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ABSTRACT

Modern manufacturing systems are part of a complex supply chain where customer

preferences are constantly evolving. The rapidly evolving market demands manufactur-

ing organizations to be increasingly agile and flexible. Medium term capacity planning

for manufacturing systems employ queueing network models based on stationary

demand assumptions. However, these stationary demand assumptions are not very

practical for rapidly evolving supply chains. Nonstationary demand processes provide

a reasonable framework to capture the time-varying nature of modern markets. The

analysis of queues and queueing networks with time-varying parameters is mathemati-

cally intractable. In this dissertation, heuristics which draw upon existing steady state

queueing results are proposed to provide computationally efficient approximations

for dynamic multi-product manufacturing systems modeled as time-varying queueing

networks with multiple customer classes (product types). This dissertation addresses

the problem of performance evaluation of such manufacturing systems.

This dissertation considers the two key aspects of dynamic multi-product man-

ufacturing systems - namely, performance evaluation and optimal server resource

allocation. First, the performance evaluation of systems with infinite queueing room

and a first-come first-serve service paradigm is considered. Second, systems with

finite queueing room and priorities between product types are considered. Finally, the

optimal server allocation problem is addressed in the context of dynamic multi-product

manufacturing systems. The performance estimates developed in the earlier part of

the dissertation are leveraged in a simulated annealing algorithm framework to obtain

server resource allocations.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The ability to accurately analyze the performance of a manufacturing system is key

to making sound operational and tactical decisions for any manufacturing organization.

These analyses help managers understand the impact of tactical decisions such a

capacity plans and buffer sizing. Performance analyses also form the basis for due-date

setting and scheduling decisions on an operational level. Queueing networks are one of

the analytic tools widely used for such analyses. Queueing models allow the decision

maker to capture uncertainty in arrival and service processes as well as the flow of

material through the manufacturing system. Each machine can be viewed as a server

and the staging queue in front of the machine as a waiting area. Each job to be produced

in the system is a customer with desired service. Efficient algorithms are available for

the analysis of open and closed queueing networks under steady state assumptions and

are often employed in practice. However, steady state assumptions do not hold true

for most modern manufacturing systems. Varying product mixes and demand create

nonstationary arrival processes, equipment, engineering change orders and staffing

changes cause nonstationary service. Efficient algorithms to analyze queueing networks

under nonstationary conditions are crucial to be able to adapt and plan for such

dynamic demand and service conditions. A significant amount of work has been done

on performance analysis of single customer class, single service station, nonstationary

queues motivated by applications in manufacturing, telecommunications, healthcare,

1



call–center staffing and air traffic management. However, there has been very limited

research on analysis of nonstationary, multi-class queueing networks particularly with

an emphasis on manufacturing systems. For manufacturing systems, incorporating

the dynamic demand and network structure of the system helps understand how

congestion evolves over time at different points of the system. Networks also provide

a basis for modelling the impact of class priorities and buffer sizing. The objective of

this research is to develop computationally efficient algorithms to obtain performance

approximations of such multi-class networks.

1.1.1 Impact of Nonstationarity

The need for efficient algorithms for the performance analysis of nonstationary

queueing networks is motivated through the following examples.

1.1.1.1 Example 1

Consider a three stage serial line of unit rate servers with nonstationary seasonal

Poisson arrivals as shown in Fig. 1.1 with arrival rate intensity, λ(t), given by

λ(t) = 0.8
[
1 + sin

(2πt

100

)]
, t ∈ [0, 1000]

Note that this system has a time-varying arrival but an overall average utilization

ρ̄ = λ̄
µ

= 0.8, where µ is the exponential service rate. Also note that as depicted in

Figure 1.1 the second station has two parallel servers each with service rate of 0.5

jobs/min.

2



Figure 1.1. Three Stage Serial Line
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Figure 1.2. Three Stage Serial Line with Sinusoidal Poisson Arrivals

Fig. 1.2 plots the total work-in-process (WIP) in the system for the serial line

obtained by 1000 simulation replications each of length 1000 minutes. The figure

shows the average WIP level over time along with the maximum and minimum at

each point in time across the 1000 replications. The solid horizontal line in the figure

indicates WIP levels for a stationary arrival process. Clearly, the sinusoidal pattern

of the total WIP is not captured by steady state estimates. Thus, a need exists for

models that can track time-varying arrivals as well as other dynamic system properties.

3



1.1.1.2 Example 2

Flowshops are an ubiquitous class of manufacturing systems where the workstations

are placed in series and all product types visit these workstations in the same sequence.

Consider a three stage flowshop of unit rate servers with two product classes (i = 1, 2)

with complementary linear Poisson arrivals with intensities given by

λ1(t) =
( 0.8t

1000

)
, λ2(t) =

(
0.8− 0.8t

1000

)
, t ∈ [0, 1000]
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(a) Class 1 WIP
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(b) Class 2 WIP

Figure 1.3. Three Stage Flowshop with Complementary Linear Poisson Arrivals

Fig. 1.3(a) and 1.3(b) plot the total WIP of class 1 and 2 respectively in the

flowshop with nonstationary linear Poisson arrivals obtained by 1000 simulation

replications.

Comparing the dynamic trajectories to the horizontal steady state values in Fig.

1.2 and Fig. 1.3 shows us that the use of steady state estimates under nonstationary

conditions again leads to inaccurate and misleading conclusions. The steady state
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estimates fail to capture the time-varying nature of the system’s performance as

arrival conditions vary. Thus, there is a need for computationally efficient performance

evaluation methods for systems with time-dependent parameters.

The scope of this research is limited to manufacturing systems that can be analyzed

as multi-class queueing networks. The primary goal of the proposed research is to

develop analytic approximations for the analysis of dynamic manufacturing systems.

In particular, the performance measures of interest are the first-order and second-order

moments of throughput rates, work-in-process levels and lead times as a function of

dynamic conditions. The focus is primarily on describing performance in response

to dynamic demand (order arrival) rates but the ability to adjust service levels to

accommodate varying demand is also considered.

1.2 Major Contributions

The major contributions of this dissertation are listed below:

1. Computationally efficient approximations are proposed for the performance evalua-

tion of multi-product dynamic manufacturing systems. The arrival processes are

modeled as non-homogeneous Poisson processes and the service time is assumed to

be exponentially distributed.

2. Heuristic approximations are presented for lead time estimation in multi-product

manufacturing systems which can be used for due-date setting and prioritizing

orders.

3. Computationally efficient approximations for incorporating product type priorities

and impact of finite buffer space between workstations are developed. Understand-
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ing the impact of finite buffers and priorities forms the basis for decisions such as

capacity planning and buffer sizing.

4. Optimization schemes are proposed for the allocation of servers in a dynamic

multi-class manufacturing system with multiple servers at each workstation. The

allocation and reallocation of servers in a dynamic fashion is explored for adapting

to the dynamic nature of the arrivals.

Except where otherwise noted, the system is assumed to be "open" in the sense

that arriving orders are dispatched to the shop without constrained release control.

In that sense, the contributions of this dissertation are particularly relevant to make-

to-order systems with time-varying demand processes for products. However, since

make-to-stock systems must also match production to consumption, the results can

be applied in that case as well.

1.3 Outline of the Dissertation

The rest of this dissertation is organized as follows. The performance analysis

of dynamic manufacturing systems with no buffer space restrictions is studied in

Chapter 2. The performance analysis of finite buffer systems and the impact of

product type priorities is analyzed in Chapter 3. Optimization schemes for allocation

and re-allocation of server resources in dynamic manufacturing systems is explored in

Chapter 4. Possible future research directions are presented in Chapter 5.
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Chapter 2

DYNAMIC MANUFACTURING SYSTEMS WITH INFINITE BUFFERS

This chapter explores the use of queueing network models for the performance

evaluation of manufacturing systems under the assumption of infinite buffer space

between workstations. There may be multiple product types with each product having

its own route, but all products have the same priority. The products are processed in

a first-come first-serve scheme at each workstation. These dynamic manufacturing

systems can be modeled and analyzed as a nonstationary queueing network with

multiple customer classes. However, the exact analysis of nonstationary queues

and queueing networks through Markov chain models is mathematically intractable

as it involves sums of Bessel functions. Heuristic approaches for the analysis of

dynamic manufacturing systems are presented in this chapter. The first part of the

chapter presents heuristics based on equivalences between open and closed queueing

networks. The latter part of the chapter presents parametric decomposition based

incremental approximations for the analysis of multi-product dynamic manufacturing

systems. The primary focus is on obtaining reliable first order estimates of WIP

levels and throughput rates as a function of time in a computationally efficient way.

Numerical analysis of the performance of the proposed heuristics is performed against

discrete-event simulations for practically sized flowshop and jobshop instances.
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2.1 Problem Description and Mathematical Formulation

Consider a manufacturing system abstracted as an open queueing network with L

workstations and R product types (job classes). A system with a general flow pattern

defined by the process plans and production volumes of the shop is envisioned. The

service rate of workstation l as a function of number of jobs k at the workstation is given

by µl(k) (µl if static). Let S(r) be the set of workstations visited by part type r. The

part types which visit workstation l are denoted by the set R(l). The routing of product

type r through the system is given by the matrix Pr = [prij] ∀i ∈ {1, . . . , L} and j ∈

{1, . . . , L}, indicating the probability a type r job leaving service station i goes to

service station j. Let the total observation window be of length T time units which is

divided into small time steps. The time step length chosen for approximation is ts.

The instantaneous arrival intensity of part type r at workstation l at time t, t ∈ [0, T ]

is given by λrl(t). The average intensity of the arrival process between time ti and tj

is given by λrl(ti, tj) =
(

1
tj−ti

)∫ tj

ti

λrl(t)dt. The mean number of parts of type r at

station l is denoted by nrl(t) and the total number of jobs of type r in the system

is given by nr(t) =
∑L

l=1 nrl(t). Let nl(t) be the vector of mean distribution of jobs

by part type at workstation l at time t, i.e. nl(t) = (n1l(t), . . . , nRl(t)). The mean

throughput rate for part type r at time t is denoted by Xr(t) and the mean throughput

rate at workstation l for product type r is denoted by Xrl(t). Let χr(t) be cumulative

production of part type r up to time t. The expected visit counts of a part of type r

to workstation l from dispatch until completion are denoted by νrl. The mean internal

arrivals of part type r at workstation l at time t are given by γrl(t). Let ψrl(t) be the

mean number of jobs of part type r leaving workstation l at time t.
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The following assumptions are made:

1. The process plan for each part type is known along with operation setup and

variable processing time.

2. Service discipline at each workstation is First Come First Serve (FCFS) for jobs

of the same part type and is dictated by part priorities for jobs of different part

types. For this chapter, all priorities are assumed to be equal.

3. The capacity of the staging queues are infinite (to be subsequently relaxed).

4. Process routes are known and jobs relate to part types.

5. Workstations are assumed to be reliable. Unreliable workstations can be modeled

by appropriately modifying the exponential service rate assuming no jobs are lost.

2.2 Review of Dynamic Queueing Models

The performance evaluation of dynamic manufacturing systems is viewed as the

analysis of a multi-class nonstationary queueing network with non-homogeneous

Poisson arrivals and exponential service. The first two subsections present a review of

existing work on the analysis of nonstationary queues and queueing networks. The

later part of this section reviews work on lead time forecasting in manufacturing

systems.

2.2.1 Nonstationary Queues

The differential-difference equations describing the dynamics of a nonstationary

Markovian queue Mt/Mt/ct do not have a closed form solution, thus, resulting in

a number of approximations being proposed. The majority of the approximations
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proposed for the analysis of nonstationary queues can broadly be classified into three

categories, namely, systems approximations, numerical approximations and process

approximations (Schwarz et al. (2016), Gross (2008)). Systems approximations usually

employ a period-by-period analysis approach where the nonstationary queue of interest

is approximated by an equivalent stationary queue for a given period. Some notable

systems approximations are the pointwise stationary (PSA) approximation (Green

and Kolesar (1991)), effective arrival rate (EAR) approximation (Thompson (1993)),

lagged Stationary independent period-by-period (SIPP) approximation (Green et al.

(2001), Green et al. (2003)) and the stationary backlog carryover (SBC) approximation

(Stolletz (2008)). Whitt (1991) proved that the PSA is asymptotically correct for

Mt/Mt/s queues as the service rates and arrival rates increase such that instantaneous

traffic intensity remains constant. Numerical approximations usually make some

simplifying assumptions to make the differential-difference equations tractable and

employ numerical procedures to approximate system performance. Some noteworthy

numerical approximations are the closure approximation (Rothkopf and Oren (1979),

Clark (1981), Taaffe and Ong (1987)) and the randomization method (Grassmann

(1977)). Process approximations use limiting arguments to substitute the stochastic

process of interest with a continuous fluid or diffusion process under heavy traffic

assumptions (see Di Crescenzo and Nobile (1995), Mandelbaum and Massey (1995),

Massey and Whitt (1998), Massey (2002), Liu and Whitt (2011), Whitt (2014), Pender

(2014)). Wang et al. (1996) proposed the pointwise stationary fluid flow approximation

(PSFFA) which combines the PSA with a simple fluid flow model to approximate

performance of nonstationary single server queues.
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2.2.2 Nonstationary Queueing Networks

Only limited research has appeared on nonstationary networks and most of that

has had limited computational justification. Duda (1986) proposed a diffusion approx-

imation for the transient analysis of GI/GI/1 queue as the basis for the analysis of an

open, general nonstationary single server queueing network. Tipper and Sundareshan

(1990) suggested a numerical approximation and a nonlinear state model. Massey

and Whitt (1993) study networks of infinite-server queues. Malone (1995) proposed a

decomposition approximation for open nonstationary networks of single-server queues.

Mandelbaum and Massey (1995) investigated fluid and diffusion limits for large scale

Markovian service networks. Whitt (1999) presented a decomposition approximation

framework for time-dependent Markovian queueing networks based on a generalization

of a Jackson queueing network. Nelson and Taaffe (2004) developed a numerically

exact method for the analysis of a multi-class network of PHt/PHt/∞ queues. Al-

nowibet and Perros (2009) developed an iterative scheme for estimating mean number

in system and blocking probability for the nonstationary Mt/M/s/s loss queue and

extended it to the analysis of a network of nonstationary loss queues. Loss queues and

loss networks are not directly applicable to the problem being addressed in this chapter

since all arrivals to the system are served through their entire process plan before

leaving the system. The primary interest is in determining system throughput times

and queue lengths for time-varying arrival processes and operating plans, potentially

with limited space or WIP goals. Izady and Worthington (2011) presented approxi-

mations for the analysis of nonstationary loss queues and networks of nonstationary

loss queues. Izady and Worthington (2012) proposed a heuristic staffing algorithm for

time dependent queueing networks motivated by staffing problems in Accident and
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Emergency (A&E) departments. Networks of time-varying many-server fluid queues

were studied in Liu and Whitt (2013). Pender (2016a) analyzed a two stage tandem

queue with coupled processors through a closure approximation for the functional

Kolmogrov forward equations. Pender (2016b) presented a sampling approach for

approximating expectations employed in closure approximations for the analysis of

nonstationary queueing networks. More recently, Askin and Jampani Hanumantha

(2017) and Askin and Hanumantha (2018) discuss stochastic systems approximations

for the analysis of nonstationary queueing networks.

2.2.3 Lead Time Estimation in Dynamic Manufacturing Systems

Estimating the throughput time from the release of a job for manufacture until

its availability for use is a key requirement for ensuring smooth and efficient, lean

manufacturing. Planned lead times as derived from throughput time estimates are

key drivers of MRP systems and form the basis for setting shop priorities and quoting

delivery dates to customers (Vig and Dooley (1993), Askin and Goldberg (2002)).

Accordingly, lead or throughput time estimation has been investigated by many

researchers. Most of this work has dealt with the impact of scheduling rules (see for

instance Baker (1984), Lee (2009), Cheng and Gupta (1989)). Duenyas (1995) studied

the problem of due-date setting and sequencing of orders in a production system with

multiple customer classes with different lead time preferences through a Semi-Markov

Decision Process model of a single stage queue. Duenyas and Hopp (1995) modeled

the lead time quotation problem under three different assumptions - namely infinite

plant capacity, finite plant capacity and a combination of finite plant capacity and

scheduling constraints. Weng (1996) presented optimal policies for order-acceptance
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and lead times for a make-to-order system with two different customer classes - lead

time sensitive customers and lead time insensitive customers. Spearman and Zhang

(1999) investigated optimal lead time policies in a single class manufacturing system

with infinite buffers and general service. They compared the effects of constraining

the fraction of tardy jobs against constraining the average tardiness of jobs. Weng

(1999) prescribed optimal lead time policies for a make-to-order production system

by modeling flow times as a generalized phase type distribution dependent of idle

capacity. Webster (2002) analyzed optimal capacity and pricing policies for a single

stage production system with lead time and price dependent demand. Öztürk et al.

(2006) developed simulation metamodels based on regression trees to estimate lead

times in make-to-order manufacturing systems. A deterministic flow graph method

for determining throughput times for arriving jobs based on current shop status was

proposed in Ioannou and Dimitriou (2012). Queueing analysis and experience indicate

a nonlinear relationship between workload and lead time. A few researchers have

addressed broader stochastic models. Stochastic approximation was used to determine

optimal release times for a fixed set of jobs in Hasan and Spearman (1999). A static

open queueing network model was used to predict lead time in Vandaele et al. (2002).

2.2.4 Motivation for Research

There has been quite a bit of work done on the performance analysis of single

stage, single class, nonstationary queues motivated by applications in manufacturing,

telecommunications, healthcare, call–center staffing and air traffic management. How-

ever, research is limited on analysis of nonstationary, multi-class queueing networks.

For manufacturing systems incorporating the network structure of the system is key
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to understanding how congestion evolves over time at different points of the system.

This understanding is important to estimate throughput times and for determining

appropriate release and control strategies. Networks also provide a basis for modeling

the impact of class priorities. The majority of work on the performance analysis of

nonstationary systems focuses on single class loss networks where customer aban-

doments and rejections occur. There has been very little research on the analysis

of nonstationary manufacturing systems with multiple products. The rest of this

chapter is organized as follows. Section 2.3 presents incremental approximation which

exploit equivalences between open and closed queueing networks. Section 2.4 presents

a parametric decomposition based incremental approximation for the analysis of

nonstationary manufacturing systems with multiple products. Section 2.5 builds on

the throughput rate and WIP level approximations developed in Sections 2.3 and 2.4

to obtain estimates of lead time by product type. The results of the approximations

applied to realistic flowshops and jobshops is presented and discussed in Section 2.6.

2.3 Closed Network Based Performance Approximations

In this section an approximation is developed for performance analysis based on a

closed queueing network paradigm. A closed queueing network is a queueing network

where the number of customers in the system is kept constant, with new customers

being introduced into the system as customers depart the system. Specifically, incre-

mental approximations are presented where the current state of the system is mapped

to an equivalent closed queueing network. In practice, closed networks are known to

be more efficient than open networks from a production efficiency perspective. The

computational advantage is that performance measures for closed networks can be
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computed offline and stored. An aggregated product level approximation is presented

initially, which, is subsequently extended to obtain estimates of WIP and throughput

rates by product type and workstations.

The following additional notation is introduced in this section to represent the

equivalent closed queueing network(s) employed for approximation purposes. Let

the closed product form queueing network with state vector N be C(N), where

N = (nc1, . . . , n
c
R). Let ncrl(N) be the mean total number of jobs on routing part

type r at workstation l for C(N)

(
ncr(N ) =

L∑
l=1

ncrl(N )

)
. Let nc

l (N) be the vector

of distribution of jobs at workstation l by routing part type r for C(N ). Let Xc
r(N )

be the mean throughput rate for part type r of C(N). Efficient algorithms exist for

computing C(N ) (see, for instance, Reiser and Lavenberg (1980)).

2.3.1 Closed Network Based Throughput Model (CNBTM)

The performance of a dynamic manufacturing system at any point in time is

approximated by comparing workstation state against a population of pre-computed

closed queueing networks varying in constant work-in-process levels. The model

operates at the total system level to match progression of each job class. The starting

number of jobs in system is set to match the throughput of an equivalent open network.

The number of jobs of each part type in system are updated through flow balance

equations. The throughput rate for each part type is then obtained by a weighted sum

of throughput rates for the closest static closed network using the floor and ceiling
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WIP levels. Cumulative production is accumulated for each period. The pseudocode

for the approximation is detailed below.

1 Algorithm: Closed Network Based Throughput Model (CNBTM)

2 Use Mean Value Analysis (MVA) (Reiser and Lavenberg (1980)) to solve the

closed queueing network C(N*) (N* sufficiently large).

3 Initialize t = 0. Set N0 = (n1(0), ..., nR(0)) to match an equivalent open

queueing network.

4 Set Xr(0) = Xr
c(N0) for each r = 1, . . . , R.

5 while t ≤ T do

6 t← t+ ts.

7 for r ∈ {1, . . . , R} do

8 nr(t)← max(nr(t− ts) + ts
∑L

j=1 λrj(t− ts, t)− tsXr(t− ts), 0)

9 Xr(t)← (1− αr)Xc
r(Nl) + αrX

c
r(Nu), where

10 Nl = (bn1(t)c, ..., bnR(t)c)

11 Nu = (dn1(t)e, ..., dnR(t)e)

12 αr = nr(t)− bnr(t)c

13 χr(t)← χr(t− ts) +min(tsXr(t− ts), nr(t− ts) + ts
∑L

j=1 λ(t− ts, t))

14 end

15 end

Mean Value Analysis is used to pre-compute performance estimates for a closed

queueing network with sufficiently large constant work-in-process levels. Time is

initialized to zero and the starting CONWIP level is set to match an equivalent open

queueing network with initial arrival rate conditions. The throughput rate at time

zero is initialized in Step 3. Steps 6 through 13 are repeated in increments of ts until

the time horizon of interest is covered completely. Step 8 updates the number in
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system of part type r by adding the expected number of arrivals of part type r to the

system and deducting the expected number of departures from the system in the time

interval (t− ts, t]. Step 9 updates the throughput rate for part type r as a weighted

combination of throughput rates of static closed queueing networks with the floor and

ceiling WIP levels. Step 13 updates cumulative production by part type.

2.3.1.1 Proposition 1

The CNBTM approximation is exact for any stationary closed queueing network

for which MVA is exact.

Proof Consider a multi-class closed queueing network with R part types and L work-

stations. Let the constant number of jobs in system be denoted by Nr, r ∈ {1, . . . , R}.

The starting condition of the network is given by nr(0) = Nr, r ∈ {1, . . . , R}.

Note that for a closed queueing network the following equation holds as there are a

constant number of jobs in the system.

L∑
j=1

λrj(0, ts) = Xr(0), r ∈ {1, . . . , R}

Then Step 8 of CNBTM at time t = ts becomes,

nr(ts) = max(nr(0), 0), r ∈ {1, . . . , R}

= Nr, r ∈ {1, . . . , R}

The throughput rate at time t = ts can be obtained from Step 13 of CNBTM as

Xr(ts) = (1− 0)Xc
r(Nr) + 0Xc

r(Nr + 1), r ∈ {1, . . . , R}
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= Xc
r(Nr), r ∈ {1, . . . , R}

The number of jobs in system and throughput rate remain constant over time and

exactly match standard queueing results. Thus, the CNBTM is exact for any closed

queueing network for which MVA is exact.

2.3.2 Route-Workstation Based Throughput Model (RWBTM)

A linked period-by-period systems approximation approach is proposed for perfor-

mance analysis of manufacturing systems with multiple part types under dynamic

arrival conditions. At each period, the current state of a workstation represented by a

vector of number of jobs by class is compared against a set of static closed queueing

networks varying in constant work-in-process (CONWIP) levels. The static closed

queueing network solutions are obtained through the Mean Value Analysis (MVA)

algorithm (see Reiser and Lavenberg (1980)) for a sufficiently large CONWIP level.

The major advantage of this approach is that the MVA algorithm gives estimates of

WIP by part type and workstation for all intermediate CONWIP levels and can be

pre-computed offline. The closest matching closed queueing network configuration is

then used to update throughput rate by workstation for a given period. The state

of the system for the following period is subsequently updated through flow balance

equations. The pseudo-code for the algorithm is detailed below.
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1 Algorithm: Route-Workstation Based Throughput Model (RWBTM)

2 Use MVA to solve the closed queueing network C(N*) (N* sufficiently large).

3 Initialize t = 0. Set N0 = (n1(0), ..., nR(0)) to match an equivalent open

queueing network.

4 Set Xr(0) = Xr
c(N0) for each r = 1, . . . , R.

5 Set nrl(0) = ncrl(N0), γrl(0) = 0, ψrl(0) = 0, Xrl(0) = νrlX
c
r(N0) for each

r = 1, . . . , R and each l ∈ S(r).

6 while t ≤ T do

7 t← t+ ts

8 for r ∈ {1, . . . , R}, l ∈ S(r) do

9 ψrl(t)← min(nrl(t− ts) + tsλrl(t− ts, t), tsXrl(t− ts))

10 γrl(t)←
∑L

j=1 ψrj(t)p
r
jl

11 χr(t)← χr(t− ts) +
∑L

l=1

[(
1−

∑L
j=1 p

r
lj

)
ψrl(t)

]
12 nrl(t)← nrl(t− ts) + tsλrl(t− ts, t) + γrl(t)− ψrl(t)

13 N∗
l (t) = {N : n∗

l (t) = minN∈N∗ ‖nl(t)− nc
l (N )‖2}

14 Xrl(t)← νrlX
c
r(N

∗
l (t))

15 end

16 end

The MVA estimates are obtained in Step 1 similar to CNBTM with the only

difference being that WIP level estimates by product type and wokrstation are stored

as well. The throughput rate and other auxillary variables are initialized in Steps 2

through 4. Steps 5 through 14 are repeated in time increments of ts until the entire

time horizon is covered. Step 9 tracks the number of departures by part type and

workstation for the time interval (t − ts, t]. Step 10 tracks the internal arrivals by

part type at a workstation. Step 11 updates number of jobs produced by part type.
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Step 12 updates WIP levels by part type for all workstations. Step 13 compares the

current WIP distribution at a workstation against the population of pre-computed

closed queueing solutions to find the closest matching solution. Throughput rate is

updated by part type and workstation in step 14.

The RWBTM approximation has a few limitations which restrict its application to

a wide range of performance evaluation scenarios. The RWBTM approximation does

not perform very well for imbalanced networks (non-identical service requirements at

each workstation for a given product type). This can be explained by the fact that

increasing the CONWIP of a single product results in an increase in the WIP level at

just the bottleneck workstation in the closed queueing network. This behavior makes

it difficult to capture a wide range of WIP level distributions across workstations

for each product type. The other limitation with the RWBTM is that the time

and space requirements become prohibitively large for larger queueing networks.

Given these limitations of RWBTM an open network based parametric decomposition

approximation is proposed in the following section.

2.4 Open Network Based Approximation

In this section the open network representation of the dynamic manufacturing

system is approximated through snapshots the system at discrete points in time.

The approximation combines an incremental time step by time step approach with

parametric decomposition of the network to obtain estimates of throughput rate and

WIP as a function of time.
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2.4.1 Open Network Based Throughput Model (ONBTM)

A decomposition based approach is employed to approximate the performance

of the system in an open network format. For purposes of computational efficiency

the approach implicitly assumes stochastic independence between workstations. The

model is described for a network of single server queues.

Here λrij(t), r ∈ {0, . . . , R}, i ∈ {0, . . . , L}, j ∈ {1, . . . , L} is used to denote rate

of class r arrivals at workstation j from workstation i with workstation 0 representing

external arrivals. The pseudo-code for single server workstations is detailed below.

1 Algorithm: Open Network Based Throughput Model (ONBTM)
2 Initialize nrl.
3 while t ≤ T do

4 Xrl(t)← min

[(
nrl(t)∑

p∈R(l)

npl(t)+1

)
µl,
(
nrl(t)+tsλ

r
0l(t)

ts

)]
5 λrkl(t) = prklXrk(t), k ∈ S(r) \ {0}

6 nrl(t+ ts)← max

[
nrl(t) + ts

(
L∑
j=0

λrjl(t)−
L∑
j=0

λrlj(t)

)
, 0

]
7 t← t+ ts
8 end

The WIP levels are initialized in Step 1. Steps 2 through 7 are repeated in

increments of ts until the time horizon of interest is covered. At each iteration

throughput rate by workstation and product type are updated. This is followed by

estimating internal arrival rates between workstations. Finally WIP levels are updated

through flow balance and time is incremented. Step 4 adjusts effective service rate for

the proportional number of jobs of each part type and overall throughput to the WIP
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relationship for an M/M/1 queue. Specifically, for an M/M/1 queue, the number

of jobs N in the system is related to the utilization ρ by N = ρ
(1−ρ)

. Inverting this

relationship provides ρ = 1
(N+1)

. Multi-server systems could be adjusted accordingly.

Production is also limited by the available jobs.

2.4.1.1 Proposition 2

The ONBTM approximation is exact for a single part type stationary open

queueing network with exponential service as ts → 0.

Proof Consider a single class stationary open queueing network with L single server

workstations having exponential service with rate µl. Jobs arrive at the network

according to a stationary Poisson process with rate λ. The subscript r is dropped for

the rest of this proof as the network has a single job class.

Consider an arbitrary workstation, l in this network. The starting number of jobs

at workstation l can be computed by using the steady state M/M/1 result. Thus,

nl(0) =
λ

µl − λ

Given the starting condition, nl(0) of workstation l use Step 4 of ONBTM to

obtain the below relation.

lim
ts→0

Xl(0) = min

[(
nl(0)

nl(0) + 1

)
µl,

(
nl(0)

ts
+ λδ(l)

)]
,

where δ(l) =


1, if external arrivals at station l

0, otherwise
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= min(λ,
nl(0)

ts
+ λδ(l))

= λ

Advancing to the next time step and applying equation Step 6 of ONBTM, the

number of jobs at workstation l at time ts is given by

nl(ts) = max

[
nl(0) + ts

(
L∑
j=0

λjl(0)−
L∑
j=0

λlj(0)

)
, 0

]

= nl(0) since
L∑
j=0

λjl(0) =
L∑
j=0

λlj(0) under stationary conditions

The above relations establish that the estimates of mean throughput rate and mean

number of jobs at workstation l from ONBTM remain constant over time and exactly

match standard queueing results. Since the choice of workstation l is arbitrary, the

ONBTM approximation is exact for a single class stationary open queueing network.

2.5 Lead Time Forecast under Dynamic Conditions

Estimates of WIP (nr(t) or nrl(t)) and throughput rates (Xl(t) or Xrl(t)) are

obtained from the CNBTM, RWBTM and ONBTM. These estimates are meaningful

for operational control in managing resources. In addition, it may be of interest to

estimate flow times for lead time quotation, material planning or other purposes.

Four separate lead time forecasts are derived from each of the above estimates as

detailed below.
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Consider a job on routing part type r entering the system at time tcurr. Let vr be

a one-to-one mapping from {1, .., |S(r)|} to S(r) such that vr(i) = l implies the ith

workstation visited by a job of product type r is workstation l.

2.5.1 Little’s Law Based Lead Time Forecast (LTF1)

The expected completion time for a job on part type r at workstation l, tcomprl

can be calculated using Little’s Law for the current state of the system. The lead

time forecast is then obtained by a weighted average of waiting times (by Little’s

Law) for all periods covered by the time interval between time of start and expected

completion time.

1 Algorithm: Little’s Law Based Lead Time Forecast (LTF1)
2 Compute Xrl(t), nrl(t) ∀ r ∈ {1, . . . , R}, l ∈ S(r), t ∈ {0, ts, 2ts, . . . , d Tts e}
3 for r ∈ {1, . . . , R} do
4 Initialize t = tcurr
5 for i ∈ {1, . . . , |S(r)|} do
6 Compute expected time of completion at workstation vr(i) as

tcomprvr(i) ←
(
nrvr(i)(t)

Xrvr(i)(t)

)
7 Compute lead time forecast for workstation vr(i) as

wrvr(i)(t)←
[⌈

tcomp
rvr(i)

ts

⌉
+ 1
]−1

⌈
t
comp
rvr(i)
ts

⌉
∑
k=0

nrvr(i)(t+kts)

Xrvr(i)(t+kts)

8 t← t+ wrvr(i)(t)

9 end
10 Wr(tcurr)← t− tcurr
11 end
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The first lead time approximation, denoted LTF1, computes the expected lead

time for each product type assuming a job of that product enters the system at

time tcurr. The approximation iterates over the sequence of workstations a job of

a certain product type visits and computes the expected completion time at each

workstation. The expected completion times are propagated from one workstation in

the jobs processing sequence to the next until all workstations in the sequence are

exhausted. The estimates of throughput rates and WIP levels are obtained from one

of the approximations presented in previous sections in Step 2. Step 3 initializes the

time of entry of a job of product type r to tcurr. Steps 3 through 10 are repeated until

all stations in a jobs processing sequence are covered. Step 6 computes the Little’s law

estimate for time in system type given current workstation conditions. Step 7 takes

an average of Little’s Law estimate for every time step of length ts in the interval

[t, t+ tcomprvr(i)] to give a lead time forecast for product type r at workstation vr(i). The

workstation level lead time forecasts are accumulated over steps 3 through 10. The

lead time forecast W(tcurr) is obtained by deducting tcurr from the accumulated lead

time in Step 10.
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2.5.2 Average Work Completion Based Lead Time Forecast (LTF2)

Consider a job on routing part type r entering the system at time tcurr. The

amount of work completed on this job in subsequent time windows can be estimated

and combined to estimate the time at which this job leaves the system. Using time

step ts the model accumulates effective processing time for the job. The model can be

viewed as either a processor sharing analogy with average WIP or a clearing function

with FCFS processing.

1 Algorithm: Average Work Completion based Lead Time Forecast (LTF2)
2 Compute Xrl(t), nrl(t) ∀ r ∈ {1, . . . , R}, l ∈ S(r), t ∈ {0, ts, 2ts, . . . , d Tts e}
3 for r ∈ {1, . . . , R} do
4 Initialize t = tcurr
5 for i ∈ {1, . . . , |S(r)|} do
6 Compute lead time forecast for workstation vr(i) as

j∗ = min

{
j ∈ Z+ :

∑j
k=0

tsXrvr(i)(t+kts)

nrvr(i)(t+kts)
≥ 1

}
7 wrvr(i)(t) = j∗ts
8 t← t+ wrvr(i)(t)

9 end
10 Wr(tcurr)← t− tcurr
11 end

Step 6 uses a processor sharing analogy to determine the index of the earliest time

step, j, at which the proportion of work completed on a given job exceeds 1. Step 7

computes time spent in system by part type and workstation.
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2.5.3 Average Time Remaining Lead Time Forecast (LTF3)

LTF3 iterates across time steps until the first period in which Little’s Law would

imply time at the workstation is less than accumulated time.

1 Algorithm: Average Time Remaining Lead Time Forecast (LTF3)
2 Compute Xrl(t), nrl(t) ∀ r ∈ {1, . . . , R}, l ∈ S(r), t ∈ {0, ts, 2ts, . . . , d Tts e}
3 for r ∈ {1, . . . , R} do
4 Initialize t = tcurr
5 for i ∈ {1, . . . , |S(r)|} do
6 Compute lead time forecast for workstation vr(i) as

j∗ = min
{
j ∈ Z+ :

(
nrvr(i)(t+jts)

Xrvr(i)(t+jts)

)
≤ jts

}
7 wrvr(i)(t) = j∗ts
8 t← t+ wrvr(i)(t)

9 end
10 Wr(tcurr)← t− tcurr
11 end

Step 6 computes the earliest time step, j, at which the actual time accumulated by

moving from one period to the next exceeds the instantaneous Little’s law estimate for

time in system. Step 7 computes time spent in system by part type and workstation.
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2.5.4 Average Time Remaining Lead Time Forecast (LTF4)

LTF4 is similar to LTF3 except it uses a weighted average of throughput time

estimates as time advances.

1 Algorithm: Average Time Remaining Lead Time Forecast (LTF4)
2 Compute Xrl(t), nrl(t) ∀ r ∈ {1, . . . , R}, l ∈ S(r), t ∈ {0, ts, 2ts, . . . , d Tts e}
3 for r ∈ {1, . . . , R} do
4 Initialize t = tcurr
5 for i ∈ {1, . . . , |S(r)|} do
6 Compute lead time forecast for workstation vr(i) as

j∗ = min

{
j ∈ Z+ :

j∑
k=0

(
nrvr(i)(t+kts)

(j+1)(Xrvr(i)(t+kts))

)
≤ jts

}
7 wrvr(i)(t) = j∗ts
8 t← t+ wrvr(i)(t)

9 end
10 Wr(tcurr)← t− tcurr
11 end

Step 6 computes the earliest time step, j, at which the actual time accumulated by

moving from one period to the next exceeds the time averaged Little’s law estimate for

time in system . Step 7 computes time spent in system by part type and workstation.

Simplified versions of the above lead time forecasts are used for the CNBTM model

as it only provides class level estimates of WIP and throughput rates.
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2.6 Results and Analysis

The CNBTM and ONBTM approximations are tested on large flowshop and

jobshop instances in this section. Approximation estimates are compared against

one thousand simulation replications each of length 1000 minutes. The plots in the

rest of this section present a comparison of simulation estimates (solid lines) against

approximation estimates (dashed lines).

The relative errors presented in the rest of this section are calculated as shown

below. Reported values are average normalized relative error equally weighted over

the 1000
ts

time intervals. Normalized relative error (NRE) at any time t is given by

max(0, |θAPPROX(t)− θEXT (t)| − ε)
θEXT (t) + ε

∗ 100 (2.1)

where θEXT (t) is the exact value at time t (based on the average of the simulation runs),

and θAPPROX(t) is the approximate estimate at time t. The user specified constant ε

is used to guard against the possibility of very small values in the denominator from

skewing the overall relative error. The value of the user specified constant used in the

rest of this chapter are ε = 10−3 for WIP levels and ε = 1 for throughput as deviations

in performance estimates below these thresholds are not of practical significance.

2.6.1 Experiment 1: A Large Flowshop

A flowshop with four product types ({1, . . . , 4}) and sixteen single server unit rate

workstations ({1, . . . , 16}) is considered. Jobs are assumed to arrive at the system

according to a nonhomogeneous Poisson process with interarrival times averaging 1.25

minutes. Two nonstationary arrival patterns are considered:
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1. Sinusoidal with frequency 2π = 100 mins. and phase shift between product types.

2. Triangular over T = 1000 mins. with peaks offset by 200 mins.

Configuration Workload Bottleneck Station
1 Balanced -
2 Unbalanced Workstation 4
3 Unbalanced Workstation 8
4 Unbalanced Workstation 13
5 Unbalanced Workstation4 and Workstation 13

Table 2.1. Flowshop Configurations

The following five workload configurations are considered for the flowshop described

above as shown in Table 2.1. The service rate of the bottleneck workstations is set to

0.9 jobs/min. for the imbalanced configurations as opposed to all unit rate servers in

the balanced case.

2.6.1.1 CNBTM Results

The throughput estimates from CNBTM are compared against simulation estimates

for sinusoidal arrivals in Fig 2.1. The CNBTM approximation tracks throughput

very closely for sinusoidal arrivals. The throughput plots are very similar for all five

configurations of the flowshop.
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Figure 2.1. Flowshop with Sinusoidal Poisson Arrivals: Throughput

Total WIP levels over time by class for the flowshop with sinusoidal arrivals are

displayed in Figure 2.2. The CNBTM only provides class level estimates of WIP

without taking into account the distribution of jobs by class at each workstation. It is

observed that the CNBTM does a reasonably good job capturing the trend of WIP

evolution across time although it tends to underestimate the WIP levels uniformly

across all classes for sinusoidal arrivals. This can be explained by the fact that the

CNBTM ignores time-varying network effects as it evaluates the queueing network

at the aggregated class level. The plots are similar for all five configurations of the

flowshop indicating the CNBTM does not significantly distinguish between the five

configurations and provides similar class level estimates as the differences in the five

configurations are at the workstation level.
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Figure 2.2. Flowshop with Sinusoidal Poisson Arrivals: WIP

Throughput estimates from CNBTM are compared against simulation estimates

for triangular arrivals in Figure 2.3. The approximation does very well for class 1 and

class 4 but overestimates throughput for all other classes. The throughput plots are

very similar for all five configurations of the flowshop.
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Figure 2.3. Flowshop with triangular Poisson arrivals: Throughput
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Figure 2.4 plots class level WIP against time for triangular arrivals. In this case,

it is seen that the CNBTM approximation performs very well in capturing the trend

as well as the magnitude of WIP levels across time. However, as observed in the

sinusoidal arrival case the approximation provides similar estimates of total WIP by

class for all the five different configurations. Another interesting observation is that

the approximation tends to lag or lead the simulation WIP estimates in the triangular

case, particularly noticeable in the class 3 plot.
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Figure 2.4. Flowshop with triangular Poisson arrivals: WIP

2.6.1.2 ONBTM Results

Unlike the CNBTM model, the open network ONBTM model tracks WIP levels by

customer class at each workstation over time. In this subsection, plots are provided

for WIP levels by workstation and class over time for class 3, an arbitrarily chosen

class to analyze the performance of the ONBTM approximation. The plots are similar

for all other three classes.
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Figure 2.5 plots the WIP levels at five different points in the system for configuration

1 (balanced) and configuration 5 (imbalanced with bottlenecks at station 4 and

station 13)of the flowshop with sinusoidal arrivals. It is observed that the ONBTM

approximation generally tends to overestimate WIP levels for all workstations. The

ONBTM approximation however, is sensitive to the differences in the five configurations

and accordingly adjusts its WIP estimates at the bottleneck workstations. This is

evident by the increase in WIP for station 4 and 13 in configuration 5.
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Figure 2.5. Flowshop with Sinusoidal Poisson Arrivals
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Table 2.2 summarizes the relative error for throughput estimates obtained from

the CNBTM approximation. It is seen that the CNBTM approximation generally

does well for throughput estimation under dynamic conditions and the relative errors

are below 5% in most of the cases. The relative errors for the steady state estimate

are significantly larger. For instance values in the first row of Table 2.2 are in the

range of 5% to 8%.

Arrivals Configuration Product 1 Product 2 Product 3 Product 4
Sinusoidal 1 7.52 6.74 4.68 4.78
Sinusoidal 2 7.21 6.39 4.93 5.60
Sinusoidal 3 7.51 6.66 4.79 5.44
Sinusoidal 4 7.61 6.76 4.60 5.36
Sinusoidal 5 8.37 6.95 5.09 5.32
Triangular 1 2.69 5.40 8.05 10.39
Triangular 2 2.57 5.18 7.93 10.32
Triangular 3 2.97 5.18 8.46 10.47
Triangular 4 3.51 5.08 8.04 10.21
Triangular 5 3.02 5.04 8.86 10.43

Table 2.2. CNBTM Relative Error for Throughput (%)

Table 2.3 summarizes the relative error for WIP estimates obtained from the

CNBTM approximation. The CNBTM does a reasonably good job of capturing

the WIP trend but tends to significantly underestimate overall WIP levels for both

sinusoidal and triangular arrival patterns.
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Arrivals Configuration Product 1 Product 2 Product 3 Product 4
Sinusoidal 1 16.38 16.11 16.07 16.71
Sinusoidal 2 17.20 17.02 16.65 16.73
Sinusoidal 3 16.08 15.95 16.06 16.10
Sinusoidal 4 16.16 15.77 15.65 16.20
Sinusoidal 5 16.79 16.61 16.96 16.69
Triangular 1 18.32 19.71 22.52 23.82
Triangular 2 17.57 19.00 21.53 23.33
Triangular 3 17.26 18.69 21.48 23.20
Triangular 4 16.96 19.27 21.94 23.74
Triangular 5 16.64 18.31 20.96 23.01

Table 2.3. CNBTM Relative Error for Product Level WIP (%)

Table 2.4 summarizes the relative error for throughput estimates obtained from the

ONBTM approximation. The ONBTM seems to perform pretty well for throughput

estimation with most of the relative errors being below 3%.

Arrivals Configuration Product 1 Product 2 Product 3 Product 4
Sinusoidal 1 2.30 2.35 2.53 3.38
Sinusoidal 2 2.93 3.31 2.75 2.52
Sinusoidal 3 2.72 3.08 2.77 2.80
Sinusoidal 4 2.58 2.76 3.11 2.87
Sinusoidal 5 2.37 3.13 2.78 3.28
Triangular 1 2.42 2.00 2.13 2.36
Triangular 2 2.58 2.52 2.55 2.57
Triangular 3 1.88 2.07 2.41 2.38
Triangular 4 1.27 2.41 2.64 3.31
Triangular 5 1.76 2.53 1.94 2.89

Table 2.4. ONBTM Relative Error for Throughput (%)

Table 2.5 reports the summary statistics of normalized relative errors by prod-

uct type for the ONBTM approximation sampled at a subset of five workstations

(1, 4, 8, 13, 16) for all configurations. The approximation does a reasonably good job

of estimating WIP levels by product and workstation with all errors in the 10% to

20% range.
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Arrivals Product 1 Product 2 Product 3 Product 4

Sinusoidal
Average 9.41 10.34 10.37 9.93
Min. 4.93 5.16 5.88 4.65
Max. 17.71 18.89 19.19 18.13

Triangular
Average 8.77 8.99 8.8 7.77
Min. 3.48 3.99 4.13 4.43
Max. 22.19 22.14 20.2 17.10

Table 2.5. ONBTM Relative Error for WIP Levels (%)

2.6.2 Experiment 2: A Large Jobshop

As a second experiment, a jobshop with four product types ({1, . . . , 4}) and sixteen

unit rate workstations ({1, . . . , 16}) are considered. Jobs are assumed to arrive at

the system according to a nonhomogeneous Poisson process with interarrival times

averaging 1.25 minutes and follow a deterministic route as shown in Table 2.6.

Product Routing
1 4→ 12→ 2→ 5→ 13→ 8
2 2→ 3→ 1→ 4→ 6→ 7→ 5→ 9→ 10→ 11→ 12→ 13→ 14→ 15→ 16
3 1→ 8→ 10→ 9→ 11→ 13→ 14→ 4→ 16
4 4→ 5→ 3→ 8→ 10→ 6→ 9→ 12→ 1→ 15→ 16

Table 2.6. Jobshop Routing
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(a) Sinusoidal Arrivals
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(b) Triangular Arrivals

Figure 2.6. Throughput Plots for CNBTM

Figure 2.6 shows CNBTM closely tracks throughput. The solid line indicates

simulation and the dashed lines analytic model results. The corresponding plots for

ONBTM track throughput pretty closely but are conservative overall. Figure 2.7(a)

displays a comparison of total WIP in system by product type for CNBTM against

simulation estimates. Figure 2.7(b) plots WIP estimates for ONBTM by product type

at the bottleneck workstation. Dashed lines indicate approximation values and solid

lines are average values across the simulation runs
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(a) Total WIP by Product Type for CNBTM.
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(b) WIP by Product Type at bottleneck workstation for ONBTM.

Figure 2.7. WIP for Triangular Arrivals

Figure 2.8 plots total WIP in system by product type for the CNBTM approxima-

tion with sinusoidal arrivals.
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Figure 2.8. Total WIP by Product Type for CNBTM: Sinusoidal Arrivals
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Figure 2.9 compares ONBTM estimates for WIP at the bottleneck workstation

by product type against simulation estimates. In general, it is seen that both mod-

els capture the pattern but tend to overestimate WIP in the ONBTM model and

underestimate WIP in the CNBTM.
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Figure 2.9. WIP by Product Type at Bottleneck Workstation for ONBTM:
Sinusoidal Arrivals

Table 2.7 reports the normalized relative errors of the ONBTM approximation

for the Jobshop experiment while Table 2.8 reports the relative errors for WIP levels

over time. Similar to the results found with two moment queuing approximations

for stationary systems, the throughput estimate errors are typically in the range of

1% to 2%, but WIP estimates at any point in time are less accurate with relative

errors occasionally exceeding 20%. Note however that the pattern clearly follows the

simulation and thus estimates are much more meaningful that constant values that

would be obtained by a stationary model.

Arrival Pattern Product 1 Product 2 Product 3 Product 4
Sinusoidal Arrivals 0.96 2.03 1.73 1.72
Triangular Arrivals 1.02 1.96 1.81 1.85

Table 2.7. ONBTM Relative Errors for Jobshop Throughput (%)
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Arrival Pattern Station Product 1 Product 2 Product 3 Product 4

Sinusoidal

1 18.17 13.38 14.96
4 20.22 11.24 20.81 15.87
8 17.84 16.16 13.53
13 23.08 17.89 20.52
16 20.47 18.74 18.10

Triangular

1 7.74 7.77 9.99
4 23.44 23.05 20.02 18.81
8 9.45 6.71 10.90
13 9.35 9.23 6.68
16 9.94 10.54 9.94

Table 2.8. ONBTM Relative Errors for Jobshop WIP Levels (%)

2.6.3 Lead Time Estimation Results

Lead time estimation is one potential use of the proposed models. The performance

of the CNBTM and ONBTM models for projecting flow times is considered next.

2.6.3.1 CNBTM Results

Figs. 2.10(a) through 2.10(d) compare throughput time estimates of LTF1 through

LTF4 for Product 2 jobs against simulation estimates for the CNBTM. All methods

work well for triangular arrivals with LTF1 and LTF2 the best (results are similar for

other Products). For the sinusoidal demand the lead time forecasts underestimated

the amplitude of the seasonal patterns.
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Figure 2.10. Lead Time Forecast for Product 2

2.6.3.2 ONBTM Results

The ONBTM model tends to overestimate WIP levels (Askin and Jampani Hanu-

mantha (2017)) and this is reflected in the results shown in Figs. 2.11(a) through

2.11(d) for job Products 1 and 2 with both demand patterns.
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Figure 2.11. Lead Time Forecasts for Product 1 and Product 2

Results are similar in pattern for Products 3 and 4. All lead time forecast

methods show similar patterns but LTF3 consistently performs best with ONBTM. To

investigate whether simulation and model estimate differences are due to the format

of the LTF equations or the quality of the performance estimates used, Figs. 2.12(a)

and 2.12(b) use the simulation WIP estimates for Product 1 with the LTF2 and

LTF3 forecasting models. Comparison to Figs. 2.11(a) and 2.11(c) indicate Step 6 of

the LTF2 approximation and Step 6 of the LTF3 approximation provide reasonably

accurate estimates when reliable WIP level estimates are available.
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Figure 2.12. Lead Time Forecast Using Simulation WIP Estimates

Table 2.9 summarizes WIP and throughput computation times for the chosen

problem instance on a desktop computer with a 3.4GHz Intel i7-6700 processor. Lead

time forecast estimates require negligible time. The offline pre-computation phase of

CNBTM takes a significant amount of runtime, but the online computation runtime

is relatively small as compared to ONBTM computation time. However, the CNBTM

does provide an advantage over ONBTM for applications where repetitive performance

evaluation computations might be required. Overall, both the CNBTM and ONBTM

are computationally very efficient as it only takes a couple of milliseconds to compute

estimates for a large jobshop with four product types and sixteen workstation as

observed in 2.9.

CNBTM ONBTMOffline Pre-computation Online Computation
Sinusoidal Arrivals 102.073 0.004 0.15
Triangular Arrivals 105.195 0.003 0.16

Table 2.9. Computation Time Summary (Seconds)
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2.7 Computational Complexity

The computational complexity of the CNBTM and ONBTM algorithms is analyzed

for a manufacturing system with L workstations or stages and R job types (products).

The CNBTM model utilizes pre-computed performance estimates from the MVA

algorithm. The complexity of the MVA algorithm for a closed queueing network with

a fixed K jobs of each Product in the system is O(LRKR) (see Reiser and Lavenberg

(1980)). The complexity of CNBTM given MVA estimates is O(R) for each time step.

The computational complexity of the CNBTM algorithm for the entire time horizon

T under consideration is O
(
Rd T

ts
e
)
. Thus, the CNBTM algorithm’s complexity is

linear in the number of job types and does not depend on the number of stages in the

system. However, it should be noted that the complexity of the MVA algorithm grows

exponentially as the number of job types are increased and linearly as the number of

stages are increased.

The ONBTM algorithm involves O(LR) operations for each time step as the

throughput rate and WIP updates are performed by job type independently for each

workstation. Thus, the complexity for the entire time horizon, T under consideration

is given by O
(
LRd T

ts
e
)
. Hence, the ONBTM algorithm’s complexity is linear in both

the number of job types as well as the number of stages.

2.8 Effect of Approximation Step Size

The impact of the choice of time step size for the CNBTM and ONBTM approx-

imations is studied in this section. Intuitively, one would expect the performance

of the approximations to improve with diminishing step size, although, the trade-off
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being that this improvement would be accompanied by an increase in computation

time. An experiment is performed to study the impact of step-size for the ONBTM

approximation applied to a single server workstation which services two different

product types. A single server workstation is chosen for the purpose of this study over

a network of workstations as the ONBTM is a decomposition based approach. The

reasoning behind choosing to examine a single workstation is that in a decomposition

based approach the choice of step size would have a similar impact regardless of

network structure and size. The accuracy of the approximation would however depend

on its ability to accurately characterize the departure processes from each individual

workstation. The results of the experiment for a two-product single workstation with

sinusoidal arrival patterns is discussed in the rest of this section. The parameter

assumptions for the experiment are detailed in Table 2.10.

Parameter Value(s)
Service Rate, µ 1

Product 1 Arrivals, λ1(t) 0.275(1 + sin( 2πt
100

))
Product 2 Arrivals, λ2(t) 0.275(1 + cos( 2πt

100
))

Time step size, ts µ
2k
, k ∈ {−2,−1, . . . , 6}

Table 2.10. Parameter Assumptions for Time Step Size Experiment

The experiment focuses on measuring impact of step size on WIP level estimates

since WIP levels are usually harder to estimate accurately in general. The range of

time step sizes considered are given by ts = µ
2k
, k ∈ {−2,−1, . . . , 6}.
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Normalized Relative Error
k Product 1 Product 2
-2 48.38 40.60
-1 27.09 20.81
0 21.95 18.62
1 19.47 17.74
2 18.27 17.38
3 17.69 17.21
4 17.41 17.13
5 17.27 17.09
6 17.20 17.07

Table 2.11. Impact of Step Size on ONBTM Accuracy

Table 2.11 reports the normalized relative errors (as defined in equation 2.1)

for performance estimates of a single server workstation serving two products over

the chosen range of time step sizes. The normalized relative errors are computed

by comparing the approximation estimates against 5000 replications of a discrete-

event simulation. The results in Table 2.11 show that although the ONBTM accuracy

improves with smaller time step size a diminishing marginal improvement in accuracy is

observed as the time step size shrinks. Empirically it is observed that the performance

of both the CNBTM and ONBTM algorithms are relatively insensitive to relatively

small time steps ( ts
µl
≤ 0.5).
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Chapter 3

DYNAMIC MANUFACTURING SYSTEMS WITH FINITE BUFFERS AND

PRODUCT PRIORITIES

In this chapter approximations are presented for dynamic multi-product man-

ufacturing systems with finite buffers and product priorities. The study of such

systems is of particular interest as these models capture the dynamics of modern

manufacturing systems accurately. Specifically, multi-class finite queueing networks

with non-stationary arrival processes and a priority discipline are studied for medium

term capacity planning. Priority service discipline allows planners to incorporate

service level differences between different product families while finite buffers model

the network effects of blocking and starvation. Numerical approximations applied

incrementally are explored for the performance analysis of the general class of open

queueing networks described above. The objective is to develop computationally

tractable semi-rapid models that can be useful primarily for performance evaluation

and scenario evaluation. Other potential uses include lead time estimation/quotation,

labor scheduling, equipment acquisition and maintenance planning.

3.1 Problem Definition

Consider a manufacturing facility with multiple product types (or product families),

each with their own pre-defined process plans. Demands for the products are random

with parameter values that vary over time. Workstations have a finite buffer capacity

and process parts based on a static priority assigned to their product family. The
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primary performance measures of interest for this manufacturing facility are the

average product level work-in-process (WIP) at each workstation and the average

throughput by product as a function of time. Other aspects of interest are potential

time-varying bottlenecks which might cause starvation of downstream workstations

and blocking of upstream workstations. Note that the finite buffers and product

specific routing permits modelling of various forms of hybrid and open networks.

3.1.1 Model Formulation

The manufacturing facility described above is modelled as a multi-class queueing

network with non-homogeneous Poisson arrivals, part priorities, and finite buffers.

The queueing network consists of L single-server workstations and R product types

which may represent priority classes (product families). The priority classes are

indexed by r = 1, . . . , R with a lower priority designation indicating higher preference.

The topology of the queueing network is arbitrary and is dictated by the process

plans for each priority class. The routing of jobs in the queueing network from

workstation i to j is described by a routing matrix Pr = [prij], i, j ∈ {1, . . . , R} for

product type r. The service discipline at each workstation is described by either a

first-come first-serve (FCFS) discipline or a priority discipline with non-preemptive

service. The blocking mechanism in the case of finite buffer capacity is assumed to

be Type-I blocking (blocking-after-service). Workstations are assumed to be reliable

with no breakdowns. Unreliable workstations can be incorporated by appropriately

modifying the exponential service rate.
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The following notation is adopted for the rest of this chapter. The set of work-

stations visited by product type r is described by S(r). The set of product types

which visit station l is denoted by R(l). The time-varying Poisson arrival rate for

product type r is given by λr(t). The deterministic routing of parts through the

network is governed by the matrix Pr. The exponential service rate of product type

r at station l is denoted by µl. The buffer capacity at workstation l is denoted by

bl. The time-varying utilization of a station l is denoted as σl(t) while product type

level cumulative utilizations up to that product type are denoted by σr(t). The

individual product type utilizations as a function of time are denoted by ρrl(t). The

time-dependent throughput rates for product type r at station l are denoted by Xrl(t).

The time-varying WIP levels for product type r at station l are denoted by nrl(t).

3.2 Queueing Models with Priorities and Finite Buffers

In this section prior work on developing analytical approximations is reviewed. First

product type priorities are considered and, then, finite buffers. The proposed approxi-

mations for a nonhomogeneous network and the performance of those approximations

will be addressed in later sections.

3.2.1 Queueing Models with Priorities

Priority queueing disciplines in multi-class queueing networks provide a convenient

way of modeling processing preferences between different product types. The priority

queueing discipline can either be preemptive resume (PR) or non-preemptive (also
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called Head of Line (HOL) discipline) based on the service interruption behavior when

a higher priority job arrives. Priority queues can further be classified into homogeneous

and non-homogeneous based on whether or not service requirements are identical

for different classes. The reduced occupancy approximation (ROA) by Morris (1981)

was one of the first attempts at modeling preemptive priority disciplines in queueing

networks. They used Markov Chain modeling to provide an exact analysis of a two

stage closed queueing network with an exponential server at the first stage and an

infinite server queue at the second stage. The ROA technique substitutes two dedicated

servers with adjusted service rates for every single server priority queue in the network.

Improvements to the adjusted service rate used in the ROA technique were suggested

by Kaufman (1984) for the lower priority classes. The shadow approximation proposed

by Sevcik (1977) is an extension of the reduced work-rate approximation for a more

general class of queueing networks. A modification to the exact Mean Value Analysis

(MVA) algorithm was presented by Bryant et al. (1984) for computing expected

wait times for mixed (combination of open and closed routing chains) queueing

networks with preemptive or non-preemptive part priorities. A simultaneous system

of equations inspired by MVA to analyze steady state performance measures of closed

manufacturing networks with part priorities was developed by Shalev-Oren et al.

(1985). The use of approximate MVA algorithms as an enhancement to Bryant et al.

(1984) for computational gains was suggested by Eager and Lipscomb (1988).

Later efforts have focused on dynamic assignment of priorities in multi-class

queueing networks for scheduling and input control purposes. Brownian control

problems have been studied extensively under heavy traffic assumptions for the

dynamic scheduling of multi-class closed queueing networks which results in a priority

ranking of the classes (Harrison and Wein (1990), Wein (1990), Lee and Sengupta
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(1993), Kumar and Kumar (1994)). The stability of multi-class queueing networks

under dynamic priority disciplines were studied in Chang (1994), Stolyar (1995),

Kumar and Meyn (1995), Dai (1995),Dai and Meyn (1995), Chen (1995), and Chen

and Zhang (2000). A fluid model criterion for studying the instability of multi-class

queueing networks with dynamic priorities was developed by Dai (1996).

3.2.2 Finite Buffer Queueing Models

The scope of this section is restricted to work on finite open queueing networks

with Type I blocking (blocking after service completion). Problem structure was

exploited by Gershwin and Schick (1983) to solve the steady state equations associated

with the Markov chain model of a three stage transfer line with finite buffers and

unreliable machines. Suri and Diehl (1984) presented a variable buffer building

block for parametric decomposition of finite queueing networks where performance

measures for a stage with buffer capacity N are computed as a sum of associated

measures for systems with capacity {1, 2.., N} weighed by proportion of time the

stage buffer remains in state of occupancy {1, 2..N}. A parametric decomposition

method was employed by Altiok and Perros (1987) and Takahashi et al. (1980) in

combination with the M/M/1/K loss model with pseudo arrival and service rates

to analyze finite open networks with Type I blocking. The expansion method for

finite open queueing networks was proposed by Kerbache and Smith (1988), where

each stage with a finite buffer is expanded by adding a virtual stage upstream with

a feedback routing arc to replicate the blocking mechanism of the original network.

A two server subsystem based decomposition method for the analysis of single class

finite open tandem queueing networks resulting in a system of linear equations was
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proposed by Dallery and Frein (1993). Two moment approximations for series parallel

configurations of M/M/k servers based on the expansion method were presented by

Jain and Smith (1994). Bounds on performance for reentrant manufacturing lines with

finite buffers under different scheduling policy (buffer priority discipline) assumptions

were provided by Kumar and Kumar (1994). The queue length process for a single

class finite open queueing network with general service and interarrival distributions

was shown to converge to a reflected Brownian motion under heavy traffic assumptions

by Dai and Dai (1999). A solution to the buffer allocation problem for single class

finite open queueing network based on closed form approximations for throughput

and work-in-process (WIP) in terms of buffer size was proposed by MacGregor Smith

and Cruz (2005). Multistage assembly/disassembly systems were analyzed by Manitz

(2008) through a two-moment approximation based on a two-station subsystem

decomposition of the original network. The blocking phase was modeled explicitly

by Osorio and Bierlaire (2009) and the steady state balance equations for a Markov

chain model were solved to develop a single station decomposition approximation of

finite open networks with Type I blocking.

The performance measures of queueing networks with finite buffers, Poisson arrivals

and general service distributions were studied by Smith (2014) through a two-moment

approximation. A rate iterative method based on the generalized expansion method

was proposed by Zhang et al. (2017a) to estimate performance measures of open

queueing networks with type I blocking and general topologies. The correlation

between interdeparture times for a two station production line with Poisson arrivals,

finite buffer space and phase-type service distributions was studied by Tan and

Lagershausen (2017). An iterative optimization algorithm based on sequential
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quadratic programming was presented by Smith (2018) for simultaneous service rate

and buffer size optimization of open queueing networks with exponential servers, Type

I blocking and Poisson arrivals. Tandem queues with unreliable servers and type I

blocking were analyzed by Shin and Moon (2018) through a decomposition approach.

The performance evaluation of multi-class queueing networks in manufacturing

applications have focused on steady state results under Type I blocking assumptions.

The study of part priorities in manufacturing contexts have been to a larger extent con-

centrated on an optimal control framework resulting in a dynamic priority assignment

based on system state. Dynamic priority assignment based on current system state

is of significance for operational decisions but does not provide a basis for capacity

planning for the medium-term to long-term decision making. Priorities based on

customer job or product type importance are envisioned. The methods described

above address different problems than the one being considered in this chapter and/or

require prohibitive computational effort for the problem being addressed by this

chapter. The primary interest is in computationally efficient approaches that can

quickly provide approximate estimates to identify potential problem areas and allow

investigation of various control decisions. The major contribution of this chapter

is a computationally efficient numerical approximation that tracks dynamic system

status for use in capacity planning in a multiproduct manufacturing setting with

possible priorities and finite buffers. In addition to providing descriptive performance

evaluation of candidate resource allocation plans in a dynamic environment, potential

applications for the proposed approximations include use as an embedded performance

evaluator in optimization or surrogate based simulation optimization frameworks.
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The rest of this chapter is structured as follows. Incremental approximations

which leverage exact results from queueing theory are presented in Section 3.3. The

approximations are tested on large scale test instances in Section 3.4 and Section 3.5.

3.3 Performance Evaluation Methods

Heuristic approximations are presented for nonstationary queues and queueing

networks with part priorities and finite buffers in this section.

3.3.1 Single Stage Multi-Class Nonstationary Queue with Priorities

There exist known results for the exact steady-state analysis of single server queues

with non-homogeneous priorities. Standard results also exist for the exact steady-state

results of multi-server queues with homogeneous priorities. The exact analysis of

queues with nonstationary arrivals are mathematically intractable as they involve

infinite sums of Bessel functions. The notion of steady state does not generally apply

to nonstationary queues and queueing networks. However, periodic steady state could

exist in special cases. The queue of interest at this point is a multi-class infinite

capacity queue with a homogeneous priority scheme and nonstationary Poisson arrivals.

The performance of such a queue is approximated by a state model which matches

average system state with known steady state results in a incremental fashion over

time.

55



The validity of incrementally matching system state to an equivalent queue with

a known exact solution for nonstationary queues has been demonstrated by Tipper

and Sundareshan (1990), the Pointwise Stationary Approximation (PSA) (Green and

Kolesar (1991)) and the stationary backlog carryover approximation (SBC) (Stolletz

(2008)).

The time-step system approximation is detailed below as Approximation 1 ( the

subscript l is dropped as this algorithm concerns itself with a single stage queue).

The operational equations are an extension of the equations developed in Askin and

Hanumantha (2018) for FCFS queueing. The model outputs throughput levels (rates)

and queue lengths at each point in time. Note that the approximation relies on

estimates of the effective service rate at each point in time. Effective service rate

is given by the service rate capacity (µl) and the presence of one or more jobs with

proportional distribution across classes by the number of jobs of each class in the

queue.

1 Algorithm: Single stage multi-class queue with homogeneous priority
2 while t ≤ T do
3 for r ∈ {1, . . . , R} do

4 σ(t)←

R∑
p=1

np(t)

R∑
p=1

np(t)+1

5 σr(t)← solution to

[
σ2
r (t)−

(
r∑
p=1

np(t) + σ(t) + 1

)
σr(t) +

r∑
p=1

np(t) = 0

]
6 ρr(t)← σr(t)− σ(r−1)(t), (σ0(t) = 0)

7 Xr(t)← min
[
ρrµ,

(
nr(t)+tsλr0(t)

ts

)]
8 nr(t+ ts)← max [nr(t) + ts (Xr(t)− λr0(t)) , 0]

9 end

10 t← t+ ts
11 end
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The overall utilization of the single stage queue is determined in step 4 by inverting

the relationship between utilization and WIP for a M/M/1 queue. The approximation

made here is that the merging of nonstationary Poisson input streams for the different

job types results in an overall Poisson input stream. The relation between class level

utilization and average WIP of a single stage exponential queue with homogeneous

priorities is described through a quadratic equation (see Appendix for derivation).

This quadratic equation is solved to estimate class level cumulative utilization in

step 5. The existence of an unique and meaningful root of the quadratic equation

that corresponds to class level cumulative utilization are shown in the Appendix.

The cumulative class level utilization’s are then disaggregated into individual class

utilization’s in step 6. The throughput rate for each product type at time t is obtained

in step 7. The first term in step 7 represents station capacity available to a given

class, while, the second term accounts for the fact that throughput rate is limited

by the availability of jobs during that time step. Available jobs are those present at

the start of the time step period and those that arrive during this time step either

from external arrivals or internal routing. Finally step 8 updates current queue length

as the sum of starting queue and arriving jobs minus the processed and departed

jobs. Note at this point infinite buffers are assumed and hence blocking does not occur.

3.3.2 Multi-Class Nonstationary Queueing Networks with Priorities

The numerical approximation presented in section 3.3.1 is extended to an open

network of queues with an universal homogeneous priority scheme. This approximation

combines a linked period-by-period approach with parametric decomposition to
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obtain performance measures of interest for dynamic manufacturing systems. The

approximation is detailed below. The departure processes at each workstation are

assumed to be a renewal process for each priority class, thus allowing merging of these

flows to determine effective arrival rates at downstream workstations.

The relation between WIP and utilization for aM/M/1 queue with a homogeneous

priority service discipline can be expressed as a quadratic equation as shown in step 6

of Approximation 9. The derivation of this expression is presented in the Appendix.

This relation is embedded into an incremental scheme to analyze multi-class open

networks with priority service. Proposition 1 shows that there exists a determinable

solution to the quadratic equation that provides valid results in the queueing network

context.
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1 Algorithm: Multi-class open network with homogeneous priority

2 while t ≤ T do

3 for l ∈ {1 . . . L} do

4 σl(t)←

∑
p∈R(l)

npl(t)∑
p∈R(l)

npl(t)+1

5 for r ∈ R(l) do

6 σrl(t)←

solution to

[
σ2
rl(t)−

(
r∑
p=1

npl(t) + σl(t) + 1

)
σr(t) +

r∑
p=1

npl(t) = 0

]

7 ρrl(t)← σrl(t)− σ(r−1)l(t), (σ0l(t) = 0)

8 Xrl(t)← min
[
ρrlµl,

(
nrl(t)+tsλ

r
0l(t)

ts

)]
9 for k ∈ S(r) \ {0} do

10 λrkl(t)← prklXrk(t)

11 end

12 nrl(t+ ts)← max

[
nrl(t) + ts

(
L∑
j=0

λrjl(t)−
L∑
j=0

λrlj(t)

)
, 0

]
13 end

14 end

15 t← t+ ts

16 end
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Steps 4 through 8 are an extension of the single stage algorithm presented in

Section 3.3.1 to each station in the queueing network. The merging of output flows

from each station to determine effective arrival rates by product type to downstream

workstations is accomplished through step 10. Flow balance equations applied to the

average condition of the system are used to update WIP from time step to the next

as shown in step 12. Queue length is obtained by a basic material balance equation

with a lower limit of 0 for physical stock.

3.3.3 Multi-Class Nonstationary Queueing Networks with Finite Buffers

In this section numerical approximations are presented for finite open queueing

networks with nonstationary arrivals and multiple classes. An additional assump-

tion is made that the buffers of stations where products are introduced into the

network have infinite capacity, i.e., workstations with external arrivals have infinite

buffer capacity. An approximation is proposed based on a linked period-by-period

approach combined with parametric decomposition for performance evaluation

of such networks. The proposed approximation estimates availability of down-

stream stations by product type at each station. It combines this information with

the probability of each of the product type’s r ∈ R(l) being in service at station l

and their process plans to arrive at an estimate of effective availability for the station l.

The basic unit employed for parametric decomposition of the open network is

a M/M/1/K loss system with finite system capacity, K. Note that for an input

buffer limit of bl at workstation l, K corresponds to bl + 1 in the proposed model.

The average utilization of the loss system is deduced from the average queue length
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by approximately solving the polynomial equation (3.1) based on the steady-state

relation between average utilization (ρ = λ
µ
) and average number in system (L) for a

M/M/1/K loss system. The derivation of equation (3.1) is presented in the Appendix.

(L−K)ρK+2 + (1 +K − L)ρK+1 − (L+ 1)ρ+ L = 0 (3.1)

Some key characteristics of M/M/1/K loss queues are exploited to obtain estimates

of system utilization associated with various levels of WIP, say, L, for a given system

capacity K. Denote this relation as ρ(L,K). Note that the overall utilization of a

M/M/1/K loss system can exceed 1 with values ≥ 1 meaning the system is rejecting

arrivals. (Note, however, that in the system of interest, such jobs are not "lost"

but instead result in blocking and the impact of that blocking may percolate back

upstream). This fact is used to replicate the blocking mechanism of the multi-class

finite open networks with time-varying arrivals. Denote the idle probability of the

M/M/1/K queue computed as a function of ρ(L,K) as p0(L,K). The function

computeRho is used to numerically approximate ρ(L,K) over [0, K] in ∆L increments.

Figure 3.1 plots the results of the function computeRho for a system capacity of

3 computed in increments of ∆L = 0.001. Note that the utilization obtained is a

monotonically increasing function of average number in system (L).

p0(L,K) =
1− ρ(L,K)

1− ρ(L,K)K+1
(3.2)

pb(L,K) = ρKp0(L,K) (3.3)
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1 Function computeRho(K, ∆L):
2 for l ∈ {0, 1, . . . d K

∆L
e} do

3 ρ(l∆L, K)←
4 smallest real root of eqn. (1): ρ(l∆L, K) > ρ((l − 1)∆L, K)

5 end
6 return

0 1 2 3
L

0

200

400

600

800

1000

ρ
(L

,K
)

K = 3

Figure 3.1. ρ(L,K) vs. L for K = 3

Denote the downstream workstation for product type r at workstation l as d(r, l). The

availability of downstream workstation for product type r at station l is denoted by

pavlrl . The algorithm for open networks with finite buffers and nonstationary Poisson

arrivals is described below:
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1 Algorithm: Time-varying multi-class open network with finite buffers

2 while t ≤ T do

3 for l ∈ {1 . . . L} do

4 σl(t)← 1− p0

( ∑
p∈R(l)

npl(t), bl + 1
)

5 for r ∈ R(l) do

6 ρrl(t)← nrl(t)σl∑
p∈R(l)

npl(t)

7 pavlrl (t)← 1− pb
( ∑
p∈R(d(r,l))

npd(r,l)(t) + ρrl(t), bd(r,l) + 2
)

8 Xrl(t)← min

[[ ∑
i∈R(l)

nil(t)(p
avl
il (t))∑

p∈R(l)

npl(t)

]
ρrlµl,

(
nrl(t)+tsλ

r
0l(t)

ts

)]

9 for k ∈ S(r) \ {0} do

10 λrkl(t)← prklXrk(t)

11 end

12 nrl(t+ ts)← max

[
nrl(t) + ts

(
L∑
j=0

λrjl(t)−
L∑
j=0

λrlj(t)

)
, 0

]
13 end

14 end

15 t← t+ ts

16 end

The station level utilization, σl(t) is computed in step 4 by solving polynomial

equation (3.1) for station l which relates utilization to system capacity (bl + 1) and

WIP levels (nrl(t), r ∈ R(l)). The station level utilization is then disaggregated

into product type level utilization by using a processor sharing analogy in step 6.

The availability of downstream workstation d(r, l) for product type r at station l

is calculated in step 7 by solving a polynomial equation for station d(r, l). Step

7 considers a finite queue with capacity bd(r,l) + 2 to include the additional server

63



slot of station l. The polynomial equation (3.1) is solved for d(r, l) for WIP level of∑
p∈R(d(r,l))

npd(r,l)(t) + ρrl(t) which combines WIP level at d(r, l) at time t with average

occupancy of the server slot at station l accounted for by product type r. Thus, step 7

effectively introduces an interdependence between station l and each of its downstream

workstations {d(r, l) : r ∈ R(l)}. The throughput rate of product type r at station

l is computed in step 8. The expression

R∑
i=1

nil(t)(p
avl
il (t))

R∑
p=1

npl(t)

computes overall availability

of downstream workstations for station l by using a processor sharing paradigm to

estimate the probability of product type r being in service. Flow balance equations

are used to update time-varying WIP levels in step 12.

3.4 Results for Networks with Product Priorities

In this section the results of empirical tests are provided on the computational

time and accuracy of the proposed numerical approximations for multi-class systems

with priorities. Results are shown for both flowshop and jobshop environments.

Experiment 1: A Large Flowshop

Consider a flowshop with four product types ({1, . . . , 4}) and sixteen single server

unit rate workstations ({1, . . . , 16}). Jobs arrive at the system according to a nonho-

mogeneous Poisson process with interarrival times averaging 1.25 minutes. Consider

two nonstationary arrival patterns representing cyclical and short product life cycle

(technical innovation) patterns:

1. Sinusoidal with frequency 2π = 100 mins. and phase shift between product types.

2. Triangular over T = 1000 mins. with peaks offset by 200 mins.
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The following five workload configurations are considered for the flowshop described

above as shown in Table 3.1. The service rate of the bottleneck workstations is set to

0.9 jobs/min. for the imbalanced configurations as opposed to all unit rate servers in

the balanced case.

Configuration Workload Bottleneck Station
1 Balanced -
2 Unbalanced Workstation 4
3 Unbalanced Workstation 8
4 Unbalanced Workstation 13
5 Unbalanced Workstation 4 and Workstation 13

Table 3.1. Flowshop Configurations

Note that the chosen combination of arrival patterns and service rates result in 80%

overall system utilization over the entire time horizon in the balanced configurations

and 89% utilization at the bottleneck workstations in the unbalanced configurations.

Experiment 2: A Large Jobshop

As a second experiment, a jobshop with four product types ({1, . . . , 4}) and

sixteen unit rate workstations ({1, . . . , 16}) is considered. Jobs are assumed to arrive

at the system according to a nonhomogeneous Poisson process with interarrival times

averaging 1.25 minutes and follow a deterministic route as shown in Table 3.2.

Product Routing
1 4→ 12→ 2→ 5→ 13→ 8
2 2→ 3→ 1→ 4→ 6→ 7→ 5→ 9→ 10→ 11→ 12→ 13→ 14→ 15→ 16
3 1→ 8→ 10→ 9→ 11→ 13→ 14→ 4→ 16
4 4→ 5→ 3→ 8→ 10→ 6→ 9→ 12→ 1→ 15→ 16

Table 3.2. Routing Matrix for Jobshop
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The rest of this section presents results of the multi-product priority approximation

applied to Experiment 1 and Experiment 2 under the assumptions of priority service

discipline. The product types are indexed by priority ∈ {1, 2, 3, 4} where lower

index indicates higher processing priority. The performance measures of interest are

the expected total throughout and the expected work-in-process (WIP) levels as a

function of time. The results of the approximations are compared to 1000 independent

replications of reference discrete-event simulations. The nonhomogeneous Poisson

processes used to describe product demand are simulated by the thinning algorithm

applied to homogeneous Poisson processes (Banks et al. (2005)). The relative errors

presented in the rest of this section are calculated as shown below. Reported values

are average normalized relative error equally weighted over the 1000
ts

time intervals.

Normalized relative error (NRE) at any time t is given by

max(0, |θAPPROX(t)− θEXT (t)| − ε)
θEXT (t) + ε

∗ 100 (3.4)

where θEXT (t) is the exact value at time t (based on the average of the simulation runs),

and θAPPROX(t) is the approximate estimate at time t. The user specified constant ε

is used to guard against the possibility of very small values in the denominator from

skewing the overall relative error. The value of the user specified constant used in

this chapter is ε = 10−3 as it is reasonable to assume that deviations at average WIP

levels or average total throughput less than 0.001 jobs are not of practical significance.

3.4.1 Total Throughput

Figures 3.2 and 3.3 display the total throughput for each product type for the

balanced configurations of the flowshop with sinusoidal and triangular demand pat-

terns respectively. The plots are very similar for all other experiments and hence have
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been omitted to avoid redundancy. The solid line represents the simulation estimates

obtained from 1000 independent replications and the dashed line represents the corre-

sponding approximation estimate. The figures clearly show that the approximation

works well for evaluation of expected total throughput over time. The approximation

captures the magnitude and the trend of total throughput with reasonable accuracy.

The relative errors displayed in Table 3.3 are within 10% of simulation estimates for

bulk of the experiments performed. A progressive reduction in accuracy is observed

as one moves from the highest priority class to the lowest. The errors for the lowest

priority class of the flowshop experiments with triangular arrivals are particularly

large (> 10%). Errors for the top priority product, presumably the most important,

are 1.2% at most and frequently less than 1%.

Figure 3.2. Total Throughput by Product Type: Sinusoidal Arrivals
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Figure 3.3. Total Throughput by Product Type: Triangular Arrivals

Experiment Arrivals Configuration Product
1 2 3 4

1 Sinusoidal 1 1.14 2.74 2.71 5.29
1 Sinusoidal 2 1.07 1.81 2.89 6.49
1 Sinusoidal 3 1.21 1.99 2.65 6.30
1 Sinusoidal 4 0.96 2.36 2.96 5.84
1 Sinusoidal 5 1.09 1.97 2.91 6.90

Average 1.09 2.17 2.82 6.16
1 Triangular 1 0.84 1.38 5.36 11.70
1 Triangular 2 0.73 1.63 5.87 11.71
1 Triangular 3 1.01 1.22 6.13 9.61
1 Triangular 4 0.59 1.48 6.85 10.93
1 Triangular 5 0.62 1.91 6.53 11.46

Average 0.76 1.52 6.15 11.08
2 Sinusoidal - 0.63 0.83 1.09 4.66
2 Triangular - 0.62 0.76 1.68 8.24

Table 3.3. NRE for Total Throughput (%)
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3.4.2 Work-In-Process Levels

Figure 3.4 displays the expected WIP levels by product type for the balanced

flowshop configurations with sinusoidal demand patterns. The solid line represents

simulation estimates from 1000 independent replications while the dashed lines repre-

sent the approximation estimates. The approximation performs extremely well for the

highest priority class, though, a progressive reduction in accuracy observed as one

moves from the highest priority class to the lowest. In the sinusoidal demand pattern

case it is observed that the approximation captures the frequency of WIP variation

over time but overestimates the amplitude of the WIP levels. In the triangular case

similar patterns are observed with the degree of overestimation progressively increasing

for product types with lower priority.

(a) WIP by Workstation: Product 3

(b) WIP by Workstation: Product 4

Figure 3.4. WIP Levels by Workstation: Flowshop with Sinusoidal Arrivals
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Figure 3.5 plots the WIP levels for product type 4 at workstations 4, 8 and 13

for configurations 1 and 5 of the flowshop with triangular demand patterns. The

approximation adequately captures the effects of introducing imbalanced workloads in

the flowshop although the same pattern of overestimation of peak WIP levels persists.

(a) Config 1

(b) Config 5

Figure 3.5. Product 4 WIP Levels by Flowshop Configuration: Triangular Arrivals

Figure 3.6 plots WIP levels at workstations 1, 4, 8, 13 and 16 for the jobshop in

Experiment 2 with sinusoidal and triangular demand patterns respectively . The

plots are arranged in the order of processing sequence for each product type. For

the jobshop the priority discipline is assumed to be fixed across all workstations but

a workstation is visited by a subset of all product types. Apart from the patterns

observed for Experiment 1 it is noticed that the approximation underestimates WIP

levels at workstation 8 in figure 3.6(a).
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(a) WIP by Workstation: Product 3

(b) WIP by Workstation: Product 4

Figure 3.6. Work-In-Process by Workstation: Jobshop with Triangular Arrivals

The relative errors for WIP levels for all twelve experiments (10 flowshop configu-

rations and 2 jobshop configurations) are summarized in Table 3.4. Specifically, Table

3.4 reports the average, minimum and maximum NRE for workstations 1, 4, 8, 13 and

16 by product calculated across the twelve experiments.
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Workstation
1 4 8 13 16

Product 1
Min 5.36 5.41 5.45 5.32 6.00
Avg. 6.36 7.98 9.36 7.97 8.07
Max 7.71 11.23 13.96 11.27 10.46

Product 2
Min 5.58 6.15 6.72 6.32 6.41
Avg. 7.96 9.76 9.80 15.57 15.90
Max 11.41 13.70 17.65 24.40 27.46

Product 3
Min 7.30 11.15 12.01 13.59 13.90
Avg. 13.32 22.90 34.58 28.05 27.04
Max 15.55 32.09 77.73 43.79 43.77

Product 4
Min 10.42 10.33 11.34 13.90 13.84
Avg. 19.89 14.85 20.98 19.09 21.70
Max 33.48 24.73 51.46 27.00 34.47

Table 3.4. Relative Error for WIP by Product and Workstation(%)

3.4.3 Computation Times

Table 3.5 displays the computation times for a time step of ts = 0.125 min. The

running time for all experiments performed were under one second on a laptop with

8GB of RAM. In contrast, 1000 independent simulation replications take about 90

minutes when run in parallel on a laptop with 2 cores and 16 GB of RAM. Thus, the

objective of computational feasibility for rough-cut estimation and scenario analysis is

achieved.
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Experiment Arrivals Configuration Time (s)
1

Sinusoidal

1 0.754
1 2 0.813
1 3 0.711
1 4 0.731
1 5 0.689
1

Triangular

1 0.721
1 2 0.682
1 3 0.783
1 4 0.697
1 5 0.808
2 Sinusoidal - 0.723
2 Triangular - 0.675

Table 3.5. Computation Times (Seconds)

3.5 Results for Finite Buffer Networks

In this section, the focus is limited to WIP levels and probability of blocking

estimates while presenting the results of the finite buffer approximation. Empirical

experience indicates that the performance of the approximations for throughput

estimation are very accurate. Normalized relative errors are consistently below 10%

deviation for all product types.

3.5.1 Experiment Design

A designed experiment is performed to study the accuracy of the finite buffer

approximation under a wide range of parameter and configuration assumptions.

Consider a four-factor factorial experiment with two or three levels of each factor to

study the impact of buffer size, overall utilization, queueing network topology and

configuration, and, demand patterns. The factorial experiment is described in Table
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3.6. Utilizations represent light and moderate to heavy workload. Buffer sizes vary

from being unconstrained to allowing evaluation with relevant blocking probabilities.

Arrival pattern is chosen to be cyclical with offsets that either reinforce or partially

cancel arrivals and triangular for modeling new product introductions and demand

expiration (product life cycles). The configuration defines whether the shop is a

balanced flowshop (no specific bottleneck), a flowshop with two bottlenecks, or a

general job shop.

Factor Level 1 (L1) Level 2 (L2) Level 3 (L3)
Average Utilization, u 0.4 0.8 −

Buffer Size, b Infinite 3 5

Arrival Pattern Sinusoid,
offset = π/4

Sinusoid,
offset = π/8

Triangular,
offset = T/5

Configuration Balanced Flowshop Unbalanced Flowshop Jobshop

Table 3.6. Factorial Experiment

The jobshop configuration in the designed experiment is assumed to have a routing

matrix as displayed in Table 3.7. The routing matrix is chosen carefully to avoid the

deadlock phenomenon commonly experienced in discrete-event simulation of finite

open networks with loops.

Product Routing
1 3→ 1→ 6→ 9→ 10→ 11
2 2→ 3→ 1→ 4→ 6→ 7→ 5→ 9→ 10→ 11→ 13→ 14→ 15→ 16
3 12→ 1→ 4→ 6→ 5→ 10→ 14→ 8
4 3→ 1→ 4→ 6→ 7→ 14→ 16

Table 3.7. Jobshop Routing
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A total of 54 experimental runs are performed as part of the designed experiment.

For each experimental run in the designed experiment simulation estimates of WIP

levels averaged across 500 independent discrete-event simulation replications are

compared against approximation results. In the study of probability of blocking,

simulation estimates averaged across 2000 independent discrete-event simulation

replications are compared against approximation results.

The factorial experiment is used to study the performance of the proposed ap-

proximation at four different stages of each product type’s process plan - at the entry

workstation (designated Entry), the first finite station (designated Start), a station

in the middle of its route (designated Middle) and the last station (designated End).

Note that the Entry station for each product has infinite buffer capacity to preserve

the non-homogeneous Poisson arrival process. The relative errors are averaged across

all product types to understand how well the approximations perform at the chosen

four stages. The primary interest is in main effects and two-way interactions and thus

higher degree interactions are dropped for the purpose of this designed experiment.

Table 3.8 reports the average and the standard deviation of NRE across all product

types by processing stage for each of the designed experiment factors at each of their

levels. For instance, the average NRE over all cases for the Balanced Flowshop, i.e.

Configuration Level 1, was 19.17%. Note that WIP level errors are less than 20% in

all but a few cases. In addition, there is no evidence of deterioration in the quality of

the estimates as products progress further in their route.
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Stage Factor L1 L2 L3
- - Avg. Stddev. Avg. Stddev. Avg. Stddev.

Entry

config 19.17 7.92 17.89 5.95 24.59 18.21
buffer 17.57 5.43 23.67 17.55 20.40 9.96

utilization 15.49 2.74 25.61 15.42 -
arrivals 21.31 9.37 22.42 6.97 17.91 17.56

Start

config 15.73 3.83 14.89 4.01 20.14 8.40
buffer 16.18 4.55 18.12 7.43 16.46 6.33

utilization 15.58 2.90 18.26 8.08 -
arrivals 19.02 7.22 19.06 5.59 12.69 2.55

Middle

config 15.01 5.33 14.95 4.71 17.92 5.70
buffer 13.68 4.66 17.90 5.90 16.30 4.79

utilization 16.41 3.42 15.51 6.79 -
arrivals 18.32 5.69 17.82 4.75 11.74 2.41

End

config 15.59 5.60 15.54 5.37 17.92 6.79
buffer 13.76 4.75 18.79 6.69 16.30 5.65

utilization 16.68 3.67 16.59 7.79 -
arrivals 19.73 6.51 18.33 5.25 11.74 2.48

Table 3.8. NRE of WIP Levels for Designed Experiment

The Analysis of Variance (ANOVA) and the effects test for the factorial experiment

are documented in Appendix A.3. The factorial experiment provides statistical

evidence to support the fact that for the stage Entry where jobs enter the network, the

accuracy of the approximation is driven by the configuration, utilization and their two-

way interaction. The two-way interaction between arrival pattern and configuration

also has a statistically significant effect on the accuracy of the approximation for

the stage Entry. For the stages, Start, Middle, End the factorial experiments show

that all single factor effects and two-way interactions are statistically significant

with the exception of the two-way interactions between configuration and buffer size,

configuration and arrival patterns, and between buffer size and arrival patterns.
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3.5.2 Discussion of Results

The following observations are made with regards to various aspects of the

application of the numerical approximation to nonstationary queueing networks

with finite buffers. These observations are discussed through the use of appropriate

numerical instances.

Observation 1: Buffer size

The impact of buffer size on the performance of the Finite Buffer Approximation

is studied in the subsequent discussion. The Middle station for product type 2 in the

jobshop configuration of the factorial experiment is employed to study the impact of

buffer size on the accuracy of the approximation. Figure 3.7 presents the accuracy as

a function of buffer size for three different cases. Figure 3.7 demonstrates that the

approximation tracks the time-varying pattern of WIP accurately across all buffer

sizes. The approximation is also able to capture the magnitude of WIP reasonably

accurately for all buffer sizes. The finite buffer approximation also does a reasonably

good job of capturing the increase in WIP from buffer size, b = 3 to the infinite buffer

case. The approximation generally seems to lag the simulation estimates for all buffer

capacities with the lag in estimates improving as the buffer size increases.
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(a) b = 3 (b) b = 5

(c) b = ∞

Figure 3.7. Impact of Buffer Size on Finite Buffer Approximation

Observation 2: Probability of blocking

In this discussion, the focus is on the ability of the approximation to accurately

estimate the probability of being blocked for a given workstation in the network.

Blocking can occur when one of the downstream workstations has a full buffer. The

probability of a blocked downstream workstation by product type r at workstation l

at time t, Prbrl(t), is given by the below expression.

Prbrl(t) =
nrl(t)(1− pavlrl (t))∑

i∈R(l)

nil(t)
=

nrl(t)pb

(
bd(r,l) + 2,

∑
p∈R(d(r,l))

npd(r,l)(t) + ρrl(t)
)

∑
i∈R(l)

nil(t)
(3.5)
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The expression in equation 3.5 combines the probability of product type r being in

service based on a processor sharing paradigm with the probability that the downstream

workstation for product type r has a full buffer. These probabilities are examined

for the unbalanced flowshop configuration in the factorial experiment. The upstream

workstation adjacent to the bottleneck workstation is studied. Consider product type

3 at workstation 3 to illustrate the results. Figure 3.8 plots the blocking probability

approximation (L.H.S of equation 3.5) against simulation estimates. Simulation

estimates are computed by tracking the product type and downstream workstation

state (available or blocked) at every service completion event for 2000 independent

replications. The proportion of replications where the downstream workstation is

blocked across 2000 replications computed by product type is used to obtain simulation

estimates. Figure 3.8 indicates that the finite buffer approximation is able to capture

the time-varying congestion trends reasonably accurately at various buffer capacities.

The approximation is also able to capture the increase in congestion as the buffer

capacity is reduced from b = 5 to b = 3.

(a) b = 3 (b) b = 5

Figure 3.8. Probability of Blocking for Finite Buffer Approximation
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Observation 3: Product mix

The effect of the relation between the time-varying arrival rate functions for

different product types on the accuracy of the proposed approximations are explored

in the following discussion. The balanced flowshop configuration is examined for the

sinusoidal arrival patterns. The arrivals with a phase offset of π
4
are compared against

arrivals with a phase offset of π
8
. The Middle workstation of product types 3 and

4 of the balanced flowshop configuration is studied for this discussion. Figure 3.9

demonstrates that the finite buffer approximation is able to adapt well to different

frequencies of time-varying patterns. The approximation is also able to perform well

for all classes. However, observe the approximation leads the simulation estimates in

both cases with the extent of lead increasing from offset of π
8
to offset of π

4
.
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(a) φ = π
4 (b) φ = π

8

(c) φ = π
4 (d) φ = π

8

Figure 3.9. Impact of Product Mix on Finite Buffer Approximation

Observation 4: Computational complexity and choice of time step

The computational complexity of all the approximations presented are linear

in the number of product types R, number of stages L and the number of time

steps chosen for the approximation d T
ts
e. The overall worst-case computational

complexity of the finite buffer approximation is O
(
RLd T

ts
e
)

+O
(
B4

δL

)
. The first term

accounts for the computational cost of the numerical approximation while the second

term accounts for the cost of solving the polynomial equation in increments of δL

for the M/M/1/K loss system assuming the largest finite buffer capacity in the

network is B. The complexity of approximately solving the polynomial equation
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3.1 is O(B3) for a fixed WIP level since it involves identifying the eigenvalues of

the companion matrix of the polynomial equation. The polynomial equation and

its companion matrix are discussed in detail in Appendix A.2. The polynomial

equation is solved at B
δl
WIP levels thus resulting in O

(
B4

δL

)
operations. Empirically,

the approximations are efficient with runtime under one minute for the mid-sized

systems studied for time-step ts = 0.125min and a 1000 minute problem horizon. The

accuracy of the finite buffer approximation shows decaying marginal improvement

as the time step size is decreased with a trade-off between time-step size, ts and runtime.

3.6 Case Study: An Airline Security Screening Checkpoint

As an additional test, the finite buffer approximation presented in Section 3.3.3 is

applied to an airport security screening checkpoint to estimate passenger throughput

and queue lengths. The Phoenix Sky Harbor Airport handled about 45 Million

passengers in 2018 with over 453000 take-off and landing operations. It has three major

terminals with six security screening checkpoints operating across these three terminals.

The security checkpoint at terminal 4A, primarily in use for American Airlines flights,

is one of the largest checkpoint operations at Sky Harbor Airport in terms of passenger

volumes experienced. Each Transportation Security Administration (TSA) security

screening checkpoint (SSCP) conforms to a standard layout as prescribed in the

Checkpoint Design Guide. Passengers enter the checkpoint into a queue for travel

document verification where a Transportation Security Officer (TSO) compares the

traveler’s ID card with their boarding pass and a visual passenger check. Passengers

are then routed to the X-ray screening lanes where separate screening is conducted
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for the passenger and their belongings. The X-ray stage could possibly be followed

by a secondary screening stage as dictated by TSA standard operating procedures

where additional screening such as explosive trace detection, bottled liquids scanning

or alternate viewing stations might be employed.

The finite buffer approximation presented in Section 3.3.3 is applied to Terminal

4A to understand the impact of finite queueing room between the travel document

checkers (TDCs) and the X-ray lanes. Terminal 4a has 5 TDC stations and 8 Baggage

Screening X-ray lanes. (Note that each pair of X-ray lanes for baggage checking is

accompanied by a Walk-Through Metal Detector or Advanced Imaging Technology

(WTMD/AIT) station for passenger screening). The major classes of passengers are

Precheck passengers and standard passengers. The throughput and queue buildup

at the checkpoint is studied for 11th January 2017 between the hours of 00:00 am

to 11:00 am as this captures the peak period of the day. A piecewise linear arrival

function is fitted to historical throughput data to estimate the time-varying Poisson

arrival rate function for passenger arrivals to the security checkpoint. Passengers are

assumed to choose the shortest open X-ray lane after they pass through the TDC

stage. The finite buffer approximation is modified to fit the single class fork topology

of the SSCP network. The throughput of the TDC stage is first calculated without

accounting for blocking by the X-ray stage assuming there is ample queueing room

at the X-ray stage. The inflow to the X-ray stage is then determined by combining

availability (probability of having queueing room) with the probability that a given

X-ray lane has the shortest queue length.
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Three experiments are performed to study the impact of various decisions at the

SSCP.

1. Base configuration with infinite queueing room at X-ray lanes.

2. Finite queueing room at X-ray lanes. X-ray queue capacity set to 4 customers.

3. Impact of closing an X-ray lane.

The results of the three experiments are presented below. Figures 3.10 plot the

throughput estimates for Standard and Precheck passengers at the SSCP. The dashed

lines represent the approximation estimates while the solid lines represent the estimates

obtained from 1000 replications of a discrete event simulation. The plots indicate that

the approximation tracks the SSCP throughput very accurately.

(a) Precheck Passenger Throughput

(b) Standard Passenger Throughput

Figure 3.10. Throughput for Precheck and Standard Passengers
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Figure 3.11 displays the TDC queue lengths and the queue lengths at at X-ray

lane 5 (chosen for this discussion as it is open most of the time). The plots indicate

that the finite buffer approximation is able to accurately capture the queue buildup

at the TDC stage under the assumption of finite queueing room at the X-ray lanes.

(a) Experiment 1

(b) Experiment 2

Figure 3.11. Impact of Finite Buffers and Lane Open/Close Policies

Figure 3.12 displays the impact of closing an X-ray lane for the entire duration

between 0:00 am to 11:00 am. The figure shows that the approximation is adequately

able to capture the queue build-up at the TDC stage and the corresponding increase

in average queue length at X-ray lane 5 as a result of the X-ray lane closure.
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Figure 3.12. Impact of Finite Buffers and Lane Open/Close Policies
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Chapter 4

DYNAMIC SERVER ALLOCATION FOR MULTI-PRODUCT MANUFACTURING

SYSTEMS WITH NONSTATIONARY DEMAND

In this chapter, an optimization model is presented for dynamic server allocation

between workstations in multi-product manufacturing systems where workstations may

have more than one server. A multi-server extension of the open network algorithm

for dynamic manufacturing systems with infinite buffers is proposed. The multi-server

approximation is reformulated as a mixed integer non-linear optimization problem for

dynamic server allocation. Heuristic approaches are presented to solve the optimization

problem for practically-sized manufacturing systems.

4.1 Background on Optimal Server Allocation

The existing work on allocation of servers in manufacturing systems and queueing

networks in general is reviewed in this section. Much of the existing work is based on

one of two approaches. The first approach treats the server allocation problem as an

optimization problem. The second approach models the server allocation problem as

a Markov Decision Process and optimal policies are examined.

Shanthikumar and Yao (1987) modelled the optimal server allocation problem for

closed queueing networks with state dependent Poisson arrivals and exponential service

as an optimization problem. The exploited the concavity property of throughput for

closed queueing networks. Dallery and Frein (1988) proposed a heuristic and exact

approach for the server allocation problem in multi-server closed queueing networks.
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Shanthikumar and Yao (1988) formulated a mixed-integer nonlinear program for maxi-

mizing throughput in multi-server closed queueing networks. They employed bounding

techniques to inform a search procedure for solving the proposed optimization problem.

Boxma et al. (1990) and Frenk et al. (1994) studied the server allocation problem in

a multi-product manufacturing system by analyzing the aggregated product under

product-form assumptions for the associated queueing network. They proposed an

iterative algorithm for solving the server allocation problem. Tassiulas and Ephremides

(1993) studied a queueing system with N parallel queues competing for the attention

of a single server. They examined conditions for stability and proposed optimal

policies for maximizing throughput. Hillier and So (1996) examined the joint effect

of allocation of servers and load balancing in production lines by modelling them as

tandem multi-server queues with finite buffers in between stations. Palmer and Mitrani

(2005) characterized the optimal policy for allocating M job classes each waiting in a

dedicated queue to a fixed number of processors in a computing grid. Kittipiyakul

and Javidi (2009) studied server allocation policies for N statistically identical queues

connected to K servers with time-varying and stochastic arrivals and connectivity.

They studied the interaction between competing objectives of load-balancing and

maximizing throughput in time-slotted framework. Smith et al. (2010) employed

two moment approximations for finite open queueing networks with general service

distributions at workstations. Smith and Barnes (2015) proposed a decomposition

based approximation for the performance analysis of closed queueing networks with

multiple servers at each service station. The approximation was embedded in an

optimization problem to suggest an optimal allocation of servers in the network.
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The majority of the work on optimal server allocation in manufacturing systems

have made stationary arrival assumptions and very little attention has been devoted to

optimal server allocation in multi-product manufacturing systems with time-varying

demands. Framing the server allocation problem as an optimal control problem has

been limited to parallel queues feeding into a common pool of servers. The applicability

of optimal control approaches to server allocation problems in time-varying queueing

networks is very limited due to the complexity of characterizing the departure

processes from workstations. Furthermore, it is difficult to reasonably rationalize

the Markov property for state transitions in time-varying queueing networks with

multiple customer classes.

In the rest of this chapter, the server allocation problem in multi-product manu-

facturing systems with time-varying demands is viewed as an optimization problem in

a time-slotted framework. The configuration changes caused by the reallocation of

servers between workstations are assumed to be allowed at specific points in time and

these points in time are assumed to be known beforehand.

4.2 Problem Definition and Mathematical Formulation

The server allocation problem in a multi-product manufacturing system is defined

in this section. A nonlinear optimization model is presented and heuristic approaches

to efficiently solve the optimization problem are presented.
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4.2.1 Multi-Sever Open Network Based Throughput Model (ONBTM)

The open network based approximation for dynamic manufacturing systems with

infinite waiting room is extended to workstations with multiple servers.

1 Algorithm: Multi-Server Open Network Based Throughput Model (ONBTM)
2 Initialize nrl.
3 while t ≤ T do

4 Xrl(t)← min

[(
nrl(t)∑

p∈R(l)

npl(t)+1

)
min(cl, d

∑
p∈R(l)

npl(t)e)µl,
(
nrl(t)+tsλ

r
0l(t)

ts

)]
5 λrkl(t) = prklXrk(t), k ∈ S(r) \ {0}

6 nrl(t+ ts)← max

[
nrl(t) + ts

(
L∑
j=0

λrjl(t)−
L∑
j=0

λrlj(t)

)
, 0

]
7 t← t+ ts
8 end

The multi-server ONBTM algorithm introduces a correction term for the through-

put rate computation in Step 4. The expression min(cl, d
∑

p∈R(l)

npl(t)e) accounts for

the fact that when there are fewer jobs in the system than the available number of

servers the service rate is dictated by the number of jobs in system. The other aspects

of the multi-server ONBTM algorithm such as WIP updates and effective arrival rate

computations are similar to the single server version of the ONBTM algorithm. The

multi-server ONBTM algorithm is employed in subsequent parts of this chapter to

determine the time-varying allocation of servers at workstations.
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4.2.2 Server Allocation in Dynamic Manufacturing Systems with Fixed Number of

Servers

The multi-server approximation presented in section 4.2.1 is reformulated as a

mixed integer non-linear optimization problem. The primary decisions of interest

are the number of servers employed at each multi-server workstation, cl(t) with an

objective of minimizing the maximum holding cost of work-in-process jobs incurred

at any workstation over the entire time horizon. The optimization formulation is

presented below. The set of workstations is denoted by L. The set of product types is

denoted by R. The set of workstations visited by a product of type r ∈ R is given

by S(r), while, the set of products visiting a workstation l ∈ L is denoted by R(l).

The set of time periods when configuration changes occur is denoted by T. Let qrl(t)

denote the holding cost incurred at station l ∈ L for a product type r ∈ R(l) in time

period t ∈ T . The fixed total number of servers to allocated in each time period is

denoted by S.

min max
r∈R, l∈S(r), t∈T

qrl(t)nrl(t) (4.1)

subject to (4.2)

Xrl(t) ≤
( nrl∑
r∈R(l)

nrl + 1

)
cl(t)µrl ∀ l ∈ L, r ∈ R(l), t ∈ T (4.3)

Xrl(t) ≤
( nrl∑
r∈R(l)

nrl + 1

)
d
∑
p∈R(l)

npl(t)eµrl ∀ l ∈ L, r ∈ R(l), t ∈ T (4.4)

Xrl(t) ≤
nrl(t) + tsλ

r
0l(t)

ts
∀ l ∈ L, r ∈ R(l) t ∈ T (4.5)
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nrl(t+ ts) ≥ nrl(t) + ts

(
L∑
j=0

λrjl(t)−
L∑
j=0

λrlj(t)

)
∀ l ∈ L, r ∈ R(l) t ∈ T

(4.6)

λrkl(t) = prklXrk(t) ∀ r ∈ R, k ∈ S(r) \ {0}, t ∈ T (4.7)∑
l∈L

cl(t) ≤ S, ∀t ∈ T (4.8)

cl(t) ∈ Z+,∀l ∈ L, t ∈ T (4.9)

Xrl(t) ≥ 0, ∀l ∈ L, r ∈ R(l), t ∈ T (4.10)

nrl(t) ≥ 0, ∀l ∈ L, r ∈ R(l), t ∈ T (4.11)

The objective function in equation 4.1 minimizes the maximum holding cost

incurred over the entire planning horizon. Clearly setting the qrl(t) = 1 will minimize

the maximum queue length experienced at any workstation for any product type at

any epoch. Alternative objectives could readily be substituted. For instance Equation

4.12 would minimize total holding cost.

min
∑

r∈R,l∈S(r),t∈T

qrl(t)nrl(t) (4.12)

The constraint 4.3 limits throughput rate by server capacity. Constraint4.4 limits

throughput rate by the number of jobs in system times the capacity of each server.

This constraint is relevant when there are fewer jobs in system than the total number

of available servers. Constraint 4.5 limits the throughput rate by the expected number

of jobs in a given time window. The expected number of jobs values are computed

by combining expected arrivals (governed by a Non-homogeneous Poisson Process)

with the WIP level at the start of the time period. Thus, constraints 4.3 through 4.5

capture the fact that throughput rate is limited by available capacity, number of jobs

in system and expected number of arrivals in a given time period. The flow balance
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equations are captured by 4.6. The total number of servers available to be allocated

at any time period is captured in constraint 4.8.

An alternative formulation for the allocation of servers in dynamic manufacturing

systems could incorporate time varying costs of allocating a server to a workstation

under a total budget for the entire planning horizon. Denote the time varying cost of

allocation as rl(t) and the available total budget for server allocation over the entire

time horizon as C. Then, constraint 4.8 may be modified appropriately as shown

below in constraint 4.13

∑
l∈L

∑
t∈T

rl(t)cl(t) ≤ C (4.13)

4.2.3 Simulated Annealing Algorithm

The server allocation formulation is nonlinear with products of continuous Xrl(t)

and nrl variables with integer cl(t) variables. As such, a simulated annealing based

heuristic is presented for solving the mixed integer non-linear optimization model

presented in section 4.2.2. The simulated annealing algorithm is usually appropriate

for discrete optimization problems having a nonlinear objective function with multiple

local minima. The simulated annealing algorithm is employed for dynamic server

allocation by embedding the multi-server ONBTM as a function evaluator to analyze

the quality of a candidate solution. Simulated annealing is a meta-heuristic algorithm

inspired by the behavior of materials while being subject to a gradual lowering of

temperature. The simulated annealing algorithm has been shown to converge to the
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set of optimal solutions by modeling the cooling process as a sequence of Markov

Chains or as a single in-homogeneous Markov Chain. Henderson et al. (2003) and

Yang (2014) provide an in-depth discussion of the various aspects of the Simulated

Annealing algorithm. The various elements of the simulated annealing algorithm as

applied to the server allocation problem are discussed in the rest of this section.
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4.2.3.1 Algorithm Description

1 Algorithm: Simulated Annealing Algorithm for Server Allocation
2 while stopping criterion not attained do
3 Generate an Initial Solution
4 while repetition count not attained do
5 Generate a neighborhood around current solution using one-swaps
6 Randomly choose a candidate solution from the generated

neighborhood
7 Evaluate the solution and compute ∆
8 if ∆ < 0 then
9 Accept the candidate solution

10 end
11 else
12 Accept the solution with probability exp

{
−∆
T

}
13 end
14 end
15 k = k + 1
16 T = T0(αk)

17 end

4.2.3.2 Initial Solution Generation

It is assumed that all workstations have at least one server at all times since arrivals

could (and do) occur at each workstation in each period. Then, a naive initial solution

is generated by allocating all excess (S−L) servers to a single workstation. Intuitively,

one would expect the initial solution to have little effect on the allocation proposed

by the simulated annealing algorithm if the algorithm is run for a substantial number

of iterations. This is particularly true since the neighborhood definition for modifying

candidate solutions between iterations selects from the set of workstations at any period
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with excess servers. Thus, one excess server will necessarily be redistributed from that

workstation on the first iteration, and, will have high likelihood of having additional

servers moved in subsequent iterations if the workstation is not the bottleneck queue.

4.2.3.3 Cooling Schedule

A cooling schedule is completely specified by a choice of initial temperature and

a cooling schedule. The initial temperature is heuristically chosen such that the

acceptance probability at the start of the simulated annealing process is p0. The initial

temperature is calculated by analyzing the temperature at which the acceptance

probability is p0 for the largest possible deviation in the objective function, ∆max.

The expression for acceptance probability is as given below.

p0 = exp
{−∆max

T0

}
ln(p0) =

−∆max

T0

T0 =
−∆max

ln(p0)

The largest possible deviation in the objective function, ∆max is computed by

computing the largest queue over all of time for the initial solution generated. The

reasoning behind such a computation is that the best possible solution attainable in

theory is empty queues for all stations over all of time while the worst possible solution

is the one provided by the initial solution for the simulated annealing algorithm.
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A geometric cooling schedule of the form shown below is chosen for the simulated

annealing process.

T = T0(αk) (4.14)

The value of α is chosen such that the cooling process is slow enough to allow the

system to stabilize easily. The stopping criterion for the annealing process is usually

set to be when the temperature, T reaches the 10−5 to 10−10 range.

4.2.3.4 Neighborhood Generation

At each iteration of the simulated annealing algorithm a candidate solution is

chosen randomly from a neighborhood of the current solution. The definition of

neighborhood is subjective for the simulated annealing algorithm. For the dynamic

server allocation problem a neighborhood is defined by a swap of one server for one

time period between two workstations. First, the workstation with the largest queue

over all of time is identified. Then one of the time periods up to and including that

period is selected at random. For that period, one of the other workstations with

more than one server is randomly selected and that server is moved to the workstation

that was identified as having the largest queue. The strategy essentially is to attack

the current bottleneck, measured by queue length, and provide it some extra resource

at some period that can potentially contribute to reducing the current queue. In the

absence of any such one-server swaps to the workstation with the largest queue over

all of time a completely random swap is performed, where, a time period is chosen at

random and one server is moved from a workstation with more than one server to
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a randomly chosen workstation in the chosen time period. The pseudocode for the

neighborhood generation procedure is detailed below.

1 Algorithm: Neighborhood Generation
2 Identify max-queue and associated time window, tmax−queue for current

solution.
3 Make a feasible one-swap to max-queue for a randomly chosen time period in

0 . . . , tmax−queue

4.2.3.5 Solution Quality Evaluation

The multi-server approximation presented in Section 4.2.1 is embedded into the

simulated annealing process as a function evaluator to assess the quality of a candidate

solution. The computationally efficient multi-server ONBTM algorithm is used to

assess the maximum queue length experienced over all of time in the system given the

non-homogeneous Poisson arrival process for all the product types.

4.3 Results and Discussion

The performance of the Simulated Annealing algorithm for dynamic server alloca-

tion is compared against a greedy static allocation policy for a sixteen workstation,

four product jobshop. The greedy static allocation policy assigns servers in pro-

portion to the aggregated effective arrival rate for each workstation based on the

set of products, their arrival rates and processing times. The SA algorithm with a

geometric cooling schedule is applied to the jobshop instance for six different levels

of servers to be allocated. A factorial experiment is performed with three factors -

namely, non-homogeneous arrival pattern, choice of initial solution, and, choice of
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neighborhood each with two levels. The arrival pattern factor captures the effect of

the time-varying pattern for products on the performance of the Simulated Annealing

algorithm. The two arrival patterns investigated in the designed experiment are

sinusoidal and triangular arrival rate functions. The choice of initial solution and

the choice of neighborhood are subjective aspects of the SA algorithm which are

included in the designed experiment. The two levels of choice of initial solution are

nominated as Naive-First and Naive-Last indicating the index of the station to which

the excess servers are allocated initially. The two levels of the choice of neighborhood

are similar in the sense that a feasible one server swaps are performed to generate

neighborhoods of the current solution in both cases. However, the two levels differ in

the how these swaps are performed. In the random swap level the neighborhood is

defined to be all feasible one server swaps with respect to the current solution. In the

Max-Queue swap the neighborhood is defined to be the universe of one-servers swaps

where servers are added to the workstation with the largest queue length over all of

time in epochs preceding the occurrence of the largest queue. The Max-Queue swap

has been described previously in the neighborhood generation discussion in Section

4.2.3. The following parameter assumptions for the SA algorithm experimental runs

as shown in Table 4.1.
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Parameter Parameter Value/Range
Product Types, |R| 4
Workstations, |L| 16

Non-Homogeneous Arrival Pattern Sinusoidal/Triangular
Initial acceptance probability, p0 0.99

Initial Temperature, T0
−∆max
ln(p0)

Cooling Schedule Geometric, Tk = T0α
k

α 0.99
Maximum Iterations, K 2000 (or) 20000
Servers to allocated, S 17 (|L|+ 1) to 22 (|L|+ 5)

Initial Solution Naive-First (or) Naive-Last
Choice of neighborhood Random (or) Max-Queue

Table 4.1. Parameters for SA Designed Experiment

The performance of the SA algorithm for each experimental run is assessed by

the percentage improvement (or degradation) over a greedy static allocation scheme,

where the server configuration is kept fixed for all time.
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1 Algorithm: Greedy Static Allocation Scheme
2 Compute time-average arrival rate for each workstation by product

λrl =

T∫
0

λr0l(t)

T
(4.15)

3 Solve traffic equations for queueing network with aggregated arrival rates to
compute effective arrival rates

λ
′r
l = λrl +

∑
k 6=l

prklλ
′r
k (4.16)

4 Compute aggregated arrival rates

λl =
∑
r∈R(l)

λ
′r
l (4.17)

5 Create an ordering of workstations o : L→ L

λo(1) ≥ λo(2) ≥ . . . ≥ λo(|L|) (4.18)

6 Allocate servers in descending order of aggregated arrival rates

cl(t) = cl = min
{⌈( λl∑

l∈L
λl

)
S
⌉
, S −

∑
{p: o(p)<o(l)}

cp

}
(4.19)

The average and standard deviation of the percentage improvement (or degradation)

of the Simulated Annealing experimental runs aggregated across all available server

levels is presented in Table 4.2. The large variance around the average improvement

is explained by significant difference in the performance of the SA algorithm for

different available server levels. The designed experiment is analyzed as a 23 factorial

experiment with the available servers treated as a blocking factor. Two replications

were performed for each design point of the factorial experiment for each of the six

levels of the blocking factor. Thus, a total of 96 experiment runs were performed with

101



Arrival Pattern Initial Allocation Neighborhood Avg. Improvement Std. Dev.
Sinusoidal Naive - First Random -62.38 33.39
Sinusoidal Naive - First Max - Queue 7.47 21.45
Sinusoidal Naive - Last Random -69.64 40.68
Sinusoidal Naive - Last Max - Queue 9.69 21.78
Triangular Naive - First Random -64.23 55.42
Triangular Naive - First Max - Queue 46.63 12.21
Triangular Naive - Last Random -70.80 64.72
Triangular Naive - Last Max - Queue 48.45 11.64

Table 4.2. Average Improvement/Degradation of SA over Greedy Allocation

runs being randomized within each block. The results of the statistical analysis of the

factorial experiment and the impact of iterations on convergence are discussed in the

rest of this section.

4.3.1 Statistical Analysis of Factorial Experiment

The p-values of the effects test for the SA factorial experiment is presented in

Table 4.3. The detailed Analysis of Variance and effect tests are reported in Appendix

B.1. The hypothesis for the effect test is that the effect of all levels for a factor under

consideration are equal to one another, while, the alternative hypothesis postulates

that the effect of at least one pair of factor levels are not equal. The large p-value for

the initial solution factor indicates that the various levels of factor has no impact on

the performance of the SA algorithm. This makes intuitive sense as one would expect

the initial solution to have no bearing on a randomized iterative search process such as

simulated annealing if the process is run for adequate number of iterations. The effects

test also suggests that there is statistical evidence to show that the neighborhood

definition and the number of servers available to be allocated have a significant effect

on how the SA algorithm fares as compared to the greedy static allocation heuristic.
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The Arrival Pattern factor has a significant effect at the α = 0.05 significance level

but the main effect is not significant at the α = 0.01 significance level. The only

two-way interaction effect that is significant is the interaction between arrival pattern

and neighborhood. All interaction effects involving the initial solution factor have no

statistically significant impact.

Factor Effect Type p-value
Arrival Pattern Main 0.0139
Initial Solution Main 0.6024
Neighborhood Main < 0.0001

Servers Available Blocking 0.0009
(Arrival Pattern)*(Initial Solution) Interaction 0.8712
(Arrival Pattern)*(Neighborhood) Interaction 0.0026
(Initial Solution )*(Neighborhood) Interaction 0.4007

(Arrival Pattern)*(Initial Solution)*(Neighborhood) Interaction 0.8692

Table 4.3. Effect Test for SA Designed Experiment

4.3.2 Impact of Run Length and Trajectory of Solution Improvement

The SA algorithm is an iterative process where inferior solutions may be accepted

probabilistically to avoid being trapped in local optima. The number of annealing

iterations performed could have a significant impact on solution quality. The impact

of annealing run length is investigated and the trajectory of improvement achieved

is studied in the context of the factorial experiment. The performance of the SA

algorithm applied to the jobshop instance for 2000 iterations is compared against

its performance for 20000 iterations. The run with 2000 iterations results in a final

temperature of approximately 10−5. The performance of the SA algorithm is examined

for the Sinusoidal arrival pattern for 19 servers to be allocated with a focus on studying

the impact of run length and neighborhood definition. One important aspect of any
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iterative process is speed at which it arrives a quality solution. The last iteration

where the incumbent solution changed is tracked for the two different neighborhood

definitions for the jobshop instance. Table 4.4 reports the last incumbent update

iteration for the Random neighborhood and the Max-Queue neighborhood for runs of

length 2000 and 20000 respectively. The results in Table 4.4 demonstrate that while

the Random neighborhood experiences fewer incumbent updates relatively slowly,

the Max-Queue neighborhood experiences a large number of incumbent updates in a

small number of iterations. Thus, the strategy of augmenting the workstation with

the largest queue with one additional server by going back into time seems to offer

superior results over randomly swapping a server between two workstations.

Neighborhood Total Iterations Last Incumbent
Update Iteration

Total Incumbent
Updates

Random 2000 1784 66
Random 20000 3581 89

Max-Queue 2000 999 93
Max-Queue 20000 764 94

Table 4.4. Last Incumbent Improvement Iteration

Figure 4.1 plots the incumbent solution against the iteration number for the random

neighborhood. The plots for the random neighborhood indicate that the random

neighborhood is slow to converge to a quality solution which outperforms the greedy

static allocation. This observation is corroborated by the last incumbent update

iteration values of 1784 and 3581 for 2000 and 20000 total iterations respectively. It is

also observed that the random neighborhood fails to perform better than the greedy

static allocation even when the SA algorithm is run for a significantly long time (20000

iterations).
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(a) Total Iterations: 2000

(b) Total Iterations: 20000

Figure 4.1. Improvement Trajectory: Random Neighborhood
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Figure 4.2 plots the incumbent solution against the iteration number for the

Max-Queue neighborhood. In contrast to the Random neighborhood, the Max-Queue

neighborhood quickly outperforms the greedy static allocation and the trajectory of

solution improvement is steep. This provides empirical evidence that the Max-Queue

neighborhood yields a quality solution with relatively low computational effort.
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(a) Total Iterations: 2000

(b) Total Iterations: 20000

Figure 4.2. Improvement Trajectory: Max-Queue Neighborhood

The Max-Queue neighborhood outperforms the Random neighborhood on solution

quality as well as time to obtain a quality solution. The Max-Queue neighborhood out-

performs the Greedy Static Allocation in most of the cases in the factorial experiment

as observed in Table 4.2.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, multi-product manufacturing systems with dynamic product

demands are studied. The research presented in this dissertation addresses the gap

in literature for the performance analysis of multi-product manufacturing systems

with time-varying product demands. The key mathematical modeling framework

employed in this dissertation is multi-class queueing networks with time-varying

arrivals. The exact queueing analysis of time-varying queues is intractable for very

simple cases and thus heuristic approximations are explored as part of this dissertation.

Specifically, heuristic approximations are presented for the performance analysis of such

systems under assumptions of unlimited and limited queueing space at workstations.

Approximations for incorporating priorities to reflect due-date priorities are presented

as well. The final part of this dissertation demonstrates the application of presented

approximations to resource and capacity allocation decisions in modern manufacturing

systems. In particular, a simulated annealing based heuristic is presented for the

allocation of servers in a dynamic multi-product manufacturing system with time-

varying product demands.

Chapter 2 presented incremental approximations for the analysis of dynamic multi-

product manufacturing systems with no waiting room restrictions. Two different

approximation approached were presented - one based on equivalences between closed

and open queueing networks and the other based on an open network decomposition.

The exactness of the approximation approaches were mathematically established for

stationary queueing systems. The estimates of WIP levels and throughput rates were
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combined to derive lead time forecasts by product type. The performance of these

approximations were numerically tested on large flowshop and jobshop instances.

Chapter 3 explored the aspects of product priorities and finite waiting room in

dynamic multi-product manufacturing systems. Approximations based on the M/M/1

priority queue with a homogeneous priority scheme were presented for modeling

priorities. TheM/M/1/K loss queue was leveraged to arrive at performance estimates

in the finite buffer case. The efficacy of the proposed approximations was statistically

analyzed through a designed experiment considering relevant factors of interest.

Chapter 4 considered the issue of employing performance estimates to drive resource

allocation decisions in dynamic multi-product manufacturing systems. A multi-server

extension to the ONBTM algorithm was presented. The multi-server approximation is

reformulated as a mixed-integer non-linear optimization problem for allocating servers

in a time-varying fashion. A simulated annealing based heuristic was presented to

solve the server allocation optimization problem. The performance of the simulated

annealing heuristic was compared against a greedy static allocation scheme through a

designed experiment.

The work in this dissertation opens up avenues for a wide of range of problems

with regards to dynamic manufacturing systems and time-varying queueing networks

in general. The research presented in this dissertation can be extended and enriched in

several different directions. A few possible directions for future research are discussed

in the rest of this chapter.
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Simultaneous Buffer and Workload Allocation in Dynamic Multi-Product Manufac-

turing Systems

The simultaneous optimization of buffer space (waiting room) and workloads

(service rates) have been gaining a lot of attention in recent literature (for instance

see Smith (2018), Zhang et al. (2017b)). However, this problem is yet to be addressed

in the context of manufacturing systems with dynamic time-varying demands. The

identification of time-varying bottlenecks and time-varying buffer occupancy levels and

appropriately allocating workloads and service resources in a time-varying fashion are

some aspects that could be examined. Addressing the simultaneous buffer and service

rate optimization problem for multi-product manufacturing systems with time-varying

product demands would be immensely useful to modern manufacturing organizations.

This is particularly true if the model could be transformed into one of a multi-class

closed network formulation such that buffer limits were set by product type over the

time horizon reflecting their dynamic demand. This could possibly lead to a release

control policy similar to a product-dependent dynamic CONWIP philosophy.

Staffing and Real-Time Rostering in Dynamic Queueing Systems

Another possible future research area is the staffing and real-time rostering of

queueing systems with time-varying arrivals. A very relevant application of this future

research direction would be for staffing and real-time rostering of security screening

checkpoints. Consider an airport with D terminals each with Nd security checkpoints.

Daily passenger volume forecasts are generated for each passenger class (Standard

or PreCheck) and appropriate non-homogeneous Poisson arrival rate functions are
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fitted to these forecasts. The staffing problem would involve assigning transportation

security officer’s (TSO’s) to pre-determined shifts with an objective of minimizing the

maximum wait-time that passengers experience over the entire day at any checkpoint.

The real-time rostering problem involves determining when to move TSO’s between

checkpoints to reponsively deal with unexpected surges in passenger volumes at a

given checkpoint.

Dynamic Manufacturing Systems with General Service and General Non-

Homogeneous Demands

This dissertation focuses on the performance evaluation of multi-product manu-

facturing systems with non-homogeneous Poisson demands and exponential service.

However, the assumptions of exponential service and nonstationary Poisson arrivals

might not be appropriate for some systems. The analysis of systems with general

service and arrival patterns is another important future research direction. One

possible solution for the performance evaluation of such systems is the application of

two-moment approximations for G/G/1 or G/G/c queues in an incremental framework

similar to the approach employed in this dissertation.

Optimally Solving the MINLP for Server Allocation in Dynamic Manufacturing

Systems

A simulated annealing heuristic is presented in Chapter 4 for the MINLP formu-

lation presented in Section 4.2.2. However, the simulated annealing heuristic does

not provide any quantifiable guarantees on solution quality for the server alloca-
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tion problem. Thus, a natural future research direction is exploring ways to solve

the MINLP optimally. One approach for solving the MINLP optimally would be a

divide-and-conquer strategy such as Dynamic Programming. However, a potential

obstacle for the successful application of such a strategy is that in a forward pass

over time an optimal decision at time t is not necessarily optimal over the entire time

horizon beyond time t. The successful application of a backward pass over time in a

DP approach starting at the end of the time horizon, T is hindered by the need to

condition on the starting WIP levels at the beginning of the time epoch, which, is a

continuous variable in the formulation presented in Section 4.2.2.
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A.1 Derivation of Step 6 of Priority Approximation for Multi-class Networks

For a multi-class M/M/1 queue with homogeneous priority discipline, average
wait time in queue is given by

W q
r =

ρ
µ

(1− σr−1)(1− σr)
, (ρ =

R∑
p=1

ρp = σR)

By Little’s Law, average length of queue is

Lqr = λW q
r =

ρρr
(1− σr−1)(1− σr)

Number in System is given by

Lr = Lqr + ρr =
ρρr

(1− σr−1)(1− σr)
+ ρr

Consider queue lengths of jobs of priority class r or higher
r∑
p=1

Lp =
ρρ1

(1− σ1)
+ ρ1 +

ρρ2

(1− σ1)(1− σ2)
+ ρ2 + ...+

ρρr
(1− σr−1)(1− σr)

+ ρr

= σr +

[
ρρ1

(1− σ1)
+

ρρ2

(1− σ1)(1− σ2)
+ ..+

ρρr
(1− σr−1)(1− σr)

]
= σr + ρ

[
1

(1− σ1)

(
ρ1(1− σ2) + ρ2

(1− σ2)

)
+ ..+

ρr
(1− σr−1)(1− σr)

]
= σr + ρ

[
1

(1− σ1)

(
ρ1(1− (ρ1 + ρ2)) + ρ2

(1− σ2)

)
+ ..+

ρr
(1− σr−1)(1− σr)

]
= σr + ρ

[
1

(1− σ1)

(
(ρ1 + ρ2)(1− ρ1)

(1− σ2)

)
+ ..+

ρr
(1− σr−1)(1− σr)

]
= σr + ρ

[(
σ2

1− σ2

)
+ ..+

ρr
(1− σr−1)(1− σr)

]
(since ρ1 = σ1 and σ2 = ρ1 + ρ2)

Similarly combining successive terms results in
r∑
p=1

Lp = σr +
ρσr

1− σr

Expressing the above relation as a quadratic equation in σr gives

σ2
r −

(
1 +

r∑
p=1

Lp + ρ

)
σr +

r∑
p=1

Lp = 0 (A.1)
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Matching
r∑
p=1

Lp with
r∑
p=1

nrl(t) gives an estimate of σrl(t) and ρrl(t) for the

algorithm.

A.1.0.0.1 Proposition 3

The solution to the quadratic equation in Step 6 of the proposed multi-class
priority approximation has a lower bound and upper bound.

Proof Consider equation A.1

σ2
r −

(
1 +

r∑
p=1

Lp + ρ

)
σr +

r∑
p=1

Lp = 0

Dividing by (
r∑
p=1

Lp + 1)

 1
r∑
p=1

Lp + 1

σ2
r −

1 +
ρ

r∑
p=1

Lp + 1

σr +


r∑
p=1

Lp

r∑
p=1

Lp + 1

 = 0

Denoting x = σr and n =
r∑
p=1

Lp roots of the equation are given by

x =

[(
1 + ρ

n+1

)
±
√

(1 + ρ
n+1

)2 − ( 4n
(n+1)2

)
]

2
n+1

The root of interest is

x =

[(
1 + ρ

n+1

)
−
√

(1 + ρ
n+1

)2 − ( 4n
(n+1)2

)
]

2
n+1

as the other root is at least as large as n+1+ρ
2

= n+1
2

+ ρ
2
≥ ρ (since ρ ≤ 1 and n ≥ 0).

Notice that √
(1 +

ρ

n+ 1
)2 − (

4n

(n+ 1)2
) ≤ 1 +

ρ

n+ 1

Thus 0 is a lower bound.
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Also notice that since ρ ≥ n
n+1√

(1 +
ρ

n+ 1
)2 − (

4n

(n+ 1)2
) ≥

√
(1 +

n

(n+ 1)2
)2 − (

4n

(n+ 1)2
) = 1−

(
n

(n+ 1)2

)
Thus, 1

2
(ρ+ n

n+1
) is an upper bound.

A.2 Derivation of Equation 3.1 of the Finite Buffer Approximation for Multi-class
Networks

The average queue length of a M/M/1/K loss queue is given by

Lq =
ρ

1− ρ
− ρ(KρK + 1)

1− ρK+1

The average number in system for an M/M/1/K queue can be expressed as

L = Lq + (1− p0)

where
p0 =

1− ρ
1− ρK+1

Thus the relation between ρ and L can be expressed as

L =
( ρ

1− ρ
− ρ(KρK + 1)

1− ρK+1

)
+
(

1− 1− ρ
1− ρK+1

)
=
( ρ

1− ρ
+ 1
)
−
(ρ(KρK + 1)

1− ρK+1
+

1− ρ
1− ρK+1

)
=
( 1

1− ρ

)
−
(KρK+1 + 1

1− ρK+1

)

The above relation can be expressed as the polynomial equation (in ρ) as shown below.

(L−K)ρK+2 + (1 +K − L)ρK+1 − (L+ 1)ρ+ L = 0

The polynomial equation can be reduced to

(LρK+2 − LρK+1)−KρK+1(ρ− 1) + (ρK+1 − ρ) + L(1− ρ) = 0
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(K − L)ρK+1(1− ρ)− (1− ρ)(ρK + ρK−1 + . . .+ ρ) + L(1− ρ) = 0

(1− ρ)
(

(K − L)ρK+1 − (ρK + ρK−1 + . . .+ ρ) + L
)

= 0

The above equation can further be reduced to

(1− ρ)
(

(ρK+1 − ρK) + (ρK+1 − ρK−1) + . . .+ (ρK+1 − ρ)) + L(1− ρK+1)
)

= 0

(1− ρ)2
(

(L−K)ρK + (L−K + 1)ρK−1 + . . .+ (L− 1)ρ+ L
)

= 0

The companion matrix (Edelman and Murakami (1995)) for the polynomial equa-
tion of degree K is given by

A =


L−K+1
K−L

L−K+2
K−L

L−K+3
K−L

L−K+4
K−L . . . L−1

K−L
L

K−L
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 1 0


(K)×(K)

The polynomial equation is approximately solved (in MATLAB/Python) by iden-
tifying the eigenvalues of the companion matrix A as originally proposed in Edelman
and Murakami (1995). The eigen value that relates to valid utilization for K = 1 (no
waiting room) and K = 2 (one waiting spot) are shown below.

ρ(L,K) =
L

1− L
, K = 1

ρ(L,K) =
L+
√
−3L2 + 6L+ 1− 1

2(2− L)
, K = 2

Note that for both K = 1 and K = 2 the utilizations are monotonically increasing
functions of L over [0, K]. For larger values of K the appropriate eigen value which
corresponds to valid utilization take the form of complicated non-linear functions of
L. However, empirically it is observed that the monotoneity property over [0, K] still
holds for larger values of system capacity as well.
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A.3 Analysis of Variance and Effects Tests for Factorial Experiment

The results of the factorial experiment in section 3.5 of Chapter 3 are described
in detail below. Four distinct single response factorial experiments were performed
in JMP, one for each of the stations designated as Entry, Start, Middle, End. Tables
A.1 through A.4 summarize the ANOVA and effect tests results for the four factorial
experiments performed. The assumptions of normality, independence, and, constant
variance of the residuals were checked and verified. Box-Cox transformation was
performed on the response to resolve deviations from the normality and constant
variance assumptions. All four factorial experiments provide statistical evidence of
atleast one significant effect among all factors considered supported by the p-values
obtained.

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 25 2358.4939 94.3398 2.4183
Error 28 1092.3138 39.0112 Prob >F
Total 53 3450.8078 0.0126*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
config 2 2 103.78365 1.3302 0.2806
buffer 2 2 70.44976 0.9029 0.4169
util 1 1 451.15933 11.5649 0.0020*
arr 2 2 652.37362 8.3614 0.0014*
config*buffer 4 4 372.93399 2.3899 0.0747
config*util 2 2 142.49126 1.8263 0.1797
config*arr 4 4 156.99943 1.0061 0.4210
buffer*util 2 2 20.82601 0.2669 0.7677
buffer*arr 4 4 136.79149 0.8766 0.4904
util*arr 2 2 250.68539 3.2130 0.0554

Table A.1. ANOVA for Entry Workstation
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 25 1131.8671 45.2747 9.1092
Error 28 139.1653 4.9702 Prob >F
Total 53 1271.0325 <.0001*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
config 2 2 148.71809 14.9610 <.0001*
buffer 2 2 22.12674 2.2259 0.1267
util 1 1 8.43128 1.6964 0.2034
arr 2 2 463.63112 46.6412 <.0001*
config*buffer 4 4 7.43745 0.3741 0.8251
config*util 2 2 234.89647 23.6305 <.0001*
config*arr 4 4 11.26236 0.5665 0.6890
buffer*util 2 2 0.73441 0.0739 0.9290
buffer*arr 4 4 50.57993 2.5442 0.0617
util*arr 2 2 184.04927 18.5153 <.0001*

Table A.2. ANOVA for Start Workstation

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 25 1375.2755 55.0110 20.0226
Error 28 76.9286 2.7474 Prob >F
Total 53 1452.2040 <.0001*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
config 2 2 115.27638 20.9788 <.0001*
buffer 2 2 191.35337 34.8238 <.0001*
util 1 1 77.12316 28.0708 <.0001*
arr 2 2 491.94901 89.5283 <.0001*
config*buffer 4 4 22.12130 2.0129 0.1199
config*util 2 2 155.36688 28.2747 <.0001*
config*arr 4 4 6.93721 0.6312 0.6443
buffer*util 2 2 137.59565 25.0406 <.0001*
buffer*arr 4 4 15.10781 1.3747 0.2680
util*arr 2 2 162.44471 29.5628 <.0001*

Table A.3. ANOVA for Middle Workstation
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Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 25 1659.6593 66.3864 25.1329
Error 28 73.9596 2.6414 Prob >F
Total 53 1733.6190 <.0001*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
config 2 2 126.92278 24.0255 <.0001*
buffer 2 2 273.69617 51.8086 <.0001*
util 1 1 51.53019 19.5085 0.0001*
arr 2 2 621.34914 117.6167 <.0001*
config*buffer 4 4 4.07052 0.3853 0.8173
config*util 2 2 158.27800 29.9608 <.0001*
config*arr 4 4 26.13954 2.4740 0.0673
buffer*util 2 2 244.79562 46.3380 <.0001*
buffer*arr 4 4 9.39585 0.8893 0.4832
util*arr 2 2 143.48153 27.1600 <.0001*

Table A.4. ANOVA for End Workstation
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B.1 Analysis of Variance and Effect Tests for SA Algorithm Designed Experiment

The ANOVA and the Effects test of the designed experiment performed in Section
4.3 of Chapter 4 are presented in Table B.1.

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 12 268994.56 22416.2 19.2012
Error 83 96897.22 1167.4 Prob >F
Total 95 365891.79 <.0001*
Effect Tests
Source Nparm DF Sum of Squares F Ratio Prob >F
arr 1 1 7372.77 6.3153 0.0139*
init alloc 1 1 319.30 0.2735 0.6024
neigh 1 1 222325.95 190.4394 <.0001*
avl servers 5 5 26822.51 4.5951 0.0009*
arr*init alloc 1 1 30.89 0.0265 0.8712
arr*neigh 1 1 11258.43 9.6437 0.0026*
init alloc*neigh 1 1 832.85 0.7134 0.4007
arr*init alloc*neigh 1 1 31.86 0.0273 0.8692
buffer*arr 4 4 9.39585 0.8893 0.4832
util*arr 2 2 143.48153 27.1600 <.0001*

Table B.1. ANOVA for SA Algorithm for Dynamic Server Allocation
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