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ABSTRACT

Immunotherapy has received great attention recently, as it has become a powerful

tool in fighting certain types of cancer. Immunotherapeutic drugs strengthen the im-

mune system’s natural ability to identify and eradicate cancer cells. This work focuses

on immune checkpoint inhibitor and oncolytic virus therapies. Immune checkpoint

inhibitors act as blocking mechanisms against the binding partner proteins, enabling

T-cell activation and stimulation of the immune response. Oncolytic virus therapy

utilizes genetically engineered viruses that kill cancer cells upon lysing. To elucidate

the interactions between a growing tumor and the employed drugs, mathematical

modeling has proven instrumental. This dissertation introduces and analyzes three

different ordinary differential equation models to investigate tumor immunotherapy

dynamics.

The first model considers a monotherapy employing the immune checkpoint in-

hibitor anti-PD-1. The dynamics both with and without anti-PD-1 are studied, and

mathematical analysis is performed in the case when no anti-PD-1 is administrated.

Simulations are carried out to explore the effects of continuous treatment versus inter-

mittent treatment. The outcome of the simulations does not demonstrate elimination

of the tumor, suggesting the need for a combination type of treatment.

An extension of the aforementioned model is deployed to investigate the pairing of

an immune checkpoint inhibitor anti-PD-L1 with an immunostimulant NHS-muIL12.

Additionally, a generic drug-free model is developed to explore the dynamics of both

exponential and logistic tumor growth functions. Experimental data are used for

model fitting and parameter estimation in the monotherapy cases. The model is

utilized to predict the outcome of combination therapy, and reveals a synergistic effect:

Compared to the monotherapy case, only one-third of the dosage can successfully

control the tumor in the combination case.
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Finally, the treatment impact of oncolytic virus therapy in a previously developed

and fit model is explored. To determine if one can trust the predictive abilities of

the model, a practical identifiability analysis is performed. Particularly, the profile

likelihood curves demonstrate practical unidentifiability, when all parameters are si-

multaneously fit. This observation poses concerns about the predictive abilities of

the model. Further investigation showed that if half of the model parameters can be

measured through biological experimentation, practical identifiability is achieved.
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Chapter 1

INTRODUCTION

1.1 Immunotherapy

Cancer is a significant burden worldwide in the 21st century. Common approaches

for fighting cancer include radiation therapy, chemotherapy, and surgery (Rius and

Lyko, 2012; Sharma et al., 2017). However, at the forefront of cancer treatment is

immunotherapy, which has shown great promise for certain types of cancer (Kaufman

et al., 2019). Specifically, in 2018 the Nobel prize was awarded to James P. Allison

and Tasuku Honjo “for their discovery of cancer therapy by inhibition of negative

immune regulation” (Press release, 2018).

Immunotherapy was originally introduced by Dr. Coley over 100 years ago (Mc-

Carthy, 2006). Immunotherapy is an umbrella term for methods that increase the

potency of the immune response against cancer. Unlike other treatment modalities

that directly attack the tumor, immunotherapy depends on the interplay between two

complex systems: the tumor and the immune system (Kaufman et al., 2019). Im-

munotherapy targets to deactivate the underlying mechanisms that the tumor cells

are utilizing to suppress the immune system response (Disis, 2014).

Although immunotherapy has demonstrated positive effects, certain challenges

still remain. One of the major obstacles is the uncertainty of treatment efficacy

observed across patients (Ventola, 2017). Therefore, the discovery of new biomark-

ers revealing patient’s response to the treatment is of paramount importance (Bai-

ley et al., 2014). On that front, the emerging field of precision and personalized

medicine is demonstrating pathways for individualized and thus more efficient treat-
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ment strategies leveraging patients’ genetic profiles (Dumbrava and Meric-Bernstam,

2018). Additional challenges for immunotherapy are the toxicity levels induced by

the administered drugs, the increasing tumor resistance to immunotherapy, and the

lack of targeted experimental studies (Ventola, 2017).

Mathematical modeling is of particular importance as it assists in facing some of

the challenges by providing the critical link among clinicians, data, and biologists. It

formulates quantitative frameworks to gain better insights on cancer growth treat-

ment response. Underlying mechanisms of cancer can be identified, enabling informed

treatment procedures. Mathematical models are used to not only make predictions

of cancer evolution that contribute to the design of new experiments but also to track

patient response to therapies (Blair et al., 2012). When the developed mathemat-

ical models are fitted against experimental data, crucial parameters describing the

dynamics of the system are determined (Santiago et al., 2017). Particularly in the

field of immunotherapy, several mathematical models of varying complexity have been

developed with the goal of advancing our biological understanding.

Immunotherapy consists of different types of treatments, such as checkpoint in-

hibitors, CAR-T cell therapy and cancer vaccines to name a few. Oncolytic virus

(OV) therapy is another way to kill cancer cells and can be considered as a form

of immunotherapy as long as genetically-engineered viruses act as cytokine-delivery

vectors (Prestwich et al., 2008). This dissertation focuses mainly on two treatments:

the immune checkpoint inhibitors (anti-PD1 and anti-PD-L1) and the oncolytic virus

therapy.

1.2 Immune Checkpoint Inhibitors

Immune checkpoints act as regulators of the immune system. Their role is ex-

tremely important as they provide balance between co-stimulatory and inhibitory

2



signals. This enables the immune system not to attack its own cells. However, can-

cer cells use escape mechanisms resulting in antitumor immune response suppression

(Darvin et al., 2018). They essentially nullify T cells’ mechanisms, which in turn

allows the cancer cells to roam in the system without being detected. The checkpoint

inhibitor therapy provides a solution to this problem by blocking the signals induced

by the cancer cells and reactivating the immune system.

This observation was first discovered by Leach, Krummel, and Allison (1996),

who found that the protein cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),

which is expressed on the surface of activated T cells, inhibits the antitumor immune

response when binding to B7 ligands. Therefore, developed therapies that target

CTLA-4 have proven to boost the antitumor immune response showing clinical success

across different types of tumor, including melanoma and renal cell carcinoma (Yang

et al., 2007). This seminal research revealed the existence of alternative inhibitory T

cell pathways (Sharma and Allison, 2015).

Such an additional inhibitory pathway is based on the cell programmed death 1

(PD-1) protein, which is mainly found on the surface of activated T cells and was

discovered by Ishida et al. (1992). Its ligand PD-L1 is expressed on both tumor

cells and T cells (Talay et al., 2009; Maute et al., 2015). The interaction between

PD-1 and PD-L1 leads to the formation of the PD-1-PD-L1 complex, which sup-

presses immune activation by preventing T cell activation and proliferation (Alsaab

et al., 2017). To combat the PD-1-PD-L1 complex formation, immune checkpoint

inhibitors (anti-PD-1 and anti-PD-L1) were developed. A sketch demonstrating the

biological mechanism of the immune checkpoint inhibitor therapy is depicted in Fig-

ure 1.1. In recent years, several pharmaceutical companies developed anti-PD-1 drugs

(pembrolizumab by Merck, nivolumab by Bristol-Myers Squibb and cemiplimab by

Regeneron Pharmaceuticals) and anti-PD-L1 drugs (atezolizumab by Roche Genen-
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tech, avelumab by Merck Serono and Pfizer and durvalumab by AstraZeneca). Both

antibodies that target PD-1 and PD-L1 respectively showed great clinical success for

tumors such as bladder cancer (Powels et al., 2014), melanoma, and non-small-lunger

cancer (Topolian et al., 2012). However, immune checkpoint inhibitors therapies may

induce an immune response imbalance, which can cause side effects resembling auto-

immune diseases. Such effects named immune-related adverse events (irAEs) include

dermatologic, gastrointestinal, hepatic, endocrine events, and other toxicities (Naidoo

et al., 2015).

T-cellTumor cell

T-cellTumor cell T-cellTumor cell

Anti-PD-L1 Anti-PD-1

Anti-PD-1
Anti-PD-L1
PD-L1
PD-1

Figure 1.1: Immune checkpoint inhibitor therapy biological mechanism. Anti-PD-L1

drug is depicted on the left side and anti-PD-1 drug on the right side respectively.

In the case of anti-PD-L1, antibodies bind to PD-L1, while in the case of anti-PD-1,

antibodies bind to PD-1 with the goal to inhibit the PD-1/PD-L1 interaction.

1.3 Oncolytic Virus Therapy

The discovery of viruses as a potential way to destroy tumors originated at the

beginning of the 19th century. However, great interest in this discovery was expressed

over the past 30 years due to technological advancement (Kelly and Russel, 2007),
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rendering oncolytic virus therapy a promising treatment strategy (Chiocca, 2002).

Oncolytic virotherapy uses genetically engineered viruses that can infect both cancer

and healthy cells. Once the healthy cells get infected, the inability of the virus

to replicate results in sparing the healthy cells from the effects of the virus. On the

contrary, the virus selectively replicates inside the cancer cells. Due to the exponential

growth rate of the replication process, cancer cells are no longer able to support the

viral load (Chiocca et al., 2014). This causes the lysis effect, which bursts open the

infected cells and allows the released virus to infect other cancer cells (Wond, Lemoine

and Wang, 2010). This process is demonstrated in Figure 1.2.

One of the main drawbacks of oncolytic virus therapy is its temporary effectiveness

due to the accelerated elimination of the virus by the immune system itself (Kim et al.,

2011). Recently, genetically engineered viruses are employed in a form of “Trojan

Horses” delivering therapeutic molecules directly to the tumor site. Such therapies

increase the ability of the immune system to identify tumor cells more efficiently

(Melcher et al., 2011). This significant progress has been observed in clinical trials,

where a vast number of gene modified viruses such as adenovirus, measles, herpes

simplex, Newcastle disease virus is utilized (Markert et al., 2000; Csatary et al., 2004;

Garber, 2006).

1.4 Overview of Mathematical Modeling of Immune Checkpoint Inhibitor Therapy

The demonstrated potential of immune checkpoint inhibitor therapies has trig-

gered several mathematical modeling efforts over the last few years (Azoury, 2015).

The models focus on immune checkpoint inhibitors as a monotherapy and in combina-

tion with other treatments, which include radiation therapy, oncolytic virus therapy

and dendritic cell vaccine (Serre et al., 2016; Friedman and Lai, 2018; Radunskaya

et al., 2018).
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Virus injection

Cancer cell

Healthy cell

Timeline of events

Virus infection Virus replication Cell lysis Virus re-infection

Virus infection Unharmed cell

Figure 1.2: Oncolytic virus therapy biological mechanism. Once the virus is injected

into the system, the cancer cells become infected in contrast to the healthy cells which

are unharmed. Upon cancer cell infection, the virus replicates within the cancer cell.

The viral replication load causes cancer cells to lyse. This results in the re-infection

of other cancer cells.

Serre et al. (2016) first proposed a discrete time pharmacokinetic model, where

they investigated the effects of combining immune checkpoint inhibitors with radio-

therapy. The authors noted a synergistic effect between the combination treatments,

and verified that their model resembles experimental studies qualitatively. Luksza

et al. (2017) were one of the first to construct a fitness model that predicted im-

munotherapy success for both lung cancer and melanoma patients. The authors

considered immune checkpoint inhibitors targeting neoantigens. Radunskaya et al.

(2018) examined the combination of immune checkpoint inhibitors and dendritic cell

vaccine with the goal of optimizing treatment.

Lai and Friedman have published a series of papers between 2017 − 2020, where

they investigated the combination of an immune checkpoint (anti-PD-1 or anti-PD-
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L1) inhibitor with different treatments. These treatments include GM-CSF cancer

vaccine (Lai and Friedman, 2017), BRAF/MEK inhibitor (Lai and Friedman, 2017a),

oncolytic virus treatment (Friedman and Lai, 2018), BET and CTLA-4 inhibitors (Lai

et al., 2018), anti-VEGF inhibitor (Lai and Friedman, 2019) and radiation therapy

(Lai and Friedman, 2020). Systems of partial differential equations were used to model

these combinations. In the majority of their work they determined whether synergistic

or antagonistic effects occurred for the different combinations, and demonstrated

appropriate dosage levels required for tumor volume shrinkage (Lai and Friedman,

2019, 2017; Lai et al., 2018).

1.5 Overview of Mathematical Modeling of Oncolytic Virus Therapy

Several mathematical modeling approaches have been carried out over the past

years focusing on oncolytic virus therapy (OV), with a major inflection point happen-

ing in 2001 (Novozhilov et al., 2006; Tian, 2011; Eftieme et al., 2011; Wodarz, 2001).

Particularly, Wodarz (2001) developed a simple ordinary differential equation model,

where the author examined the effects of both virus-specific and tumor-specific cyto-

toxic T-lymphocytes (CTLs). The author established mathematical conditions and

identified key parameters associated with the success of OV.

Two-dimensional differential equation systems that are studying the effects of OV

therapy are also found in the literature. These models solely consider the popu-

lation of uninfected and infected tumor cells (Novozhilov et al., 2006; Wodarz and

Komarova, 2009; Komarova and Wodarz, 2010). Using Wodarz (2001) work as basis,

Karev, Novozhilov and Koonin (2006) presented a system of differential equations

which accounted for tumor heterogeneity and identified the need for a heterogeneous

population of oncolytic viruses. Both Wodarz and Komarova (2009) and Komarova

and Wodarz (2010) mathematically analyzed the general case of the proposed model
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seeking intuition into virus therapy success. They examined the effects of the rate at

which the virus infects the tumor cells and concluded that potential tumor elimination

can only be accomplished with “fast spread”.

Although an increasing amount of mathematical models were proposed between

2001 − 2013, none of the models accounted for intracellular viral lytic cycle delay.

Wang, Tian and Wei (2013) was one of the first modeling efforts that more realistically

described the viral lytic cycle in their model. The authors found that the viral lytic

cycle is mainly influenced by the viral burst size. Wang, Guo and Smith (2019)

not only incorporated the intracellular viral life-cycle employing a delay parameter

but also added the virus-specific CTL response similar to Wodarz (2001). Using

mathematical analysis, the authors obtained necessary conditions and strategies to

decrease the total tumor size.

A limited amount of modeling attempts that include the syncytia formation are

found in the literature. Syncytia are cells with multiple nuclei formed when mononu-

cleated neighboring cells fuse together (Burton and Bartee, 2019). Examples of such

models include Bajzer et al. (2008); Dingli et al. (2009). Dingli et al. (2006) work

served as a basis for incorporation of syncytia formation term in Bajzer et al. (2008)

model. A year later Dingli et al. (2009) added an equation to their model that ac-

counted for the syncytia formation and used experimental data for validation. The

common denominator between these models is that they revealed the possibility for

tumor eradication and in some cases oscillatory behavior dependent on parameter

ranges.

Finally, a series of mathematical models have been developed to boost the efficacy

of OV response in combination with other treatments (Walker and Enderling, 2016).

Specifically, Bagheri et al. (2011) explored the pairing of oncolytic adenovirus with

MEK inhibitor and predicted that simultaneous administration of the treatments
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increased efficacy. Wares et al. (2015) proposed a model that examines the combina-

tion between immuno-enhanced OV and a dendritic cell (DC) vaccine. The authors

specifically examined the effects of varying the dosage levels of both therapies and

additionally established the optimal sequence of administrating the drugs given con-

straints on dosage. In a more recent work, Gevertz and Wares (2018) simplified the

model shown in Wares et al. (2015) and verified that the predictions and dynamics

of the models are similar. A recently published work by Storey, Lawler and Jack-

son (2020) investigated the combination of OV with an immune checkpoint inhibitor

(anti-PD-1) for glioblastoma including the innate and adaptive immune interactions.

A combination therapy was proven to enable more immune conditions that support

tumor size decrease or elimination compared to a single OV therapy.

1.6 Thesis Overview

The main motivation behind Chapter 2 originated from Lai and Friedman (2017).

The authors presented a system of partial differential equations investigating the

combination between the immune checkpoint inhibitor anti-PD-1 and the GM-CSF

cancer vaccine. Their model provided insights on the synergistic administration of

the two drugs. However, due to the complexity of the partial differential equations

system proposed, any type of mathematical analysis is extremely difficult to perform.

This limitation has seeded my research presented in Chapter 2, where a simplifi-

cation of Lai and Friedman (2017) using a system of ordinary differential equations

is presented. Chapter 2 focuses on a monotherapy using the immune checkpoint in-

hibitor anti-PD-1. The objective is to achieve a simpler but adept model that allows

mathematical analysis to be performed. The latter will lead to an increased biological

understanding of the underlying mechanisms of the PD-1/PD-L1 pathway, as well as

to other meaningful insights. As a starting point, the model is mathematically ana-
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lyzed without the use of the immune checkpoint inhibitor anti-PD-1 and simulations

are carried out to support the findings. Sensitivity analysis is employed to determine

the parameters associated with tumor growth. Finally, the effect of intermittent and

continuous dosage of anti-PD-1 on tumor-immune dynamics are studied. The results

of this effort presented in Chapter 2 are used as the groundwork for the following

investigations.

In Chapter 3, the combination of an immune checkpoint inhibitor with an alter-

native treatment is analyzed, since the monotherapy case is inadequate for sufficient

T cell activation. The latter was confirmed by the work presented in Chapter 2 and is

in line with clinical observations (Kang et al., 2016). In Chapter 3, a modified version

of the model in Chapter 2 is presented with two main differences: a) a combination

treatment employing avelumab, an anti-PD-L1 drug, and the immunostimulant NHS-

muIL12, and b) the use of anti-PD-L1 instead of anti-PD-1 treatment. The model

validation and parameter estimation was performed utilizing the experimental data

in Xu et al. (2017). At first, a generic form of the model without any treatments is

constructed and this model is mathematically analyzed. Employing the conditions of

the mathematical analysis of the generic model, two cases are further analyzed and

their dynamics are studied: the logistic and the exponential tumor growth functions.

Lastly, the synergistic effect between the two drugs (avelumab and NHS-muIL12) is

investigated.

Data fitting of mathematical models presents challenges, due to limited and noisy

experimental data. Some of these challenges were faced during the data fitting process

in Chapter 3, which are explored in mode detail in Chapter 4. Using the model found

in Wares et al. (2015) and Gevertz and Wares (2018) the goal is to comprehend

the treatment impact of oncolytic virus therapy. However, in order to make reliable

predictions, practical identifiability of all model parameters is vital. First, the fitting
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methodologies for accurate parameter estimations are explored. Although Wares

et al. (2015) uses a hierarchical fitting approach, the method has some disadvantages

as error gets accumulated in every step. Therefore, parameter fitting is conducted

using an alternative approach, namely the Quasi Monte Carlo sampling method with

Sobol sequences in combination with a simplified version of the simulated annealing

method (Kucherenko, 2015). Finally, practical identifiability analysis is conducted

using the profile likelihood method (Murphy and Van Der Vaart, 2000; Venzon and

Moolgavkar, 1988). Different series of simulations are carried out with the goal of

obtaining a practically identifiable model.
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Chapter 2

TUMOR-IMMUNE DYNAMICS WITH AN IMMUNE CHECKPOINT

INHIBITOR

2.1 Abstract

The use of immune checkpoint inhibitors is becoming more commonplace in clin-

ical trials across the nation. Two important factors in the tumor-immune response

are the checkpoint protein programmed death-1 (PD-1) and its ligand PD-L1. We

propose a mathematical tumor-immune model using a system of ordinary differential

equations to study the dynamics with and without the use of anti-PD-1. A sensi-

tivity analysis is conducted, and a series of simulations are performed to investigate

the effects of intermittent and continuous treatments on the tumor-immune dynam-

ics. We consider the system without the anti-PD-1 drug to conduct a mathematical

analysis of the model to determine the stability of the tumor-free and tumorous equi-

libria. Through simulations, we found that a normally functioning immune system

may control tumor. We observe treatment with anti-PD-1 alone may not be sufficient

to eradicate the tumor cells. Therefore it may be beneficial to combine single agent

treatments with other therapies to obtain a better antitumor response.

2.2 Introduction

The immune system works to differentiate between healthy cells and abnormal

cells. Immune cells, known as T cells, fight the abnormal cells while leaving the

healthy cells untouched. In accomplishing this, the use of “checkpoints”, molecules

on immune cells that enhance or suppress an immune response, is employed (Mahoney,
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Freeman, and McDermott, 2015).

Two important factors in the tumor-immune response are programmed death-1

(PD-1) and its ligand PD-L1. PD-1 is a protein expressed on activated T cells (Simon

and Labarriere, 2017). PD-L1, found mainly on various types of tumor cells and T

cells (Maute et al., 2015; Talay et al., 2009), is one of PD-1’s ligands. When PD-

1 binds to PD-L1, the PD-1-PD-L1 complex is formed, allowing the cell expressing

PD-L1 to be unrecognized as a danger when detected. In response to an immune

attack, tumor cells may overexpress PD-L1 which can bind to PD-1 receptors on T

cells, reducing or eliminating the effectiveness of T cells’ attacks (He, Y. Hu, M. Hu,

and Li, 2015).

Recently, scientists have worked to exploit the immune system through targeting

the checkpoints and thus allowing the T cells to recognize tumor cells (Mahoney,

Freeman, and McDermott, 2015). Drugs targeting PD-1 or PD-L1 can prevent the

formation of the PD-1-PD-L1 complex. In particular, many PD-1 inhibitors (anti-

PD-1s), including pembrolizumab and nivolumab, have been developed and shown

positive results in over 270 international clinical trials (Liu and Wu, 2017). A 2012

clinical trial demonstrated the value of PD-1 inhibitors, as treated patients saw in-

creases to their overall survival (Topolian et al., 2012). Therapies involving immune

checkpoint inhibitors are being developed to treat a wide array of tumor types (Alsaab

et al., 2017).

Low response rates have been observed across patients with the use of a single

immune checkpoint inhibitor (Mahoney, Rennert anf Freeman, 2015). Instead, single

agent treatments in combination with therapies such as chemotherapy, radiotherapy,

and other forms of immunotherapy have shown greater promise through ongoing

clinical trials (Hamanishi et al., 2016). Combination therapies are proposed with the

objective to increase the antitumor response effects.
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2.3 Mathematical Model Proposed by Lai and Friedman (2017)

An influential mathematical model that investigates the combination of anti-PD-

1 and a tumor vaccine (GVAX) was first developed by Lai and Friedman (2017).

The authors propose a system of 13 partial differential equations, which are depicted

below. The variables of the model and their biological description are presented in

Table 2.1. A tumor-immune interaction network of the model is shown in Figure 2.1.

GM-CSF

DC IL-12 IL-2 C

Anti-PD-1

PD-1

PD-L1

PD-1-PD-L1

CD4

CD8

Figure 2.1: The tumor-immune interactions network represented in Lai and Friedman

(2017). Proliferation/activation is demonstrated by sharp arrows. Killing/Blocking is

demonstrated by blocked arrows. Proteins on the tumor or T cells are demonstrated

by dashed lines. Once GM-CSF is inserted, dendritic cells are activated, which in turn

produce IL-12. CD4+ and CD8+ T cells are activated by IL-12. IL-2 is produced by

activated CD4+ T cells resulting in the proliferation of CD4+ and CD8+ T cells.

PD-L1 is found on tumor cells, and both PD-1 and PD-L1 are found on activated

CD4+ and CD8+ T cells. The PD-1-PD-L1 complex is formed upon binding of PD-1

and PD-L1 resulting in inhibition of the activation of CD4+ and CD8+ T cells. Once

anti-PD-1 binds to PD-1 the complex formation is prevented.
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Table 2.1: Description of variables in the model system (2.3.1)-(2.3.13) adapted from

Lai and Friedman (2017).

Variable Meaning Biological Description

NC density of necrotic tumor cells Dead tumor cells

H high mobility group B1

(HMGB-1) concentration

Protein released during the necrosis

process of tumor cells.

D density of dendritic cells Antigen presenting cells activated by

the necrosis function of tumor cells

T1 density of activated CD4+ cells T helper cells that directly kill cancer

cells by releasing cytokines

T8 density of activated CD8+ cells T cells that kill cancer cells

C density of tumor cells Abnormal cells growing and dividing

without control

I2 interleukin-2 concentration Interleukin produced by CD4+ cells re-

sulting in proliferation of T cells

I12 interleukin-12 concentration Interleukin produced by dendritic cells

that activates CD4+ and CD8+ cells

P PD-1 concentration Protein expressed on activated T cells

L free PD-L1 concentration PD-1’s ligand

Q PD-1-PD-L1 concentration Complex formed once PD-1 binds to

PD-L1 that inhibits T cell function

A anti-PD-1 concentration Drug that blocks PD-1 and enables T

cell activation

G GM-CSF concentration Cancer vaccine causing dendritic cell

activation
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∂NC

∂t
+∇ · (uT1)︸ ︷︷ ︸

Velocity

− δNC
∇2NC︸ ︷︷ ︸

Diffusion

= λNCCC︸ ︷︷ ︸
derived from life cancer cells

− dNC
NC︸ ︷︷ ︸

removal

(2.3.1)

∂H

∂t
− δH∇2H︸ ︷︷ ︸

diffusion

= λNHNC
NC︸ ︷︷ ︸

released from necrotic cancer cells

− dHH︸ ︷︷ ︸
degradation

(2.3.2)

∂D

∂t
+∇ · (uD)︸ ︷︷ ︸

Velocity

− δD∇2D︸ ︷︷ ︸
Diffusion

= λDCD0
C

KC + C︸ ︷︷ ︸
activation by HMGB-1

− λDGD0
G

KG +G︸ ︷︷ ︸
promotion by GM-CSF

− dDD︸ ︷︷ ︸
death

(2.3.3)

∂T1

∂t
+∇ · (uT1)− δT∇2T1 =

λT1I12T10
I12

KI12 + I12︸ ︷︷ ︸
activation by IL-12

+ λT1I2T1
I2

KI2 + I2︸ ︷︷ ︸
IL-2 induced proliferation


× 1

1 + Q
KT Q︸ ︷︷ ︸

inhibition by PD-1-PD-L1

− dT1T1︸ ︷︷ ︸
death

(2.3.4)

∂T8

∂t
+∇ · (uT8)− δT∇2T8 =

λT8I12T80
I12

KI12 + I12︸ ︷︷ ︸
activation by IL-12

+ λT8I2T8
I2

KI2 + I2︸ ︷︷ ︸
IL-2 induced proliferation


× 1

1 + Q
KT Q︸ ︷︷ ︸

inhibition by PD-1-PD-L1

− dT8T8︸ ︷︷ ︸
death

(2.3.5)

∂C

∂t
+∇ · (uC)− δC∇2C = λCC(1− C

CM
)︸ ︷︷ ︸

proliferation

− (η1T1C + η8T8C)︸ ︷︷ ︸
killing by T cells

− dCC︸ ︷︷ ︸
death

(2.3.6)

∂G

∂t
− δG∇2G = λG + G(t)︸ ︷︷ ︸

injection

− dGG︸ ︷︷ ︸
degradation

(2.3.7)

∂I12

∂t
− δI12∇2I12 = λI12DD︸ ︷︷ ︸

production by DCs

− dI12I12︸ ︷︷ ︸
degradation

(2.3.8)

∂I2

∂t
− δI2∇2I2 = λI2T1T1︸ ︷︷ ︸

production byT1

− dI2I2︸ ︷︷ ︸
degradation

(2.3.9)
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∂P

∂t
−∇ · (uP )− δT∇2P = P

T1 + T8
(λT1I12T10 + λT8I2T80) I12

KI12 + I12

+ (λT1I2T1 + λT8I2T8) I2

KI2 + I2
× 1

1 + Q
KT Q

(2.3.10)

− P

T1 + T8
(dT1T1 + dT8T8)− µPAPA︸ ︷︷ ︸

depletion by anti-PD-1

L = ρL(T1 + T8 + εCC) (2.3.11)
∂Q

∂t
−∇ · (uQ)− δT∇2Q = αPLPL− dQQ (2.3.12)

∂A

∂t
− δA∇2A = A(t)︸ ︷︷ ︸

injection

− µPAPA︸ ︷︷ ︸
depletion through blocking PD-1

− dAA︸ ︷︷ ︸
degradation

(2.3.13)

Using the model (2.3.1)-(2.3.13) Lai and Friedman (2017) investigated the follow-

ing cases: a) No drugs are applied b) Different dosage levels for the monotherapy

treatments c) Potential synergy of the combination treatment. These led to the fol-

lowing conclusions: a) Verified that the assumptions of the steady state arguments

used for parameter estimation agree with the simulations. b) Increased dosage of

anti-PD-1 leads to tumor size reduction while a combination therapy was shown to

only reduce the growth of the tumor. Tumor radius is sensitive to the respective

dosage levels of GVAX and anti-PD-1 drugs. c) Optimum synergy is proposed based

on a developed synergy map between the GVAX and anti-PD-1 drug.

Overall, their model examines the synergy of the two drugs, suggesting that the

immune checkpoint inhibitor and tumor vaccine work better to reduce the tumor

volume in combination than individually. Their results are verified through a com-

parison with data collected from mice experiments. An optimal combination level

of each drug is found, which lies within the bounds of the maximum tolerated dose

allowed in clinical trials.

The model (2.3.1)-(2.3.13) in Lai and Friedman (2017) is a complex system of

partial differential equations which forbids a comprehensive mathematical exploration
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and an insightful biological interpretation of the model. Our main objective is to

simplify their model into a tractable system of ordinary differential equations to

help gain a better mathematical and biological understanding of its rich dynamics.

Additionally, although we appreciate the need for a combination of treatments as

addressed by Lai and Friedman (2017), we wish to solely examine the effects of a

single treatment. We hope an in-depth understanding of the immune checkpoint

inhibitor therapy will enhance our appreciation and comprehension of the combined

treatment. We consider the case when only one treatment, anti-PD-1, is applied. Our

model depicts the tumor-immune interactions following the activation process of T

cells by interleukins.

We compare the treatment in the case when continuous drug and periodic injec-

tions are applied. In Lai and Friedman (2017) paper most of the main dependent

variables in the model go to steady state. We take advantage of these steady state

values in our simplification, reducing the system to three nonlinear ordinary differ-

ential equations. The effectiveness of intermittent versus continuous therapy will be

examined in detail. Specifically, a study will be conducted into how altering the

dosage frequency, while maintaining the same total dosage, impacts the tumor vol-

ume. We examine the drug-free system and perform an analysis on the existence and

local stability of the model equilibria. Moreover, we illustrate our findings through

selective simulation and bifurcation results.

2.4 Model Formulation

The variables of our simplified model, their meanings, and their respective units

are listed in Table 2.2.

The essence of our simplified mathematical model is captured by the following

dramatically simplified tumor-immune interactions network following activation of T
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Table 2.2: Description of variables in the model system (2.4.14)-(2.4.16).

Variable Meaning Unit

C density of tumor cells g/cm3

T density of activated T cells g/cm3

P free PD-1 concentration g/cm3

A anti-PD-1 concentration g/cm3

Q PD-1-PD-L1 concentration g/cm3

cells shown in Figure 2.2.

Our model of tumor-immune interaction with immune checkpoint inhibitor anti-

PD-1 treatment is a vastly simplified and slightly modified version of the model

presented in Lai and Friedman (2017). Our model consists of three nonlinear ordinary

differential equations of the following form:

dC

dt
= λCC

(
1− C

CK

)
︸ ︷︷ ︸

net growth

− ηCT,︸ ︷︷ ︸
killed by T cells

(2.4.14)

dT

dt
=
λTI12TN

I12

KI12 + I12︸ ︷︷ ︸
activation by IL-12

+λTI2T
I2

KI2 + I2︸ ︷︷ ︸
stimulation by IL-2

 · F1(Q)︸ ︷︷ ︸
inhibition by PD-1-PD-L1

− dTT,︸ ︷︷ ︸
death

(2.4.15)

dA

dt
= A(t)︸ ︷︷ ︸

effective level of anti-PD-1

− µPAPA︸ ︷︷ ︸
depletion through blocking PD-1

− dAA,︸ ︷︷ ︸
natural degradation

(2.4.16)

where P is defined as:

P = (ρP − γA)T. (2.4.17)

The function for suppression of T cell activation and proliferation by the PD-1-

PD-L1 complex is given by:

F1(Q) = 1
1 + Q

KT Q

.

As in Lai and Friedman (2017), we assume the dissociation (dQQ) and association
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Figure 2.2: The tumor-immune interactions following activation of T cells. Sharp

arrows indicate proliferation/activation. Blocked arrows indicate killing/blocking.

Dashed lines indicate proteins on the tumor or T cells. Tumor cells express PD-L1.

Activated T cells express PD-1 and PD-L1. Activated T cells kill tumor cells. When

PD-1 and PD-L1 bind together, the complex PD-1-PD-L1 is formed, which inhibits

the function of activated T cells. Anti-PD-1 binds to PD-1, inhibiting the formation

of the PD-1-PD-L1 complex.

(αPLPL) of the complex PD-1-PD-L1 are fast so that we can apply the usual quasi-

steady-state argument to obtain αPLPL = dQQ. Thus,

Q = σPL, with σ = αPL/dQ.

As in Lai and Friedman (2017), we assume the level of free PD-L1 can be represented

by

L = ρL(T + εCC),

since PD-L1 is expressed on both T cells and tumor cells, and upregulated on tumor

cells, indicated by εC > 1. Thus

Q = κP (T + εCC), with κ = σρL.

The parameters, their meanings, and estimates of their values are given in Table

C.1. A more detailed discussion of the parameter estimates is given in Appendix C.

20



The cytokines IL-2 and IL-12 were estimated from their steady-state values. In our

model, we consider the process after the T cell population has been activated. Our

hope is to focus primarily on the interactions between the T cells, cancer cells, and PD-

1-PD-L1 complexes. As a result, we base the values of IL-2 and IL-12 densities off the

control case simulated in Figure 2 of Lai and Friedman (2017). The simulation shows

the IL-2 and IL-12 densities are not very dynamic, as they both move within a tight

range. Since the densities tend to a steady-state in Lai and Friedman’s simulations,

we assume a steady-state in our model and take IL-2 = 2.37 · 10−11 g/cm3 and IL-12

= 1.5 · 10−11 g/cm3.

Eq (2.4.14) models the tumor cell population, where logistic growth is used to

denote the net growth of the tumor cells in the presence of an anti-PD-1 immune

checkpoint inhibitor (Kirschner and Panetta, 1998). Through interactions between

tumor cells and activated T cells, the loss of tumor cells occurs at rate η. We assume

that the PD-1/PD-L1 interaction reduces the number of activated effective T cells

with negligible inhibition on the immune cytotoxicity. Eq (2.4.15) captures the rate

of change of the activated (effective) T cell population. IL-12 and IL-2 play a major

role in activation and differentiation of the population of T cells, shaping the immune

response. The first source term accounts for the activation of naive T cells (TN) by

IL-12. The other source term represents the proliferation of activated T cells, as

stimulated by IL-2. Michaelis-Menten forms are used to capture the saturation in

the immune response (Kirschner and Panetta, 1998). Larger values of PD-1-PD-L1

concentration inhibit the activation and proliferation of T cells, reducing the source

terms by a factor of 1
1+Q/KT Q

. Natural death of T cells occurs at rate dT . The

anti-PD-1 treatment is modeled by Eq (2.4.16), where A(t) = γA corresponds to an

intravenous, continuous injection. Intradermal injections are also considered with

varying dosage frequencies, as discussed in Section 2.7. PD-1 binds to anti-PD-1
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at a rate of µPA. We assume there is no dissociation of PD-1 with anti-PD-1 once

bound due to the very quick nature of the association and dissociation. The rates

of association and dissociation are relatively small values and lead to an assumption

that the variables can be approximated by their levels at quasi-steady state. Anti-

PD-1 naturally decays at rate dA. Finally, Eq (2.4.17) describes the density of the

free PD-1. Newly activated T cells have a fixed amount of PD-1 per T cell, ρP . As

anti-PD-1 is injected and the drug binds to PD-1, PD-1 is depleted at a rate of γA.

2.5 Treatment Free Model Dynamics

It is easy to see that the functions contained in the full system (2.4.14)-(2.4.16)

are differentiable, which ensures its solutions with positive initial values exist and

are unique by a direct application of standard differential equation theory. Observe

that the full system (2.4.14)-(2.4.16) consists of three highly nonlinear differential

equations that prevent us from conducting a comprehensive mathematical analysis. In

order to appreciate the full model complexity and to gain an in-depth understanding

of the natural tumor-immune interaction via the lens of a mathematical model, we

examine the case when no anti-PD-1 treatment is applied (A = 0) in the full system

(2.4.14)-(2.4.16). In this case, Eq (2.4.17) becomes P = ρPT and

Q = βT (T + εCC), β = κρP .

The reduced system takes the form:

dC

dt
= λCC

1− C

CK

− ηCT,
dT

dt
= (M +NT )F (C, T )− dTT,

(2.5.18)

where we use the assumptions on the complex-forming process to define F (C, T ):

F (C, T ) = 1
1 + βT (T+εCC)

KT Q

.
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M and N are two positive parameters defined as:

M = λTI12TN
I12

KI12 + I12
,

N = λTI2

I2

KI2 + I2
.

We seek to examine the local and global stability for our system. In doing so, we

first need to establish positivity and boundedness of the solutions with positive initial

values.

Proposition 2.5.1 Solutions of (2.5.18) that start positive remain positive and bounded.

Proof.

We first seek to show the proof of positivity, examining T first using proof by

contradiction. We assume T (t0) ≥ 0. If T (t) < 0 for some t > 0, we would require
dT
dt
≤ 0 when T = 0. However, we have dT

dt
|T=0 = M > 0 since all parameters are

positive, which leads to a contradiction. Thus T (t) > 0, ∀t > 0.

In examining the positivity of C, we assume C(t), T (t) exist on [0, t1]. By a

standard separation of variables,

dC

dt
= λCC

1− C

CK

− ηCT
becomes

dC

C
=
λC

1− C

CK

− ηT
dt.

We can then conclude

C(t1) = C(0)exp
∫ t1

0

λC
1− C(s)

CK

− ηT (s)
ds

 > 0,

since C(0) > 0.
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Since solutions remain nonnegative, we now seek to prove boundedness. We start

with boundedness of C using a comparison argument:

dC

dt
= λCC

(
1− C

CK

)
− ηCT

≤ λCC
(

1− C

CK

)
,

which implies that

C(t) ≤ max{C(0), CK}.

In addition, we see that

lim
t→∞

sup C(t) ≤ CK .

Therefore C is eventually bounded above by CK + a for any positive constant a.

We then look to prove that T is bounded. First, let G(C, T ) = (M+NT )F (C, T ).

Then

G(C, T ) ≤ G(0, T ) = M +NT

1 + β′T 2 ≤ α

where β′ = β/KTQ and α = max{G(0, T )} =
√
β′(β′M2+N2)

β′N
− M

N
. Now

dT

dt
= (M +NT )F (C, T )− dTT ≤ α− dTT.

By a standard comparison argument,

lim
t→∞

sup T (t) ≤ α

dT
.

Then T ≤ max{T0,
α
dT
}, and T is bounded. �

The reduced system (2.5.18) may contain two types of equilibria: the tumor-free

equilibria E∗0 = (0, T ∗0 ) and tumorous equilibria E∗1 = (C∗, T ∗), C∗ > 0, T ∗ > 0.

Before examining stability, we must establish the existence and uniqueness of the

tumor-free equilibrium E∗0 = (0, T ∗0 ).
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Proposition 2.5.2 The system (2.5.18) has a unique tumor-free equilibrium E∗0 =

(0, T ∗0 ). T ∗0 is a strictly increasing function of parameter M .

Proof. When C∗ = 0,

dT

dt
= 0⇒ M +NT ∗

1 + β′T ∗2
− dTT ∗ = 0, where β′ = β

KTQ

.

The T ∗ values corresponding to C∗ = 0 are the roots of the equation:

p(T ) = β′dTT
3 + (dT −N)T −M = 0.

Assume that dT ≥ N . Then p′(T ) > 0 if T > 0. Since p(0) = −M < 0 and

lim
T→∞

p(T ) = +∞, we see that p(T ) = 0 has a unique positive root which is a strictly

increasing function of M .

If dT < N , with M = 0, then p(T ) = 0 has three real roots:

T ∗1 = −
√
N − dT
β′dT

, T ∗2 = 0, T ∗3 =
√
N − dT
β′dT

.

However, when M > 0, the entire curve is shifted down, as shown in Figure 2.3.

Figure 2.3: p(T ) when dT < N , with M = 0 and M > 0 respectively.

There is only one real positive root T ∗3 , and T ∗3 increases strictly as M increases.

�
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We now establish the existence and uniqueness of the tumorous equilibrium E∗1 =

(C∗, T ∗), C∗ > 0, T ∗ > 0.

Proposition 2.5.3 The system (2.5.18) has a unique tumorous equilibrium E∗1 =

(C∗, T ∗), C∗ > 0, T ∗ > 0 if εCCK η
λC

< 1, N
dT
< 1, and f

(
λC

η

)
< 0.

Proof. It is easy to see that

λC

(
1− C∗

CK

)
= ηT ∗, (2.5.19)

M +NT ∗ = dTT
∗(1 + β′T ∗(T ∗ + εCC

∗)). (2.5.20)

These together yield

f(T ∗) ≡ β′
(
εCCK

η

λC
− 1

)
(T ∗)3 − β′εCCK(T ∗)2 +

(
N

dT
− 1

)
T ∗ + M

dT
= 0. (2.5.21)

The number of positive roots of Eq (2.5.21) can be determined by the Descartes’

rule of signs. For example, if εCCK η
λC

< 1 and N
dT
< 1, then the polynomial f(T ∗) in

Eq (2.5.21) has only one change of signs in coefficients and hence has a single positive

root; while if εCCK η
λC

> 1 and N
dT
< 1, then the polynomial f(T ∗) in Eq (2.5.21) has

two changes of signs in coefficients and hence may have two positive roots or none.

We also need to ensure the positivity of C∗. We have f(0) = M
dT
> 0 and f ′(T ∗) <

0. Now by Eq (2.5.19), C∗ > 0 if and only if λC

η
> T ∗. Thus, we require 0 < T ∗ < λC

η
.

By the Intermediate Value Theorem, f(λC

η
) < 0 ensures the intersection of f(T ∗) = 0

occurs for 0 < T ∗ < λC

η
. Thus, there exists a unique positive equilibrium E∗1 =

(C∗, T ∗) with C∗ > 0 when f(λC

η
) < 0. �

We are now able to perform a stability analysis with our reduced system. The

Jacobian for the system (2.5.18) is given by: λC
(
1− C

CK

)
− λC C

CK
− ηT −ηC

(M +NT ) ∂
∂C
F (C, T ) NF (C, T ) + (M +NT ) ∂

∂T
F (C, T )− dT

 .
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We first examine the stability of the tumor-free equilibrium E∗0 = (0, T ∗0 ).

Proposition 2.5.4 Assume that dT > N . Then for system (2.5.18) the following

statements are true:

(a) If λC < ηT ∗0 , then E∗0 is locally asymptotically stable.

(b) If λC > ηT ∗0 , then E∗0 is a saddle point.

Proof. For part (a) and the first part of (b), the Jacobian matrix for the tumor-free

equilibrium E∗0 = (0, T ∗0 ) is : λC − ηT ∗0 0

(M +NT ∗0 ) ∂
∂C
F (0, T ∗0 ) NF (0, T ∗0 ) + (M +NT ∗0 ) ∂

∂T
F (0, T ∗0 )− dT

 .
Since we know F (C, T ) ≤ 1 and F (C, T ) is a decreasing function of C and T ,

∂
∂T
F (C, T ), ∂

∂C
F (C, T ) < 0, and the eigenvalues are:

λ1 = λC − ηT ∗0 < 0 (by condition in part (a))

λ2 = NF (0, T ∗0 ) + (M +NT ∗0 ) ∂
∂T

F (0, T ∗0 )− dT < 0

Thus, we have local asymptotic stability for E∗0 . Similarly, if λC > ηT ∗0 , then E∗0

is a saddle point. �

We can biologically interpret several of the conditions for the local stability. We

have that λC < ηT ∗0 implies that during the onset of tumor initiation, resident T

cells can kill the cancer cells faster than the cancer cells can multiply. Thus, it is

unsurprising to find that this condition is necessary for the local stability of the

tumor-free equilibrium. The condition dT > N can be interpreted as the death rate

of the T cells being greater than the stimulation rate of T cells by IL-2.

We next examine the stability of the tumorous equilibrium E∗1 = (C∗, T ∗).
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Proposition 2.5.5 Assume that εCCK η
λC

< 1, N
dT

< 1, and f
(
λC

η

)
< 0, then the

tumorous steady state E∗1 of system (2.5.18) is unique and is locally asymptotically

stable.

Proof. The Jacobian matrix for the tumorous equilibrium E∗1 is: −λC C∗

CK
−ηC∗

(M +NT ∗) ∂
∂C
F (C∗, T ∗) NF (C∗, T ∗) + (M +NT ∗) ∂

∂T
F (C∗, T ∗)− dT

 .
Assume that dT > N . Then the trace for the tumorous equilibrium is

τ = −λC
C∗

CK︸ ︷︷ ︸
<0

+NF (C∗, T ∗)− dT︸ ︷︷ ︸
<0

+ (M +NT ∗) ∂
∂T

F (C∗, T ∗)︸ ︷︷ ︸
<0

.

Therefore, τ < 0. The determinant is given by:

∆ =
(
−λC

C∗

CK

)(
NF (C∗, T ∗) + (M +NT ∗) ∂

∂T
F (C∗, T ∗)− dT

)

− (−ηC∗)
(

(M +NT ∗) ∂

∂C
F (C∗, T ∗)

)
.

We can rearrange the terms in ∆:

∆ = −λC
C∗

CK︸ ︷︷ ︸
<0

(NF (C∗, T ∗)− dT )︸ ︷︷ ︸
<0

+ (M +NT ∗)︸ ︷︷ ︸
>0

ΓC∗

where

Γ = −λC
1
CK

∂

∂T
F (C∗, T ∗) + η

∂

∂C
F (C∗, T ∗).

Recall Q = βT (T + εCC) and F1(Q) = 1
1+Q/KT Q

. We have ∂
∂T
F (C, T ) = dF1(Q)

dQ
∂Q
∂T

with dF1(Q)
dQ

< 0. Likewise, ∂
∂C
F (C, T ) = dF1(Q)

dQ
∂Q
∂C
. Hence

Γ = dF1(Q)
dQ

(
− λC
CK

∂Q

∂T
+ η

∂Q

∂C

)
.

Observe that ∂Q
∂T

> 0 and ∂Q
∂C

> 0. We see that Γ > 0 if and only if

η
∂Q

∂C
<
λC
CK

∂Q

∂T
,
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which is equivalent to

ηεCT <
λC
CK

(2T + εCC).

Clearly this is true if ηεC < 2 λC

CK
or 1

λC
ηεCCK < 2. The first condition of Propo-

sition 2.5.3 ensures this is true. Therefore, ∆ > 0. Together with Proposition 2.5.3,

we have the following local stability result for the tumorous equilibrium E∗1 . �

We now establish global asymptotic stability of the tumorous steady state E∗1 of

system (2.5.18). To this end, we need to identify conditions that can rule out the

existence of nontrivial positive periodic solutions from system (2.5.18).

Proposition 2.5.6 The system (2.5.18) has no nontrivial positive periodic solutions

provided that dT > N.

Proof. We employ the Dulac criterion to show there are no nontrivial positive

periodic orbits. Let h(C, T ) = 1/C. We have:

Ω = ∂

∂C

 1
C

[
λCC

(
1− C

CK

)
− ηCT

]+ ∂

∂T

 1
C

[
(M +NT )F (C, T )− dTT

]
= ∂

∂C

(
λC −

λCC

CK
− ηT

)
+ ∂

∂T

 1
C

[
(M +NT )F (C, T )− dTT

]
= − λC

CK
+ 1
C

[
(M +NT ) ∂

∂T
F (C, T ) +NF (C, T )− dT

]
< 0.

since ∂
∂T
F (C, T ) < 0 and dT > N .

Thus, the Dulac criterion ensures there will be no nontrivial positive periodic

solutions for system (2.5.18).

�

We are ready to state the following global stability results for system (2.5.18).

Theorem 1 Assume that dT > N. Then the following are true:
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(i) If λC < ηT ∗0 and no tumorous equilibrium exists, then the tumor-free equilib-

rium E∗0 of system (2.5.18) is globally asymptotically stable.

(ii) If εCCK η
λC

< 1 and f
(
λC

η

)
< 0, then the tumorous steady state E∗1 of system

(2.5.18) is globally asymptotically stable.

Proof. Recall solutions of system (2.5.18) with respect to positive initial values are

positive and bounded. By Poincare-Bendixson Theorem, bounded positive solution

must tend to a nonnegative equilibrium, a nontrivial positive periodic solution, a

homoclinic cycle, or a heteroclinic cycle. In case of (i), the system (2.5.18) admits

no positive steady states, nontrivial positive periodic solutions, homoclinic cycles, or

heteroclinic cycles. This implies that all positive solutions of system (2.5.18) tend to

the tumor-free equilibrium E∗0 .

In case of (ii), the system (2.5.18) admits a unique positive steady state E∗1 , which

is locally asymptotically stable. This eliminates the existence of heteroclinic cycles

since system (2.5.18) admits only two equilibria. It is easy to see that if E∗0 is locally

asymptotically stable, then there can not be any homoclinic cycles originating from

E∗0 . Observe that the T axis is invariant. If there is any homoclinic cycle originating

from E∗0 , then the cycle will contain at least one branch of its stable manifold, which

is unbounded, a contradiction to the fact that positive solutions of the system (2.5.18)

are bounded. Together, these arguments exclude the possibility of the existence of

any homoclinic cycle originating from E∗0 . By Poincare-Bendixson Theorem, the

tumorous steady state E∗1 of system (2.5.18) attracts all its positive solutions. �

2.6 Sensitivity Analysis

By the method outlined in (Marino et al., 2008), we performed a sensitivity anal-

ysis using partial rank correlation coefficients (PRCC) via Latin hypercube sampling
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(LHS) to identify the main drivers of the tumor burden. We used LHS to produce

1000 sets of randomly determined parameters, which were then used to compute the

PRCC and corresponding p-values. Parameters were tested within the ranges given

in Table C.1. For parameters without ranges, sampling was completed within a range

from 1/10 to twice the values in Table C.1. The sensitivity analyses with respect to

the tumor cell density C and the activated T cell density T at day 200 are shown in

Figure 2.4 and Figure 2.5 respectively.

Figure 2.4: PRCC values (left) and p-values (right) for density of tumor cells C(t) at

time t = 200 days.

Figure 2.5: PRCC values (left) and p-values (right) for activated T cell density T (t)

at time t = 200 days.

The density of tumor cells is most sensitive to changes in the tumor cell growth
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rate (λC), kill rate of tumor cells by T cells (η), and death rate of T cells (dT ) (p-

value < .01 for each). We notice that C, the tumor cell density, is highly positively

correlated with the tumor cell growth rate (λC) and the death rate of T cells (dT ),

and negatively correlated with the kill rate of tumor cells by T cells (η).

The sensitivity analysis conducted with respect to T , the activated T cell density,

reveals the tumor cell growth rate (λC), death rate of T cells (dT ), and kill rate of

tumor cells by T cells (η) are the main parameters influencing T (p-value < .01 for

each). As could be expected, the activated T cell density is negatively correlated with

the growth rate of the tumor cells (λC) and death rate of T cells (dT ). The kill rate

of the tumor cells by the T cells (η) captures the most highly positively correlated

parameter.

In making biological sense of the results, we note that the interaction between

immune cells (T cells) and tumor cells can either result in the death of tumor cells

or the inactivation of the immune cells. Our model solely represents the former case.

Thus, the density of tumor cells and activated T cells are sensitive to dT , the death

rate of T cells, which causes the T cells to decline. As the activated T cells decline,

there are less reactions, and thereby less deaths of tumor cells. The kill rate of tumor

cells by T cells (η) increasing or decreasing reflects a stronger or weaker immune

response. As η increases, the tumor-immune interactions result in more killing of

tumor cells. When the tumor cells are decreased, less PD-L1 is in the system to

bind to PD-1. Thus, less PD-1-PD-L1 complexes are formed to inhibit the activation

of T cells. Therefore, η is positively correlated with the activated T cell density

and negatively correlated with the density of tumor cells. Finally, the production

parameter for the tumor cells, λC , is positively correlated with the density of tumor

cells. As the number of tumor cells, and thereby the amount of PD-L1, increases,

more T cells are being inactivated as a result of the increased PD-1/PD-L1 bindings.
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Therefore, λC is negatively correlated with the activated T cell density.
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Figure 2.6: Bifurcation diagram corresponding to continuous treatment for parameter

dT , the death rate of T cells. Maximum/minimum tumor/T cell density in blue and

red, respectively. To tend towards a tumor-free steady state, the diagram suggests a

maximum threshold of dT ≈ N (since N = 0.25), after which the tumorous steady

state is stable. It also suggests dT < N is not necessary for the stability of the

tumor-free equilibrium.

The bifurcation plot of dT , as shown in Figure 2.6, suggests the existence of a

critical value for the maximum death rate of T cells dT , namely dT ≈ N , since

N = 0.25. When dT < N , this causes an increase in the number of activated T

cells, resulting in the killing of more tumor cells. However, when dT > N , the

tumor cells dramatically increase towards the carrying capacity. The plot suggests

our mathematical results can be improved upon to find sharper conditions, as dT > N

is not required for the tumor-free equilibrium E∗0 to be stable. We can now discern
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that Proposition (2.5.4) and (2.5.5) provide sufficient, but not necessary conditions

for the stability of the tumor-free and tumorous equilibria. Further exploration of the

bifurcation plots for different parameters illustrate the approach of the same steady

state.

2.7 Numerical Simulations

All simulations of the mathematical model were performed by MATLAB using

the ode23tb solver and the parameter estimates given in Table C.1 and the initial

conditions (in units of g/cm3) C(0) = 0.3968, T (0) = 6 · 10−3, and A(0) = 0 (Lai

and Friedman, 2017). We examine the cases when no drug, a continuous drug, and

injections of varying periodicity are applied.

We first explore the control case when no drug is applied (Figure 2.7). We keep the

death of the T cells small enough so that the results closely resemble the behavior seen

for those with a normally functioning immune system. The simulation is run for a

duration of 150 days to determine the behavior of certain cell densities/concentrations.

We observe that the number of activated T cells increases up to a certain level, and

later stabilizes, approaching a steady state. The density of tumor cells decreases

significantly until reaching a disease free equilibrium. Since the death rate of T cells

is small, tumor is controlled to a great extent. Consequently, people with a strong

immune system have a chance to eradicate tumor. However, for those with a weakened

immune system, tumors are significantly less responsive to treatment.

We next consider intermittent anti-PD-1 therapy compared to continuous treat-

ment. We seek to determine how the densities of tumor and activated T cells are

affected by varying dosage frequencies and maintaining the dosage level. The time

period between injections is varied from 3 days to 150 days. Simulations are run

for 365 days to reflect a clinically realistic treatment period. Figure 2.8 suggests a
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Figure 2.7: Densities/concentrations of tumor cells, activated T cells, free PD-1, and

free PD-L1 without treatment. Simulations are run for 150 days with dT = 0.05.

periodicity in the immune response, resulting from the treatment acting as a forced

oscillator. Each time the anti-PD-1 is administered, the level of activated T cells

increases due to less PD-1-PD-L1 complexes being formed and thereby less inhibition

of T cell activation. As a result, the tumor cells sharply decrease. Following the de-

cline, the tumor cells logistically grow, returning to their previous level. A continuous

therapy offers the best control for the tumor cells.

Figure 2.9 suggests that when treatments are less frequent (every 60, 90, 150 days),

the tumor cells periodically approach the same density as when no drug is applied

before decreasing with the next treatment. The more frequent treatments (every 3, 10,
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Figure 2.8: Densities/concentrations of tumor cells, activated T cells, free PD-1, and

anti-PD-1 following varying dosage frequencies (every 3, 10, 30, 60, 90, 150 days, and

the continuous case). Simulations run for 365 days. The spikes in the T cell density

correspond to injections of anti-PD-1, as the drugs allow for an increased activation of

T cells. The tumor cells are most effectively contained for the continuous case. Drops

in the PD-1 concentration correspond to injections of anti-PD-1 drugs, as more free

PD-1 binds to the drug. As the dosage of the drug wears off, we notice an increase

in the level of PD-1.
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30 days) periodically approach a lower density, closer to that of the continuous drug.

Thus, the simulations suggest that more frequent treatments produce more effective

results. As the tumor-immune reactions and PD-1-PD-L1 complex formations are

fast, the drug is entirely eliminated from the system before the next treatment begins.

When the time between treatments is smaller, the drug remains continuously in the

system and is thus more effective.
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Figure 2.9: Zoomed in density of tumor cells following varying dosage frequencies

(every 3, 10, 30, 60, 90, 150 days, and the continuous case). One period is shown.

An interesting area we wish to explore with our model is the behavior of the tumor-

immune system when the treatment is abruptly ended (switch on/off treatment). We

have chosen a period of 180 days (approximately half of a year) to apply the treatment,

after which the treatment will be terminated, as shown in Figure 2.10. Once the

treatment has ended, the density of the tumor cells and activated T cells eventually

approach the same steady state as if no drug had ever been applied. Similar results

were found when the time interval before treatment termination was increased.
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Figure 2.10: Anti-PD-1 and PD-1 concentrations with the following varying dosage

frequencies (every 3, 10, 30, 60, 90, 150 days, and the continuous case). Treatments

are shut off after 180 days. Simulations run for 365 days.

2.8 Discussion

Tumor immunotherapy is one of the current focuses in oncology. One common

form of immunotherapy employs the use of immune checkpoint inhibitors, such as

anti-PD-1, in a variety of tumors, including melanoma, and lung cancer. A growing

number of clinical trials using drugs with this mode of action seek to improve survival

rates and quality of life. Current trials suggest that the use of a single agent such

as anti-PD-1 produces a low tumor-immune response. Combinations of anti-PD-1

with other types of treatments are the recommended protocol to produce the most

effective results (Hamanishi et al., 2016).

The primary purpose of this work is to gain insight into the tumor-immune re-

sponse while highlighting immune checkpoint therapy. Due to lack of data, many

38



of the parameter values are difficult to estimate. Therefore, we developed a simpli-

fied model in an effort to explore interesting mathematical results. In particular, we

assume that association and dissociation of PD-1/PD-L1 are fast enough to be at a

steady state at the scale of tumor growth. Despite this simplification, our simulations

reflect expected dynamics. Although we cannot currently test the predictive capa-

bility of our model because of sparse data, we can use the results to predict general

behaviors of the tumor-immune response to treatment.

Our approach contrasts and complements that of (Lai and Friedman, 2017). Their

model is a system of 13 partial differential equations with 48 parameters. Their

goal was to explore the synergy of two drugs (anti-PD-1 and GVAX). One of Lai

and Friedman’s major contributions is a detailed parameterization. Unfortunately,

many of these parameters are unexplored in the empirical literature, usually due

to overwhelming technical challenges. Because of these uncertainties, we arrived at

quite wide ranges for many of the parameters. In some cases, these ranges were not

in agreement with Lai and Friedman. For example, since many tumor cells express

PD-L1, they set εC , the expression of PD-L1 in tumor cells versus T cells, to be

0 − 0.01. However, we concluded that εC = 1 − 100 based on literature indicating

PD-L1 is upregulated in some tumor types (Spranger et al., 2013).

Due to a lack of data, our model cannot be validated, so there is limited predictive

capability. However, it provides insight into how the tumor and T cell densities depend

on parameter values. Our sensitivity analysis using PRCC via LHS showed λC , the

tumor cell growth rate, η, the kill rate of tumor cells by T cells, and dT , the death rate

of T cells, were the most sensitive parameters and are thus the main drivers of the

tumor burden. Furthermore, the bifurcation analysis for dT confirmed the findings

of the sensitivity analysis. The bifurcation diagram suggests that the stability of the

tumor-free and tumorous equilibria changes as dT varies. These results are biologically
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significant. If the lifetime of T cells lasts less than four days, the tumorous equilibrium

becomes stable, resulting in a significant disease. Thus, our model suggests that

cancers are likely to be more common and significant for patients with weakened

immune systems, whether from age, emotional, or physical stress. Our model further

suggests that, if caught early enough before the immune system becomes too weak,

it is possible to eradicate the tumor with minimal treatment.

The simulations suggest anti-PD-1 is most effective when it is applied continu-

ously. Without a continuous or frequent injection of the drug, the end results are as

if no drug was applied. However, even when applied continuously, it is not a sufficient

treatment to eradicate the tumor cells. It would be most beneficial to pair anti-PD-1

with another treatment. Previous anti-PD-1 trials reached similar conclusions (An-

tonios et al., 2016). When combined with a dendritic cell vaccination, the treatment

produced a substantial increase in survival. However, when anti-PD-1 alone was used,

the benefit was not notable.

Recent clinical trials suggest that combining the immune checkpoint inhibitor with

an alternative treatment is the most effective way to treat tumors (Antonios et al.,

2016). Anti-PD-1 is not fully effective due to a lack of T cells (Kleponis, Skelton, and

Zheng, 2015). Although a single-agent checkpoint inhibitor increases T cell density,

our simulations suggest anti-PD-1 alone cannot raise the activated T cells to the level

needed to eradicate the tumor cells (Figure 2.8). When combined with a vaccine or

therapy that increases the amount of T cells, anti-PD-1 has a more substantial anti-

tumor immune response, as it can help more T cells remain active in killing tumor

cells (Lai and Friedman, 2017).

Our stability analysis of the drug-free system established requirements for global

stability of the tumorous and tumor-free equilibria. Two conditions are required to

eliminate the tumor: λC < ηT ∗0 and dT > N . Biologically, we see that λC < ηT ∗0

40



means that when the tumor is initially growing, the T cells can kill the cancer cells

faster than the cancer cells multiply. The condition dT > N can be interpreted

as the death rate of the T cells being greater than the stimulation rate of T cells by

IL-2. Thus, the mathematical analysis suggests that even patients with weakened im-

mune systems, and thereby shorter lifetimes of T cells, can see tumor elimination for

slow-growing tumors. Though the condition dT > N complements the mathematical

analysis, the bifurcation diagram suggests our mathematical results still have room

for improvement. This condition proves to be sufficient but not necessary for deter-

mining the stability of the tumor-free and tumorous equilibria. Further exploration

is required to determine necessary conditions.
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Chapter 3

MATHEMATICAL MODELING OF AN IMMUNE CHECKPOINT INHIBITOR

AND ITS SYNERGY WITH AN IMMUNOSTIMULANT

3.1 Abstract

Immune checkpoint inhibitors (ICIs) are a novel cancer therapy that may induce

tumor regression across multiple types of cancer. There has recently been interest in

combining the ICIs with other forms of treatments, as not all patients benefit from

monotherapy. We propose a mathematical model consisting of ordinary differential

equations to investigate the combination treatments of the ICI avelumab and the

immunostimulant NHS-muIL12. We validated the model using the average tumor

volume curves provided in Xu et al. (2017). We initially analyzed a simple generic

model without the use of any drug, which provided us with mathematical conditions

for local stability for both the tumorous and tumor-free equilibrium. This enabled us

to adapt these conditions for special cases of the model. Additionally, we conducted

systematic mathematical analysis for the case that both drugs are applied continu-

ously. Numerical simulations suggest that the two drugs act synergistically, such that,

compared to monotherapy, only about one-third the dose of both drugs is required in

combination for tumor control.

3.2 Introduction

Immune checkpoint inhibitors are a family of novel cancer therapies under investi-

gation in multiple clinical trials. The checkpoint protein programmed death-1, mainly

expressed on the surface of activated T cells, inhibits immune activation upon binding
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to its ligand programmed death-ligand 1 (Alsaab et al., 2017). Induction of PD-L1

on cancer cells and T cells is an important mechanism for tumor immune escape

(Juneja et al., 2017). The development of drugs such as avelumab (PD-L1 inhibitor)

and nivolumab (PD-1 inhibitor), that inhibit the binding of PD-1 with PD-L1, have

shown promising results in treating different types of cancer, including melanoma

and bladder cancer (Alsaab et al., 2017). However, as reported in Yan et al. (2018),

up to 60 − 70% of patients fail to respond to ICI monotherapy. On the other hand,

combination treatment may improve efficacy across tumor types and help address

issues such as resistance (Zamarin and Postow, 2015). Particularly, recent clinical

trials suggest that coupling ICIs with treatments such as radiation, chemotherapy or

other forms of immunotherapies, such as dendritic cell (DC) vaccines, improves the

efficacy of the treatment (Kang et al., 2016).

Mathematical modeling has proven to be an important tool in cancer research,

as it not only provides insights by capturing tumor mechanisms but also helps guide

the design of new experiments based on predictions from the model (Blair et al.,

2012). Additionally, the incorporation of drug treatments in mathematical models

can result in better understanding and improved treatments (Stephanou et al., 2019).

In recent years several mathematical models focusing on ICIs in conjunction with

other treatments have been developed (Lai and Friedman, 2017; Radunskaya et al.,

2018; Serre et al., 2016). Specifically, Lai and Friedman (Lai and Friedman, 2017)

formulated a system of partial differential equations to study the efficacy and synergy

between anti-PD1 treatment and a GM-CSF secreting cancer vaccine (GVAX), and

created a synergy map of the recommended amount of drug dosages that should be

administrated to reduce the tumor level as presented in Chapter 2. Radunskaya et

al. (Radunskaya et al., 2018) studied the effects of anti-PD-L1 in combination with

a dendritic cell (DC) vaccine, tested against mouse data and investigated treatment
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schedules and effects of varying dosage amounts. Serre et al. (Serre et al., 2016)

constructed a discrete pharmacokinetic model investigating synergism between radio-

therapy anti-PD1/PD-L1 antibodies and/or CTLA4 inhibitor and used experimental

data for validation.

While these models yield interesting results, we wish to capture the dynamics of

applying a combination treatment to a continuous model in a more simplified man-

ner than Lai and Friedman (2017) and Radunskaya et al. (2018). In Nikolopoulou

et al. (2018) we developed a simple tumor-immune response model that incorporated

the effects of a single immune checkpoint inhibitor (anti-PD-1) and mathematically

analyzed the no drug case. Further global analysis of the mathematical model was

presented in Shi et al. (2020). Using our work as a basis Nikolopoulou et al. (2018)

and taking advantage of the data found in Xu et al. (2017), we present a modi-

fication of the model and examine the effects of combining PD-L1 inhibitor with

an immunostimulant. One important difference with the existing model is the use of

the anti-PD-L1 antibody, avelumab. Avelumab is a monoclonal antibody that targets

PD-L1, thus inhibiting its binding with PD-1 and enabling immune stimulation (Chin

et al., 2017). Additionally, we incorporate in the model an additional immunotherapy,

NHS-muIL12. NHS-muIL12 is a fusion protein that binds to the DNA targeting the

administration of IL-12 to damaged intratumoral regions (Xu et al., 2017).

In this work we initially propose a simple generic mathematical model that rep-

resents the dynamics of a tumor-immune response model without treatment. We

mathematically analyze special cases of the generic model with the goal of building

a biologically and mathematically sound model that will describe the dynamics of

a combination treatment based on the experiment in Xu et al. (2017). We use the

mouse data from Xu et al. (2017) to determine appropriate biological, data-driven

parameter estimates, and validate the model. Aside from the types of treatments
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used in the experiment Xu et al. (2017), we also investigate the effects of continuous

injection of both drugs (avelumab and NHS-muIL12). Finally, we numerically study

the drug in combination to explore possible synergy between the drugs.

3.3 Formulation of the Mathematical Model

In an effort to biologically capture the behavior of a tumor-immune response

system that represents the data in Xu et al. (2017) in the absence of treatments,

we initially propose a simple generic mathematical model that follows a predator-

prey structure. Examples of such mathematical models have been noted in several

publications (Meng et al., 2018).

The initial model consists of two simple generic differential equations for the tumor

cell volume (V ) and the number of activated T cells (T ) and has the following form:

dV

dt
= V g(V )− p(V )T, (3.3.1)

dT

dt
= δF (V, T )− dTT. (3.3.2)

We assume all functions appearing in the model are sufficiently smooth. In addition,

we make the following more specific assumptions:

(A1): The initial tumor growth rate g(0) is positive and the growth rate g(V ) is

a non-increasing function of the tumor volume (V ), as V approaches the maximum

resources in the environment known as the carrying capacity.

(A2): The kill rate of the tumor cells p(V ) is an increasing function of the tumor

volume V .

(A3): The T cell activation function F (V, T ) is a positive and decreasing function

of both variables.
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Table 3.1: State variables of the model system (3.3.1)-(3.3.2) and (3.3.3)-(3.3.6).

Variable Meaning Unit

V tumor cell volume mm3

T number of activated T cells mm3

L free PD-L1 volume mm3

P free PD-1 volume mm3

A1 anti-PD-L1 concentration g

A2 NHS-muIL12 concentration g

Q PD-1-PD-L1 volume mm3

All the information regarding the variables of the generic model are described

by Table 3.1. Equation (3.3.1) describes the tumor cell volume (V ), where g(V )

denotes the growth rate of the tumor volume. There is a variety of ways that the

growth rate can be represented such as the logistic model g(V ) = r(1 − V
K

) with

K ≥ 0, the exponential model g(V ) = r > 0, the Gompertz model g(V ) = a− b ln V ,

and other forms (Kuang et al., 2015). The term p(V ), kill rate of tumor volume by

activated T cells, is a function of the tumor volume (V ) and can be represented by

expressions such as p(V ) = ηV and p(V ) = ηV
KV +V . Equation (3.3.2) describes the

activated T cells volume (T ), where F (V, T ) describes the growth of activated T cells,

and dTT represents the natural death of the T cells. Based on this generic model,

we mathematically investigate two special cases of the model. The special cases

consist of different tumor growth models, i.e logistic and exponential model. Both

logistic and exponential growth models are commonly used to model tumor growth.

A lot of work has been done that compares different growth models with the goal of

achieving best fits as shown in Saparata and Pillis (2014). Logistic growth describes
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tumor growth over a long period of time, since the tumor has a limited amount of

resources (carrying capacity), such as oxygen and nutrients to survive. Exponential

growth has been widely used to model experimental data for early growth of the

tumor (Talkington and Durett, 2015). We analyze these special cases of the generic

model in the absence of treatments to gain mathematical and biological insights.

These insights help us to build a special case model that best captures the synergistic

effects of a combination treatment.

Figure 3.1: Schematic model representation for tumor-immune interactions. Sharp

arrows indicate proliferation/activation. Blocked arrows indicate killing/blocking.

Dashed lines indicate proteins on the tumour (V) or T cells (T). IL-12 stimulates

the proliferation of activated T cells. NHS-muIL12’s role is to administrate IL-12 to

damaged intratumoral regions. PD-L1 is mainly expressed on tumor cells. Anti-PD-

L1 binds to PD-L1 to prevent the formation of the PD-1-PD-L1 complex.

We extend equations (3.3.1)-(3.3.2), using the previous work in Nikolopoulou et al.
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(2018), to develop a model of treatment response to two immunotherapies. Figure 3.1

represents a schematic network between all the model variables. The model consists

of four nonlinear ordinary differential equations, which takes the following generic

form:

dV

dt
= V g(V )︸ ︷︷ ︸

net tumor growth

− p(V )T︸ ︷︷ ︸
killed by T cells

, (3.3.3)

dT

dt
= δF (V, T,A1, A2)︸ ︷︷ ︸

T cell activation

− dTT︸ ︷︷ ︸
death

, (3.3.4)

dA1

dt
= γ1(t)︸ ︷︷ ︸

infusion rate of avelumab

− dA1A1︸ ︷︷ ︸
natural degradation

, (3.3.5)

dA2

dt
= γ2(t)︸ ︷︷ ︸

infusion rate of NHS-muIL12

− dA2A2︸ ︷︷ ︸
natural degradation

. (3.3.6)

For the purpose of numerical simulations we choose the following functions:

g(V ) = r,

p(V ) = ηV,

F (V, T,A1, A2) =
1 + λTI12T

δ

c2A2

KA2 + c2A2

 · 1
1 + Q(V,T,A1)

KT Q

.

All state variables of the system are described in Table 3.1. Equations (3.3.3) and

(3.3.4) are the same as equations (3.3.1) and (3.3.2), where we choose exponential

growth and a mass action term for the T cell tumor killing. For the T cell activation

function, F , we assume that NHS-muIL12 drug (A2) activates T cells in a saturating

manner, according to the Michaelis-Menten law. Note that c2 represents a constant,

where c2 ∈ [ 1
75 · 10−7, 1

75 · 10−6] as derived in Appendix D. As the amount of the

complex PD-1-PD-L1 (Q) increases, T cell activation is reduced by a factor of 1
1+ Q

KT Q

.

As above, dT is the natural death rate for T cells.

48



The rate of change of avelumab (A1) is modeled by Equation (3.3.5), where γ1(t)

is the prescribed infusion rate of avelumab. We consider the treatment protocol in Xu

et al. (2017), where avelumab is injected on days 0, 3, 6. The parameter dA1 denotes

the natural decay of A1. Similarly to A1, we consider a very simple differential equa-

tion for NHS-muIL12 (A2), which is administered on day 0 as denoted by Equation

(3.3.6). The parameter dA2 depicts the natural decay of A2. Moreover, we consider

the case where we administrate both A1 and A2 continuously, and study the tumor

dynamics for approximately 220 days.

What remains is to derive an expression for the complex PD-1-PD-L1 (Q) in

equation (3.3.4). To that end, we start by observing that PD-1 (P ) is expressed on

the surface of activated T cells (Simon and Labarriere, 2017; Shi et al., 2013). Hence,

we take

P = ρPT, (3.3.7)

where, ρP is the cell rate of expression of PD-L1 on T cells as in Lai and Friedman

(2017) and similar to Chapter 2.

PD-L1 (L) is expressed on the surface of activated T cells and cancer cells (Shi

et al., 2013). Thus, the concentration of PD-L1 is proportional to T cells and cancer

cells as in Lai and Friedman (2017) and similar to Chapter 2.

Ltotal = ρL(T + εV V ),

where, ρL the cell rate of expression of PD-1 on T cells and εv depends on the specific

type of tumor.

The amount of total PD-L1 consists of the amount of free PD-L1 and the amount

of PD-L1 bound to the drug as described below.

Ltotal = Lfree + Lbound, (3.3.8)

Lfree = Ltotal − Lbound = ρL(T + εV V )− Lbound. (3.3.9)
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We assume the dissociation (dQQ) and association (αPL) of the complex PD-1-PD-L1

are fast so that we can apply the usual quasi-steady-state argument to the reaction

as in Lai and Friedman (2017).

P + L
αP L


dQ

Q.

We obtain αPLPL = dQQ, where αPL and dQ are the association of PL and dissoci-

ation rate of Q, respectively . Thus, by equations (3.3.7) and (3.3.9)

Q = σPLfree = σρpT (ρL(T + εV V )− Lbound), with σ = αPL/dQ. (3.3.10)

Next, we consider the reaction scheme:

Lfree + A1
k+1


k−1

Lbound,

where k+1 and k−1 are the constants for the forward and reverse reactions. The

parameter k+1 describes the association reaction, and k−1 denotes the dissociation of

anti-PD-L1 from the receptor. By the law of mass action and assuming the process

is at equilibrium we have,

dLbound
dt

= k+1LfreeA1 − k−1Lbound = 0,

Lbound = k+1

k−1
LfreeA1 = k+1

k−1
(Ltotal − Lbound)A1.

After solving for Lbound with algebraic manipulation, we conclude that

Lbound = k+1A1

k+1A1 + k−1
(ρL(T + εV V )).

Hence,

Lbound = A1

A1 + k−1
k+1

(ρL(T + εV V )),

Lbound = c1A1

c1A1 +KA1

(ρL(T + εV V )), with KA1 = k−1

k+1
. (3.3.11)

50



Note that c1 represents a constant, where c1 ∈ [ 1
55 · 10−7, 1

55 · 10−6] as derived in

Appendix D. By substituting equation (3.3.11) into equation (3.3.12), we have derived

the following expression for Q,

Q = σρPρLT (T + εV V )
(

1− c1A1

c1A1 +KA1

)
, with σ = αPL/dQ. (3.3.12)

Finally, using all the above derived equations we seek to gain a better understanding

of the system (3.3.3)-(3.3.6).

3.4 Mathematical Analysis for the General Case

We initially consider the case when no drug is applied using the system of equations

(3.3.1)-(3.3.2). We wish to determine some necessary conditions for the local stability

of the tumorous and tumor-free steady states in the general form.

The general model has the following form:

dV

dt
= V g(V )− p(V )T, (3.4.13)

dT

dt
= δF (V, T )− dTT. (3.4.14)

To facilitate the mathematical analysis, we make the following more specific assump-

tions:

1. g(V ) is a continuously differentiable function and there exists a K > 0 such

that g(V ) > 0 when V ∈ (0, K) and g(V ) < 0 for V > K.

2. p(V ) is a continuously differentiable strictly increasing function such that p(0) =

0.

3. F (V, T ) is a continuously differentiable strictly decreasing, positive and bounded

function.
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We begin by studying the positivity and boundedness of solutions of system (3.4.13)-

(3.4.14). The following proposition assures us that these desirable properties are held

by system (3.4.13)-(3.4.14).

Proposition 3.4.1 Solutions of system (3.4.13)− (3.4.14) that start positive remain

positive and bounded.

Proof. We first show that T (t) can not be zero or negative before V using proof

by contradiction. We assume that the starting time is t0. Hence T (t0) > 0. Then

for T (t) ≤ 0 for some t > t0, there must be a time t1 > t0 such that T (t1) = 0 and
dT
dt

(t1) ≤ 0. However, dT
dt

(t1) = δF (V, 0) > 0. Thus, T (t) > 0, for t ≥ t0.

Next we assume that there is a t1 > t0 such that V (t1) = 0, and V (t), T (t) are

nonegative on [t0, t1]. By a standard separation of variables,

dV

dt
= p(V )

(
V
g(V )
p(V ) − T

)
= p(V )(H(V )− T ),

where, H(V ) = V g(V )
p(V )

dV

dt
= V p(V )

V
(H(V )− T ),

dV

V
=
(
p(V )
V

(H(V )− T )
)
dt.

We can conclude that,

V (t1) = V (t0)exp
[ ∫ t1

t0

(
p(V )
V

(H(V )− T )
)
dt

]
> 0

since V (t0) > 0.

Hence, both T (t) and V (t) are positive when exist. Next, we will prove that they

stay bounded.

We start with boundedness of V using comparison argument.

dV

dt
= V g(V )− p(V )T

≤ V g(V )
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which implies that

V (t) ≤ max{V (0), K}.

In addition, we see that

lim
t→∞

sup V (t) ≤ K.

Therefore, V is eventually bounded by K + α, for any positive constant α.

We then look to prove that T is bounded. Since V is bounded, then F (V, T ) is also

bounded above by a positive constant, which we assume that it is γ. Hence

dT

dt
= δF (V, T )− dTT

≤ δγ − dTT

which implies that

lim
t→∞

sup T (t) ≤ δγ

dT
.

Similarly, we see that

T (t) ≤ max
{
T0,

δγ

dT

}
.

Hence, T and V are bounded. �

Proposition 3.4.2 System (3.4.13) − (3.4.14) has a unique tumor-free equilibrium

E∗0 = (0, T ∗0 ), T ∗0 > 0.

Proof. Observe that E∗0 = (0, T ∗0 ), T ∗0 > 0 is an equilibrium of system (3.4.13) −

(3.4.14) if and only if δF (0, T ∗0 )−dTT ∗0 = 0. It is easy to see that δF (0, T )−dTT = 0

has a unique positive solution since the function δF (0, T ) − dTT is positive when

T = 0, negative when T is very large and is strictly decreasing when T > 0. �

Proposition 3.4.3 System (3.4.13)− (3.4.14) has a unique positive tumorous equi-

librium E∗ = (V ∗, T ∗), V ∗ > 0, T ∗ > 0, if and only if δF (V,H(V ))−dTH(V ) = 0 has a
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unique positive solution in (0, K), whereH(V ) = V g(V )
p(V ) . In fact, Ei = (Vi, Ti) is a posi-

tive equilibrium of system (3.4.13)−(3.4.14) if and only if δF (Vi, H(Vi))−dTH(Vi) = 0

and vi ∈ (0, K).

Proof. Setting dV
dt

= 0 in equation (3.4.13) gives T = H(V ), where H(V ) = V g(V )
p(V ) .

Then,

dT

dt
= 0 =⇒ δF (V,H(V ))− dTH(V ) = 0. (3.4.15)

Hence, system (3.4.13)−(3.4.14) has a positive equilibrium E∗ = (V ∗, T ∗), if and only

if V ∗ satisfies equation (3.4.15) and V ∗ ∈ (0, K). This implies that the proposition is

true. �

The next steps are to perform stability analysis for system (3.4.13)−(3.4.14). The

Jacobian for the system written in terms of H to facilitate further analysis is given

by:  p′(V )(H(V )− T ) + p(V )H ′(V ) −p(V )

δ ∂
∂V
F (V, T ) δ ∂

∂T
F (V, T )− dT

 .
We examine the stability of both the tumor-free E∗0 = (0, T ∗0 ) and tumorous equilib-

rium E∗ = (V ∗, T ∗). Observe that limV→0+ H(V ) = g(0)/p′(0). For convenience, we

define

H(0) = g(0)/p′(0). (3.4.16)

Proposition 3.4.4 For system (3.4.13)− (3.4.14), the following statements are true.

(a) If T ∗0 > H(0), then E∗0 is locally asymptotically stable.

(b) If T ∗0 < H(0), then E∗0 is a saddle point.

Proof. The Jacobian matrix for the tumor-free equilibrium E∗0 = (0, T ∗0 ), has the
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following form.  p′(0)(H(0)− T ∗0 ) 0

δ ∂
∂V
F (0, T ∗0 ) δ ∂

∂T
F (0, T ∗0 )− dT

 .
We know that ∂

∂V
F (V, T ) < 0 and ∂

∂T
F (V, T ) < 0 by assumption, and that the

eigenvalues are of the form:

λ1 = p′(0)(H(0)− T ∗0 ) < 0, if T ∗0 > H(0),

λ2 = δ
∂

∂T
F (0, T ∗0 )− dT < 0.

Thus, E∗0 is locally asymptotically stable if T ∗0 > H(0) and a saddle point if T ∗0 <

H(0). �

The next proposition deals with the stability of a tumorous equilibrium.

Proposition 3.4.5 For system (3.4.13)− (3.4.14), the following statements are true:

(a) If H ′(V ∗) < 0 and H ′(V ∗)
[
δ ∂
∂T
F (V ∗, T ∗) − dT

]
+ δ ∂

∂V
F (V ∗, T ∗) > 0, then

E∗ = (V ∗, T ∗) is stable.

(b) If H ′(V ∗) > 0 or H ′(V ∗)
[
δ ∂
∂T
F (V ∗, T ∗)− dT

]
+ δ ∂

∂V
F (V ∗, T ∗) < 0, then E∗ =

(V ∗, T ∗) is a saddle point.

Proof. The Jacobian matrix for both parts (a) and (b) for the tumorous equilibrium

E∗ = (V ∗, T ∗) has the following form. p(V ∗)H ′(V ∗) −p(V ∗)

δ ∂
∂V
F (V ∗, T ∗) δ ∂

∂T
F (V ∗, T ∗)− dT

 .
Then the trace for the tumorous equilibrium is

τ = p(V ∗)︸ ︷︷ ︸
>0

H ′(V ∗) + δ
∂

∂T
F (V ∗, T ∗)︸ ︷︷ ︸
<0

− dT︸︷︷︸
>0

.
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It is easy to see that the trace is negative when H ′(V ∗) < 0 by condition in part (a).

The determinant is given by

∆ = p(V ∗)︸ ︷︷ ︸
>0

H ′(V ∗)︸ ︷︷ ︸
<0

[
δ
∂

∂T
F (V ∗, T ∗)− dT

]
︸ ︷︷ ︸

<0

+ δ
∂

∂V
F (V ∗, T ∗)︸ ︷︷ ︸
<0

. (3.4.17)

The determinant is positive provided

H ′(V ∗)
[
δ
∂

∂T
F (V ∗, T ∗)− dT

]
+ δ

∂

∂V
F (V ∗, T ∗) > 0.

Hence, the tumorous equilibrium E∗ = (V ∗, T ∗) is stable provided the condition in

part (a) is true. Similarly, the conclusion of part (b) follows. �

Proposition 3.4.6 If H ′(V ) < 0 for V > 0, then system (3.4.13) − (3.4.14) has no

nontrivial positive periodic solutions.

Proof. We employ the Dulac criterion to show there are no nontrivial positive

periodic orbits. Let b(V ) = 1/p(V ). Let F1(V, T ) = V p(V )
V

(H(V )−T ) and F2(V, T ) =

δF (V, T )− dTT . Then it is easy to see that

Ω = ∂[b(V )F1(V, T )]
∂V

+ ∂[b(V )F2(V, T )]
∂T

= H ′(V ) + 1
p(V )

∂[b(V )F2(V, T )]
∂T

< 0.

By the Dulac criterion, we see that the system (3.4.13) − (3.4.14) has no nontrivial

positive periodic solutions. �

With arguments similar to that of the proof of Theorem 1 in Chapter 2, we can

obtain the following global stability result for the tumor free equilibrium in system

(3.4.13)-(3.4.14).

Theorem 2 If H ′(V ) < 0 for V > 0 and δF (V,H(V ))−dTH(V ) = 0 has no positive

solution, then the tumor free equilibrium E∗0 = (0, T ∗0 ) in system (3.4.13) − (3.4.14)

is globally attractive with respect to positive solutions.
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3.4.1 Dynamics with Logistic Growth

To perform local stability analysis for the logistic growth case, we use the following

set of functions: g(V ) = r(1− V
KV

), p(V ) = ηV and

F (V, T ) = 1
1 + α′T (T + εV V ) ,

where α′ = σρpρl

KT Q
. We provide a step-by-step derivation of the proofs using results

from Section 3.4 in combination to the details provided in Nikolopoulou et al. (2018).

The system (3.4.13)-(3.4.14) takes the following form:

dV

dt
= rV (1− V

Kv

)− ηV T (3.4.18)

dT

dt
= δF (V, T )− dTT (3.4.19)

where we use the assumptions that

F (V, T ) = 1
1 + Q

KT Q

= 1
1 + σρpρlT (T+εV V )

KT Q

= 1
1 + α′T (T + εV V )

and α′ = σρpρl

KT Q
.

The system has the following equilibria: E∗0 = (0, T ∗0 ) and E∗1 = (V ∗, T ∗). We first

start by insuring uniqueness and existence of the equilibria. Our steps closely follow

the mathematical analysis performed in Chapter 2.

Proposition 3.4.7 The system (3.4.18)-(3.4.19) has a unique tumor-free equilibrium

E∗0 = (0, T ∗0 ).

Proof. When V ∗ = 0 then δ
1+α′T 2 − dTT = 0, where α′ = σρpρl

KT Q
. The T ∗ values

corresponding to V ∗ = 0 are the roots of the following equation:

p(T ) = dTα
′T 3 + dTT − δ = 0
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Since p(0) = −δ and limT→∞ p(T ) = ∞ and p′(T ) = 3dTα′T 2 + dT > 0 implies that

there is a single root. Hence, our first equilibrium is of the form E∗0 = (0, T ∗). �

Proposition 3.4.8 The system (3.4.18)-(3.4.19) has a unique tumorous equilibrium

E∗1 = (V ∗, T ∗), V ∗ > 0, T ∗ > 0 if εV KV η
r

< 1 and f
(
r
η

)
< 0.

Proof. It is easy to see that

r(1− V ∗

KV

) = ηT ∗

δ = dTT
∗(1 + α′T ∗(T ∗ + εV V ))

These together yield to

f(T ∗) = dTα
′(εVKV η

r
− 1)T ∗3 − dTα′εVKV T

∗2 − dTT ∗ + δ = 0

Following exactly the same steps as in Proposition 2.5.3, we conclude that the system

(3.4.18)-(3.4.19) has a unique tumorous equilibrium E∗1 = (V ∗, T ∗), V ∗ > 0, T ∗ > 0

provided εV KV η
r

< 1 and f
(
r
η

)
< 0. �

Proof of the corollary below follows extactly from Proposition 3.4.4.

Corollary 3.4.9 For the tumour-free equilibrium E∗0 = (0, T ∗0 ), the following state-

ments are true.

(a) If r < ηT ∗0 , then E∗0 is locally asymptotically stable.

(b) If r > ηT ∗0 , then E∗0 is a saddle point.

Proposition 3.4.10 Assume that ηεV KV

r
< 1 and f

(
r
η

)
< 0, then the tumorous

steady state E∗1 of system (3.4.18)-(3.4.19) is unique and is locally asymptotically

stable.
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Proof. The trace for the tumorous equilibrium is then:

τ = −r V
KV

+ δ
∂

∂T
F (V ∗, T ∗)− dT < 0

The determinant based on equation (3.4.17) is given by:

∆ = ηV ∗

− r

ηKV

[
δ
∂

∂T
F (V ∗, T ∗)− dT

]
+ δ

∂

∂V
F (V ∗, T ∗)


∆ = r

V ∗

KV

dT + V ∗δ
(
− r

KV

∂

∂T
F (V ∗, T ∗) + η

∂

∂V
F (V ∗, T ∗)

)
∆ = r

V ∗

KV

dT + (V ∗δ)Γ

where,

Γ = − r

KV

∂

∂T
F (V ∗, T ∗) + η

∂

∂V
F (V ∗, T ∗)

The proof that Γ > 0 follows directly from Proposition 2.5.5. �

As for determining whether or not the system (3.4.18)-(3.4.19) has periodic orbits,

Proposition 3.4.6 can be directly applied.

Corollary 3.4.11 The system (3.4.18)-(3.4.19) has no nontrivial positive periodic

solutions.

The following Theorem that determines the global stability for the system (3.4.18)-

(3.4.19) follows exactly as Theorem 1 in Chapter 2.

Theorem 3 The following are true:

(i) If r < ηT ∗0 and no tumorous equilibrium exists, then the tumor-free equilibrium

E∗0 of the system (3.4.18)-(3.4.19) is globally asymptotically stable.

(ii) If ηεV VK

r
< 1 and f

(
r
η

)
< 0, then the tumorous steady state E∗1 of the system

(3.4.18)-(3.4.19) is globally asymptotically stable.
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3.4.2 Dynamics with Exponential Growth

The exponential growth case can be regarded as the limiting profile for logistic

growth when the carrying capacity is set as infinity. With this in mind, we can apply

the conditions found above to the exponential growth model. Since the exponential

growth case will be the focus of the treatment study, we present the following specific

local stability results for the case with g(V ) = r, p(V ) = ηV and

F (V, T ) = 1
1 + α′T (T + εV V ) , (3.4.20)

where α′ = σρpρl

KT Q
. We present them as corollaries. Proofs of the corollaries follow

directly from Propositions 3.4.4 and 3.4.5.

Corollary 3.4.12 For the tumour-free equilibrium E∗0 = (0, T ∗0 ), the following state-

ments are true.

(a) If r < ηT ∗0 , then E∗0 is asymptotically stable.

(b) If r > ηT ∗0 , then E∗0 is a saddle point.

The condition r < ηT ∗0 can be biologically interpreted, as the fact that T cells killing

rate is faster than the growth rate of cancer cells.

Corollary 3.4.13 The tumorous equilibrium E∗ = (V ∗, T ∗) is a saddle point.

Now we wish to explore the dynamics of the model (3.3.3)-(3.3.6), when both drugs are

applied continuously as shown in Section 3.6 and the dynamics of an approximation

of the system (3.3.3)-(3.3.6) as described below.

3.5 Mathematical Analysis for the Continuous Treatment Case: Limiting System

We consider the differential equation system (3.3.3)-(3.3.6) and examine the case

when both anti-PD-L1 treatment and NHS-muIL12 treatment are applied continu-
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ously. In this section, we assume that g(V ) = r, p(V ) = ηV and (3.4.20) holds. We

wish to obtain necessary conditions for the local stability of the tumorous and the

tumor-free steady states. We apply a quasi-steady state approximation, where we let

A1 and A2 go to quasi-steady state. In equations (3.3.5)-(3.3.6), we let γ1(t) = γ1

and γ2(t) = γ2. Using the quasi-steady state argument we obtain:

A1 = γ1

dA1

, A2 = γ2

dA2

(3.5.21)

Substituting (3.5.21) in (3.3.4) we get the following reduced system consisting of a

set of positive differential equations:

dV

dt
= rV − ηV T, (3.5.22)

dT

dt
=
(
δ + λTI12TM

)
F (V, T )− dTT, (3.5.23)

where,

M = c2γ2

dA2KA2 + c2γ2
,

N = c1γ1

dA1KA1 + c1γ1
,

Q = σρpρlT (T + εvV )(1−N),

F (V, T ) = 1
1 + α′T (T + εvV ) ,

α′ = σρpρl
KTQ

(1−N), with N < 1.

Due to the fact that the function
(
δ+λTI12TM

)
F (V, T ) may not be decreasing with

respect to T , we see that system (3.5.22) − (3.5.23) is not a special case of system

(3.4.13) − (3.4.14). It is easy to see the solution of the above system (3.5.22) −

(3.5.23) with positive initial values is positive. We seek to examine conditions ensuring

boundedness of solutions for the system. Due to the assumption of an exponential

growth form for V , we see that V can grow exponentially in the absence of T . Hence,
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for any constant M > 0, we can find a solution with small positive initial values in

both V and T that can have values of V exceed M at some later time. Therefore,

we are not able to establish boundedness for V . However, the following proposition

is true.

Proposition 3.5.1 The T component of any positive solution of system (3.5.22) −

(3.5.23) is bounded.

Proof. System (3.5.22)-(3.5.23) is equivalent to

dV

dt
= rV − ηV T (3.5.24)

dT

dt
=
(
δ + λTI12TM

) 1
1 + α′T (T + εvV ) − dTT. (3.5.25)

It is easy to see that for positive values of V and T , the function(
δ + λTI12TM

)
1

1+α′T (T+εvV ) < γ for some positive constant γ. This implies, that

dT

dt
< γ − dTT.

By comparison argument, we see that T ≤ max{T0,
γ
dT
} and

lim
t→∞

sup T (t) ≤ γ

dT
.

�

Proposition 3.5.2 System (3.5.22) − (3.5.23) always has a tumor-free equilibrium

E∗0 = (0, T ∗0 ) with T ∗0 > 0. System (3.5.22) − (3.5.23) has a unique tumor-free

equilibrium E∗0 = (0, T ∗0 ) with T ∗0 > 0 if dT > λTI12M . System (3.5.22)− (3.5.23) has

a tumorous equilibrium E∗1 = (V ∗1 , T ∗1 ) if −dTα′( rη )3 − (dT − λTI12M)( r
η
) + δ > 0.

Proof. If (V ∗, T ∗) is an equilibrium of system (3.5.22)-(3.5.23), then we have

V ∗(r − ηT ∗) = 0, which implies that V ∗ = 0 or T ∗ = r
η
.
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If V ∗ = 0 then δ+λT I12T
∗M

1+α′(T ∗)2 − dTT ∗ = 0. Then,

δ + λTI12TM − dTT (1 + α′T 2) = 0

p(T ) = dTα
′T 3 + (dT − λTI12M)T − δ = 0

Since p(0) = −δ and limT→∞ p(T ) =∞, we see that p(T ) = 0 has at least one positive

solution. Observe that p′(T ) = 3dTα′T 2 + (dT − λTI12M) > 0, if dT − λTI12M > 0.

Hence we conclude that if dT > λTI12M , then p(T ) = 0 has a single positive root.

Next, when T ∗ = r
η
, we see that

(δ + λTI12T
∗M) 1

1 + α′T ∗(T ∗ + εvV ∗)
− dTT ∗ = 0,

δ + λTI12T
∗M − dTT ∗(1 + α′T ∗(T ∗ + εvV

∗)) = 0,

dTα
′T ∗3 + dTα

′εvV
∗T ∗2 + (dT − λTI12M)T ∗ − δ = 0,

V ∗ =
−dTα′( rη )3 − (dT − λTI12M)( r

η
) + δ

dTα′εv( rη )2 .

To ensure the equilibrium is tumorous we need to ensure that V ∗ > 0, which implies

−dTα′
(r
η

)3
− (dT − λTI12M)

(r
η

)
+ δ > 0.

�

Hence, a tumorous equilibrium is of the form

E∗1 = (V ∗1 , T ∗1 ) =
(−dTα′( rη )3 − (dT − λTI12M)( r

η
) + δ

dTα′εv( rη )2 ,
r

η

)
.

The Jacobian for system (3.5.22)− (3.5.23) is given by: r − ηT −ηV

(δ + λTI12MT ) ∂
∂V
F (V, T ) (δ + λTI12MT ) ∂

∂T
F (V, T ) + λTI12MF (V, T )− dT

 .

Proposition 3.5.3 For the system (3.5.22)-(3.5.23) the following statements are

true:
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1. If T ∗0 > max{ r
η
,
√

1
α′
}, then E∗0 is a stable node.

2. If min{ r
η
,
√

1
α′
} < T ∗0 < max{ r

η
,
√

1
α′
}, then E∗0 is a saddle.

3. If T ∗0 < min{ r
η
,
√

1
α′
}, then E∗0 is an unstable node.

Proof. The Jacobian for the tumor-free equibrium E∗0 = (0, T ∗0 ) is the following: r − ηT ∗0 0

(δ + λTI12MT ∗0 ) ∂
∂V
F (0, T ∗0 ) (δ + λTI12MT ∗0 ) ∂

∂T
F (0, T ∗0 ) + λTI12MF (0, T ∗0 )− dT

 .
As F (V, T ) is a decreasing function of V and T , ∂

∂T
F (V, T ), ∂

∂V
F (V, T ) < 0, and the

eigenvalues are given by:

λ1 = r − ηT ∗0 < 0 if T ∗0 >
r

η
,

λ2 = (δ + λTI12MT ∗0 ) ∂
∂T

F (0, T ∗0 ) + λTI12MF (0, T ∗0 )− dT .

The goal is to find some simple condition that ensures λ2 < 0. We start by some

algebra manipulation/factoring for the λ2 expression.

λ2 = δ
∂

∂T
F (0, T ∗0 )︸ ︷︷ ︸
−

− dT︸︷︷︸
+

+λTI12M︸ ︷︷ ︸
+

(T ∗0
∂

∂T
F (0, T ∗0 ) + F (0, T ∗0 ))︸ ︷︷ ︸

?

.

We seek to determine the sign for φ = T ∗0
∂
∂T
F (0, T ∗0 ) + F (0, T ∗0 ) which is equivalent

to

φ = −2α′T ∗20
(1 + α′T ∗20 )2 + 1

1 + α′T ∗20

φ = −2α′T ∗20 + 1 + α′T ∗20
(1 + α′T ∗20 )2

φ = −α′T ∗20 + 1
(1 + α′T ∗20 )2

Now, φ < 0 if −α′T ∗20 + 1 < 0, which implies T ∗0 >
√

1
α′

and T ∗0 < −
√

1
α′

(unrealistic).

�
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Next, we examine the local stability for the tumorous-equilibrium E∗1 = (V ∗1 , T ∗1 ).

Proposition 3.5.4 The tumorous equilibrium E∗1 = (V ∗1 , T ∗1 ) is a saddle point.

Proof. The Jacobian for the tumorous equilibrium is of the form: 0 −ηV ∗1

W (T ∗1 ) ∂
∂V
F (V ∗1 , T ∗1 ) W (T ∗1 ) ∂

∂T
F (V ∗1 , T ∗1 ) + λTI12MF (V ∗1 , T ∗1 )− dT

 ,
where W (T ∗1 ) = δ + λTI12MT ∗1 . Its determinant is given by:

∆ = ηV ∗1 (δ + λTI12MT ∗1 ) ∂

∂V
F (V ∗1 , T ∗1 ) < 0.

Since ∆ < 0 the tumorous equilibrium is a saddle point. �

We again use the Dulac criterion to obtain a condition that rules out the existence

of positive periodic solutions for system (3.5.22)− (3.5.23).

Proposition 3.5.5 System (3.5.22) − (3.5.23) has no nontrivial positive periodic

solutions when T <
√

1
α′

.

Proof. Let h(V, T ) = 1
V
. We can see:

Ω = ∂

∂V

 1
V

(rV − ηV T )

+ ∂

∂T

 1
V

((δ + λTI12TM)F (V, T )− dTT )


= ∂

∂V
(r − ηT ) + (δ + λTI12MT )

V

∂

∂T
F (V, T ) + λTI12M

V
F (V, T )− dT

V

= (δ + λTI12MT )
V

∂

∂T
F (V, T ) + λTI12M

V
F (V, T )− dT

V

= δ

V

∂

∂T
F (V, T )︸ ︷︷ ︸
−

+ λTI12M

V︸ ︷︷ ︸
+

(
T
∂

∂T
F (V, T ) + F (V, T )

)
︸ ︷︷ ︸

?

− dT
V︸︷︷︸
+

.

We need to determine when φ1 = T ∂
∂T
F (V, T ) + F (V, T ) < 0.
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φ1 = = T
∂

∂T
F (V, T ) + F (V, T )

φ1 = = −2α′T 2 − α′εvV T + 1 + α′T (T + εvV )
(1 + α′T (T + εvV ))2

φ1 = = −α′T 2 + 1
(1 + α′T (T + εvV ))2

Hence, φ1 < 0 if T <
√

1
α′
. Thus, the Dulac criterion ensures there will be no nontrivial

positive periodic solution as long as T <
√

1
α′
. �

3.6 Mathematical Analysis for the Continuous Treatment Case: Full System

The full system consists of four nonlinear equations where γ1 and γ2 represent the

continuous injection of NHS-muIL12 and Avelumab respectively.

dV

dt
= rV − ηV T, (3.6.26)

dT

dt
=
δ + λTI12T

c2A2

KA2 + c2A2

 · 1
1 + Q(V,T,A1)

KT Q

− dTT, (3.6.27)

dA1

dt
= γ1 − dA1A1, (3.6.28)

dA2

dt
= γ2 − dA2A2. (3.6.29)

where,

F (V, T,A1) = 1
1 + Q(V,T,A1)

KT Q

= 1
1 + α′T (T + εvV )(1− c1A1

c1A1+KA1
)

with,

α′ = σρpρl
KTQ

.

It is easy to see that the solution of the above system (3.6.26)− (3.6.29) with positive

initial values is positive. We use a similar argument as when performing mathematical
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analysis for the limiting system (3.5.22)-(3.5.23), and conclude that boundedness for

V can not be established. However, the following proposition is true.

Proposition 3.6.1 The T,A1 and A2 components of the solutions of the equations

(3.6.26)− (3.6.29) are bounded.

Proof. It is easy to see that solutions for both A1 and A2 are bounded. Additionally,

for positive values of V and T and A1 the functionδ+λTI12T
c2A2

KA2 +c2A2

F (V, T,A1) < γ for some positive constant γ. This implies that

dT

dt
< γ − dTT.

By comparison argument, we see that T ≤ max{T0,
γ
dT
} and

lim
t→∞

sup T (t) ≤ γ

dT
.

�

Proposition 3.6.2 System (3.6.26)− (3.6.29) has at least a tumor-free equilibrium

E∗0 = (0, T ∗0 , γ1
dA1

, γ2
dA2

) with T ∗0 > 0. System (3.6.26)−(3.6.29) has a unique tumor-free

equilibrium E∗0 = (0, T ∗0 , γ1
dA1

, γ2
dA2

) with T ∗0 > 0 if (dT − λTI12
c2γ2

dA2KA2 +c2γ2
) > 0.

Proof. We set dV
dt

= 0, which implies that V ∗ = 0 and T ∗ = r
η
. We set dA1

dt
= 0 and

dA2
dt

= 0 and get A∗1 = γ1
dA1

and A∗2 = γ2
dA2

respectively.

If V ∗ = 0, A∗1 = γ1
dA1

and A∗2 = γ2
dA2

then
δ + λTI12T

∗ c2γ2

dA2KA2 + c2γ2

 · 1
1 + α′T ∗2(1− c1γ1

c1γ1+dA1KA1
) − dTT

∗ = 0. (3.6.30)

Let p(T ∗) = dTα
′(1 − c1γ1

c1γ1+dA1KA1
)T ∗3 + (dT − λTI12

c2γ2
dA2KA2 +c2γ2

)T ∗ − δ. We see that

p(T ∗) = 0 if and only if equation (3.6.30) holds. Since p(0) = −δ and limT→∞ p(T ) =

∞, we see that p(T ) = 0 has at least one positive solution. Observe that 1 −
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c1γ1
c1γ1+dA1KA1

> 0 and p′(T ∗) = 3dTα′T ∗2(1 − c1γ1
c1γ1+dA1KA1

) + (dT − λTI12
c2γ2

dA2KA2 +c2γ2
).

We see that p′(T ∗) > 0, provided (dT −λTI12
c2γ2

dA2KA2 +c2γ2
) > 0, in which case, p(T ) has

a single positive root. �

In the following, we let

∆(T,A2) = δ + λTI12T
c2A2

KA2 + c2A2
.

The following proposition presents a simple necessary and sufficient condition for

system (3.6.26)− (3.6.29) to have a unique tumorous equilibrium.

Proposition 3.6.3 Let D = ∆(r/η, γ2/dA2). System (3.6.26)− (3.6.29) has a unique

tumorous equilibrium E∗ = (V ∗, T ∗, A∗1, A∗2) if and only if

Dη

rdT
> 1 +Q(0, r

η
,
γ1

dA1

).

Proof. Observe that if the system (3.6.26) − (3.6.29) has a tumorous equilibrium

E∗ = (V ∗, T ∗, A∗1, A∗2), then T ∗ = r
η
, A∗1 = γ1

dA1
and A∗2 = γ2

dA2
. Straightforward

computation from equation (3.6.27) yields

Dη

rdT
= 1 +Q(V ∗, r

η
,
γ1

dA1

) ≡ G(V ∗).

Observe that G(V ∗) is a strictly increasing function for V ∗ ≥ 0. This implies that if

Dη

rdT
> 1 +Q(0, r

η
,
γ1

dA1

),

then

G(V ∗) > 1 +Q(0, r
η
,
γ1

dA1

) = G(0),

which implies that V ∗ > 0. Since G(V ∗) is strictly monotone, we see that in such

case, the solution V ∗ of G(V ∗) = Dη
rdT

is unique. �
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The Jacobian for the system (3.6.26)-(3.6.29) is given by:

r − ηT −ηV 0 0

a21 a22 a23 a24

0 0 −dA1 0

0 0 0 −dA2


where

a21 = ∆(T,A2)∂F (V, T,A1)
∂V

,

a22 =
(
λTI12

c2A2

KA2 + c2A2

)
F (V, T,A1) + ∆(T,A2)∂F (V, T,A1)

∂T
− dT ,

a23 = ∆(T,A2)∂F (V, T,A1)
∂A1

,

a24 = F (V, T,A1)λTI12T
c2KA2

(KA2 + c2A2)2 .

Proposition 3.6.4 The system (3.6.26)−(3.6.29) has a stable tumor-free equilibrium

provided that T ∗0 > r
η

and F (0, T ∗0 , γ1
dA1

) < 0.

Proof. The Jacobian for the tumor-free equilibrium E∗0 = (0, T ∗0 , γ1
dA1

, γ2
dA2

) is given

by: 

r − ηT ∗0 0 0 0

a21 a22 a23 a24

0 0 −dA1 0

0 0 0 −dA2
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where

a21 = ∆(T ∗0 ,
γ1

dA1

)
∂F (0, T ∗0 , γ1

dA1
)

∂V
,

a22 =
(
λTI12

c2γ2

dA2KA2 + c2γ2

)
F (0, T ∗0 ,

γ1

dA1

) + ∆(T ∗0 ,
γ1

dA1

)
∂F (0, T ∗0 , γ1

dA1
)

∂T
− dT ,

a23 = ∆(T ∗0 ,
γ1

dA1

)
∂F (0, T ∗0 , γ1

dA1
)

∂A1
,

a24 = F (0, T ∗0 ,
γ1

dA1

)λTI12T
∗
0

c2KA2

(KA2 + c2γ2
dA2

)2 .

As F (V, T,A1) is a decreasing function of V , T and A1, ∂
∂T
F (V, T,A1), ∂

∂V
F (V, T,A1),

∂
∂A1

F (V, T,A1) < 0, and the eigenvalues are given by:

λ1 = r − ηT ∗0 < 0 if T ∗0 >
r

η
,

λ2 = α22,

λ3 = −dA1 < 0,

λ3 = −dA2 < 0.

Regarding the sign of a22, a22 can be either positive or negative.

a22 =
(
λTI12

c2γ2

dA2KA2 + c2γ2

)
︸ ︷︷ ︸

+

F (0, T ∗0 ,
γ1

dA1

)︸ ︷︷ ︸
?

+ ∆(T ∗0 ,
γ1

dA1

)︸ ︷︷ ︸
+

∂F (0, T ∗0 , γ1
dA1

)
∂T︸ ︷︷ ︸
−

− dT︸︷︷︸
+

.

If F (0, T ∗0 , γ1
dA1

) < 0, then a22 < 0, which implies that E∗0 is stable. �

3.7 Method for Parameter Estimation

We estimate the parameters in the model based on (i) Literature review, (ii) Step-

wise process by increasing model complexity with the application of a parameter

estimation algorithm. All parameters values estimated by these ways are depicted on

Table D.1.
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We first start with an extensive literature review to seek to estimate parameters for

the model (3.3.3)-(3.3.6), as depicted in Appendix D. For the remaining parameters,

we numerically simulate the model using the MATLAB built-in function fmincon,

which utilizes an interior point algorithm to minimize an objective error function

within a range (Byrd et al., 2000). This way we are able to find the set of parameters

that best fit the data in Xu et al. (2017).

We calculate the error using the following formula:

θ̂ = arg min
{θ feasible}

N∑
i=1

(ymodel(ti; θ)− yobservedi )2. (3.7.31)

where N is the total number of data points, ymodel is the solution of the tumor volume

generated from the model under parameters θ and evaluated at the corresponding

data time points, and yobserved represents the tumor volume data points in Xu et al.

(2017). We perform all simulations in MATLAB 2019a using the ODE system (3.3.3)-

(3.3.6) and the following initial conditions: V (0) = 100, T (0) = 0.03, A1(0) = 0 and

A2(0) = 0. The choice for the tumor volume initial condition is based on the mice

initial tumor size ≈ 100mm3 (Xu et al., 2017).

3.8 Data Fitting

We extract the data from Xu et al. (Xu et al., 2017) through the use of the

application WebPlotDigitizer. In this experiment BALB/c mice were injected with

EMT-6 breast cancer cells orthotopically into the mammary fat pad. Once the volume

of the tumor reached approximately 100 mm3, the mice were randomly allocated

into treatment groups consisting of eight mice each (Xu et al., 2017). EMT-6 mice

were treated both with monotherapy and combination treatments. The two types of

treatments used were avelumab and NHS-muIL12. We consider the average tumor
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volume curves for each of the following cases: (i) Isotype control (200 µg), (ii) NHS-

muIL12 (2 µg), (iii) NHS-muIL12 (10 µg), (iv) Avelumab (200 µg), (v) Avelumab

(200 µg) + NHS-muIL12 (2 µg), (vi) Avelumab (200µg) + NHS-muIL12 (10µg).

We initially seek to determine which parameters are the main drivers of the tumor

dynamics in each scenario. Two important parameters that affect the overall behavior

of the system are the growth rate (r) and the kill rate of the tumor cells by the T

cells (η). Using fmincon as described in Section 3.7 and trying a range of reasonable

initial guesses, we fit the model to the no drug case data using the optimum guess

and get the following estimates: r = 0.2114, η = 1. Note that all other parameters

expressed in the no drug case are determined by literature review as shown on the

parameter estimation table with γ1 = γ2 = 0. As depicted by Figure 3.2 a) below,

the model accurately describes tumor growth in the absence of treatment.

We inherit these parameter estimates and sequentially fit the remaining parame-

ters for the submodels using a similar approach as in Wares et al. (2015). For each

submodel we determine the most sensitive parameters that affect the behavior of the

system and fit those to data. This process eventually led to the fit of a higher in

complexity model (Wares et al., 2015).

The first submodel captures the dynamics corresponding to treatment A2 (NHS-

muIL12). The drug A2 was administrated subcutaneously on day 0 and dosages of

2 µg and 10 µg were explored (Xu et al., 2017). We fit the parameter KA2 to NHS-

muIL12 (2 µg) data and obtain the estimate KA2 = 7 · 10−14, which differs from

the estimate value in literature as shown in Section D. Using the estimate for the

parameter KA2, we fit for treatment NHS-muIL12 (10 µg). As observed on Figure

3.2 b) and c), the fit for case b) captures the behavior of the data qualitatively better

than for case c).

We use a similar process for the A1 (avelumab) data set. The drug A1 was injected
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intravenously on days 0, 3 and 6 at a dosage level of 200 µg. Although based on our

literature review KA1 = 1.8 · 10−11 in Section D, the model gives better fits when

KA1 = 10−13 as depicted in Figure 3.2 d).

Now that we established appropriate parameter estimates for each case, we wish

to examine whether the parameter estimates result into good predictions for the

combination cases. We observe that the model predictions for the combination case

avelumab (200 µg) and NHS-muIL12 (2 µg) as shown on Figure 3.2 e), are not

satisfactory, implying that the model does not capture the eradication of the tumor

as observed by the mice data. However, once the dosage of NHS-muIL12 increases to

10 µg, while maintaining the same dosage level for avelumab, the prediction tends to

resemble closer the experimental data as observed in Figure 3.3.

3.9 Asymptotic Behavior

We perform all simulations in MATLAB using the parameter estimates found

during the data fitting process, whose values are listed in the table in Appendix

D. There are two asymptotic system behavior outcomes, namely tumor control and

tumor escape. To distinguish between these two behaviors we define a threshold, VT ,

such that if the solution computed at the last time point is greater than VT , we define

the outcome as “tumor escape", otherwise as “tumor control." We set VT =V (0)=100,

and use initial conditions V (0) = 100, T (0) = 0.03, A1(0) = 0 and A2(0) = 0.

We consider the case when both drugs, i.e. NHS-muIL12 and avelumab, are

applied continuously and run simulations for a long period of time (≈ 220 days)

using both the full system (3.3.3)-(3.3.6) and the limiting system (3.5.22)-(3.5.23).

We define the continuous dosages for avelumab and NHS-muIL12 as γ1 and γ2, re-

spectively, and determine appropriate ranges from the data of Xu et al.(Xu et al.,

2017). Specifically, since avelumab is administered on days 0, 3, 6 over a time in-
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(e) Av 200µg+ NHS 2µg

Figure 3.2: Tumor volume data and simulations using model (3.3.3)-(3.3.6) for each

single-agent and combination therapy case. Case (a) administration of no drug. Case

(b), (c) treatment with NHS-muIL12 2µg and 10µg respectively on day 0. Case (d)

administration of avelumab 200µg on days 0, 3 and 6. Case (e) treatment with both

avelumab (200µg) on days 0, 3, 6 and NHS-muIL12 (2µg) on day 0.
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NHS

Av Av

fitted curve

data points

Figure 3.3: First graph depicts the model simulation for the combination treatment

case of avelumab (200µg) and NHS-muIL12 (10µg). The remaining two graphs cor-

respond to each of the drugs administrated with respect to time.

terval of 18 days and the dosage amount injected is 200µg, γ1 results to γ1 ≈

(3 ∗ 200 ∗ 10−6)/18 = 0.55 ∗ 10−4 g
day . Using a similar argument, γ2 ranges between

γ2 ≈ 0.11 ∗ 10−6 − 0.33 ∗ 10−6 g
day .

Based on this information, we create a surface plot (see Figure 3.4) where three re-

gions are noted, namely, “tumor control",“tumor escape" and “intermediate". We are

interested in seeing how the dynamics of the full system (3.3.3)-(3.3.6) compares to the

dynamics of the limiting system (3.5.22)-(3.5.23). The intermediate region shown in

Figure 3.4 underlines the difference between the dynamics of the two systems. Specif-

ically, we select a point (red circle) within this region to demonstrate this behavior.

Depending on which system is used the point lies either in the tumor escape or in the

tumor control region. Overall the behavior of the two systems is qualitatively compa-

rable. Hyperbolic curves separate the three regions. To achieve smoother hyperbolic

curves, we create a logarithmically spaced vector in MATLAB. We notice that there
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Figure 3.4: Surface plot depicting the asymptotic behavior of systems (3.3.3)-(3.3.6)

and (3.5.22)-(3.5.23) for combinations of γ1 (avelumab) and γ2 (NHS-muIL12) drugs,

where both are applied continuously. Based on a threshold, three regions, namely,

‘tumor control’,‘tumor escape’ and ‘intermediate’ are identified, which are separated

by hyperbolic curves. The hyperbolic curve closer to the origin corresponds to the

system (3.5.22)-(3.5.23) and the other one to (3.3.3)-(3.3.6). Six representative points

indicated by different markers and colors, are chosen and shown on the plot. Their

respective tumor volume behavior is plotted in Figure 3.5 employing the same marker

and color notation. Note that the red point falls in the intermediate region, where

the behavior is dependent on the system being used.
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(a) Full system

1
 = 9.35 10

-7
, 

2
 = 1.52 10

-6

1
 = 9.71 10

-7
, 

2
 = 6.55 10

-6

1
 = 1.35 10

-7
, 

2
 = 1.21 10

-5

1
 = 5.84 10

-8
, 

2
 = 5.05 10

-5

1
 = 1.25 10

-7
, 

2
 = 5.05 10

-5

1
 = 9 10

-7
,      

2
 = 5.05 10

-5

(b) Limiting System

Figure 3.5: A subset of tumor volume behaviors of both the full system (3.3.3)-(3.3.6)

and the limiting system (3.5.22)-(3.5.23) for continuous dosage with γ1 (avelumab)

and γ2 (NHS-muIL12) respectively. The threshold chosen is shown on the plot with

a dashed line. We observe that the qualitative tumor volume behaviors between

the systems are comparable with the exception of the red point, which lies in the

intermediate region as shown in Figure 3.4.
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is synergism between the two drugs (avelumab and NHS-muIL12), meaning that the

total effect of the drugs in combination is greater than the sum of administrating the

drugs individually. Particularly, we would require about one third of the amount of

both drugs in combination to control the tumor in comparison to monotherapy.

3.10 Discussion

The last few years have seen a rapid increase in clinical trials investigating immune

checkpoint inhibitors anti-PD-1/PD-L1 for a variety of types of cancer. Although

these agents have increased survival rates, not all patients respond to monotherapy

treatment (Yan et al., 2018). This has led to the examination of combination treat-

ments that have complimentary effects (Warnes and Postow, 2018). Particularly,

since 2018 there are approximately 2, 250 active trials from which 1, 760 are exploring

the pairing of anti-PD-1/PD-L1 agents with other forms of treatments (Tang et al.,

2018).

Xu et al. (2017) concluded that combining anti-PD-L1 with NHS-muIL12 en-

hanced antitumor effectiveness in comparison to single agent treatment. Based on

the data presented in their paper, we developed a simple biologically meaningful sys-

tem of ordinary differential equations that models the tumor volume behavior. This

work allowed us to complement and improve our previous work (Nikolopoulou et al.,

2018), where we only considered single agent treatments.

We performed mathematical analysis to a simple generic model (3.3.1)-(3.3.2)

that allowed us to understand the behavior of the system. We established conditions,

which we adapted to determine the dynamics for the exponential growth model. More-

over, we mathematically analyzed the continuous case of administrating both drugs

(avelumab and NHS-muIL12) using the limiting system (3.5.22)-(3.5.23) in Section

3.5 and the full system (3.3.3)-(3.3.6) in Section 3.6. The mathematical analysis does
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not allow direct comparison of the dynamics of the systems, as it produces more

technical results than biological insight. However, the mathematical analysis assists

to the verification of the numerical predictions of the model.

Some of the parameters included in the model (3.3.3)-(3.3.6) proved to be chal-

lenging to calculate based on limited literature resources. However, the use of data in

Xu et al. (2017) allowed us to estimate biologically sensible ranges for those param-

eters based on submodel fitting. We were able to fit well the submodels of the full

model to the monotherapy cases. Using these fit parameter values, model predictions

indicate that we do not describe dual therapy at lower doses of NHS-muIL12 well.

However, the model does make qualitatively good predictions at higher NHS-muIL12

doses. Given the reasonable predictions at higher NHS-muIL12 doses, we exploited

the model to make predictions regarding treatment regimens not considered in the

experiments of Xu et al. (2017). Specifically, we investigated the effects of adminis-

trating different combinations of avelumab and NHS-muIL12 continuously for both

the full system (3.3.3)-(3.3.6) and the limiting system (3.5.22)-(3.5.23). We found

that the dynamics of the systems are not equivalent, as system (3.5.22)-(3.5.23) is an

approximation of (3.3.3)-(3.3.6). However, simulations suggested that the qualitative

behavior of the two systems is comparable. Finally, we found that the drugs act

synergistically and that approximately one third of the amount of both drugs could

potentially eliminate the tumor.
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Chapter 4

PARAMETER ESTIMATION IN A MATHEMATICAL MODEL OF

ONCOLYTIC VIRUS THERAPY

4.1 Introduction

Oncolytic virus therapy (OV) is an emerging field of cancer immunotherapy (Rus-

sell and Peng, 2018). It has shown great promise when used in combination with other

treatments (Rosewell and Suzuki, 2018). Oncolytic viruses are standard viruses that

can infect healthy and cancer cells (Chiocca et al., 2014). Upon injection of the virus,

the virus does not have the ability to replicate inside healthy cells. Consequently,

healthy cells remain unharmed. Once cancer cells get infected, the rapid replication

process of the virus results to the bursting of the tumor cells. This process, known

as lysis leads to the consequent infection of other tumor cells (Chiocca et al., 2014).

However, the power of the immune system to eliminate the viruses makes the lysing

ineffective. As a result, OV as a monotherapy has not shown satisfactory results in

tumor eradication (Rosewell and Suzuki, 2018). Recent technological advancements

have led to the development of genetically engineered viruses in the form of vectors,

which deliver therapeutic molecules to the tumor site. This enhances the ability of

the immune system to recognize tumors as foreign (Melcher et al., 2011).

Several mathematical modeling efforts have investigated the coupling of OV with

other treatments, such as dendritic cell vaccine (DC) (Wares et al., 2015; Gevertz

and Wares, 2018), MEK inhibitors (Bagheri et al., 2011) and immune checkpoint

inhibitors (Friedman and Lai, 2018; Storey, Lawler and Jackson, 2020). The work

in this chapter is based on a model originally published in Wares et al. (2015), and
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simplified in Gevertz and Wares (2018).

4.2 Motivation

The minimal model by Gevertz and Wares (2018) in combination with the data in

Huang et al. (2010), is used in an ongoing analysis performed by Gevertz et al., which

demonstrates that the optimal protocol identified for an individual mouse is sensitive

to the fitting methodology utilized. That is of particular importance, especially since

clinical care of cancer nowadays is moving towards personalized therapeutic design

instead of the traditional one-size-fits-all approach that relies on population-level

statistics (Deisboeck, 2009; Agur, Elishmereni and Kheifetz, 2014; Lorenzo et al.,

2016). Therefore, if one is not careful, there is a risk that an individualized optimal

prediction could change at the whim of the fitting methodology. This led to the

motivation of this chapter: Can an explanation be found for this sensitivity to fitting

methodology?

To answer this question, the practical identifiability method is employed on the

submodel in Gevertz and Wares (2018) using the average mice data in Huang et al.

(2010). In the following sections relevant background of both models (Wares et al.,

2015; Gevertz and Wares, 2018) will be presented to the reader before the results of

the practical identifiability investigation are put forward.

4.3 Mathematical Model Proposed by Wares et al. (2015)

The authors propose a system of six differential equations, which consists of the

volume of uninfected tumor cells U , infected tumor cells I, virions V , T-cells T ,
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antigen-presenting cells A, injected dendritic cells D, and takes the following form:

dU

dt
= rU − βUV

N
− (k0 + ckI)UT

N
(4.3.1)

dI

dt
= βUV

N
− δII − (k0 + ckI)IT

N
(4.3.2)

dV

dt
= uV (t) + αδII − δV V (4.3.3)

dT

dt
= cT I + χAA+ χDD − δTT (4.3.4)

dA

dt
= cAI − δAA (4.3.5)

dD

dt
= uD(t)− δDD (4.3.6)

where,

N = U + I + T

Using the average tumor volume of melanoma mice data from Huang et al. (2010)

the authors investigate the pairing of immuno-enhanced OV with DC injections. In

regards to immuno-enhanced OV they consider adenovirus that expresses 4-1 BBL

and IL-12 both in combination and seperately. 4-1BBL is the ligand of 4-1BB, which

is a costimulatory member of the tumor necrosis factor receptor superfamily (Wen,

Bukczynski and Watts, 2002). IL-12 is a cytokine which role is to activate naive

T-cells (Colombo and Trinchieri, 2002). The model is fitted in a hierarchical fashion.

Specifically, a very simple model is first proposed and fitted, which provides the basis

for continuation of the higher in complexity model construction process. Each time

a submodel is fitted, estimated parameters are inherited to the next step until the

final most advanced model is formulated. Using this fitting methodology, the authors

obtain increasingly accurate fits for simpler models.

Upon model parameter estimation, the goal of Wares et al. (2015) was to find

the optimal treatment strategy based on the experiment in Huang et al. (2010). An
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important observation in Huang et al. (2010) was that the combination treatment

resulted in the decrease of the tumor size but not tumor eradication. It was hypoth-

esized that the increase of DC injections could cause tumor elimination. Wares et al.

(2015) indeed determined that higher dosages of DC could eradicate the tumor. Ad-

ditionally, Huang et al. (2010) proposed a combination treatment strategy that was

more effective than monotherapy. They considered a total of 6 injections, 3 of each

treatment, while maintaining the dose and determined that the alternating with OV

first was the most effective. Their proposed strategy was OV-DC-OV-DC-OV-DC.

Wares et al. (2015) further investigated the most effective order of administrating OV

and DC. Their results indicated that tumor elimination was observed for the OV-OV-

OV-DC-DC-DC strategy. Moreover, the optimal treatment strategy also depends on

the dose of each drug. The authors also explored the effects of changing the number

of doses and the time between injections. They found that higher number of doses

result in tumor reduction, while underlining the importance of induced toxicity effects

based on the dosage level. Furthermore, dose administration in short time steps and

early in the therapy was proven to be the most effective strategy. Finally, the authors

noted the dependency of the treatment efficacy on the temporal drug administration.

However, analysis of the findings in Wares et al. (2015) raised questions in regards

to the predictive ability of the model. Particularly, it was shown that a minimal

change in the dosage could have effects on the protocol, indicating the existence of

a bifurcation point. Based on that observation, Barish et al. (2017) employed the

Virtual Expansion of Populations for Analyzing Robustness of Therapies (VEPART)

to determine the robustness of the original optimal strategy predicted by Wares et al.

(2015). The authors’ investigation validated the fragility of the originally predicted

model.
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4.4 Mathematical Model Proposed by Gevertz and Wares (2018)

Using the modeling approach in Wares et al. (2015), the authors reduce the di-

mensionality of the model and propose a system of five differential equations instead

of six. They eliminate the equation representing the antigen-presenting cells A in

system (4.3.1)-(4.3.6). As a result, the minimal model proposed takes the following

form:

dU

dt
= rU − βUV

N
− (k0 + ckI)UT

N
(4.4.7)

dI

dt
= βUV

N
− δII − (k0 + ckI)IT

N
(4.4.8)

dV

dt
= uV (t) + αδII − δV V (4.4.9)

dT

dt
= cT I + χDD − δTT (4.4.10)

dD

dt
= uD(t)− δDD (4.4.11)

where,

N = U + I + T

The authors conclude that the simplification made to the system describes the

experimental data in Huang et al. (2010) as well as the six equation model presented

in equations (4.3.1)-(4.3.6) by Wares et al. (2015). As a result, in this work we

consider the minimal model proposed by Gevertz and Wares (2018).

4.5 Problem Statement

Before addressing the question of identifiability, the general form of a mathe-

matical model expressed by the following equations is defined similar to Raue et al.
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(2009):

dx

dt
= F (x, u, t, p)

y = g(x, t, p)

zn = y(tn) + εn, ∀ n = 1, ....N

Here x represents the vector of state variables of the model, u the input vector, i.e

treatment, t depicts time and p the parameter vector of our model and F is expressed

by rate equations and represents the interactions between the state variables. The

variable y represents the vector of output variables and g is the map from the internal

state to the measurement zn. The noise εn is assumed to be additive Gaussian with

zero mean and known variance σ2.

4.6 Oncolytic Virus Therapy Model

For the purpose of this project the case of OV as a monotherapy is first considered.

A simplified version of the model (4.4.7) -(4.4.11) provided in Gevertz and Wares

(2018) is utilized in combination with the data provided in Huang et al. (2010). Figure

4.1 represents a schematic network between the variables in Gevertz and Wares (2018)

and Table 4.1 contains all the state variables of the model system (4.6.12)-(4.6.14).

The following sets of differential equation describe the oncolytic virus therapy
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Table 4.1: State variables of the model system (4.6.12)-(4.6.14).

Variable Meaning Unit

U volume of uninfected tumor cells mm3

I volume of infected tumor cells mm3

V number of virons mm3

N total volume of tumor cells mm3

V I U
Injection

rU

δII

δVV

βUV
N

×α

uv(t)

Figure 4.1: Schematic representation of the model (4.6.12)-(4.6.14) (Gevertz and

Wares, 2018). Once oncolytic virus is injected into the system, uninfected tumor

cells U become infected tumor cells I. Through the virus replication process, infected

tumor cells can not bear the viral load resulting in the lysing of the infected cells and

release of virons.

submodel presented in Gevertz and Wares (2018).

dU

dt
= rU︸︷︷︸

uninfected tumor growth

− βUV

N︸ ︷︷ ︸
infection process of uninfected cells

(4.6.12)

dI

dt
= βUV

N︸ ︷︷ ︸
infection process of uninfected cells

− δII︸︷︷︸
viral release from lysed infected cells

(4.6.13)

dV

dt
= uv(t)︸ ︷︷ ︸

infusion rate

+ αδII︸ ︷︷ ︸
viral release from lysed infected cells

− δV V︸ ︷︷ ︸
viral decay

(4.6.14)

(4.6.15)
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where,

N = U + I

Equation (4.6.12) describes the number of uninfected tumor cells U , where rU

denotes the exponential growth of uninfected tumor cells. The uninfected tumor cells

U become infected tumor cells I by the virions V at a density-dependent rate β
N
.

Infected cells lyse at rate δI releasing α new virions and clearing free virions at a rate

δV . The term uv(t) represents the injection of 1010 virions on days 0, 2 and 4, as

per the protocol in Huang et al. (2010) and δV V denotes the viral decay. In terms of

the general model in Section 4.5, here x = (U, I, V ), F (x, u, t, p) represents the right

hand side of the model (4.6.12)-(4.6.14), where u are the injections uv(t) and p the

parameters in Table 4.2. The variable y = U + I represents the tumor volume, and

zn is the noisy tumor volume data.

The initial steps are to reproduce the plots in the original full model in Wares

et al. (2015), using the data in Huang et al. (2010), the parameters in Table 4.2

and initial conditions, U(0) = 55.68, I(0) = 0 and V (0) = 10. The behavior of the

system as depicted by Figure 4.2 matches the simulation in Wares et al. (2015). To

obtain the fit shown in Figure 4.2, Wares et al. (2015) followed a hierarchical fitting

approach. They first started by fitting the net tumor growth parameter r and the

initial condition U(0) to the control data using a simple exponential growth model

(dU
dt

= rU). Upon inheriting the parameter r, they continued by fitting the infection

rate parameter β and initial condition U(0) to the OV data (which is different than

the U(0) fit to the control data), while maintaining all other parameters constant

throughout the fitting process. The constant parameters include the infected lysis δI ,

the viral production α, and the viral decay δV . These were acquired from extensive

literature research, and their values are listed in Table 4.2.
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Motivated by the work in Wares et al. (2015), this dissertation follows a different

optimization approach, which differs from the hierarchical fitting method. Hierar-

chical fitting is often advantageous, as it assists in reducing the dimensionality of

the parameter space throughout the optimization process. However, error at lower

levels accumulates and gets inherited and amplified at higher levels. Therefore, one

can not be certain that the optimum parameter set obtained is indeed the optimum

one. As a result, the optimization method introduced below fits all the parameters

simultaneously. Using “everything-at-once methods” results to more robust outcomes

although it is computationally intensive and demands numerical optimization in high

dimension. Before describing the method in full detail, first some background is

introduced.

Table 4.2: Parameter values of the model system (4.6.12)-(4.6.14).

Variable Meaning Ad Units

r Net tumor growth 0.3198 day−1

β Infection rate 1.0085 (×10−3) day−1

δI Infected lysis rate 1 day−1

α Viral production 3 (×103) -

δV Viral decay rate 2.3 day−1

4.7 Maximum Likelihood

To estimate parameter values for a model, the maximum likelihood estimation

method is often employed and the derivation is outlined in Sivia and Skilling (2006);

Bishop (2006); Lee (2012). Let p be the parameter vector in our differential equation
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Figure 4.2: Graph depicts the reproduced model simulation for the oncolytic virus

monotherapy (OV) using the parameters in Table 4.2. OV therapy was injected (1010

virions) on days 0, 2 and 4. Note the logarithmic scale of the vertical axis for the left

plot.

system and zn for n = 1, ....N the measured data that is assumed for this problem to

follow a normal distribution with mean y(x, tn, p) and known variance σ2.

The probability density of each data point is:

f(zn|y(tn, p), σ2
n) = 1√

2πσ2
n

exp
(
−(zn − y(tn, p))2

2σ2
n

)
(4.7.16)

The likelihood function which represents the likeliness of the measured data zn, given
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a model with parameters p is defined by L(p; z1, ...zN).

L(p; z1, ...zN) =
N∏
n=1

f(zn|y(tn, p), σ2
n) (4.7.17)

=
N∏
n=1

1√
2πσ2

n

exp
(
−(zn − y(tn, p))2

2σ2
n

)

To find the values of the parameters that gives the best fit the likelihood function

is maximized. In other words:

p∗ = arg max
p

L(p; z1, ...zN)

However, for computational simplicity, either the log likelihood function is maxi-

mized, or the negative log likelihood function minimized. Here the latter is considered:

−LL(p; z1, ...zN) = − log
(

N∏
n=1

f(zn|y(tn, p), σ2
n)
)

(4.7.18)

= −
N∏
n=1

log
(

1√
2πσ2

n

exp
{
−(zn − y(tn, p))2

2σ2
n

})

=
N∑
n=1

1
2 log(2πσ2

n) + 1
2

N∑
n=1

(
zn − y(tn, p)

σn

)2

=
N∑
n=1

1
2 log(2π) +

N∑
n=1

1
2 log σ2

n + 1
2

N∑
n=1

(
zn − y(tn, p)

σn

)2

= N

2 log(2π) +
N∑
n=1

1
2 log σ2

n + 1
2

N∑
n=1

(
zn − y(tn, p)

σn

)2

This mimization is equivalent to:

min
p

(−2LL(p; z1, ...zN)) = min
p

 N∑
n=1

(
zn − y(tn, p)

σn

)2
 (4.7.19)

The first two terms do not influence the overall result as they are independent of

the parameters, hence they can be ignored. As a result the third term is minimized,

which is defined as the objective function in this case, where y(t, p) = U(t) + I(t).
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Note that for the data set in Huang et al. (2010) apart from the average tumor volume

and time, it is essential to use the standard deviation σn at each time point, since the

variation of the data points needs to be accounted for.

4.8 Parameter Fitting Method

The parameter fitting method introduced is used to fit all the parameters in the

model (4.6.12)-(4.6.14): r, the net tumor growth, β, the infection rate, δI the infected

lysis, α the viral production, δV the viral decay and U(0), the initial condition for

uninfected tumor cells. All simulations of the system (4.6.12)-(4.6.14) were carried

out with MATLAB 2019a. Since the system (4.6.12)-(4.6.14) contains stiff ordinary

differential equations, ode15s solver is preferred. Compared to other ode solvers,

ode15s solver has proven to be efficient for these type of problems as it allows for a

big number of iterations to be executed. To obtain the optimum parameters given the

data set, the following approach is followed, which is also graphically demonstrated

in Figure 4.3:

1. Quasi Monte Carlo sampling method with Sobol sequences to find the neigh-

borhood where best-fit parameter set occur.

2. Perturb the best-fit parameter set to find the final optimum parameters utilizing

a simplified version of the simulated annealing method.

These methods are described in more detail in the following subsections.

4.8.1 Quasi Monte Carlo Method with Sobol Sequences

The quasi Monte Carlo method is widely used as a method of numerical integration

and optimization (Kucherenko, 2015). For the purpose of this project the optimization

aspect of the method is explored. Quasi Monte Carlo uses quasi-random sequences,
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Figure 4.3: 1D Graphic illustration of the quasi Monte Carlo sampling method with

Sobol sequences in combination with a simplified version of simulated annealing. The

green points represent the sobol points which are quasirandomly spaced across the

parameter space. Using the quasi Monte Carlo sampling method, the neighborhood

where the best-fit parameter set occurs is depicted by the grey circle. The best-fit

parameter set is then randomly perturbed until the global optimum parameter set is

identified.
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including the Halton sequence, the Sobol sequence, or the Faure sequence. The Sobol

Low Discrepancy Sequence (LDS) achieves uniformity across the parameter space

and is preferred, since it efficiently samples space in shorter computational time than

other methods (Kucherenko, 2015). Regarding optimization, it allows to locate the

neighborhood where the global minimum occurs. The quasi Monte Carlo method

with Sobol sequences is described by Algorithm 1, lines 1− 5. Specifically, the Sobol

sequence depends on the dimension of the parameter set p, as shown by line 1 in

Algorithm 1.

4.8.2 Perturbation Method and Simulated Annealing

Once the parameter set from the quasi Monte Carlo method is obtained, a simpli-

fied version of the simulated annealing method is used to attain the global minimum.

The first step is to randomly perturb the parameters found by the quasi Monte Carlo

method. However, since the model parameters in (4.6.12) - (4.6.14) are of different or-

der of magnitude, careful selection of the perturbation scales should be carried out to

ensure a proportional change in the parameter set. Hence, the following perturbation

method for each parameter is used:

1. Compute the order of magnitude of the parameter denoted by OM.

2. Compute the perturbation magnitude denoted by PM = OM + perturbation

scale. The choice of the perturbation scale for this problem is −1.

3. Pick a random number nr within the perturbation interval [−10PM , 10PM ].

4. Add nr to the current parameter value.

When the optimal parameter set found through the Sobol method is perturbed,

the objective function in equation (4.7.19) is evaluated at the new parameter set
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and compared to the objective function value from the optimal quasi Monte Carlo

parameter set. If the value of the objective function for the new parameter set is

smaller, the new parameter set is accepted. If it is larger, the new parameter set

is rejected. The process continues by perturbing and comparing the new parameter

set to the last accepted parameter set and comparing it to the last parameter set.

The algorithm is repeated until the convergence criterion is met. The convergence

criterion is based upon the relative change within the last 5 accepted values of the

objective function values and the relative threshold is set to 10−4. In the case of

slow convergence, the simulation runs for a set number of iterations (1 million). This

process is described by Algorithm 1, lines 6− 19.

Let p be the parameter space and LL(p) the objective function evaluated at the

parameter set p as depicted by Equation 4.7.19. The goal is to minimize the objective

function LL(p) with respect to the parameter space p = {r, β, δI , α, δV } and initial

condition U(0).

Once the optimum parameter set is obtained through the quasi Monte Carlo and

the version of simulated annealing method described above, the identifiability of the

model (4.6.12) - (4.6.14) is investigated using the profile likelihood approach which is

described below.

4.9 Identifiability

The need for mathematical models motivated by data is of paramount importance

in the field of mathematical biology. An essential task is to construct meaningful

mathematical models that describe biological mechanisms and to estimate parame-

ters given experimental data. However, estimating unique parameters for a model

is often challenging due to the uncertainty in the experimental data, which are in-

evitably noisy, and also due to the lack of experimental data. Confidence in the
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Algorithm 1
1: sample = sobolset(dim(p), N)

2: for i = 1:N do

3: xsample(i) = pmin + (pmax − pmin) ∗ sample(i)

4: LLsob(i) = LL(xsample(i))

5: end for

6: iopt = argmini LLsobol

7: popt = xsample(iopt)

8: LLopt = LL(popt)

9: OM = log(popt)

10: PM = OM − 1

11: while convergence criteria not met do

12: nr = random pick nr ∈ [10−PM, 10PM]

13: LLpert = Popt + nr

14: LLpert = LL(Ppert)

15: if LLpert < LLopt then

16: popt = ppert

17: LLopt = LLpert

18: end if

19: end while
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parameter estimation process is required in order to trust predictions made by a

model. Particularly, it is noted that multiple values of parameters could potentially

give good fits of the model to the data. Hence, when trying to estimate parameters for

a model given a data set, we are interested in answering the following question: “Can

we uniquely estimate parameters for a model given a data set?” This question char-

acterizes identifiability (Eisenberg and Harsh, 2017). Identifiability is divided in two

main categories; structural and practical identifiability (Eisenberg and Harsh, 2017).

Structural identifiability poses the question of “whether unique parameter values for

a model can be estimated given noiseless data” (Wu et al., 2008; Eisenberg et al.,

2013). On the other hand, practical identifiability answers the question of “whether

unique parameter values can be estimated given the available noisy data” (Jacquez

and Greif, 1985; McLean and McAuley, 2012). Over recent years, several data-driven

approaches have been carried out with the goal of investigating both structural and

practical identifiability of the models in different areas such as cancer treatment.

Such efforts include Eisenberg and Harsh (2017) and Wu et al. (2019) to name a

few. Eisenberg and Harsh (2017) use a two-compartment model for chemotherapy to

investigate parameter identifiability. The authors explore parameter identifiability to

answer biological questions and demonstrate the usefulness of practically identifiable

combinations. An application of parameter identifiability was carried out by Wu et al.

(2019) for prostate cancer models under androgen suppression therapy.

4.10 Practical Identifiability: Profile Likelihood Method

To address practical identifiability, the profile likelihood approach (Murphy and

Van Der Vaart, 2000; Venzon and Moolgavkar, 1988) is followed. The goal is to find

confidence intervals for the estimated parameters p∗. Here, a step by step implemen-

tation of the profile likelihood method is introduced.
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Let p be the parameter vector that contains all parameters of the model, and let θ

be one parameter of interest contained in the vector p. Using the likelihood function

defined in Equation 4.7.19, the profile likelihood PL(θ) for the parameter θ is denoted

as follows:

PLk(θ) = min
p∈{p|pk=θ}

(−2LL(p; z1, ...zN)) = min
p∈{p|pk=θ}

 N∑
n=1

(
zn − y(tn, p)

σn

)2


(4.10.20)

Step-by-step Profile Likelihood Method process:

1. Determine a range for values of the parameter θ.

2. Fix θ = θ∗ at a value in the range.

3. For the fixed value in step 2 fit the parameters p∗k and obtain the best-fit values

by minimizing the objective function defined in equation (4.10.20) using the

quasi Monte Carlo method and the simplified version of simulated annealing

described earlier.

4. Evaluate the objective function at those optimum values for the fixed value of

θ∗.

5. Repeat the process described in steps 2-4 for a discrete set of values in the range

of the parameter θ. This yields the profile likelihood function for the parameter

θ.

The above process is followed to find profile likelihood curves for multiple parame-

ters of interest. A confidence interval for the parameter of interest can be determined

using the profile likelihood method. This is accomplished with the use of a threshold.

The confidence interval for a parameter θ at a level of significance α is of the form

PL(θ)− 2LL(p∗k) ≤ ∆α,
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where ∆α = χ2(α, df) denotes the threshold and is represented by a χ2 distribution

with df the number of model parameters (e.g. if df = 1 all model parameters except

for one are fixed) and level of significance α (e.g α = 0.95 for 95% confidence interval)

(Raue et al., 2009; Kreutz et al., 2013; Eisenberg and Harsh, 2017; Wu et al., 2019).

The intersection points between the threshold and the profile likelihood curve at given

parameter values result to the bounds of the 95% confidence interval (Raue et al.,

2009). A parameter is said to be practically identifiable if the shape of the profile

likelihood plot is locally convex with a finite confidence interval as shown in Figure 4.4

a) (Eisenberg and Harsh, 2017). Otherwise, a parameter is practically unidentifiable

as shown in Figure 4.4 b).
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(a) Identifiable
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8
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(b) Practically Unidentifiable

Figure 4.4: Example of an identifiable and practically unidentifiable parameter as

shown in Eisenberg (2018).

4.11 Identifiability of Oncolytic Virus Model

Several rounds of increasing the number of fixed parameters is investigated until

practical identifiability is reached for all parameters.
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4.12 Full Parameter Fitting

The submodel (4.6.12) - (4.6.14) presented in Gevertz and Wares (2018) consists of

a total of five parameters (df = 5) which are listed in Table 4.2. Once the optimum

parameters are obtained as shown in Table 4.3 using the method in Section 4.8,

practical identifiability for all five parameters and initial condition U(0) is explored

as described in Section 4.10.

The likelihood profiles for each of the five parameters and initial condition are

obtained using equation (4.10.20) and the approach described in Section 4.10. Figure

4.5 illustrates practical unidentifiability for all parameters except for the net tumor

growth r and the initial condition U(0). The profile curves for r and U(0) exceed the

threshold implying practical identifiability. Reasonable confidence bounds obtained

are in line with the biological ranges for these parameters. The rest of the plots

appear to be flat, showing signs of practical unidentifiability for the infection rate

parameter β, the infected lysis parameter δI , the viral production parameter α, and

the viral decay parameter δV .

Table 4.3: Optimal scaled parameter values obtained for the model system (4.6.12) -

(4.6.14), with non-scaled values shown in parentheses.

Variable Meaning Value Units Reference

r Net tumor growth 0.264 day−1 fitted

β Infection rate 0.8655 (×10−3) day−1 fitted

δI Infected lysis rate 1.432 day−1 fitted

α Viral production 0.0587 (×103) - fitted

δV Viral decay rate 1.3354 day−1 fitted

U(0) Initial condition 58.779 mm3 fitted
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Figure 4.5: Profile likelihood plots for parameters r, β, U(0), δI , α, δV . The dotted line

depicts the threshold and the intersection points between the threshold and profile

likelihood curve are the 95% confidence interval bounds using df = 5. The red points

are the parameter estimates shown in Table 4.3.

4.13 Partial Parameter Fitting

The results in Section 4.12 indicate that the model is unidentifiable when simul-

taneous fitting of the parameters is performed. Particularly, only two parameters are

identifiable, the net tumor growth rate r and the initial condition U(0).

4.13.1 Partial Parameter Fitting : α and δI Fixed

When observing the model (4.6.12) -(4.6.14), it is noted that both parameters δI ,

the infected lysis, and α, the viral production, involved in equation (4.6.14) are in the

form of a product indicating dependency between the two parameters. Additionally,

it is suspected that I = 0 is a fixed point of the system, as a result, the effect of
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equation (4.6.13) is insignificant once infected tumor cells die out. To determine

whether these two parameters alone are responsible for the unidentifiability of the

model, both parameters α and δI are fixed as a next step, while fitting the remaining

parameters. The optimum and fixed values are listed in Table 4.4.

Table 4.4: Optimal scaled parameter values obtained for the model system (4.6.12)

- (4.6.14) for the partial parameter fitting method: α and δI fixed, with non-scaled

values shown in parentheses.

Variable Meaning Value Units Reference

r Net tumor growth 0.2673 day−1 fitted

β Infection rate 2.451 (×10−3) day−1 fitted

δI Infected lysis rate 1 day−1 fixed

α Viral production 3 (×103) - fixed

δV Viral decay rate 7.566 day−1 fitted

U(0) Initial condition 58.052 mm3 fitted

Figure 4.6 indicates that only two parameters, namely r, the net tumor growth

and U(0), the initial condition are identifiable. The identifiability results did not

improve, in fact are the same as Section 4.12, where only r and U(0) were proven to

be practically identifiable. This indicates that an additional parameter is required to

be fixed.

4.13.2 Partial Parameter Fitting: α, δI and δV Fixed

Since the results in Section 4.13.1 did not improve the identifiability results, here

the viral decay parameter δV is also fixed. For the analysis, the following parameters
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Figure 4.6: Profile likelihood plots for parameters r, β, U(0) and δV , while fixing the

remaining parameters δI , α. The dotted line depicts the threshold and the intersection

points between the threshold and profile likelihood curve are the 95% confidence

interval bounds using df = 3. The red points are the parameter estimates shown in

Table 4.4.

are varied: r, the net tumor growth, β, the infection rate and U(0), the initial con-

dition for uninfected tumor cells. The optimum and fixed values are listed in Table

4.5.

Figure 4.7 depicts that all parameters are now practically identifiable. Particu-

larly, the net tumor growth rate, r, the infection rate, β and the initial condition U(0)

are identifiable. It is important to note that the profile for parameter β, the infection

rate, shows wide 95% confidence interval bounds, which suggests high uncertainty.

This could potentially be resolved with the incorporation of additional data regarding

infected cells or free viral load.
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Table 4.5: Optimal scaled parameter values obtained for the model system (4.6.12) -

(4.6.14) for the partial parameter fitting method: α, δI and δV fixed, with non-scaled

values shown in parentheses.

Variable Meaning Value Units Reference

r Net tumor growth 0.2672 day−1 fitted

β Infection rate 0.6620 (×10−3) day−1 fitted

δI Infected lysis rate 1 day−1 fixed

α Viral production 3 (×103) - fixed

δV Viral decay rate 2.3 day−1 fixed

U(0) Initial condition 57.439 mm3 fitted
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Figure 4.7: Profile likelihood plots for parameters r, β and U(0), while fixing the

remaining parameters δI , α and δV . The dotted line depicts the threshold and the

intersection points between the threshold and profile likelihood curve are the 95%

confidence interval bounds with df = 2. The red points are the parameter estimates

shown in Table 4.5.
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4.14 Discussion

Mathematical models provide the tools to uncover underlying mechanisms and

answer important biological questions. Experimental data are used to validate math-

ematical models with the goal of making reliable predictions. However, imperfect and

incomplete data make it extremely difficult to reveal insights of the model. One of the

main challenges is the uncertainty contained in parameters, which leads to unidenti-

fiability issues. One of the main purposes of this work is to determine how reliable

the model is in making predictions. To have confidence in the optimal prediction,

it is important to ensure that there are no multiple parameter sets that equally-well

describe the data. As a result practical identifiability is investigated.

A submodel of Gevertz and Wares (2018) that describes oncolytic virus therapy is

used, which contains a total of 5 parameters and one initial condition. Although the

original publication followed a hierarchical fitting approach to obtain the optimum

parameter set, this method has some disadvantages (Wares et al., 2015). One of

the main disadvantages is the accumulation of error that occurs in every step. As

a result, a different fitting approach is considered here, where all parameters are

fit simultaneously. The optimization method considered uses a quasi Monte Carlo

sampling method with Sobol sequences in combination with a simplified version of

the simulated annealing method. Once the optimum parameter set is obtained, profile

likelihood curves are produced for each of the parameters.

Initially, all five parameters of the model including an initial condition are fit, and

the profile likelihood curves are produced. The profile curves suggest that only two

parameters, namely the net tumor growth rate, r, and the initial condition, U(0),

are practically identifiable. Given the structure of the model, it is observed that a

product between two parameters occurs, which suggests strong dependency between
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parameters α, the viral production term, and δI , the infected cell lysis rate. Upon

fixing the two correlated parameters, profile curves are produced, which indicate that

the same set of parameters remains identifiable, the net tumor growth, r, and the

initial condition, U(0). As a next step, an additional parameter is fixed, δV , the

viral decay rate. This results in the fit parameters r, β and U(0) being practically

identifiable.

Based on the results in the case when all six parameters are fitted, it is speculated

that certain parameter combinations lead to diminished I, the infected tumor cells.

Some of these parameters include δI , the infected lysis rate, α, the viral production

term, and δV , the viral decay rate. In turn, because the effects of δI and α are

mediated by terms of the form δI ·α, as shown in equation 4.6.13, the effects are also

diminished. Since these parameters are no longer reflected in the equations, as the

effect of I gets eliminated, consequently these parameters are unidentifiable.

However, since relatively good experimental measurements on certain parameters

exist, it is reasonable to fix those parameters. Particularly, there is a sense of how

many viruses it takes to lyse open a cell, so α, the viral production can be approxi-

mated well (Chen et al., 2001). From experimental literature, the decay rate of the

virus, δV , is considered a known rate (Li et al., 2008; Wang et al, 2006). Similarly,

the duration from infection to lysis, δI , can be approximated well as measured in Ba-

jzer et al. (2008); Friedman et al. (2006); Ganly, Mautner and Balmain (2000); Jogler

et al. (2006). When fixing these three known parameters, it was found that the model

is identifiable, meaning the accuracy of the model’s predictions can be trusted.

The next step for this project is to investigate the practical identifiability of the

full model, which examines the effects of a combination treatment, where an im-

munostimulatory oncolytic virus therapy and dendritic cell injections are employed,

as described in equations (4.4.7)-(4.4.11). The results of this analysis are expected
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to be more interesting as the oncolytic virus model analyzed has dynamics largely

dictated by an exponential growth term (as treatment effects are transient). As a

result, the dynamics of uninfected tumor cells U have qualitatively the same behav-

ior regardless of the choice of treatment-related parameters. However, the use of a

combination treatment in the full model perturbs the dynamics away from a pure

exponential growth and may allow for reliability testing of the model. At this point,

a suggestion for improving the practical identifiability in the case when all parameters

are fit is to obtain experimental measurements for both infected tumor cells I and

number of virons V .
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Chapter 5

CONCLUSION

5.1 Summary of Findings for Chapter 2

One purpose of this dissertation was to develop a simple enough but still capturing

all the underlying biological mechanisms model that describes immune checkpoint

inhibitor therapy. This work was inspired by Lai and Friedman (2017), who developed

a system of partial differential equations model to examine the synergy between an

immune checkpoint inhibitor and GVAX vaccine. Although their work was insightful,

it did not allow for any type of mathematical analysis due the complicated nature

of partial differential equations. As a result, the model proposed in Chapter 2 is a

system of differential equations that considers only the monotherapy case, specifically

the anti-PD-1 immune checkpoint inhibitor.

Even though experimental data was not available for model validation, it allowed

to determine model parameters that influence the dynamics of the model. The tumor

cell growth rate, λC , the killing rate of tumor cells by immune cells, η, and the death

rate of T cells dT proved to be the most influential. Additionally, by conducting

a bifurcation analysis for dT , it suggested that tumor eradication is achievable if

caught early. Furthermore, the model investigated and compared intermittent versus

continuous treatment injection and concluded that continuous injection is preferable.

In the case of intermittent treatment more frequent injections proved to have more

effective results. Tumor elimination though can only be achieved with combination.

Finally, mathematical analysis of the model when no drug is applied established

conditions for global stability of the tumorous and tumor-free equilibria.
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5.2 Summary of Findings for Chapter 3

The goal of the third chapter was to further enhance the work in Chapter 2 and

further investigate suggested observations. Specifically, the anti-PD-1 model only

considered the monotherapy case and suggested a combination type of treatment as

a more efficient method. In this work, data from Xu et al. (2017) were extracted

and used to investigate the pairing of immune checkpoint inhibitor anti-PD-L1 with

an immunostimmulant NHS-muIL12. One of the main differences with the previous

work is the use of anti-PD-L1 therapy compared to anti-PD-1 therapy.

One of the highlights of this work was the development of a simple generic model

consisting of a system of differential equations in the case when no drugs were adminis-

trated. This allowed the determination of conditions required for the local stability of

the tumorous and tumor-free steady state. Given the generic form of the conditions,

both the logistic and exponential tumor growth dynamics we explored. Moreover,

the model was extended to incorporate two immunotherapies (anti-PD-L1 and NHS-

muIL12). For the purpose of the mathematical analysis, continuous injection was

considered to ease the mathematical computations for the full system. Additionally,

a quasi-state approximation was used to reduce the dimensions of the model resulting

to the limiting system, for which mathematical analysis was also conducted. One of

the downsides of the mathematical analysis was the technical nature of the results,

which did not allow for biological insights. Yet, it supported in verifying the numerical

predictions of the model.

The experimental data from Xu et al. (2017) proved crucial for model validation

and parameter estimation. Due to limited literature resources, a few of the parame-

ters were estimated though submodel fitting. For each submodel the most sensitive

parameters were identified and fit against Xu et al. (2017). Once inherited, they
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were used to predict the combination therapies. Simulations showed that only in the

case when higher dosage of NHS-muIL12 was administrated the qualitative behavior

matched those of the data in Xu et al. (2017). Furthermore, a continuous administra-

tion of both drugs was investigated, which was not presented in Xu et al. (2017). The

treatment regimen was considered for both the full model and limiting system and

suggested similar qualitative behavior. Lastly, a synergistic effect was observed for

the combination of avelumab and NHS-muIL12 and suggested that tumor eradication

could potentially be achieved when administrating about one-third of the amount of

both drugs compared to monotherapy.

5.3 Summary of Findings for Chapter 4

The final purpose of this dissertation was to address the challenges faced when us-

ing mathematical models to make predictions. Parameter uncertainty is an important

factor that causes unidentifiability issues. The goal in Chapter 4 was to determine the

reliability of a model to make predictions. For this purpose, the minimal oncolytic

virus therapy model from Gevertz and Wares (2018) was utilized. In the original pub-

lication by Wares et al. (2015) a hierarchical fitting approach was used to obtain the

optimum parameter set. However, accumulation of error in every step is one of the

main disadvantages of this method. Therefore, an alternative optimization approach

was considered, which instead fits all parameters simultaneously.

As a first step, all parameters of the model were fit using a quasi Monte Carlo

method paired with a simplified version of simulated annealing and profile likelihood

curves were produced. The profile likelihood curves suggested that only two pa-

rameters are practically identifiable, namely the net tumor growth r and the initial

condition U(0). Based on the structure of the proposed model, there was a strong

indication of dependency between certain parameters. These parameters include the
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infected lysis rate δI , the viral production α, and the viral decay rate δV . As a result,

these parameters were fixed with values supported by experimental measurements

reported in the literature. In this case, profile likelihood curves suggested that the

remaining parameters (r, β, U(0)) were practically identifiable, which can potentially

lead to more accurate predictions.

5.4 Future Work

As the field of mathematical modeling of immune checkpoint inhibitors therapy is

relatively new, a lot of work still needs to be done to develop reliable models that can

guide experimental work. Additionally, one of the main challenges in mathematical

modeling is obtaining unique and reliable parameters to make accurate predictions.

The goal of this dissertation is to gain insights into the dynamics of different treat-

ments with the use of reduced complexity models. Below I list thoughts and ideas

that could be implemented in the future building upon the developed models within

this dissertation.

Although anti-PD-1 is one of the most effective single agent treatments, immune

checkpoint inhibitors develop much higher signs of resistance in comparison to other

treatments. Studies have shown that some of the main reasons for T-cells resistance

are tumor immunogenicity and different immunosuppressive pathways (Donnell et al.,

2016). Based on these facts, future work for Chapter 2 includes the incorporation

of two competing tumor species: anti-PD-1 sensitive and anti-PD-1 insensitive to

gain more biological insight of the model. Such a model promises to help determine

the most effective frequency and dose of treatment, corresponding to patient-specific

initial conditions, to delay the onset of treatment resistance.

In regards to Chapter 3, further investigation can be done in improving the struc-

ture of the model presented and determining whether a model that yields a good fit
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to the monotherapy cases and both doses of NHS-muIL12 can be found. Such inves-

tigations include the examination of modifying or altering any terms in the model

after following careful consideration of the biological process. Few model suggestions

could be the incorporation of time delay and/or terms that account for resistance to

the avelumab drug. One can also follow an alternative modeling approach, where the

stoichiometric component of the biological process is considered. Such a modeling

approach can allow the study of drug uptake during the biological process. Addition-

ally, for simplicity parameters based on the average tumor volume of the eight mice

were determined. However, observing the individual tumor volume curves for each

mouse reveals that the administration of treatments impacts each mouse in a differ-

ent way. Hence, a more personalized approach could be considered by determining

patient-specific parameters for each mouse. An example of such an approach that

considers patient-specific parameters for GBM patients is noted in Han et al. (2019).

Furthermore, it would be interesting to explore how to potentially adapt the model

to investigate the combination of different immune checkpoint inhibitors with other

forms of treatment, such as chemotherapy.

Chapter 4 investigates the practical identifiability of a submodel provided in Gev-

ertz and Wares (2018), which considers a monotherapy case. However, the goal is to

explore the practical identifiability of the full model provided in Gevertz and Wares

(2018), which explores the pairing between an immunostimulatory oncolytic virus

therapy and dendritic cell injections. In this case, the dynamics of the model should

not be overwhelmed by an exponential response present in the monotherapy case, and

it is anticipated to infer new things about the reliability of the model’s predictions.
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C.1 PARAMETER ESTIMATION

The parameter estimations presented below are determined based on a literature
review and additional calculations. They are grouped by their appearance in the
model equations.

Eq (2.4.14): Based off of BCL1 tumor cells in the spleen, the growth rate of tumor
cells is given by 0.18 day−1 (Kuznetsov et al., 1994). A study involving culturing
human melanoma cells showed the population doubling of three measured tumor cell
lines were 25, 48, and 82 hours (Creasey et al., 1979). Thus, the growth rate of tumor
cells can be computed as follows:

ln(2)
25/24 ≈ 0.67 day−1

ln(2)
82/24 ≈ 0.2 day−1

Hence λC = 0.18− 0.67 day−1.

The carrying capacity of tumor cells can be estimated using the assumption that a
tumor reaching 1 gram net weight contains 109 cells (Del Monte, 2009). By Szomolay
et al. (2012), the total capacity of living and dead tumor cells can be estimated to be
9.45 · 108 cells/cm3. Then

9.45 · 108 cells
1 cm3 · 1 gram

109 cells = 0.945 g/cm3

By Friedman and Hao (2018), the carrying capacity of tumor cells is 0.8 g/cm3.
Hence CK = 0.8 − 0.945 g/cm3. By (Lai and Friedman, 2017), the killing rates
of tumor cells by CD4+ and CD8+ T cells are estimated to be 11.5 day−1 · cm3/g
and 46 day−1 · cm3/g respectively. Thus, the killing rate of tumor cells by T cells is
η = 11.5 + 46 = 57.5 day−1 · cm3/g.

Eq (2.4.15): By Lai and Friedman (2017) the activation rate of CD4+ and CD8+
T cells by IL-2 are both estimated to be 0.25 day−1. Hence, the activation rate of T
cells by IL-2 is λTI2 = 0.25 + 0.25 = 0.5 day−1. Similarly, following the same process
for the activation rate of T cells by IL-12, we have λTI12 = 4.66 + 4.15 = 8.81 day−1.
We consider the density of naive T cells as TN = 4 · 10−4 + 2 · 10−4 = 6 · 10−4 g/cm3,
as the density of naive CD4+ and CD8+ T cells are estimated to be 4 · 10−4 g/cm3

and 2 · 10−4 g/cm3 respectively (Lai and Friedman, 2017).

By Grossman and Berke (1980), the lifetime of T cells is assumed to be 50 days
(dT = 1/50 = 0.02 day−1). By McDonagh and Bell (1995), the lifespan for CD8+
T cells is given to be 68 days (dT = 1/68 = 0.014 day−1). When fit to experimental
data of a BCL1 tumor in the spleens of chimeric mice, the death rate of T cells was
estimated as dT = 0.0412 day−1 (Kuznetsov et al., 1994). In Eikenberry, Thalhauser,

129



and Kuang (2009), the death rate of T cells is estimated to be dT = 0.0− 0.05 day−1.
Collecting the findings, we take dT = 0.0− 0.05 day−1.

Eq (2.4.16): In a Phase 1 study of anti-PD-1 (Brahmer et al., 2010), the serum
half-life of PD-1 was found to be 12 to 20 days. By the half-life formula:

t1/2 = ln(2)
dA

,

where dA is the decay constant. Then

dA = ln(2)
20 − ln(2)

12 = 3.47 · 10−2 − 5.78 · 10−2 day−1.

In Schalper, Venur, and Velcheti (2014), the half-lives of several anti-PD-1 drugs are
listed. Using the same process as above, the decay constant dA can be computed.
Nivolumab has a dose-dependent half-life, ranging from 12–20 hours (dA = 0.83 −
1.39 day−1). Pembrolizumab has a half-life of around 2–3 weeks (dA = 3.3 · 10−2 −
5 · 10−2 day−1). Pidilizumab has a half-life between 9 and 17 days (dA = 4.1 · 10−2 −
7.7 · 10−2 day−1). From these findings, we can conclude that

dA = 3.3 · 10−2 − 1.39 day−1.

As in Lai and Friedman (2017), we determine a range for µPA (blocking rate of PD-1
by anti PD-1) using:

µPA = dA
9P = 3.3 · 10−2

9 · (7.47 · 10−10)−
1.39

9 · (7.47 · 10−10) = 4.9085·106−2.07·108 day−1· cm3/g.

In Cheng et al. (2013), experiments found an average of 9282 PD-L1 on a single
activated T cell, with a general range of about 8000 − 11500 PD-L1 on a single
activated T cell. Following the same procedure as in (Lai and Friedman, 2017), we
estimate ρL as follows:

ρL = 8000 · mL

mT

− 11500 · mL

mT

,

where mL and mT are the mass of one PD-L1 protein and the mass of one T cell (T1
or T8). We assume that one T cell is approximately 10 microns in diameter, with the
same density as water at 39C, 0.9926 g/cm3. Then we can calculate the mass of one
T cell:

mT = 4π(0.005)3 cm3

3 · 0.9926 g
cm3 ≈ 5.24 · 10−10 g.

By Lai and Friedman (2017), the mass of one T cell is estimated to be 10−9 g. We
can then take mT = 5.24 · 10−10 − 10−9 g. Thus,

ρL = 8000 · 4.45 · 10−20

10−9 − 11500 · 9.3 · 10−20

5.2 · 10−10 = 3.56 · 10−7 − 1.967 · 10−6.

In estimating PD-L1 (L), as done in Lai and Friedman (2017), we have

L = ρL(T + εCC),
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since PD-L1 is expressed on both tumor cells and tumor cells. As PD-L1 is upreg-
ulated on tumor cells (Spranger et al., 2013), we suppose εC ∈ [1, 100]. We then
calculate the lower bound of L by

L = ρL(T + εCC) = (3.56 · 10−7) · [6 · 10−3 + 1 · 0.4]
= 1.445 · 10−7 g/cm3

and the upper bound by

L = ρL(T + εCC) = (1.967 · 10−6) · [6 · 10−3 + 100 · 0.4]
= 7.87 · 10−5 g/cm3.

Thus we assume L ≈ 2 · 10−6 g/cm3 at steady state.

Eq (2.4.17): In Cheng et al. (2013), experiments showed an average of 3096 PD-1
on a single activated cell, with a general range of 2000− 5000 PD-1 on a single acti-
vated cell. Following the same procedure as in Lai and Friedman (2017), we estimate
ρP as follows:

ρP = 2000 · mP

mT

− 5000 · mP

mT

,

where mP and mT are the mass of one PD-1 protein and the mass of one T cell. By
Agata et al. (1996), a flow cytometry shows the mass of one PD-1 protein is mP =
50− 55 kDa (8.3 · 10−20− 9.13 · 10−20 g). As outlined above, mT = 5.24 · 10−10− 10−9

g. We then calculate:

ρP = 2000 · 8.3 · 10−20

10−9 − 5000 · 9.3 · 10−20

5.2 · 10−10 = 3.19 · 10−7 − 8.49 · 10−7.

In estimating γ we seek to balance (ρp − γA) in Eq (2.4.17) with the magnitudes
observed in simulations. In particular, we consider the magnitude of drug A to be
≈ 10−8 and ρp ≈ 10−7 as listed in Table C.1. Hence, we estimate γ = 10 cm3/g.
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Table C.2: Parameter values used in simulations for equations (2.4.14)-(2.4.16)).

Variable Meaning Value
λC tumor cell growth rate 0.4 day−1

CK carrying capacity of tumor cells 0.8 g/cm3

η kill rate of tumor cells by T cells 57.5 day−1· cm3/g
λTI12 activation rate of T cells by IL-12 8.81 day−1

TN density of naive T cells 6 · 10−4 g/cm3

I12 IL-12 concentration 1.5 · 10−10 g/cm3

KI12 half-saturation of IL-12 1.5 · 10−10 g/cm3

λTI2 activation rate of T cells by IL-2 0.5 day−1

I2 IL-2 concentration 2.37 · 10−11 g/cm3

KI2 half-saturation of IL-2 2.37 · 10−11 g/cm3

KTQ inhibition of function of T cells by PD-1-
PD-L1

1.365 · 10−18 g/cm3

ρL expression level of PD-L1 on activated T
cells

5 · 10−7 · 10−6

ρP expression level of PD-1 on T cells 2.47 · 10−7

εC expression of PD-L1 in tumor cells vs. T
cells

10

dT death rate of T cells 0.05, 0.5 /day
µPA blocking rate of PD-1 by anti-PD-1 6.87·106 day−1· cm3/g
γA source of anti-PD-1 10−10 day−1· cm3/g
dA degradation rate of anti-PD-1 4.6 · 10−2 day−1

γ blocking of PD-1 by anti-PD-1 10 cm3/g
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D.1 PARAMETER ESTIMATION

By performing a thorough literature review and additional calculations, we are
able to estimate some of the parameters used in the model as follows:

Eq (3.3.3): The kill rate of tumor cells by T cells is estimated by Kuznetsov et al.
(1994) as η = 1.101 · 10−7 days−1·cells−1. We consider that on average cytotoxic T
cells kill on a magnitude of 2-16 infected cells per day (Halle et al., 2016).

η = 1.101 · 10−7

cells · day · 2 cells− 1.101 · 10−7

cells · day · 16 cells,

η = 2.202 · 10−7day−1 − 17.616 · 10−7day−1.

Eq (3.3.4): According to Parra-Guillen et al. (2013) the dissociation constant for
IL-12 is 0.018 pmol·mL−1 ≈ 1.8 · 10−11M. Since the dissociation constant is terms of
M (molarity) we need to make sure that the units are consistent. We observe the
following units for the dT

dt
equation:

dT

dt︸︷︷︸
mm3
day

=
 δ︸︷︷︸

mm3
day

+λTI12︸ ︷︷ ︸
1

day

T︸︷︷︸
mm3

A′2︸︷︷︸
mol
liter

KA2︸ ︷︷ ︸
mol
liter

+ A′2︸︷︷︸
mol
liter

 · 1

1 +

Q︸︷︷︸
mm6

KTQ︸ ︷︷ ︸
mm6

− dT︸︷︷︸
1

day

T︸︷︷︸
mm3

.

Observing more closely the term:

A′2︸︷︷︸
mol
liter

KA2︸ ︷︷ ︸
mol
liter

+ A′2︸︷︷︸
mol
liter

where A′2 =
A2

A2 molar mass
tumor volume .

We note that A2 is originally given in g and the goal is to convert to molarity
(mol
liter). We first convert to moles as follows :

A2(g)
molar mass( g

mol
) .

According to Sigma-Aldrich source the molar mass of IL-12 is 75KDa, which is ap-
proximately 75, 000 grams per mole. Retrieved from: https://www.sigmaaldrich.
com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/2/i2276dat.pdf.

A2(g)
75, 000( g

mol)
= A2

75, 000mol.

Given moles we can now convert to molarity which we denote by c:
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c = n

v
where n = # of moles and v = volume in (liters),

c2 =
A2

75,000

v
.

Regarding v (tumor volume in liters), one can observe from Figure 1A that the tumor
volume ranges between (100− 1000) mm3 ≈ (10−4 − 10−3) l depending on the type
of treatment administrated.

For simplicity we will assume that the whole portion of the drug targets the tu-
mor volume.

c2 =
A2

75,000

10−4 −
A2

75,000

10−3 ,

c2 = A2

75 · 107
mol
liter −

A2

75 · 106
mol
liter .

Eq (3.3.5): According to the American College of Clinical Pharmacology (ACCP) and
Rao and Patel (2019), the half life of avelumab is 6.1 days. Hence, the degradation
rate constant (dA1) can be calculated as follows:

dA1 = ln2
t 1

2

= ln2
6.1 ≈ 0.1136 days−1.

Eq (3.3.11): In Tan et al. (2018) the dissociation constant KA1 is estimated as 0.0467
nM≈ 4.67 · 10−11 M.

Lbound︸ ︷︷ ︸
mm3

=

A′1︸︷︷︸
moles
liter

A′1︸︷︷︸
moles
liter

+KA1︸ ︷︷ ︸
moles
liter

(ρL( T︸︷︷︸
mm3

+εv V︸︷︷︸
mm3

)), where A′1 =
A1

A1 molar mass
tumor volume .

Using a similar argument as for Eq(3.3.4) and with similar calculations we conclude
that :

c1 = A1

55 · 107
mol
liter −

A1

55 · 106
mol
liter .

Eq (3.3.6): According to List and Neri (2013) the circulatory half-life of NHS-IL12 in
vivo is approximately 24 hours. Hence, the degradation rate constant (dA2) can be
calculated as follows:

dA2 = ln2
t 1

2

= ln2
1 ≈ 0.69 days−1.
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Table D.2: Parameter values used in simulations for equations (3.3.3)-(3.3.6).

Variable Meaning Value
r Tumor cell growth rate 0.213 day−1

η Kill rate of tumor cells by T cells 1 mm−3 · day−1

δ Source of activation 0.02 mm3 /day
λTI12 Activation rate of T cells by IL-12 8.81 day−1

KA2 Dissociation constant of A2 7 · 10−14 moles/liter
KTQ Inhibition of function of T cells by PD-1-

PD-L1
10−13 mm6

dT Death rate of T cells 0.05 day−1

dA1 Degradation rate of Anti-PD-L1 0.1136 day−1

dA2 Degradation rate of NHS-muIL12 0.69 day−1

ρp Expression level of PD-1 5.84 · 10−7

ρL Expression level of PD-L1 2.7635 · 10−7

KA1 Dissociation constant of PD-L1 with anti-
PD-L1

10−13 mol/liter

εv Expression of PD-L1 in tumor cells vs. T
cells

50

σ fraction of complex association and disso-
ciation

0.001 mm−3

γ1 prescribed infusion rate of avelumab 10−7 − 9 · 10−5 g/day
γ2 prescribed infusion rate of NHS-muIL12 10−9 − 2 · 10−6 g/day
c1 conversion constant for A1 drug 55−110−7

c2 conversion constant for A2 drug 75−110−7

D.2 SUPPLEMENTARY FIGURES

The following figures support the generation of Figure 3.4.
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Figure D.1: Surface plot depicting the asymptotic behavior of the full system (3.3.3)-
(3.3.6) for combinations of γ1 (avelumab) and γ2 (NHS-muIL12) drugs, where both
are applied continuously. Based on a threshold, two regions, namely, ‘Tumor Control’
and ‘Tumor Escape’ are identified, which are separated by a hyperbolic curve. Six
representative points indicated by different markers and colors, are chosen and shown
on the plot.

Figure D.2: Surface plot depicting the asymptotic behavior of the limit case sys-
tem (3.5.22)-(3.5.23) for combinations of γ1 (avelumab) and γ2 (NHS-muIL12) drugs,
where both are applied continuously. Based on a threshold, two regions, namely, ‘Tu-
mor Control’ and ‘Tumor Escape’ are identified, which are separated by a hyperbolic
curve. Six representative points indicated by different markers and colors, are chosen
and shown on the plot.
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%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGINNING OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code demonstrates how to f i t the model to data to es t imate parameters .
% In the p r o j e c t the parameters r the growth ra t e and eta the k i l l r a t e are
% f i t t e d aga in s t the no drug case denoted by mode 1 . Data shown in the code
% are extraced by Xu et a l . (2017) paper through Webp lo td i g i t i z e r .

% Written by E l p i n i k i Nikolopoulou 2019

c l e a r a l l
c l c

%Types o f Treatment
mode = 1 ; % 1 = Isotype Control Case

mp = [ 0 . 1 , 0 , 1 % eta_1 − k i l l r a t e o f tumor c e l l s by T−c e l l s
0 . 2 , 0 , i n f ] ; % r − growth ra t e ( r )

mpr = [ 0 .001 % 1 . sigma −
8 .81 % 2 . lambda_TI12 − a c t i v a t i o n ra t e o f T c e l l s by IL−12

7 ∗ 1e−14 % 3 . K_A2 − d i s s o c i a t i o n constant o f A_2
0 .05 % 4 . d_T − death ra t e o f T c e l l s
0 .1136 % 5 . d_A1 − degradat ion ra t e o f Anti−PD−L1
0 .69 % 6 . d_A2 − degradat ion ra t e o f NHS−muIL12

5 .84 ∗ 1e−7 % 7 . rho_p − exp r e s s i on l e v e l o f PD−1
2 .7635 ∗ 1e−7 % 8 . rho_l − exp r e s s i on l e v e l o f PD−L1

1e−13 % 9 . K_A1 − d i s s o c i a t i o n constant o f A_1
50 % 10 . e p s i l o n − exp r e s s i on o f PD−L1 in tumor c e l l s

. 02 % 11 . d e l t a − source o f a c t i v a t i o n
1e−13] ; % 12 . K_TQ − i n h i b i t i o n o f func t i on o f T

%c e l l s by PD−1−PD−L1

lb = mp( : , 2 ) ; % lower bound
up = mp( : , 3 ) ; % upper bound
x0 = mp( : , 1 ) ; % Guess o f parameters wanted to es t imate
opt ions = opt imopt ions (@fmincon , ’ Algorithm ’ , ’ i n t e r i o r−point ’ , ’ Display ’ , ’ o f f ’ ) ;

[ min , f v a l ]= fmincon (@(x ) e r r o r_ l o c a l (x ,mode ,mpr) , x0 , [ ] , [ ] , [ ] , [ ] , lb , up , . . .
[ ] , opt ions ) ;

eta_1 = min (1 )
r = min (2 )

[ y0 ,T,V, i_edges , t_edges ] = choose (mode ,mpr) ;
[ tout , yout , t_edges , y_edges ] = SolveODE_all ( y0 , t_edges , i_edges ,mpr , eta_1 , r ) ;

v = yout ( : , 1 ) ; Tc = yout ( : , 2 ) ; A1 = yout ( : , 3 ) ; A2 = yout ( : , 4 ) ;

f i g u r e (1 )
f i t t e d = p lo t ( tout , v ,T,V, ’ o ’ ) ;
s e t ( [ f i t t e d ] , ’ LineWidth ’ , 3)
legend ( ’ f i t t e d curve ’ , ’ data po in t s ’ )
t i t l e ({ ’Tumor volume aga in s t time ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
x l ab e l ({ ’Time ( days ) ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
y l ab e l ({ ’Tumor Volume $\ enspace (mm^3) $ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
ylim ( [ 0 1200 ] )
s e t ( gcf , ’ p o s i t i o n ’ , [ 5 50 , 100 , 350 , 550 ] )
s e t ( gca , ’ FontSize ’ , 20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on z = e r r o r_ l o c a l (x ,mode ,mpr)
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[ y0 ,T,V, i_edges , t_edges ] = choose (mode ,mpr) ;
eta_1 = x (1) ; r = x (2) ;

[ tout , yout ] = SolveODE(y0 , t_edges , i_edges ,mpr , eta_1 , r ) ;
% i n t e r p o l a t i o n
v = yout ( : , 1 ) ;
tout ( : ) ;
k = dsearchn ( tout ( : ) ,T) ; % Returns the i n d i c e s k o f the c l o s e s t po in t s o f tout to T
v(k ) ; % Find s o l u t i o n s f o r those s p e c i f i c data time po in t s

z = sum( abs ( ( v (k )−V) ) . ^ ( 2 ) ) ; % minimize t h i s

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Function used to d e f i n e the ode system .

func t i on dydt = f ( t , y ,mpr , eta_1 , r )

v = y (1) ; Tc = y (2) ; A_1 = y (3) ; A_2 = y (4) ; % Def ine v a r i a b l e s

% Model Parameters

sigma = mpr(1 ) ; lambda_TI12 = mpr(2 ) ; K_A2 = mpr(3 ) ; d_T = mpr(4) ;
d_A1 = mpr(5 ) ; d_A2 = mpr(6) ; rho_p = mpr(7) ; rho_l = mpr (8 ) ;
K_A1 = mpr(9 ) ; e p s i l o n = mpr(10) ; d e l t a=mpr(11) ; K_TQ = mpr(12) ;

% Equations

P = rho_p ∗ Tc ; % PD−1 exp r e s s i on
L_t = rho_l ∗ (Tc + ep s i l o n ∗ v ) ; % PD−L1 t o t a l exp r e s s i on
A_1n = A_1 ∗ (1 / (55 ∗ 1e7 ) ) ;
L_b = (A_1n / (A_1n + K_A1) ) ∗ ( rho_l ∗ (Tc + ep s i l o n ∗ v ) ) ; % PD−L1 bound

% expr e s s i on
L_f = L_t − L_b; % PD−L1 f r e e exp r e s s i on
Q = sigma ∗ P ∗ L_f ; % PD−1−PD−L1 complex exp r e s s i on

% Ode func t i on s
A_2n = A_2 ∗ (1 / (75∗1 e7 ) ) ;
dv = r ∗ v − ( eta_1 ∗ Tc ∗ v ) ; % tumor volume DE
dTc = ( de l t a + ( lambda_TI12 ∗ Tc ∗ A_2n) / (K_A2 + A_2n) ) . . .

∗ (1 / (1 + (Q / K_TQ) ) ) − d_T ∗ Tc ; % T−c e l l s DE
dA_1 = − d_A1 ∗ A_1; % A_1 ( avelumab ) DE
dA_2 = − d_A2 ∗ A_2; % A_2 (NHS−muIL12 ) DE

dydt = [ dv ; dTc ; dA_1; dA_2 ] ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ t_edges , y_edges ] = SolveODE(y0 , t_edges , i_edges ,mpr , eta_1 , r )

opt ions = odeset ( ) ; % I n i t i a l opt ion s e t t i n g f o r
% ODE so l v e r

[ ~ , IDX ] = so r t ( t_edges ) ;
t_edges = t_edges (IDX) ;
i_edges = i_edges (IDX , : ) ;

y_edges = nan ( l ength ( t_edges ) , l ength ( y0 ) ) ; % c r ea t e an empty matrix to
% update i n i t i a l c ond i t i on s
% based on the time po in t s

y_edges ( 1 , : ) = y0 ’ ; % f i r s t row conta in s i n i t i a l
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% cond i t i on s

f o r i =1: l ength ( t_edges )−1

[ ~ , y_temp ] = ode15s (@( t , y ) f ( t , y ,mpr , eta_1 , r ) , [ t_edges ( i ) t_edges ( i +1) ] , . . .
y_edges ( i , : )+i_edges ( i , : ) , opt ions ) ;

y_edges ( i , : ) = y_temp ( 1 , : ) ;
y_edges ( i +1 , : ) = y_temp( end , : ) ;

end

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ t_al l , y_all , t_edges , y_edges ] = SolveODE_all ( y0 , t_edges , i_edges ,mpr , eta_1 , r )

opt ions = odeset ( ) ; % I n i t i a l opt ion s e t t i n g f o r ODE so l v e r

[ ~ , IDX ] = so r t ( t_edges ) ;
t_edges = t_edges (IDX) ;
i_edges = i_edges (IDX , : ) ;

y_edges = nan ( l ength ( t_edges ) , l ength ( y0 ) ) ; % c r ea t e an empty matrix
%to update i n i t i a l c ond i t i on s based on the time po in t s

y_edges ( 1 , : ) = y0 ’ ; % f i r s t row conta in s i n i t i a l c ond i t i on s

t_a l l = [ ] ;
y_al l = [ ] ;
f o r i =1: l ength ( t_edges )−1

%try
[ t_temp , y_temp ] = ode15s (@( t , y ) f ( t , y ,mpr , eta_1 , r ) , . . .

[ t_edges ( i ) t_edges ( i +1) ] , y_edges ( i , : )+i_edges ( i , : ) , opt i ons ) ;
t_a l l = [ t_a l l ; t_temp ] ;
y_al l = [ y_al l ; y_temp ] ;
y_edges ( i , : ) = y_temp ( 1 , : ) ;
y_edges ( i +1 , : ) = y_temp( end , : ) ;

end

end

func t i on [ y0 ,T,V, i_edges , t_edges ] = choose (mode ,mpr)
i f mode == 1

y0 = [ 1 0 0 ; 0 . 0 3 ; 0 ; 0 ] ;

T = [ 0 .0001 , 2 .9364 , 6 .0471 , 10 .0347 , 13 .0612 , 1 7 . 0 9 7 7 ] ’ ;
V = [ 100 , 182 .8576 , 267 .1761 , 443 .1102 , 675 .1583 , 1 0 0 5 . 3 4 3 5 ] ’ ;

t_edges = [ 0 % time po in t s where th ing s occur such as t0 , t f , injT ,T
18 % s imu la t i on s run up to 18 days based on the data
T ] ; % data time po in t s

% per turabat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 0 0 % t=0

0 0 0 0 % t=18
ze ro s ( l ength (T) ,4 ) ] ; % at data s e t t imes T s im i l a r l y

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGINNING OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Inh e r i t i n g parameters r , eta through fmincon done p r ev i ou s l y .
% Code to reproduce f i g u r e s f o r the remaining ca s e s and mainly f o r the p r e d i c t i o n s
% f i g u r e s .

% Written by E l p i n i k i Nikolopoulou 2019

c l e a r a l l
c l c

% Types o f treatments
% Change o f Modes based on the d i f f e r e n t treatments being admin i s t rated
mode = 6 ; % 1 = Isotype Control Case

% 2 = NHS mulL−12 (2\mu g )
% 3 = NHS mulL−12 (10\mu g )
% 4 = Avelumab (200\mu g )
% 5 = Avelumab (200\mu g ) + NHS mulL−12 (2\mu g )
% 6 = Avelumab (200\mu g ) + NHS mulL−12 (10\mu g )

% L i s t o f parameters
mpr = [ 1e−13 % 1 . K_TQ − i n h i b i t i o n o f func t i on o f T

%c e l l s by PD−1−PD−L1
0.001 % 2 . sigma −
8 .81 % 3 . lambda_TI12 − a c t i v a t i o n ra t e o f T c e l l s by IL−12
7∗1e−14 % 4 . K_A2 − d i s s o c i a t i o n constant o f A_2
0 .05 % 5 . d_T − death ra t e o f T c e l l s
0 .1136 % 6 . d_A1 − degradat ion ra t e o f Anti−PD−L1
0 .69 % 7 . d_A2 − degradat ion ra t e o f NHS−muIL12

5 .84 ∗ 1e−7 % 8 . rho_p − exp r e s s i on l e v e l o f PD−1
2 .7635 ∗ 1e−7 % 9 . rho_l − exp r e s s i on l e v e l o f PD−L1

1e−13 % 10 . K_A1 − d i s s o c i a t i o n constant o f A_1
50 % 11 . e p s i l o n − exp r e s s i on o f PD−L1 in tumor c e l l s

. 02 % 12 . de l t a − source o f a c t i v a t i o n
1 % 13 . eta − k i l l r a t e o f tumor c e l l s by T c e l l s

0 . 2 1 3 ] ; % 14 . r − growth ra t e o f tumor c e l l s

[ y0 , i_edges , t_edges ] = choose (mode ,mpr) ;
[ tout , yout , t_edges , y_edges ] = SolveODE_all ( y0 , t_edges , i_edges ,mpr) ;

v = yout ( : , 1 ) ; Tc = yout ( : , 2 ) ; A1 = yout ( : , 3 ) ; A2 = yout ( : , 4 ) ;

i f mode == 2

T = [ 0 .0001 , 3 .0695 , 6 .1778 , 9 .9885 , 13 .1011 , 1 7 . 0 4 5 5 ] ’ ;
V = [ 100 , 209 .0725 , 247 .4396 , 357 .7861 , 543 .8542 , 7 3 9 . 4 9 6 1 ] ’ ;

e l s e i f mode == 3

T = [ 0 .0001 , 2 .9814 , 6 .0907 , 10 .0274 , 12 .9175 , 1 7 . 0 7 7 9 ] ’ ;
V = [ 100 , 189 .4078 , 240 .5972 , 260 .6595 , 271 .7919 , 3 4 8 . 8 9 4 7 ] ’ ;

e l s e i f mode == 4

T = [ 0 .0001 , 3 .0682 , 6 .0018 , 9 .9845 , 13 .0524 , 1 7 . 0 8 6 2 ] ’ ;
V = [ 100 , 166 .4033 , 214 .6746 , 233 .2142 , 373 .1919 , 6 3 7 . 7 3 2 2 ] ’ ;

e l s e i f mode == 5

T = [ 0 .0001 , 1 .8898 , 3 .6060 , 6 .3011 , 7 .8494 , 9 .4773 , 1 1 . 5 9 7 4 , . . .
13 .6362 , 1 4 . 9 4 1 5 ] ’ ;

V = [ 100 , 108 .6957 , 126 .8116 , 137 .6812 , 112 .3188 , 68 .8406 , 4 7 . 1 0 1 4 , . . .
28 .9855 , 2 1 . 7 3 9 1 ] ’ ;

e l s e i f mode == 6

T = [ 0 .0001 , 2 . 5 , 4 . 7 , 6 . 75 , 8 . 48 , 10 .35 , 12 .47 , 14 .46 , 1 5 . 8 ] ’ ;
V = [ 100 , 127 .35 , 138 .095 , 120 . 45 , 77 . 26 , 42 .57 , 27 .73 , 18 . 6 , 9 . 6 9 ] ’ ;
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end

% Tumor volume p lo t
subplot ( 1 , 3 , 1 )
f i t t e d = p lo t ( tout , v ,T,V, ’ o ’ ) ;
hold on
x l i n e (0 , ’ Color ’ , [ 0 , 0 . 5 , 0 ] , ’ LineWidth ’ , 3)
x l i n e (0 , ’−−r ’ , ’ LineWidth ’ , 3)
t ex t ( 0 . 2 , 6 50 , ’Av ’ , ’ Color ’ , [ 0 , 0 . 5 , 0 ] , ’ f o n t s i z e ’ , 18)
t ex t ( 0 . 2 , 6 00 , ’NHS ’ , ’ Color ’ , ’ red ’ , ’ f o n t s i z e ’ , 15)
hold on
x l i n e (3 , ’ Color ’ , [ 0 , 0 . 5 , 0 ] , ’ LineWidth ’ , 3)
t ex t ( 3 . 2 , 6 50 , ’Av ’ , ’ Color ’ , [ 0 , 0 . 5 , 0 ] , ’ f o n t s i z e ’ , 18)
hold on
x l i n e (6 , ’ Color ’ , [ 0 , 0 . 5 , 0 ] , ’ LineWidth ’ , 3)
t ex t ( 6 . 2 , 6 50 , ’Av ’ , ’ Color ’ , [ 0 , 0 . 5 , 0 ] ’ , ’ f o n t s i z e ’ , 18)
s e t ( [ f i t t e d ] , ’ LineWidth ’ , 3 )
legend ( ’ f i t t e d curve ’ , ’ data po in t s ’ )
t i t l e ({ ’Tumor volume aga in s t time ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 18)
x l ab e l ({ ’Time ( days ) ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
y l ab e l ({ ’Tumor Volume $\ enspace (mm^3) $ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
ylim ( [ 0 800 ] )
xlim ( [ 0 2 0 ] )
s e t ( gcf , ’ p o s i t i o n ’ , [ 5 50 , 100 , 350 , 550 ] )
s e t ( gca , ’ FontSize ’ , 20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )

% A_1 p lo t
subplot ( 1 , 3 , 2 )
drug = p lo t ( tout , A1 , ’ Color ’ , [ 0 , 0 . 5 , 0 ] ’ ) ;
s e t ( [ drug ] , ’ LineWidth ’ , 3)
x l ab e l ({ ’Time ( days ) ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ FontSize ’ , 20)
y l ab e l ({ ’Avelumab $\ enspace (200\mu g ) \ enspace (A_{1}) $ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’

FontSize ’ , 20)
s e t ( gca , ’ FontSize ’ , 20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )

% A_2 p lo t
subplot ( 1 , 3 , 3 )
drug=p lo t ( tout , A2 , ’ r ’ ) ;
s e t ( [ drug ] , ’ LineWidth ’ , 3)
x l ab e l ({ ’Time ( days ) ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
y l ab e l ({ ’NHS−muIL12 $\ enspace (10\mu g ) \ enspace (A_{2}) $ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’

f o n t s i z e ’ , 20)
s e t ( gca , ’ FontSize ’ , 20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )
s e t ( gcf , ’ p o s i t i o n ’ , [ 6 50 , 100 , 900 , 700 ] )

% Function used to d e f i n e the ode system .

func t i on dydt = f ( t , y ,mpr)

v = y (1) ; Tc = y (2) ; A_1 = y (3) ; A_2 = y (4) ; % Def ine v a r i a b l e s

% Model Parameters

K_TQ = mpr(1 ) ; sigma = mpr(2 ) ; lambda_TI12 = mpr (3 ) ;
K_A2 = mpr(4 ) ; d_T = mpr(5 ) ; d_A1 = mpr(6 ) ;
d_A2 = mpr(7) ; rho_p = mpr(8) ; rho_l = mpr (9 ) ;
K_A1 = mpr(10) ; e p s i l o n = mpr(11) ; d e l t a = mpr(12) ;
eta = mpr(13) ; r = mpr(14) ;

% Equations
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P = rho_p ∗ Tc ; % PD−1 exp r e s s i on
L_t = rho_l ∗ (Tc + ep s i l o n ∗ v ) ; % PD−L1 t o t a l exp r e s s i on
A_1n = A_1 ∗ (1 / (55 ∗ 1e7 ) ) ;
L_b = (A_1n /(A_1n + K_A1) ) ∗ ( rho_l ∗ (Tc + ep s i l o n ∗ v ) ) ; % PD−L1

%bound expr e s s i on
L_f = L_t − L_b; % PD−L1 f r e e exp r e s s i on
Q = sigma ∗ P ∗ L_f ; % PD−1−PD−L1 complex exp r e s s i on

% Ode func t i on s
A_2n = A_2 ∗ (1 / (75 ∗ 1e7 ) ) ;
dv = r ∗ v − ( eta ∗ Tc ∗ v ) ; % tumor volume DE
dTc = ( de l t a + ( lambda_TI12 ∗ Tc ∗ A_2n) / (K_A2 + A_2n) ) . . .

∗ (1 / (1 + (Q / K_TQ) ) ) − d_T ∗ Tc ; % T−c e l l s DE
dA_1 = − d_A1 ∗ A_1; % A_1 ( avelumab ) DE
dA_2 = − d_A2 ∗ A_2; % A_2 (NHS−muIL12 ) DE

dydt = [ dv ; dTc ; dA_1; dA_2 ] ;

end

func t i on [ t_al l , y_all , t_edges , y_edges ] = SolveODE_all ( y0 , t_edges , i_edges ,mpr)

opt ions = odeset ( ) ; % I n i t i a l opt ion s e t t i n g f o r ODE so l v e r

[ ~ , IDX ] = so r t ( t_edges ) ;
t_edges = t_edges (IDX) ;
i_edges = i_edges (IDX , : ) ;

y_edges = nan ( l ength ( t_edges ) , l ength ( y0 ) ) ; % c r ea t e an empty matrix to
%update i n i t i a l c ond i t i on s based on the time po in t s

y_edges ( 1 , : ) = y0 ’ ; % f i r s t row conta in s i n i t i a l c ond i t i on s

t_a l l = [ ] ;
y_al l = [ ] ;
f o r i =1: l ength ( t_edges )−1

[ t_temp , y_temp ] = ode15s (@( t , y ) f ( t , y ,mpr) , [ t_edges ( i ) t_edges ( i +1) ] , . . .
y_edges ( i , : )+i_edges ( i , : ) , opt ions ) ;

t_a l l = [ t_a l l ; t_temp ] ;
y_al l = [ y_al l ; y_temp ] ;
y_edges ( i , : ) = y_temp ( 1 , : ) ;
y_edges ( i +1 , : ) = y_temp( end , : ) ;

end

end

func t i on [ y0 , i_edges , t_edges ]= choose (mode ,mpr)
i f mode == 1

y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ings occur such as t0 , t f , injT ,T
1 8 ] ;

% per turabat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 0 0 % at t=0 we don ’ t have i n j e c t i o n s

0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

e l s e i f mode == 2 % NHS mulL−12 (2\mu g )
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y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ings occur
% such as t0 , t f , injT ,T

1 8 ] ;
% per turabat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 0 2e−6 % at t=0 we have A2 drug i n j e c t i o n

0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

e l s e i f mode == 3 % NHS mulL−12 (10\mu g )

y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ings occur such as t0 , t f , injT ,T
1 8 ] ;

% pertubat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 0 10e−6 % at t=0 we have A2 drug i n j e c t i o n

0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

e l s e i f mode == 4 % Avelumab (200\mu g )

y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ing s occur such as t0 , t f , injT ,T
3
6
1 8 ] ;

% pertubat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 200e−6 0 % at t=0 we have A1 drug i n j e c t i o n

0 0 200e−6 0 % at t=3 we have A1 drug i n j e c t i o n
0 0 200e−6 0 % at t=6 we have A1 drug i n j e c t i o n
0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

e l s e i f mode == 5 % Avelumab 200e−6 + NHS−muIL12 2e−6

y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ing s occur such as t0 , t f , injT ,T
3
6
1 8 ] ;

i_edges = [ 0 0 200e−6 2e−6 % at t=0 we have A1 ,A2 drug i n j e c t i o n s
0 0 200e−6 0 % at t=3 we have A1 drug i n j e c t i o n
0 0 200e−6 0 % at t=6 we have A1 drug i n j e c t i o n
0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

e l s e i f mode == 6 % Avelumab 200e−6 + NHS−muIL12 10e−6

y0 = [ 100 ; 0 . 0 3 ; 0 ; 0 ] ;

t_edges = [ 0 % time po in t s where th ings occur such as t0 , t f , injT ,T
3
6
1 8 ] ;

% pertubat ion to s o l u t i o n meaning i n j e c t i o n s
i_edges = [ 0 0 200e−6 10e−6 % at t=0 we have A1 ,A2 drug i n j e c t i o n s
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0 0 200e−6 0 % at t=3 we have A1 drug i n j e c t i o n
0 0 200e−6 0 % at t=6 we have A1 drug i n j e c t i o n
0 0 0 0 ] ; % at t=18 we don ’ t have i n j e c t i o n s

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGINNING OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% func t i on [ ] = asymptotic_behavior_ful l_model ( )
% This code produces the asymptotic behavior o f both drugs in combination
% gamma_1 (Avelumab ) and gamma_2 (NHS−muIL12 ) when app l i ed cont inuous ly .
% We use the f u l l ODE system . Al l the parameters below are determined by
% the data , l i t e r a t u r e review and i n t u i t i o n as l i s t e d in the t ab l e s .
% By ad ju s t i ng the ODE system to the l im i t i n g system can produce the
% asympototic behavior f o r the l im i t i n g case .

% In s t r u c t i o n s to run t h i s code :
% 1 . Set myswitch = 1 to run the code f o r the e n t i r e l og space .
% 2 . Create a mat f i l e that conta in s r e p r e s e n t a t i v e po in t s seen in the synergy p l o t
% repre s en ted by the plot_gamma_points . mat in t h i s code . The va lues o f
% gamma_1 and gamma_2 chosen can be seen in the legend on l i n e 129 in t h i s code .
% Note here that you need to add the z−co rd ina t e which can be e i t h e r 0 or 1
% f o r each o f the d i f f e r e n e n t po in t s to enable v i s i b i l i t y on the p l o t .
% 3 . Set myswitch = 0 to run s p e c i f i e d po in t s in " plot_gamma_points . mat " f i l e

% Written by E l p i n i k i Nikolopoulou 2019

c l e a r a l l
c l c
format long ;

myswitch = 1 ; % 1 = Run the e n t i r e l og space
% 0 = Run only at s p e c i f i e d po in t s in " plot_gamma_points . mat " f i l e

%% Var iab le i n i t i a l i z a t i o n s and memory a l l o c a t i o n s
i f ~myswitch

load plot_gamma_points . mat ;
end

mpr = [ 1e−13 % 1 . K_TQ − i n h i b i t i o n o f func t i on o f T c e l l s by PD−1−PD−L1
0.001 % 2 . sigma − f r a c t i o n o f a s s o c i a t i o n / d i s s o c i a t i o n ra t e
8 .81 % 3 . lambda_TI12 − a c t i v a t i o n ra t e o f T c e l l s by IL−12
7e−14 % 4 . K_A2 − d i s s o c i a t i o n constant o f A_2
0.1136 % 5 . d_A1 − degradat ion ra t e o f Anti−PD−L1
0 .69 % 6 . d_A2 − degradat ion ra t e o f NHS−muIL12

5 .84 e−7 % 7 . rho_p − exp r e s s i on l e v e l o f PD−1
2 .7635 e−7 % 8 . rho_l − exp r e s s i on l e v e l o f PD−L1
1e−13 % 9 . K_A1 − d i s s o c i a t i o n constant o f A_1
50 % 10 . e p s i l o n − exp r e s s i on o f PD−L1 in tumor c e l l s vs T c e l l s
0 .02 % 11 . de l t a − source o f a c t i v a t i o n
1 % 12 . eta − k i l l r a t e o f tumor c e l l s by T c e l l s
0 .213 % 13 . r − growth ra t e o f tumor c e l l s
0 .05 % 14 . d_T − death o f T c e l l s

] ;

y0 = [100 0 .03 0 0 ] ; % i n i t i a l c ond i t i on s

inc = [ 0 : 1 : 2 2 0 ] ’ ;
time = [ inc ] ; % time po in t s 0−220
l im i t = [ 1 9 0 : 1 : 2 2 0 ] ; % l a s t 30 time po in t s
gamma_1 = logspace (−7 , log10 (9 e−5) ,201) ;
gamma_2 = logspace (−9 , log10 (2 e−6) ,201) ;

f p r i n t f ( ’gamma1 a b : %g %g\n ’ ,gamma_1(1) ,gamma_1( end ) ) ;
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f p r i n t f ( ’gamma2 a b : %g %g\n ’ ,gamma_2(1) ,gamma_2( end ) ) ;

th r e sho ld = 100 ; % s e t th r e sho ld same as i n i t i a l c ond i t i on

f i g u r e (1 )
hold on
t t t = 0 ;
escape_table = ze ro s ( l ength (gamma_1) , l ength (gamma_2) ) ;
Ng1 = length (gamma_1) ;

%% Main code f o r system so l v i n g

f o r i = 1 :Ng1
t i c
i f ( i > 1)

f p r i n t f ( ’ I n i t −− Loop %d o f %d ( time %g −− e s t : %g ) \n ’ , i , Ng1 , . . .
t t t , ( Ng1−i +1)∗ t t t ) ;

e l s e
f p r i n t f ( ’ I n i t −− Loop %d o f %d\n ’ , i , Ng1) ;

end

f o r j = 1 : l ength (gamma_2)

i f myswitch % ca l c u l a t e s o l u t i o n f o r each combination o f gamma_1
% and gamma_2 in e n t i r e l og space

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) )
% c r ea t e binary tab l e to p l o t the 3D su r f a c e l a t e r on
i f max( yout ( l im i t , 1 ) ) > thre sho ld % i f s o l u t i o n at the l a s t

% time points> thre sho ld
escape_table ( i , j ) = 1 ; % p lace 1 in the escape tab l e

matrix
end

e l s e % c a l c u l a t e s o l u t i o n only f o r s p e c i f i e d gamma_1
% and gamma_2 po in t s in the saved va r i ab l e

Marker={ ’ o ’ , ’ ∗ ’ , ’ s ’ , ’ p ’ , ’ d ’ , ’ x ’ , ’ o ’ } ;

i f gamma_1( i ) == po in t s (1 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (1 ) . Po s i t i on (1 )

[ tout , yout ]= ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) , ’−k∗ ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .
’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) ) ;

e l s e i f gamma_1( i ) == po in t s (2 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (2 ) . Po s i t i on (1 )

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) , ’−ms ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .
’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) , ’ MarkerFaceColor ’ , ’m’ ) ;

e l s e i f gamma_1( i ) == po in t s (3 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (3 ) . Po s i t i on (1 )

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) , ’−gp ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .
’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) ) ;

e l s e i f gamma_1( i ) == po in t s (4 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (4 ) . Po s i t i on (1 )

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
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time , y0 ) ;
p l o t ( tout , yout ( : , 1 ) , ’−cd ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .

’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) , ’ MarkerFaceColor ’ , ’ c ’ ) ;

e l s e i f gamma_1( i ) == po in t s (5 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (5 ) . Po s i t i on (1 )

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) , ’−bx ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .
’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) ) ;

e l s e i f gamma_1( i ) == po in t s (6 ) . Po s i t i on (2 ) . . .
&& gamma_2( j ) == po in t s (6 ) . Po s i t i on (1 )

[ tout , yout ] = ode15s (@( t , y ) f ( t , y ,mpr , gamma_1( i ) ,gamma_2( j ) ) , . . .
time , y0 ) ;

p l o t ( tout , yout ( : , 1 ) , ’−ro ’ , ’ Linewidth ’ ,2 , ’ MarkerSize ’ , 1 0 , . . .
’ MarkerIndices ’ , 1 : 1 0 : l ength ( tout ) , ’ MarkerFaceColor ’ , ’ r ’ ) ;

e l s e
;

end
end

end
t t t = toc ;

end

% Prepare f i g u r e s
t i t l e ( ’ Combination treatment (Avelumab and NHS−muIL12 ) ’ , ’ I n t e r p r e t e r ’ , . . .

’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
x l ab e l ( ’Time ( days ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
y l ab e l ( ’Tumor Volume (mm$$^3$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
y l i n e (100 , ’−− ’ , ’ Threshold ’ , ’ Fonts i z e ’ ,20 , ’ Linewidth ’ ,3 , ’ I n t e r p r e t e r ’ , . . .

’ l a t e x ’ , ’ f o n t s i z e ’ , 20) ;
yl im ( [ 0 2e3 ] )
s e t ( gcf , ’ p o s i t i o n ’ , [ 1 00 , 100 , 740 , 400 ] )
s e t ( gca , ’ FontSize ’ ,20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )
s i z e (gamma_1) ;
s i z e (gamma_2) ;
s i z e ( squeeze ( escape_table ( : , : , 1 ) ) ) ;
l egend ( ’ \gamma_1 = 9.35\ times10 ^{−7}, \gamma_2 = 1.52\ t imes10^{−6} ’ , . . .

’ \gamma_1 = 9.71\ times10 ^{−7}, \gamma_2 = 6.55\ t imes10^{−6} ’ , . . .
’ \gamma_1 = 1.35\ times10 ^{−7}, \gamma_2 = 1.21\ t imes10^{−5} ’ , . . .
’ \gamma_1 = 5.84\ times10 ^{−8}, \gamma_2 = 5.05\ t imes10^{−5} ’ , . . .
’ \gamma_1 = 1.25\ times10 ^{−7}, \gamma_2 = 5.05\ t imes10^{−5} ’ , . . .
’ \gamma_1 = 9\ times10 ^{−7}, \gamma_2 = 5.05\ times10^{−5} ’ )

l egend boxo f f
f u l l = squeeze ( escape_table ( : , : ) ) ;
% Once code i s done we save the r e s u l t s in " paper . mat "
i f myswitch

save ( ’ paper . mat ’ ) ;
end

%end %enable i f f unc t i on in s t ead o f s c r i p t

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ dydt ] = f ( t , y ,mpr , gamma_1,gamma_2)

v=y (1) ; Tc=y (2) ; A_1=y (3) ; A_2=y (4) ; % Def ine v a r i a b l e s

% Model Parameters

K_TQ = mpr(1) ; sigma = mpr(2 ) ; lambda_TI12 = mpr(3 ) ;
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K_A2 = mpr(4 ) ; d_A1 = mpr(5 ) ; d_A2 = mpr(6 ) ;
rho_p = mpr(7) ; rho_l = mpr (8 ) ; K_A1 = mpr(9 ) ;
e p s i l o n = mpr(10) ; d e l t a = mpr(11) ; eta = mpr(12) ;
r = mpr(13) ; d_T = mpr(14) ;

% Equations

P = rho_p ∗ Tc ; % PD−1 exp r e s s i on
L_t = rho_l ∗ (Tc + ep s i l o n ∗ v ) ; % PD−L1 t o t a l exp r e s s i on
A_1n = A_1 ∗ (1 / (55 ∗ 1e7 ) ) ;
L_b = (A_1n/(A_1n + K_A1) ) ∗ ( rho_l ∗ (Tc + ep s i l o n ∗ v ) ) ; % PD−L1 bound

expr e s s i on
L_f = L_t − L_b; % PD−L1 f r e e exp r e s s i on
Q = sigma ∗ P ∗ L_f ; % PD−1−PD−L1 complex exp r e s s i on
A_2n = A_2 ∗ (1 /( 75 ∗ 1e7 ) ) ;

% Ode func t i on s
dv = r ∗ v − ( eta ∗ Tc ∗ v ) ; % tumor volume DE
dTc = ( de l t a + ( lambda_TI12 ∗ Tc ∗ A_2n) / (K_A2 + A_2n) ) . . .

∗ (1 / (1 + (Q / K_TQ) ) ) − d_T ∗ Tc ; % T−c e l l s DE
dA_1 = gamma_1 − d_A1 ∗ A_1; % A_1 ( avelumab ) DE
dA_2 = gamma_2 − d_A2 ∗ A_2; % A_2 (NHS−muIL12 ) DE

dydt = [ dv ; dTc ; dA_1; dA_2 ] ;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGINNING OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code produces the synergy p l o t f o r the f u l l model case . As be f o r e by
% load ing the cor r e spond ig mat f i l e s from the code above can produce
% the synergy p l o t f o r the l im i t i n g case .

% Written by E l p i n i k i Nikolopoulou 2019

%% User de f ined inputs
% Load your r e s u l t s to be p l o t t ed

load ( ’ paper . mat ’ ) % mat f i l e saved from asymptotic behavior code
% Load the va r i ab l e o f the po in t s you picked to be eva luated

load ( ’ plot_gamma_points . mat ’ ) % s p e c i f i c po in t s s e l e c t e d to be p loted
c l o s e a l l

%% Plot s e c t i o n f o r asymptot ic s u r f a c e p l o t
f i gure_asy = f i g u r e (2 ) , s u r f (gamma_2,gamma_1, squeeze ( escape_table ( : , : ) ) ) ;
shading f l a t % mesh l i n e segment and f a c e has a constant c o l o r

% a l l o c a t e textboxes on the su r f a c e p l o t
dim = [ . 1 5 .0002 . 2 . 2 2 5 ] ; % dim [ x y w h ]
s t r = [ ’ \ bf Tumor escape ’ ] ;
annotat ion ( ’ textbox ’ , dim , ’ S t r ing ’ , s t r , ’ FontSize ’ ,20 , ’ I n t e r p r e t e r ’ , . . .

’ l a t e x ’ , ’ FitBoxToText ’ , ’ on ’ , ’ EdgeColor ’ , ’ none ’ ) ;

dim = [ . 5 . 3 . 3 . 3 ] ; % dim [ x y w h ]
s t r =[ ’ \ bf Tumor con t r o l ’ ] ;
annotat ion ( ’ textbox ’ , dim , ’ S t r ing ’ , s t r , ’ FontSize ’ ,20 , ’ I n t e r p r e t e r ’ , . . .

’ l a t e x ’ , ’ FitBoxToText ’ , ’ on ’ , ’ EdgeColor ’ , ’ none ’ ) ;

%co l o rba r
ax i s t i g h t
t i t l e ( ’ Asymptotic behavior as a func t i on o f $$\gamma_1 $$ and $$\gamma_2 $$ ’ , . . .

’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 6)
y l ab e l ({ ’ $$\gamma_1 $$ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)

152



x l ab e l ({ ’ $$\gamma_2 $$ ’ } , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 20)
view (0 ,90 ) % change to top view

f o r k = 1 : l ength ( po in t s )
Color = { ’ r ’ , ’ k ’ , ’m’ , ’ g ’ , ’ c ’ , ’ b ’ , ’ r ’ } ;
Marker = { ’ o ’ , ’ ∗ ’ , ’ s ’ , ’ p ’ , ’ d ’ , ’ x ’ , ’ o ’ } ;
hold on ;
p lo t3 ( po in t s ( k ) . Po s i t i on (1 ) , po in t s ( k ) . Po s i t i on (2 ) , 1 , [ Color {mod(k , 6 ) +1} , . . .

Marker{mod(k , 6 ) +1}] , ’ Markers ize ’ , 9 , ’ MarkerFaceColor ’ , Color {mod(k , 6 )
+1})

end

s e t ( gcf , ’ p o s i t i o n ’ , [ 1 00 , 100 , 740 , 400 ] )
s e t ( gca , ’ FontSize ’ ,20)
s e t ( gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ )

% c r ea t e custom gray s ca l e map
map = [ 0 . 5 0 .5 0 .5

0 .9 0 .9 0 . 9 ] ;
colormap (map)
%colormap summer

%% Plot s e c t i o n f o r l oga r i thmi c su r f a c e p l o t
% f i g u r e (3 ) , s u r f ( log10 (gamma_2) , log10 (gamma_1) , squeeze ( escape_table ( : , : ) ) )
% shading f l a t % mesh l i n e segment and f a c e has a constant c o l o r
%
% % a l l o c a t e textboxes on the su r f a c e p l o t
% ax i s t i g h t
% t i t l e ( ’ Logar ithmic behavior o f $$\gamma_1 $$ and $$\gamma_2 $$ ’ , . . .
% ’ I n t e rp r e t e r ’ , ’ l a tex ’ , ’ f o n t s i z e ’ , 1 4 )
% y l ab e l ({ ’ $$\gamma_1 $$ ’ } , ’ I n t e rp r e t e r ’ , ’ l a tex ’ , ’ f o n t s i z e ’ , 2 0 )
% x l ab e l ({ ’ $$\gamma_2 $$ ’} , ’ I n t e rp r e t e r ’ , ’ l a tex ’ , ’ f o n t s i z e ’ , 2 0 )
% view (0 ,90 ) % change to top view
% se t ( gcf , ’ po s i t i on ’ , [ 6 5 0 , 1 0 0 , 7 4 0 , 4 0 0 ] )
% s e t ( gca , ’ FontSize ’ , 2 0 )
% se t ( gca , ’ T i ckLabe l In t e rpre t e r ’ , ’ l a tex ’ )
% colormap summer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF CODE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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