollary 1, we obtain our main result:

Theorem 4. Assuming n ≥ 9, the randomized rounding algorithm finds an (α, β)-

approximate solution with α = 1 − 2/3 ·
√
wmax/wLP ≥ 1/3 and β = (3 log n + 1)

within c log n iterations with high probability, where c is a positive constant.

24



Chapter 5

DERANDOMIZATION AND THE DETERMINISTIC APPROACH

In this Section, we give a deterministic approach of the same problem by the

derandomization of Algorithm 2. Our deterministic algorithm uses the method of

pessimistic estimators first introduced by Raghavan (1988) to efficiently compute

conditional expectations, which will guide the construction of the (α, β)-approximate

solution. Given the analysis in Section 4, in the forthcoming analysis, we always

assume α = 1 − 2/3 ·
√
wmax/Ex[wALG] = 1 − 2/3 ·

√
wmax/wLP ≥ 1/3 and β =

1 + 3 · log n.

5.1 Pessimistic Estimator

We first introduce the following notation. Let zi = 0 if Algorithm 2 has not

selected commodity i to be routed, and let zi = 1 if i was admitted. Now, let

fail(z1, . . . , zk) → {0, 1} denote the failure function of not constructing an (α, β)-

approximate solution, i.e., fail(z1, . . . , zk) = 1 if and only if the constructed solution

either does not achieve an α-fraction of the LP’s (weighted) throughput or some

edge’s capacity is exceeded by a factor larger than β. We use Zi to denote the {0, 1}-

indicator random variable for whether commodity i is routed or not in one execution

of Steps 3-4 of Algorithm 2, i.e., Pr (Zi = 1) = f̃i and Pr (Zi = 0) = 1− f̃i. We have

shown in Chapter 4 that Ex (fail(Z1, . . . , Zk)) < 1 holds, implying the existence of an

(α, β)-approximate solution. Given the above definitions, we employ the following

notation to denote the conditional expectation of a function f : {0, 1}k → {0, 1}:

Ex (fail(z1, . . . , zi, Zi+1, . . . , Zk)) = Pr (fail(Z1, . . . , Zk) = 1 | Z1 = z1, . . . , Zi = zi) .
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As computing Ex (fail(z1, . . . , zi, Zi+1, . . . , Zk)) is generally computationally pro-

hibitive, we will now derive a pessimistic estimator est : {0, 1}k → R≥0, such that the

following holds for all i ∈ [k] and all (z1, . . . , zi) ∈ {0, 1}i:

Upper Bound

Ex (fail(z1, . . . , zi, Zi+1, . . . , Zk)) ≤ Ex (est(z1, . . . , zi, Zi+1, . . . , Zk)) (5.1)

Efficiency

Ex (est(z1, . . . , zi, Zi+1, . . . , Zk)) can be computed efficiently. (5.2)

Furthermore, the estimator’s value must initially always lie strictly below 1 to

perform the derandomization:

Base Case

Ex (est(Z1, . . . , Zk)) < 1 holds initially. (5.3)

5.2 Algorithm

In the following, we discuss how such a pessimistic estimator is used to deran-

domize the decisions of Algorithm 2 before introducing the actual estimator estαβ in

Lemma 5. Algorithm 3 first computes an LP solution just as Algorithm 2, but then

uses the pessimistic estimator to guide its decision towards deterministically con-

structing an approximate solution. Specifically, each commodity is either routed or

rejected such that the conditional expectation Ex
(
estαβ(z1, ..., zi, Zi, ..., Zn)

)
is mini-

mized. Given that initially Ex
(
estαβ(Z1, . . . , Zk)

)
< 1, this procedure terminates with

a solution (z1, . . . , zk) such that the failure function fail(z1, . . . , zk) is strictly upper

bounded by 1. Specifically, 1 > Ex
(
estαβ(Z1, . . . , Zk)

)
≥ Ex

(
estαβ(z1, Z2, . . . , Zk)

)
≥

. . . ≥ Ex
(
estαβ(z1, . . . , zk)

)
is guaranteed and therefore, for the binary function fail,
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fail(z1, . . . , zk) = 0 must hold. Furthermore, the algorithm is efficient (i.e., runs in

polynomial time) as long as the pessimistic estimator function estαβ can be evaluated

in polynomial time. W.l.o.g., we assume that only commodities that can be satisified

in G are given as input to Algorithm 3.

Algorithm 3: Deterministic Approximation for the ANF Problem

Input : Directed Graph G(V,E)

Source-Sink Pair (si, ti) for each satisfiable commodity i ∈ [k]

Capacity c(u, v) ∀(u, v) ∈ E

Estimator estαβ : {0, 1}k → R≥0 for obtaining an (α, β)-approximate

sol.

Output: (α, β)-approximate solution to the ANF instance

1 compute optimal solution ~̃f to LP (linear relaxation of MIP 1)

2 let the {0, 1}-random variable Zi be such that Pr (Zi = 1) = f̃i and

Pr (Zi = 0) = 1− f̃i, for all i ∈ [k]

3 compute failure estimate← Ex
(
estαβ(Z1, ..., Zi−1, Zi, ..., Zn)

)
4 foreach i ∈ [k] do // iterate over all commodities

5 if Ex
(
estαβ(z1, . . . , zi−1, 0, Zi+1, ..., Zn)

)
< failure estimate then

6 set zi ← 0 // commodity i is not routed

7 else

8 set zi ← 1 // commodity i is routed

9 update failure estimate← Ex
(
estαβ(z1, . . . , zi, Zi+1, . . . , Zn)

)
10 return solution pertaining to selection ~z:

if zi = 1 then fi = 1 and fi,e = f̃i,e/f̃i, otherwise fi = fi,e = 0, for i ∈ [k]
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5.3 Analysis

Given the above intuition, we now introduce the following specific pessimistic

estimator estαβ for which we will prove the above three correctness criteria (upper

bound, efficiency, base case).

Lemma 5 (Pessimistic Estimator for the ANF). The function estαβ introduced below

is a pessimistic estimator for the ANF.

estαβ(Z1, . . . , Zk) = estα(Z1, . . . , Zk) +
∑

(u,v)∈E

est
(u,v)
β (Z1, . . . , Zk)

where estα(Z1, . . . , Zk) = e−θα·(1−δ)·µ̃ ·
∏
i

Ex
(
eθα·Zi·wi/wmax

)
,

with δ = 2/3 ·
√
wmax/wLP , µ̃ = wLP/wmax , θα = ln(1− δ),

and est
(u,v)
β (Z1, . . . , Zk) = e−θβ(u,v)·t(u,v) ·

∏
i

Ex
(
eθβ(u,v)·(Zi−Ex(Zi))

)
with t(u, v) = 4 · log n · c(u,v) , ai(u, v) = di · f̃i,(u,v)/f̃i , and

θβ(u, v) = t(u, v)/

(∑
i

(
ai(u, v)

(
Ex (Zi)− Ex (Zi)

2))+ max
i
ai(u, v) · t(u, v)/3

)
Proof. The following three properties are to be shown: (i) upper bound, (ii) efficiency,

and (iii) base case (cf. Equations 5.1 - 5.3). We first discuss properties (i) and (iii).

The analysis in Chapter 4 has demonstrated that the probability of obtaining

an (α, β)-approximate solution via randomized rounding is bounded from below by

1− 74/81. To obtain this result, a union bound argument was employed, which used

probabilistic bounds on not achieving at least an α fraction of the optimal throughput

and exceeding the capacity of each single edge by a factor of β.
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For the throughput, the Chernoff bound of Theorem 3 was applied, while for

each edge’s capacity violation, the Bernstein bound of Theorem 4.3 was used. The

pessimistic estimators estα and est
(u,v)
β are a direct result of these respective theorems:

• estα is obtained from the application of the Chernoff bound of Theorem 3 within

the proof of Theorem 2. Specifically, the application of the Chernoff bound in

Theorem 2 yielded the following — restated over the variables Zi, with through-

put given by
∑

i Zi (=
∑

i fi) — with the parameters δ, θα and µ̃ as specified

above:

Pr

∑
i∈[k]

Zi < α · wOPT

 ≤ e−θα·(1−δ)·µ̃ ·
∏
i∈[k]

Ex
(
eθα·Zi·wi/wmax

)
≤ e−2/9 ≤ 65/81

The middle expression directly yields the pessimistic estimator for the through-

put.

• est
(u,v)
β is analogously obtained from the application of the Bernstein bound of

Theorem 4.3 within the proof of Theorem 3 for each edge (u, v) ∈ E. Specifi-

cally, for a single edge (u, v), the following is obtained when setting j = 3 and

using the constants defined above:

Pr

∑
i∈[k]

fi,(u,v) > β · c(u, v)

 ≤ e−θβ ·t(u,v) ·
∏
i∈[k]

Ex
(
eθβ ·(Zi−Ex(Zi))

)
≤ n−3

Again, the middle expression is used to obtain the pessimistic estimator est
(u,v)
β

for the specific edge (u, v) ∈ E.

Revisiting the union bound argument, we obtain that estαβ indeed yields an upper

bound on the failure probability to construct an (α, β)-approximate solution, and

that initially Ex
(
estαβ(Z1, . . . , Zk)

)
≤ 65/81 + n−1 < 1 holds for n ≥ 9. This shows

that properties (i) and (iii) are satisfied.
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Considering the efficiency property (ii), we note the following. Both estα and

est
(u,v)
β consist of products, where expectations for different commodities can be com-

puted independently. Given the binary nature of the variables Zi, these expectations

can be computed in constant time.

Theorem 5. Using estαβ as a pessimistic estimator, the derandomized algorithm is a

deterministic (α, β)-approximation for the ANF with α = 1−2/3 ·
√
wmax/wLP ≥ 1/3

and β = 1 + 3 log n for n ≥ 9.
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Chapter 6

TRADING OFF THROUGHPUT AND CAPACITY VIOLATIONS

The deterministic approximations for the ANF given, achieve a throughput of α ≥ 1/3

and violate edge capacities by the logarithmic term β ∈ O(log n). In the following,

we discuss trading off the respective approximation objectives. Specifically, we show

that by scaling the capacities by a factor 0 < c ≤ 1, a (c · α, c · β)-approximation can

be obtained whenever the achieved throughput is not rendered too small.

We first discuss the changes pertaining to the randomized algorithm 2. After

pruning requests that cannot be embedded and computing the LP in Line 2, the flow

values are scaled by the factor 0 < c ≤ 1 by setting f̃ ′i = c · f̃i and f̃ ′i,e = c · f̃i,e.

After scaling the flows, the scaled solution is valid with respect to the scaled down

capacities c′e = c · ce and demands d′i = c · di. In the rounding phase of the algorithm,

we round each flow f ′i to 1 with probability f̃ ′i = c · f̃i and zero otherwise. If f ′i = 1

then f ′i,e = f̃ ′i,e/f̃
′
i and zero otherwise. This modified algorithm achieves a throughput

w′ALG such that Ex (w′ALG) = c · wLP .

A commodity was said to be valid for our solution only if it could be routed when

present alone in the network. Note that, in the scaled solution all commodities may

no longer be valid with respect to the new capacities. For the analysis in Theorem 2

to hold for the scaled down flows, we only only require that wmax ≤ c · wLP holds

as we show in Theorem 6. Assuming this condition to hold, the subsequent analyses

remain valid and by randomized rounding a (α, β)-approximate solution regarding to

the scaled down capacities and scaled down flows is obtained.
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Reinterpreting the scaled solution with respect to the original capacities and the

originally achieved LP throughput, it is easy to check that the obtained solution is

indeed (c · α, c · β)-approximate as we have shown in our proofs for Theorems 6 and

7.

Theorem 6. After scaling the capacities of all the edges by a factor 0 < c ≤ 1,

the probability of achieving less than (1
3
· c) of the maximum throughput is at most

e−2/9 ≤ 65/81, for n ≥ 9.

Proof. We must calculate the difference between the throughput w′ALG and the ex-

pected throughput Ex (w′ALG) =
∑

iwi(c · f̃i) = c · wLP of Algorithm 2 to observe

α and the related probabilities. Let wmax = maxiwi. As assumed earlier, we con-

tinue with the proof taking wmax ≤ c · wLP . We define the following (normalized)

variables: Let X ′i = wi/wmax if commodity i is routed and X ′i = 0 otherwise. Then

Pr (X ′i = wi/wmax) = c · f̃i and Pr (X ′i = 0) = 1− (c · f̃i). Let X ′ =
∑

iX
′
i. Then we

have that Ex (X ′) =
∑

i Ex (X ′i) =
∑

i(c · f̃i) ·wi/wmax and that w′ALG = X ′ ·wmax. We

also know that wLP is an upper bound on the optimal achievable throughput wOPT .

Noting that the variables X ′i conform with the requirements of Fact 3 and setting

δ = 2/3 ·
√
wmax/c · wLP and µ̃ = Ex (w′ALG) /wmax = c · wLP/wmax = Ex (X ′), we

obtain

Pr
(
X ′ < (1− 2/3 ·

√
wmax/c · wLP ) · Ex (X ′)

)
≤ e−2/9

As w′ALG = X ′ · wmax and c · wLP/wmax = Ex (X ′), we have

Pr (w′ALG < (1− δ) · (c · wLP )) ≥ Pr (w′ALG < c · (1− δ) · wOPT )

Since, δ ≤ 2/3 due to our assumption that wmax ≤ c · wLP , it follows that:

Pr

(
w′ALG < (

1

3
· c) · wOPT

)
≤ e−2/9
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Lastly, by using the Taylor series expansion of the function g(x) = ex, we obtain that

ex ≤ 1 + x+ x2/2 holds for x < 0. Accordingly, e−2/9 ≤ 65/81 holds.

Theorem 7. After scaling the capacities of all the edges by a factor 0 < c ≤ 1 such

that the new capacities are now denoted by c′e = c · ce, given an edge e ∈ E, consider

the total flow F ′e =
∑

i d
′
if
′
i,e on e, where fi,e is the flow on edge e for commodity

i, resulting from one iteration of Steps 3-4 of Algorithm 2. The probability that F ′e

exceeds ce by a factor of at least c · (1 + j log n) is upper bounded by 1/nj, where

j ≥ 6
logn

.

Proof. Fix an edge e ∈ E and a commodity i ∈ [k]. With probability 1− (c · f̃i), the

flow on edge e for commodity i is set to 0, i.e., f ′i,e = 0. With probability (c · f̃i), the

flow on edge e for commodity i is set to f̃i,e · 1
f̃i

. Then the expected value of f ′i and

the flow for commodity i on edge e are respectively

Ex (f ′i) = c·f̃i, and Ex
(
f ′i,e · d′i

)
= d′i ·((f̃i,e ·

1

f̃i
)·c·f̃i+0·(1−(c·f̃i))) = c·f̃i,e ·d′i (6.1)

We have that F e =
∑

i f
′
i,e · d′i and that Ex (F e) =

∑
i,f̃i,e 6=0 f̃

′
i,e · d′i ≤ c′e. In order

to bound Pr (F e ≥ c · (1 + j log n) · ce), we apply Bernstein’s inequality as stated in

Fact 4.3 with

1. Indicator r.v. Yi, for all i ∈ [k], such that Yi = 1 if f ′i = 1, and 0 otherwise; it

follows that µi = Ex (Yi) = c · f̃i = f̃ ′i

2. Constants ai =
f̃ ′i,e·d′i
f̃ ′i

,∀i ∈ [k]

3. ConstantM = maxi ai = maxi
f̃ ′i,e·d′i
f̃ ′i
≤ c′e (inequality follows from Constraint 4.4

of LP)

4. Parameter t = (j log n) · c′e, where j is a positive constant.
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Let the exponent on the upper bound given by Bernstein’s inequality in Equation 3.37

be z, which upon substituting the above values becomes

z = − (j log n)2 · c′2e
2
∑

i

f̃ ′2i,e·d′2i
f̃ ′i

2 (f̃ ′i − f̃ ′2i ) + [2 maxi(
f̃ ′i,e·d′i
f̃ ′i

) · (j log n) · c′e]/3
(6.2)

Since
f̃i,e·d′i
f̃i
≤ c′e, we obtain

z ≤ − (j log n)2 · c′2e
2
∑

i c
′
e(
f̃ ′i,e·d′i
f̃ ′i

) · f̃ ′i(1− f̃ ′i) + (2
3
jc′e

2 log n)
≤ − (j log n)2 · c′2e

2c′e
∑

i f̃
′
i,e · d′i + (2

3
jc′e

2 log n)

(6.3)

where we arrive at the second inequality by bounding (1− f̃ ′i) by 1.

Since
∑

i d
′
if̃
′
i,e ≤ c′e, we obtain

z ≤− (j log n)2 · c′2e
2c′e

2 + (2jc′e
2 log n)/3

= − 3(j log n)2

6 + 2j log n
(6.4)

If we assume that 6 ≤ j log n, which holds e.g. for any j ≥ 2 and n ≥ 8, we have

z ≤− (j log n)2

j log n+ 2j log n
≤ −(j log n)2

j log n
= −j log n (6.5)

We now upper bound the failure probability where Xi = ai · Yi as follows:

Pr

∑
i∈[k]

(Xi − Ex (Xi)) ≥ t

 = (6.6)

=Pr

∑
i∈[k]

(
f̃ ′i,e · d′i
f̃ ′i

· f ′i − Ex

(
f̃ ′i,e · d′i
f̃ ′i

· f ′i

))
≥ t

 = (6.7)

=Pr

∑
i∈[k]

f ′i,ed
′
i − Ex

∑
i∈[k]

f ′i,ed
′
i

 ≥ (j log n) · ce

 ≤ e−j logn (6.8)

Hence, since Ex (F ′e) ≤ ce and c′e = c · ce,

Pr (F ′e − Ex (F ′e) ≥ (j log n) · c′e) ≤ e−cj logn ⇒ Pr (F ′e ≥ c · (1 + j log n) · ce) ≤
1

nj

(6.9)
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We are now ready to state our main result bounding the throughput approxima-

tion, in the presence of non-uniform commodity demands and weights. Given our

above argument, we state the following:

Theorem 8. By scaling the flows by a factor 0 < c ≤ 1, a deterministic (c · α, c · β)-

approximation for the ANF is obtained with α = 1 − 2/3 ·
√
wmax/wLP ≥ 1/3 and

β = 1 + 3 log n for n ≥ 9 as long as c · wLP ≥ wmax holds.

Assuming that all commodities can be routed using only a Θ(log n)-fraction of

the capacities, the following corollary is obtained:

Corollary 2. Assuming that all commodities are routable using an Θ(log n) fraction

of the original capacities in the absence of other commodities, then a (1/Θ(log n),Θ(1))-

approximate solution can be computed by scaling the flows by 1/Θ(log n) before round-

ing.
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Chapter 7

IMPLEMENTATION AND EXPERIMENTAL EVALUATION

7.1 Experiment Datasets

This section elaborates on the datasets we use to perform our experiments on, for

both the Randomized and Derandomized algorithms.

Germany 50 Network

One of the networks that we use was the Germany 50 Network that we obtained

from SNDLib; Orlowski et al. (2010). This network comprises of 50 nodes and 88

edges. There are 662 commodities to route through this network. The edge capacity

of each of the edges given is 40. Also, we set the demands of all the commodities

in general to be 50 and the weights to be 1. Later in our experiments we modify

the weights and demands. This graph was originally used for a research project on

telecommunication network operators in Germany. The topology of this graph as

presented in Orlowski et al. (2010) is shown in Figure 7.1.

Figure 7.1: Topology of Germany 50 Network
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Atlanta Network

Another network that we took was the Atlanta network which is again from

SNDLib; Orlowski et al. (2010). This represents an ATM network in Los Angeles.

The topology of the network as given by Orlowski et al. (2010) is shown in Figure

7.2. It is a relatively sparser graph than Germany 50 and has 15 nodes and 22 edges.

We need to route 210 commodities through this network and we assigned the demand

for each commodity to be 50 and the weight for each to be 1. Also, the capacity for

each edge is 40. We will have experiments later which modify these graphs to have

varying demands, weights or edge capacities.

Figure 7.2: Topology of Atlanta Network
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7.2 Randomized Algorithm Results

This section focuses on the implementation of our randomized algorithm, the code

for which is present in Appendix A.1. There are less than 200 lines of code (CPLEX

12.10 and Python) which strengthens our claim of the algorithm being really simple

to implement and execute. The implementation time varies depending on the graph.

The run time is only 30 seconds for the Atlanta graph with 1000 iterations of the

randomized rounding while for the Germany-50 graph takes about 30 minutes. We

will elaborate more on the specific experiments carried out in the following section.

(α,β) Distribution

For the first experiment, we repeated the randomized rounding involved in our

algorithm 1000 times and recorded the α and β values calculated for each iteration.

The first graph as depicted in Figure 7.3 shows the distribution of (α, β) over these

iterations on the Germany 50 Network. Similarly, we see the distribution for the

Atlanta Network in Figure 7.4. The star denotes the optimal value i.e., both α and

β are 1 and is only for display purposes. The triangle denotes the result we obtained

from our deterministic algorithm. We have proven that theoretically our β can be

proportional to 1 + 3 log n which for the German 50 Network is 12.74 and 9.1 for the

Atlanta Network. However, here in the graphs we see it is much less in practice both

for the randomized and deterministic algorithm.

38



Figure 7.3: (α,β) – distribution for Germany 50 Network

Figure 7.4: (α,β) – distribution for Atlanta Network
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(α,β) Distance

Further, we calculate the (α, β) distance for each iteration i.e., the euclidean dis-

tance between each pair and the optimal value (1,1). This is plotted as a histogram

in Figure 7.5 for the German 50 Network where each block is of 0.05 range. Here, we

can see that all the values we receive are within 0.7 distance of the optimum value

and more than 90% within 0.55 distance. We can see the related histogram for the

Atlanta Network in Figure 7.6 where all the values we receive are within 0.55 distance

of the optimum value and more than 90% within 0.45 distance.

Figure 7.5: (α,β) – distances for Germany 50 Network
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Figure 7.6: (α,β) – distances for Atlanta Network

Varying Weights histogram

Next, for performing our experiment we change the weights that were all 1s till

now and assign weights from [1, 2, 3, 4] to each commodity so that there is an equal

distribution of commodities for each weight while keeping all demands to be 50. As we

described earlier in Chapter 1 through the video example, the weights are almost like

priorities assigned to each commodity as the larger weight commodities contribute

more to the objective function. We see a supporting trend over here. On plotting the

commodities which got routed as a histogram depending on the weights we can see

clearly in Figure 7.7 for the German 50 Network that the commodities with higher

weight were favoured even though all commodities had equal demands 50. We see a

similar trend for Atlanta Network in Figure 7.8.
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Figure 7.7: Routed Commodities Distribution based on Weight Groups - Germany

Figure 7.8: Routed Commodities Distribution based onWeight Groups - Atlanta
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Varying Demands histogram

We do a similar experiment again but now with varying demands and the same

weight 1 for each commodity. The commodities were uniformly divided into four

groups each having demands from [50, 60, 70, 80]. We know that a demand is propor-

tional to the amount of flow that a commodity requires in order to be satisfied. The

related histogram for the German 50 Network can be seen in Figure 7.9 and in Fig-

ure 7.10 for the Atlanta Network. We see that the lower demand commodities were

favoured more. This is because even though they contribute the same to the objec-

tive function but more commodities are routed if we have lower demand commodities

flowing through the network.

Figure 7.9: Routed Commodities Distribution based on Demand Groups - Germany
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Figure 7.10: Routed Commodities Distribution based on Demand Groups - Atlanta

7.3 Deterministic Algorithm Results

In this section, we present the results we obtained by running our deterministic al-

gorithm. We use the same two graphs as before even for this algorithm. The program

is of less than 250 lines of code but as a trade off for removing the randomization the

execution time for this is definitely more as compared to the randomized algorithm’s

implementation. The program takes less than 3 minutes to compute the result for

the Atlanta Network and we obtain α = 1.29 and β = 1.5 which are well within our

theoretical bounds. This has been shown in Figure 7.4.
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Figure 7.11: Decreasing Failure Estimate Function as we fix flow values - Atlanta

In our deterministic algorithm, we calculate an estimator function called fail-

ure estimate which we use as an upper bound on our failure probability. As we move

through this algorithm and set our flows for each commodity to be either 0 or 1 we

need to proceed in such a way that our estimator function value keeps reducing. We

confirm this by keeping a track of all the failure estimates calculated for each iteration

when we ran it for the Atlanta Network. We found the same to be monotonically

decreasing as can be seen in Figure 7.11.

We ran the algorithm similarly for the Germany 50 Network. This execution takes

about 4 hours however, the results we got were still within our theoretical bounds.

The α value was 1.34 and the β value was 1.75 as shown in Figure 7.3. We also

plotted the estimator value similar as before. The corresponding graph can be seen

in Figure 7.12.
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Figure 7.12: Decreasing Failure Estimate Function as we fix flow values - Germany

46



Chapter 8

CONCLUSION

We conclude by going over the major contributions made in this thesis work. First, we

present the first polynomial-time algorithm for the ANF problem with non-uniform

commodity demands and weights in arbitrary directed graphs, which achieves at most

a (poly)logarithmic violation ratio of the edge capacities while ensuring a constant ap-

proximation on the maximum throughput, with high probability. More specifically, we

present, a (1/3, 3 log n+1)-approximation algorithm for the ANF problem in arbitrary

directed graphs with arbitrary commodity demands and weights.

Second, we show how to derandomize our algorithm, based on pessimistic estima-

tors for Bernstein’s inequality (see Fact 4.3) which can be viewed as a generalization

of Chernoff’s bound. The derandomized algorithm also runs in polynomial time and

achieves the same approximation bounds as the randomized algorithm.

Lastly, our algorithms improve and generalize the randomized rounding framework

outlined in Liu et al. (2019), and hence are simpler and more practical than many of

the other approximation algorithms for the ANF problem that are based on Räcke

trees and other more complex hierarchical decompositions of fractional multicommod-

ity flows (see e.g., Chekuri et al. (2004)). This is confirmed by our implementation

and experiments for both algorithms elaborated in Chapter 7. Moreover, the im-

plementation generally provides better guarantees than our conservative analytical

bounds predict.
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APPENDIX A

CODE LISTING
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A.1 Randomized Algorithm

import matplotlib.pyplot as plt
import numpy as np
import docplex.mp.model as cpx
import random as rnd
from copy import deepcopy
import math
import time

#Notations for the paper
#f_{i} --> f_i_round
#f_{i,e} --> f_i_e_round
#\tilde{f_{i}} --> f_i_vars
#\tilde{f_{i,e}} --> f_i_e_vars

#temporary global values for Germany50 from SNDlib
v = 50
e = 88
k= 50
constant = 100
alpha = 1.0/3
beta = 1

#repeated randomized rounding function
def rounding(f_i_vars ,f_i_e_vars ,edges):

beta = 1
f_i_round = {}
f_i_e_round = {}
for i in range(k):

prob = rnd.uniform (0,1)
if prob <= f_i_vars[i]. solution_value:

f_i_round[i] = 1.0
#rescaling step
for edge in edges:

flow_edge = float(f_i_e_vars [(i,edge)].
solution_value)

flow_commodity = float(f_i_vars[i]. solution_value)
f_i_e_round [(i,edge)] = flow_edge/flow_commodity

else:
f_i_round[i] = 0.0
for edge in edges:

f_i_e_round [(i,edge)] = 0
return f_i_round , f_i_e_round

#main
opt_model = cpx.Model(name="MIP Model")

#Reading the graph file
fgraph = open("germany50converted.txt","r")
graph = fgraph.read().split("\n")[:-1]

#Segregating the respective values
sourcesink = []
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demands = []
weights = []
edges = [(i,j) for i in range(v) for j in range(v)]
capacity = []
for i in range(v):

row = []
for j in range(v):

row.append (0)
capacity.append(row)

for c in range(len(graph)):
temp = graph[c].split(",")
if c<k:

sourcesink.append ((int(temp [0]),int(temp [1])))
demands.append(float(temp [2]))
weights.append(float(temp [3]))

else:
capacity[int(temp [1])][int(temp [0])]= float(temp [2])

capacity = np.array(capacity)
print(capacity)

flows = []

for i in range(k):
row = []
for j in range(e):

row.append (0)
flows.append(row)

flows = np.array(flows)

# setting the constant edge capacities for the linear program
print("Adding the variables:")
start=time.time()
c_e = {edges[i]: capacity[edges[i][0]][ edges[i][1]] for i in range(v

**2)}

# setting the variable flow values for the linear program
f_i_vars = {i:opt_model.continuous_var(lb=0, ub=1, name="f_{0}".

format(i))

for i in range(k)}

f_i_e_vars = {(i,edge):opt_model.continuous_var(lb=0, name="f_{0}_
{1}".format(i,edge))

for i in range(k) for edge in edges}
end=time.time()
print("Time taken = ",end -start ," seconds")

# adding the constraints for the linear program
print("Now adding constraints:")
start=time.time()
constraint1 = {i :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,( sourcesink[i][0],j))] for j in range
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(v)) == f_i_vars[i],
ctname="constraint1_ {0}".format(i))

for i in range(k)}

constraint2 = {(i,j) :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,(a,j))] for a in range(v) ) ==

opt_model.sum(f_i_e_vars [(i,(j,a))] for a in range(v)),
ctname="constraint2_ {0}_{1}".format(i,j))

for i in range(k) for j in range(v) if j is not sourcesink[i][0]
and j is not sourcesink[i][1]}

#Constraint 3 for directed graph and varying demands
constraint3 = {(a,b) :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,(a,b))]* demands[i] for i in range(k)

) <= c_e[(a,b)] ,
ctname="constraint3_ {0}_{1}".format(a,b))

for a in range(v) for b in range(v)}

# Constraint 4 for varying demands
constraint4 = {(i,(a,b)) :
opt_model.add_constraint(
ct=f_i_e_vars [(i,(a,b))]* demands[i] <= c_e[(a,b)]* f_i_vars[i] ,
ctname="constraint4_ {0}_{1} ,{2}".format(i,a,b))

for i in range(k) for a in range(v) for b in range(v)}

constraint5 = {(i,(a,b)) :
opt_model.add_constraint(
ct=f_i_e_vars [(i,(a,b))] >= 0 ,
ctname="constraint5_ {0}_{1} ,{2}".format(i,a,b))

for i in range(k) for a in range(v) for b in range(v)}

# objective function for the linear program in presense of varying
weights

objective = opt_model.sum(weights[i]* f_i_vars[i]
for i in range(k))

end=time.time()
print("Time taken = ",end -start ," seconds")

# for maximization
opt_model.maximize(objective)

#for exporting the lp as text constraints
opt_model.export_as_lp("./model.lp")

#solving the linear program
print("Now solving:")
start=time.time()
opt_model.solve()
end=time.time()
print("Time taken = ",end -start ," seconds")
print("="*150)
#print lp results
print("The flow values assigned by the LP to each commodity are:")
x = {}
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[x.update ({i:f_i_vars[i]. solution_value }) for i in range(k)]
print(x)
print("\n")

print("The flow values for each edge assigned by the LP to each
commodity are:")

x=[tuple ([float(f_i_e_vars [(i,e)]. solution_value) for i in range(k)
]) for e in edges]

for i in range(v):
print(x[v*i:v*(i+1)])

print("\n")

print("The objective function value given by the LP is:",objective.
solution_value)

print("="*150)
rounds = constant * math.ceil(math.log(v))
round_obj =0.0

#Randomized Rounding
if(objective.solution_value !=0):

for t in range(rounds):
round_obj =0.0
f_i_round , f_i_e_round = rounding(f_i_vars ,f_i_e_vars ,edges)
for key in f_i_round.keys():

round_obj += f_i_round[key]* weights[key]
temp_alpha = float(round_obj)/float(objective.solution_value

)
if temp_alpha >= alpha:

alpha = temp_alpha
break

else:
print("Objective function value is zero!")
exit()

#Calculating Beta
for e in edges:

f_e=0
if c_e[e] != 0:

for i in range(k):
f_e+= f_i_e_round[i,e]* demands[i]

if f_e >c_e[e]:
temp_beta = float(f_e)/float(c_e[e])
if temp_beta > beta:

beta = temp_beta

print("The flow values assigned by the randomized algorithm to each
commodity are:")

print(f_i_round)
print("\n")

print("The flow values for each edge assigned by the randomized
algorithm to each commodity are:")

x=[tuple ([ f_i_e_round [(i,e)] for i in range(k)]) for e in edges]
for i in range(v):

print(x[v*i:v*(i+1)])
print("\n")
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print("The objective function value given by the algorithm is:",
round_obj )

print("Alpha is calculated as ",alpha)

print("Beta is calculated as ",beta)

print("="*150)

A.2 Derandomized Algorithm

import matplotlib.pyplot as plt
import numpy as np
import docplex.mp.model as cpx
import random as rnd
from copy import deepcopy
import math
import time
from estimators import * #for calculating pessimistic estimators for

derandomization
from tqdm import tqdm
#Notations for the paper
#f_{i} --> f_i_round
#f_{i,e} --> f_i_e_round
#\tilde{f_{i}} --> f_i_vars
#\tilde{f_{i,e}} --> f_i_e_vars

#temporary global values for Germany50 from SNDlib
v = 50
e = 88
k= 662
constant = 100
alpha = 1.0/3
beta = 1

#main
opt_model = cpx.Model(name="MIP Model")

#Reading the graph file
fgraph = open("data/germany50converted.txt","r")
graph = fgraph.read().split("\n")[:-1]

#Segregating the respective values
sourcesink = []
demands = []
weights = []
edges = [(i,j) for i in range(v) for j in range(v)]
capacity = []
for i in range(v):

row = []
for j in range(v):

row.append (0)
capacity.append(row)

for c in range(len(graph)):
temp = graph[c].split(",")
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if c<k:
sourcesink.append ((int(temp [0]),int(temp [1])))
demands.append(float(temp [2]))
weights.append(float(temp [3]))

else:
capacity[int(temp [1])][int(temp [0])]= float(temp [2])
capacity[int(temp [0])][int(temp [1])]= float(temp [2])

capacity = np.array(capacity)
print(capacity)

flows = []

for i in range(k):
row = []
for j in range(e):

row.append (0)
flows.append(row)

flows = np.array(flows)

# setting the constant edge capacities for the linear program
print("Adding the variables:")
start=time.time()
c_e = {edges[i]: capacity[edges[i][0]][ edges[i][1]] for i in range(v

**2)}

# setting the variable flow values for the linear program
f_i_vars = {i:opt_model.continuous_var(lb=0, ub=1, name="f_{0}".

format(i))

for i in range(k)}

f_i_e_vars = {(i,edge):opt_model.continuous_var(lb=0, name="f_{0}_
{1}".format(i,edge))

for i in range(k) for edge in edges}
end=time.time()
print("Time taken = ",end -start ," seconds")

# adding the constraints for the linear program
print("Now adding constraints:")
start=time.time()
constraint1 = {i :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,( sourcesink[i][0],j))] for j in range

(v)) == f_i_vars[i],
ctname="constraint1_ {0}".format(i))

for i in range(k)}

constraint2 = {(i,j) :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,(a,j))] for a in range(v) ) ==

opt_model.sum(f_i_e_vars [(i,(j,a))] for a in range(v)),
ctname="constraint2_ {0}_{1}".format(i,j))

for i in range(k) for j in range(v) if j is not sourcesink[i][0]
and j is not sourcesink[i][1]}
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#Constraint 3 for directed graph and varying demands
constraint3 = {(a,b) :
opt_model.add_constraint(
ct=opt_model.sum(f_i_e_vars [(i,(a,b))]* demands[i] + f_i_e_vars [(i,(b

,a))]* demands[i] for i in range(k)) <= c_e[(a,b)] ,
ctname="constraint3_ {0}_{1}".format(a,b))

for a in range(v) for b in range(v)}

# Constraint 4 for varying demands
constraint4 = {(i,(a,b)) :
opt_model.add_constraint(
ct=f_i_e_vars [(i,(a,b))]* demands[i] <= c_e[(a,b)]* f_i_vars[i] ,
ctname="constraint4_ {0}_{1} ,{2}".format(i,a,b))

for i in range(k) for a in range(v) for b in range(v)}

constraint5 = {(i,(a,b)) :
opt_model.add_constraint(
ct=f_i_e_vars [(i,(a,b))] >= 0 ,
ctname="constraint5_ {0}_{1} ,{2}".format(i,a,b))

for i in range(k) for a in range(v) for b in range(v)}

# objective function for the linear program in presense of varying
weights

objective = opt_model.sum(weights[i]* f_i_vars[i]
for i in range(k))

end=time.time()
print("Time taken = ",end -start ," seconds")

# for maximization
opt_model.maximize(objective)

#solving the linear program
print("Now solving:")
start=time.time()
opt_model.solve()
end=time.time()
print("Time taken = ",end -start ," seconds")
print("="*150)
#print lp results
print("The flow values assigned by the LP to each commodity are:")
x = {}
[x.update ({i:f_i_vars[i]. solution_value }) for i in range(k)]
print(x)
print("\n")

print("The flow values for each edge assigned by the LP to each
commodity are:")

x=[tuple ([float(f_i_e_vars [(i,e)]. solution_value) for i in range(k)
]) for e in edges]

for i in range(v):
print(x[v*i:v*(i+1)])

print("\n")

print("The objective function value given by the LP is:",objective.
solution_value)
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print("="*150)

if(objective.solution_value ==0):
print("Objective function value is zero!")
exit()

flows = []
w_lp = 0

for i in range(k):
flows.append(f_i_vars[i]. solution_value)
w_lp += weights[i]*( f_i_vars[i]. solution_value)

edgeflows = {}

for i in range(k):
for edge in edges:

edgeflows [(i,edge)] = f_i_e_vars [(i,edge)]. solution_value

f_i_vars_val = deepcopy(flows)
f_i_e_vars_val = deepcopy(edgeflows)
failure_estimate = estimator_alphabeta(f_i_vars_val ,f_i_e_vars_val ,

flows ,edgeflows ,demands ,weights ,c_e ,w_lp)
print(-1, failure_estimate)
failest_csv = open("data/germany_failest.csv","w")
failest_csv.write("commodity ,failure_estimate\n")
failest_csv.write(f" -1,{ failure_estimate }\n")
for i in tqdm(range(k)):

tempflows = deepcopy(flows)
tempedgeflows = deepcopy(edgeflows)
tempflows[i] = 0
for edge in edges:

tempedgeflows [(i,edge)] = 0
temp_estimate = estimator_alphabeta(f_i_vars_val ,f_i_e_vars_val ,

tempflows ,tempedgeflows ,demands ,weights ,c_e ,w_lp)
if(temp_estimate <= failure_estimate):

flows[i] = 0
for edge in edges:

edgeflows [(i,edge)] = 0

else:
for edge in edges:

edgeflows [(i,edge)] = edgeflows [(i,edge)]/float(flows[i
])

flows[i] = 1

failure_estimate = estimator_alphabeta(f_i_vars_val ,
f_i_e_vars_val ,flows ,edgeflows ,demands ,weights ,c_e ,w_lp)
failest_csv.write(f"{i},{ failure_estimate }\n")

failest_csv.close ()
print("The flow values assigned by the Derandomized Algorithm to

each commodity are:")
x = {}
[x.update ({i:flows[i]}) for i in range(k)]
print(x)
print("\n")
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print("The flow values for each edge assigned by the Derandomized
Algorithm to each commodity are:")

x=[tuple ([float(edgeflows [(i,e)]) for i in range(k)]) for e in edges
]

for i in range(v):
print(x[v*i:v*(i+1)])

print("\n")

obj_derand = 0

for i in range(k):
obj_derand += weights[i]*flows[i]

print("The objective function value given by the Algorithm is:",
obj_derand)

print("="*150)

beta = 0.0
#Calculating Beta
for e in edges:

f_e=0
if c_e[e] != 0:

for i in range(k):
f_e+= edgeflows [(i,e)]* demands[i]

if f_e >c_e[e]:
temp_beta = float(f_e)/float(c_e[e])
if temp_beta > beta:

beta = temp_beta

alpha = obj_derand/float(objective.solution_value)

print("Alpha = ",alpha)
print("Beta = ",beta)

A.2.1 Estimator Functions

import math
import numpy as np

def estimator_alpha(flows ,weights ,w_lp):

k = len(weights)
w_max = np.max(weights)

delta = (2.0/3)*math.sqrt(float(w_max)/w_lp)
mu = float(w_lp)/w_max
theta = math.log(1-delta)

coeff = math.exp(-theta *(1 - delta)*mu)
prod = 1

for i in range(k):
expectation_i = flows[i]*( math.exp(theta*weights[i]/float(

w_max)))
expectation_i += (1-flows[i])
prod *= expectation_i
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est_alpha = coeff*prod

return est_alpha

def estimator_beta(f_i_vars ,f_i_e_vars ,flows ,edgeflows ,demands ,edge ,
c_uv ,v):

k = len(demands)

t = 4*math.log(v,2)*c_uv

a = []
varsum = 0

for i in range(k):
if(f_i_vars[i]==0):

a.append (0.0)
else:

a.append(demands[i]*( f_i_e_vars [(i,edge)])/float(
f_i_vars[i]))

varsum += a[i] * (flows[i] - (flows[i]* flows[i]))

theta_denom = varsum + np.max(a)*float(t)/3
if(theta_denom ==0):

return 0.0

theta = float(t)/theta_denom

coeff = math.exp(-theta*t)
prod = 1

for i in range(k):
expectation_i = flows[i]*( math.exp(theta *(1-flows[i])))
expectation_i += (1-flows[i])*(math.exp(theta*(-flows[i])))
prod *= expectation_i

est_beta = coeff*prod

return est_beta

def estimator_alphabeta(f_i_vars ,f_i_e_vars ,flows ,edgeflows ,demands ,
weights ,c_e ,w_lp):

est = estimator_alpha(flows ,weights ,w_lp)

v = math.sqrt(len(c_e.keys()))

for edge in c_e.keys():
est += estimator_beta(f_i_vars ,f_i_e_vars ,flows ,edgeflows ,

demands ,edge ,c_e[edge],v)

return est
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