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ABSTRACT

With the increased demand for genetically modified T-cells in treating hematolog-

ical malignancies, the need for an optimized measurement policy within the current

good manufacturing practices for better quality control has grown greatly. There

are several steps involved in manufacturing gene therapy. These steps are for the

autologous-type gene therapy, in chronological order, are harvesting T-cells from the

patient, activation of the cells (thawing the cryogenically frozen cells after trans-

port to manufacturing center), viral vector transduction, Chimeric Antigen Receptor

(CAR) attachment during T-cell expansion, then infusion into patient. The need for

improved measurement heuristics within the transduction and expansion portions of

the manufacturing process has reached an all-time high because of the costly nature

of manufacturing the product, the high cycle time (approximately 14-28 days from

activation to infusion), and the risk for external contamination during manufacturing

that negatively impacts patients post infusion (such as illness and death).

The main objective of this work is to investigate and improve measurement poli-

cies on the basis of quality control in the transduction/expansion bio-manufacturing

processes. More specifically, this study addresses the issue of measuring yield within

the transduction/expansion phases of gene therapy. To do so, it was decided to model

the process as a Markov Decision Process where the decisions being made are opti-

mally chosen to create an overall optimal measurement policy; for a set of predefined

parameters.
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Chapter 1

INTRODUCTION

CAR T-cell therapy is a targeted product which does not require bone marrow

matching. It is highly e�cient and specifically kills malignant cells [13]. CAR T-cell

therapies typically use autologous T-lymphocytes, although clinical trials are evalu-

ating allogeneic products (i.e. products harvested from a healthy donor to then the

patient), to treat patients with hematologic malignancies and selected solid tumors.

These adoptive cell therapies consist of T-cells manipulated ex-vivo (outside of pa-

tient) to target tumor antigens before infusion back into the patient [3]. CARs (i.e.

chimeric antigen receptors) have two important roles: first, to recognize and bind to

a tumor cell via a ligand, and second, to transfer intracellular signals that result in

T-cell activation. More than 1,000 patients have received CAR T-cells in the United

States alone, with more than 250 CAR T-cell trials listed on ClinicalTrials.gov, pri-

marily from the United States and China [3]. This cellular manipulation portion of

the gene therapy development is in the realm of quality control, as it houses the acti-

vation, transduction, and expansion processes which can be a major source of failing

FDA regulations/ general quality expectations.

Developing a quality control heuristic will be a di�cult feat. Many di↵erent fac-

tors play a role in the manufacturing of the therapy; mostly due to the fact it is

a “living-drug”. These factors can be in the CAR design, gene introduction, cell

culture, cell purification technologies from each manufacturer, and also patient dif-

ferences (since it is an autologous therapy). In terms of the patient factors, these

can be classification/stage of tumor, time interval between collection of initial sample
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and current treatment regimen, routine physical examination items associated with

the treatment, but also the total number of peripheral blood cells or T-cells with a

specific phenotype, pathogen screening, etc. It is clear that the materials used for

production are directly related to the quality of the products [15].

There is more than enough motivation to research and establish a good, standard-

ized quality management system for production materials, including risk assessment

of their use, auditing of suppliers, and quality testing [15]. The justification for cre-

ating such a heuristic is to have control of the overall process and product quality of

the CAR T-cells in order to ensure the repeatability of the production process and

batch-to-batch consistency of the final products [15]. By instituting testing methods

for certain steps within the process and establishing acceptance criteria for the in-

process testing, in combination with the release testing of final products, achieving

overall control/quality is possible. Literature suggests that a simplified release test

be done (this is for the end of the entire manufacturing process) and it should be

clearly explained. The missing information will be supplemented by the testing done

throughout the process itself (and also by the process validation). For the whole pro-

cess of CAR T-cell product preparation, comprehensive process characterization and

process validation of multiple continuous batches (at least three batches) of produc-

tion are required [15]. Currently, a complete quality control test procedure for gene

therapy is not possible due to the short shelf life of the product and the time-sensitive

nature of delivering the treatment to the critically ill patient. For this reason, a sim-

ulation was developed to test several factors that can a↵ect the way quality testing

is done.
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1.1 Background and Motivation

Within each of the activation, transduction, and ex vivo expansion processes,

many factors have to be controlled in order to minimize contamination risks that

can then cause infections in the infused patient. Furthermore, ensuring the therapy

doesn’t exceed the level of toxicity allowed nor contains excess cytokines is an addi-

tional di�culty to the manufacturing process. CAR T-cells carry a more extensive

toxicity profile than dendritic cell vaccines, namely the potential for tumor lysis; cy-

tokine release syndrome requiring intensive unit care; neurologic toxicity ranging from

encephalopathies characterized by aphasia, seizures, and in rare instances, fatal cere-

bral edema; as well as unusual immunologic manifestations such as hemophagocytic

lymphohistiocytosis (HLH) [9]. The primary side e↵ect of CAR-T therapy, however, is

cytokine release syndrome (CRS), also known as a cytokine storm, a syndrome caused

by excessive cytokine release that is usually observed in CAR-T related therapy [13].

Cytokine release syndrome, a systemic inflammatory response observed with mono-

clonal antibody drugs and adoptive T-cell treatments, has become a major issue for

CAR-T therapy [12]. Studies have also shown a positive correlation between cytokine

surges with associated clinical toxicities in patients treated with CD19-targeted CAR

T-cells to the degree of tumor burden at the time of CD19-targeted T-cell infusions [4].

Other side-e↵ects of the CAR-T therapy administration include myalgia, respi-

ratory distress syndrome, B-cell deficiency, capillary leak syndrome, coagulation dis-

orders, nausea/ vomiting, diarrhea, infection due to contamination during manufac-

turing and/or infusion site, tumor lysis syndrome, neurotoxicity, and macrophage

activation syndrome as a result of severe CRS. In particular, macrophage activa-

tion syndrome and/or severe levels of CRS have shown rapid response to the use
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of steroids, a study shows. However, steroids can greatly damage CAR T-cells and

even eliminate them [13]; patients always relapse when treated with steroids and the

relapse may or may not be handled by the CAR T-cells existing in the body (if any

are left post steroids).

Outside of direct patient health-risk, there is a financial burden that accompanies

gene therapy. Even though CAR T-cell therapy is reported to be covered by Medi-

care/Medicaid Services, this does not mean costs accrued at a hospital providing the

therapy will be covered as well. On October 1, 2018, the 2019 Inpatient Prospective

Payment System rule went into e↵ect, giving CAR T-cell therapy a diagnosis-related

group with higher payment, MS-DRG 16, and the ability to receive additional reim-

bursement for the CAR T-cell product through a New Technology Add on Payment

(NTAP). To capture the full amount of the NTAP ($186,500), the CAR T-cell product

charge must be set high enough that when it is reduced by the facility’s cost-to-charge

ratio, the NTAP can be recovered [3]. Also, since Medicaid varies from state to state,

a state’s Medicaid plan may only cover CAR T-cell therapy if performed as an out-

patient, whereas another state may require an inpatient admission. Some Medicaid

plans provide reimbursement on a per diem basis only that is inadequate to cover hos-

pitals’ costs; others reimburse only a percentage of the CAR T-cell product cost [3].

From start to finish (i.e. from harvest to infusion), a patient can receive a bill

upwards of $500,000 for a single infusion treatment. This, in part, is not only due

to hospital charges or insurance coverage, but because of the initial cost of intellec-

tual property generation, research and development, and creation of manufacturing

facilities. If CAR T-cell therapy is to be widely used across hematologic malignancies

and solid tumors, the price of the product will need to be lowered to compare more
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closely to existing therapeutic options [3]. All in all, if the financial load that coincides

with the gene therapy is ignored in quality management tactics, it will and presently

does deter patients from this treatment option. Patients will choose current therapy

regimes outside of gene therapy because they want to avoid carrying this financial

burden themselves or having family/friends carry this burden if they pass during or

after infusion; passing on the option of gene therapy could ultimately result in their

death.

Given all of this information, it is clear to see the strong need for an e�cient,

safe, and a↵ordable treatment option for a life-threatening condition. Developing a

better measurement policy for the transduction and expansion processes within the

bio-manufacturing of gene therapy is crucial to achieving this goal. We aim to ac-

complish this with the methodologies explained in the up-coming chapters.

1.2 Challenges to Consider

The main objectives for this study in terms of preset goals are explained below.

Research Goal: Develop a Markov decision process model that represents the

measurement part of the quality control process for individualized cancer therapy.

The result is then incorporated into BIO-Man, a simulation platform to be adopted

to evaluate solutions to scale up production of gene therapies at a higher quality.

Long Term Goal: To achieve an overall quality control process that implements

this study’s optimal measurement policies with current FDA regulations.
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Developing a simulation model of this nature is di�cult and comes with a few

constraints.

Individualized Nature: Yield is almost entirely dependent on patient cells’ re-

sponse to reagents during the transduction/expansion manufacturing steps. As such,

new data for every simulation must be generated because of the autologous nature of

the therapy-product.

Timing Constraints: If preparations and/or testing take too long, cells will die.

In general, the longer the wait the lower the yield. Also, waiting too long can be

critical for a terminal patient.

General Constraints: I have limited knowledge on dependent factors a↵ecting

yield/ production in general as I am not a subject matter expert.

1.3 Thesis Structure

The content of thesis is organized as follows :

1. Chapter 2: We describe the technical approach to model and optimize the

yield measurement process.

2. Chapter 3: Walks-through the experimentation phase of the study and dis-

cusses results of the experiments.

3. Chapter 4: Concludes the thesis and covers next steps/ future work.
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Chapter 2

METHODOLOGIES

In this section, we detail the technical approach for the modeling and optimization

of the measurement process. In particular, we model measurement as a Markov Deci-

sion Process (MDP) integrated with a Bayesian update function for the update of the

yield statistical learning model. This then feeds into a linear optimization program to

maximize the Q-factor function at each state for the entire action space which selects

the highest factor for the associated action as the decision at time t. Subsequently,

we discuss the key functions, yield curve approximation, and policy improvement of

the built simulation.

2.1 CAR-T Manufacturing Process

As previously mentioned, in this work we aim to discover the optimal combination

of parameters that help control the quality outcome of the therapy-product during

the transduction/expansion manufacturing steps. In order to do so, we first present

the CAR-T manufacturing process with current practices, which we will optimally

monitor and discuss later on how to include the suggested optimal ranges for the

parameters included in this study.

A general process of gene therapy manufacturing good manufacturing process

(GMP) was taken from literature and is discussed in this section. The simplified ver-

sion of the process is as follows: Isolate T-cells from patient’s blood collected, T-cells

then genetically modified in GMP (good manufacturing process). CAR’s are delivered
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to the T-cells in 3 ways: Viral Vectors (retroviral or lentiviral), transposon systems

(Sleeping Beauty), or mRNA transduction. Then the CAR T-cells are amplified and

infused in the patient at the end of the process. At present, gene modification in

the production of CAR T-cells is mainly achieved by viral vectors (retroviral vectors

or lentiviral vectors), transposition subsystems, or direct mRNA electroporation, so

that CARs are expressed on the surface of T cells in order to specifically recognize

and bind antigens on the surface of tumor cells, and finally kill the tumor cells [15].

Given this information there are 3 possible processes for CAR production to con-

sider when formulating a GMP for total quality control. Also, dependent on the needs

of the original T-cell harvest location, a stability test should be conducted for samples

that need to be temporarily preserved during the production process. If there is no

need to cryogenically freeze the cells, a sterility test would be needed to ensure no

contamination or flaw occurred during the transportation portions (before infusion

to the patient also). The issue explained in the literature is that the current sterility

testing approach can take up to 2 weeks, but there are alternative quick-detection

methods that are required in process control and release testing (i.e. gram staining

or acridine orange staining) [15]. As mentioned earlier, validation is a necessary part

of model formation, and before the quick methods are fully validated the gram and

orange staining methods should be performed in parallel. It is recommended to per-

form a sterility test on samples taken from culture supernatant at regular intervals

after three or four days of culture, covering 48–72hr before release. If contamination

is found in the early stages of cell preparation, further preparation should be ter-

minated [15]. The following state/process map (Figure 1) was created based o↵ of

all possibilities mentioned in the literature and it is a low-level version of the overall

manufacturing process. The possible state space for the total quality control process
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would be stability testing, termination of production, sterility testing, release testing,

and validation [7].

Figure 2.1: General Manufacturing Process Map with Tests

Even though the above information is about a total quality control process, this

paper mainly pinpoints how to find an optimal measurement policy for the transduc-

tion/ expansion portion of the manufacturing process. The main testing done in this

part of the process are the stability tests done by lab technicians. These tests are

considered measurements in this study.

2.2 Problem Formulation

The objective of this section is to derive the Markov Decision Processes (MDP).

MDPs are a mathematical framework for a decision-making stochastic control pro-
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cess that has random outcomes and where the system is partly a↵ected by an outside

decision maker. In our case, it would be a lab technician in charge of the transduc-

tion/expansion manufacturing step only and will be the setting throughout this paper.

2.2.1 Markov Decision Process Components

States: States represent the percent yield achieved during the manufacturing

process at the time of measurement. Such percent yield is a finite support continuous

random variable. The state can be observed upon measurement, only at discrete

times. In particular, we assume a measurement can be performed every 10 time-

units. Timestamp, t, is based on the total length of the transduction process over

the number of measurements to be taken. To be more specific, the transduction

process takes 4 hours, converted to 240 minutes and divided into 24 equal parts;

thus, resulting in 24 timestamps (Equation 2.1).

st = {0, 100}; t = {0, 1, ...23} (2.1)

Actions: Actions are defined as the following: Measure then Continue (0), Mea-

sure then Stop the Process (1), Do Not Measure and Continue (2), and Do Not

Measure and Stop the Process (3) (Equation 2.2). This is a simplified action set as

this can get computationally complicated as more actions are added; i.e. the number

of possible states and paths can grow exponentially.

A = {0, 1, 2, 3} (2.2)
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2.3 Learning Model for the Yield Function

In the Bayesian update the lower and upper bounds of the truncated normal

distributions being used, for the prior and likelihood distributions, are set to 5 and

100 respectively. A vector of 5 sampled measurements, x, at time t, are generated

from a single yield value taken from the assumed yield function, Y(t), at the same

time t, but have the added variance as mentioned earlier. The mean of this vector

is the mean for the likelihood distribution in the Bayesian update. The prior is

another truncated normal distribution ranging from 5 to 100 with mean equal to the

state yield value of the assumed yield function measured at time t. To obtain the

posterior distribution of the Bayesian update, the prior probabilities are multiplied

by the likelihood probabilities. It is then normalized by the sum of probabilities for

each observation, given by:

P (✓(t)|Y (t)) =
P (Y (t)|✓(t))P (✓(t))P
P (Y (t)|✓i(t))P (✓i(t))

(2.3)

The mean of the resulting posterior distribution is Ŷ (t).

2.3.1 State Transition

Ps,a = P (st+1, st): Probability transition matrix; The probability of going from

any state st at time t, to the future state st+1. The transition probabilities are not

known in this problem, so it is given random values such that the rows and columns

of the matrix sum to 1. The transition matrix is utilized in the value-function later on

in this paper. The yield is a function growing in a sigmoidal manner over time [14].
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Y (t) =
Ȳ

(1 + Ȳ �Y0

Y0
) ⇤ e�rt

(2.4)

The above equation, Equation 2.4, is the sigmoid function for the assumed yield

where Ȳ is the yield threshold and Y0 is initial yield. Samples that are taken for the

Bayesian update, are from the assumed yield generated by the function in Equation

2.4. We then take 5 measurements at each timestamp being evaluated and calculate

the mean and variance of measurements that are inputted into Bayesian Update por-

tion of the design.

We are trying to simulate the measurements taken by lab techs for each measure-

ment action that has been decided. We keep a count of measurements for an entire

policy and each time a measurement is taken the counter is increased by 1 and then

we add randomness to emulate the general measurement variance that occurs in lab

settings.

2.3.2 Example for Bayesian Update

The following example was simulated to showcase how the Bayesian update por-

tion of the model functions. The parameter values used in this example are set to

the following levels:

Table 2.1: Bayesian Update Example Parameter Values

r (Growth Rate) � (Discount Factor) C (Instantaneous Cost) P (risk)t
0.05 0.9 2 0.1
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In this example, we modeled cell population growth with a sigmoidal growth curve

in equation 2.4 for the transduction/expansion phases of manufacturing. The result-

ing sigmoid, with r = 0.05, is presented in the top graph of Figure 2.3.

Figure 2.2: Initial Prior and Likelihood (left) for Resulting Initial Posterior (right)

The MDP made a measurement at t = 10, so we present the resulting likelihood

and prior distributions from that measurement in Figure 2.2 on the left. These dis-

tributions are then multiplied together to produce the posterior distribution, which

is presented on the right in Figure 2.2. The mean of this distribution gives Ŷ (10).

Repeating this measurement for all measurements results in Ŷ (t), presented on the

right in Figure 2.2.

13



Figure 2.3: Initial Sigmoid Yield Curve (top) and Yield Curve with Updates
(bottom)

In Figure 2.3 above, the bottom graph shows the resulting fitted yield of the MDP

after all the Bayesian updates are completed. The dotted lines show the time stamps

at which measurements were taken and updates occurred, the blue curve shows the

actual yield, and the orange line gives the fitted yield.

2.4 Policy Improvement

⇡: A policy; “optimal” when reward is maximized and costs/risks are minimized,

making the policy greedy choosing, for each state s at time t, the action with maximum

Q-factor [10].
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⇡⇤ = optimal set of actions in a policy (2.5)

V ⇡(s, a): The state-value function; defines the value of a state as the expected

cumulative future discounted reward starting from that state for the associated action

at the specific time for the entire generated policy (Equation 2.6). It is based on the

Bellman iterative equation from MDP literature.

V ⇡
i (s, a) = E

"
TX

t=1

�tRat(st, st+1)

#
(2.6)

Costs: Costs considered at this time, specifically for cost of measurement, can

change depending on user and fluctuating prices of the test used for measurements

and will be varied in the experiments section of this work.

Instantaneous Cost: An instantaneous cost occurs when the action 0 or 1 is

chosen, representing the decision to measure which incurs the cost of testing (cost of

materials and labor).

Discounted Future Costs: It is important to note that the other additional

costs are formulated in the reward function to calculate the relative cost to a penalty

cost for each measurement as well. This means that for every measurement there will

be an additional penalty accounted for to help deter the model from making more

measurements than necessary; since it runs the risk of contamination and lowering

the yield that must be taken into account (another negative cost). The final cost

being considered is the positive cost associated with the information gain when tak-
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ing the action of “Measure”. This is to help o↵set the negative costs of making the

measurement in the first place and for the risk of contaminating the therapy-product;

thus, the objective function contains this reward function that seeks to maximize the

overall reward for a policy.

Q⇡(s, a): The Q-factor; Takes the action a, in state s at time t, under the policy

⇡ and it returns the utility of that state-action pair. Q⇡(s, a) is defined as the

expected return starting from s, taking the action a and following policy ⇡ (Equation

2.7).

Q⇡(s, a) = argmax(Q[st, a0], Q[st, a1], Q[st, a2], Q[st, a3]) (2.7)

To explain Q⇡(s, a) further, the framework uses Equation 2.8 to calculate the

each of the 4 elements in the Q⇡(s, a) equation in Equation 2.7.

Qi(st, a) =
3X

a=0

Ps,aR(st) + �Ps,aV
⇡(st, a) (2.8)

Where,

Q(st, a): Action-value function in state s at time t with action a

Ps,a: Transition probability matrix; Contains random numbers between 0 and 1, and

whose rows/columns sum to 1

R(st) : Reward value in state s at time t

� : Discount factor

V ⇡(st, a) : State-value function at time t
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After completing the reward calculations for the state-value function in Equation

2.6, the Python 3.7 package ‘PuLP’, is being utilized and it takes in the reward,

gamma, and transition matrix to solve the linear program. The evaluated linear pro-

gram output is V, the state-value function result.

Before covering the reward function, one of the major components of the objective

function in the linear program, there are a few parameters and constraints that should

be considered. The parameters being probability of contamination, rate of increase

for the sigmoid function in data generation, discount factor on reward, instantaneous

cost, and information gain is the action being evaluated is measure related. As for

the constraints, one that we are considering is that the rate of increase for the sig-

moid function, r, cannot ascertain values higher than 0.2 as that can make the cells

volatile/ unstable and is di�cult biologically to obtain in manufacturing. Another

constraint is that if the probability of contaminating the product is higher than 0.4,

we should choose to not measure the product during the transduction or expansion

phases. This comes with a few additional issues, one being you have no information

on how the yield curve is behaving and thus not able to determine if you need to add

more viral vector serum to increase the CAR attachment, the other issue being since

you don’t know how the cells are behaving the manufacturer is not able to determine

if the yield threshold has been met. The yield threshold is a critical component of

the therapy production because the patient’s physician determined the amount of

therapy required for their specific patient and failing to produce the amount needed

could mean certain death for the patient and a large bill of unnecessary costs.

The reward function portion of the MDP design considers instantaneous cost of

measuring as well as the cost associated with probability of contamination and the
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reward for taking a measurement to gain information about how the real yield is

behaving. It also considers a discount factor on how confident the MDP should be

when making a decision based on the reward (Equation 2.9).

Rt = �t ⇤ Rat(st, st+1); at 2 {0, 1, 2, 3}; Action chosen at time t (2.9)

The function implemented in the model acts as the ‘true’ reward function, without

the discount factor, is shown below:

Rat(st, st+1) =

8
>>>><

>>>>:

�C + [C(1 + �CCt)] � [C(1 � P (risk)t)] at = 0

�C at = 1

0 at = 2, at = 3

Where,

Rat : Reward at time t for the action a

C: Instantaneous cost

�CCt =
Y (t)�Y (t�1)

100
; Change in percent yield

at : Action taken at time t

P (risk)t = Pt(risk|at, TCMt) = Pt�1(risk|at, TCMt) + P0(TCMt); Prob-

ability of contamination

TCMt: Total count of measurements taken until time t

P0: Initial probability of contamination

A final cumulative reward for a simulated policy is the expected utility based
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on the actions taken for that path, expected costs/penalties for the path. will be

calculated and that will determine which actions on which paths to take as a good

policy.

19



Chapter 3

NUMERICAL RESULTS

In this chapter, the experimentation and sensitivity analysis conducted will be

covered initially, then the results and discussions will be included before discussing

conclusions and future work in Chapter 4.

The objective of this analysis is to determine the e↵ect the free parameters have

on policy selection and to separate optimal policies from sub-optimal policies.This

will ultimately result in a recommendation for the range free parameters should be

restricted to. If restricting these parameters is not possible, then we have further

recommendations for policies to follow within di↵erent parameter ranges.

Chapter 3.1 will cover the design of the numerical simulations, discussing what

the free parameters of the MDP are, what their respective ranges are, and how we

define optimality. Chapter 3.2 will cover the numeric di↵erences in policies across

di↵erent levels of optimality and how optimality is influenced by the free parameters.

Finally, Chapter 3.2.1 will cover the formal sensitivity analysis of the MDP.

3.1 Design of Experiments

There are several free parameters in this process that drive the decision to choose

one of the generated policies over another; by this it is meant that the model will

generate di↵erent policies for the set of values you input in addition to the randomized

data being created for the yield function. While the created simulation model can
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be constrained by experimentally derived values of these aforementioned parameters,

these values are often uncertain in real-life scenarios. For instance, the probability

that a medical instrument is contaminated by mycoplasma and could thus infect a

CAR T-Cell harvest can vary widely between hospitals despite the prevalence of ster-

ilization technology. Mycoplasma contamination rates usually vary between 15% and

30% but could be high as 70% [5]. We therefore simulate the decision process across

a wide array of parameter values in order to estimate the degree to which these pa-

rameters determine the outcome of the MDP. We did not have access to real data,

so we treat the rate of increase as a free parameter over the interval (0.04, 0.5) in

the random data generation to achieve a wide range of scenarios. The parameters we

vary, as well as their respective ranges, are given in Table 3.1.

Table 3.1: Parameters and Associated Levels for Sensitivity Analysis

r (Growth Rate) � (Discount Factor) C (Instantaneous Cost) P (risk)t
(0.04,0.5) (0,1) (0,1000) (0,1)

Specifically, we focused our analysis on 4 parameters that we freely varied in this

study. The first is the sigmoidal growth rate (r), which we used to model the popu-

lation growth of CAR T-Cells in solution. While in theory this parameter can take

on any positive real number (as we assume cell count always increases with time), in

practice we found that extremely low values never result in a yield of 100% through-

out the course of the simulation, while high values represented biologically unfeasible

scenarios where cell counts almost instantly achieved maximum yield. We found that

values between 0.04 and 0.5 were reasonable given the length of time our simulation

represents (240 minutes).
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The second parameter we varied was the probability of contamination for every

measurement. Regardless of how clean the instruments are, there is always some non-

zero probability that the instrument will be infected. Conversely, this probability will

also never be 1, so we simulate the range between 0 and 1.

The third parameter is the instantaneous cost of the measurement, or the mone-

tary cost of paying a technician to make the measurement, the resources extended to

make that measurement, and so on. We chose a range between 0 and an arbitrarily

high $1000 so the MDP could identify the cost at which the sum of this cost and the

contamination risk outweigh the benefits of measuring at all.

Finally, we varied the discount factor (�), which quantifies how important future

reward is to the current state. This influences the decision being made in the current

state based on future rewards. In our case we only consider the next state. We varied

this value between 0 and 1 as this is the natural range of this parameter.

There were 3 quantifications taken for every policy generated by the MDP to use

when we compare all the generated policies: stop time (tstop), mean squared error

(MSE), and total number of measurements (TCM ). Stop time is taken when the

process is stopped by either the action 1 or by action 3. Mean squared error is be-

tween the actual yield and the assumed yield (the yield curve being updated). The

total number of measurements are the count of action 0 and 1 instances in a generated

policy by the stop time.

It is important to also note how the optimal policy is being identified. In this

study, the MDP generates an optimal policy based o↵ of the defined set of param-
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eter values. As mentioned earlier, the ranges for each parameter are being divided

into segments and randomly combined with the other parameter values creating 1000

unique combinations in total. After running the analysis, we gather the combination

of levels for each of the parameters and document their associated MDP policy. To

simplify the MDP optimal policies for each of these, we then find the mode policy

within each parameter level. This will be the optimal policy generated by the MDP

for those level combinations. Using this information, we then recategorize these poli-

cies based o↵ our own set of constraints on what we think is most optimal within

that set of generated policies (see Table 3.2). The optimal policy, ⇡⇤, is being chosen

based on whether the probability of contamination is less than or equal to 0.4, total

cost is less than or equal to $854 (lower 50th percentile), and an MSE less than or

equal to 2E-4 (lower 35th percentile). We define feasible solutions as anything that is

less than optimal, but still meeting requirements (makes at least 1 measurement and

reaches the yield threshold within time T). Last, we define a policy as infeasible when

there are no measurements taken because there needs to be at least one measurement.

3.2 Results and Discussion

In this analysis, we want to determine which free parameters had a significant

e↵ect on optimality. To do this, we ran 6 di↵erent multinomial logistic regressions

between the categories of optimality (i.e. if a policy was determined to be optimal,

feasible, or infeasible) and the free parameters. These regression models represented

all possible interactions, and then selected the most parsimonious model by com-

paring the AIC (Akaike Information Criterion) values that are generated with the

‘multinom’ (within the R 4.0 package ‘nnet 7.3-14’) and AIC functions in R 4.0 [11].

The model without interactions between free parameters had the lowest AIC value.
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In this model, each parameter had a significant e↵ect (p < 0.001) on determining

optimality. Gamma was the lone exception (p > 0.05). The parameter space for

each optimality category is given in Figure 3.1.

Figure 3.1: Free Parameter Significance Levels per Optimality Category

Each row represents the spread of a particular free parameter within each opti-

mality category. ANOVAs were conducted between each optimality category across

parameter space, and all but gamma were significant. A post-hoc Tukey test was per-

formed for pairwise comparisons, where the significance levels (p-values) are presented

on the graph as: NS = Not significant, ** p < 0.01, and *** p < 0.001.
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Optimal policies are correlated with low values P (risk)t and C. However, it is

also correlated with intermediate values of r. When r is small, therefore cell growth is

slow, many measurements are necessary to consistently monitor yield until it reaches

threshold. On the other hand, if r is too high, then yield increases to threshold before

any measurements can be taken at t = 10.

We can see this e↵ect in the mode policies for each kind of optimality (Figure

3.2). When r is low in the feasible case, measurements need to be taken throughout

the duration of the experiment. Therefore the probability of choosing action 0 or 1

are higher at later time steps than at earlier time steps relative to the optimal case.

When r is high in the infeasible case and the yield increases to threshold quickly,

taking measurements only results in a small information gain. This small gain is out-

weighed by the cost of taking the measurement, so no measurements ever get taken.

As we will see in the sensitivity analysis in Chapter 3.2.1, this e↵ect is the primarily

driven by r, as the model is the most sensitive to that parameter.

This e↵ect results in di↵erent mean behaviors between the di↵erent optimality

levels. The average values for various metrics are given in Table 3.4. From this table,

we can see that optimal policies take fewer measurements than feasible policies, and

thus they tend to stop sooner and are cheaper than feasible policies. They also tend

to reduce error relative to feasible policies.
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Figure 3.2: Mode Policy per Optimality Category

Visualization of the mode policy for each optimization level are shown in the figure

above (Figure 3.2). The top panel gives the optimal mode policy, the middle gives

the feasible policy, and the bottom gives the infeasible policy. The rows within each

panel represent an action taken at the time step given in the y-axis. The color gives

the probability of doing that action at that time step. At the beginning, the sum of

the column = 1, however columns past t = 5 do not sum to 1 because not all policies

last for more than 5 time steps.

Since the model is sensitive to the free parameters it will produce very di↵er-

ent policies based on the parameter settings. Some of these parameters might be

modifiable within the manufacturing process, however they may also be unalterable

constraints (e.g. technicians might be able to control the growth rate by adding more

viral vector solution or they cannot). We have therefore produced a set of mode

policies for di↵erent parameter combinations in Table 3.2. This table can act as a
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guideline for technicians looking to measure yield in the expansion/transduction pro-

cesses.

Table 3.2: Parameter Level Combinations and Associated Mode Optimal Policies

r � C P (risk)t Mode Policy Optimal Feasible

0 0 0 0 222202222222202022222223 Y Y

0 0 0 1 222020220002222022222223 N Y

0 0 1 0 200222220222222220202023 N Y

0 0 1 1 222222002220222222222221 N Y

0 1 0 0 222222002220222222222221 Y Y

0 1 0 1 222222222222222222222203 N Y

0 1 1 0 222220020020220220222223 N Y

0 1 1 1 222222200222222222022223 N Y

1 0 0 0 02223 Y Y

1 0 0 1 22221 N Y

1 0 1 0 22221 Y Y

1 0 1 1 20223 N Y

1 1 0 0 22202223 Y Y

1 1 0 1 20223 N Y

1 1 1 0 20223 Y Y

1 1 1 1 022223 N Y

In Table 3.2 above, parameter level combinations with their associated mode op-

timal policies for di↵erent parameter combinations generated from the MDP are enu-

merated. The level 0 corresponds to a low value (lower 50th percentile) within the

ranges for the parameters and level 1 corresponds to a high value (upper 50th per-

centile) within that same ranges for the parameters. The lower 50th percentile range

of r is [0.04, 0.09), and the upper 50th percentile range is [0.09, 0.5]. � lower range

= [0, 0.5), upper range = [0.5, 1]. C lower range = [0, 500), and the upper range =

[500, 1000]. P (risk)t lower range = [0, 0.5), and the upper range = [0.5, 1]. The

far right columns show whether or not a particular policy is optimal and/or feasible

(if both are denoted with ’N’ for no, then the policy is infeasible).
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Table 3.3: Overall Mode Policies Generated by MDP

POLICY Optimal Feasible
Overall Mode Policy 22223 N N
Optimal Mode Policy 22221 Y Y

Additionally, we included a table (Table 3.3) that shows the overall mode policy

(pooled mode policy) and the overall optimal mode policy and a table that summa-

rizes the main di↵erences across optimality categories (Table 3.4).

Table 3.4: Comparison of Performance Across Optimality Categories

Optimality Category tstop TCM Ctotal MSE
Optimal 85.93 1.35 $426.51 5.22E-5
Feasible 118.1 3.2 $1639.17 2.94E-4
Infeasible 69.22 0 0 0

Each cell in Table 3.4 gives the average value of the metric given in the column

for the policy optimality type given in the row. Recall that tstop is the stopping time

stamp of the policy, TCM is the total count of measurements taken in a policy,

MSE is for the mean square error, and Ctotal in this summary table is for total cost

of entire policy.

3.2.1 Sensitivity Analysis

In this section, we will discuss how the analysis is conducted by enumerating the

general steps taken on how we achieved a completed analysis on this study.

In order to measure sensitivity, we perform a variance-based sensitivity analysis

(sometimes called the Sobol method). Under this paradigm, sensitivity is understood

as the amount of variance of an output caused by variance of an input, as well as
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interactions between inputs. The proportion of variance caused by a single parameter

is called its first-order Sobol index, while the contribution made by two parameters

is the second-order index. The sum of first-order and higher-order indices for a par-

ticular parameter is called the total-order index, which is what we report here. We

calculate these indices with the ‘SALib’ package in Python 3.7.3 [6]. Random values

for each parameter were selected with the ‘Saltelli.Sample’ function in this package

and were run for 1000 replications, Figure 3.3 below depicts the normalized total-order

Sobol index for each parameter associated with the 3 quantifying metrics mentioned

earlier that we are considering (MSE, TCM , and tstop). Since we are normalizing

the total-order Sobol index, these values cannot be used to directly measure the true

sensitivity. However, they can be used to approximate the e↵ect size each parameter

may have on the overall system. Each free parameter has the same relative e↵ect

on measurements, in this case however, the rate of increase, r, for the sigmoid yield

function contributes the most to stop time, only some to total measurements, and

even less to MSE. In general, the rate r is the main source of variation in this

simulation because of how the data is being generated (i.e. it is entirely dependent

on the yield function values generated and the rate is what creates these values of

yield).
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Figure 3.3: Normalized Total-order Sobol Index per Parameter

The optimality of a generated policy from the MDP can be measured by mean

squared error (MSE), total number of measurements (TCM ), and stop time (tstop)

as mentioned earlier. During the sensitivity analysis, these quantifications are used

and the normalized sensitivity of each free parameter included in both the model as

well as the analysis (the color of each point) are given on the x-axis in Figure 3.3.

Please note that jitter was added to avoid overlap between points in the figure to

make it easier to analyze.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

In addition to the optimal policies discussed throughout this study, the Federal

Drug Association (FDA) and the Foundation for the Accreditation of Cellular Ther-

apy (FACT-JACIE) have published many standards regarding good manufacturing

practices (GMPs) in the realm of gene therapy production that should be followed to

maintain overall quality and adhere to all regulations. Moreover, they state that in the

U.S., minimally manipulated cellular therapy products from first- or second-degree

related donors are regulated under the 21 CFR 1271 Good Tissue Practices (GTP)

regulations and section 361 of the Public Health ServiceAct [2], [1], [8]. They list

general guidelines that must be followed when submitting accreditation applications

for manufacturing facilities, both centralized and decentralized, that are wanting to

manufacture gene therapy. These guidelines include documentation from all partic-

ipating parties from harvest to infusion, training on a yearly basis (at minimum),

descriptions of procedures that are submitted to the FDA and are available to all

participating parties, etc. before a patient can receive the infusion.

We, as well as the industrial manufacturing labs that make these therapy-products,

have pushed for innovation in many di↵erent areas and tools for bio-production. These

tools are: Single Use Machines/ disposable, continuous/ batch processing (hybrid),

and establish an overall quality control process with optimized measurement policies;

which is the purpose of this study. We suggest that the policies generated in this

model are taken in conjunction with already established GMPs to ensure that the

FDA regulations are being adhered to and to achieve all the goals set in the begin-
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ning of this work; Make the manufacturing of the gene therapy more e�cient, safe,

and a↵ordable.

4.1 Future Work

More work can still be done to further improve the quality control process. We

make the following recommendations:

Redefine ‘error’: Redefine the definition of ‘error’ as the di↵erence in the areas

underneath the actual and fitted yield curves. Optimality can in part be defined by

this di↵erence instead of the mean squared error (MSE). To do this, we could im-

plement a function to calculate the area between the two yield curves to get a more

accurate idea of the measurement ability of the design framework and identify which

policies are most optimal. Based on the minimization of that area in combination

with satisfying the other optimality constraints.

Increase Parameter Space: Increase the number of free parameters, as some

factors may have a stronger influence on policy than the ones considered here. One

example of a parameter to include is the yield threshold.

Model Scaling: Scale models to fit the demand/size of the system in such a way

as the models always adhere to all regulations.
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