
Path Integral Quantum Monte Carlo Method for Light Nuclei

by

Rong Chen

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2020 by the
Graduate Supervisory Committee:

Kevin E. Schmidt, Chair
Ricardo O. Alarcón
Oliver Beckstein

Joseph R. Comfort
Igor A. Shovkovy

ARIZONA STATE UNIVERSITY

August 2020



ABSTRACT

I describe the first continuous space nuclear path integral quantum Monte Carlo

method, and calculate the ground state properties of light nuclei including Deuteron,

Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-

next-to-leading-order and the Argonne v′6 interaction. Compared with diffusion based

quantum Monte Carlo methods such as Green’s function Monte Carlo and auxiliary

field diffusion Monte Carlo, path integral quantum Monte Carlo has the advantage

that it can directly calculate the expectation value of operators without tradeoff,

whether they commute with the Hamiltonian or not. For operators that commute

with the Hamiltonian, e.g., the Hamiltonian itself, the path integral quantum Monte

Carlo light-nuclei results agree with Green’s function Monte Carlo and auxiliary field

diffusion Monte Carlo results. For other operator expectations which are important

to understand nuclear measurements but do not commute with the Hamiltonian and

therefore cannot be accurately calculated by diffusion based quantum Monte Carlo

methods without tradeoff, the path integral quantum Monte Carlo method gives reliable

results. I show root-mean-square radii, one-particle number density distributions, and

Euclidean response functions for single-nucleon couplings. I also systematically describe

all the sampling algorithms used in this work, the strategies to make the computation

efficient, the error estimations, and the details of the implementation of the code to

perform calculations. This work can serve as a benchmark test for future calculations

of larger nuclei or finite temperature nuclear matter using path integral quantum

Monte Carlo.
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Chapter 1

INTRODUCTION

1.1 Background

In nuclear physics, most of the questions simply cannot be convincingly answered

without answering the following two perhaps ultimate questions in the first place:

1. What is the interaction between nucleons?

2. How to solve the many-body problem?

In fact, these two questions are more like big challenges than problems or troubles.

Today, in the beginning of the second decade of the 21st century, which is nearly a

century since Erwin Schrödinger in 1925 wrote down the equation i~Ψ̇ = HΨ that rules

the quantum world, with discoveries and development in both theory and computation

aspects made by several generations of people, the answers to the two questions are

on the horizon.

1.1.1 Evolution of the Nucleon-Nucleon Interaction

In regards to the first question, what is the interaction between nucleons? We already

know that nucleons are made of quarks and gluons, and quantum chromodynamics

(QCD) (Gross and Wilczek (1973); Politzer (1973)) describes the strong interaction

between quarks and gluons within the framework of quantum field theory (QFT) by

using the QCD Lagrangian. The interactions between quarks are made by exchanging

the gluons which are the ‘messengers’. Nucleons, i.e. protons and neutrons are actually

the bound states of quarks and gluons. Consequently, in principle we should calculate
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the interaction between nucleons from QCD, using the degrees of freedom of the quarks

and gluons. However, QCD features asymptotic freedom. Namely quarks are weakly

interacting at small distance which corresponds to high energies. But the interaction

is strong at long distance which corresponds to the low energy region. This causes

the confinement of quarks within hadrons like nucleons and mesons. Therefore, in the

high energy region we can perform perturbation calculations but not so easily in the

low energy region where hadrons form. This is mainly why it is so difficult to do ab

initio calculations at the hadronic level directly from QCD. Lattice QCD methods

(Davies (2002)) are working toward calculating the nucleon many-body problem from

quark and gluons degrees of freedom, however the current simulations are not capable

of a system beyond two nucleons (Beane et al. (2008); Savage (2015)).

In fact, in the low energy region, we may not have to directly include quark and

gluon degrees of freedom, because, the nucleons are in the non-relativistic regime

and they are stable; the quarks and gluons hardly ever get excited in the nucleons.

In this case, we can treat a nucleon as an elementary particle (nucleons have form

factors which can be thought of as the internal structure) with protons and neutrons

only distinguished from each other by their isospin. We can treat the interactions

between nucleons as instantaneous and therefore we can use a potential to describe

the nucleon-nucleon interaction. Of course, the nucleon-nucleon interaction has to be

the residual interactions of the strong interaction described by QCD, just like the van

der Waals potential is the residual interaction of the Coulomb interaction at large

distance.

Meson exchange theory

The earliest version of nucleon-nucleon (NN) interaction is the Yukawa potential

(Yukawa (1935)) which is VYukawa(r) = −g2 e−mr

r
where g is the coupling constant, m
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is the mass of the meson and r is the distance between two nucleons. Yukawa theory

was pioneering in the 1930s because it first predicted that the interactions between

nucleons are made by exchanging a new particle called a meson. The interaction range

r between nucleons, which is about 1 fm, can determine the mass of the meson by the

uncertainty principle r ≈ 1/m so m ≈ 200 MeV. And such a meson called the pion

with mass about 140 MeV was discovered in 1947 (Lattes et al. (1947)). Since then,

nuclear and high energy physics has entered a golden age, and there was time where a

discovery of a new particle meant a Nobel Prize.

Over the decades, we have more understanding of what the interaction between

nucleons looks like. We at least know that the interactions between nucleons should

have momentum dependence. The simplest interaction with momentum dependence is

the spin-orbit interaction which is nonlocal, and in fact a realistic nucleon-nucleon

interaction cannot be built without it. Also, there are not only two-nucleon forces

(2NF), but also three-nucleon forces (3NF), and even four-nucleon forces (4NF), and

even more. Since the 1990s, several high-precision NN interactions (Machleidt and

Slaus (2001)) mostly based on meson exchange theory have been developed. Among

them, the Nijmegen potentials (Stoks et al. (1994)), the CD-Bonn potential (Machleidt

et al. (1996)), the Argonne series (Wiringa et al. (1995); Wiringa and Pieper (2002);

Veerasamy and Polyzou (2011)) of interactions together with Tucson-Melbourne (Coon

and Glöckle (1981)) and Urbana and the modern Illinois series of 3NF (Carlson

et al. (1983); Wiringa and Pieper (2002)) are widely used. These meson-exchange

based models have achieved great success in explaining the experimental data. In

these potentials, the 2NF includes one-pion exchange (OPE) as well as heavier meson

exchange and the 3NF contains terms from two and/or more pion exchange. However,

the parameters in the 3NF models need be adjusted for the chosen 2NF model to

fit the binding energy for A ≥ 3 nuclei (Nogga et al. (2000)). This situation raises a

3



simple question, how do we choose the 2NF and 3NF? Apparently these models are

lacking a fundamental theory which can guide us to find or choose the form of 2NF

and 3NF within a consistent framework. From today’s point of view, we know that

those models are lacking the guidance of the (broken) symmetry from QCD, the chiral

symmetry.

Chiral effective field theory

Since the 1990s, the importance of NN interactions derived from chiral effective field

theory (ChEFT) has been realized by more and more people. The idea of ChEFT was

proposed in 1979 by Steven Weinberg (Weinberg (1979)) and after his proposal about

how to treat the nuclear interaction at the chiral limit (Weinberg (1990, 1991)) ChEFT

has been rapidly developed in nuclear physics (Epelbaum et al. (2009); Machleidt and

Entem (2011)). The nuclear interactions derived from ChEFT are connected with the

fundamental theory of QCD by the broken chiral symmetry. This is an example of

‘symmetry dictates interaction’ (Yang (1980)). To derive the nuclear interaction from

ChEFT, one has to identify the relevant symmetries of low-energy QCD first. Then,

one needs to construct the most general Lagrangian including those symmetries and

symmetry breakings. After that, one needs to do a low momentum expansion and

design the scheme to collect the important contributions. The scheme is called chiral

perturbation theory (ChPT). Finally, one calculates those Feynman diagrams of the

important contributions order by order, in terms of an expansion in the small external

momenta over the large scale, ( Q
Λχ

)ν . Here Q means the nucleon three-momentum

or pion four-momentum or a pion mass which is around 140 MeV, Λχ is the chiral

symmetry breaking scale (hadronic scale) which is about 1 GeV, ν is the power of the

order. Determining the power ν is called power counting. ν = 0 terms are the called

the leading order (LO) which contributes the most to the nuclear interaction. There

4



are no ν = 1 terms due to parity and time-reversal invariance, so the next-to-leading

order (NLO) terms are for ν = 2. The next-to-next-to-leading order (N2LO) terms are

for ν = 3, and this is where a nonvanishing 3NF occurs (van Kolck (1994); Epelbaum

et al. (2002)). The next-to-next-to-next-to-leading order (N3LO) are for ν = 3 and

that is where a 4NF occurs. Note that ( Q
Λχ

) < 1, and the 2NF occurs at ν = 0, the

3NF occurs at ν = 3, and the 4NF occurs at ν = 4. ( Q
Λχ

)0 � ( Q
Λχ

)3 � ( Q
Λχ

)4, therefore

ChPT explains the hierarchy of nuclear force 2NF � 3NF � 4NF which we knew

empirically before. Because the Chiral interaction are based on momentum expansion

( Q
Λχ

)ν , it naturally carries the momentum dependence. It is worth mentioning that

(Gezerlis et al. (2013)) up to N2LO (beginning from N3LO, non-local operators cannot

be avoided however their effects should be negligible and can be treated perturbatively),

one can write down a mostly local version of the chiral interaction 1 . The local chiral

interaction will be particularly useful for any quantum Monte Carlo (QMC) method

in continuous space which includes the method used in this work.

1.1.2 Methods of Solving the Many-Body Problem

Phenomenological approaches

For the second main question: how do we solve for the many-body problem given the

interactions between the particles? There are some approaches developed in the past

several decades. Some of them are based on mean field theory and the phenomenological

NN interactions. For example, models based on non-relativistic mean field like Skyrme-

Hartree-Fock (Skyrme (1958)), Gogny-Hartree-Fock (Dechargé and Gogny (1980))

models 2 , relativistic mean field theory (RMF) (Reinhard (1989); Ring (1996)), etc.
1That is, the momentum dependence is predominantly determined by the momentum transfer

which Fourier transforms to a local in space potential
2Those are the methods I was mainly using in my master degree career (Chen et al. (2012)).
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In those methods, for bulk matter people assume that the each particle is in the mean

field of the others and so the wave function of the particles is approximately plane

wave and it obeys a Fermi-Dirac distribution in phase space. The energy per nucleon

or energy density can be calculated by integrating over phase space and by using a

phenomenological nuclear interaction such as Skyrme or Gogny interaction specially

designed for this mean field approximation. Those methods have been successful in

many aspects, in particular, they are computationally cheap so it is easy to reach a

high density region for either isospin symmetric or asymmetric nuclear matter and

to do finite temperature calculations. Also, they can give analytic expression for the

equation of state (EOS) of nuclear matter. Therefore a lot of quantities, like the

symmetry energy, single nucleon potential, pressure, incompressibility coefficient, etc.,

can be conveniently calculated from the EOS. However, the mean field assumption

and phenomenological interaction are not given from first principles, and different sets

of parameters in the models can give different results for physical quantities especially

at high nucleon density (Li et al. (2008)). So, one may argue that those methods may

not be among the most reliable methods in predicting the properties of nuclear matter

or nuclei at high density and/or finite temperature. Therefore, people may prefer to

seek the answers from first-principle calculations.

First principle approaches

First principle, or ab initio calculations are referring to those methods which are aiming

at directly solving the Schrödinger equation of the system. The no-core shell-model

(NCSM) (Navrátil et al. (2009); Barrett et al. (2013)), coupled cluster theory (Hagen

et al. (2014)), and quantum Monte Carlo method (QMC) (Carlson et al. (2015)) are

by far the three most successful and most mentioned methods. Each of them have

their own advantages in their ability to approach specific problems.
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NCSM is basically a method for solving for the eigenvalues of the Hamiltonian

matrix in the time-independent Schrödinger equation, by adding the truncated Jacobi-

coordinate and/or the single-nucleon Slater determinant Harmonic oscillator (HO)

Hamiltonian to the original NCSM Hamiltonian, and therefore use a truncated HO

basis to calculate the modified Hamiltonian matrix. The effects from HO Hamiltonian

are subtracted in order to get correct results. The number of HO basis has to be

truncated to make NCSM calculable. However that raises a problem. If the potential

is hard instead of soft 3 , then the truncated momentum for the HO basis may not

be high enough for the hard potential and the calculation will not converge. Usually

NCSM works best with a soft potential.

Coupled cluster method is mostly used to calculate the properties of closed-shell

or nearly closed-shell nuclei. It defines a similarity-transformed Hamiltonian H̄ =

e−THNe
T where HN is a normal ordered Hamiltonian derived from the original

Hamiltonian H, and T is the cluster operator. It finds the ground state by using a

variational method to minimize the energy functional E(L, T ) ≡ 〈φ|Le−THNe
T |φ〉 =

〈φ|LH̄|φ〉, where L is the de-excitation operator and |φ〉 is a trial state. The variation of

E(L, T ) with respect to the truncated operatorL yields a set of so called coupled clusters

with singles and doubles (excitations) approximation (CCSD) equations. Solving for

the cluster amplitudes from T in those CCSD equations, one can show that they give

the ground state energy E0 = 〈φ|H̄|φ〉. We can also do variations with respect to the

cluster amplitudes in T , that will yield other sets of equations. The solved coefficients

from L in those equations can be used to solve for the excited energies or other physics

quantities. In coupled cluster calculations, H̄ needs to be expanded by using the Baker-

Campbell-Hausdorff (BCH) expansion H = HN + [HN , T ] + 1
2!

[[HN , T ] , T ] + . . . . and

3By ‘soft’ we mean the potential remain relatively small when the distance r between the nucleons
r → 0 and it varies not too abruptly with r. ‘Hard’ is the opposite.
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this can be represented by diagrams just like the Feynman diagrams in high energy

physics. For ground state calculations, the diagrams with three or more body nature

will vanish so one only needs to calculate those with two-body nature. This feature

makes the coupled cluster method computationally attractive. The computational

cost in coupled cluster are mainly in solving those non-linear CCSD equations, and

the number of the equations depends on the size of the basis. So, with the current

technique, it must truncate the basis (usually HO basis) in its model space, especially

for medium and large nuclei calculations. Consequently, like NCSM, it works best with

soft potentials, otherwise one needs to modify the potential in some way to make it

soft.

Unlike NCSM which aims at solving for the eigenvalues of the effective Hamiltonian

matrix and the coupled-cluster method which requires solving for many non-linear

equations, QMC methods seeks the solution of many-body system from the stochastic

process called the Monte Carlo (MC) method (Kalos and Whitlock (1986)), and so

QMC codes can naturally be made highly parallel and therefore particularly suited

for modern high performance computing. QMC methods are among the most trusted

methods since approximations, if any, can be well characterized. In the last 30 years,

significant progress has been made either in continuous space time (Carlson et al.

(2015)) or on the lattice (Lee (2009); Epelbaum et al. (2012)). Nuclear QMC methods

have achieved wide success in accurately calculating the properties of light nuclei and

neutron matter using realistic nuclear interactions such as the Argonne potentials

(Wiringa et al. (1995); Wiringa and Pieper (2002)) and the ChEFT potentials (Lynn

et al. (2014); Gezerlis et al. (2014); Lynn et al. (2017); Lonardoni et al. (2018a,b)).

QMC methods in continuous space are called continuum QMC. In this work,

we focus on continuum QMC. These methods are mainly variational Monte Carlo 4

4Brief introductions to VMC is in Appendix A.
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(VMC), Diffusion Monte Carlo (DMC) 5 (Hammond et al. (1994)) and path integral

Monte Carlo (Ceperley (1995)). DMC and PIMC both project out the ground state

from the trial wave function by applying the short imaginary time propagator e−H∆τ

repeatedly until all the excited states are removed, but in a different way which will

be introduced in chapter 2. Usually one begins from VMC to find some optimized

parameters in the trial wave function that minimize the expectation value of the energy.

One starts the DMC or PIMC from the optimized trial wave function to project out

the ground state.

Green’s function Monte Carlo (GFMC) (Carlson (1987)) and auxiliary field diffusion

Monte Carlo 6 (AFDMC) (Schmidt and Fantoni (1999)) are both DMC methods, and

they are among the most successful ones in nuclear physics. GFMC for bosons was

introduced by Malvin Kalos (Kalos et al. (1974)), nowadays the GFMC for nuclear

physics is the one introduced in late 1980s by Joseph Carlson (Carlson (1987)) who

included the spin and isospin degrees of freedom for nucleons.

In GFMC, for a system of A nucleons with Z protons, charge conservation gives

CZ
A ≡ A!

Z!(Z−A)!
isospin states, and 2A spin states, so the trial wave function is composed

of 2ACZ
A = 2A×A!

Z!(Z−A)!
spin/isospin basis states. GFMC yields very accurate results

because it sums over all the spin isospin states, but the number of basis states for

the wave function will be too big for heavy nuclei to be calculable. For this reason, at

the current stage, GFMC calculations are not able to go far beyond 12C because the

computational cost is too high 7 .

AFDMC in nuclear physics was invented in late 1990s by Kevin E. Schmidt and

Stefano Fantoni (Schmidt and Fantoni (1999)). The idea was to use a trial wave function
5Brief introductions to DMC is in Appendix B.
6Brief introductions to AFDMC is in Appendix C.
7For 12C, GFMC cost about 130 million core hours (Lovato et al. (2020)) on the MIRA supercom-

puter at Argonne National Laboratory located in Lemont, Illinois, USA.
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that scales better than GFMC’s, and sample the spin isospin states by introducing

auxiliary variables (fields) using a Hubbard-Stratonovich (HS) transformation (Carlson

et al. (2015)) of the operators in the potential. A convenient form of wave functions

in AFDMC is a Slater determinant which has A single-particle orbitals, so the wave

function is a determinant of an A×A matrix and the computational cost is the order

of A3 operations (Wikipedia contributors (2020a)) which is significantly cheaper than

GFMC’s. Another choice can be the Pfaffian pairing wave function (Bajdich et al.

(2006)) which also scales as O(A3). Currently, including 3NF from ChEFT, AFDMC

was able to accurately calculate nuclei up to 16O (Lonardoni et al. (2018a)), and it

has calculated systems with up to 100 nucleons interacting with a 2NF.

1.2 Motivation

All the current continuous space nuclear QMC calculations (such as GFMC and

AFDMC) are performed within the framework of DMC. Due to the nature of DMC,

when we perform ground state calculations, the operators will typically be sandwiched

between the trial wave function ΨT and the ground state wave function Φ0. Therefore,

DMC based methods can accurately calculate the ground state expectation values of

the operators which commute with the Hamiltonian, e.g., the ground state energy E0

itself. However, if the operators do not commute with the Hamiltonian, the ground state

expectation values cannot be obtained without tradeoff 8 . In fact, there are a lot of

operators which do not commute with the Hamiltonian, such as the root-mean-square

(rms) radius, the particle number density, response functions, etc. Therefore, if we

want to accurately calculate the ground state properties beyond the energy itself, we
8Diffusion based QMC methods typically use a technique called ‘future walking’ (Hammond et al.

(1994)) or ‘forward walking’ (Runge (1992); Casulleras and Boronat (1995); Samaras and Hamer
(1999)) to deal with operators which do not commute with H. This technique is sensitive to the
quality of the trial wave function ΨT .
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may want to use methods other than DMC.

Path integral Monte Carlo (PIMC) method (Ceperley (1995)) can be a natural

choice for such calculations. Unlike DMC methods, in PIMC, the operator can indeed

be sandwiched easily between the ground states. So, whether the operator commutes

with the Hamiltonian or not, we can always naturally calculate its ground state

expectation value. This is the most attractive feature of PIMC.

There were important applications of PIMC in calculating the properties of con-

densed Helium atoms (Ceperley (1995)) before. There are also PIMC calculations

of nuclei on the lattice (Lee (2009); Epelbaum et al. (2012)). However, there are no

PIMC with the realistic NN potentials such as Argonne potential or ChEFT potentials

to calculate the properties of any nuclei in continuous space time before this work.

PIMC Total Imaginary time

GFMC walker

PIMC walker

t= t=0

GFMC Total Imaginary time

Figure 1.1: Illustration of a GFMC walker and a PIMC walker.

One of the main reasons is that continuous space PIMC calculations can be

computationally expensive (even more expensive than GFMC). As illustrated in Fig.

1.1, for a PIMC walker, just like in the path integral, we need to separate the total

imaginary time of the path into N slices, insert a complete basis at each slice, and

form a bead which contains the spatial configuration of the nucleus. Computing the

beads one by one will be more and more time consuming as N increases, especially

considering that the realistic nuclear interactions contain spin and isospin structure.

As a rough estimation, the amount of work a PIMC walker does is about N times more
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than a GFMC walker does. However, due to the nature of DMC, a GFMC walker needs

to evolve N/2 steps to reach τd which is half of the total imaginary time τ a PIMC

walk does, in order to project out the ground state. Besides, for a given amount of

computation time, the GFMC walkers can be more uncorrelated with each other than

PIMC walkers. That is to say, PIMC actually needs more than twice the computation

time to have equally uncorrelated walkers as GFMC walkers. So, overall the cost of a

PIMC walker can be more than twice the cost of a GFMC walker. Therefore PIMC

can be more expensive than GFMC. The storage space a PIMC walker requires is also

N times bigger than a GFMC walker, because the configurations of all the nucleons

in the nucleus at each of N beads need to be stored.

Nonetheless, ever since the early nuclear QMC simulation such as GFMC performed

in 1987 (Carlson (1987)), in the last more than three decades, human beings have

witnessed an impressive increase in supercomputers’ power. A typical CRAY system in

the 1980s could do about 109 floating point operations per second (FLOPS) (Chodosh

(2017)), and today’s most powerful supercomputer Fugaku 9 can do more than 1017

FLOPS. With a magnitude of 108 increase in computing power as well as the better

understanding of NN interaction such as those from ChEFT, we have seen more and

more ChEFT based GFMC and AFDMC calculations (Lynn et al. (2014); Gezerlis et al.

(2014); Lynn et al. (2017); Lonardoni et al. (2018a,b)). Therefore, we will naturally

ask, what can PIMC do in nuclear physics?

The motivation of this work is to show that (as a benchmark test to begin with),

it is now possible to perform a reliable continuous space PIMC calculation of light

nuclei, by using modern realistic NN interactions (particularly the chiral interaction).
9As of June 2020 (Wikipedia contributors (2020b)), the most powerful supercomputer in the world

is Fugaku (peak performance is around 0.54 exaFLOPS) which is installed at RIKEN Center for
Computational Science in Kobe, Japan. It is preceded by the Summit (peak performance is around
0.2 exaFLOPS) which is located at the Oak Ridge National Laboratory in Tennessee, USA.
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1.3 Outline

The dissertation is organized as follows.

In chapter 2, I introduce the framework of PIMC first, then I introduce the detailed

form of the Hamiltonian we used and its model (Hilbert) space, the trial wave function,

the short-time approximation of the propagator and the time step error structure of our

calculation. After writing down the details of all the calculations and equations which

are suitable for PIMC simulations first, I then describe how the path is calculated and

efficiently updated. Particularly, I describe how the path is efficiently calculated by

introducing the path diagrams, which visualize the path and make the calculation

more accessible than merely the equations alone. The sign problem is discussed, too.

In chapter 3, I describe the Monte Carlo sampling techniques used in the PIMC. I

begin by introducing the Markov chain Monte Carlo and the Metropolis algorithm.

I introduce how they are connected to several sampling methods used in PIMC

calculations, particularly the multi-level sampling which is efficient and is mostly used.

Other sampling methods are introduced, too. I describe how the path is efficiently

updated and the sampling strategies implemented in the code.

In chapter 4, I show the results of the ground state PIMC calculations of the light

nuclei up to 4He. I introduce how I choose the total imaginary time τ , time step ∆τ

and the cost of the computation. I show the PIMC results of ground state energy which

is in agreement with GFMC and AFDMC results. I also show how to verify if the

ground state has been really reached. After presenting the results of the ground state

energy, I show results of the operators which do not commute with the Hamiltonian

but are also important, such as root-mean-square radii, particle number density and

angle averaged Euclidean response functions for single-nucleon couplings.

The summary and outlook of this work are finally given in chapter 5.
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Chapter 2

PATH INTEGRAL QUANTUM MONTE CARLO

2.1 Theoretical Framework

PIMC directly calculates the expectation value of an operator 〈Ô〉 as

〈Ô〉 =
〈ΨT |e−Hτ1Ôe−Hτ2|ΨT 〉
〈ΨT |e−Hτ |ΨT 〉

, (2.1)

where τi is an imaginary time and the total imaginary time τ = τ1 + τ2. ΨT is a trial

wave function and it can serve as the initial state of the system. H is the Hamiltonian

of the system,

H = T + V, (2.2)

where T and V are kinetic and potential energy operators. Since the operator Ô is

Hermitian, the numerator and denominator in Eq.(2.1) are real, so in PIMC it is

actually calculated as,

〈Ô〉 =
Re〈ΨT |e−Hτ1Ôe−Hτ2|ΨT 〉

Re〈ΨT |e−Hτ |ΨT 〉
. (2.3)

On the one hand, if τi = 0, Eq.(2.1) becomes,

〈Ô〉 =
〈ΨT |Ô|ΨT 〉
〈ΨT |ΨT 〉

=
Re〈ΨT |Ô|ΨT 〉
Re〈ΨT |ΨT 〉

, (2.4)

so PIMC becomes VMC which gives an upper bound to the true ground state energy.

On the other hand, the trial state |ΨT 〉 can be written as the linear combina-

tion of the eigenstates |Φn〉 of the Hamiltonian whose eigenvalues are En, and with

corresponding amplitude an such that,

|ΨT 〉 =
∞∑
n=0

an|Φn〉. (2.5)
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After operating with the propagator e−Hτ1 , |ΨT 〉 becomes,

e−Hτ1 |ΨT 〉 = a0e
−E0τ1

[
|Φ0〉+

∞∑
i=1

ai
a0

e−(Ei−E0)τ1|Φi〉

]
. (2.6)

Therefore, if τi is big enough, the factor e−(Ei−E0)τ1 will make all the excited states

negligible compared with the ground state |Φ0〉, and we find that,

lim
τi→∞

e−Hτi |ΨT 〉 ∝ |Φ0〉. (2.7)

So, e−Hτi |ψT 〉 project out the ground state |Φ0〉. In this case Eq.(2.1) will become

the ground state expectation value of Ô,

〈Ô〉 =
〈Φ0|Ô|Φ0〉
〈Φ0|Φ0〉

=
Re〈Φ0|Ô|Φ0〉
Re〈Φ0|Φ0〉

. (2.8)

In all kinds of calculations, however, it is usually not easy to directly sample the

whole exact propagator e−Hτi . Instead, we break τi into Ni pieces of time step ∆τ

such that τi = Ni∆τ , and the whole propagator can be written as a product of Ni

short-time propagator e−H∆τ ,

e−Hτi = (e−H∆τ )Ni . (2.9)

Typically we approximate e−H∆τ using a Trotter breakup (Schmidt and Lee (1995)),

e−H∆τ ≈ e−
V
2

∆τe−T∆τe−
V
2

∆τ , (2.10)

where each of the terms e−
V
2

∆τ and e−T∆τ can be calculated exactly or well approxi-

mated, as shown later.

If we want to calculate ground state properties, we need to use a sufficiently large

τi first such that e−Hτi can project out the ground state |Φ0〉, then we choose a proper

Ni to make sure ∆τ is small enough such that time step error are negligible for the

quantity we want to calculate. However, if ∆τ is too small it can cost an unnecessary
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large amount of computational resources, because then we need a very big Ni which

means many short-time propagators e−H∆τ . Therefore, time step ∆τ should be set at

a reasonable point between accuracy and computational cost.

Once τi, ∆τ and Ni are chosen, then we apply Eq.(2.9) in Eq.(2.3) such that we

accurately multiply the Ni short-time propagators e−H∆τ together to replace e−Hτi ,

and therefore the sampling of Eq.(2.3) will be equivalent with Eq.(2.8) the ground

state calculation. So we calculate Eq.(2.3) by choosing a sufficiently large τ1 and τ2

first (usually we set τ1 = τ2), then replacing e−Hτ1 and e−Hτ2 with corresponding

(e−H∆τ )N1 and (e−H∆τ )N2 such that,

〈Ô〉 =
Re〈ΨT |e−H∆τ ...e−H∆τ Ôe−H∆τ ...e−H∆τ |ΨT 〉
Re〈ΨT |e−H∆τ ...e−H∆τe−H∆τ ...e−H∆τ |ΨT 〉

. (2.11)

Eq.(2.11) is basically how PIMC works. As we can see from Eq.(2.11), a PIMC

calculation not only depends on the operator Ô, but also depends on the Hamiltonian

Ĥ, the trial wave function ΨT and the short-time propagator e−H∆τ . All of them will

be introduced one by one in the following sections.

As to the operator Ô, on the one hand, it may commute with the Hamiltonian. In

this case, Ô can be moved to the leftmost or the rightmost position, and Eq.(2.3) can

then be written as the average of the two,

〈Ô〉 =

1
2
Re
(
〈ΨT |Ôe−Hτ |ΨT 〉+〈ΨT |e−Hτ Ô|ΨT 〉

)
Re〈ΨT |e−Hτ |ΨT 〉

. (2.12)

This is useful when the application of the operator on the trial wave function is simpler

than its application directly on the propagator e−Hτ , or has lower variance.

On the other hand, however, the operator Ô can also be other operators which do

not commute with H. In fact, a big advantage of PIMC is that it can directly deal

with operators which do not commute with H, while diffusion based QMC methods

like GFMC and AFDMC cannot easily do so without tradeoff.
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Because, fundamentally speaking, unlike Eq.(2.3), all the diffusion based QMC

are trying to use a large enough total imaginary time τd in e−Hτd to project out the

ground state and calculate the following quantity,

〈Ô〉 =
Re〈ΨT |Ôe−Hτd |ΨT 〉
Re〈ΨT |e−Hτd|ΨT 〉

=
Re〈ΨT |Ô|Φ0〉
Re〈ΨT |Φ0〉

, (2.13)

which is called mixed estimator 1 . It works fine as long as Ô commutes withH. However

if Ô does not commute with H, diffusion based QMC cannot directly calculate the

ground state of 〈Ô〉, and often the mixed estimator along with extrapolation of the

errors (Hammond et al. (1994)) are used instead. However, the extrapolated mixed

estimator is not as accurate as the true ground state estimator Eq.(2.3). And in fact,

a lot of operators do not commute with H, and they can only be accurately and

directly calculated by PIMC (or higher variance forward walking additions to diffusion

methods). That is one of the main reasons to choose PIMC.

Fig. 2.1 is an example to illustrate the advantage of PIMC. The one-particle

number density operator Ô = ρ̂(r) whose definition is Eq.(4.32) does not commute

with H, therefore straightforward DMC can only calculate the mixed estimator of ρ(r)

which is different from the exact ρ(r). As one can see from Fig. 2.1, in the 4-particle

system, using three different trial wave function ΨT marked as Nr.1, Nr.2 and Nr.3,

the extrapolated estimator ρ(r) from DMC are different with each other and none

of them is the true ground state expectation value 2 . However, no matter which of

the 3 trial wave functions ΨT are used, the ρ(r) projected out by PIMC are the same

within error bar, which means they are the true ground state ρ(r). Obviously the

PIMC results are more reliable than the DMC in this case.

It needs to be pointed out that, due to the fact that T and V do not commute
1It can be seen from Eq.(2.13) that the DMC total imaginary time τd can be just half of the

PIMC total imaginary time τ , τd = 0.5τ , because DMC project out the ground state only from one
side while PIMC does so from both sides.

2the DMC results are obtained by using the extrapolated estimator Eq.(B.48).
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Figure 2.1: Comparison between PIMC and DMC 4-particle calculations for one-
particle number density ρ(r) using 3 different trial wave function (Zabolitzky and
Kalos (1981)) and with Malfliet-Tjon interaction (Malfliet and Tjon (1969)).

with each other as well as V is usually non-trivial, we use approximated short-time

propagator U(∆τ) ≈ e−H∆τ in the calculation instead of e−H∆τ . And U(∆τ) and

e−H∆τ are different by a time step ∆τ error,

U(∆τ) = e−H∆τ +O(∆τ l), (2.14)

where different choices of U(∆τ) will give different integer l, and the error between the

approximate short-time propagator U(∆τ) and exact short-time propagator e−H∆τ is

of ∆τ l order.

Therefore, what we really calculate in PIMC is 〈O(∆τ)〉, which is an approximation

of the true expectation value 〈O〉 in Eq.(2.11),

〈Ô(∆τ)〉 =
Re〈ΨT |[U(∆τ)]N1Ô[U(∆τ)]N2 |ΨT 〉

Re〈ΨT |[U(∆τ)]N1+N2|ΨT 〉
. (2.15)
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In the limit of the time step ∆τ becomes zero, 〈O(∆τ)〉 will be the same as 〈O〉,

lim
∆τ→0

〈Ô(∆τ)〉 = 〈O〉. (2.16)

So we need to calculate 〈O(∆τ)〉 for different time step ∆τ , then extrapolate the

〈O(∆τ)〉 at ∆τ = 0 in order to find the true expectation value 〈O〉. If the operator Ô

in Eq.(2.15) is placed exactly at the middle of the path such that N1 = N2, the PIMC

will essentially be equivalent with VMC whose trial function is [U(∆τ)]
N
2 |ΨT 〉, in this

case 〈O(∆τ)〉 will be the upper bound of the true expectation 〈O〉.

2.2 Hamiltonian

In this work, the Hamiltonian H of our light nuclei calculations is non-relativistic.

It can be written as,

H =
A∑
i=1

p2
i

2m
+
∑
i<j

Vij, (2.17)

where A is total number of nucleons in the system, pi = −i~∇i is the momentum

of particle i in real space. The complete two body interaction for a given ij pair of

particles, Vij, is composed of the nucleon-nucleon interaction V NN
ij and the electric

magnetic force V EM
ij ,

Vij = V NN
ij + V EM

ij . (2.18)

By using both the local chiral interaction with N2LO (Gezerlis et al. (2014); Lynn

et al. (2017); Lonardoni et al. (2018b)) and the Argonne v′6 (AV6’) interaction (Wiringa

and Pieper (2002)), we use PIMC to calculate the ground state properties of light

nuclei such as 2H, 3H, 3He and 4He. The nucleon-nucleon interaction is written as,

V NN
ij =

7∑
p=1

vp(rij)O
p
ij, (2.19)

where rij is the length of rij, vp(rij) is the radial function for the pth operator, and

they are different for chiral and AV6’ interactions. The first 6 of the operators Op
ij are
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1, τi · τj, σi · σj, σi · σjτi · τj, Sij and Sijτi · τj, where σ and τ are spin and isospin

operators. The tensor force Sij which comes from one-pion-exchange (OPE) is ,

Sij = 3σi · r̂σj · r̂ − σi · σj, (2.20)

where r̂ is the unit vector of rij . Note that the spin term σi ·σj = 2P σ
ij − 1 and isospin

term τi · τj = 2P τ
ij − 1 where P σ

ij and P τ
ij are spin and isospin exchange operators. The

tensor force flips the spins of nucleons.

The AV6’ is a local interaction, which is a six operator truncation of the full

Argonne AV18 NN interaction (Wiringa et al. (1995)) which consists of 18 operators.

The prime symbol means that the parameters in AV6’ are refitted and therefore they

are different from those in AV18. The AV6’ only contain the first 6 operators, it does

not have the 7th operator O7
ij, so its v7(rij) = 0.

When we say a potential is local, the word ‘local’ means the operators can be

determined once the positions of particles are given. If an interaction contains mostly

local operators, it is a local interaction. If an interaction contains some non-local

operators, usually like momentum operator p and/or powers of p, it is ‘non-local’. This

is because momentum operator in real space is a differential operator, if it operates on

a function f(x) then we need to calculate the derivative of the function f ′(x). The

value of f(x) is not enough to determine f ′(x), we need to know the value of f(x+ dx)

at x+ dx so that we can calculate f ′(x), so the information at the local point x is not

enough, information at x+ dx is needed, so it is called ‘non-local’. If an interaction

contains pn, then in order to compute f (n)(x) at x, we need to know all the non-local

information of f(x+ dx), f(x+ 2dx), ..., f(x+ ndx), so as the integer n increase, the

interaction will become more and more ‘non-local’.

Chiral interactions from ChEFT are obtained based on a momentum expansion so

they are naturally non-local, so computing them is usually not easy for real space QMC
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methods. However, it was shown that up to N2LO, we are able to obtain a mostly

local version of chiral interaction (Gezerlis et al. (2013)) which is suitable for QMC

calculations (Lynn et al. (2014); Gezerlis et al. (2014); Lynn et al. (2017); Lonardoni

et al. (2018a,b)). For chiral local N2LO interaction, it has the same 6 local operators

as AV6’, just with different radial functions. However it has the 7th operator in the

V NN
ij in Eq.(2.19), and it is the spin-orbit term (Lonardoni et al. (2018b)) which is

O7
ij = L · S, (2.21)

where L is the relative angular momentum operator and S is the total spin operator,

L =
1

2~
(ri − rj)× (pi − pj), (2.22)

S =
1

2
(σi + σj). (2.23)

With the radial function v7(rij), the spin-orbit interaction vLS(rij) is,

vLS(rij) = v7(rij)L · S, (2.24)

The complete chiral N2LO interaction also has a three body interaction (Lonardoni

et al. (2018b)), V3b =
∑

i<j<k Vijk, which to the linear order approximation in the

propagator can be straightforwardly added in light nuclei PIMC calculations. Since

our PIMC calculation is mainly a benchmark test, we did not include three body

interaction in this work.

For the electromagnetic (EM) force V EM
ij , here we only consider the Coulomb force

vC(rij) between proton and proton (pp) which contains the proton charge form factor,

V EM
ij = vC(rij)P

p
i P

p
j . (2.25)

where P p
i = (1 + τiz)/2 is the proton projection operator and τiz is the isospin z

operator of ith particle. Coulomb interaction is long range and the NN interaction is

short range (typically less than 2 fm).
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Figure 2.2: Radial functions of the AV6’ and the chiral N2LO interaction.

The total potential energy operator V is,

V =
∑
i<j

Vij =
∑
i<j

(V NN
ij + V EM

ij ). (2.26)

Fig. 2.2 shows the radial function of each operator in AV6’ and chiral N2LO

interaction. For the chiral N2LO interactions, their spectral-function-regularization

(SFR) cutoff Λ̃ is chosen to be 1000 MeV, and we list the radial functions for coordinate-

space cutoff R0 = 1.0 fm and R0 = 1.2 fm cases (Gezerlis et al. (2014)). We find that
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the chiral N2LO interactions are much softer than AV6’ interaction. Usually a soft

potential is computationally more easy to simulate than hard ones. Because for soft

potentials the chance that we meet with very big or very small values of potentials

are much lower than hard ones, and this may lead to less variance (smaller error bar)

in the results.

2.3 Model Space

The interaction used in this work will not change the total number of Z protons

and A− Z neutrons 3 , so the number of possible isospin states is
(
A
Z

)
. However the

tensor part Sij can flip spin, so the possible number of spin states is 2A. Therefore, as

stated before, the total number of spin-isospin basis states is,

Ntot =

(
A

Z

)
× 2A =

A!

Z!(Z − A)!
× 2A. (2.27)

Take 4He as an example, it has Ntot = 6 × 16 = 96 spin-isospin basis states. In

other words, our Hilbert space is constructed by the 96 basis states and therefore

a general state is the linear combination of these basis states. We mark these basis

states as |S〉 and S can be labeled from 1 to 96,

|S〉 ≡ |s1〉 ⊗ |s2〉 ⊗ |s3〉 ⊗ |s4〉 ≡ |s1s2s3s4〉, (2.28)

where si means the spin isospin state of particle i, it can be any state from neutron

spin up |n ↑〉, neutron spin down |n ↓〉, proton spin up |p ↑〉, proton spin down |p ↓〉.

In Eq.(2.28), we implicitly mean particle 1 is at s1 state, particle 2 is at s2 state,

particle 3 is at s3 state and particle 4 is at s4 state. To be clear, it is really,

|S〉 ≡ |s1
1〉 ⊗ |s2

2〉 ⊗ |s3
3〉 ⊗ |s4

4〉 ≡ |s1
1s

2
2s

3
3s

4
4〉, (2.29)

3The AV6’ and local chiral N2LO we use in this work conserve the number of isospin states. For
example, for 4He we begin with

(
4
2

)
= 6 different isospin states, the interaction we use always generate

isospin states within these 6 states, they do not generate isospin states other than these 6 states.
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where the subscript (the state label) 1 to 4 represents state 1 to state 4, and the

superscript (particle label) from 1 to 4 represents particle 1 to particle 4.

We denote the spatial configuration of a system with A particles as R,

R ≡ (r1, r2, ..., rA), (2.30)

where ri = (xi, yi, zi) is the coordinates of particle i. The coordinate space configuration

R of 4He can also be written as a state |R〉,

|R〉 ≡ |r1〉 ⊗ |r2〉 ⊗ |r3〉 ⊗ |r4〉 ≡ |r1r2r3r4〉. (2.31)

Similar with Eq.(2.29), Eq.(2.31) really means,

|R〉 ≡ |r1
1〉 ⊗ |r2

2〉 ⊗ |r3
3〉 ⊗ |r4

4〉 ≡ |r1
1r

2
2r

3
3r

4
4〉. (2.32)

Taking R and the spin isospin state S in to account, our basis state |RS〉 can

finally be written as,

|RS〉 = |R〉 ⊗ |S〉 ≡ |r1r2r3r4〉 ⊗ |s1s2s3s4〉, (2.33)

The correspondingly identity operators for our basis are,∫
dR|R〉〈R| = 1, (2.34)∑
S

|S〉〈S| = 1, (2.35)

∑
S

∫
dR|RS〉〈RS| =

∫
dR|R〉〈R| ⊗

∑
S

|S〉〈S| = 1. (2.36)

In fact, without the Coulomb interaction, for 4He it is possible to use two |T = 0〉

states (T is the total isospin quantum number) to couple with 16 spin states to form

32 basis. And due to the fact that the Hamiltonian has time-reversal symmetry, only

16 of the 32 basis states are independent, therefore we can use 16 states to form

the Hilbert space instead of 96. However the Coulomb interaction does not commute
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with the total isospin operator, it does not conserve total isospin and can generate

T 6= 0 states, therefore the 16 spin/isospin states with T = 0 cannot be used when the

Coulomb interaction was present. And this is why we use the 96 states in this work.

2.4 Wave Function

From Eq.(2.1) we know that an initial trial wave function ΨT is needed. Like all

QMC calculations, the closer the trial wave function ΨT is to the ground state, the

faster and the lower variance the calculation will become. In fact, obtaining a high

quality trial wave function is always an important task for QMC.

The state of the trial wave function |ΨT 〉 in this work takes the following form

(Carlson et al. (2015)),

|ΨT 〉 = F|Φ〉, (2.37)

where |Φ〉 is the model state, and F is the correlation operator.

Since nucleons are fermions, the model state |Φ〉 has to be antisymmetric under

the exchange of the labels between any of the two particles. For A ≤ 4 it can be

decomposed as a spatial part and a spin isospin part,

|Φ〉 = |ΦR〉 ⊗ |ΦS〉. (2.38)

The spatial part |ΦR〉 is symmetrized which can be chosen as,

|ΦR〉 =

∫
dR|R〉, (2.39)

such that

〈R′|ΦR〉 =

∫
dR〈R′|R〉 =

∫
dRδ(R′ −R) = 1. (2.40)

Since the spatial part is symmetric, the spin-isospin part |ΦS〉 has to be antisym-

metric under the exchanges of labels between any of the two particles. For light nuclei

with A 5 4, we can pick a basis state |S ′〉 ≡ |s′1
1〉 ⊗ |s′2

2〉 ⊗ ..⊗ |s′A
A〉 ≡ |s′1

1s′2
2...s′A

A〉
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from any one of the NS =
(
A
Z

)
× 2A spin-isospin basis |S〉, then construct |ΦS〉 using

A by A Slater determinant of single particle states in such a form,

|ΦS〉=A|s′1
1
s′2

2
..s′A

A〉 =

NS∑
N=1

φN |N〉, (2.41)

where the number φN is either -1, 1 or 0 depends on whether a certain spin-isospin

state |N〉 from the NS states |S〉 has odd permutation (exchanging the particle labels

between two particles), even permutation or any overlap with the chosen |S ′〉 under

any permutation or not.

The projection of |ΦS〉 on state |S〉 ≡ |s1
1s

2
2s

3
3s

4
4〉 is the amplitude 〈S|ΦS〉 which is

calculated by,

〈S|ΦS〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈s1
1|s′

1
1〉 〈s2

2|s′
2
1〉 ... 〈sA−1

A−1|s′
A−1
1 〉 〈sAA|s′

A
1 〉

〈s1
1|s′

1
2〉 〈s2

2|s′
2
2〉 ... 〈sA−1

A−1|s
A−1
2 〉 〈sAA|sA2 〉

...
... . . . ...

...

〈s1
1|s1

A−1〉 〈s2
2|s′

2
A−1〉 ... 〈sA−1

A−1|s
A−1
A−1〉 〈sAA|sAA−1〉

〈s1
1|s1

A〉 〈s2
2|s′

2
A〉 ... 〈sA−1

A−1|s
A−1
A 〉 〈sAA|sAA〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= φS, (2.42)

where the overlap between the spin-isospin state |s′Nj 〉 of particle N and |s′Mj 〉 of

particle M is,

〈sMi |s′
N
j 〉 = 〈si|s′j〉δMN = δsi,s′jδMN . (2.43)

Note that 〈S|ΦS〉 is a fermion wave function and it is antisymmetric under the

particle label exchange between two particles. If |S ′′〉 is obtained from |S〉 by exchanging

the i and j particle labels, then 〈S ′′|ΦS〉 is the determinant in Eq.(2.42) with i and j

columns exchanged, which obviously becomes −〈S|ΦS〉.

By using Eqs.(2.40–2.42), the wave function 〈RS|Φ〉 is calculated as,

〈RS|Φ〉 = 〈R|ΦR〉〈S|ΦS〉 =

NS∑
N=1

φN〈S|N〉 = φS. (2.44)
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Again, take 4He as an example, we can pick any one of the states from the 96

basis, and then antisymmetrize it to form the spin isospin part |ΦS〉 which will then

be a linear combination of 4! = 24 non-zero basis states. We can pick a basis state

|S ′〉 = |n ↑1n ↓2p ↑3p ↓4〉 from the basis, then antisymmetrize it to form |ΦS〉 of 4He,

|ΦS〉 =
96∑
N=1

|N〉〈N |ΦS〉 =
96∑
N=1

φN |N〉, (2.45)

where φN = 〈N |ΦN〉 is either −1 or 1 depending on the antisymmetrization for each

of the 24 basis states, and 0 for the rest 72 basis states. For example, using Eq.(2.42)

one can find if |N〉 = |n ↑1n ↓2p ↑3p ↓4〉 then φN is 1, if |N〉 = |n ↑2n ↓1p ↑3p ↓4〉 then

φN is -1, if |N〉 = |n ↑2n ↓1p ↑3p ↑4〉 then φN is 0, etc.

The correlation operator F is represented by the products of two-body correlation

operators Fij,

F = S
∏
i<j

Fij , (2.46)

where S is the symmetrization operator, and Fij is,

Fij =
6∑
p=1

fpijO
p
ij , (2.47)

where Op
ij are the same AV6’ operators, and fpij is the corresponding correlation

function operator (Lomnitz-Adler et al. (1981)). After operating on |R〉, fpij will

become a function fpij(rij) which only depends on the distance rij between particle i

and j.

By using Eqs.(2.33–2.47), the trial wave function 〈RS|ΨT 〉 is calculated as,

〈RS|ΨT 〉=〈R| ⊗ 〈S|F|ΦR〉 ⊗ |ΦS〉=

〈
S

∣∣∣∣∣S∏
i<j

[
6∑
p=1

fpij(rij)O
p
ij

]
NS∑
N=1

φN

∣∣∣∣∣N
〉
. (2.48)

The trial wave function 〈RS|ΨT 〉 with correlation operators Eq.(2.47) enriches

the structure of the wave function, especially, it has the important tensor structure

(Carlson et al. (2015)), and thus is an improvement over those without Op
ij operators.
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However, such a trial wave function is usually expensive to calculate. Even if Op

are just 1, it will take at least 96× 6 = 576 operations for a given pair. And we have

4 particles so 6 pairs, so 576× 6 = 3456 operations. Then there is a symmetrizer S

which contribute another factor of 6! = 720. So totally at least 3456 ∗ 720 = 2488320

operations for computing just one 〈RS|ΨT 〉. In general, for a nuclei, without further

simplifying 〈RS|ΨT 〉, brute force calculation for AV6’ can take at least
(
A
Z

)
× 2A× 6×

[A(A−1)/2]×[A(A−1)/2]! operations. This is computationally too expensive. Because

of that, in this work, as well as in most other QMC methods like AFDMC (Schmidt

and Fantoni (1999)), it is sampled instead of summing over all the [A(A − 1)/2]!

symmetrized terms.

In our calculation, we use ‘l’ to denote a sampled order 〈Ψl
T | from 〈ΨT |, and use

‘r’ to denote a sampled order |Ψr
T 〉 from |ΨT 〉. So, it is,

〈ΨT | =
∑
l

〈Ψl
T |, (2.49)

|ΨT 〉 =
∑
r

|Ψr
T 〉. (2.50)

We can write 〈ΨT |RS〉 and 〈RS|ΨT 〉 as,

〈ΨT |RS〉 =
∑
l

〈Ψl
T |RS〉, (2.51)

〈RS|ΨT 〉 =
∑
r

〈RS|Ψr
T 〉, (2.52)

and 〈RS|Ψr
T 〉 and 〈Ψl

T |RS〉 are,

〈RS|Ψr
T 〉 =

〈
S

∣∣∣∣∣∏r

i<j

[
6∑
p=1

fpij(rij)O
p
ij

]
96∑
N=1

φN

∣∣∣∣∣N
〉
, (2.53)

〈Ψl
T |RS〉 =

96∑
N=1

〈
N

∣∣∣∣∣φ∗N∏l

i<j

[
6∑
p=1

fpij
∗(rij)O

p
ij

]∣∣∣∣∣S
〉
, (2.54)

where we use symbols
∏r

i<j
and

∏l

i<j
to denote a particular chosen ‘r’ and ‘l’

order from S
∏

i<j. This l and r order sampling totally reduces the cost by the factor
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of {[A(A− 1)/2]!}2. For 4He that is (6!)2 = 518400. Since the operator commutators

are relatively small, so all the [A(A− 1)/2]! terms from either 〈Ψl
T | or |Ψr

T 〉 are almost

the same, therefore the variance increase from sampling this operator order is also

small.

It needs to be pointed that, |ΦS〉 (and therefore |Φ〉) does not have to be just

one Slater determinant, it can be (sometime it better be) a linear combination of

several different Slater determinants formed from different antisymmetrized basis

states. Overall, that is to say, using a linear combination of Slater determinant to form

|Φ〉 may be required to obtain the correct quantum numbers for a nucleus. To say the

least, the deuteron ground state must have J = S = 1 (Siemens and Jensen (2018)).

For the A > 4 system, merely the four spin-isospin states |n ↑〉, |n ↓〉, |p ↑〉 and

|p ↓〉 are not enough to form the antisymmetric state |Ψ〉 in Eq.(2.37). If we were to

use single-particle states to form |Ψ〉 by Slater determinants, they have to contain

some orbital quantum number information. For example we can use single particle

orbital (Zeng (2013); Xu (2009)) inspired from shell model (Mayer (1964)).

We can mark such a shell-model-like single-particle state as |sKi 〉nljmj as illustrated

in Fig. 2.3. The symbol K means it is the state of particle K. Letter i can be from

0 to 4 and they denote spin-isospin state n ↑, n ↓, p ↑, n ↓ accordingly. Quantum

number n is the radial quantum number, l is the orbit angular momentum quantum

number, j is the total angular momentum quantum number and mj is the j projection

quantum number. For simplicity, we can use |φKα 〉 to denote |sKi 〉nljmj ,

|φKα 〉 ≡ |sKi 〉nljmj , (2.55)

where symbol α contains all the spin-isospin information si and orbital information

nljmj,

α = {si, nljmj}. (2.56)
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Figure 2.3: Single-particle orbital states |sKi 〉nljmj .

and the amplitude between |φKα 〉 and particle M ’s basis |rMj sMj 〉 is 〈rMj sMj |φKα 〉 which

can be written as,

〈rMj sMj |φKα 〉 = φα(rj, sj)δsj ,siδMK . (2.57)

The function φα(rj, sj) is usually called an orbital and it can be written as,

φα(rj, sj) = Rnl(rj)Y
jmj
l , (2.58)

where Rnl(r) is a radial function which can be found from the solution of some central

potential such as Woods-Saxon potential (Lonardoni et al. (2018b)), and Y
jmj
l is

a simultaneous eigenfunction of l2, s2 and j2 called spin-angular function (Sakurai

(1993)). Y jm
l is a spin spherical harmonic Y m

l multiplied by some coefficients which

are functions of l, j and mj. ,

Assuming there are nφ ways to pick A suitable single-particle states |φKα 〉 which can

produce the correct total angular momentum J , parity π and total isospin quantum
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number T of a give A-nucleon nucleus, and the state |Φ〉 can be written as a linear

combination of nφ Slater determinants |DqΦ〉,

|Φ〉 =

nφ∑
q=1

cq|DqΦ〉, (2.59)

where cq is some coefficient and the amplitude 〈RS|DqΦ〉 can be calculated by using

Eq.(2.57) as,

〈RS|DqΦ〉 =

∣∣∣∣∣∣∣∣∣∣
〈r1

1s
1
1|φ1

1〉 ... 〈rAAsAA|φA1 〉
... . . . ...

〈r1
1s

1
1|φ1

A〉 ... 〈rAAsAA|φAA〉

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
φ1(r1s1) ... φ1(rAsA)

... . . . ...

φA(r1s1)〉 ... φA(rAsA)

∣∣∣∣∣∣∣∣∣∣
. (2.60)

Figure 2.4: Single-particle orbital states of 16O(0+, 0)

For example, consider 16O(0+, 0) whose total angular momentum quantum number

and parity is Jπ = 0+ and isospin quantum number is T = 0. From the knowledge of

shell model, as illustrated in Fig. 2.4, we know that 16O(0+, 0) is a closed shell nucleus.
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All the 16 particles fully occupy the N = 1 and N = 2 shells. Among them, 4 occupy

the 1S1/2 states, 4 occupy the 1P1/2 states and 8 occupy the 1P3/2 states. So totally 16

particles occupy 16 different orbital. So we can form one 16 by 16 Slater determinant

to describe the wave function of 16O.

However, for open-shell nuclei, there are more single-particle orbital states than

the number of nucleons A. Therefore in order to form the |Φ〉 in Eq.(2.59), all the

possible orbital states may need to be picked to form the accordingly total number of

nφ Slater determinants. E.g., 6He(0+, 1) needs 9 Slater determinants, 6Li(1+, 0) needs

32 and 12C(0+, 0) needs 119 (Lonardoni et al. (2018b)). Also, considering each Slater

determinants needs to be operated by the correlation operator F in Eq.(2.46) in order

to form |ΨT 〉 in Eq.(2.37), the computational cost of calculating open-shell nuclei is

much higher than closed-shell nuclei.

Last but not least, it needs to be pointed out that, the wave function does not

have to be formed by the Slater determinants using single-particle orbital. We can

also use paired states to form the antisymmetrized fermion wave functions in the

Pfaffian form (Bouchaud et al. (1988); Bajdich et al. (2006)). In fact, making the wave

function relatively cheap to calculate while making it containing as much of ground

state information as possible is one of the most important tasks in QMC calculations.

2.5 Propagator

Efficiently sampling the imaginary time propagator e−H∆τ by using a short-time

approximated propagator U(∆τ) is important for PIMC. Due to the fact that the

local chiral N2LO interaction contains the spin-orbit term vLS(rij) in Eq.(2.24), the

approximated short-time propagator U(∆τ) for e−H∆τ is calculated as,

U(∆τ) ≡ e−
V†
2

∆τGe−T∆τe−
V
2

∆τ = e−H∆τ +O(∆τ 2), (2.61)
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where V is the NN potential only with the first 6 operators in Eq.(2.19) plus the EM

force in Eq.(2.25),

V =
∑
i<j

[
6∑
p=1

vp(rij)O
p
ij + V EM

ij (rij)

]
≡
∑
i<j

Vij. (2.62)

For e−
V
2

∆τ , we pick an order of each ij pair and calculate it using the following

approximation,

e−
V
2

∆τ = e
−VA−1A∆t

2 e
−VA−2A∆t

2 ...e
−V13∆t

2 e
−V12∆t

2 +O(∆τ)2, (2.63)

where the O(∆τ)2 terms are due to Vij do not commute with each other for different

ij pairs, and e−
V†
2

∆τ is the Hermitian conjugate of the e−
V
2

∆τ approximation which is

the reverse order of Eq.(2.63). Note that the first 6 operators in V NN
ij in Eq.(2.19),

V NN
ij commutes with the V EM

ij , so we have,

e−
Vij
2

∆τ = e−
∑6
p=1 vp(rij)O

p
ij

2
∆τe−

V EMij
2

∆τ . (2.64)

The first 6 operators in V NN
ij are the same AV6’ operators and they form a group.

e−
∑6
p=1 vp(rij)O

p
ij∆τ in Eq.(2.64) can be linearized by the original 6 operators Op

ij in the

following way,

e−
∑6
p=1 vp(rij)O

p
ij∆τ =

6∑
p=1

upij(rij)O
p
ij, (2.65)

where the six coefficients upij(rij) can be solved once rij is given 4 .

The symbol G is the approximated short-time propagator for the spin-orbit term

e−VLS∆τ to the linear order 5 ,

G ≡ 1−
∑
i<j

vLS(r̂ij)∆τ = e−VLS∆τ +O(∆τ 2). (2.67)

4See Appendix D for details about linearizing the AV6’ operators in the propagator. In order
to save time, in the code all the up(r) are tabulated for the relevant range of r before performing
the Monte Carlo simulations. And the interpolations of the table are done by Lagrange 4-point
interpolation polynomials.

5The three body interaction V3b =
∑
i<j<k Vijk may be added in the same way as the spin-orbit
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The approximated short-time propagator U(∆τ) in our basis is calculated as,

〈R′S ′|U(∆τ)|RS〉

=
〈
R′
∣∣∣⊗〈S ′ ∣∣∣e−V†2 ∆τGe−T∆τe−

V
2

∆τ
∣∣∣R〉⊗∣∣∣S〉

=

〈
S ′

∣∣∣∣∣e−V†(R′)2
∆τ

{[
1−

∑
i<j

v7(r′ij)Lij · Sij∆τ

] 〈
R′
∣∣e−T∆τ

∣∣R〉} e−V(R)
2

∆τ

∣∣∣∣∣S
〉

=

〈
S ′
∣∣∣∣e−V†(R′)2

∆τGe−
V(R)

2
∆τ

∣∣∣∣S〉×Gf
R′R. (2.68)

The symbol Gf
R′R in Eq.(2.68) means the products of the free particle propagator

of each particle in the system,

Gf
R′R ≡ 〈R

′|e−T∆τ |R〉 =
A∏
i=1

〈r′i|e−
p2i∆τ

2m |ri〉 ≡
( m

2π∆τ~2

) 3A
2
e
− (R′−R)2

2∆τ ~2
m , (2.69)

and (R′ −R)2 is calculated as,

(R′−R)2 =
A∑
i=1

(r′i − ri)2 =
A∑
i=1

[
(x′i−xi)2+(y′i−yi)2+(z′i−zi)2

]
. (2.70)

The symbol G in Eq.(2.68) is the effective G which is written as,

G = 1−
(
−m
4i~2

)∑
i<j

v7(r′ij)

[
r′ij ×

∆rR
′,R

ij

∆τ
· (σi + σj)

]
∆τ, (2.71)

where r′ij is the distance between particle i and j in configuration R′, r′ij ≡ ri−rj in R′,

and ∆rR
′,R

ij ≡ ∆rR
′,R

i −∆rR
′,R

j where ∆rR
′,R

i ≡ rR′i − rRi and ∆rR
′,R

j ≡ rR′j − rRj , and

the symbol rR
′(R)

i(j) simply means the ri(j) in configuration R′(R). Note that Eq.(2.71)

does not explicitly contain ∆τ anymore. However, as will be shown in chapter 3,

∆rR
′,R

ij will essentially have the order of ∆τ because rR′j will be effectively sampled

around rRj from a gaussian function whose variance is the order of ∆τ .

term in Eq.(2.61) to the linear order, such that

G ≡ 1−
∑
i<j

vLS(r̂ij)∆τ −
∑
i<j<k

Vijk∆τ. (2.66)

For light nuclei this linear approximation may be sufficient because the three-body force and the spin-
orbit force usually have opposite sign and similar strength, so G is close to 1 and the fluctuation in the
propagator will not be too big. Better approximations for the 3-body propagator are straightforward
since they do not contain derivatives.
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2.6 Time Step Error Structure

For the AV6’ interaction, there are only the first 6 operators in Eq.(2.19), so G

is 1, and Eq.(2.61) becomes the high-accuracy Trotter formula 6 (Feynman (1948);

Schmidt and Lee (1995)) which has O(∆τ)3 accuracy and can be denoted as US(∆τ),

US(∆τ) ≡ e−
V†
2

∆τe−T∆τe−
V
2

∆τ = e−H∆τ−∆τ3

24
[2T+V,[T,V]]+... = e−H∆τ +O(∆τ)3, (2.74)

where the subscript letter S means symmetric because US(∆τ) = U †S(∆τ). Note that

although the approximation of e−
V
2

∆τ which is Eq.(2.63) alone has O(∆τ 2) error, when

written the form of Eq.(2.74), the O(∆τ 2) cancels and one is left with only O(∆τ 3)

error. Furthermore, we find

US(∆τ)US(−∆τ) = 1, (2.75)

this ensures the error in the exponential of US(∆τ) only contains odd orders of ∆τ ,

US(∆τ) = e−H∆τ+f̂3∆τ3+f̂5∆τ5+f̂7∆τ7+..., (2.76)

where f̂i are functions of operators which do not depend on ∆τ .

For the AV6’ interaction, in the PIMC calculation, we use N short-time propagator

[US(∆τ)]N instead of (e−H∆τ )N in calculating Eq.(2.11), and the total imaginary time

τ = N∆τ , so NO(∆τn) = τO(∆τn−1). Considering Eq.(2.76), this means that for a

given τ , the error of [US(∆τ)]N only contain the even orders of ∆τ ,

[US(∆τ)]N =
(
e−H∆τ+f̂3∆τ3+f̂5∆τ5+...

)N
= e−Hτ +O(∆τ 2) +O(∆τ 4) + ..., (2.77)

6All the error structures of the propagator can be found by repeatedly using Campbell-Baker-
Hausdorff (CBH) formula (Reinsch (2000)),

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A−B,[A,B]]+ 1
24 [B,[A,[B,A]]]+..., (2.72)

where A and B are operators or matrices. From Eq.(2.72) we can further find that,

e
B
2 eAe

B
2 = eA+B+ 1

24 [2A+B,[A,B]]+.... (2.73)

and that is how we can write down (Apaja (2009)) Eq.(2.74).
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and this means 〈Ô(∆τ)〉 in Eq.(2.15) and the true expectation value 〈Ô〉 of Eq.(2.11)

are related by the following equation,

〈Ô(∆τ)〉 =
Re〈ΨT |[US(∆τ)]N1Ô[US(∆τ)]N2 |ΨT 〉

Re〈ΨT |[US(∆τ)]N |ΨT 〉

= 〈Ô〉 × 1 +O(∆τ 2) +O(∆τ 4) + ...

1 +O(∆τ 2) +O(∆τ 4) + ...
. (2.78)

For small ∆τ , in order to extrapolate the expectation value 〈Ô〉, we need to use,

〈Ô(∆τ)〉 = 〈Ô〉+
nc∑
n=1

C2n(∆τ 2n), (2.79)

where C2n are the fitting parameters for even orders of ∆τ , and nc is the cutoff integer

for n. The theoretical value of C2n depends on the trial wave function and the total

imaginary time τ . In principle, a general extrapolation formula which suits a wide

range of ∆τ should have the same form as Eq.(2.78).

For the local chiral N2LO interaction, we use the U(∆τ) in Eq.(2.61) as the

short-time propagator and it has errors O(∆τ 2), so when the total imaginary time

τ = N∆τ , we multiply U(∆τ) the short-time propagator N times we have error of

NO(∆τ 2) = τO(∆τ) which is O(∆τ),

[U(∆τ)]N = e−Hτ +O(∆τ), (2.80)

this means that the error of 〈Ô(∆τ)〉 in Eq.(2.15) has O(∆τ) error,

〈Ô(∆τ)〉 =
Re〈ΨT |[U(∆τ)]N1Ô[U(∆τ)]N2|ΨT 〉

Re〈ΨT |[U(∆τ)]N |ΨT 〉

= 〈Ô〉 × 1 +O(∆τ) +O(∆τ 2) +O(∆τ 3) + ...

1 +O(∆τ) +O(∆τ 2) +O(∆τ 3) + ...
. (2.81)

Similar with the Taylor expansion of 1
1+x

= 1− x + ... requires |x| < 1 to converge,

when the error in the denominator in Eq.(2.81) is less than one, Eq.(2.81) can be

written as,

〈Ô(∆τ)〉 = 〈Ô〉+O(∆τ) +O(∆τ 2) + .... (2.82)
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So, usually, for a given total time τ and small ∆τ , in order to get the true expectation

value 〈Ô〉 of Eq.(2.11), we need to calculate 〈Ô(∆τ)〉 for difference time step ∆τ and

error bar, and then use the following polynomial equation to extrapolate 〈Ô〉 and its

error bar,

〈Ô(∆τ)〉 = 〈Ô〉+
nc∑
n=1

Cn(∆τn), (2.83)

where Cn are fitting parameters and the theoretical value of Cn depends on the trial

wave function and the total imaginary time τ . In principle a general extrapolation

expression should be Eq.(2.81).

From the error structure Eq.(2.78) or Eq.(2.81) we can see that, even if ∆τ itself

is not very small, as long as the ∆τ errors (especially the leading order errors) in the

numerator and the denominator of Eq.(2.78) or Eq.(2.81) are comparable, 〈Ô(∆τ)〉

can still be close to the true expectation value 〈Ô〉. That is to say the results of PIMC

is robust because they may not be very sensitive to the time step ∆τ .

2.7 Computational Details

2.7.1 Recast

We need to recast Eq.(2.11) into a form that is suitable for PIMC calculations. We

set the total time τ as τ = τ1 + τ2 = N∆τ , and we insert N short-time propagators

U(∆τ) in Eq.(2.11) as well as inserting corresponding identity operators in Eqs.(2.36)

at each of them, then Eq.(2.11) with short-time propagator becomes,

〈Ô(∆τ)〉=
Re

∑
S′

∫
DR′〈ΨT |R0S0〉〈R0S0|U(∆τ)|R1S1〉...〈RISI |Ô|RI+1SI+1〉...〈RN+1SN+1|ΨT 〉

Re
∑
S

∫
DR〈ΨT |R0S0〉〈R0S0|U(∆τ)|R1S1〉...〈RN−1SN−1|U(∆τ)|RNSN 〉〈RNSN |ΨT 〉

, (2.84)

where
∑
S′

and
∫
DR′ in the numerator means

∑
S0,...,SN+1

and
∫
dR0...dRN+1, and

∑
S

and∫
DR in the denominator means

∑
S0,...,SN

and
∫
dR0...dRN .
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For any local operator Ô in Eq.(2.84), we can write down,

〈RISI |Ô|RI+1SI+1〉 = 〈SI |OI |SI+1〉〈RI |RI+1〉 = 〈SI |OI |SI+1〉δ(RI −RI+1), (2.85)

where OI means operator Ô with spatial configuration RI . Note that Eq.(2.85) allows

us to remove RI+1 from the integral in the numerator of Eq.(2.84). So the N +

2 configurations R0 to RN+1 in the numerator can finally be reduced to N + 1

configurations from R0 to RN after relabeling. So the actual number of beads in the

numerator is the same as in the denominator.

For the propagator in Eq.(2.84) we insert
∑

SI
|SI〉〈SI | = 1 in Eq.(2.35) and we

can write down,

∑
SI

〈RI−1SI−1|US(∆τ)|RISI〉〈RISI |US(∆τ)|RI+1SI+1〉

=
∑
SI

{
〈SI−1| ⊗ 〈RI−1|e−

V†
2

∆τGe−T∆τe−
V
2

∆τ |RI〉 ⊗ |SI〉

× 〈SI | ⊗ 〈RI |e−
V†
2

∆τGe−T∆τe−
V
2

∆τ |RI+1〉 ⊗ |SI+1〉
}

= 〈SI−1|e−
V†
I−1

∆τ

2 Ge−
VI∆τ

2 e−
V†
I

∆τ

2 Ge−
VI+1∆τ

2 |SI+1〉 ×Gf
RI−1RI

Gf
RIRI+1

, (2.86)

where VI means the potential operator V with spatial configuration RI , and e−
VI∆τ

2 is

calculated by Eq.(2.63). The free particle propagator Gf
RIRJ

= 〈RI |e−T∆τ |RJ〉 can be

calculated by Eq.(2.69). By repeatedly using Eq.(2.86) in Eq.(2.84) we can remove

any SI sandwiched between two short-time propagators U(∆τ). Finally we are left

with 2 spin-isospin symbols in the trial wave functions to be summed over, we label

them S0 and SN , where S0 is for the trial wave function on the left 〈ΨT |R0S0〉, and

SN is for the trial wave function on the right 〈RNSN |ΨT 〉.

Furthermore, consider the l and r order picked from the trial wave function ΨT as

shown in Eqs.(2.51,2.52), the approximated expectation value 〈Ô(∆τ)〉 in Eq.(2.84)
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for PIMC calculations can finally be written as a general form,

〈Ô(∆τ)〉 =

=
∑
l

∑
r

∫
DRRe[g(R)lr]︷ ︸︸ ︷

Re
∑
S0,SN

∫
DR〈ΨT |R0S0〉〈R0S0|[U(∆τ)]N1Ô[U(∆τ)]N2|RNSN〉〈RNSN |ΨT 〉

Re
∑
S0,SN

∫
DR〈ΨT |R0S0〉〈R0S0|[U(∆τ)]N |RNSN〉〈RNSN |ΨT 〉︸ ︷︷ ︸

=
∑
l

∑
r

∫
DRRe[f(R)lr]

=

∑
l

∑
r

∫
DR

{
Re[g(R)lr]
|Re[f(R)lr]|

}
|Re[f(R)lr]|∑

l

∑
r

∫
DR

{
Re[f(R)lr]
|Re[f(R)lr]|

}
|Re[f(R)lr]|

=

∑
l

∑
r

∫
DRAlr(R)Plr(R)∑

l

∑
r

∫
DRBlr(R)Plr(R)

=
〈Alr(R)〉
〈Blr(R)〉

∣∣∣∣
{l,r,R}∈Plr(R)

, (2.87)

where we use symbol R to denote all the spatial configurations {R0, R1, ...RN},

R ≡ {R0, R1, ...RN}, (2.88)

and its integral is the spatial integral over all the configurations RI ,∫
DR ≡

N∏
I=0

∫
dRI . (2.89)

In Eq.(2.87), Alr(R) and Blr(R) are real functions,

Alr(R) =
Re[g(R)lr]

|Re[f(R)lr]|
, (2.90)

Blr(R) =
Re[f(R)lr]

|Re[f(R)lr]|
, (2.91)

and we can see that Blr(R) is either 1 or -1.

In Eq.(2.87), Plr(R) is the probability distribution,

Plr(R) =
|Re[f(R)lr]|

N
, (2.92)

which is normalized to one in the following way,∑
l

∑
r

∫
DRPlr(R) = 1, (2.93)

and its normalization factor is N =
∑

l

∑
r

∫
DR|Re[f(R)lr]|.
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2.7.2 Path Diagrams

Function f(R)lr corresponds to the denominator of Eq.(2.84) and it does not

depend on where the operator Ô is placed,

f(R)lr =
∑
S0,SN

〈Ψl
T |R0S0〉〈R0S0|[U(∆τ)]N |RNSN〉〈RNSN |Ψr

T 〉

= fVlr (R)gF (R). (2.94)

Function g(R)lr corresponds to the numerator of Eq.(2.84), and it depends on ÔM

defined in Eq.(2.85) which means the operator Ô is placed at bead M (its spatial

configuration is RM),

g(R)lr =
∑
S0,SN

〈Ψl
T |R0S0〉〈R0S0|[U(∆τ)]N1ÔM [U(∆τ)]N2|RNSN〉〈RNSN |Ψr

T 〉

= gVlr,M(R)gF (R). (2.95)

Function gF (R) in Eqs.(2.94,2.95) is the total free particle propagator,

gF (R) =
N−1∏
I=0

Gf
I,I+1, (2.96)

where the free particle propagator Gf
I,I+1 in Eq.(2.96) is defined as 7 ,

Gf
I,I+1 ≡ 〈RI |e−T∆τ |RI+1〉 =

( m

2π∆τ~2

) 3A
2
e
− (RI−RI+1)2

2∆τ ~2
m , (2.98)

and each of these free particle propagator is represented by the black curved line from

below in Fig. 2.5, it carries ∆τ and it connects configuration RI and RI+1 (or we

can say it connects beads I and I + 1). Actually, We can see that the
∏N−1

I=0 G
f
I,I+1

7For any RI and RJ on the time line which is represented by the long horizontal lines in Fig.
2.5 on which there are black points (beads), the general form of the free particle propagator can be
written as,

GfI,J ≡ 〈RI |e
−T∆τ |J−I||RJ〉 =

(
m

2π|J − I|∆τ~2

) 3A
2

e
− (RI−RJ )2

2|J−I|∆τ ~2
m , (2.97)
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in functions Alr(R) and Blr(R) actually canceled out because they exist in both the

denominators and the numerators.

Note that in Alr(R) and Blr(R) in Eqs.(2.90,2.91), both f(R)lr and g(R)lr contain

gF (R), therefore Alr(R) and Blr(R) can be simplified as,

Alr(R) =
Re[gVlr,M(R)]

|Re[fVlr (R)]|
, (2.99)

Blr(R) =
Re[fVlr (R)]

|Re[fVlr (R)]|
. (2.100)

The superscript V in gVlr,M (R) and fVlr (R) means the potential propagators are involved.

0 M+1MM-11 N-1 N

…

…

…

…

…

…

…

…

Figure 2.5: Path diagrams which illustrate the PIMC beads, f(R)lr, and g(R)lr.

Fig. 2.5 is a visualization of f(R)lr in Eq.(2.94) and g(R)lr in Eq.(2.95). The

calculations of functions gVlr,M(R) in Eq.(2.99) and fVlr (R) in Eq.(2.100) can be more

clear with the help of Fig. 2.5 which contains diagrams that visualize the path. By

inserting N + 1 complete basis marked by the black dots and labeling them from 0 to

N , the total time τ is split into N small time step ∆τ so τ = N∆τ . We call each black

dot a bead. For a given whole spatial configuration R defined by Eq.(2.88), each of
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the beads carries its own spatial configuration. For example, the Ith bead has spatial

configuration RI . The long black horizontal line represents the total imaginary time

of the path τ and we can call it time line, and it has been split into N pieces and

occupied by N + 1 beads. Each of the black curved lines from the bottom represents

the corresponding free particle propagator, e.g., if the black curved line connects beads

I and I + 1, the black curved line just represents the free particle propagator Gf
I,I+1

in Eq.(2.96). The red curved line from the upper, on the other hand, represents the

accordingly potential part of the propagator, e.g., we use PI to denote the red curved

line as the corresponding e
−VI∆τ

2 where VI is defined in Eq.(2.62) and it has spatial

configuration RI while P †I is the Hermitian conjugate of PI which gives the reverse

order of Eq.(2.63). The symbol ↓ means the additional propagator inserted when

needed. For the AV6’ interaction, ↓ means 1, for the local chiral N2LO interaction it

means the effective G which is Eq.(2.71).

For a given l and r order in the trial wave function ΨT , and a given R of all the

beads, the calculations of fVlr (R) and gVlr,M(R) are straightforward. Here we describe

the computation rule which is basically a two-step process.

Step one First of all, we just need to follow the order of beads in Fig. 2.5 and replace

all the red curves and ↓ symbols above the black time line with corresponding

e
−VI∆τ

2 or e
−V†

I
∆τ

2 and the effective G. We next replace all of the black curve

under the black time line with corresponding gFIJ which are gaussian functions.

Step two Then, for fVlr (R) in the upper part in Fig. 2.5, we just need to sandwich

all the ordered operators above the black time line between 〈ψlT | and |ψrT 〉 to

give a (complex) number. This number is the corresponding fVlr (R). We multiply

fVlr (R) by gF (R) which is the product of all the black curved lines under the

time line to find f(R)lr.
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The calculations of gVlr,M(R) and g(R)lr are similar. The difference is that when

calculating gVlr,M (R), the additional operator Ô needs to be placed at the appropriate

imaginary time as illustrated in the lower panel in Fig. 2.5.

2.7.3 Calculating the Path

In order to write down the expressions for fVlr (R) and gVlr,M(R), as illustrated in

Fig. 2.5, we define states |ψrM(R)〉 and |ψlM(R)〉 along the path for computational

convenience. Following the computation rule described in chapter. 2.7.2, the states

|ψrM(R)〉 and |ψlM(R)〉 are defined as

|ψrM(R)〉

≡



∑
S

e
−VM∆τ

2 e
−V†

M
∆τ

2 Ge
−VM+1∆τ

2 e
−V†

M+1
∆τ

2 G...e
−V†

N−1
∆τ

2 Ge
−VN∆τ

2 |S〉〈RNS|ψrT 〉,︸ ︷︷ ︸
M 6=N,0.∑

S

e
−VN∆τ

2 |S〉〈RNS|ψrT 〉,︸ ︷︷ ︸
M=N.∑

S

e
−V†0∆τ

2 Ge
−V1∆τ

2 e
−V†1∆τ

2 Ge
−V2∆τ

2 e
−V†2∆τ

2 G...e
−V†

N−1
∆τ

2 Ge
−VN∆τ

2 |S〉〈RNS|ψrT 〉.︸ ︷︷ ︸
M=0.

(2.101)

|ψlM(R)〉

≡



∑
S

(
Ge

−V1∆τ
2 e

−V†1∆τ

2 G...Ge
−VM∆τ

2 e
−V†

M
∆τ

2

)†
e
−V0∆τ

2 |S〉〈R0S|ψlT 〉,︸ ︷︷ ︸
M 6=0,N.∑

S

e
−V0∆τ

2 |S〉〈R0S|ψlT 〉,︸ ︷︷ ︸
M=0.∑

S

e
−V†

N
∆τ

2

(
Ge

−V1∆τ
2 e

−V†1∆τ

2 G...Ge
−VN−1∆τ

2 e
−V†

N−1
∆τ

2 G
)†
e
−V0∆τ

2 |S〉〈R0S|ψlT 〉.︸ ︷︷ ︸
M=N.

(2.102)

Both |ψlM(R)〉 and |ψrM(R)〉 can be expanded by the Ntot spin isospin basis states
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|S〉 with accordingly probability amplitude φrM(R, S) and φlM(R, S),

φrM(R, S) = 〈S|ψrM(R)〉, (2.103)

φlM(R, S) = 〈S|ψlM(R)〉. (2.104)

So that,

|ψrM(R)〉 =
∑
S

|S〉〈S|ψrM(R)〉 =
∑
S

φrM(R, S)|S〉, (2.105)

|ψlM(R)〉 =
∑
S

|S〉〈S|ψlM(R)〉 =
∑
S

φlM(R, S)|S〉. (2.106)

Function gVlr,M(R) depends on which bead M the operator Ô is placed at. For a

given M , it is calculated as

gVlr,M(R) =



〈ψlM−1(R)|Ge
−VM∆τ

2 ÔMe
−V†

M
∆τ

2 G|ψrM+1(R)〉, M 6= 0, N.∑
S

〈ψlT |Ô|R0S〉〈S|ψr0(R)〉, M = 0.

∑
S

〈ψlN(R)|S〉〈RNS|Ô|ψrT 〉, M = N.

(2.107)

In particular, if the operator Ô commutes with Hamiltonian, then Ô can be moved

to leftmost or the rightmost position, and the result Eq.(2.3) can then be written as

Eq.(2.12), and the corresponding g(R)lr becomes,

g(R)lr =
1

2

[
gVlr,M(R)|M=0 + gVlr,M(R)|M=N

]
gF (R). (2.108)

This is for example how we calculate the ground state energy Ô = H.

For the AV6’ interaction which does not have a spin-orbit term, the G in Eq.(2.107)

is just 1. Note that the integer M in gVlr,M(R) is usually set at the middle between

0 and N, such that e
−VM∆τ

2 Ôe
−V†

M
∆τ

2 is exactly placed in the middle of all the beads,

so we make sure operator Ô is truly sandwiched between the same state which is the

ground state if total imaginary time τ is big enough.
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The function fVlr (R) does not depend on M . Its value is the same as long as the

left and right order l, r, and R are the same. For any integer M from 0 to N − 1, it

can be calculated as,

fVlr (R) = 〈ψlM(R)|G|ψrM+1(R)〉 =
∑
S

〈ψlM(R)|S〉〈S|G|ψrM+1(R)〉, (2.109)

where

〈S|G|ψrM+1(R)〉

=

〈
S

∣∣∣∣∣
{

1 +
m

4i~2

∑
i<j

v7(rMij )
[
rMij ×∆rM,M+1

ij · (σi + σj)
]}∣∣∣∣∣ψrM+1(R)

〉
, (2.110)

and the definitions of rMij , rMij and ∆rM,M+1
ij are the same form as for r′ij, r′ij and

∆rR
′,R

ij used in Eq.(2.68). The M and M + 1 simply mean the configurations RM and

RM+1. For the AV6’ interaction we have G = 1 so fVlr (R) is simplified to the following

form,

fVlr (R) = 〈ψlM(R)|ψrM+1(R)〉

=
∑
S

〈ψlM(R)|S〉〈S|ψrM+1(R)〉

=
∑
S

φlM
∗
(R, S)φrM+1(R, S). (2.111)

In our PIMC code, the spin, isospin states are written in binary representation

(Carlson and Wiringa (1991)) and we label the A particles from 0 to A − 1. In the

code, we use 0 for neutron and spin down, 1 for proton and spin up. We use a 2

dimensional complex array a(li, ls) to represent a state. For example, in Eq.(2.106),

a certain basis state is φrM(R, S)|S〉, if |S〉 = |n ↑ n ↓ p ↑ p ↑〉, then this basis state

can be stored as a(3, 11) = φrM(R, S). Integer li = 3 for the isospin in binary is 0011

which, from right to left, means 0th and 1st particles are protons, 2nd and 3rd particles

are neutrons, so it is |nnpp〉. Integer ls = 11 for the spin in binary is 1011, means
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that the 0th and 1st particles are spin up, 2nd particles is spin down, 3rd one is spin

up, so it is | ↑↓↑↑〉. All those |ψlM (R)〉 and |ψrM (R)〉 states defined in Eqs.(2.105,2.106)

for each bead, are represented by their coefficients φrM(R, S) and φlM(R, S) defined

in Eqs.(2.105,2.106), and therefore stored in those 2 dimensional complex arrays like

a(li, ls). All the quantities can be calculated from |ψrM(R)〉 and |ψlM(R)〉.

It will be slow if we calculate fVlr (R) and gVlr,M(R) by first calculating all the Ntot

by Ntot matrices of 〈S ′|e
−VI∆τ

2 |S〉 and 〈S ′|G|S〉 along all the beads in Fig. 2.5, then

multiplying all of them. This is because these matrices are sparse. Any 2-body charge

conserving operator will only have either 4 or 8 nonzero entries in a row or column.

We can instead from right to left directly calculate |ψrN−1(R)〉 from |ψrN (R)〉, then

|ψrN−2(R)〉 from |ψrN−1(R)〉, ..., until |ψrM+1(R)〉 from |ψrM+2(R)〉. Also, from left to

right, we can calculate |ψl1(R)〉 from |ψl0(R)〉, then |ψl2(R)〉 from |ψl1(R)〉, ..., until

|ψlM(R)〉 from |ψlM−1(R)〉. The recursion relations from Eqs.(2.101) and (2.102), can

be written as,

|ψrM(R)〉 =



∑
S

(
e
−VM∆τ

2 e
−V†

M
∆τ

2 G
)
|S〉〈S|ψrM+1(R)〉, M 6= N, 0.

∑
S

e
−VN∆τ

2 |S〉〈RNS|ψrT 〉, M = N.

∑
S

e
−V†0∆τ

2 G|S〉〈S|ψr1(R)〉, M = 0.

(2.112)

|ψlM(R)〉 =



∑
S

(
Ge

−VM∆τ

2 e
−V†

M
∆τ

2

)†
|S〉〈S|ψlM−1(R)〉, M 6= 0, N.

∑
S

e
−V0∆τ

2 |S〉〈R0S|ψlT 〉, M = 0.

∑
S

e
−V†

N
∆τ

2 G†|S〉〈S|ψlN−1(R)〉, M = N.

(2.113)

Once we have the corresponding |ψrM(R)〉 and |ψlM(R)〉 calculated, we can use

Eqs.(2.109) and (2.107) to calculate fVlr (R) and gVlr,M (R) and then Alr(R) and Blr(R)

and thus 〈Ô(∆τ)〉. This updating strategy for |ψrM(R)〉 and |ψlM(R)〉 is much faster
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Figure 2.6: Illustration of calculating |ψrK−1(R)〉 from |ψrK(R)〉 from right to left
directly.

than direct Ntot by Ntot sparse matrix multiplication method. This is why we define

states |ψrM(R)〉 and |ψlM(R)〉 and use Eqs. (2.112) and (2.113) to calculate them and

then finally calculate fVlr (R) and gVlr,M(R) by using Eqs.(2.109) and (2.107).

Fig. 2.6 illustrates the right to left direct calculation of |ψrK−1(R)〉 from |ψrK(R)〉.

In the direct calculation |ψrK−1(R)〉 and |ψrK(R)〉 are always treated as column vectors,

we directly operate the G, e−V
†∆t
2 and e

−V∆t
2 on the column vector |ψrK(R)〉 and get

new column vectors each time until we get the next column vector |ψrK−1(R)〉. By

doing that we prevent writing each of the operators as Ntot by Ntot sparse matrix and

doing the slow matrix multiplications.

2.7.4 Calculating the Samples

The reason to recast Eq.(2.15) into the form of Eq.(2.87) is because once we have

the detailed form of Eq.(2.92), the normalized probability distribution Plr(R), we can

sample it by using suitable algorithms. And then after we take enough uncorrelated
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samples of Alr(R) and Blr(R) in Eq.(2.87) from the probability distribution Plr(R) in

Eq.(2.92), we have the corresponding average values 〈A〉 for Alr(R) and 〈B〉 for Blr(R)

and their errors σA and σB, finally 〈Ô(∆τ)〉 and its error bar σ can be estimated by,

〈Ô(∆τ)〉 =

∑
l

∑
r

∫
dRAlr(R)Plr(R)∑

l

∑
r

∫
dRBlr(R)Plr(R)

=
〈Alr(R)〉
〈Blr(R)〉

∣∣∣∣
{l,r,R}∈Plr(R)

=
〈A〉
〈B〉

(2.114)

σ =

√[
∂(〈A〉/〈B〉)

∂〈A〉
σA

]2

+

[
∂(〈A〉/〈B〉)

∂〈B〉
σB

]2

=

√(
σA
〈B〉

)2

+

(
〈A〉σB
〈B〉2

)2

. (2.115)

Alternatively, we can also find 〈Ô〉 and its error bar σ from the block average of A

and B. For example we can arrange all the N samples of A and B into much smaller

blocks. Each block contain n samples of A and B. So there are nb = N/n blocks. We

can mark each of the block average as Ān and B̄n. And the average of block average

is the average value, namely

〈Ān〉 = 〈A〉, (2.116)

〈B̄n〉 = 〈B〉. (2.117)

The standard deviation of the nb samples of Ān and B̄n are σAn and σBn . According

to central limit theorem (Negele and Orland (1998); Apaja (2009)), the independent

block averages of Ān and B̄n each forms a gaussian distribution P (Ān) and P (B̄n)

with average value 〈A〉 and 〈B〉 and their corresponding standard deviations are

σPĀn =
σĀn√
nb
, (2.118)

σPB̄n =
σB̄n√
nb
. (2.119)

Then we find that, 〈
Ān
B̄n

〉
=

∫
dĀndB̄n

Ān
B̄n

P (Ān)P (B̄n)

=

∫
dĀnĀnP (Ān)

∫
dB̄n

1

B̄n

P (B̄n)

= 〈A〉
∫
dB̄n

1

B̄n

P (B̄n). (2.120)
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Note that when σPBn is small, the gaussian distribution P (B̄n) becomes a δ function

δ(B̄n − 〈B〉), so Eq.(2.120) in this case becomes,〈
Ān
B̄n

〉
= 〈A〉

∫
dB̄n

1

B̄n

δ
(
B̄n − 〈B〉

)
=
〈A〉
〈B〉

= 〈Ô〉, (2.121)

and we can take the standard deviation of the mean of Ān/B̄n as the error bar σ. In

all cases we ensure that the number of samples is large enough that any bias from

dividing two stochastic quantities is smaller than the statistical error.

2.8 Sign Problem

Since wave functions for fermions are antisymmetric under interchange of the

particles, they necessarily can change sign. Except for a few special cases where the

Monte Carlo sampling can be arranged so that sign changes for two types of fermions

occur together, fermion quantum Monte Carlo has a sign or phase problem (Umrigar

et al. (2007); Alhassid et al. (1994); Li and Yao (2019)). This means that for a long

enough path it is possible to propagate from a region where the wave function is

positive to one where it is negative (or has a different phase). In such a case as the

total imaginary time for the path increases, these sign changes make the signal to

noise ratio decay exponentially, or, for a fixed amount of computer time, the variance

increases exponentially with the total imaginary time.

For the light nuclei here, there would be no sign problem if the potential were

spin-isospin independent. In that case, the four spin-isospin states proton up, proton

down, neutron up, neutron down would not be mixed by the interaction, and can be

interpreted as different kinds of particles. The spatial part of the wave function would

be positive definite.

Realistic interactions change the spin and isospin, but the fact that the wave

function is still predominantly in this “s-shell” means that the fermion sign problem
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is weak. As shown in this work, for imaginary times that converge the system to the

ground state, the fraction of negative paths is small and we simply ignore the sign

problem. That is, our calculations need no approximations to deal with the fermion

sign problem 8 .

Extensions of this method to larger systems will necessary require dealing with a

stronger sign or phase problem. We expect that the approximate methods developed for

GFMC and AFDMC can be applied. Those methods include fixed node approximation

(Moskowitz et al. (1982); Anderson (1995)), constrained-path approximation (Zhang

and Krakauer (2003); Gandolfi et al. (2009); Motta and Zhang (2018)), fixed-phase

approximation (Carlson (1987)), eigenvector continuation method (Frame et al. (2018)),

etc.

8In PIMC calculation, the sign problem is equivalent to say that the Blr(R) in Eq.(2.100) we
sampled may frequently oscillate between 1 and -1, which can make the 〈Blr(R)〉 in Eq.(2.87) close
to zero and therefore lead to a big error bar. However, In our light nuclei PIMC calculation, e.g. the
4He calculation, we find 〈Blr(R)〉 ≈ 0.9 which means there are only about 5% of the Blr(R) samples
flip their signs from 1 to -1. So we do not have any serious sign problems in this work, partially
because our total imaginary time is not big, and also we are summing over all the spin isospin states
and this makes the sign flipping less likely to happen.
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Chapter 3

MONTE CARLO ALGORITHMS

In this chapter, we introduce how we sample the probability distribution Plr(R) in

Eq.(2.92) and also our algorithm for performing the other parts of the PIMC calcula-

tions, the sampling is based on a Markov chain process (Ceperley (1995); Hammond

et al. (1994)) along with the Metropolis algorithm (Metropolis et al. (1953); Kalos

and Whitlock (1986)).

3.1 Metropolis Algorithm

In general, for a normalized probability distribution π(s) such that
∑

s π(s) = 1,

〈F 〉 the expectation value of function F (s) is,

〈F 〉 =
∑
s

F (s)π(s), (3.1)

where the letter s means a set of variables which can describe a state. In the Monte

Carlo method, if we can sample n states which effectively explore the state space of π(s)

and are distributed according to π(s), denoting those states as {s0, s1, s2..., sn} ∈ s,

then the expectation value 〈F 〉 can be calculated by,

〈F 〉 =

∑n
i=0 F (si)

n
. (3.2)

So it is clear that we need to make a process which can continuously generate

a series of states {s0, s1, s2, s3...} such that they distributed according to a target

distribution π(s). In order to do so, we need a transition probability P(s→ s′) which

is the probability for state s to transit to s′. Once this process reaches its equilibrium
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status, it must satisfy, ∑
s

π(s)P(s→ s′) = π(s′). (3.3)

We can require the number of states that make transition from any s to s′ equals

that transit from s′ back to s,

π(s)P(s→ s′) = π(s′)P(s′ → s). (3.4)

Eq.(3.4) is the detailed balance condition (Ceperley (1995)). Note that
∑

s′ P(s →

s′) =
∑

sP(s′ → s) = 1, so once we reach the detailed balance, Eq.(3.3) the equilibrium

status will automatically become valid and therefore the states we generated will

indeed be distributed according to π(s).

The transition probability can be written as,

P(s→ s′) = T (s→ s′)A(s→ s′), (3.5)

where T (s→ s′) is a proposed transition probability and A(s→ s′) is the acceptance

probability which will be used to judge if the proposed transition is accepted or not.

With Eq.(3.5), the detailed balance equation Eq.(3.4) can be further written as,

A(s→ s′)

A(s′ → s)
=
π(s′)T (s′ → s)

π(s)T (s→ s′)
. (3.6)

A common choice of the acceptance probability A(s→ s′) which can satisfy Eq.(3.6)

and thus the detailed balance condition is (Kalos and Whitlock (1986)),

A(s→ s′) = min

[
1,
π(s′)T (s′ → s)

π(s)T (s→ s′)

]
. (3.7)

As we can see, the normalization factors in π(s) and π(s′) and that in T (s→ s′)

and T (s′ → s) will be canceled out in Eqs.(3.6,3.7) so those factors are irrelevant in

calculating A. In order to make the value of A(s → s′) larger, we can try to make

T (s′ → s) similar with π(s), and T (s′ → s) similar with π(s′), such that the numerator
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and denominator in Eq.(3.7) can largely cancel. That will usually make the calculation

efficient. In the ideal case, if we can make T (s′ → s) = π(s) and T (s′ → s′) = π(s′),

then A(s→ s′) = 1 so we just need to always accept the new proposed states, but this

is normally not possible, and if possible the Metropolis method would be unnecessary.

The basic procedure for the Monte Carlo method is described as follows.

Step 1 For the current state s, propose a new state s′ according to the proposed

transition probability T (s→ s′).

Step 2 For the proposed new state s′, use Eq.(3.7) to calculate the acceptance rate

A(s→ s′).

Step 3 Generate a uniform random number a which ranges from 0 to 1. If a ≤ A(s→

s′), the new state s′ is accepted, so set the accepted state s′ as the current state

s, namely s = s′, and keep s′ as a sample, then go to step 1 and continue. Else,

the new state s′ is rejected which means the state s is accepted and kept as the

sample, so set the accepted state s as our current state s, then go to step 1 and

continue.

After looping over the procedure for enough times, all those ‘current state’ s in

step 1 will eventually be distributed according to the desired distribution π(s).

Note that the choice of T and therefore A are not unique. In order to make the

algorithm more robust, we usually include different types of moves with correspondingly

proposed transition probability T , and acceptance rate A, and this will still lead to

the target distribution π(s), as long as the detailed balance condition Eq.(3.6) holds

for each type of move. Any such choice that has transitions between any two allowed

states by a series of moves and has some rejections will converge to samples of π(s).

Also, the choice of T determines how efficient the Monte Carlo procedure is. A poorly
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chosen T can make the code run for a very long time but still not able to form π(s).

So T is crucial in the algorithm, we will discuss our choice of T in the next section.

3.2 Methods of Sampling

In this section, we apply the Monte Carlo method described in section 3.1 to our

PIMC algorithm. The Plr(R) in Eq.(2.92) is exactly the π(s) in section 3.1. State

s in π(s) means a particular choice of {l, r,R}, and
∑

s in Eq.(3.1) is the same as∑
l

∑
r

∫
dR in Eq.(2.87). We have

s = {l, r,R}, (3.8)

π(s) = Plr(R), (3.9)∑
s

π(s) =
∑
l

∑
r

∫
DRPlr(R) = 1. (3.10)

The proposed transition probability T (s→ s′) can be decomposed into two parts.

First we propose a transition for the left and right order of the trial wave function

{l, r} to transit to a new pair {l′, r′}, mark it Tlr→l′r′ . Then, based on the new {l′, r′},

we choose a new configuration R′ based on the new proposed transition probability

Tl′r′(R → R′). In such a way we have

T (s→ s′) = Tlr→l′r′Tl′r′(R → R′). (3.11)

We can just randomly pick {l′, r′} so that Tlr→l′r′ equal to its inverse transition

probability Tl′r′→lr, so they are canceled in Eq.(3.7). Considering Eqs.(2.92,2.94,2.95),

we can write down,

π(s′)T (s′ → s)

π(s)T (s→ s′)
=
fVl′r′(R′)gF (R′)Tlr(R′ → R)

fVlr (R)gF (R)Tl′r′(R → R′)
, (3.12)

and we can judge if we accept the new state s′ by Eq.(3.7) which now becomes,

A(s→ s′)=min

[
1,
fVl′r′(R′)gF (R′)Tlr(R′→R)

fVlr (R)gF (R)Tl′r′(R→R′)

]
. (3.13)
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In the program, we do an equivalent two-stage judgement. At stage one, we

randomly pick {l′, r′}, and judge if we accept the new order by

A(s→ s′)=min

[
1,
fVl′r′(R)gF (R)

fVlr (R)gF (R)

]
. (3.14)

No matter {l′, r′} is accepted or not (the acceptance rate for {l, r} → {l′, r′} ≈ 99%),

we mark the left and right order after the judgement as {l, r}. At the stage two, we

propose the new configuration R′ and judge if it is accepted or not by

A(s→ s′)=min

[
1,
fVlr (R′)gF (R′)Tlr(R′→R)

fVlr (R)gF (R)Tlr(R→R′)

]
. (3.15)

Since fVl′r′(R′) and fVlr (R) are sandwiched between the trial wave functions, there

is no obvious ways to cancel them out in the numerator and denominator, so we leave

them alone. However, the proposed probability Tl′r′(R → R′) is something we can

deal with. There can usually be two choices.

Choice 1 Make the proposed probability as,

Tl′r′(R → R′) = Tlr(R′ → R), (3.16)

and by doing this, Eq.(3.12) can be simplified as,

π(s′)T (s′ → s)

π(s)T (s→ s′)
=
fVl′r′(R′)gF (R′)
fVlr (R)gF (R)

, (3.17)

and then we can judge if we accept the new state s′ by,

A(s→ s′) = min

[
1,
fVl′r′(R′)gF (R′)
fVlr (R)gF (R)

]
. (3.18)

Choice 2 Make the proposed transition probability Tl′r′(R → R′) and Tlr(R′ → R)

in a way such that

gF (R′)Tlr(R′ → R) = gF (R)Tl′r′(R → R′), (3.19)
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and by doing this, Eq.(3.12) can be simplified as,

π(s′)T (s′ → s)

π(s)T (s→ s′)
=
fVl′r′(R′)
fVlr (R)

, (3.20)

and then judge if we accept the new state s′ by the simplified version of Eq.(3.7),

A(s→ s′) = min

[
1,
fVl′r′(R′)
fVlr (R)

]
. (3.21)

In our work, different methods of sampling means different choices of proposed

transition probability Tl′r′(R → R′) and Tlr(R′ → R). No matter what the choice is,

they all correspond to the same target distribution π(s). However, different choices of

proposed transition probability will lead to different convergence speed. So in order

to achieve the target distribution π(s) efficiently and quickly, we need to mainly use

efficient proposed transition probabilities.

3.2.1 Single-Bead Sampling

From R = {R0, ..., RK , ..., RN}, we can propose to move just one bead, bead K,

we move RK to R′K , then R′ = {R0, ..., R
′
K , ..., RN}. This is single bead sampling.

For the K = 0 or N case, the gF (R′) in Eq.(2.96) becomes,

gF (R′)|R0→R′0 = Gf
0′,1

N−1∏
I=1

Gf
I,I+1, (3.22)

gF (R′)|RN→R′N = Gf
N−1,N ′

N−2∏
I=0

Gf
I,I+1, (3.23)

where Gf
0′1 and Gf

N−1,N ′ are as defined in Eq.(2.98) and can be calculated by Eq.(2.69),

Gf
0′,1 = 〈R′0|e−T∆τ |R1〉 =

( m

2π∆τ~2

) 3A
2
e
− (R′0−R1)2

2∆τ ~2
m , (3.24)

Gf
N−1,N ′ = 〈RN−1|e−T∆τ |R′N〉 =

( m

2π∆τ~2

) 3A
2
e
− (RN−1−R

′
N )2

2∆τ ~2
m . (3.25)
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We can just set the proposed transition probability as,

Tl′r′(R → R′)|R0→R′0 = Gf
0′,1, (3.26)

Tl′r′(R → R′)|RN→R′N = Gf
N−1,N ′ , (3.27)

and then Eq.(3.12) becomes Eq.(3.20) and we use Eq.(3.21) to judge if we accept R′K

and thus R′ or not.

For the K 6= 0 or N case, the corresponding gF (R′) becomes,

gF (R′) = Gf
K−1,K′G

f
K′,K+1

K−2∏
I=0

Gf
I,I+1

N−1∏
I=K+2

Gf
I,I+1, (3.28)

where Gf
K−1,K′ and Gf

K′,K+1 are the free propagators calculated by Eq.(2.98) or

Eq.(2.69).

In order to proceed, we introduce a useful relation in our calculation. For any

coefficients a and b and any configuration RM , RN and RL,

a(RM −RN)2+b(RN −RL)2 =(a+ b)

(
RN−

aRM+bRL

a+b

)2

+
ab

a+b
(RM−RL)2 , (3.29)

where each square can be calculated by using Eq.(2.70). In particular, if a = b = 1,

Eq.(3.29) just becomes,

(RM −RN)2 + (RN −RL)2 = 2

(
RN −

RM +RL

2

)2

+
(RM −RL)2

2
. (3.30)

By using Eq.(3.30), the product of the two free particle propagatorsGf
K−1,K′G

f
K′,K+1

in Eq.(3.28) becomes,

Gf
K−1,K′G

f
K′,K+1 =

( m

2π∆τ~2

)3A

e
−

(
R′K−

RK−1+RK+1
2

)2

∆τ ~2
m e

− (RK−1−RK+1)2

4∆τ ~2
m . (3.31)

We set the proposed transition probability Tl′r′(R → R′) from Eq.(3.31) as,

Tl′r′(R → R′) =
( m

π∆τ~2

) 3A
2
e
−

(
R′K−

RK−1+RK+1
2

)2

∆τ ~2
m . (3.32)

57



The corresponding reverse transition probability Tlr(R′ → R) can be written as,

Tlr(R′ → R) =
( m

π∆τ~2

) 3A
2
e
−

(
RK−

RK−1+RK+1
2

)2

∆τ ~2
m . (3.33)

Now we can see that gF (R′)Tlr(R′ → R) = gF (R)Tl′r′(R → R′), so Eq.(3.12)

becomes Eq.(3.20) and we use Eq.(3.21) to judge if we accept R′K and thus R′ or not.

For particle i at bead K, we define its spatial coordinates as rKi ≡ (xKi , y
K
i , z

K
i ),

and its new proposed coordinates as r′Ki ≡ (x′Ki , y
′K
i , z

′K
i ). So for the A-nucleon nuclei,

RK = (rK1 , r
K
2 , ..., r

K
A ) and R′K = (r′K1 , r′K2 , ..., r′KA ). We also define a 3 dimensional

vector gi for particle i,

gi = (gix, giy, giz), (3.34)

where gix, giy, giz are all independent gaussian random numbers with average value 0

and variance 1.

The basic procedures of the algorithm is described as follows.

Step 1 Randomly pick an integer K from 0 to N .

Step 2 For particle i at bead K,

1. if K = 0, according to Eq.(3.26), propose its new coordinates r′0i according

to r1
i at bead 1,

r′
0
i = r1

i + gi

√
∆τ

~2

m
, (3.35)

2. IfK = N , according to Eq.(3.27), propose its new coordinates r′Ni according

to rN−1
i at bead N − 1,

r′
N
i = rN−1

i + gi

√
∆τ

~2

m
, (3.36)

3. If K 6= 0, N , according to Eq.(3.32), propose its new coordinates r′Ki

according to rK−1
i at bead K − 1 and rK+1

i at bead K + 1,

r′
K
i =

rK−1
i + rK+1

i

2
+ gi

√
∆τ

~2

2m
, (3.37)
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Step 3 Loop over step 2 for all the particles, i from 1 to A. Then we have the new

configuration R′K .

Step 4 Use Eq.(3.21) to judge if we accept the proposed configurations R′ or not.

Then go to step 1 and continue.

In the program, we store all the probability amplitudes φrM(R, S) in Eq.(2.103)

and φlM (R, S) in Eq.(2.104) for M from 0 to N . Once any R′K is accepted, we need to

update all the φrM (R′, S) for K ≤M ≤ N and φlM (R′, S) for 0 ≤M ≤ K. This means

we need to do about N updates for just one accepted R′K (which is not economical),

and therefore totally about N2 updates for all the beads if they are accepted. Besides,

single bead sampling usually has a very high acceptance rate, this indicates that the

beads may not be moved far enough in the configuration space. Therefore it should

not be used often in the program. It is however simple, and can be used as a check for

more complicated algorithms.

3.2.2 Multi-level Sampling

Due to the disadvantage of single bead sampling, for a given amount of computation

time, we have to sample multiple beads at a time instead of just one in order to make

the sampling efficient. For example, if we propose to move u portion of the N beads,

so about uN beads will be proposed to move at a time, and the acceptance rate is

a. Then in order for all the N beads to be moved, we need at least 1/(ua) trials. For

each trial, in order to calculate acceptance rate A(s→ s′), we need to do uN updates

for either φrM (R, S) in Eq.(2.103) or φlM (R, S) in Eq.(2.104) with accordingly range of

M . So for the proposed moves there are uN/(ua) = N/a updates. Besides, among all

the 1/(ua) trials, only about a/(ua) = 1/u are accepted, for those accepted moves, we

need to update some beads for the φrM(R, S) and some for the φlM(R, S). This will

59



actually results in updating about N beads. So for the accepted moved, there will

be N/u updates. So totally, there will be N/u+N/a = N(1/u+ 1/a) updates. And

the factor (1/u + 1/a) is usually much smaller than N , for example, N=500, when

u = 1/3, a could be around 0.1 so 10%, so (1/u+ 1/a) ≈ 13 which is much smaller

than N = 500. So N(1/u+ 1/a) updates much more cheaper than N2 updates needed

for the single beads sampling.

In order to find some ways to sample multiple beads at a time, we need to make full

use of Eq.(3.30). From the total N+1 beads on the time line from bead 0 to bead N , we

randomly pick 2n+1 contingent beads from bead I to bead I+2n, where n is a positive

integer. To make the notations easier, here we temporarily mark the configurations

from bead I to bead I + 2n as R0 to R2n , and we mark their configurations as,

R = {R0, R1, R2, ..., R2n−1, R2n}. (3.38)

The configurations R0 to R2n in Eq.(3.38) are just the relabeling of the original RI to

RI+2n among the total N + 1 beads on the path.

The product of the free particle propagators gF (R) can be written as,

gF (R) =
2n−1∏
I=0

Gf
I,I+1. (3.39)

We can group the 2n + 1 beads {R0, R1, ..., R2n} in R into n levels as the following,

Level 0 : R0, R2n . (2 beads) Ln0 (R)

Level 1 : R 1
2

2n . (1 bead) Ln1 (R)

Level 2 : R 1
4

2n , R 3
4

2n . (2 beads) Ln2 (R)

...
...

...
...

Level k : R 1

2k
2n , R 3

2k
2n , R 5

2k
2n , ..., R 2k−1

2k
2n
. (2k−1 beads) Lnk(R)

...
...

...
...

Level n : R1, R3, R5, R7, ..., R2n−1. (2n−1 beads) Lnn(R)
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We can then use Eq.(3.31) to rearrange Eq.(3.39) level by level and Eq.(3.39) becomes,

gF (R) =
n∏
k=0

Lnk(R), (3.40)

where Lnk(R) is defined as the product of gaussian functions at level k,

Lnk(R) =


Gf

0,2n , k = 0.

2k−1∏
I=1

Gf
2I−1

2k
2n; 2I−2

2k
2n, 2I

2k
2n
, k 6= 0.

(3.41)

For any non negative integer J , K, L, M , N , the Gf
J,K is calculated by Eq.(2.97), and

the Gf
M ;L,N in Eq.(3.41) is,

Gf
M ;L,N =

(
2m

π|N − L|∆τ~2

) 3A
2

e
−

(RM−RL+RN
2 )

2

2×|N−L|2 ∆τ ~2
2m . (3.42)

Given Eqs.(3.41) and (3.42), we can propose to move multiple beads, from bead 1 to

2n − 1 such that the new configuration is

R′ = {R′0, R′1, R′2, ..., R′2n−1, R
′
2n}, (3.43)

where R0 and R2n remain the same although they are marked as R′0 and R′2n in

Eq.(3.43). The product of the new free particle propagators gF (R′) can be written as,

gF (R′) =
n∏
k=0

Lnk(R′). (3.44)

We can set the proposed transition probability Tl′r′(R → R′) as,

Tl′r′(R → R′) = gF (R′) =
n∏
k=0

Lnk(R′). (3.45)

Eq.(3.45) means that we can set the proposed transition probability at each level k as

T nk (R′) such that

T nk (R′) = Lnk(R′), (3.46)
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and Tl′r′(R → R′) can be just written as

Tl′r′(R → R′) =
n∏
k=0

T nk (R′). (3.47)

The reverse transition probability Tlr(R′ → R) can be written as,

Tlr(R′ → R) =
n∏
k=0

T nk (R). (3.48)

We can call this multi-level or n-level sampling, because we can propose to move

the beads level by level from level 0 to level n, by using T nk (R′) at each level. By doing

proposed moves in this way, we implement Eq.(3.47). This makes gF (R′)Tlr(R′→R) =

gF (R)Tl′r′(R→R′) and it enables Eq.(3.12) to become Eq.(3.20), and we can use

Eq.(3.21) to judge if accept R′ or not. Fig. 3.1 is the illustration of 3-level sampling.

Level 0

Level 3

Level 2

Level 1

0 54321 6 7 8

0 1’ 3’ 5’ 7’2’ 6’4’ 8

0,1

fG 1,2

fG
2,3

fG 3,4

fG 4,5

fG
5,6

fG
6,7

fG
7,8

fG

4';0,8

fG

2';0,4'

fG 4';0,8

fG
6';4',8

fG

4';0,8

fG
2';0,4'

fG 6';4',8

fG
1';0,2'

fG
3';2',4'

fG 5';4',6'

fG
7';6',8

fG

I I+2I+1 I+3 I+7I+6I+5I+4 I+80 N

I I+1 I+2 I+3 I+4 I+5 I+6 I+7 I+8

I I+2I+1 I+3 I+7I+6I+5I+4 I+80 N

I I+1 I+2 I+3 I+4 I+5 I+6 I+7 I+8

Figure 3.1: Illustration of a 3-level sampling algorithm.

The algorithm can be described as follows.

Step 1 For the total N +1 beads on the time line as shown in Fig. 2.5, select a proper

integer n, randomly pick 2n + 1 contingent beads from RI to RI+2n (note that
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in the program, n does not need to be a fixed number, we can pick different

n each time when we are at step 1). For notational convenience, temporarily

call them R0 to R2n instead of RI to RI+2n , and we use R to denote the group,

R = {R0, R1, R2, ..., R2n−1, R2n}.

For example, in Fig. 3.1, it is n = 3 so 2n = 8. We randomly pick RI to RI+8

beads from the total N + 1 beads, we temporarily mark them as R0 to R8.

Step 2 1. If we keep R0 and R2n unchanged, this can be taken as a ‘fake’ level 0

move, so R′0 = R0 and R′2n = R2n . In this case, Ln0 (R′) = Ln0 (R), we set

Tl′r′(R → R′) =
n∏
k=1

Lnk(R′), (3.49)

and it can still make Eq.(3.12) become Eq.(3.20). And we go to step 3.

2. Else, if we keep R2n unchanged and just propose R′0 (so R′2n = R2n), then

according to Eq.(3.41), Ln0 (R′) = exp

[
− (R′0−R2n )2

2×2n∆τ ~2

m

]
, we propose

r′
0
i = r2n

i + gi

√
2n∆τ

~2

m
, (3.50)

for i from 1 to A, and we have R′0 and go to step 3 for the rest Lnk(R′).

3. Else, if we keep R0 unchanged and just propose R′2n (so R′0 = R0), then

according to Eq.(3.41), Ln0 (R′) = exp
[
− (R0−R′2n )2

2×2n∆τ ~2

m

]
, we propose

r′
2n

i = r0
i + gi

√
2n∆τ

~2

m
, (3.51)

for i from 1 to A, and we have R′2n and go to step 3 for the rest Lnk(R′).

4. Else, we can also use the one bead sampling algorithm described in section

3.2.1, propose R′0 according to R1 and R′2n according to R2n−1 and then

judge and go to step 1.

For example, in Fig. 3.1, we keep R0 and R8 unchanged, so R′0 = R0 and R′8 = R8.
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Step 3 According to the product of gaussian functions of Lnk(R) in Eq.(3.41), we

propose the moves level by level, so k from 1 to n. At level k, 2k−1 beads

need be to moved, which means from I = 1 to 2k−1, each R 2I−1

2k
2n need to be

proposed to a new configuration R′2I−1

2k
2n
. And we propose R′2I−1

2k
2n

according to

the Gf

( 2I−1

2k
2n)
′
;( 2I−2

2k
2n)
′
,( 2I

2k
2n)
′ in Lnk(R′) in Eq.(3.45), such that r′(2I−1)2n−k

i (the

new coordinates of particle i) in R 2I−1

2k
2n is proposed according to,

r′
2I−1

2k
2n

i =
r′

2I−2

2k
2n

i + r′
2I

2k
2n

i

2
+ gi

√
2n

2k
∆τ

~2

2m
. (3.52)

For i from 1 to A, we propose to move particle i according to Eq.(3.52) in each

configuration in each level.

Note that the level k beads are only proposed based on the beads of previous

levels, so this allow us to propose the new beads level by level. After we propose

the new configurations level by level, we have R′ = {R′0, R′1, R′2, ..., R′2n−1, R
′
2n}.

For example, in Fig. 3.1, level 1, 2 and 3 are,

Level 1 k = 1, 21−1 = 1, I = 1, each [(2I − 1)23−1]th bead needs to be moved,

so R4 is the only bead that needs to be moved, and we propose R′4 based

on R′0 and R′8 according to Eq.(3.52), and each particle is moved as

r′
4
i =

r′0i + r′8i
2

+ gi

√
4∆τ

~2

2m
. (3.53)

After looping over all the particles, go to level 2.

Level 2 k = 2, 22−1 = 2, so I = 1, 2, each [(2I − 1)23−2]th bead needs to

be moved, so R2 and R6 are the two beads that need to be moved, and

according to Eq.(3.52), we propose R′2 based on R′0 R′4, and R′6 based on

R′4 and R′8. E.g., each particle in R′2 is moved as

r′
2
i =

r′0i + r′4i
2

+ gi

√
2∆τ

~2

2m
, (3.54)
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and that in R′6 is moved as

r′
6
i =

r′4i + r′8i
2

+ gi

√
2∆τ

~2

2m
. (3.55)

After looping over all the particles, go to level 3.

Level 3 k = 3, 23−1 = 4, so I = 1, 2, 3, 4, each [(2I − 1)23−3]th beads need to be

moved, and so R′1, R′3,R′5, R′7 need to be proposed according to Eq.(3.52)

similarly as described before.

Step 4 Now we need to look at the whole set of N + 1 beads on the time line, and

use consistent notations in the work. The {R′0, R′1, R′2, ..., R′2n−1, R
′
2n} in step 3

are in fact as mentioned in step 1, really {R′I , R′I+1, R
′
I+2, ..., R

′
I+2n−1, R

′
I+2n} on

the time line. So overall, the proposed configuration R′ is,

R′ = {R0, R1, ..., R
′
I , R

′
I+1, ..., R

′
I+2n , ..., RN}. (3.56)

The original configuration R is just Eq.(2.88) for the whole N + 1 original beads.

For example, in Fig. 3.1, once we have the new {R′0, R′1, ..., R′8}, we change their

labels to the original ones {R′I , R′I+1, ..., R
′
I+8}. So finally R′ is the same as R

except that RI to RI+8 are replaced by R′I to R′I+8.

Step 5 Use Eq.(3.21) to judge if we accept the proposed configurations R′ or not.

Then go to step 1 and continue.

For example, in Fig. 3.1, we use Eq.(3.21) to judge if we accept the proposed

configurations R′ or not.

It should be pointed out that, the proposed trial moves at each level in the multi-

level sampling are the same as in the bisection method (Ceperley (1995)). But the

two are not the same. We propose all the n-level new configurations and then do an
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overall acceptance or rejection. However in the bisection method, we accept or reject

at each level, and if the proposed configuration is rejected at level k, then the whole

proposed configurations from level 1 to k will be completely rejected and discarded.

In the bisection method, the lower the level, the less time consuming it is to do

the rejection. In other words, ‘if you want to reject, reject early.’ It works best if the

first level’s acceptance rate is highly distinct from the rest levels’.

For example, consider a 3-level bisection, if the first level acceptance rate is 30%,

the second and third levels’ are 80% and 90%, then the total acceptance rate is 21.6%.

But since the first level acceptance rate is significantly lower than the rest, actually

most trial moves are quickly rejected at the first level and there is no need to spend

time to go to 2nd and 3rd level, and those trial moves which get to the 2nd and 3rd

level are mostly be accepted. Therefore, not much time is wasted at the 2nd and 3rd

levels. In this case, bisection method will be faster than multi-level sampling simply

because it can reject early. Bisection works well for systems with potentials with highly

repulsive cores where core overlap can be deleted early and rejected.

However, if the three levels’ acceptance rate are similar, then the bisection method

does not have an advantage over multi-level sampling. If the 1st, 2nd and 3rd level’s

acceptance rate are 50%, 60% and 70%, then the total acceptance is still similarly 21%.

Nonetheless, more moves will go to level 2 and 3 and be judged and then be rejected.

This slows down the bisection method. We have tested the bisection method and find

it lack of efficiency in our calculations. In the bisection method we need to accept

or reject using an effective Eq.(3.21) at each level which involves the calculation of

an effective fVl′r′(R′) and fVlr (R). They contain the sum over all the spin and isospin

states. This is different from the situations in most bisection method calculations

which mostly deal with central interaction which does not have spin isospin structure.

This spin and isospin sum makes each level’s acceptance rate not too much different
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from each other, just like the 50%, 60% and 70% example above.

Therefore, we find the bisection method does not have a computational advantage

over multi-level sampling. As expected, multi-level sampling has a slightly higher

acceptance rate than bisection method. This is because the bisection method can

reject early. For example, say the total acceptance rate is a = 20% for a 2-level

sampling. In bisection method it decomposes the acceptance rate a in to a1 for level 1

and a2 for level 2, and theoretically a = a1a2. If a1 and a2 are both less than 100%

then the acceptance rate of bisection and 2-level sampling are the same, both are

a = 20%. But, in bisection it sometimes happens that a1 = 10% and a2 = 200% (when

it is bigger than 100% it simply means always accepting the moves), so theoretically

a1a2 is still 20%, but actually since a1 = 10%, 90% of the moves have already been

rejected at the 1st level. The real total acceptance is around 10% instead of the 20%

for 2-level sampling. We use multi-level sampling in our calculations, because it allows

us to take more samples of new configurations per unit time.

3.2.3 Regular Sampling

In section 3.2.1 and section 3.2.2, we showed how to sample the free particle

propagator for single bead and multiple beads. We proposed the transition probabilities

Tl′r′(R → R′) according to the free particle propagator part gF (R′), so we have

Eq.(3.19) which is gF (R′)Tlr(R′ → R) = gF (R)Tl′r′(R → R′), therefore we can use a

simple version of acceptance rate A(s→ s′) which is Eq.(3.21), to judge if we accept

the new state s′ or not. Those moves can simplify the acceptance rate A(s→ s′), but

they can make the spatial configurations of involved beads more or less correlated.

So, In order to make the algorithm more robust, we can add some moves such that

the new configuration of each bead does not depend on other beads. For example, as

is used in most Monte Carlo simulations, we can add moves with proposed transition
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probabilities obeying Eq.(3.16) which is Tl′r′(R → R′) = Tlr(R′ → R), and use

Eq.(3.18) to judge if we accept the new state s′ or not. In these cases, the common

choices for Tl′r′(R → R′) can be a constant over an interval or independent gaussian

functions. We can randomly select m beads from bead 0 to bead N , m can be at least

1 and at most N + 1, we put the label of the m beads into a group call itM, e.g., if

we select bead 0, 2, 4, thenM = {0, 2, 4}, etc.

The proposed transition probability Tl′r′(R → R′) can be written as,

Tl′r′(R → R′) =
∏
I∈M

(
A∏
i=1

TI(ri → r′i)

)
, (3.57)

where TI(ri → r′i) is the proposed transition probability for particle i in bead I, and

it is normalized to 1, ∫
dr′iTI(ri → r′i) = 1. (3.58)

There can usually be two choices.

Choice 1 For constant Tl′r′(R → R′), we can choose TI(ri → r′i) as,

TI(ri → r′i) =
1

(2α)3
. (3.59)

In this case the new position r′i of particle i in a bead can be proposed from its

current position ri by,

r′i = ri + αui, (3.60)

where ui = (ux, uy, uz) is a 3 dimensional random number and each of its

components ux, uy, uz ranges from−1 to 1 uniformly. α is a number which controls

the step size of proposed move, it can be chosen to make the correspondingly

acceptance rate A(s→ s′) around 20 ∼ 80%.

Choice 2 For independent gaussian function Tl′r′(R → R′), we can choose TI(ri → r′i)

as,

TI(ri → r′i) =

(
1√

2πσ2

)3

e−
(r′i−ri)

2

2σ2 . (3.61)
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In this case the new position r′i of particle i in a bead can be proposed from its

current position ri by,

r′i = ri + σgi, (3.62)

where gi is the gaussian random number defined in Eq.(3.34), and σ is the

standard deviation of the gaussian function, which can control the corresponding

acceptance rate A(s→ s′).

In the above two choices, Tl′r′(R → R′) = Tlr(R′ → R), and the new configuration

R′I is proposed from the current RI , with a 3A dimensional vector ΛI which can be

either composed of ui or gi for each particle,

R′I = RI + ΛI . (3.63)

If we propose new configurations for all the beads with the same 3A dimensional

random vector Λ at the same time, namely,

R′I = RI + Λ, (3.64)

it will still obey Eq.(3.16), Tl′r′(R → R′) = Tlr(R′ → R). We can this kind of move

as a ‘shift’.

The regular sampling methods mentioned in this section are useful to guarantee

uncorrelated samples but we do not perform them very often. This is because they

are not as efficient as the multi-level sampling. If we just move few beads a time, it is

not computationally efficient since we need to update the whole path anyway. If we

move the same number of or more beads than the multi-level sampling method, we

need to use very small α, σ or Λ values in order to achieve similar acceptance rates as

the multi-level sampling. This means they are not able to explore the configuration

space as efficiently as multi-level sampling does.
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3.2.4 Directional Importance Sampling

In this section, we discuss a special case of the importance sampling method.

Sometimes, the proposed transition probability T (s → s′) has a certain symmetry

along n directions in the state space, so there are always n unique states s′1, s′2, ..., s′n

which share the same proposed transition probability T (s→ s′i),

T (s→ s′1) = T (s→ s′2) = ... = T (s→ s′n). (3.65)

So, from the current state s, there is the same chance of proposing any of the states

from s′1 to s′n. Similarly, for a given state s′, there can be several states s1, ..., sn which

have the same proposed transition probability T (s′ → si). For the reverse proposed

transition probability we have,

T (s′ → s1) = T (s′ → s2) = ... = T (s′ → sn). (3.66)

The summation of the proposed transition probability alone each direction is the same,

∑
s′i

T (s→ s′i) =
∑
si

T (s′ → si) =
1

n
. (3.67)

The total summation of the proposed transition probability is,

∑
s′

T (s→ s′) =
∑
i

∑
s′i

T (s→ s′i) =
∑
s

T (s′ → s) =
∑
i

∑
si

T (s′ → si) = 1. (3.68)

For example, Fig. 3.2 is an illustration for n = 8 case. In this case, in the configu-

ration space, a particle located at r = (x, y, z) can be described as in state s. We can

propose to move it to a new state s′ with r′ = (x′, y′, z′) according to,

T (s→ s′) =

(
1√

2πσ2

)3

e−
(x′−x)2

2σ2 e−
(y′−y)2

2σ2 e−
(z′−z)2

2σ2 . (3.69)

On each axis there are 2 choices which correspond to the same value of T (s → s′).

They are x′ and x′′ = 2x− x′, y′ and y′′ = 2y − y′, z′ and z′′ = 2z − z′. That means
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Figure 3.2: Illustration of a state space with 8-direction symmetry.

there are in total n = 23 = 8 directions and unique states correspond to the same

T (s → s′). We can label these 8 states from s′1 to s′8. E.g., set s′1 as the (x′, y′, z′)

state, and if x′ > x, y′ > y and z′ > z, we can simply denote s′1 ≡ (+ + +). Set s′2 as

the (x′′, y′, z′) state, we can denote s′2 ≡ (−+ +), etc. Finally set s′8 as the (x′′, y′′, z′′)

state, we can denote s′8 ≡ (−−−). So now, s′1 to s′8 simply mean the n = 8 unique

directions in the state space. Similarly, for each of the 8 possible s′ with r′ = (x′, y′, z′),

there are 8 possible s (denoted by the light circles for each s′). Their coordinates are

x and x− = 2x′ − x, y and y− = 2y′ − y, z and z− = 2z′ − z.

For the summations over s′i, we have
∑

s′i
T (s → s′i) = 1/8. For example, the

summation over all the s′1 = (+ + +) states is,

∑
s′1

T (s→ s′1) =

∫ +∞
x

dx′
∫ +∞
y

dy′
∫ +∞
z

dz′e−
(x′−x)2

2σ2 e−
(y′−y)2

2σ2 e−
(z′−z)2

2σ2(√
2πσ2

)3 =
1

8
. (3.70)
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The summation over all the s′2 = (− + +) states is
∑

s′2
T (s → s′2) which has the

same integrand as Eq.(3.70) but with a different integral range
∫ x
−∞ dx

∫ +∞
y

dy
∫ +∞
z

dz,

and
∑

s′2
T (s → s′2) is also 1/8. The summation over all the s′8 = (− − −) states is∑

s′8
T (s→ s′8) which has the same integrand as Eq.(3.70) and again with a different

integral range
∫ x
−∞ dx

∫ y
−∞ dy

∫ z
−∞ dz, and

∑
s′8
T (s→ s′8) is 1/8, too. The summation

for all the other states are similar and
∑

s′i
T (s→ s′i) are all 1/8. Therefore Eq.(3.67)

and Eq.(3.68) are valid.

If T (s → s′) has directional symmetry, we can mark the current state s as si

because it implicitly carries the directional notation i. When we proposed a new state

s′ from such a T (s→ s′), then we can temporarily mark s′ as s′1. However, we do not

immediately pick this state s′1 as the new trial state. Because from T (s→ s′), each

of the s′1 to s′n states has the same chance to be picked, we want to further pick the

‘best’ state from s′1 to s′n. We can pick a state s′j according to π̃(s′j) such that,

π̃(s′j) =
π(s′j)∑n
k=1 π(s′k)

. (3.71)

This can be called directional importance sampling. In this way, the correspondingly

proposed transition probability for directional importance sampling T imp(si → s′j) can

be written as,

T imp(si → s′j) =

[
n∑
j=1

T (si → s′j)

]
π̃(s′j) =

nT (si → s′j)π(s′j)∑n
k=1 π(s′k)

. (3.72)

The reverse directional importance sampling transition probability T imp(s′j → si) can

be similarly written as,

T imp(s′j → si) =
nT (s′j → si)π(si)∑n

i=1 π(si)
, (3.73)

where states s1 to sn all have the same proposed transition probability T (s′j → si)
1 .

1Note that T imp(s→ s′i) is a valid proposed transition probability. Because for Eq.(3.73), with
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Therefore after picking s′1 from T (s→ s′) we further pick s′j by Eq.(3.71). Finally

we judge if s′j is accepted or not by the acceptance probability A(si → s′j),

A(si → s′j) = min

[
1,
π(s′j)T

imp(s′j → si)

π(si)T imp(si → s′j)

]
= min

1,

T (s′j → si)
n∑
k=1

π(s′k)

T (si → s′j)
n∑
j=1

π(sj)

 . (3.75)

If T (si → s′j) = T (s′j → si), Eq.(3.75) simply becomes,

A(si → s′j) = min

[
1,

∑n
j=1 π(s′j)∑n
i=1 π(si)

]
. (3.76)

If there are s′j with bigger π(s′j) than the π(s′1) from the initially chosen s′1 by

T (si → s′1), then the directional importance sampling acceptance rate of Eq.(3.76) can

be higher than acceptance rate from gaussian sampling of Eq.(3.21) or regular sample

of Eq.(3.18). In other words, with this additional importance sampling, we can move

more beads in gaussian sampling with a larger step size in regular sampling than those

without importance sampling, with the same acceptance rate as without importance

sampling. Adding importance sampling can enable us to explore the configuration

space more efficiently. The tradeoff is that we need to evaluate all the relevant π(s′j)

and π(si) which can be time-consuming.

the help of Eq.(3.65) and Eq.(3.67), we can see that,∑
s′

T imp(s→ s′) =

n∑
i=1

∑
s′i

T imp(s→ s′i)

= n

n∑
i=1

∑
s′i

T (s→ s′i)π(s′i)∑n
j=1 π(s′j)

= n
∑
s′i

T (s→ s′i)

∑n
i=1 π(s′i)∑n
j=1 π(s′j)

= n
∑
s′i

T (s→ s′i)

= 1. (3.74)

So T imp(s→ s′i) based on the importance sampling algorithm is a valid proposed transition probability
because it is non-negative and its summation over all the possible states is 1. Actually Eq.(3.74)
may not really need to be required. As long as the normalization factors of T imp can be canceled in
acceptance rate A(s→ s′) it will be correct.
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As long as the number n is an even number, and each state s′i can find its opposite

direction among the n directions, it can be reduced to a simple 2-directional case. We

can pick n/2 directions and combine them into one generalized direction, and combine

the rest n/2 opposite directions into the other generalized direction. Once we picked

s′1 from one direction, there is always a state s′2 in exactly the opposite direction. For

example, in the n = 8 case illustrated by Fig. 3.2, as indicated by the red arrows and

lines, we can denote s as s1, and we group s′1 to s′4 into one generalized direction. And,

since s′5 is at the opposite direction of s′4, s′6 is the opposite of s′3, s′7 is the opposite

of s′2, and s′8 is the opposite of s′1, so we group s′5 to s′8 into the other generalized

direction. By doing this, we reduced the n = 8 case into an n = 2 case. Every time we

proposed s′1, we take s′2 in the opposite direction of s′1 as the only alternative state. We

can just mark s′2 as s′1−. For the chosen s′1 or s′2, there is a corresponding s2 such that

T (s′i → s1) = T (s′i → s2). In our PIMC, usually one can find an ‘opposite direction’

of R′ which can be marked as R′′ such that Tl′r′(R → R′) = Tl′r′(R → R′′), and then

we can use directional importance sampling to further pick either R′ or R′′.

As a concrete example, we can apply the n = 2 importance sampling to the single

bead sampling in Sections 3.2.1. The algorithm is described as follows.

Step 1 For the current state s, randomly pick bead K, we propose to move its

configuration from RK to R′K according to Eq.(3.32).

Step 2 It is 3 dimensional space and the particle number is A, each particle along one

dimension has 2 different choices of coordinates, so there are 23A different R′K

which give the same value of Eq.(3.32). For any proposed R′K = RK−1+RK+1

2
+∆R,

we only pick R′K− = RK−1+RK+1

2
−∆R = RK−1 +RK+1−R′K , because it not only

corresponds to the same value of Eq.(3.32) but also the opposite direction of

R′K . Call the state with total configuration R′ = {R1, .., R
′
K , ..., RN} as s′1, and
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call the state with R′− = {R1, .., R
′
K−, ..., RN} as s′2 or s′1−. We now calculate,

π(s′1)

π(s′1) + π(s′1−)
=

fVl′r′(R′)gF (R′)
fVl′r′(R′)gF (R′) + fVl′r′(R′−)gF (R′−)

=
fVl′r′(R′)

fVl′r′(R′) + fVl′r′(R′−)
. (3.77)

Generate a random number a ranging uniformly from 0 to 1. If a ≤ Eq.(3.77)

we choose R′K which means s′1, otherwise we choose R′K− which means s′2.

Step 3 Denote the original state s as s1. According to Eq.(3.33), no matter which

s′i is selected, there are only two choices for s1 and s2. Since we denote the

original state s with RK as s1, s2 must include a another choice of RK call

it RK− such that
(
RK − RK−1+RK+1

2

)2

=
(
RK− − RK−1+RK+1

2

)2

. Similar with

R′K−, we have RK − RK−1+RK+1

2
= RK−1+RK+1

2
− RK− for RK−. We denote

RK− = RK−1 + RK+1 − RK as the opposite position of RK , and we denote

R− = {R1, .., RK−, ..., RN} as s2 or s1−. The left part of Fig. 3.3 illustrates the

RK , RK−, R′K−, and R′K−. For the picked new state s′i, use Eq.(3.75) to calculate

the acceptance probability A(si → s′i) and we find that

A(s1 → s′i)=min

1,

T (s′i → s1)
2∑
j=1

π(s′j)

T (s1 → s′i)
2∑
j=1

π(sj)



=min

1,
e
−

(
RK−

RK−1+RK+1
2

)2

∆τ ~2
m

[
fVl′r′(R′)gF (R′) + fVl′r′(R′−)gF (R′−)

]
e
−

(
R′
K
−
RK−1+RK+1

2

)2

∆τ ~2
m [fVlr (R)gF (R) + fVlr (R−)gF (R−)]


=min

{
1,
fVl′r′(R′) + fVl′r′(R′−)

fVlr (R) + fVlr (R−)

}
. (3.78)

Step 4 Generate a uniform random number b which ranges from 0 to 1. If b ≤ A(s1 →

s′i), the new state s′i is accepted, so set it as the current state s, namely s = s′i,
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then go to step 1 and continue. Else, the new state s′i is rejected (in other words

the new state s′i is just the current state s), then go to step 1 and continue.

Figure 3.3: Illustration of 2-direction importance samplings. The left one is for single
bead sampling plus 2-direction importance sampling. The right one is for regular
sampling plus 2-direction importance sampling.

The importance sampling can also be applied on the regular single bead sampling in

sections 3.2.3. The algorithm is very similar. The difference is that, in step 1, we propose

a move for the selected beadK according to Eq.(3.63). In step 2,R′K−RK = RK−R′K−

so R′K− = 2RK − R′K , and denote the new state with R′K as s′1, with R′K− as s′2. In

step 3, denote the current state as s1, if s′1 is chosen, RK − R′K = R′K − RK− so

RK− = 2R′K −RK . If s′2 is chosen, RK −R′K− = R′K− −RK− so RK− = 2R′K− −RK .

Based on the chosen s′1 or s′2, denote the corresponding RK− as s2. The right part of Fig.

3.3 illustrates the relevant states and the coordinates. Since T (s1 → s′i) = T (s′i → s1),

the A(s1 → s′i) is simply Eq.(3.76) and we have,

A(s1 → s′i) = min

1,

2∑
j=1

π(s′j)

2∑
j=1

π(sj)


= min

{
1,
fVl′r′(R′)gF (R′) + fVl′r′(R′−)gF (R′−)

fVlr (R)gF (R) + fVlr (R−)gF (R−)

}

= min

1,
fVl′r′(R′)G

f
K−1,K′G

f
K′,K+1 + fVl′r′(R′−)Gf

K−1,K′−
Gf
K′−,K+1

fVlr (R)Gf
K−1,KG

f
K,K+1 + fVlr (R−)Gf

K−1,K−
Gf
K−,K+1

 .(3.79)
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The K− or K ′− appear at the I or J subscript in Gf
I,J means RK− or RK

′
− in the

corresponding place in Eq.(2.97).

3.3 Path Updating Strategy

In each type of sampling, after we judge whether to accept the new l and r order

in the trial wave function or not, we mark the order after judgement as l and r. In

order to make the computation fast, as illustrated in Fig. 3.4 by the blue and yellow

bands with texture, we store all the states from |ψr0(R)〉 to |ψrN(R)〉 and |ψl0(R)〉 to

|ψlN(R)〉, by storing all the coefficients from φr0(R, S) to φrN(R, S) and from φl0(R, S)

to φlN(R, S)|S〉 in the arrays. We also store fVlr (R) which is calculated by Eq.(2.109).

I I+2I+1 I+3 I+7I+6I+5I+4 I+80 N

I I+2I+1 I+3 I+7I+6I+5I+4 I+80
N

Figure 3.4: Illustration of the path updating.

Then, we propose new moves asR′. In order to judge if the new spatial configuration

R′ is accepted or not, we need to calculate fVlr (R′)/fVlr (R). For the R′, it is usually

the same as R except for several contiguous beads. For example in the multi-level

sampling with level n, for a chosen integer I, we only propose new configurations from

bead I + 1 to bead I + 2n − 1 in R′, and the rest of the beads remain the same as

those in R. When we propose new moves from bead I + 1 to bead I + 2n − 1, we only

need to calculate from right to left, from φrI+2n−1(R′, S) until φrI+1(R′, S), by using the

recursion relations Eq.(2.112) starting from φrI+2n(R, S) which is already stored. Then

we calculate fVlr (R′) =
〈
ψl
′
I (R) |G|ψr′I+1(R′)

〉
, and since fVlr (R) is also already stored,
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we can readily calculate fVl′r′(R′)/fVlr (R). If the proposed new moves are accepted, we

update all the rest beads. From right to left we update from φrI(R′, S) until φr0(R′, S),

and from left to right we update from φrI+1(R′, S) until φrN(R′, S). In Fig. 3.4, the

corresponding updated parts of the path from left to right are marked as green band,

and those updated from right to left are marked as the red band.

The path updating process is the most time-consuming part, especially if the

number of beads N is large. So we find a proper n in multi-level sampling to make sure

n is big enough to ensure the acceptance rate is relatively low, in order to optimize

the decorrelation of the path within the computer time.

3.4 Sampling Strategies

We have tested all the algorithms described in this chapter. We have also tested

the bisection method (Ceperley (1995)), as well as the reptation Monte Carlo method

(Baroni and Moroni (1999); Carleo et al. (2010)) for our calculation. For our light

nuclei PIMC calculation, as pointed out in section 3.2.2, we did not find any advantage

for bisection over the multi-level sampling method. The reptation method basically

samples the spatial configuration of the path by adding some beads at one end of the

path, and removing some beads to the other end of the path. However, since we have

spin and isospin sums in the path, the removing and adding of beads, even if just one

bead is involved, requires the recalculation of the whole path fVl′r′(R′). Therefore it is

not economical to perform reptation moves. After initial testing we did not pursue

reptation moves further.

The multi-level sampling is efficient so we do not do regular sampling described

in section 3.2.3 very often. The importance sampling also does not make much

difference. Considering that the importance sampling at least needs to calculate the

two possibilities π(s′1) and π(s′2) and an additional π(s2), we did not find it particularly
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increase the efficiency. Again we turned off the importance sampling in our calculations.

So when performing our calculations, about 90% moves are proposed by multi-level

sampling described in section 3.2.2, and the other 10% are proposed by different kinds

of regular sampling described in section 3.2.3.

For multi-level sampling, for the total N + 1 beads along the path, we pick two

lengths, n1 ≈ N/3 and n2 ≈ N/6. And, 80% of the moves are proposed for n1 beads

and the others are for n2 beads. The acceptance rate for sampling n1 beads is about

20%, for n2 beads is about 40%. The reason for sampling n2 beads is mainly to include

the 0th and the N th beads. For example, if we have a total of 400 beads, we can pick

n1 = 27 = 128 and n2 = 26 = 64. 80% moves are proposed for the n1 = 128 beads

with acceptance rate around 20%, and the other 20% of the moves among the total

multi-level samplings are for n2 = 64 beads with an acceptance rate around 40%.

For the different kinds of regular sampling which make the samples more uncorre-

lated than applying multi-level sampling alone, we include moving beads one by one,

moving all the beads at the same time, and shifting all the beads at the same time,

according to section 3.2.3. By moving beads one by one, we randomly pick a direction,

either propose moves from bead N to bead 0, or propose moves from bead 0 to bead

N . For each bead, we move each particle in it and we choose the step parameter α to

make the acceptance rate around 50%. By moving all the beads at the same time, we

move all the particles in each bead, the step parameter α needs to be smaller than

when moving beads one by one, in order to make the acceptance rate of moving all

the beads at the same time around 50% again. By shifting all the beads at the same

time, we propose to move each of the beads by using Eq.(3.64). The step parameter in

the common Λ vector is again adjusted to make the acceptance rate of shifting all the

beads around 50%. The overall efficiency of the algorithm is not substantially affected

by these acceptance rates as long as they are in the 20% to 80% range.
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Chapter 4

GROUND STATE CALCULATIONS OF LIGHT NUCLEI

4.1 Ground State Energies

4.1.1 Preparations

The exact PIMC expectation value of operator Ô is calculated by Eq.(2.3) and

therefore Eq.(2.11), and we need to choose a proper total imaginary time τ and time

step ∆τ to project out the ground state |Φ0〉. In this section, we discuss the choice of

τ and ∆τ and use 4He as an example.

From Eq.(2.6) we can see that, the residual amount of excited states depends on

the ratio ai/a0 and the factor e−(Ei−E0)τ1 . We have to make sure that the coefficient of

the first excited state |Φ1〉 is negligible compared with the ground state |Φ0〉.

The experimental ground state energy E0 of 4He is about -28.3 MeV and the

first excited state energy E1 is the energy of a separated nucleon and triton, -8 MeV

(Tilley et al. (1992)). The energy difference E1 − E0 is about -20 MeV. If we choose

τ1 = 0.1 MeV−1 then e−(E1−E0)τ1 will be e−2 ≈ 0.135. If there is only |Φ0〉 and |Ψ1〉

in |ΨT 〉, and if |a1/a0| is small enough, then the percentage of the first excited state

|Φ1〉 in |ΨT 〉 will be greatly suppressed by |a1/a0e
−(E1−E0)τ1 |, therefore e−Hτ1|ΨT 〉 is

dominated by the ground state |Φ0〉. In fact, if there are other excited states in |ΨT 〉,

the ground state |Φ0〉 will be projected out even sooner, because |a1/a0| will be smaller

for a good trial wave function and other excited states |Φi〉 will die out faster than

|Φ1〉 due to the factor |ai/a0e
−(Ei−E0)τ1|. So, even a less than 0.1 MeV−1 imaginary

time τ1 may still be adequate.

The analysis above suggests that τ1 = 0.1 MeV−1 should be enough for our PIMC
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to project out the ground state. Since we usually put operator Ô in the middle of

two propagators as 〈ΨT |e−Hτ1Ôe−Hτ2|ΨT 〉 as shown in Eq.(2.3), and we usually set

τ1 = τ2, so we can conclude that the total imaginary time τ for our PIMC calculations

can be set as τ = 2τ1 = 2× 0.1 = 0.2 MeV−1. In our PIMC calculations, besides using

τ = 0.2 MeV−1, and we also show results with τ = 0.15 MeV−1 and τ = 0.3 MeV−1

for comparisons. The total imaginary time for chiral N2LO interaction has a similar

range and τ = 0.2 MeV−1 should be enough as well.

Given a total imaginary time τ , for the time step ∆τ , we need to consider the

computational cost and the accuracy. In GFMC (Carlson (1987)), ∆τ is usually chosen

to be 10−5 ∼ 10−4 MeV−1. In our PIMC calculation, we find that a 10−4 ∼ 10−3 MeV−1

time step ∆τ works reasonably well. Depending on τ and ∆τ , the number of beads for

PIMC ranges from 41 to 1501. In the most time consuming case, for τ = 0.3 MeV−1 and

∆τ = 2× 10−4 MeV−1, we need 1500 short-time propagators and therefore 1501 beads.

Such a calculation (all the calculations are performed at the Agave Cluster at Research

Computing at Arizona State University), in order to reach a less than 0.02 MeV error

in the ground state energy calculation, takes about 20 thousand core hours for the

chiral N2LO interaction and 13 thousand core hours for the AV6’ interaction. For 41

beads it takes about 240 core hours to reach less than 0.02 MeV error, which means it

can be done on a modern laptop in few days or less.

4.1.2 Calculations

The calculation of the ground state energy E0 can be recast into the form of

Eq.(2.87) as discussed in section 2.7.1, with the operator Ô being the Hamiltonian

H = T + V . And we calculate the ground state energy E0 by

E0(∆τ) =
1
2
Re
{
〈ΨT |H[U(∆τ)]N |ΨT 〉+ 〈ΨT |[U(∆τ)]NH|ΨT 〉

}
Re〈ΨT |[U(∆τ)]N |ΨT 〉

, (4.1)
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which in the limit of ∆τ = 0 becomes the true expectation E0 as shown in Eq.(2.12),

E0 =
1
2
Re
(
〈ΨT |He−Hτ |ΨT 〉+ 〈ΨT |e−HτH|ΨT 〉

)
Re〈ΨT |e−Hτ |ΨT 〉

. (4.2)

The the corresponding g(R)lr takes the form of Eq.(2.108) which can be written as,

g(R)lr =
1

2

[∑
S

〈ψlT |H|R0S〉〈S|ψr0(R)〉+
∑
S

〈ψlN(R)|S〉〈RNS|H|ψrT 〉

]
gF (R), (4.3)

and the corresponding gVlr,M(R) is,

gVlr,M(R) =


∑
S

〈ψlT |H|R0S〉〈S|ψr0(R)〉, M = 0.

∑
S

〈ψlN(R)|S〉〈RNS|H|ψrT 〉, M = N.

(4.4)

All the other functions are the same as discussed in section 2.7.1.

The calculations of 〈RS|H|ψrT 〉 and 〈ψlT |H|RS〉 are straightforward. First, they

can be calculated as,

〈RS|H|ψrT 〉 = 〈RS|T |ψrT 〉+ 〈RS|V |ψrT 〉, (4.5)

〈ψlT |H|RS〉 = 〈ψlT |T |RS〉+ 〈ψlT |V |RS〉. (4.6)

Then, with the help of Eqs.(2.62) and (2.53), taking 4He as an example, the potential

energy part becomes,

〈RS|V |ψrT 〉=

〈
S

∣∣∣∣∣
{∑
i<j

[
V NN
ij (rij)+V EM

ij (rij)
]}∏r

i<j

[
6∑
p=1

fpij(rij)O
p
ij

]
96∑
N=1

φN

∣∣∣∣∣N
〉
,(4.7)

〈ψlT |V |RS〉=
96∑
N=1

〈
N

∣∣∣∣∣φ∗N
{∑
i<j

[
V NN
ij (rij)+V EM

ij (rij)
]}∏l

i<j

[
6∑
p=1

fpij
∗(rij)O

p
ij

]∣∣∣∣∣S
〉
.(4.8)

For the kinetic energy operator T we have,

〈RS|T |ψrT 〉=
4∑
i=1

−~2∇2
i

2m
〈RS|ψrT 〉=− ~2

2m

4∑
i=1

(
d2

dx2
i
+ d2

dy2
i
+ d2

dz2
i

)
〈RS|ψrT 〉, (4.9)

〈ψlT |T |RS〉=
4∑
i=1

−~2∇2
i

2m
〈ψlT |RS〉=− ~2

2m

4∑
i=1

(
d2

dx2
i
+ d2

dy2
i
+ d2

dz2
i

)
〈ψlT |RS〉. (4.10)

82



The 2nd order derivatives in Eqs.(4.9) and (4.10) are calculated numerically by using

the 2nd order central finite difference formula (Fornberg (1988)) 1 .

In our PIMC calculations for 4He, we include 2000 steps in one block. A step

means any one of the trial moves described in section 3.2, it can be either accepted or

rejected. We adjusted the number of beads for multi-level sampling as well as the step

parameters for regular sampling, and find out the samples are uncorrelated after 125

steps so that each block is uncorrelated with the others (we make sure the samples of

the root mean square radius rm at the middle bead are uncorrelated). We typically

calculate the ground-state energy E0, r2
m, potential V NN + V EM along the beads, and

one-particle number density ρ(r). We begin to take samples after running several

blocks from the initial condition in order to reach the equilibrium.

In Fig. 4.1, we show the calculation of the 4He ground state energy E0 for different

total imaginary time τ = 0.15 MeV−1, τ = 0.2 MeV−1 and τ = 0.3 MeV−1, with

various time steps ∆τ . As discussed in section 4.1.1, at τ = 0.2 MeV−1, we can expect

the true ground state energy E0 for 4He to be located within our calculated ground

state energy within its error bar. We added τ = 0.15 MeV−1 and τ = 0.3 MeV−1 for

comparison. Particularly, we can see that for ∆τ < 5×10−4 MeV−1, for τ = 0.2 MeV−1

and τ = 0.3 MeV−1, all of the calculated E0 are almost the same within their error

bars. For τ = 0.15 MeV−1, the smallest ∆τ we use is 1.5× 10−4 MeV−1 which means

1000 short-time propagators and 1001 beads, and its E0 is −26.155 ± 0.008 MeV.
1For example, for xi the x coordinate of particle i, it is calculated as,

d2〈RS|ψrT 〉
dx2

i

=
〈Rx+

i
S|ψrT 〉+〈Rx−i S|ψ

r
T 〉−2〈RS|ψrT 〉

∆2
, (4.11)

d2〈ψlT |RS〉
dx2

i

=
〈ψlT |Rx+

i
S〉+〈ψlT |Rx−i S〉−2〈ψlT |RS〉

∆2
. (4.12)

where ∆ is the spatial finite difference which is set as about 10−2 fm in our calculations. Rx+
i
means

keeping all the other coordinates in the configuration of the system R the same and just change xi to
xi + ∆, and Rx−i means change xi to xi −∆.
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Figure 4.1: Energy vs. time step ∆τ for different total imaginary time τ for 4He
based on the AV6’ potential (quadratic range).
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Figure 4.2: Energy vs. time step ∆τ for different total imaginary time τ for 4He
based on the AV6’ potential (wide range).
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Figure 4.3: Energy vs. time step ∆τ for different total imaginary time τ for 4He
based on the local chiral N2LO interaction (linear range).
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Figure 4.4: Energy vs. time step ∆τ for different total imaginary time τ for 4He
based on the local chiral N2LO interaction (wide range).
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For τ = 0.2 MeV−1, the smallest ∆τ we use is 1.5× 10−4 MeV−1 which means 1333

short-time propagators and 1334 beads, and its E0 is −26.162 ± 0.004 MeV. For

τ = 0.3 MeV−1, the smallest ∆τ we use is 2× 10−4 MeV−1 which means 1500 short-

time propagators and 1501 beads, and its E0 is −26.173± 0.006 MeV.

Also, as pointed out in section 2.5 and by Eq.(2.79), for the AV6’ interaction, our

PIMC results should contain even orders of ∆τ error comparing with the true ground

state results for small time step ∆τ . Usually we do an extrapolation at ∆τ 2 order,

〈Ô(∆τ)〉 = 〈Ô〉+ C2∆τ 2. (4.13)

In order to do extrapolation by using Eq.(4.13), we need to find the range of ∆τ

where the error of ∆τ 2 dominates, so that we can observe a clear ∆τ 2 dependence of

〈Ô(∆τ)〉. As a rough estimation, by looking at Eq.(2.79) we would require |C2∆τ2

C4∆τ4 | � 1.

There are combinations of commutator terms of kinetic energy T and potential V in

coefficients C2 and C4. For example there can be TTV in C2 and TTTTV in C4 and

we can roughly estimate |C2∆τ2

C4∆τ4 | as | Re〈ΨT |TTV |ψT 〉
Re〈ΨT |TTTTV |ψT 〉∆τ2 |. For the AV6’ interaction, the

magnitude of T and V are 102 MeV order, so |C2∆τ2

C4∆τ4 | ≈ | Re〈ΨT |TTV |ψT 〉
Re〈ΨT |TTTTV |ψT 〉∆τ2 | may be

roughly estimated as |C2∆τ2

C4∆τ4 | ≈ | 106

1010∆τ2 | = | 1
104∆τ2 |. In order to make sure |C2∆τ2

C4∆τ4 | � 1,

we may expect ∆τ to be around 10−4 ∼ 10−3 MeV−1.

We find that in Fig. 4.1 we can observe a clear ∆τ 2 dependence when ∆τ < 1.3×

10−3 MeV−1, and by using Eq.(4.13), the true ground state energy E0 is extrapolated

to −26.16(1) MeV. This is consistent with GFMC result (Wiringa and Pieper (2002))

which is E0 = −26.15(2) MeV. This is reasonable because in this work, we are

summing over all the spin and isospin states like GFMC does. So our results should

be comparable with GFMC’s. The difference is that GFMC is a DMC method based

on Eq.(2.13), and we are doing a PIMC calculation based on Eq.(2.3).

In Fig. 4.3 we show the results of 4He based on the local chiral N2LO two-body
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interaction. We choose the coordinate space cutoff (Gezerlis et al. (2014)) as R0 = 1.2

fm. As discussed in section 2.5 and Eq.(2.83), due to the existence of the spin-orbit

operator, a ∆τ error will exist in evaluating 〈Ô(∆τ)〉. We do observe the ∆τ error

dominates when ∆τ < 1.3×10−3 MeV−1. So we do a linear extrapolation in this range

for the chiral interaction,

〈Ô(∆τ)〉 = 〈Ô〉+ C1∆τ, (4.14)

and the extrapolated ground-state energy is found to be E0 = −24.99(1) MeV.

Fig. 4.2 shows a wider range of ∆τ than Fig. 4.1, and we use Eq.(2.78) up to ∆τ 4

in both the numerator and the denominator to do the fitting for all the data points.

In Fig. 4.4 we fit the wide range of the data by using Eq.(2.83) up to ∆τ 3.

Table 4.1: The AV6’ interaction based light nuclei ground state energies.

AZ EPIMC
0 (MeV) τ (MeV−1) EGFMC

0 (MeV) EEXPT
0 (MeV)

2H −2.24(4) 0.5 -2.22

3H −7.953(5) 0.4 −7.95(1) -8.48

3He −7.336(6) 0.5 -7.72

4He −26.162(4) 0.2 −26.15(2) -28.30

Table 4.2: The local chiral N2LO interaction based light nuclei ground state energies.

AZ EPIMC
0 (MeV) τ (MeV−1) EGFMC

0 (MeV) EAFDMC
0 (MeV) EEXPT

0 (MeV)

2H −2.203(2) 0.5 -2.22

3H −7.74(1) 0.4 −7.74(1) −7.76(3) -8.48

3He −7.11(1) 0.5 −7.01(1) −7.12(3) -7.72

4He −25.00(1) 0.2 −24.86(1) −25.17(5) -28.30
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The ground state energy for all the A ≤ 4 nuclei are listed in Table 4.1 for the

AV6’ interaction and in Table 4.2 for the chiral N2LO interaction. The GFMC and

AFDMC results (Lonardoni et al. (2018b)) are listed for comparison. Overall, all the

PIMC, GFMC and AFDMC results are consistent with each other within 1% error.

We also listed the experimental value of the binding energies (Wiringa and Pieper

(2002); Lee (2020); Wikipedia contributors (2020c)) for comparison. The difference

between the experimental values EEXPT
0 and our results is mainly due to the absence

of the three body interactions in our calculations.

4.1.3 Verifications

In order to further support our conclusion that τ = 0.2 MeV−1 indeed projected

out the ground state and therefore our PIMC results are reliable, we calculate the

potential V = V NN + V EM along all the beads on the path. This is a typical quantity

to calculate in PIMC calculations (Sarsa et al. (2000)). The calculation is done in the

same way as introduced in section 2.7.1. We just need to use the potential operator V

as the operator Ô, and we place the V at each imaginary time position from bead 0 to

the last bead N on the path. In other words, the gVlr,M(R) in Eq.(2.107) needs to be

calculated from M = 0 to M = N = τ/∆τ . In this way, we are actually calculating

〈V (τ1)〉 which is,

〈V (τ1)〉 =
Re〈ΨT |e−Hτ1

(
V NN + V EM

)
e−H(τ−τ1)|ΨT 〉

Re〈ΨT |e−Hτ |ΨT 〉
, (4.15)

where τ1 ranges from 0 MeV−1 to τ as we put the V operator from bead 0 to bead

N . 〈V (τ1)〉 is symmetric around τ1 = τ/2. When τ/2 is big enough to project out the

ground state, 〈V (τ/2)〉 is the ground state potential energy.

In Fig. 4.5 2 , we show the results of 〈V (τ1)〉 as a functions of τ1 for τ = 0.2 MeV−1

2Note that the potential operators and the Hamiltonian do not commute, so the eigenstates of
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Figure 4.5: The potential energy along the beads for τ = 0.2 and 0.3 MeV−1 for 4He
based on the AV6’ interaction.
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and τ = 0.3 MeV−1. On the upper panel of Fig. 4.5, we show for different time step ∆τ

how 〈V (τ1)〉 change as τ1 from 0 MeV−1 to the total imaginary time τ = 0.2 MeV−1.

As expected, since PIMC is projecting out the Hamiltonian’s ground state, and the

Hamiltonian’s ground state is not the same as the potential operator’s eigenstate, the

time step error introduced by ∆τ will have noticeable impact on 〈V (τ1)〉. That is why

the curve of 〈V (τ1)〉 vs. τ1 are different for different ∆τ . However, as ∆τ decreases, time

step error will become smaller and smaller. And indeed, as we can see, the result for

∆τ = 1.5×10−4 MeV−1 almost coincides with that of ∆τ = 2.5×10−4 MeV−1. 〈V (τ1)〉

is about −127 ∼ −123 MeV. It looks like 〈V (τ1)〉 has converged when ∆τ ≤ 2.5×10−4

MeV−1. This is a clear signal that a stable eigenstate of the Hamiltonian for τ = 0.2

MeV−1 has been reached, and smaller ∆τ and therefore more beads will not improve

the convergence. Furthermore, in order to verify if this eigenstate is truly the ground

state, we calculate for a larger total imaginary time of τ = 0.3 MeV−1 with a similar

time step ∆τ = 2× 10−4 MeV−1, i.e. 1501 beads. The result is in the lower panel of

Fig. 4.5. Indeed, the curve of 〈V (τ1)〉 vs. τ1 is almost the same as the τ = 0.2 MeV−1

and ∆τ ≤ 2.5 × 10−4 MeV−1 cases. This means further increasing the total time τ

will not change the state, so the stable state reached for τ = 0.2 MeV−1 must be the

ground state.

Therefore, the ground state of the Hamiltonian is indeed reached when τ = 0.2

MeV−1, and ∆τ around 1.5 ∼ 2.5× 10−4 MeV−1 is small enough. Besides, from Fig.

4.5 we can see that in the area when 0.075 MeV−1 ≤ τ1 ≤ 0.125 MeV−1 for τ = 0.2

MeV−1, and the area when 0.075 MeV−1 ≤ τ1 ≤ 0.225 MeV−1 for τ = 0.3 MeV−1, the

curves of 〈V (τ1)〉 vs. τ1 are almost flat. So that even τ = 2× 0.075 = 0.15 MeV−1 may

the potential operators and the Hamiltonian are not the same. So even when the system reaches the
ground state of its Hamiltonian, this ground state |Φ0〉 is not an eigenstate of the potential operators.
So 〈V (τ1)〉 has larger fluctuations than 〈H(τ1)〉. So in order to make Fig. 4.5 look ‘smooth’, we need
to take a longer computation time than computing the ground state energy.
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be sufficient to project out the ground state. Fig. 4.6 is a similar graph for the local

chiral interaction which also indicates τ = 0.2 MeV−1 is sufficient 3 .
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Figure 4.7: PIMC leading order structure function R(1)
S (τ,∆τ).

Besides checking the potential along the beads, the robustness of the ground state

energy PIMC calculation can be understood as follows.

The trial state |ΨT 〉, after operating with [U(∆τ)]N , can be expanded by the

eigenstates of the Hamiltonian,

[U(∆τ)]N |ΨT 〉 =
∞∑
n=0

An(τ,∆τ)|Φn〉 = A0(τ,∆τ)

[
|Φ0〉+

+∞∑
i=1

Ai(τ,∆τ)

A0(τ,∆τ)
|Φi〉

]
. (4.16)

where An(τ,∆τ) are the coefficients which depend on τ and ∆τ for |Φn〉. We know
3In order to save computation time, we did not include spin-orbit interaction, but it does not alter

the conclusion. Fig. 4.6 is not as smooth as Fig. 4.5 simply because we used fewer core hours for it
than we did for Fig. 4.5.
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that lim
∆τ→0

[U(∆τ)]N = e−Hτ and we also notice from Eq.(2.6) that,

e−Hτ |ΨT 〉 = a0e
−E0τ

[
|Φ0〉+

∞∑
i=1

ai
a0

e−(Ei−E0)τ |Φi〉

]
, (4.17)

So, comparing Eq.(4.16) and Eq.(4.17) we find that for ∆τ → 0,

lim
∆τ→0

A0(τ,∆τ) = a0e
−E0τ , (4.18)

lim
∆τ→0

An(τ,∆τ)

A0(τ,∆τ)
=
an
a0

e−(En−E0)τ ⇒ lim
τ→∞

[
lim

∆τ→0

An(τ,∆τ)

A0(τ,∆τ)

]
= 0. (4.19)

We calculate the ground state energy by using Eq.(4.1), the two parts in it are

essentially the same and we pick one of them to take a closer look. We find

〈ΨT |H[U(∆τ)]N |ΨT 〉
〈ΨT |[U(∆τ)]N |ΨT 〉

= E0

1 +
∑+∞

i=1
a∗iAi(τ,∆τ)Ei
a∗0A0(τ,∆τ)E0

1 +
∑+∞

i=1
a∗iAi(τ,∆τ)

a∗0A0(τ,∆τ)

≡ E0RS(τ,∆τ), (4.20)

since Eq.(4.20) is real, we define a real function RS(τ,∆τ) as our PIMC error structure

function,

RS(τ,∆τ) ≡ Re
1 +

∑+∞
i=1

a∗iAi(τ,∆τ)Ei
a∗0A0(τ,∆τ)E0

1 +
∑+∞

i=1
a∗iAi(τ,∆τ)

a∗0A0(τ,∆τ)

, (4.21)

and we can define its cutoff functions R(n)
S (τ,∆τ) such that

R
(n)
S (τ,∆τ) ≡ Re

1 +
∑n

i=1
a∗iAi(τ,∆τ)Ei
a∗0A0(τ,∆τ)E0

1 +
∑n

i=1
a∗iAi(τ,∆τ)

a∗0A0(τ,∆τ)

. (4.22)

Considering Eq.(4.19), RS(τ,∆τ) and R(n)
S (τ,∆τ) will converge to 1 when τ is big

enough and ∆τ is small enough, and the energy will converge to E0. We find that the

structure Eq.(4.20) may be much less sensitive to ∆τ than one may expect. We can

assume the errors in Eq.(4.20) are mostly coming from the leading order errors in its

denominator and the numerator. If the leading order error is from the first excited

state, Eq.(4.20) can be approximated as

〈ΨT |H[U(∆τ)]N |ΨT 〉
〈ΨT |[U(∆τ)]N |ΨT 〉

≈ E0 ×Re
1 +

a∗1A1(τ,∆τ)E1

a∗0A0(τ,∆τ)E0

1 +
a∗1A1(τ,∆τ)

a∗0A0(τ,∆τ)

= E0R
(1)
S (τ,∆τ), (4.23)
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and since Eq.(4.20) is real, we can assume a∗1A1(τ,∆τ)

a∗0A0(τ,∆τ)
in Eq.(4.23) is mostly real and

we can define a real function B1(τ,∆τ) as

B1(τ,∆τ) = Re
a∗1A1(τ,∆τ)

a∗0A0(τ,∆τ)
(4.24)

such that

RS(τ,∆τ) ≈ R
(1)
S (τ,∆τ) ≈

1 +B1(τ,∆τ)E1

E0

1 +B1(τ,∆τ)
. (4.25)

Therefore, our result E(∆τ) in Eq.(4.1) will be very close to the true expectation

E0, as long as Eq.(4.25) is close to 1. In Fig. 4.7 we plot the contour graph and show

how the value of the leading order structure function R(1)
S (τ,∆τ) changes as B1(τ,∆τ)

and E1/E0 change. We find as long as B1(τ,∆τ) ∈ [−0.1, 0.1] (which is a reasonable

range for a proper ∆τ), R(1)
S (τ,∆τ) will be close to 1 (the green area), it fluctuates

from 0.9 to 1.1 so E(∆τ) will be around E0 with at most 10% error or so. In fact, our

results in section 4.1.2 shows that E(∆τ) in PIMC works even better. From Figs. 4.2

and 4.4 we see that even with a wide range of ∆τ , the difference between E(∆τ) and

E0 is less than 3% which is well below 10%. The robust E(∆τ) value also indicates

the ground state path is robust, so the expectation values of other operators should

be reliable too.

4.2 Radii

The root mean square (rms) radius rm can be interpreted as the average distance

between any one of the particles and the system’s center of mass. The label of the

nucleon does not matter, so we can just take nucleon number 1 as reference. The

operator can be written as 4 ,

r̂m =

∣∣∣∣∣r̂1 −
1

A

A∑
j=1

r̂j

∣∣∣∣∣ , (4.26)

4In the code, we calculate the averaged operator r̂m = 1
A

∑A
i=1

∣∣∣r̂i − 1
A

∑A
j=1 r̂j

∣∣∣ .
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and we calculate 〈r2
m〉 for its ground state expectation value as

〈r2
m〉 =

Re〈Φ0|r̂2
m|Φ0〉

Re〈Φ0|Φ0〉

=
Re〈ΨT |e−H∆τ ...e−H∆τ

∣∣∣r1 − 1
A

∑A
j=1 rj

∣∣∣2e−H∆τ ...e−H∆τ |ΨT 〉

Re〈ΨT |e−H∆τ ...e−H∆τe−H∆τ ...e−H∆τ |ΨT 〉
. (4.27)

Note that r̂m does not commute with H, so PIMC is well suited to calculate it.

Eq.(4.27) can be recast into the form of Eq.(2.87) in section 2.7.1. We put the operator

r̂2
m at the middle bead M, the corresponding gVlr,M(R) can be written as,

gVlr,M(R) = 〈ψlM−1(R)|Ge
−VM∆τ

2

∣∣∣∣∣r1 −
1

A

A∑
j=1

rj

∣∣∣∣∣
2

e
−V†

M
∆τ

2 G|ψrM+1(R)〉, (4.28)

while other functions remain the same as in section 2.7.1. Once we calculated 〈r2
m〉,

the rms value is simply rm =
√
〈r2
m〉. Note that these are point nucleon radii.

Similarly, we can define the proton(neutron) radii operator r̂p(n) as 5 ,

r̂p(n) =

∣∣∣∣∣r̂1 −
1

A

A∑
j=1

r̂j

∣∣∣∣∣P 1
p(n), (4.29)

where P 1
p = 1+τ1z

2
and P 1

n = 1−τ1z
2

are the proton and neutron projection operator

respectively for nucleon whose label is 1.

In Tables 4.3 and 4.4, we list our PIMC ground state point nucleon rms radii of

light nuclei based on the AV6’ interaction and the N2LO local chiral interaction. For

2H, since there is no Coulomb interaction, rm = rp = rn. For other nuclei however,

due to the isospin dependent NN interaction (mainly due to the τi · τj part in the NN

interaction) and the Coulomb interaction, rm, rp and rn are not the same. E.g., for

3H, the only proton is more likely in the center and the two neutrons are likely on

the two sides, so the proton is more closer to the center of the mass of the system, so
5In the code, we calculate the averaged operator r̂p(n) = 1

Np(n)

∑A
i=1

∣∣∣r̂i − 1
A

∑A
j=1 r̂j

∣∣∣P ip(n), where
Np(n) is the number of protons (neutrons).
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Table 4.3: PIMC rms radii of light nuclei based on the AV6’ interaction.

AZ rm (fm) rp (fm) rn (fm)

2H 1.98(2)

3H 1.7261(5) 1.6240(4) 1.7751(5)

3He 1.7426(6) 1.7962(6) 1.6289(5)

4He 1.4716(2) 1.4736(2) 1.4693(2)

Table 4.4: PIMC rms radii of light nuclei based on the local chiral N2LO interaction.

AZ rm (fm) rp (fm) rn (fm)

2H 1.991(1)

3H 1.7497(7) 1.6430(6) 1.8007(7)

3He 1.7725(8) 1.8292(9) 1.6520(7)

4He 1.4860(4) 1.4882(4) 1.4834(4)

rp < rn. 3He is the opposite. The small difference between rp and rn for 4He is caused

by the Coulomb interaction.

4.3 Density Distributions

The ground state of 4He is an angular momentum J = 0 state and is spherically

symmetric. We can use the one-particle number density ρ(r) to describe the probability

density for one particle to be at distance r from the nuclei’s center of mass. With this

convention we normalize it as ∫
4πr2ρ(r)dr = 1. (4.30)
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The distribution ρ(r) can be extracted from high energy electron-nucleus scattering

experiments, and is related with the electric form factor by Fourier transform (Xu

(2009); Lynn et al. (2019)). The label of a particle does not matter, so we can just

take particle 1 as the reference particle, and the operator ρ̂(r) can be written as 6 ,

ρ̂(r) = δ

(
r −

∣∣∣∣∣r̂1 −
1

A

A∑
j=1

r̂j

∣∣∣∣∣
)
. (4.32)

Note that due to the kinetic energy operator T in the Hamiltonian H, ρ̂(r) does

not commute with H. Therefore it cannot be calculated very accurately by diffusion

based QMC method. But it can be calculated directly by PIMC. The ground state

expectation value for the one-particle number density ρ(r) is,

ρ(r) =
Re〈Φ0|ρ̂(r)|Φ0〉
Re〈Φ0|Φ0〉

=
Re〈ΨT |e−H∆τ ...e−H∆τδ

(
r −

∣∣r̂1 − 1
A

∑A
j=1 r̂j

∣∣) e−H∆τ ...e−H∆τ |ΨT 〉

Re〈ΨT |e−H∆τ ...e−H∆τe−H∆τ ...e−H∆τ |ΨT 〉
. (4.33)

Eq.(4.33) can be recast into the form of Eq.(2.87) in section 2.7.1. We put the operator

ρ̂(r) at the middle bead M, the corresponding gVlr,M(R) can be written as,

gVlr,M(R) = 〈ψlM−1(R)|Ge
−VM∆τ

2 δ

(
r −

∣∣r̂1 −
1

A

A∑
j=1

r̂j
∣∣) e−V†M∆τ

2 G|ψrM+1(R)〉, (4.34)

while the other functions remain the same as in section 2.7.1.

The δ function in ρ(r) cannot be directly sampled. However it can be integrated.

We can expand in a histogram basis and the width of each bin is h, and r can be

represented by rk when r ∈ [kh, kh+h) and k is an integer. The basis of the histogram
6In the code, we actually calculate the averaged ρ̂(r) operator (Lynn et al. (2019)),

ρ̂(r) =
1

A

A∑
i=1

δ

r −
∣∣∣∣∣∣r̂i − 1

A

A∑
j=1

r̂j

∣∣∣∣∣∣
 . (4.31)

We use Eq.(4.32) for illustration purpose.
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can be represented by bk which is 1 when r ∈ [kh, kh+ h) and 0 otherwise. ρ(rk) can

be represented by a number ak such that,

ak =

∫
ρ(r)bkdr

4
3
πh3[(k + 1)3 − k3]

. (4.35)

Considering Eq.(4.33) and Eq.(2.87) in section 2.7.1, ak can be written as,

ak =

∑
l

∑
r

∫
dR
{

3
∫
Alr(R)bkdr

4πh3[(k+1)3−k3]

}
Plr(R)∑

l

∑
r

∫
dRBlr(R)Plr(R)

, (4.36)

so we just need to sample 3
∫
Alr(R)bkdr

4πh3[(k+1)3−k3]
to get ak. Note that Alr(R) =

Re[gVlr,M (R)]

|Re[fVlr (R)]| , and

Eq.(4.34) of gVlr,M(R) contain the δ function, so the integral
∫
Alr(R)bkdr becomes,∫

Alr(R)bkdr

=

Re

[∫
〈ψlM−1(R)|Ge

−VM∆τ

2 δ

(
r −

∣∣r̂1 −
∑A

j=1 r̂j

A

∣∣) e−V†M∆τ

2 G|ψrM+1(R)〉bkdr

]
|Re[f(R)lr]|

=


Re[f(R)lr]
|Re[f(R)lr]|

,

∣∣∣∣r1 −
∑A
j=1 rj

A

∣∣∣∣ ∈ [kh, kh+ h).

0, otherwise.
(4.37)

Note that Re[f(R)lr]
|Re[f(R)lr]|

is either 1 or -1, so 3
∫
Alr(R)bkdr

4πh3[(k+1)3−k3]
just becomes either 3

4πh3[(k+1)3−k3]
,

−3
4πh3[(k+1)3−k3]

or 0.

The sampling of ak histogram value is then straightforward. We define a one-

dimensional array A(n) and initialize it to zero. We sample according to Plr(R)

as described in chapter 3, and each time when we take a sample, we look at the

configuration of the middle bead M . At bead M , there always exists an integer k such

that rk = |r1 − 1
A

∑A
j=1 rj|. At the same time, the kth element in A(k) takes a sample

of 3Re[f(R)lr]/|Re[f(R)lr]|
4πh3[(k+1)3−k3]

, so A(k) = A(k) + 3Re[f(R)lr]/|Re[f(R)lr]|
4πh3[(k+1)3−k3]

. For any other element j

in array A(n), they each take a sample of 0 and so A(j) remain the same. We continue

sampling according to Plr(R) and continue. Once we have enough N samples, then
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Figure 4.8: The ground state one-particle number density distributions of 4He based
on the AV6’ interaction.
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Figure 4.9: The ground state one-particle number density distributions of 4He based
on the local chiral N2LO interaction.
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each of the ak can be evaluated by ak = A(k)/N with corresponding error bar. As

shown in Fig. 4.8, ρ(rk) are given by these values. We can see from Fig. 4.8 for AV6’

interaction and Fig. 4.9 for the local chiral N2LO interaction that for different total

imaginary time, the particle number density distribution of 4He are almost identical.

These are further evidence that we have reached the ground state.

From Eq.(4.31) and Eq.(4.32), we can further define the single-proton number

density ρ̂p and the single-neutron number density ρ̂n as

ρ̂p(n)(r)=δ

(
r −

∣∣∣∣∣r̂1 −
1

A

A∑
j=1

r̂j

∣∣∣∣∣
)
P 1
p(n) =

1

A

A∑
i=1

δ

(
r −

∣∣∣∣∣r̂i − 1

A

A∑
j=1

r̂j

∣∣∣∣∣
)
P i
p(n). (4.38)

where P i
p = 1+τ1z

2
and P i

n = 1−τ1z
2

are the proton and neutron projection operator for

nucleon with label i. Since P i
p + P i

n = 1, we have

ρ̂(r) = ρ̂p(r) + ρ̂n(r). (4.39)

The sampling method of ρ̂p(r) and ρ̂n(r) is similar with that of ρ̂(r). In Fig. 4.8 and

Fig. 4.9, ρp(r) and ρn(r) are also presented. As expected from the rms radii results, in

4He the two protons and the two neutrons are distributed evenly, and ρp(r) and ρn(r)

are almost identical.

In Fig. 4.10 all the density distributions for A ≤ 4 light nuclei are presented. For

2H the ρp(r) and ρn(r) are identical, and as r decreases, the density distributions

based on the AV6’ interaction decrease rapidly which are different from those based

on the local chiral N2LO interaction. This is because, as shown in Fig. 2.2, for the

two-nucleon system the central part becomes the dominant part as r decreases, and

the AV6’ interaction has a much more repulsive central radial function than the chiral

one, this makes the proton and the neutron highly unlikely to be very close to each

other and the center of mass, which means density distributions will rapidly decrease

as r decreases. For 3H there is one proton and two neutrons, and at a given r, it is
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Figure 4.10: The ground state one-particle number density distributions of A ≤ 4
light nuclei based on the AV6’ interaction and the local chiral N2LO interaction. The
lines are a guide to the eye.

reasonable that the probability of finding a neutron ρn(r) is always higher than that

of finding a proton ρp(r). 3H and its mirror nuclei 3He shows nearly the same ρ(r)

distribution, however their ρp(r) and ρn(r) distributions are as if they are exchanged,

i.e., 3H’s ρp(r) is like the 3He’s ρn(r) and 3H’s ρn(r) is like 3He’s ρp(r).

4.4 Euclidean Response Functions

Response functions are important quantities (Carlson and Schiavilla (1992); Benhar

et al. (1994); Carlson and Schiavilla (1994); Carlson et al. (2002); Sick (2003); Lovato

et al. (2013, 2015)) and the related operators do not commute with H. Using PIMC to

calculate the response functions thus has a natural advantage over diffusion methods.
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In an electron-nucleus scattering experiment, the response of a weakly coupled

external probe can be written as the function S(k, ω) which can be expanded in the

energy eigenstates (Carlson and Schiavilla (1994)), as

S(k, ω) =

∑
n〈Φ0|ρ†(k)|Φn〉〈Φn|ρ(k)|Φ0〉δ(ω + E0 − En)

〈Φ0|Φ0〉
, (4.40)

where k is the momentum transfer between the final and initial momentum of the

nucleus, and ω is the energy transfer which is the difference between the final and

initial energy of the nucleus. (k, ω) is the four-momentum carried by the virtual photon

(Bacca and Pastore (2014)) which is exchanged between the electron and the nucleus.

En is eigenenergy of the excited states |Φn〉, and the ρ(k) is the coupling operator.

The S(k, ω) in Eq.(4.40) is called the response function. It is useful because it

is related with the scattering cross section therefore directly connects theory and

experiment. For different scattering processes the couplings of the probe to the nucleus

gives different ρ(k) operators. However, it is not easy to directly calculate the response

function itself. Instead, we calculate the Euclidean response function E(k, τ) of S(k, ω)

by using QMC, and then find ways (Shen et al. (2012); Lovato et al. (2015)) to invert

E(k, τ) to S(k, ω).

The Euclidean response function E(k, τ) is related to S(k, ω) by the following

Laplace transform,

E(k, τ) =

∫ ∞
0

e−τ(ω−ωqe)S(k, ω)dω

=
eωqeτ

∑
n〈Φ0|ρ†(k)e−Hτ |Φn〉〈Φn|ρ(k)|Φ0〉

e−E0τ |〈Φ0|Φ0〉

=
eωqeτ 〈Φ0|ρ†(k)e−Hτρ(k)|Φ0〉

〈Φ0|e−Hτ |Φ0〉

=
eωqeτ 〈ΨT |e−Hτ1

[
ρ†(k)e−Hτρ(k)

]
e−Hτ1|ΨT 〉

〈ΨT |e−Hτ1e−Hτe−Hτ1|ΨT 〉
, (4.41)

where ωqe = k2/2m is the quasielastic energy transfer (Lovato et al. (2020)) and τ1 is

chosen to be large enough to project out the ground state Φ0.
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In this work, we calculate the 4He Euclidean response functions that correspond to

several different single-nucleon couplings ρ(k), which are similar to those in Carlson

and Schiavilla’s 1994 paper (Carlson and Schiavilla (1994)). Those include the nucleon

coupling ρN(k) , proton coupling ρp(k), isovector coupling ρτ (k), spin-longitudinal

coupling ρστL(k) and spin-transverse coupling ρστT (k). They are defined as,

ρN(k) =
A∑
i=1

eik·ri , (4.42)

ρp(k) =
A∑
i=1

eik·ri
1 + τiz

2
, (4.43)

ρτ (k) =
A∑
i=1

eik·riτiz, (4.44)

ρστL(k) =
A∑
i=1

eik·ri(σi · k̂)τiz, (4.45)

ρστT (k) =
A∑
i=1

eik·ri(σi × k̂)τiz. (4.46)

Note that τiz is the difference between the proton and neutron projection operators,

so it is related with the difference between protons and neutrons. σi · k̂ and σi × k̂

can be related with different mesons including pion, EM scattering, magnetic fields,

etc (Carlson and Schiavilla (1998)).

In diffusion QMC such as GFMC and AFDMC, it is often 〈ΨT |ρ†(k)e−Hτρ(k)|Φ0〉

that is calculated. Since the operator ρ†(k)e−Hτρ(k) does not commute with the

Hamiltonian, 〈ΨT |ρ†(k)e−Hτρ(k)|Φ0〉 is mostly a mixed estimator (although forward

walking extrapolation can improve this) instead of the true ground state estimator

〈Φ0|ρ†(k)e−Hτρ(k)|Φ0〉. This disadvantage of diffusion QMC is exactly the advantage

of PIMC method, because PIMC can project out the ground state Φ0 from both 〈ΨT |

and |ΨT 〉 by using the projection operator e−Hτ1 with the short-time approximation.

PIMC really calculates the ground state estimator 〈Φ0|ρ†(k)e−Hτρ(k)|Φ0〉, whether

ρ†(k)e−Hτρ(k) commutes with the Hamiltonian or not.
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Figure 4.11: Illustration of gVlr,M(R) in Eq.(4.47) for Euclidean response functions.

The calculations of E(k, τ) in PIMC is straightforward. Eq.(4.41) can be recast

into the form of Eq.(2.87) in section 2.7.1. As illustrated in Fig. 4.11, we can denote the

total imaginary time as τtot = N∆τ , and τ1 = L∆τ , L = N −M , τ = (M − L)∆τ =

(2M −N)∆τ . We just need to place the operator ρ†(k) at bead L, and place ρ(k) at

bead M , and gVlr,M(R) can be written as,

gVlr,M(R) = eωqeτ 〈ψlL−1(R)|e
−VL∆τ

2 ρ†(k)e−V τρ(k)e
−V†

M
∆τ

2 |ψrM+1(R)〉, (4.47)

where e−V τ is defined as,

e−V τ≡ e
−V†

L
∆τ

2 G
(
e
−VL+1∆τ

2 e
−V†

L+1
∆τ

2

)
G ... G

(
e
−VM−1∆τ

2 e
−V†

M−1
∆τ

2

)
Ge

−VM∆τ

2 . (4.48)

All the other functions and calculations are the same as those in section 2.7.1.

The ground state of 4He has total isospin and its z component both 0, and it is a

spherically symmetric object. Therefore the response functions do not depend on the

direction of k. So when calculating the E(k, τ), the momentum k can be averaged over

all the directions. The angle averaged response functions are not calculated on the fly
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because they are relatively more time-consuming comparing with other quantities, so

they are calculated after we have enough paths stored on the storage systems. For a

given amount of computation time, the angle averaged E(k, τ) have less variance than

the non angle averaged E(k, τ). The angle averaged E(k, τ) is calculated as,

E(k, τ) =
eωqeτ 〈ΨT |e−Hτ1

[
1

4π

∫
ρ†(k)e−Hτρ(k)dΩ

]
e−Hτ1 |ΨT 〉

〈ΨT |e−Hτ1e−Hτe−Hτ1|ΨT 〉
, (4.49)

so that the correspondingly gVlr,M(R) is calculated as 7 ,

gVlr,M(R) = eωqeτ 〈ψlL−1(R)|Ge
−VL∆τ

2

[∫
ρ†(k)e−V τρ(k)dΩ

4π

]
e
−V†

M
∆τ

2 G|ψrM+1(R)〉, (4.50)

where e−V τ is defined in Eq.(4.48). For any operator Ô which is independent of k, e.g.,

Ô can be e−Hτ or e−V τ as defined in Eq.(4.48).
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Figure 4.12: Angle averaged Euclidean response functions of 4He at k = 350 MeV/c
for the AV6’ interaction.

7The detailed angle averaged calculations of
∫
ρ†(k)Ôρ(k)dΩ/4π for each response function can

be found in Appendix E.1.
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Figure 4.13: Angle averaged Euclidean response functions of 4He at k = 350 MeV/c
for the local chiral N2LO interaction.

Fig. 4.12 and Fig 4.13 shows all the angle averaged Euclidean response functions

Eα for each ρα defined in this work. Fig. 4.12 is for the AV6’ interaction and Fig 4.13

is for the local chiral N2LO interaction. Each of the Eα has been normalized such

that limk→∞Eα(k, τ = 0) = 1. Our calculations are done in the center of mass frame,

but we have converted our results to the lab frame 8 . We calculate our response

functions in the center of mass frame first because it can give lower variance compare

with lab frame. We then multiply our results by e−16.3τ (the 16.3 MeV is the center of

mass energy for this k = 350 MeV/c) in order to compare with the results in Carlson

and Schiavilla’s paper (Carlson and Schiavilla (1994)) which are digitized as the red

dots in Figs. 4.12 and 4.13. The small difference between ours and theirs comes from

several sources. First, we use PIMC, they use GFMC. Second, the interactions are
8See Appendix E.2 for the conversion process.
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somewhat different, they used the Argonne v8 interaction combined with the Urbana

model-VIII. Third, we use τiz in stead of τ+(i) for the isovector, spin-longitudinal

and spin-transverse couplings, this is suggested in their paper when dealing with an

isoscalar target like the ground state 4He, and with interactions that conserve the

number of protons and neutrons. The small difference can also indicate our results are

more accurate because in PIMC we do not need forward walking as DMC does.

4.5 Parallel Scalability of the Code
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Figure 4.14: The scaling efficiency of our PIMC code. It is based on sampling 4× 105

samples of 4He for τ = 0.3 MeV−1 with ∆τ = 2× 10−4 MeV−1.

Our code is parallel and uses the Message Passing Interface (MPI). Each CPU

core is assigned the same amount of blocks of steps. At every about 125 steps, all the

cores collect the values of the samples and send them to the rank 0 core. They also

send the information about the current state s to rank 0 for it to write them to a file
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which includes all the information of all these independent paths 9 . The information

of a state (path) as shown in Eq.(3.8), includes the spatial configuration of all the

beads R and l and r order of the trial wave functions. The calculations are stopped

when we have enough samples to make the error bar of each quantity smaller than the

desired values.

Since the code is parallel, we checked the scaling of our PIMC code 10 which is

shown in Fig. 4.14. We plot the inverse of the total time it takes vs. the number of

CPU cores involved. We expect that based on doing the same amount of work, the

inverse of the total time it takes should be proportional to the number of the CPU

cores. The labels on the right y-axis is the corresponding speedup, i.e., ideally the

speedup for n CPU cores should be n. The dotted line is the prediction based on the

time 50 CPU cores takes. We can conclude from Fig. 4.14 that our scaling is in the

linear range so our MPI code is efficient.

9Depending on the number of CPU cores, the number of beads in the PIMC calculation and the
total computation time involved, a complete path file can take from tens of GB to several TB storage
space. In the future we may use MPI/IO which can further improve the parallel scaling.

10All the calculations in this work are performed at the Agave cluster at Research Computing at
Arizona State University during 2019 and 2020. The Cluster is mostly configured with Intel Xeon
E5-2680v4 CPUs (CPU Architecture Broadwell) running at 2.40GHz at each node. Each node has 28
cores. Each core is configured with about 4.5GB of RAM. There are 297 nodes so there are 8316
cores (≈ 320 FP64 TFLOPS) and 4.5PB storage space. Sometimes we also use some Intel Xeon Gold
6230 and Intel Xeon Gold 6252 (CPU Architectures are both CascadeLake). Occasionally, we use
several AMD EPYC 7551 (CPU Architecture is Naples) too. Our code currently does not run on
coprocessors such as Intel Xeon Phi 7210 (CPU Architecture Knights Landing), because although
each Xeon Phi CPU has hundreds of cores, each core is slow and does not have enough RAM. We
checked the scaling only up to 500 cores simply because it is difficult to request much more than that
number of cores to actually run the code on the Agave cluster.
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Chapter 5

CONCLUSION

5.1 Summary

This work is mainly to answer one of the questions in section 1.1: how to solve the

many-body problem? Our answer is, using the path integral quantum Monte Carlo

method. In nuclear physics, although continuous space light nuclei calculations for

A ≤ 4 have been studied before by GFMC (Carlson (1988); Wiringa and Pieper

(2002)), this is the first work using PIMC. The code is now publicly available and

open source (Chen and Schmidt (2020)).

By using multiple sampling algorithms, multi-level sampling most of the time, and

occasionally the regular sampling described in section 3.2, as well as the optimized

calculation and updating strategies described in section 2.7.3 and section 3.3, we

successfully performed our ground state nuclear PIMC calculation of light nuclei, based

on the local chiral N2LO interaction and the AV6’ interaction. From our analysis in

section 4.1.1 and as well as calculation of the potential along the beads shown in Fig.

4.5, we can conclude that our choice of the total imaginary time τ = 0.2 MeV−1 indeed

projected out the ground state, so our results are reliable. As discussed in section 4.1.1,

the time step ∆τ we use is 10−4 ∼ 10−3 MeV−1 which are about 5 times bigger than

GFMC calculations. This indicates that PIMC calculations are less sensitive to ∆τ

than GFMC is, due to the time step error structure of the PIMC expectation value

such as Eq.(2.78) or Eq.(2.81).

Our PIMC ground state energies of light nuclei are consistent with the results

from GFMC and AFDMC as shown in Tables 4.1 and 4.2. For operators which do not
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commute with Hamiltonian and therefore usually cannot be obtained from DMC based

methods such as GFMC and AFDMC without tradeoffs, we calculated the particle

number density distribution ρ(r), rms radii, and the angle averaged response functions.

Our results are comparable with the GFMC results.

5.2 Outlook

We hope our 4He calculation may be served as a benchmark test for future PIMC

calculations of larger nuclei. The reason to do larger nuclei is because we can first

test how good the nucleon-nucleon interaction is, then we can try to predict the

properties of neutron rich nuclei which are most likely generated in supernovae, or in

the laboratories 1 . However, larger nuclei PIMC calculations will be more complicated

and computational expensive than the light nuclei calculations presented in this

work. We estimate that without significant improvement, our PIMC may take similar

computational cost as GFMC does. We can try to do several things to make the

calculations more accessible.

We can try to increase the time step and reduce the beads needed in PIMC and

therefore save computation time. In fact, in our PIMC calculations, the time step ∆τ

are about an order of magnitude larger than those used in DMC based methods. If a

pair-product propagator (Ceperley (1995); Schmidt and Lee (1995); Pudliner et al.

(1997); Carlson et al. (2015)) is used, it may enable us to use even bigger time steps,

this can reduce the number of beads in PIMC calculation and save computation time.

We can try to reduce the size of the spin-isospin basis. We may separate the

interaction into two parts, one part conserves total isospin such as the AV6’ NN

operators, and other part includes isospin breaking terms, such as the Coulomb

interaction. We can first use a good isospin basis for the Hamiltonian with these
1Such as the Facility for Rare Isotope Beams (FRIB) at Michigan State University.
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nuclear interactions only, because the number of isospin basis states can be somewhat

smaller than the charge basis we use now. We can save the spatial and other relevant

configurations, and then, we can use them to calculate the isospin breaking parts

perturbatively (Lonardoni et al. (2018b)).

We may also try to combine AFDMC ideas to efficiently sample the spin isospin

states instead of summing over them. If this can be made possible it will significantly

reduce the computation time for PIMC calculations of larger nuclei.

A nuclear PIMC finite temperature calculation of 4He or neutron matter including

three-body interactions is also possible. That can be a pioneering step towards QMC

calculations in continuous space for a finite temperature nuclear equation of state (Li

et al. (2008); Chen et al. (2010)).

However, large nuclei and finite temperature nuclear matter PIMC calculations will

inevitably lead to large variance due to sign problem unless approximate methods like

adding fixed phase or fixed node constraints are used. The sign problem has no known

general fix yet. Improving the trial wave function and the short-time propagator, and

constraining the path can somewhat make the sign problem less severe or eliminate it

giving an approximate result.

Last but not least, even though we will face sign problem, and, even with the most

powerful supercomputers today, there are still problems in QMC that seem to make

calculating large nuclei or the equation of state at finite temperature not accessible

at the current stage, those messes simply mean there are big opportunities. I simply

cannot imagine human beings cannot go far beyond the current situation (Laughlin

and Pines (2000)). And I would like to use Steven Weinberg’s advice (Weinberg (2003))

to end my dissertation, which is also what I learned from my advisor professor Kevin

E. Schmidt these years:

“ ... go for the messes — that’s where the action is. ”
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The time-independent Schrödinger equation can be written as Hψ0 = E0ψ0 if the
system is at its lowest energy E0 with wave function ψ0. We are interested in the
ground state energy E0 because a system will naturally go to its lowest energy state
ψ0. The question is how to find ψ0 and E0.

Variational Monte Carlo(VMC), based on a trial wave function ψT (usually not nor-
malized) with parameters, provides a way to find the upper limit of E0. Its foundation
is

Evar ≡
〈ψT |H|ψT 〉
〈ψT |ψT 〉

≡

∫
HψT (R)

ψT (R)
|ψT (R)|2dR∫

|ψT (R)|2dR
≡
∫
EL(R)p(R)dR ≥ E0, (A.1)

where the local energy is defined as

EL(R) =
HψT (R)

ψT (R)
, (A.2)

the probability density is given by

p(R) =
|ψT (R)|2∫
|ψT (R)|2dR

. (A.3)

The closer ψT is to ψ0, the closer Evar is to E0 from above. For bosons ψT has to
be symmetric while for fermions ψT has to be anti-symmetric. For example, a possible
trial wave function for the system of bosons might be written in the form of

ψT (R) =
∏
i<j

f2(rij)
∏
i<j<k

f3(i, j, k)
∏

i<j<k<l

f4(i, j, k, l)...
∏
k

g(rk − rc), (A.4)

where fn denotes the correlation function between n particles, and g(rk − rc) denotes
the correlation between the position of one particle (rk) and the system’s center of
mass(rc). For fermions, the following form (Kalos and Whitlock (2008)) may be used
as a simple example,

ψT (R) = exp

[
−
∑
i<j

f(rij)

]
×

∣∣∣∣∣∣∣∣
eik1·r1 eik2·r1 ...
eik1·r2 eik2·r2 ...
eik1·r3 eik2·r3 ...

...
... . . .

∣∣∣∣∣∣∣∣ , (A.5)

where ki is momentum of the particle i in three dimensional space.
The VMC trial wave function ψT usually contains some parameters which can be

adjusted to minimize Evar, so that ψT can be optimized as close to the ground state as
its structure allows. Then DMC and PIMC can be performed based on this optimized
trial wave function.
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Diffusion quantum Monte Carlo (DMC) method (Negele and Orland (1998); Kalos
and Whitlock (2008); Hammond et al. (1994); Apaja (2009)) is based on the time-
dependent Green’s function. Beginning with a trial wave function which is non-
orthogonal to the true ground state, by treating the imaginary time as a real number,
it provides a way to project out the true ground state wave function through diffusion
and branching process. Unlike VMC which uses trail wave function with adjustable
parameters, DMC is able to numerically find the true ground state wave function and
the corresponding ground state energy with time step error.

B.1 Time-Dependent Green’s Function

The solution of the time-dependent Schrödinger equation i∂Ψ(x,t)
∂t

= HΨ(x, t) in
natural units can be written as the superposition of the eigenstates Φk(x) with time
evolution,

Ψ(x, t) =
∞∑
i=0

akΦk(x)e−iEkt. (B.1)

In Monte Carlo method, we care more about the energy shifted Schrödinger
equation,

i
∂φ(x, t)

∂t
= (H − ET )φ(x, t), (B.2)

and the solution can be written as

φ(x, t) =
∞∑
k=0

ckΦk(x)e−i(Ek−ET )t, (B.3)

where ck = 〈Φk|φ(t = 0)〉 are the coefficients which only depend on the initial condition.
In DMC, we want to find connections between Eq.(B.2) and the diffusion equation.

In order to do this, we use imaginary time τ = it and rewrite Eq.(B.2) as

−∂φ(x, τ)

∂τ
= (H − ET )φ(x, τ), (B.4)

with the solution

φ(x, τ) =
∞∑
k=0

ckΦk(x)e−(Ek−ET )τ . (B.5)

If we merely look at Eq.(B.4) and Eq.(B.5) and take τ as a real number, as τ →∞,
there are three situations. First, if ET > E0, then limτ→∞ φ(x, τ) = ∞. Second, if
ET < E0, then limτ→∞ φ(x, τ) = 0. Third, if ET = E0, then limτ→∞ φ(x, τ) = c0Φ0(x),
which means if c0 6= 0, then only the ground state Φ0 contributes. However if c0 happen
to be zero, then with proper ET we should be left with the first excited state Φ1.
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Eq.(B.4) tells us that

|φ(τ2)〉 = e−(H−ET )(τ2−τ1)|φ(τ1)〉, (B.6)

acting 〈y| on both side leads to

φ(y, τ2) =

∫
〈y|e−(H−ET )(τ2−τ1)|x〉φ(x, τ1)dx, (B.7)

where
〈y|e−(H−ET )(τ2−τ1)|x〉 ≡ G(y, τ2;x, τ1) (B.8)

is the Green’s function. It only depends on the time difference τ2− τ1, so, for the small
step δτ , Eq.(B.7) can be written as

φ(y, τ + δτ) =

∫
G(y,x; δτ)φ(x, τ)dx. (B.9)

The Green’s function can be expanded as

G(y,x; δτ) =
∞∑
i=0

Φi(y)Φi(x)e−(Ei−ET )δτ . (B.10)

Assuming φ(y, τ = 0) =
∑∞

k ckΦk and substitute Eq.(B.10) into Eq.(B.9) we have

φ(y, δτ) =
∞∑
k=0

ckΦk(y)e−(Ek−ET )δτ . (B.11)

After n iterations we have

φ(y, nδτ) =
∞∑
k=0

ckΦk(y)e−(Ek−ET )nδτ . (B.12)

As n → ∞, and as long as c0 6= 0, the final state will be dominated by the ground
state Ψ0. Furthermore, if we set ET = E0, the exponential term will be just a constant.

It needs to pointed out that since we treat τ as a real number, for finite τ , φ(x, τ)
does not have the physical meaning as the time-dependent wave function anymore.

B.2 Diffusion Monte Carlo

The exact Green’s function is usually hard to obtain. But we can use short-time
approximation to obtain an approximated analytic Green’s function. The Green’s
function tells us how to make the configurations (walkers) evolve into the desired
distribution.
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Theoretical foundation

Let us begin with a system of N particles with mass m. The energy shifted imaginary
time Schrödinger equation is

∂φ(x, τ)

∂τ
= D∇2φ(x, τ) + (ET − V (x))φ(x, τ), (B.13)

where D = ~2/2m is called the diffusion constant, which is 1/2 in atomic unit. One
can see from Eq.(B.13) that, if (ET − V (x))φ(x, τ) = 0, we have a diffusion equation

∂φ(x, τ)

∂τ
= D∇2φ(x, τ). (B.14)

If D∇2φ(x, τ) = 0, we have a rate equation which can be simulated by the branching
process,

∂φ(x, τ)

∂τ
= (ET − V (x))φ(x, τ). (B.15)

By using short-time approximation, we can decompose the operator of the Green’s
function G into a diffusion part operator Gdiff and a branching part operator GB. We
know that, as an operator,

G = e−Hτ = e−(J+V−ET )τ 6= e−Jτe−(V−ET )τ = GdiffGB, (B.16)

where Gdiff ≡ e−Jτ , GB ≡ e−(V−ET )τ , J ≡ −D∇2. However, if τ is very small, doing
Taylor expansion around τ for G, we obtain G−GdiffGB = 1

2
[V, J ]τ 2 +O(τ 3). Therefore

we can write down the approximation

lim
τ→0

G = GdiffGB. (B.17)

According to Trotter formula (Kalos and Whitlock (2008)), we can further write it in
a symmetrical way such that

G(y,x, τ) = 〈y|e−(J+V−ET )τ |x〉

≈ 〈y|e−
V−ET

2 e−Jτe−
V−ET

2 |x〉
≡ Gdiff(y,x, τ)GB(y,x, τ). (B.18)

The diffusion part Gdiff(y,x, τ) ≡ 〈y|e−Jτ |x〉 has the form of the free particle
propagator,

Gdiff(y,x, τ) = (4πDτ)−
3N
2

N∏
i=1

e−
(yi−xi)

2

4Dτ ≡
N∏
i=1

G
(i)
diff(yi,xi, τ). (B.19)

Note that
∫
Gdiff(y,x, τ)dx = 1 and

∫
Gdiff(y,x, τ)dy = 1 are Gaussian integrals. So,

actually Gdiff(y,x, τ) is a probability density which tells us that for a given xi or yi,

(yi)α − (xi)α = χ, (B.20)

125



where χ is a Gaussian random number with zero mean value and variance 2Dτ , and
the subscript α means the x, y or z component of the ith particle. Eq.(B.20) already
tells us how to move the ith particle from xi(yi) to yi(xi) for fixed xi(yi), as long
as we have a gaussian random number generator. We can denote Gdiff(y,x, τ) as the
transition probability from x to y as P (y,x). Gdiff(y,x, τ) is called diffusion part
because it satisfies the diffusion equation

∂Gdiff(y,x, τ)

∂τ
≡ D∇2Gdiff(y,x, τ). (B.21)

The solution of the branching part GB(y,x, τ) is

GB(y,x, τ) = e−[V (x)+V (y)
2

−ET ]τ . (B.22)

It is called branching part because

∂GB(y,x, τ)

∂τ
= (ET − V )GB(y,x, τ), (B.23)

which is a rate equation. The branching part GB(y,x, τ) serves as a weight which can
be denoted as W (y,x). If W (y,x) < 1, we delete the new configuration y with the
probability 1−W (y,x). If W (y,x) > 1, we replicate the new configuration y with
INT[W (y,x)] copies, and with the probability W (y,x)− INT[W (y,x)] to replicate
it once more.

Now, the short-time evolution of φ can be written as

φ(y, τ) =

∫
Gdiff(y,x, τ)GB(y,x, τ)φ(x)dx ≡

∫
dxP (y,x)W (y,x)φ(x), (B.24)

this expression provides the foundation for the simulation.

Interpretation

A walker means a configuration, x, for the N-particle system. If M walkers are dis-
tributed according φ, the number of them around the configuration x+ dx is Mφ(x).
In other words the normalized probability (density) for a walker to be around x+ dx
is φ(x). Notice that now φ means a distribution, so it must be non-negative.

Assuming there are M (1) walkers in the first generation, denoted as x(1), x(2),
..., x(M(1)), and are distributed according to φ. For a short-time τ , we move each
configuration according to P (y,x) and branch them according to the weight W (y,x).
The number of walkers around a particular configuration y is,

M(1)∑
i=1

P (y,x(i))W (y,x(i))M (1)φ(x(i)).

If M (1) is large enough, this sum becomes the following estimator of the integral,

M (1)

∫
dxP (y,x)W (y,x)φ(x).
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On the other hand, summing over all the weight, we obtain the number of the second
generation of walkers, M (2). We denote the probability that they are around y as
φ′(y, τ), so the number of them is M (2)φ′(y, τ), and we have

M (2)φ′(y, τ) = M (1)

∫
dxP (y,x)W (y,x)φ(x).

In other words,

φ′(y, τ) =
M (1)

M (2)

∫
dxP (y,x)W (y,x)φ(x) =

M (1)

M (2)
φ(y, τ).

So, the ratio of number of walkers between any two configurations in the next generation
y and y′ is φ′(y, τ)/φ′(y′, τ) = φ(y, τ)/φ(y′, τ). This means that the walkers will indeed
be distributed according to φ(y, τ). This is remarkable because now an integral with
high dimensions can be equivalently done through a stochastic process! In the spirit
of Eq.(B.12), by repeating the short-time diffusion process for sufficient number of
generations, finally the configurations will be distributed according to ground state
wave function Ψ0 (not Ψ2

0).

B.3 Diffusion Monte Carlo with Importance Sampling

DMC with constant short-time step without importance sampling is seldom used.
Because the walkers may explore regions in which the short-time approximation is
poor. When this happens, the branch term e−[V (x)+V (y)

2
−ET ]τ can become abnormally

large, and more and more walkers (configurations) will sink into such regions, the
walkers will not evolve into the desired distribution, and the variance of estimators
can be too big. Therefore we have to use importance sampling to guide the movement
of walkers and thus reduce the variance.

Theoretical foundation

We use an analytical function ΨT (x) as the importance sampling function for the
N -particle system. We define a new distribution function f(x, τ),

f(x, τ) ≡ ΨT (x)φ(x, τ). (B.25)

The key is, we want to find the short-time Green’s function for the distribution f(x, τ),
such that after many time steps, the distribution will evolve into ΨTΨ0(not Ψ0), which
will be convenient for further calculations.

By multiplying ΨT (x) to both sides of Eq.(B.13), we have Fokker-Planck equation,

∂f

∂τ
= DΨT∇2φ+ [ET − V (x)]f

=
[
D∇2f −D

N∑
i=1

∇i · (fFiQ)
]

︸ ︷︷ ︸
drifting

+ [ET − EL(x)]f︸ ︷︷ ︸
branching

, (B.26)

127



where ∇2 ≡
∑N

i=1∇2
i , and the local energy is defined as EL(x) ≡ HΨT

ΨT
. In particular,

the so called quantum force for particle i is defined as

FiQ ≡
2∇iΨT

ΨT

. (B.27)

We notice that by using the property ∇ · (fF ) = (F · ∇+∇ · F )f , the drifting part
in the right-hand side (RHS) of Eq.(B.26) can be rewritten as

D∇2f −
N∑
i=1

D(FiQ · ∇i +∇i · FiQ)f ≡ −J̃f, (B.28)

where

J̃ ≡ −D∇2 +
N∑
i=1

D(FiQ · ∇i +∇i · FiQ) (B.29)

is the modified kinetic energy operator. So, Eq.(B.26) can be further written as

∂f

∂τ
=
{
− J̃ + [ET − EL(x)]

}
f, (B.30)

which means the short-time evolution operator is just e{−J̃+[ET−EL(x)]}τ . Consider that
τ is very small, we further have e{−J̃+[ET−EL(x)]}τ ≈ e−J̃τe[ET−EL(x)]τ . Therefore

f(x, t+ τ) = e−J̃τe[ET−EL(x)]τf(x, t) = e−J̃τf(x, t)e[ET−EL(x)]τ . (B.31)

By sandwiching Eq.(B.31) between 〈y| and |x〉, we have

〈y|f(x, t+ τ)|x〉 =

∫
dx′〈y|e−J̃τ |x′〉〈x′|f(x, t)|x〉e[ET−EL(x)]τ

⇒ f(x, t+ τ)δ(y − x) =

∫
dx′〈y|e−J̃τ |x′〉f(x, t)δ(x− x′)e[ET−EL(x)]τ . (B.32)

By doing integral over x on both sides of Eq.(B.32) we have∫
f(x, t+ τ)δ(y − x)dx =

∫
dx′
∫
dx〈y|e−J̃τ |x′〉f(x, t)δ(x− x′)e[ET−EL(x)]τ

⇒ f(y, t+ τ) =

∫
dx 〈y|e−J̃τ |x〉︸ ︷︷ ︸

G̃diff(y,x,τ)

f(x, t) e[ET−EL(x)]τ︸ ︷︷ ︸
G̃B(y,x,τ)

. (B.33)

G̃diff(y,x, τ) satisfies the diffusion equation ∂G̃diff(y,x,τ)
∂τ

= −J̃G̃diff(y,x, τ), which
means that if we set the branch part as zero, the distribution f(x, τ) will evolve into
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Ψ2
T (x), and 〈EL〉 will just be variational energy. Assuming the quantum force FiQ(x)

is constant between x and y, the solution is

G̃diff(y,x, τ) = (4πDτ)−
3N
2

N∏
i=1

e−
|yi−xi−DτFiQ(x)|2

4Dτ ≡
N∏
i=1

G̃
(i)
diff(yi,xi, τ), (B.34)

note that
∫
G̃diff(y,x, τ)dx = 1 which is a Gaussian integral. So, G̃diff(y,x, τ) can be

treat as a probability density.
The branch part G̃B(x, τ) = e−[EL(x)−ET ]τ is usually written symmetrically (Ham-

mond et al. (1994); Kalos and Whitlock (2008)) as

G̃B(y,x, τ) = e−[
EL(x)+EL(y)

2
−ET ]τ . (B.35)

Now the short-time approximated Green’s function for f can be written as

G̃(y,x, τ) = G̃diff(y,x, τ)G̃B(y,x, τ), (B.36)

such that,

f(y, t+ τ) =

∫
G̃(y,x; τ)f(x, t)dx =

∫
G̃diff(y,x, τ)G̃B(y,x, τ)f(x, t)dx. (B.37)

Similar with the non-importance sampling DMC, Eq.(B.26) is the combination
of drifting and branching terms. The entire simulation can be achieved by drifting
and branching process described in Sec.B, just use the modified Green’s function
instead. Finally f will converge to ΨTΨ0. This is because that we are actually still
solving Eq.(B.13), but just by using Eq.(B.26). The φ in Eq.(B.13) converges to Ψ0,
which exactly means that solution of Eq.(B.26) will converge to ΨTΨ0. Moreover, if
we neglect the branch part, the diffusion process will evolve the distribution into Ψ2

T ,
and DMC then just becomes VMC.

Time step error estimating

If all the configurations are taken from the final distribution

f(x) =
ΨTΨ0∫
ΨTΨ0dx

, (B.38)

the expectation value of the local energy EL then becomes

〈EL〉 =

∫
HΨT

ΨT

f(x)dx =

∫
Ψ0HΨTdx∫
ΨTΨ0dx

=
〈Ψ0|H|ΨT 〉
〈Ψ0|ΨT 〉

= E0. (B.39)

Clearly, the local energy serves as the estimator for the ground state energy E0, and
〈EL〉 is called the variational estimator.

However, the Green’s function we use is short-time approximated, so time-step
error is always there. We need to do extrapolation. Just say the local energy 〈EL〉,
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what equation do we use to extrapolate the true E0? A closer look at Eq.(B.18) reveals
that the short-time approximated Green’s function (now call it G′, neglect the constant
ET ) to the 3rd order of τ can be written as (by using CBH formula)

G′ = e−
1
2
τV e−

1
2
τJe−

1
2
τJe−

1
2
τV = e−τH+ τ3

48
[H−2V,[H,V ]] ≡ e−τH

′
, (B.40)

compare this G′ with the exact Green’s function G = e−τH , we find that

H ′ = H +
τ 2

48

[
H − 2V, [H, V ]

]
. (B.41)

This result seems indicating that EDMC
0 (τ) = E0 +c2τ

2. However, since we are actually
using importance sampling, the linear term still exists (Apaja (2009); Chin (1990)).
So, full second order extrapolation

EDMC
0 (τ) = E0 + c1τ + c2τ

2 (B.42)

should be used. As pointed out in (Apaja (2009)), any extrapolation with higher than
second order must be based on different decompositions from Eq.(B.18).

Approximated pure estimator Ãp

Let us denote an operator as A(x) in the coordinate space which does not commute
with the Hamiltonian. Just consider the ground state, now we have three Monte Carlo
estimators for the expectation value of A(x). Namely the pure estimator Ap, the
variational estimator Av and mixed estimator Am (Hammond et al. (1994)),

Ap =

∫
Ψ0A(x)Ψ0dx∫

Ψ2
0dx

, (B.43)

Av =

∫
ΨTA(x)ΨTdx∫

Ψ2
Tdx

, (B.44)

Am =

∫
Ψ0A(x)ΨTdx∫

Ψ0ΨTdx
. (B.45)

We define a function ∆(x) ≡ Ψ0(x)−ΨT (x), and rewrite Am and Av by functional
Taylor expansion series in ∆. Now we have

Am = Ap +

∫
dxΨ0[Ap − A(x)]∆ +O(∆2), (B.46)

Av = Ap + 2

∫
dxΨ0[Ap − A(x)]∆ +O(∆2), (B.47)

combining them we have

Ap = 2Am − Av +O(∆2) ≈ 2Am − Av ≡ Ãp. (B.48)

Eq.(B.48) the approximated estimator Ãp provides a better way to evaluate the pure
estimator Ap than just the mixed or the variational estimators, as long as ∆ is small.
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B.4 Diffusion Monte Carlo Algorithm

The algorithm for N -particle system as illustrated by Fig. B.1 mainly consists the
following steps (Hammond et al. (1994); Apaja (2009)).

N particles

drift

N particles

N particles

branch

N particles

drift

N particles

N particles

branch

… N particles

drift

N particles

N particles

prepare the initial  (!) walkers/configurations  according to a reasonable distribution by VMC

Mth Step

Compaction and form the new  (") walkers(configurations)

branch

Go to the next step/generation

Figure B.1: The illustration of the parallel DMC algorithm. Each walker means a
computer core which can store the configuration of the N -particle system.

Initialization For the N -particle system, first we need to choose the short-time
step τ and M configurations (walkers) as the first generation, let us denote the
M as M (1). We then use M(RT)2 algorithm to make this M (1) configurations
distributed according to the importance sampling wave function Ψ. In other
words, we set the initial wave function φ as the importance sampling function Ψ.
This step is carried out by the VMC procedure in which we also calculate the
Evar ≡ 〈ψT |H|ψT 〉

〈ψT |ψT 〉
= 〈EL〉, and take this Evar as the trial energy ET for the first

generation.

Drifting Then, let us begin with the first walker in the initial M (1) configurations. In
this walker, we drift all the N particles in this walker one by one. The diffusion
part of the Green’s function tells us that, for the ith particle, we can drift it from
the old position xi to its possible new position yi according to

(yi)α = (xi)α +Dτ(FiQ)α + χ, (B.49)

where χ is a Gaussian random number with zero mean value and 2Dτ as variance,
the subscript α means the x, y or z component of the ith particle. The acceptance
probability A(y,x, τ) = min[1, q(y,x, τ)] in the M(RT)2 algorithm should have
q(y,x, τ) = [G̃diff(x,y, τ)|Ψ(y)|2]/[G̃diff(y,x, τ)|Ψ(x)|2]. Now we use A(y,x, τ)
to judge if this move is accepted. In principle we should move all the particles
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(not one by one) in a walker at the same time, then judge if the new walker is
accept. If the time step τ is small, the acceptance ratio of a good DMC run
should be close to 100%. In principle we should make sure the drift force is a
constant during the time step (however this condition is actually violated, and
that is why there is a linear term of time-step error in the extrapolation function).
Anything violating the short-time approximation should be well-treated.

Branching Until here, the old walker x with M (1) particles has been ‘drifted’ to the
new walker y. Now we need to do branching. Namely, we need judge how many
of the new walkers do we need, zero (means we destroy the new walker), one,
two, three or more? We judge this by first calculating

G̃B(y,x, τ) = e−[
EL(x)+EL(y)

2
−ET ]τeff , (B.50)

and then

MB = MIN
[
INT[G̃B + RAN], 2

]
, (B.51)

here RAN means a uniform random number and INT means the integer part.
Here the 2 is put by hand, we can use other values. This upper limit is to prevent
more and more walkers sinking into abnormal regions where MB is very big
which may cause incorrect distributions. If MB is 0, we destroy this walker. If
MB is 1, we keep the walker. If MB ≥ 2, we keep MB copies of the new walker.
Usually MB is around 1.

Ergodicity Until here, in the first generation of M (1) walkers, we have drifted and
branched the first walker. Now we need to drift and branch all the rest of the
walkers in the first generation. So we do it in this stage. Once we finished this,
we go to compaction.

Compaction Now, all the M (1) walkers in the first generation has been drifted and
branched. Some were killed, some remain, some were replicated. In this procedure
we just remove those dead walkers and form the new M (2) number of walkers
for the second generation.

Population control Once we obtain the M (2) walkers, we need to keep the number
of walkers in each generations almost the same as the initial M (1). The feedback
mechanism I use is direct shrinking.

Loop Now we have the new generation of M (2) walkers, we then go to the loop,
Drifting→Branching→Ergodicity→Compaction→Population control→Drifting,
and the number of the loops is the number of the total generations. The number
of generations is large enough such that all the excited states are removed, and
the distribution of walkers are stabilized and is Ψφ0.

Calculations After enough generations of diffusion for the given time step τ , we
sample 〈EL〉 from the stabilized generations. We take the average of those 〈EL〉
and find its error. We then do extrapolation to obtain the ground state energy
with error bar.
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APPENDIX C

AUXILIARY FIELD DIFFUSION MONTE CARLO BRIEF
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C.1 Formalism

DMC with or without importance sampling mentioned previously, can be taken
as a special case of AFDMC (Schmidt and Fantoni (1999); Gandolfi (2007); Carlson
et al. (2015)). In general, in DMC simulations, the evolution of a state can be cast
into such a form,

|Ψ(t+ δt)〉 =

∫
dXP (X)T (X)|Ψ(t)〉, (C.1)

where X are a series of variables called auxiliary fields. Note that X are not necessarily
coordinates. P (X) is the normalized probability density. T (X) is an operator acting
on |Ψ(t)〉, it basically tells us how to move the walkers which form the state |Ψ(t)〉.
As δt→ 0, we expect that the propagator is given by

e−(H−ET )δt =

∫
dXP (X)T (X). (C.2)

We can think of |Ψ(t)〉 as a linear combination of NW walker states |RiSi〉 with
corresponding weight wi such that

|Ψ(t)〉 =

NW∑
i=1

wi|RiSi〉, (C.3)

where R and S denote the spatial and spinor (spin-isospin) part in a walker. Here the
amplitude of different walkers are related by Kronecker delta 〈RjSj|RiSi〉 = δij.

The key is that, we sample X from P (X), then use T (X) to move each walker
|RiSi〉 into the new walker |R′iS ′i〉 with its weight W (X,Ri, Si),

T (X)|RiSi〉 = W (X,Ri, Si)|R′iS ′i〉. (C.4)

With importance sampling, we denote |ΨTΨ(t)〉 as a state such that we define

〈RiSi|ΨTΨ(t)〉 ≡ 〈ΨT |RiSi〉〈RiSi|Ψ(t)〉, (C.5)

and that

|ΨTΨ(t)〉 =

NW∑
i=1

wi|RiSi〉. (C.6)

In other words, it is

|Ψ(t)〉 =

NW∑
i=1

wi|RiSi〉
〈ΨT |RiSi〉

. (C.7)

Consider that actually wi = 1, Om the mixed average of operator O can be written as

Om =
〈ΨT |O|Ψ(t)〉
〈ΨT |Ψ(t)〉

=
1

NW

NW∑
i=1

〈ΨT |O|RiSi〉
〈ΨT |RiSi〉

=
1

NW

NW∑
i=1

Ô†〈ΨT |RiSi〉
〈ΨT |RiSi〉

. (C.8)
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Putting Eq.(C.7) into Eq.(C.1) we have

|ΨTΨ(t+ δt)〉 =

NW∑
i=1

wi

∫
dXP (X)

〈ΨT |T (X)|RiSi〉
〈ΨT |RiSi〉

T (X)|RiSi〉
W (X,Ri, Si)

. (C.9)

Note that

|R′iS ′i〉 =
T (X)|RiSi〉
W (X,Ri, Si)

. (C.10)

Now we need a normalized distribution

P̃ (X) =
P (X)

N

〈ΨT |T (X)|RiSi〉
〈ΨT |RiSi〉

, (C.11)

in which the normalization factor

N =

∫
dXP (X)

〈ΨT |T (X)|RiSi〉
〈ΨT |RiSi〉

, (C.12)

so that we can collect all the new walkers |R′iS ′i〉 with less fluctuation. Neglecting
O(δt2), we have

N = e−[EL(RiSi)−ET ]δt, (C.13)

where the local energy is given by

EL(Ri, Si) =
〈ΨT |H|RiSi〉
〈ΨT |RiSi〉

=
Ĥ〈ΨT |RiSi〉
〈ΨT |RiSi〉

. (C.14)

Now Eq.(C.9) can be written as

|ΨTΨ(t+ δt)〉 =

NW∑
i=1

wi

∫
dXP̃ (X)e−[EL(RiSi)−ET ]δt T (X)|RiSi〉

W (X,Ri, Si)
. (C.15)

C.2 Hubbard-Stratonovich Transformation

The key of AFDMC is to reduce the quadratic dependence of operators to linear,
with the Hubbard-Stratonovich transformation,

e
O2

2 =
1√
2π

∫
dxe−

x2

2 exO, (C.16)

such that the interaction between nucleons can be conveniently cast into the form of
DMC.

If possible, we can find ways to write a Hamiltonian into N operators with quadratic
dependence, that is

H =
1

2

N∑
j=1

λjO
2
j , (C.17)
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and then the DMC propagator(neglecting O(δt2)) can be written as

e−(H−ET )δt =

∫
dx1...dxN︸ ︷︷ ︸

dX

1

(2π)N/2
e−

1
2

∑N
j=1 x

2
j︸ ︷︷ ︸

P (X)

e−i
∑N
j=1 xj
√
λjδtOjeET δt︸ ︷︷ ︸

T (X)

, (C.18)

neglecting O(δt3/2), the normalized distribution P̃ (X) can be written as

P̃ (X) =
1

(2π)N/2
exp

−
1

2

N∑
j=1

[
xj + i

√
λδt
〈ΨT |Oj|RiSi〉
〈ΨT |RiSi〉︸ ︷︷ ︸

〈Oj〉

]2

 , (C.19)

which means that χj ≡ xj+i
√
λδt〈Oj〉 is a gaussian random number with unit variance.

In other words, we choose each auxiliary field xj by

xj = χj − i
√
λjδt〈Oj〉. (C.20)

We move each walker by such an operation

|R′iS ′i〉 = e−i
∑N
j=1 xj
√
λjδtOj |RiSi〉, (C.21)

and the weight of the new walker |R′iS ′i〉 is given by e−[EL(RiSi)−ET ]δt.
Hubbard-Stratonovich transformation can be mathematically understood as a

Fourier transform. Consider that if we define

O ≡ −iÕ, (C.22)

F (Õ) ≡ e−Õ
2/2, (C.23)

the Fourier transform pair is

F (Õ) =

∫
dx

2π
e−ixÕF̃ (x), (C.24)

F̃ (x) =

∫
dÕeixÕF (Õ) =

∫
dÕeixÕe−Õ

2/2 =
√

2πe−x
2/2. (C.25)

Substituting Eq.(C.26) back to Eq.(C.24) we have

e−Õ
2/2 =

∫
dx√
2π
e−x

2/2e−ixÕ, (C.26)

which is essentially the same as Eq.(C.16).
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C.3 AFDMC and the Standard DMC with Importance Sampling

Let us consider the Hamiltonian

H =
A∑
j=1

3∑
α=1

p2
jα

2m
+ V (R), (C.27)

the approximated propagator e−(H−ET )δt after Hubbard-Stratonovich transformation
is

e−
∑
j

∑
α

p2jα
2m

δte−[V (R)−ET ]δt=

∫ ∏
jα

dxjα
1√
2π
e−

x2
jα
2

︸ ︷︷ ︸
dXP (X)

e−
i
~pjαxjα

√
~2δt
m

weight︷ ︸︸ ︷
e−[V (R)−ET ]δt︸ ︷︷ ︸

T (X)

. (C.28)

For the importance sampling case,

i
√
λjδt〈Oj〉 = i

√
δt

m

〈ΨT |pjα|RS〉
〈ΨT |RS〉

= i

√
δt

m

p†jα〈ΨT |RS〉
〈ΨT |RS〉

= −
√

~2δt

m

∂jα〈ΨT |RS〉
〈ΨT |RS〉

, (C.29)

and therefore the sampled auxiliary field xjα are

xjα = χjα +

√
~2δt

m

∂jα〈ΨT |RS〉
〈ΨT |RS〉

, (C.30)

the new walker |R′S ′〉 with weight e−[EL(RiSi)−ET ]δt is moved by the translation operator,

|R′S ′〉 = e−
i
~
∑
jα xjα

√
~2δt
m

pjα|RS〉, (C.31)

which means that S ′ = S and

R′jα = Rjα + xjα

√
~2δt

m

= Rjα + χjα

√
~2δt

m
+

~2δt

m

∂jα〈ΨT |RS〉
〈ΨT |RS〉

. (C.32)

This is exactly the standard DMC with importance sampling introduced in Sec.B.3.
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C.4 Quadratic Form of the AV6’ Interaction

The Hamiltonian with the AV6’ interaction for A-particle system can be written as

H =
∑
iα

p2
iα

2m
+
∑
i<j

vc(rij) +
1

2

∑
iα,jβ

Cσ
iα,jβσiασjβ

+
1

2

∑
iα,jβ,γ

Cστ
iα,jβ(σiατiγ)(σjβτjγ) +

1

2

∑
iγ,jγ

Cτ
i,jτiγτjγ (C.33)

where the matrices are defined as

Cσ
iα,jβ = vσ(rij)δαβ + vt(rij)(3α̂ · r̂ijβ̂ · r̂ij − δαβ),

Cστ
iα,jβ = vστ (rij)δαβ + vtτ (rij)(3α̂ · r̂ijβ̂ · r̂ij − δαβ),

Cτ
i,j = vτ (rij). (C.34)

Here α, β, γ refer to x, y and z components and α̂, β̂ refer to the corresponding unit
vector, and their nth eigenvectors and eigenvalues can be written as∑

jβ

Cσ
iα,jβψ

σ(n)
jβ = λσnψ

σ(n)
iα ,∑

jβ

Cστ
iα,jβψ

σ(n)
jβ = λστn ψ

στ(n)
iα ,∑

j

Cτ
i,jψ

τ(n)
j = λτnψ

τ(n)
i . (C.35)

We define the following operators,

Oσ
n =

∑
iα

ψ
σ(n)
iα σiα,

Oστ
nβ =

∑
iα

ψ
στ(n)
iα σiατiβ,

Oτ
nα =

∑
i

ψ
τ(n)
i τiα, (C.36)

such that the Hamiltonian can now be written in a quadratic form

H =
A∑
i=1

3∑
α=1

p2
iα

2m
+
∑
i<j

vc(rij) +
1

2

3A∑
n=1

λσn(Oσ
n)2

+
1

2

A∑
n=1

3∑
α=1

λτn(Oτ
nα)2 +

1

2

3A∑
n=1

3∑
α=1

λστn (Oστ
nα)2 (C.37)

which can be conveniently used in AFDMC.
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C.5 Trial Wave Function

The trial wave function used in AFDMC for the N -particle system has the following
form,

ψT (R, S) = ΦS(R)ΦA(R, S), (C.38)

where R ≡ (r1, ..., rN) are the spatial coordinates and S ≡ (s1, ..., sN) are the spin-
isospin part of the system. For example si can be written as

si =

aibici
di

 = ai|p ↑〉+ bi|p ↓〉+ ci|n ↑〉+ di|n ↓〉, (C.39)

where ai, bi, ci and di are complex coefficients for each basis.
The ΦS(R) is composed of the Jastrow two-particle correlation functions and is

given by

ΨS(R) =
∏
i<j

fJ(rij), (C.40)

where fJ is taken from the scalar component of the correlation operator F̂ij in the
Fermi-Hyper-Netted-Chain in the Single Operator Chain approximation (FHNC/SOC).
The antisymmetric part of the trial wave function depends on the particular system to
be studied. The general form is given by the non-interacting fermion wave functions
in the Slater determinant,

ΦA(R, S) = A
N∏
i=1

φα(ri, si) = det[φα(ri, si)], (C.41)

where α is a set of quantum numbers of single-particle wave function. It can be label
as α = {n, j,mj} such that

φα(ri, si) = Rn,j(ri)[Yl,ml(Ω)χs,ms(si)]j,mj , (C.42)

where Rn,j is a radial function, Yl,ml are spherical harmonics and χs,ms are spinor part.
For uniform infinite nuclear matter, we can simulate the system by putting the N

particles in the periodic box of volume L3, and the single-particle function is given by
the plane wave,

φα(ri, si) = eikα·riχs,ms(si), (C.43)

with integers nαx, nαy, nαz, and the quantized momentum vector is given by

kα =
2π

L
(nαx, nαy, nαz). (C.44)
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APPENDIX D

AV6’ LINEARIZING TRICK
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Here I follow the note written by my advisor, and present how the six AV6’
operators in the propagator are linearized. First of all, notice that for non-negative
integer n,

[∑6
p=1 vp(rij)O

p
ij

]n
can still be express by the linear combination of the

same 6 operators (just with different coefficients in front of the each operator). The 6
operators form a group. This is the foundation.

We then follow my advisor’s way of labeling the order of the operators. For a given
ij pair, label them 1 and 2, we wish to calculate the AV6’ propagator linear in the 6
of its operators such that,

e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ

= pc + pσ~σ1 · ~σ2 + ptt12 + pτ~τ1 · ~τ2 + pστ~τ1 · ~τ2~σ1 · ~σ2 + ptτ t12~τ1 · ~τ2 (D.1)

where S12 is the tensor operator in Eq.(2.20). We need to solve for the coefficients
pc, pσ, pt, pτ , pστ , ptτ . We choose z axis to be along r̂ in S12, and for the 6 operators we
can find 6 states in terms of the total isospin quantum number T and spin quantum
number S and its z component Sz. We list the states and the corresponding eigenvalues
for certain operators in Table D.1.

Table D.1: The 6 total isospin and spin states of the AV6’ interaction.
Label State τ1 · τ2 σ1 · σ2 S12 Degeneracy

1 |S = 1, |Sz| = 1〉 ⊗ |T = 1〉 1 1 2 6
2 |S = 1, Sz = 0〉 ⊗ |T = 1〉 1 1 -4 3
3 |S = 1, |Sz| = 1〉 ⊗ |T = 0〉 -3 1 2 2
4 |S = 1, Sz = 0〉 ⊗ |T = 0〉 -3 1 -4 1
5 |S = 0〉 ⊗ |T = 0〉 1 -3 0 3
6 |S = 0〉 ⊗ |T = 0〉 -3 -3 0 1

Next, we sandwich e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ between each
of the 6 labeled states listed in Table D.1, and we get the 6 equations correspondingly,

〈1|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |1〉
⇒ 1○ e1 = exp [−(vc + vσ + 2vt + vτ + vστ + 2vtτ )∆τ ]

〈2|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |2〉
⇒ 2○ e2 = exp [−(vc + vσ − 4vt + vτ + vστ − 4vtτ )∆τ ]

〈3|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |3〉
⇒ 3○ e3 = exp [−(vc + vσ + 2vt − 3vτ − 3vστ − 6vtτ )∆τ ]

〈4|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |4〉
⇒ 4○ e4 = exp [−(vc + vσ − 4vt − 3vτ − 3vστ + 12vtτ )∆τ ]

〈5|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |5〉
⇒ 5○ e5 = exp [−(vc − 3vσ + vτ − 3vστ )∆τ ]

〈6|e−[vc+vσ~σ1·~σ2+vtS12+vτ~τ1·~τ2+vστ~τ1·~τ2~σ1·~σ2+vtτS12~τ1·~τ2]∆τ |6〉
⇒ 6○ e6 = exp [−(vc − 3vσ − 3vτ + 9vστ )∆τ ] .
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From Eq.(D.1), we know that we need to solve for the coefficients pc, pσ, pt, pτ , pστ , ptτ
from the already obtained values of e1, e2, e3, e4, e5, e6,

e1 = pc + pσ + 2pt + pτ + pστ + 2ptτ
e2 = pc + pσ − 4pt + pτ + pστ − 4ptτ
e3 = pc + pσ + 2pt − 3pτ − 3pστ − 6ptτ
e4 = pc + pσ − 4pt − 3pτ − 3pστ + 12ptτ
e5 = pc − 3pσ + pτ − 3pστ
e6 = pc − 3pσ − 3pτ + 9pστ ,

which can be written in the matrix form,
e1

e2

e3

e4

e5

e6

 =


1 1 2 1 1 2
1 1 −4 1 1 −4
1 1 2 −3 −3 −6
1 1 −4 −3 −3 12
1 −3 0 1 −3 0
1 −3 0 −3 9 0




pc
pσ
pt
pτ
pστ
ptτ

 . (D.2)

The coefficients pc, pσ, pt, pτ , pστ , ptτ can be solved by matrix inversion,
pc
pσ
pt
pτ
pστ
ptτ

 =
1

48


18 9 6 3 9 3
6 3 2 1 −9 −3
6 −6 2 −2 0 0
6 3 −6 −3 3 −3
2 1 −2 −1 −3 3
2 −2 −2 2 0 0




e1

e2

e3

e4

e5

e6

 . (D.3)

In other words, once we know e1, e2, e3, e4, e5, e6, the coefficients pc, pσ, pt, pτ , pστ , ptτ
are written as,

pc = (6e1 + 3e2 + 2e3 + e4 + 3e5 + e6)/16,

pσ = (6e1 + 3e2 + 2e3 + e4 − 9e5 − 3e6)/48,

pt = (3e1 − 3e2 + e3 − e4)/24,

pτ = (2e1 + e2 − 2e3 − e4 + e5 − e6)/16,

pστ = (2e1 + e2 − 2e3 − e4 − 3e5 + 3e6)/48,

ptτ = (e1 − e2 − e3 + e4)/24 .

The six coefficients pc, pσ, pt, pτ , pστ , ptτ are the corresponding six up(rij) in Eq.(2.65).
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APPENDIX E

ADDITIONAL CALCULATIONS OF THE RESPONSE FUNCTIONS
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E.1 Angle Averaged Euclidean Response Functions

For any operator Ô which is independent of the momentum k, e.g., Ô can be e−Hτ
or e−V τ defined in Eq.(4.48), we show how to take the angle average of momentum k

in calculating
∫
ρ†(k)Ôρ(k)dΩ/4π in the response functions.

In order to proceed, we first set up the coordinates as shown in Fig. E.1. The polar
angle is θ, the azimuthal angle is ϕ, and dΩ = sin θdθdϕ. The length of k is k, its unit
vector is k̂, the x, y and z components of k̂ are

k̂x = sin θ cosϕ, (E.1)

k̂y = sin θ sinϕ, (E.2)

k̂z = cos θ. (E.3)

The vector between particle j and i is defined as rji ≡ rj − ri. Its length is rji, and
its unit vector is r̂ji and its components are r̂x, r̂y and r̂z.

Figure E.1: The coordinates for the angle averaged Euclidean response functions.

Note that the plane wave eik·rji can be expanded by spherical harmonics (Jackson
(1999)),

eik·rji = 4π
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
` (k̂)Y m

`
∗(r̂ji)

= 4π
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)Y

m
` (θ, ϕ), (E.4)
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where j` are spherical Bessel functions (Abramowitz and Stegun (1964)), and the
spherical harmonics Y m

` (k̂) = Y m
` (θ, ϕ). In this calculation we only need those functions

with ` = 0, 2.
For the spherical Bessel functions we need j0(krji) and j2(krji),

j0(krji) =
sin(krji)

krji
, (E.5)

j2(krji) =

(
3

k2r2
ji

− 1

)
sin(krji)

krji
− 3 cos(krji)

k2r2
ji

. (E.6)

For ` = 0, the spherical harmonics of k̂ and r̂ji are the same and they can be
written as,

Y 0
0 (θ, ϕ) = Y 0

0 (k̂) = Y 0
0 (rji) =

√
1

4π
. (E.7)

For ` = 2, the spherical harmonics of k̂ can be written in terms of θ and ϕ as,

Y −2
2 (θ, ϕ) =

1

4

√
15

2π
· e−2iϕ · sin2 θ, (E.8)

Y −1
2 (θ, ϕ) =

1

2

√
15

2π
· e−iϕ · sin θ · cos θ, (E.9)

Y 0
2 (θ, ϕ) =

1

4

√
5

π
· (3 cos2 θ − 1), (E.10)

Y 1
2 (θ, ϕ) = −1

2

√
15

2π
· eiϕ · sin θ · cos θ, (E.11)

Y 2
2 (θ, ϕ) =

1

4

√
15

2π
· e2iϕ · sin2 θ. (E.12)

The spherical harmonics of r̂ji for ` = 2 can be written in terms of r̂x, r̂y and r̂z as,

Y −2
2 (r̂ji) =

1

4

√
15

2π
· (r̂x − ir̂y)2, (E.13)

Y −1
2 (r̂ji) =

1

2

√
15

2π
· (r̂x − ir̂y)r̂z, (E.14)

Y 0
2 (r̂ji) =

1

4

√
5

π
· (2r̂2

z − r̂2
x − r̂2

y), (E.15)

Y 1
2 (r̂ji) = −1

2

√
15

2π
· (r̂x + ir̂y)r̂z, (E.16)

Y 2
2 (r̂ji) =

1

4

√
15

2π
· (r̂x + ir̂y)

2. (E.17)
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The Spherical harmonics are orthogonal such that∫ π

θ=0

∫ 2π

ϕ=0

Y m
` (θ, ϕ)Y m′

`′
∗(θ, ϕ) dΩ = δ``′ δmm′ , (E.18)

and they satisfy,

Y m
`
∗ = (−1)mY −m` . (E.19)

The following derived relations for spherical harmonics will be used,

cos2 θ =
4

3

√
π

5
Y 0

2
∗
(θ, ϕ) +

1

3
, (E.20)

sin θ cos θ cosϕ =

√
2π

15

[
Y −1

2
∗
(θ, ϕ)− Y 1

2
∗
(θ, ϕ)

]
, (E.21)

sin θ cos θ sinϕ =
1

i

√
2π

15

[
Y −1

2
∗
(θ, ϕ) + Y 1

2
∗
(θ, ϕ)

]
, (E.22)

sin2 θ cos 2ϕ = 2

√
2π

15

[
Y 2

2
∗
(θ, ϕ) + Y −2

2
∗
(θ, ϕ)

]
, (E.23)

sin2 θ cosϕ sinϕ =
1

i

√
2π

15

[
Y −2

2
∗
(θ, ϕ)− Y 2

2
∗
(θ, ϕ)

]
, (E.24)

sin2 θ sin2 ϕ =
1

3
− 2

3

√
π

5
Y 0

2
∗
(θ, ϕ)−

√
2π

15

[
Y 2

2
∗
(θ, ϕ) + Y −2

2
∗
(θ, ϕ)

]
. (E.25)

Before calculating the angle averaged response functions, we need to calculate
several relevant angle averaged functions.

1. Angle averaged function
∫
eik·rjidΩ/4π can be calculated as,

1

4π

∫
eik·rjidΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

∫
Y m
` (θ, ϕ)dΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

∫
Y m
` (θ, ϕ)

√
4πY 0

0
∗
(θ, ϕ)dΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

√
4πδ`0 δm0

= j0(krji). (E.26)
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2. Angle averaged function
∫
eik·rji k̂xk̂xdΩ/4π can be calculated as,

1

4π

∫
eik·rji k̂xk̂xdΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

∫
Y m
` (θ, ϕ) sin2 θ cos2 ϕdΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

×
∫
Y m
` (θ, ϕ)

{
1

3
− 2

3

√
π

5
Y 0

2
∗
(θ, ϕ) +

√
2π

15

[
Y 2

2
∗
(θ, ϕ) + Y −2

2
∗
(θ, ϕ)

]}
dΩ

=
∞∑
`=0

∑̀
m=−`

i`j`(krji)Y
m
`
∗(r̂ji)

×

(√
4π

3
δ`0 δm0 −

2

3

√
π

5
δ`2 δm0 +

√
2π

15
δ`2 δm−2 +

√
2π

15
δ`2 δm2

)

=

√
4π

3
j0(krji)Y

0
0
∗
(r̂ji) +

2

3

√
π

5
j2(krji)Y

0
2
∗
(r̂ji)

−
√

2π

15

[
j0(krji)Y

−2
2
∗
(r̂ji)− j2(krji)Y

2
2
∗
(r̂ji)

]
=

1

3

[
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3. Angle averaged function
∫
eik·rji k̂xk̂ydΩ/4π can be calculated as,
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4. Angle averaged function
∫
eik·rji k̂xk̂zdΩ/4π can be calculated as,
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5. Angle averaged function
∫
eik·rji k̂yk̂ydΩ/4π can be calculated as,
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6. Angle averaged function
∫
eik·rji k̂yk̂zdΩ/4π can be calculated as,
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7. Angle averaged function
∫
eik·rji k̂zk̂zdΩ/4π can be calculated as,
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With the help of Eqs.(E.26) to (E.32), the 5 angle averaged response functions∫
ρ†(k)Ôρ(k)dΩ/4π can be conveniently calculated.
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1. For the angle averaged nucleon coupling ρN(k) we have,
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2. For the angle averaged proton coupling ρp(k) we have,
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3. For the angle averaged isovector coupling ρτ (k) we have,
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150



4. For the angle averaged spin-longitudinal coupling ρστL(k) we have,
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σizτizÔσjxτjz + σixτizÔσjzτjz

)
−

A∑
i=1

A∑
j=1

j2(krji)r̂yr̂z

(
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5. For the angle averaged spin-transverse coupling ρστT (k) we have,
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σiyτizÔσjzτjz + σizτizÔσjyτjz
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E.2 Euclidean Response Functions in Different Coordinates

In all the ρ(k), we can choose ri to be particle i’s absolute position, we can also
choose ri to be particle i’s relative position in the center of mass frame. The response
functions calculated using the center of mass ri multiply by a factor of e−k2τ/2M will
be those calculated using the absolute coordinate ri, where M = Am is the total mass
of system. This can be explained by decomposing the separable Hamiltonian into the
center of mass part HCM = P 2/2M , where P =

∑A
i=1 pi is the total momentum, and

a relative part Hrel first (Messiah (2014)), then make use of the momentum translation
operators.

The relevant part in Eq.(4.41) in absolute coordinate is

〈Φ0|
∑
j

e−ik·r̂je−Hτ
∑
n

eik·r̂n|Φ0〉 = 〈Φ0|
∑
j

e−ik·r̂je−
P 2

2M
τe−Hrelτ

∑
n

eik·r̂n|Φ0〉. (E.38)

The total momentum P of the ground state |Φ0〉 is 0, and the momentum translation
operator eik·r̂n will move particle n’s momentum by k, therefore

∑
n e

ik·r̂n will change
the system’s total momentum from 0 to k and we have∑

n

eik·r̂n|Φ0〉 = |k〉. (E.39)

Also consider that the Hamiltonian is translational invariant, so [H,P ] = 0 and
therefore [Hrel,P ] = 0, so e−Hrelτ and e−

P 2

2M
τ commute, then Eq.(E.38) becomes,

〈Φ0|
∑
j
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P 2

2M
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∑
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∑
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P 2

2M
τ
∑
n

eik·r̂n|Φ0〉

= e−
k2τ
2M 〈Φ0|

∑
j

e−ik·r̂je−Hrelτ
∑
n

eik·r̂n |Φ0〉. (E.40)

The relevant part in Eq.(4.41) in the center of mass coordinate is

〈Φ0|
∑
j

e−ik·(r̂j−R̂CM )e−
P 2

2M
τe−Hrelτ

∑
n

eik·(r̂n−R̂CM )|Φ0〉, (E.41)

where R̂CM =
∑
i r̂i
A

is the center of the mass operator. Note that e−ik·R̂CM is also a
momentum translation operator which changes the system’s total momentum by −k,

e−ik·R̂CM |Φ0〉 = e−ik·
∑
i r̂i
A |Φ0〉 = | − k〉. (E.42)

So, the combined operator
∑

n e
ik·(r̂n−R̂CM ) = e−ik·R̂CM

∑
n e

ik·r̂n does not change the
system’s total momentum. Therefore, the ground state’s total momentum P remains
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zero after being operated by
∑

n e
±ik·(r̂n−R̂CM ). Also, R̂CM commutes with Hrel so

e±ik·R̂CM and e−Hrelτ commute with each other. Taking all these into consideration,
Eq.(E.41) becomes,

〈Φ0|
∑
j

e−ik·(r̂j−R̂CM )e−
P 2

2M
τe−Hrelτ

∑
n

eik·(r̂n−R̂CM )|Φ0〉

= 〈Φ0|
∑
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∑
n

eik·r̂n|Φ0〉 (E.43)

Comparing Eq.(E.40) and Eq.(E.43), we see that the center of mass result Eq.(E.43)
need to multiply by the factor of e−

k2τ
2M to match the result in absolute coordinate

Eq.(E.40). Take 4He as an example, in our plots, k = 350 MeV/c, m = 939 MeV/c2,
M = 4m = 8, so the factor e−

k2τ
2M becomes e−16.3τ . We calculate our response functions

in the center of mass frame first because it will give lower variance compared with
absolute coordinate (laboratory frame). We then multiply our results by e−16.3τ in
order to compare with the results in Carlson and Schiavilla’s 1994 paper which are
marked as the red dots in Figs. 4.12 and 4.13.
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