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ABSTRACT

Visual processing in social media platforms is a key step in gathering and understand-

ing information in the era of Internet and big data. Online data is rich in content, but its

processing faces many challenges including: varying scales for objects of interest, unreli-

able and/or missing labels, the inadequacy of single modal data and difficulty in analyzing

high dimensional data. Towards facilitating the processing and understanding of online

data, this dissertation primarily focuses on three challenges that I feel are of great practical

importance: handling scale differences in computer vision tasks, such as facial component

detection and face retrieval, developing efficient classifiers using partially labeled data and

noisy data, and employing multi-modal models and feature selection to improve multi-view

data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and

accurately detect facial landmarks. For the second challenge, I propose two algorithms that

can be used to learn from partially labeled data and noisy data respectively. For the third

challenge, I propose a new framework that incorporates feature selection modules into LDA

models.
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Chapter 1

INTRODUCTION

How people socialize with other and how they spend their leisure time have been dramat-

ically changed by the impact of social media in the last decade. Rich content distributed

throughout our devices, including images, videos, and daily texts, allows users to keep up-

to-date on world affairs, current issues, and everyday news. While massive user-generated

social media provides interesting resources for many machine learning and computer vi-

sion tasks as shown in Fig.1.1, many practical applications still face the challenge of how to

efficiently and effectively utilize visual processing, since the user-generated data may pose

many challenges for typical algorithms, due uncontrolled nature of the data. To support

better visual processing in social media, my research focuses on three main problems. The

first focus is to handle variation of scales in computer vision tasks such as face retrieval

and eye detection. The second focus is to train reliable classifiers based on partial labels

and noisy labels. The third focus is to improve modeling multi-modal data by combining

multi-view model and feature selection.

There has been a lot of past research in visual processing with respect to these issues.

The first problem involves computer vision applications like eye detection. A method based

on independent components analysis (ICA) was proposed in Hassaballah et al. (2010). One

main limitation of most approaches like this is the requirement of a fixed scale of test

images, for example, the assumption that all the images have been preset to a fixed scale. I

propose a scale adaptive Eigen approach to address the scale variation on eye detection.

For the second problem, in many applications where training data arises from real-world

sources, there may be labeling errors or partial labels in the data. Explicitly correcting label

errors for large datasets is expensive and thus may not be done with guarantee. In Xiao
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Figure 1.1: Online Data Provide Rich Source for Research.

et al. (2015), a framework was introduced to train Convolutional Neural Networks (CNNs)

with only a limited number of clean labels and millions of noisy labels. The relationships

between images, class labels, and label noises are modeled with a probabilistic graphical

model and integrated into an end-to-end deep learning system. I attempt to address the

problem of multi-class learning with noisy labels using a simplified structure: random

forest. Other types of methods have also been proposed for applications that lack full

labeling information. For example, pairwise matching labels (indicating whether each pair

of training sample is the same or different) were used in Guo et al. (2013) for learning a

discriminative dictionary. I propose a dictionary learning framework that uses less labeling

information. This training data will only contain limited sample pairs that should be labeled

as the same. For the third problem, most existing work simply combines information from

different modal/view when modeling data. I propose a novel, two-view topic model, which

interacts with feature selection procedures in learning.

2



1.1 Eye Detection via Scale Adaptive Eigen Eye

Detecting eyes in images is fundamental for many computer vision applications in-

cluding face detection, face recognition, and human-computer interaction. Most existing

methods are designed and tested on datasets acquired under controlled lab settings (e.g.,

fixed scale, known poses, clean background, etc.), leaving their performance to be further

examined on real-world, uncontrolled images, such as online images. I present an effort on

developing a fast and accurate eye detector for online images for which the acquisition con-

dition is unknown and varies from one image to another, resulting in unpredictable back-

ground and variable scales for the eyes/faces. The key idea is to develop a scale adaptive

Eigen Eye approach, which employs an approximate scale estimated from face detection

to modulate the pre-trained Eigen Eye basis in searching for the best match in a test im-

age. The effort also includes building a 2845-image dataset with accurately-annotated eye

locations and size. Performing an evaluation using this dataset, in comparison with a few

leading state-of-the-art approaches, demonstrates the advantages of the proposed method.

Details are shown in Chapter 2.2. Since Singular Value Decomposition (SVD) is essential

to many machine learning methods, I further extend the Eigen Eye approach into the more

general linear transformed SVD (LT-SVD) problem. The definition of LT-SVD is to solve

a new SVD as a linear transform of an already known SVD. In fact, LT-SVD may arise due

to the sampling of a dataset and the (approximated) linear transformations between train-

ing and testing domains. I present a solution to LT-SVD which, in contrast to traditional

methods, achieves both efficiency and accuracy. I also extend the LT-SVD problem to its

tensor case and derived solution in the same spirit. My approaches are validated by both

theoretical analysis and numerical experiments. Details are shown in Chapter 2.3.

3



1.2 New Methods for Partial Label and Noisy Label Learning

Discriminative dictionary learning has been widely used in many applications, includ-

ing face recognition and image classification, where the labels of the training data are

utilized to improve the discriminative power of the dictionary. I deal with a new problem

of learning a dictionary for associating pairs of images in applications such as face im-

age retrieval. Compared with a typical supervised learning task, in this case the labeling

information is very limited (e.g., only some training pairs are known to be associated). Fur-

thermore, associated pairs may be considered similar only after excluding certain regions

(e.g., sunglasses in a face image). I formulate a dictionary-learning problem under these

considerations and design an algorithm to solve the problem. I also provide a proof for the

convergence of the algorithm. Experiments and results suggest that the proposed method

is advantageous over common baselines. Details are shown in Chapter 3.1.

Random forest is a well-known and widely-used machine learning model. In many

applications where the training data arise from real-world sources, there may be labeling

errors in the data. In spite of its superior performance, the basic model of random forest

does not consider potential label noise in learning, thus its performance can suffer sig-

nificantly in the presence of label noise. In order to solve this problem, I present a new

variation of random forest - a novel learning approach that leads to an improved noise ro-

bust random forest (NRRF) model. I incorporate the noise information by introducing a

global multi-class noise tolerant loss function into the training of the classic random forest

model. This new loss function was found to significantly boost the performance of random

forest. I evaluated the proposed NRRF by extensive experiments of classification tasks

on standard machine learning/computer vision datasets like MNIST, Letter, and Cifar10.

The proposed NRRF produced very promising results under a wide range of noise settings.

Details are shown in Chapter 3.2.
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1.3 New Feature Selection Embeded Topic Modeling Method

In the era of big data and the expansion of the internet and social media, analyzing

multi-modal data is paramount in gathering information from rich content. Image tweets

and micro blog posts, with embedded videos and images, make content more vivid. Ac-

cording to (Chen et al., 2015), multimedia forms attract a larger viewership than text-only

posts. On the other hand, many real-world applications involve high-dimensional data in

various representations and views that provide related and complementary information. For

example, one image can be described by its different views, like color histogram, texture

information, SIFT descriptor, and more. As the views are generally high-dimensional and

may provide complementary information, extracting the most relevant features from said

data is often a necessary step for further analytical tasks. Based on the aforementioned

discussion, I aim to embed feature selection into the LDA topic model. While multi-view

LDA models can capture correlations between each page view and text/annotations, feature

selection pushes the model a step further to make use of the correlation between page views

to build a more precise model of multi-modal data. The approach integrates unsupervised

clustering and multi-view feature selection into a unifying formulation so that relatedness

of the views, clustering of the data, and importance of the features are all simultaneously

considered. I focus on how to incorporate the feature selection procedure into the existing

multi-view LDA algorithm framework. Details are shown in Chapter 4.
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Chapter 2

SCALE-INSENSITIVE DETECTION AND MATCHING IN FACE IMAGE

PROCESSING

2.1 Preliminary Exploration Towards Understanding Human Performance of Retrieving

Unfamiliar Faces

2.1.1 Introduction

Face retrieval is defined as given a query face image, to find the images containing

the same person as in the query image from a large image dataset. The task is in general

different from, although related to, face recognition in that it is not necessary to assume a

finite set of identities (i.e., subjects) for a given dataset, and the retrieval is done only with

respect to the given query image. In recent years, many face retrieval algorithms have been

proposed. Wu and Ke proposed a face image retrieval system in Wu et al. (2011) using a

scalable face representation, where a multi-reference distance approach related to Pseudo-

Relevance Feedback (PRF) Manning et al. (2008) was used to rank the candidate images

using the Hamming signature. In Park and Jain (2010), a method using soft biometrics

was described, which employs demographic information and facial marks for improving

face image matching and retrieval. In Hu et al. (2012), SIFT features were used for initial

retrieval, followed by a relevance feedback strategy. There are also efforts dealing with fea-

ture selection for face retrieval Dai et al. (2011). In general, existing automatic algorithms

are either still under-performing or yet to be evaluated on more challenging datasets with

images from uncontrolled imaging conditions, indicating much more room for improve-

ment on developing face retrieval approaches.

In the meantime, there have been efforts reported in the literature, attempting to un-
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derstand human performance on face retrieval or recognition, as it appears human does a

better job on such tasks. For example, in Hancock et al. (2000) and Adler and Schuckers

(2007), human performance on face recognition was compared to automatic algorithms,

both drawing the conclusion that human is more accurate than existing automatic algo-

rithms. The study of Furl et al. (2002) showed that faces of the same race are easier to

recognize by human; and sex effect is studied in Lewin and Herlitz (2002), with the con-

clusion that women are better at recognizing female faces. Nevertheless, little was revealed

on how and why people obtained better performance, and thus it is difficult to derive prin-

ciples for improving automated approaches.

I set out to explore human performance on the task of retrieving unfamiliar faces. I

consider only the task of retrieval of unfamiliar faces (as opposed to face recognition),

since such a task would require a subject to derive all the necessary information from a

given query image. This would presumably help us to avoid the complicating factors such

as memorized identity in the task of recognizing a known person. Hence the study would

potentially reveal the types of information that may be employed by an automated system,

which would in general perform the retrieval task with information derived only from the

query image. To the best of our knowledge, this is a novel problem that has received

little attention in the literature. In my study design, to make the retrieval task even more

challenging, I employ wild Web face images (as opposed to standard datasets that were

used in most existing work). I also design two types of experiments, intended to assess the

conscious and unconscious thinking process of the subjects respectively in performing the

retrieval task.

2.1.2 Method

Recognizing that a subject may or may not be able to explicitly describe how he/she

actually performed the task for a given query image, my basic strategy is to rely on two
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types of experiments: one mainly based on questionnaire to the subjects to collect their

self-reported conscious thinking process during making the query (Experiment 1), and one

mainly based on an eye-tracking system for capturing their unconscious search of the visual

field of view during making the query (Experiment 2). I elaborate below the experimental

protocols and the images used in the experiments.

The face images in my experiments were selected from the Face In the Wild Database

Huang et al. (2007), a database of face photographs designed for studying the problem of

unconstrained face recognition, which contains more than 13,000 images of faces collected

from the web. These faces have been automatically labeled using the system described in

Berg et al. (2005). Since the dataset has 1680 people who have two or more images, I were

able to select the images that suit my needs in this study. In particular, I avoid images of

well-known celebrities since my goal is to study human performance on retrieving unfamil-

iar faces. Twenty query images of 20 different people, 10 female and 10 male respectively,

were selected for the first experiment; and 40 query images (20 female and 20 male) were

used for the second experiment. All selected images were later examined to see if it is

unfamiliar before it is used in the analysis.

Additional care was taken in selecting the candidate images for any query image, so

as to make the task more challenging. First, people appearing in these images belong to

the same gender of the query. Second, I made sure that the candidate images do not have

similar clothing style or background to the query image. On the other hand, to ensure the

task is better-defined and to support better eye-tacking-based analysis, I also ensured that

most of the images have only one dominant face in it.

A software utility was built for the experiments. Each subject who participated in the

experiments was asked to log into the study via an interface. After that, the subject can

click a menu button to start the experiment, then a query image is shown along with an

array of N x N candidate images, as illustrated in Figure 2.1. N is either 4 or 5 in my
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experiment. The subject then needs to find out which face image (i.e., the target image) in

the array belongs to the same person in the query image (making the selection is a simply

click of mouse, which takes little time). After that, the subject can click a button to move

on to the next query image.

Figure 2.1: Illustrating the Interface

In Experiment 1, after recording the subjects query results (his/her response to each

query image, including the time spent on each query image), I asked each subject a set of

pre-defined questions and recorded their answers. The questionnaire contains two parts.

Part 1 is to confirm the unfamiliarity of the query image. If a subject feels any of the

query images have familiar faces, then all the results related to these query images are not

considered when I evaluate his/her performance metrics. In Part 2, the following three

questions are presented to each subject after the retrieval task is completed:
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Figure 2.2: Drastic Appearance Changes in Female Face Images.

• Question 1: Do you think color images give more information than grey scale images

when you do the retrieval task?

• Question 2: What kind of features do you use or rely on when you retrieve a face?

• Question 3: Rank the importance of the following features in your retrieval: a. Hair

style; b. Skin tone; c. Facial features; d. Clothing style; e. Race; f. Age

In Experiment 2, an eye-tracking system was deployed, which records the eye fixation

points of a subject doing the retrieval task. The eye-tracking data were time-stamped and

thus were later synchronized with the sequence of queries made and thus I can analyze a

subjects unconscious search of the visual field for any given query image.
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Figure 2.3: Relative Frequency of Features Mentioned by the Subjects

2.1.3 Experimental Procedure

I recruited 11 and 9 subjects for Experiment 1 and Experiment 2 respectively. The age

range is from 24 to 31, 2 of them are female and the remaining are male. None of them

had prior knowledge about what the query experiments were about and they were trained to

perform the task right before the experiments. Each subject was asked to finish 80 sessions

of face retrieval in the first experiment. Each query image was shown 4 times in random

order, each time with a different candidate set. The 4 candidate sets are:
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Figure 2.4: Sample Heat Map of One Query Image.

1. Color images with one and only one frontal face image (target image) belonging to

the same person as the query image

2. Color images with one and only one off-frontal face image belongs to the same per-

son as the query image

3. Grey scale version of set 1

4. Grey scale version of set 2

The sequence of these 80 sessions is completely random and within each session, the po-

sition of the 25 candidate images is randomized too. Additional care was taken to avoid

positioning the target image on some special spots (e.g., the top row, where it may be too

obvious, or the right-most row, where it is too close to the equerry image on the interface).
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Figure 2.5: A difficult Case with the Busy Gaze Trajectories

In Experiment 2, considering the resolution of the eye tracker, instead of playing 25

images at a time, I reduced the number to 16. After the observations from the first experi-

ment that color images are more supportive to the retrieval task, in the second experiment

I used only color images. Hence a total of 40 sessions of face retrieval tasks were done by

each of the 9 subjects. I now report the experimental results, which are presented in three

different groups: objective performance metrics, subjective/qualitative responses from the

participants, and eye-tracking-based experiment and analysis.
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2.1.4 Results and Analysis

Objective Performance Metrics in Experiment 1

For each subject, I computed the hit rate and the average time spent on dealing with differ-

ent types of images, as elaborated below. (For computing the average time spent on certain

type of images, I only use results when the query is correctly done.) Overall hit rate: The

overall hit rate indicates that the subjects’ performances are not ideal. The hit rates fall in

to a range from 57.5% 97.5%, with the average of 78.64%.

• Frontal vs. off-frontal faces: The majority (8 out of 11) spent longer time when

dealing with off-frontal faces. The average time on frontal faces is 15.2s with STD

of 5.2s while it is 17.4s on off-frontal faces with STD of 5.3s. This indicates that

pose is an influential factor in face retrieval. An automated algorithm may need to

explicitly handle the pose for improved performance.

• Color vs. greyscale faces: The average time spent on color image is 16.0s with STD

of 5.6s, while on greyscale image it is 17.4s with STD of 5.5s. 6 out of 11 subjects

spent shorter time on color images. This indicates that color images are easier to

retrieve than greyscale images. I note that most existing face recognition system

actually use only greyscale images.

• Male vs. female faces: The average time spent on male faces is 15.1s with STD of

5.0s, and 19.1s on female faces with STD of 6.6s. 26% more time is spent when

dealing with female faces and all the subjects except one spent longer time on fe-

male faces than male faces. This indicates that female faces are harder to retrieve.

One possible reason is the appearance of a female may change dramatically (e.g.,

due to new hair style or make-up), as illustrated in Figure 2.2. This suggests that,

features that are invariant to common appearance changes in female images should
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be considered for improving an automated approach.

• Hit rate vs. time spent: As shown above, the hit rate is only 78.64%. Intuitively I may

think that the more time people spend on looking at the images, the higher chance

that they can select the correct target image. However, interestingly, plotting the

average time spent vs the hit rate reveals a wide scatter without any obvious positive

correlation among these two metrics.

Subjective Responses

The subjective responses to the questionnaire reveal additional information that either con-

firms or deepens the understanding of what observed in Sect. 2.1.4. For Question 1: Do you

think color images give more information than grey scale images when you do retrieval?,

10 out of 11 subjects responded yes, only one responded no with the explanation that he

only looked at facial features. This correlates well with the results of Sect. 2.1.4.

In asking Question 2: What features did you use or rely on when retrieving a face? I in-

tended to learn specific features that human uses on retrieval. Figure 2.3 depicts all features

mentioned by subjects and the corresponding number of times they are mentioned. Syn-

onyms are merged. Frequently-mentioned features are: hair, mustache, eye glasses, face

shape, nose and mouth. This open question gives us some important hints. For example,

most existing automatic face retrieval algorithms do not use hair or mustache as one of the

features, while more attention is given to facial components like eyes, nose, and mouths.

For Question 3: Rank the importance of the following features in your retrieval: a. hair

style, b. skin tone, c. facial features, d. clothing style, e. race, f. age, ranking scores are

from 1-6 while 1 indicates most important and 5 indicates least important. Table 2.1 shows

the average ranking scores of these features, lower scores indicate higher priority. Based

on these ranking scores, the ranking of the 6 features are: facial features, skin tone, race,
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Feature a b c d e f

Score 3.36 2.91 2.73 5.55 3.00 3.45

Table 2.1: Average Ranking Score.

hair style, age, and clothing style.

Experiment with Eye-tracking

Experiment 1 provided some holistic understanding of human performance in retrieving

unfamiliar faces, mostly in terms of accuracy (hit rate), time spent, and self-reported im-

portant factors. Recognizing the fact that a subject may employ some unconscious process

that is not realized by the subject him/herself, I employed eye-tracking in Experiment 2 in

order to learn the search behavior of the subjects in retrieving the images. Such experiment

may also provide additional data for verifying the self-reported behaviors. In this experi-

ment, an eye tracker tracks the eye fixation and gaze points during the retrieving actions of

a subject. The recorded data include: eye gaze points, eye fixation points (duration≥ 0.1s),

duration of each gaze or fixation points, and special events (when the subject advances to

the next query).

The raw data from the eye tracker is the gaze point positions. The gaze points are

sampled at a frequency of 100HZ which is dense enough to record accurate eye movement.

This high sampling rate also caused crowded gaze points at some positions and thus care

needs to be taken to make use of the noisy data. So based on the raw data, fixation points

are generated in the following way: in a small radius if the difference of the time stamp

of the first gaze point and the last point is more than 0.1s, then the mean position of these

points is recorded as a fixation point.

I use both gaze points and fixation points for objective analysis. The candidates that
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received the least numbers of gaze points are those that were quickly discounted by the

subjects. By analyzing such images, I came to the observation that hair color, skin tone and

eye glasses contributed to such quick elimination. More specifically, for the 40 sessions,

choosing the 5 images with the least gaze points, a total of 5*40=200 images were identified

(100 from female candidates and 100 from male candidates). Among these, hair color is the

most distinguishing: 64% (female) and 61% (male) rejected candidates having a different

hair color than the query image. For female sessions, skin tone is also distinctive: 63%

of the candidates have a different skin tone than the query. I also observed 22% of the

female candidates are persons wearing eye glasses while the query image does not (or vice

versa). For male sessions, the percentages are 41% for the skin tone difference and 45% for

with/without eye glasses, respectively.

I can plot the heat map, which shows where the subject looked at during performing the

task. Figure 2.4 is a sample heat map for one session, in which I observe that the searching

is focused on only a few candidates. The subjects also performed intensive comparisons

between query image and candidates. For all the 40 query images, I got 719 fixation points

in total, among which 107 points are located around the eyes, 226 around the nose and 386

around the mouth. Surprisingly, I see that eyes are less important than nose and mouth in

this searching stage.

Considering both the hit rate and the average time spent on a particular session, I may

further define easy cases and difficult cases by thresholding these metrics. With this, I also

looked into the ”comparison behavior” of a subject. This behavior is defined as sweeping

between the query and candidate images. I found that there is a correlation between the

number of sweeps in one session and the difficulty level of the session. The average number

of sweeps performed in one session is 56.72. For easy/difficult cases, the average numbers

of sweeps are 33.6 and 98 respectively. It is obvious that in the difficult cases, the subjects

needed to do more localized checking more often. Figure 2.5 shows a sample from the
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difficult cases.

Finally, I noticed that not all the candidates in one session received equal comparisons,

and the variation can be dramatic. This suggests that most candidates are eliminated quickly

by some semi-global features; then intensive comparison is done on a few candidates using

more localized feature, and in this stage the nose and mouth are dominant factors that

influence the final decision. Such a finding may lead to a staged design of new automated

retrieval approaches: semi-global-feature-based elimination followed by localized-feature-

directed refined comparison.

2.1.5 Conclusion

I carried out experiments to understand human performance in retrieving unfamiliar

faces. In addition to measuring the hit rate while documenting other performance metrics,

I employed eye-tracking to capture the search patterns of the subjects. The results, while

confirming some intuitions, also revealed new clues as to what are important in humans

retrieving action, providing insights into new ways of improving automated approaches.

2.2 Scale-adaptive Eigeneye for Fast Eye Detection in Wild Web Images

2.2.1 Introduction

Eyes are among the most salient facial features in facial images. Accordingly, eye de-

tection is often a fundamental module in many applications involving facial image analysis.

For example, many face recognition engines rely on eye detection (explicitly or implicitly)

for pre-aligning the face images before any training/testing algorithm is applied. Some ap-

plications (like creating tactile facial images Wang et al. (2008)) require high-precision eye

detection. Although it has been intensively studied over the past years, fast and accurate

eye detection remains a challenging task especially if uncontrolled imaging conditions are
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considered. Lacking an accurately-annotated dataset of uncontrolled real-world images has

prevented a direct comparison of various approaches proposed thus far, and hence hinder-

ing my understanding of the real performance of these algorithms. My study in this chapter

attempts to bridge these gaps.

I start with reviewing some most recent approaches in the literature. Such recent studies

typically report significant improvement over earlier approaches (Corrochano (2005),Press

et al. (1992),Wang et al. (2005a),Tang et al. (2005),Wang et al. (2016)), and thus my review

will not go back to those earlier methods. A method based on independent components

analysis (ICA) was proposed in Hassaballah et al. (2010). This approach was reported to

achieve a detection rate of 97.3% on 1500 images from the FERET dataset. One main

limitation of this approach is the requirement of a fixed scale of test images, for example

the assumption that all the images have been pre-aligned to a fixed size (as is the case in

FERET). Another state-of-the-art approach is the feature-versus-context approach in Ding

and Martinez (2010). This approach was reported to achieve an average detection rate

of 97% on the AR, XM2VT and ASL datasets. As will be demonstrated later, one key

drawback of this method is its inaccuracy in detecting the correct size of the eyes. In

addition, there are also some other recent efforts on eye detection. For example, in Park

et al. (2010), textural characteristics of eye regions and non-negative matrix factorization

(NMF) based image reconstruction are considered for eye detection. In Gan and Liu (2010)

and Ren and Jiang (2009), eye detection based on rank order filter is introduced. All these

approaches reported similar good performance on either standard or proprietary datasets.

Despite the promising result of the above methods, they were all based on standard

face datasets with well-aligned and normalized face images or proprietary data. In this

study, by manual annotation, I built a dataset of 2845 images taken from the Face Detection

Dataset and Benchmark (FDDB) Jain and Learned-Miller (2010) from the Faces in the Wild

project (vis-www.cs.umass.edu/lfw/). I have manually labeled the eye region and eye center
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location as the ground truth. Inspired by the success of eigen analysis in face recognition

(e.g. Quintiliano and Santa-Rosa (2003), Poon et al. (2009), Park et al. (2010)), I adopt

an EigenEye approach. Furthermore, recognizing the drastic scale variation in the wild

images, I propose a scale-adaptive scheme, in which EigenEye trained from high-resolution

eye images are updated according to an estimated eye scale (from face detection) for eye

detection. These considerations result in a fast (due to mostly linear eigen space projections

and distance computation) and robust (achieved by eigen analysis and scale adaptivity) eye

detector, which outperforms other state-of-the-art techniques on this challenging set of wild

Web images. The dataset will be made public to support further fair comparative studies

by researchers working on this topic.

2.2.2 Proposed Approach

In this section, I introduce a scale-adaptive EigenEye scheme for eye detection. The

objective is to achieve robustness of detection in wild Web images through eigen analysis

and scale adaptivity. The main idea for achieving scale adaptivity is to resize the eigen

bases obtained in the training stage, based on an estimated eye scale. I first outline the

general framework of the method in Section 2.2.2, and then elaborate the scale-adaptive

scheme in Section 2.2.2, with the overall eye detection algorithm summarized in Section

2.2.2.

The General Framework

The proposed EigenEye approach consists of two stages: training and detecting. In the

training stage, a training set of high-resolution eye images are collected. (In the current

study, 861 such images of size 120×160 are used, although these can be updated as needed.)

These images are used in eigen analysis to extract the top eigen bases, i.e. EigenEyes. In the

current study, the first 60 EigenEyes are kept. Every training eye image is then projected
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into this subspace spanned by EigenEyes, i.e. EigenEye space. In the detecting stage, I

first perform face detection to obtain the candidate face region. Then I search for eyes

throughout the face region as the best match to the training eyes in the EigenEye space.

Obviously, for wild Web images, the size of the eye in the test image can be very different

from that of the training set. Hence the matching needs to be done only after both the

test image and the EigenEye space have been normalized in the same scale. To this end,

I propose to modulate the eigen space by adapting the EigenEyes based on the size of the

detected face region. Adapting the EigenEyes to a test image instead of normalizing the

test image with respect to an EigenEyes is motivated by the fact that the eyes to be detected

will be in general at lower resolutions than training eye images or EigenEyes. Therefore,

adapting the high-resolution EigenEyes to a lower-resolution test image can better ensure

the matching is done with images at the same imaging resolution. I will elaborate the

approach in the Section 2.2.2.

Scale-Adaptive EigenEye for Eye Detection

the s be the size ratio between the current input image z anScale-Adaptive Eigeneye (SAE)

Eigen analysis or principal component analysis (PCA) is a mathematical procedure that

projects a set of observations of possibly correlated variables into a set of linearly uncor-

related variables called principal components. To be specific, let X = [x̂1, x̂2, ...x̂N ] be

the data matrix where x̂i = xi − µ is the centralized vector of the i-th sample xi ∈ RDso

that x̂i = 0. PCA takes the eigenvectors V = [v1, v2, ...vK ] related to the K biggest eigen-

values i, 1 ≤ i ≤ K of the covariance matrix C = XXT as its orthonormal transform

matrix. Then, a D dimensional sample x is converted into a K dimensional subspace by

y = V T (x− µ) which can be explained from two aspects.

PCA-based face recognition and detection has been intensively studied Poon et al.

(2009),Liao and Lin (2005), where each PCA eigenvector vi is called eigenface. Eigen-
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face recognition is in general very fast, since projection into eigenfaces is just a linear

transformation. Similar idea can be used to develop an EigenEye scheme for eye detection.

However, as discussed above, the limit of an EigenEye detector is that the resolution of test

image should be the same as that of the EigenEyes. A traditional way of scale adaption is

to resize the test image before EigenEye projection.

It is intuitive to think that instead of calculating PCA only once at the original scale and

enlarge every test image, I can compute PCA eigenvectors every time at the scale of a test

image. To do this, I first resize the training data to the scale of the test image, then perform

PCA. One obvious drawback of this method is that the computational cost will be very high

if I use high resolution and large number of training data (as is often the case) which make

it impossible for practical applications.

To alleviate the above problems, I propose to adapt the EigenEyes to the (in general)

smaller-scaled test image. The Nystrom method (Burges (2005),Fowlkes et al. (2004))

gives a way of calculating the approximate eigenvectors and eigenvalues of a matrix K,

using those of a submatrix A. Inspired by this, I give a solution in a more general situation:

approximating eigenvectors and eigenvalues of a matrix A with scale s, using those of a

matrix K with scale t, t > s. Here I introduce an linear re-scale operatorD, given training

data matrix X , the eigen decomposition of XXT is V ΛV T . Then Xs = DX is the re-

scaled training set, from the eigen decomposition of XXT , I can get:

(DX)(DX)T = DXXTDT = DV ΛV TDT (2.1)

If the columns of DV are orthogonal, then I get exactly the new eigenvectors I want,

but in general cases, they are not. At this point, let

L = DV Λ1/2 (2.2)

then the SVD (singular value decomposition) of L would be L = VLΛLSL
T , now I rewrite
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Figure 2.6: Examples of Eigeneye Basis.

2.1:

DV ΛV TDT = LΛLT = VLΛ2
LV

T
L (2.3)

Since the columns of VL are orthogonal to each other, I already got the new eigenvec-

tors. The above discussion gives the exact eigen decomposition of re-scaled covariance

matrix. Based on this, I can derive a straightforward way to get the approximate eigeneye

basis. To be specific, I only need to perform PCA on the original training set X once, and

select firstK eigenvectors (eigeneye basis)and corresponding firstK eigenvalues. For each

eigeneye basis vi, 1 ≤ i ≤ Kof V , I resample it to scale s by multiply the operatorD to

obtain a Vs, then I construct L using 2.1 and do SVD to get re-scaled eigeneye basis.

Figure 1. Examples of Eigeneye basis. First 10 eigen basis, correspoding to largest 10

eigenvalues.
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Eye Detection: the Complete Procedure

With the previous preparation, I now describe the complete procedure for my eye detector.

This involves the following five steps of processing for any given image to be tested.The

flow chart is shown in Fig.2.7.

Step 1. Face detection using OpenCV.

Step 2. Scale estimation. Suppose that the size of detected face image is m × n. Its

scale compared to my training image is s = n/N , where N is width of the training face

images. Then the size of candidate eye bounding box is estimated as x× s× y × s, where

x× y is the size of eyes in the training set.

Step 3. Eigeneye adaptation. Resample the EigenEyes V by scale s following Section

2.2.2. The dimension of the modified eigeneye basis ,i.e. each column of Vs, is x×s×y×s.

Step 4. Computing matching scores. I use sliding window to get the matching sore of

all candidate eye blocks to training eye region images. Since the OpenCV face detection

result can’t always cover precisely the entire face region, I do a scale search instead of

using one fixed scales. Repeat step 2 to 4 on different scales. For each window, several

matching score will be recorded and each corresponding to a certain scale.

Step 5. Detecting true eye region from the candidate blocks. The matching scores of

all locations in the search range are used to identify the final eye locations.

2.2.3 Experiments and Results

I now describe the evaluation of the proposed scale-adaptive EigenEye method (SAE)

and compare with several state-of-the-art methods. First, I compare the reconstruction er-

rors of my proposed SAE method with two other general PCA methods. Second, two of the
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most recent eye detection approaches are chosen for comparison, namely, the ICA based

method (ICA) Hassaballah et al. (2010), and the feature-versus-context (FVC) method

Ding and Martinez (2010). I also included the eye detector provided by OpenCV in the

comparison for its wide availability. I built a dataset of 2845 images based on the FDDB

face database Jain and Learned-Miller (2010) which contains faces with different scales

and background, as illustrated in Fig. 2.8. The eye detection performance is evaluated by

two metrics, i.e. precision of eye center and precision of detected bounding box.

Ground Truth

To provide a fair comparison using wild Web images, efforts were devoted to manually

annotate each of the 2845 images. For the dominant face in a given image, the eyes are

manually marked by 4 points: the center of the right eye center, the center of the left eye,

the upper-left corner and lower-right corner of the left eye. Fig. 2.9 illustrates some of the

examples (for the cropped face region only, for better visualization).

Accuracy in Detecting the Eye Center

For a given face image, each of the approaches reports the two detected eyes as two bound-

ing boxes whose center is estimated eye center. Then I use Euclidean distance to measure

the distance between the ground-truth eye centers and detected eye centers. If this distance

is smaller than one third of the width of the ground-truth bounding box (which is roughly

half of the pupil size), it is deemed as a hit. The hit rate based on this protocol is given

in Table 2.2 for comparison. From Table 2.2, it can be seen that the OpenCV eye detector

performs poorly on this dataset. The proposed method (SAE) is comparable to FCV in the

precision of eye center. Note that the OpenCV face detector based on Adaboost classifiers
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Method SAE FVC ICA OpenCV

Accuracy 97.36% 97.25% 92.4% 29.3%

Table 2.2: Eye Center Hit Rate.

and Harr-like features achieved 91% detection rate on my wild Web face image dataset.

Accordingly, in order to avoid introducing the inaccuracy of the face detector to the eye

detectors, in this chapter, the eye detection accuracy is only calculated on those images

with successful face detection.

Accuracy in Detecting the Eye Box

An accurate eye detector should also precisely estimate the size of the eye, i.e. obtaining a

proper bounding box. One possibility is to compute the following metrics that measure the

similarity between the ground-truth and the detected bounding boxes:

precision = (Groundtruth area
⋂
Detected box area)

Detected box area

While these metrics are intuitive, they are not very effective for my study. For exam-

ple, the precision can still be 100 if the detected box is overly enlarged and fully cover the

ground-truth box. Hence I also introduce two other complementary measurements, i.e. the

ratio area and Jaccard similarity coefficient (JSC):

ratio area = Detected box area
Groundtruth area

JSC = (Groundtruth area
⋂
Detected box area)

(Groundtruth area
⋃
Deteted box area)
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Method SAE FVC ICA

Precision 55.1% 43.55% 33.54%

ratio area 0.69 2.98 2.45

JSC 48.86% 25.56% 22.97%

Table 2.3: Precision and Ratio of Eye Bounding Box.

The average performance numbers of the competing approaches are given in Table 2.3.

(The OpenCV eye detector is not reported here because of its extremely low performance.)

Table 2.3 shows that my method is consistently superior to other methods on the precision

and JSC of bounding box. Besides, the area of its bounding box is also close to the ground

truth.

Summary of the Results and Discussion

The results presented in Table 2.2 and Table 2.3 suggest that the proposed SAE approach

is slightly better than FVC in terms of locating eye center, while being much better than

FVC in terms of estimating eye bounding box.Both SAE and FVC are better than other

approaches. Hence overall the proposed method is deemed as the best among all four

approaches. Fig. 2.10 provides an example illustrating the results from the approaches

evaluated in this study. Another benefit of the proposed method is its speed performance. I

ran all the approaches on a PC with AMD A8-3500M APU 1.50GHz and 8.00GB RAM. In

terms of the average execution time for one image, my method spends only 45% and 50%

of the times needed by the FVC approach and the ICA approach respectively.
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2.2.4 Conclusions and Future Work

I presented an eye detector using scale-adaptive EigenEyes for wild Web images. I built

a dataset with manually annotated ground truth for evaluating competing algorithms. Based

on the dataset, the comparative experiments have demonstrated the advantage of the pro-

posed method, in terms of both overall accuracy and speed performance. There are a few

directions for further exploration. Firstly, the current version of the proposed method relies

on only a small training set of 861 eyes. Conceivably, its performance may be further im-

proved by using a better training set. Secondly, my method currently does not use any color

information. Incorporating color may help further improve the performance especially for

reducing false detection. There are other many eigen problems in pattern recognition ap-

plications De Bie et al. (2005), and one future direction is to explore the proposed idea for

achieving scale-adaptivity in such problems.

2.3 On Linear Transformed Singular Vector Decomposition Problem

2.3.1 Introduction

A lot of machine learning methods can be reduced to Singular value decomposition

(SVD) problem (Skillicorn, 2007) or the related Eigen value decomposition (EVD), where

the Singular or Eigen vectors of training data matrix (or kernel/covariance matrix) are as-

sumed to carry the major pattern information. Then testing samples are projected into the

subspace spanned by these Singular or Eigen vectors for further recognition tasks. How-

ever, in practice, test samples may lie in different data domains than that of training sam-

ples. As a result, the subspace derived from training domain may not fit testing domains,

and I may expect some adaptation to make use of the training result for another testing

domain. While this belongs to a general topic of domain adaptation (Ben-David et al.,
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2010; Pan et al., 2011), in this chapter, I focus on the adaptation of SVD/EVD when test-

ing domain can be derived from training domain by linear transforms. This leads to the

linear-transformed SVD/EVD (LT-SVD/LT-EVD) problems as clearly defined later. Since

the EVD of symmetric matrix is quite related to SVD (Van Loan, 1996), I use the term LT-

SVD for the whole spectrum of problems. In fact, the solution to a LT-SVD problem can

be directly extended to its peer LT-EVD problem. The result and application of LT-SVD

problem is quite general. First, SVD and EVD lies in the heart of many machine learning

methods (Ben-David et al., 2010; Hastie et al., 2015; Shamir, 2015; Guo et al., 2016), es-

pecially in computer vision domain (Agrawal and Khatri, 2015; De et al., 2015; Mahmud

et al., 2015; Zhou et al., 2016; Mehta et al., 2014). Second, a lot of transforms among data

domains can be approximated well by linear transforms, e.g. resize, rotation, translation.

Lets explain the above LT-SVD problem by an example of popular PCA-based face

recognition (Turk and Pentland, 1991; Gottumukkal and Asari, 2004) where eigenface is

derived as the left Singular vectors of the training data matrix (X) (or the Eigen vectors of

covariance matrix). Test images are projected into the subspace of eigenface for recogni-

tion. However, test images can have various sizes due to different acquisition condition.

Since image resize can be well approximated by linear transforms, e.g. bilinear interpola-

tion, the testing domain can be characterized by the data matrix of LLX , where X is the

data matrix with training images in columns, and LL is the linear resize operator. I may

want to adopt the SVD of X for the SVD of LLX(Fig.??), which is a typical LT-SVD

problem.

Three solutions to the LT-SVD problem are widely adopted in practice. Without loss

of generality, let X be the training data matrix which is transformed into testing domain

by LL. The first solution is called re-SVD which transforms all training samples into the

testing domain by LL, and re-compute the SVD of LLX . Despite its preciseness, re-SVD

introduces heavy computation to get LLX for a large data set. The situation can be even
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Table 2.4: Traditional Solutions to TYPE-I LT-SVD Problem

Method (Abbrev.) Comp. Accur. Description

Re-SVD (RS) 55 X SVD(LLX)

Inverse-Domain (ID) X 55 L̃+
LY

Base-Transform (BT) X 55 LLU

worse in ensemble methods, e.g. rotation forests (Rodriguez et al., 2006), where SVD is

required for each sampling subset. The second is called inverse-domain which applies an

approximate inverse of LL, e.g. L̃L+ , to convert a test sample into the training domain so

that the original SVD of X can be used for further application. While it is fast, inverse-

domain suffers from the loss of accuracy when LL is not is invertible, e.g. down-size

transform. The third is called base-transform which directly transforms the Singular vectors

of X, e.g. U, by LL, and use LLU (normalized) to approximate the SVD of test domain.

Despite its simplicity, the LLU is not orthogonal. So a large approximation error might

arise in base-transform, which will be clear in later experiments. The three solutions to

LT-SVD and their pros and cons are summarized in Table 2.4.

Since all the methods in Table 2.4 have limitations, I might want a new solution with

both efficiency and accuracy. I start at the very simple intuition: can I get the linear trans-

formed SVD directly from the original SVD? Luckily, the answer is YES. The main idea

is that the data matrix in testing domain equals the linear transform of the data matrixs

SVD in training domain. As a result, the LT-SVD can be derived on the original Singular

vectors/values. The method is efficient, for it directly works on the Singular vectors; it is

accurate, since I can have truncated SVD on arbitrary accuracy.

My work contributes in two aspects. First, I present a solution of LT-SVD problem

with both efficiency and accuracy. Second, I also extend the result of LT-SVD into tensor
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case. My solution can be adopted by many subspace learning methods (Skillicorn, 2007;

Chandrasekaran et al., 2011; Rahmani and Atia, 2016; Mardani et al., 2015) and their

ensemble extension (Rodriguez et al., 2006) in the case of data transform or sampling. One

related work is the online SVD (Brand, 2003; Jin et al., 2016),while both works try to infer

the new SVD from a related matrix, the online SVD focus on the enlargement by new rows

or columns which cant be represented by linear transforms. Another quite related work is

the Nystrom EVD in kernel learning (Burges et al., 2010) which approximates the EVD

of a rank-r kernel matrix K by that of a r × r full rank sub-matrix Krr. Since K can be

derived by a linear transform of Krr (Example 4), Nystrom EVD is just a special case of

the transformed SVD. The structure of the chapter is as follows. The problem and notation

definition is in Section 2.3.2 followed by the transformed SVD for matrix and the extension

to tensor case. Experiments are given in Section 2.3.3 and I finally concluded in Section

2.3.4.

2.3.2 Preliminaries and Problem Definition

The SVD (Van Loan, 1996) of a matrix is X = UΛV T = Σr
i=1σiuiv

T
i , where r =

rank(X), U = [u1, ..., ur] and V = [v1, ..., vr] are orthonormal left/right Singular vec-

tors, and Λ = diag([σ1, ..., σr])is a diagonal matrix composed of ordered non-negative

Singular values, i.e. σi ≥ σi+1 >= 0. I use SVD(X) for the triplet of (U, V,Λ). The

SVD can be applied to any matrix and provides insight on matrix structure with impor-

tant applications in data mining (Skillicorn, 2007). Truncated SVD is to approximate X

with the first t leading Singular values and vectors, i.e. X ∼ UtΛtV
T
t = Σt

i=1σiuiv
T
i . In

fact, truncated SVD provide the lowest approximation error among all rank-t matrices, i.e.

‖X − UtΛtV
T
t ‖22 = Σr

t+1σ
2
i (Van Loan, 1996). The EVD of a symmetric matrix S always

exists as S = UΣUT , where the matrix U is composed of orthogonal Eigen vectors and

the diagonal Σ is composed of Eigen values (Van Loan, 1996). I also use EVD(S) for the
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2-tuple of (U,Σ). Similarly, truncated EVD is to approximate S with the first t leading

Eigen values and vectors, i.e. S ∼ UtΣtU
T
t .The SVD and EVD are quite related. In fact,

the left/right Singular vectors U and V of SVD(X) is exactly the Eigen vector of XXT and

XTX , and the Singular value is the square of Eigen values. So I focus on LT-SVD prob-

lems, whose solution can be directly extended to its peer LT-EVD problems. In this chapter,

I are interested in the EVD of positive semi-definite (PSD) matrices, i.e. S = XXT , which

are quite popular in machine learning, e.g. kernel matrix and covariance matrix. In fact,

S = (UΣ1/2)(UΣ1/2)T is a special case of this decomposition. The LT-SVD problems are

defined below. Since the linear transform of X can have 3 cases, i.e. LLX , XLTR, and

LLXL
T
R, I have 3 types of transformed SVD problems:

• Type-I LT-SVD: SVD(X)→SVD(LLX). The meaning of the above notation is that

SVD(LLX) should be directly derived from SVD(X) rather than re-computation of

LLX . Similarly, I have the following two types.

• Type-II LT-SVD: SVD(X)→SVD(XLTR).

• Type-III LT-SVD: SVD(X)→SVD(LLXLTR)

Similar to LT-SVD, there are 3 types of LT-EVD for PSD matrix which can be written as

S = XXT .

• Type-I LT-EVD: EVD(XXT )→ EVD(LLXXTLTL).

• Type-II LT-EVD: EVD(XXT )→EVD(XLTRLRX
T ).

• Type-III LT-EVD:EVD(XXT )→EVD(LLXLTRLRX
TLTL).

Although the three traditional solutions in Table 2.4 are defined for Type-I LT-SVD, they

can be easily extended to the other LT-SVD or LT-EVD problems in the same spirit.
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Transformed SVD Problem

In this section, I introduce my solution to LT-SVD which enjoys both efficiency and accu-

racy.

Theorem 1. (Type-I LT-SVD). Let SV D(X) = UΛV T . The SVD ofLLX , i.e.

ULΛLV
T
L , can be derived from SVD(X) as follows. Let UL and ΛL be the left Singular

vector and Singular value of SVD(LLUΛ) whose right Singular matrix multiply by V will

lead to VL.

Proof: From SVD(X), I get LLX = LLUΛV T . Let U1Λ1V
T
1 be the SVD of LLUΛ.

Then I have:

LLX = (LLUΛ)V T = (U1Λ1V
T
1 )V T

= U1Λ1(V
T
1 V

T ) = U1Λ1(V V1)
T = ULΛLV

T
L

(2.4)

where UL = U1 , ΛL = Λ1, and VL = V V1. Now I need to prove ULΛLV
T
L is the

SVD of LLX . Since UL and ΛL come from SVD(LLUΛ), they must satisfy the condition

of SVD. It remains to show VL = V V1 is orthogonal, which is quite clear since both V and

V1 are orthogonal matrix. Usually, I only have rank-t truncated SVD as X Xt = UtΛtV
T
t .

Following theorem 1, I can derive SVD(LLXt ) from UtΛtV
T
t to approximate SVD(LLX).

The complexity and accuracy of this approximation are discussed below.

Remark 1. Let the size of X be M ×N . Then size of Ut and Λt from truncated SVD is

M×t and t×t respectively. Let the size of LL beD×N . So LLX is aD×M matrix. From

the work in (Skillicorn, 2007), the complexity of SVD(LLX) isO(DN ·min(D,N)). From

Theorem 1, to derive SVD(LLXt ) from UtΛtV
T
t , I need to compute SVD(LLUtΛt) whose

complexity is O(Dt ·min(D, t)).When D > N , the complexity ratio between my method

and direct SVD(LLX) isO(t2�N2); whenN > D, the time ratio isO(t2�(N ·D)). With

t � min(D,N) the computation is greatly reduced by approximate SVD(LLX) with my

method.
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Remark 2. Since Singular vectors are what I need in many machine learning methods,

one may ask: How the approximation of SVD(LLX) by SVD(LLXt) affects the Singular

vectors? Let (u′i, v
′
i ) be a pair of Singular vectors of LLXt with 1 ≤ i ≤ t (rank(Xt) = t);

Let (ui, vi) be its corresponding Singular vectors of LLX and (Ũi, Ṽi) are the matrix of

the remaining Singular vectors. From Theorem 8.6.5 in (Van Loan, 1996), there exist

two vectors p and q so that u′i = c(ui + Ũip) andv′i = d(vi + Ṽiq), where c and d are

normalization constant. Due to the orthogonality among Singular vectors, the inner product

of (u′i, ui) is (1 + ‖p‖22)−1/2 and that of (v′i, vi) is(1 + ‖q‖22)−1/2. The theorem shows

‖[p; q]‖F ≤ 4‖E‖F/δi where E = LLX − LLXt and δi = minj 6=i |σi(LLX) − σj(LLX)|

with σi(LLX) be the i-th Singular value. Therefore, the accuracy of Singular vectors is

controlled by the approximation error due to SVD truncation (E) and Singular-value gap

(δi).

Example 1. (Resize PCA) Here is an application of type-I LT-SVD. Let a data matrix

be X = [x1, x2, ..., xN ], where xi ∈ RM is the i-th sample which is already centralized to

zero-mean. Then PCA vector is the left Singular vector of X. Suppose a test sample lays

in a lower dimension which can be approximated by a down-size linear operator Ls. Then

the PCA in the test domain is SVD(LsX), i.e. a type-I LT-SVD problem.

Corollary 1. (Type-II LT-SVD). Let SVD(X)= UΛV T . The SVD ofXLTR, i.e. URΛRV
T
R ,

can be derived from SVD(X) as follows. Let VR and ΛR be the left Singular vector and Sin-

gular value of SVD(LRV Λ) whose right Singular matrix multiply by U will lead to UR.

Proof: This can be converted into a Type-I LT-SVD problem by deriving SVD(LRX
T ) =

VRΛRU
T
R from SVD(XT ). From Theorem 1, I first compute SVD(LRV Λ) = U2Λ2V

T
2 .

Then I have VR = U2 , ΛR = Λ2, and UR = UV2.

Example 2. (Bagging PCA) Suppose I have the same data matrixX as Example 1. Now

I want to use bagging technique by selecting many subsets of size S to improve robustness

of PCA basis for face recognition (Wang and Tang, 2006). Let ei be a column vector
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whose i-th element is the only non-zero element with value 1. Let Lk = [ek1, ..., eks]

be the sampling matrix for the k-th subset whose PCA is a type-II LT-SVD problem as

SVD(XLk).

Theorem 2. (Type-III LT-SVD) Given SVD(X) = UΛV T . Then SVD(LLXL
T
R) can

be derived from SVD(X) as a Type-I LT-SVD followed by a Type-II LT-SVD.

Proof: From the Type-I LT-SVD, SV D(LLX) = ULΛLV
T
L can be derived from SVD(LLUΛ).

So LLXLTR = ULΛL(LRVL)T whose SVD is a Type-II LT-SVD in Corollary 1. I get the

SVD(ΛL(LRVL)T ) = U1Λ1V
T
1 . So LLXLTR = (ULU1)Λ1V

T
1 . Since both UL andU1 are

orthogonal matrix, and Λ1 and V1 are the SVD of ΛL(LRVL)T , I get SVD(LLXL
T
R) =

ULRΛLRV
T
LR where ULR = ULU1, ΛLR = Λ1, and VLR = V1.

Example 3. (Rotation Forest) Rotation forest (Rodriguez et al., 2006) is an ensemble

classifier which builds a set of independent classifiers by two techniques to ensure their

diversity. The first is bagging which randomly select subsets. The second is rotation which

randomly split the feature into L subsets and run PCA on each feature subsets. From

Example 2, bagging will produce a data matrix of XLk, where Lk is the sampling matrix

for k-th subset; From Example 1, the rotation will further produce a data matrix of SlXLk

,where Sl is the sampling matrix for the l-th feature subset. The SV D(SlXLk) can be

derived from SVD(X) as Type-III LT-SVD with much less computations.

Since the SVD is related to the EVD of PSD matrix, the solution to the above three

types of LT-SVD can be directly used for their peer LT-EVD problems.

Theorem 3. (Type-I LT-EVD) Given EVD(S)=UΣUT for a PSD matrix S. Then EVD(LLSL
T
L) =

ULΣLU
T
L can be derived from SVD(LLUΣ1/2) = U1Λ1V

T
1 by UL = U1 and ΣL = Λ2

1. Let

EVD(S)=UΣUT where S is a PSD matrix. Then the Eigen vectors UL and values ΣL of

EVD(LLSL
T
L) can be derived from SVD (LLUΣ1/2).

Proof: From EVD(S), S = (UΣ1/2)(UΣ1/2)T . So LLSL
T
L = PP T where P =

LLUΣ1/2. Let SVD(P)=ULΛLV
T
L .Then LLSLTL = ULΛL(V T

L VL)ΛLU
T
L = UL(ΛL)2UT

L ,
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which is exactly EVD(S) with Eigen vector UL and Eigen value Λ2
L.

Remark 3. (Truncated EVD) Similar to LT-SVD, I can use truncated EVD, i.e. S ∼

St = UtΣtU
T
t , for LT-EVD. From Theorem 3, I can solve SVD(LLUtΣ

1/2
t ) for EVD(LLStL

T
L)

to approximate EVD(LLSL
T
L) for the benefit on complexity. Let the size of LL be D×N .

The complexity of EVD(LLSLTL) is O(D3) (Trefethen and Bau III, 1997), and that of

SVD(LLUtΣ
1/2
t ) is O(t2D) if t � D (which is usually the case). So the computation of

LT-EVD is greatly reduced. How the approximation (E = LL(S − St)LTL) affects Eigen

vectors? Let ui be the i-th Eigen vector of LLSLTL and ui be that of LLStLTL. From Theo-

rem 8.1.2 in (Van Loan, 1996), I get 〈ui, ũi〉 = (1− ppT )−1/2 and‖p‖2 ≤ (4‖E‖2)/δi with

λi(S) be the i-th Eigen value and δi = minj 6=i |λi(LLSLTL) − λj(LLStL
T
L)|. So, similar

to Remark 2, the error in Eigen value is controlled by EVD truncation error (E) and gap

among Eigen values (δi).

Example 4. (Nystrom EVD) Let the rank-r kernel matrix K be [Krr, K
T
nr;Knr, Knn],

where Krr is the r × r sub-matrix of full rank. It implies K = LLKrrL
T
L with LL =

[Irr;KnrK
−1
rr ]. In Nystrom EVD problem ((Burges et al., 2010)), I want to derive EVD(K)

from EVD(Krr)= UrΣrU
T
r , which is a Type-I LT-EVD problem. Nystrom EVD is widely

used in manifold learning for out-of-sample extension, e.g. kernel PCA, and the usual

solution is the Base-transform in Table 2.4, i.e.U = LLUr = [Ur;KnrUrΣ
−1
r ].

The following Lemma is very important before I can discuss the remaining two types

of LT-EVD.

Lemma 1. The PSD matrix S = XXT has Eigen vectors of U and values of Σ if and

only if U and Σ1/2 are the left Singular matrix and Singular value of SVD(X).

Proof: The sufficient proof is to place SVD(X)=UΣ1/2V T into S = XXT = UΣUT ,

which is exactly EVD(S) because U is orthogonal and Σ is diagonal. The necessary proof

is straight forward. Let rank(X) = r, then I have XXT = UrΣrU
T
r , where Σr consists

of non-zero Eigen values with related Eigen vectors in Ur. Let Vr = (Σ
−1/2
r UT

r X)T . It is
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clear that V T
r Vr = I . So SVD(X)=UrΣ

1/2
r V T

r .

Corollary 2. (Type-II LT-EVD) Given EVD(S)=UT for a PSD matrix S = XXT .

Then EVD(XLTRLRX
T ) = URΣRU

T
R can be derived from SVD(Σ1/2V TLTR) = U1Λ1V

T
1

by letting UR = UU1 and ΣR = Λ2
1.

Proof: Given EVD(XXT ) = UΣUT , from Lemma 1, SVD(X) is UΣ1/2V T with V =

(Σ−1/2UTX)T . So XLTRLRX
T = UPRP

T
RU

T where PR = Σ1/2V TLTR. Let SVD(PR

)=U1Λ1V
T
1 . I have XLTRLRX

T = (UU1)Λ
2
1(UU1)

T = URΣRU
T
R , where UR = UU1 and

ΣR = Λ2
1 . Since U and U1 are column orthogonal, UR is also orthogonal with URUT

R =

I . The ΣR is diagonal because Λ1 is the diagonal Singular matrix. So XLTRLRX
T =

URΣRU
T
R is exactly the Eigen decomposition.

Corollary 3. (Type-III LT-EVD) Given EVD(S)=UΣUT for a PSD matrix S = XXT .

Then the EVD of LLXLTRLRX
TLTL can be directly derived from U and Σ.

Proof: Let PLR = LLXL
T
R and SVD(PLR) = U1Λ1V

T
1 . From Lemma 1, the Eigen

vector ULR and Eigen value ΣLR of LLXLTRLRX
TLTL = PLRPLR

T is U1 and Λ2
1 respec-

tively. So the problem remain is the derivation of SVD(PLR)=SVD(LLXL
T
R) which is a

Type-III LT-SVD problem if SVD(X) is known. Given EVD(XXT ) = UΣUT and Lemma

1, I got SVD(X)=UΣ1/2V T with V = (Σ−1/2UTX)T . So the problem is solved.

Linear Transformed SVD for Tensor

In this section, I will extend the LT-SVD of matrix to its tensor case. An N-order tensor

is an N-dimensional array noted as X ∈ RI1×I2×...×IN . A tensor X can be unfolded into

a matrix X(n) ∈ RIn×J , J = Πi 6=nIi which takes the values along its n-th dimension

as the column of X(n) and traverse the remaining dimensions. I can fold X(n) back to

X , and the inverse process is noted as X(n)−1 . The n-Mode product is a multiplication

between X ∈ RI1×I2×...×IN with a matrix U ∈ RJ×In , and the result is a tensor of size
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RI1×...×J×...×IN :

(X ×n U)i1...j...iN = ΣIN
iN=1xi1...in...iNuj,in ∈ RI1×...×J×...×IN . (2.5)

The n-Mode product is the extension of matrix product which is connected by unfolded

tensor:

Y = X ×n U ⇔ Y(n) = U ·X(n) (2.6)

The following properties (De Lathauwer et al., 2000) can be easily derived from 2.5

and are important for latter discussions:

X ×m A×n B = X ×n B ×m A(m 6= n). (2.7)

X ×n A×n B = X ×n (BA). (2.8)

Y = X ×1 A1 ×2 A2 ×N AN ⇔ Y(n) = An ·X(n)(AN ⊗ ...An+1 ⊗An−1...⊗A1)
T (2.9)

in which ⊗ denotes Kronecker product. I can also define SVD for tensors with many

similarities to its matrix case. In fact, the High-order SVD (HOSVD) (De Lathauwer et al.,

2000) of a tenser X ∈ RI1××In××IN always exists as:

X = S ×1 U1 ×2 U2 ×N UN , (2.10)

where the mode-n Singular matrix Un is column-wise orthogonal and the core tensor S ∈

RI1××In××IN satisfies:

(i) All-orthogonality: Let the sub-tensor Sin=α of S be obtained by fixing the n-th

index to α. Then for every n and α 6= β, I have 〈Sin=α,Sin=β〉 = 0, where〈·, ·〉 is the inner

product by vectorizing the tensors in the same order .

(ii) Ordering: For every n, the Frobenius norm of sub-tensors follows ‖Sin=1‖F ≥

‖Sin=2‖F ≥ ... ≥ ‖Sin=In‖F . The Un in eq. 2.10 is comparable to the Singular matrix

of matrix SVD, and S is comparable to Singular values. For 2-order tensor, the above
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HOSVD is exactly the matrix SVD, and the core tensor S must be diagonal (De Lathauwer

et al., 2000).

It can be further shown that the decomposition in eq.2.10 is a HOSVD of X if and only

if Un is the left Singular matrix of X(n)(1 ≤ n ≤ N), and S = X ×1U
T
1 ×2 ...×N UT

N . This

leads to the HOSVD procedure in Fig.2.12. The HOSVD of X in eq.2.10 can be taken as a

higher-order component analysis, and the eq.2.11 below shows the interaction between the

core tensor and different component tenors:

X = ΣI1
i1=1Σ

I2
i2=1...Σ

IN
IN=1si1...iN · (u

(2)
i1
◦ u(2)i2 ◦ ... ◦ u

(n)
IN

) (2.11)

where u(n)ik
is the ik-th column of Un, and ◦ is outer-product. Since Un(1 ≤ n ≤ N) are

column-wise orthogonal, the component tensor (u
(1)
I1
◦u(2)I2 ◦ ...◦u

(n)
IN

)are orthogonal to each

other. So eq.2.11 is an orthogonal decomposition ofX with ‖X‖2F = ΣI1
i1=1Σ

I2
i2=1...Σ

IN
iN=1s

2
i1...iN

.

Truncated HOSVD takes the first tn(≤ In) vectors of Un , i.e. U (tn)
n , and truncate S ,i.e.

Ŝ ∈ Rt1×...×tN , to approximate X :

X̂ = Ŝ ×1 U
(t1)
1 ×2 U

(t2)
2 ×3 ×N U (tn)

N

= Σt1
i1=1...Σ

tN
iN=1si1...iN · (u

(1)
I1
◦ u(2)I2 ◦ ...

(n)
IN

)).

(2.12)

The approximation error is ‖X −X̂‖2F = ‖S‖2F −‖Ŝ‖2F since Un is orthogonal. In fact,

HOSVD belongs to a more general class of dyadic decomposition, which has the same form

of eq.2.10 with orthogonal Un but free S from the constraints of all-orthogonality and or-

dering. The following two lemmas are necessary for the introduction of linear transformed

HOSVD.

Lemma 2. Let SVD(M)=UmΛmV
T
m . For any linear transform W = UMV T by

column-wise orthogonal matrix U and V, I have SVD(W)=(UUm)Λm(V Vm)T , where UUm

and V Vm is the left and right Singular matrix respectively.

Proof. From SVD(M), I get W = (UUm)Λm(V Vm)T which is the SVD of W since Λm

is non-negative diagonal, and UUm and V Vm are column-wise orthogonal.
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Lemma 3. Let u, v ∈ Rn satisfy u ⊥ v. Then for any a, b ∈ Rm , I have u⊗ a ⊥ v⊗ b.

Proof. Since u ⊗ a = [a1u
T , ..., amu

T ]T ∈ Rn×m and v ⊗ b = [b1v
T , ..., bmv

T ]T , 〈u ⊗

a, v ⊗ b〉 = Σm
i=1aibi〈u, v〉 = 0.

Given any Y = X ×1 L1 ×2 ... ×N LN , the linear transformed HOSVD (LT-HOSVD)

problem is to derive HOSVD(Y) from HOSVD(X ). Theorem 4 shows how I can achieve

this.

Theorem 4. Given HOSVD(X )=S ×1 U1 ×2 U2...×N UN , the HOSVD of Y = X ×1

L1 ×2 ...×N LN can be derived from that of X following the process in Fig.2.13.

Proof. Let Y(0) = X and Y(n) = Y(n−1) ×n Ln(1 ≤ n ≤ N). Then Y = Y(n). My

proof consists of two parts w.r.t. the two stages in Fig.2.13. I first show that each loop in the

forward stage produces a dyadic decomposition Y(n) = H(n) ×1 V
(n)
1 ×2 ... ×N V

(n)
N with

V
(n)
i be column-wise orthogonal, and V

(n)
n is the mode-n Singular matrix of Y(n). The

proof is inductive. I start at n = 0. Since H(0) and V (0)
n , (1 ≤ n ≤ N) is the HOSVD

of Y(0) = X , the above two conditions are satisfied. Now given H(n−1) and V (n−1)
i be the

dyadic decomposition of Y(n−1), I first show that the H(n) and V (n)
i (1 ≤ i ≤ N) derived

from line 3 to 5 is the dyadic decomposition of Y(n) = Y(n−1) ×n Ln. In fact, from eq.2.7,

eq.2.8 and eq.2.9, I have:

Y
(n)
(n) = LnY

(n−1)
(n) = (LnV

(n−1)
n ) · H(n−1)

(n) ·

(V
(n−1)
N ⊗ ...⊗ V (n−1)

n+1 ⊗ V (n−1)
n−1 ⊗ ...⊗ V (n−1)

1 )T
(2.13)

Let SVD(LnV
(n−1)
n H(n−1)

(n) ) = UΛV T . Then Y (n)
(n) = U(ΛV T )(V

(n−1)
N ⊗ ... ⊗ V

(n−1)
n+1 ⊗

V
(n−1)
n−1 ⊗ ...⊗V

(n−1)
1 )T . The V (n)

i andH(n) updated in line 4 and 5 is dyadic decomposition

of Y(n), since U and V (n−1)
i (i 6= n) are column-wise orthogonal. Then, I show V

(n)
n = U is

the mode-n Singular matrix of Y (n), i.e. the left Singular matrix of Y (n)
(n) . Since V (n−1)

i (1 ≤

i ≤ N) are orthogonal,their Kronecker in eq.2.13 is also orthogonal. From Lemma 2,

the left Singular matrix of SVD(Y
(n)
(n) ) in eq.2.13 is that of SVD(LnV

(n−1)
n H(n−1)

(n) ) which

is exactly the U in line 3. The second part is to show that the H and Vn(1 ≤ n ≤ N)
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generated in the backward stage is HOSVD(Y). For this purpose, I need to show that in

each iteration of n, the updated H and Vn present a dyadic decomposition and Vn is the

mode-n Singular matrix of Y . The proof is inductive. The initiation in line 7 satisfies the

two conditions. Suppose the conditions are still satisfied at n+1.I have Y(n) = VnH(n)(VN⊗

...⊗ V(n+1) ⊗ V(n−1) ⊗ ...⊗ V1)T from eq.2.9. With similar augments in the forward stage

based, the left Singular matrix of Y(n) is exactly that of VnH(n) (line 9). So the updated Vn

is the mode-n Singular matrix, and the H (line 11) ensures that H and Vn(1 ≤ n ≤ N)

remain the dyadic decomposition of Y . After iterations from N-1 to 1, I get all Singular

matrices of Y and finished the HOSVD.

Remark 4. (Truncated LT-HOSVD). For Ln ∈ RDn×In and X ∈ RI1×I2×...×IN , the

complexity to compute HOSVD(Y) consists two parts. The first is to get the mode-n

Singular matrix by SVD(Y(n)) from n=1 to N; the second is to get core tensor. Suppose

Dn ≤ Πi 6=nDi for 1 ≤ n ≤ n. It is easy to see the complexity of the two steps are both

O(ΠN
n=1Dn·ΣN

n=1Dn) which is the complexity of HOSVD(Y). I can use truncated HOSVD,

i.e. the X̂ in eq.2.12, to approximate the HOSVD of Y that of Ŷ = X ×1 L1...×N LN .The

complexity of the truncated LT-HOSVD comes from the two stages of Fig.2.13. The ma-

jor computation of the forward stage lies in the SVD in line 3, and that of the backward

stage lies in the SVD in line 9. Suppose Dn ≤ Πi 6=nti , the complexity of each SVD is

O(D2
nΠi 6=nti). So the total complexity is O(ΠN

n=1tn · (ΣN
n=1t

−1
n ·D2

n)), which is much less

than that of direct HOSVD(Y) if tn � Dn. The approximation error of the mode-n Singu-

lar vector (SVD(Y(n))) is decided by both the Singular value gap and ‖Y(n)− Ŷ(n)‖2) which

is small given a small truncation error of X̂ .

Remark 5. There are other types of LT-HOSVD which, in contrast to Theorem 4,

only get linear transform in some modes (L < N), i.e. Y = X ×k1 Lk1 ... ×kL LkL . I

can derive HOSVD(Y) from HOSVD(X ) by some minor modification of the procedure

in Fig.2.13. Specifically, in the forward stage (line 2 to 6), I only loop in mode-ki(1 ≤
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i ≤ L). Following the proof of Theorem 4, the output is a dyadic decomposition of Y

with VkL be the mode-kL Singular matrix. Then, in the backward stage, I update other

Vn(1 ≤ n ≤ N, n 6= kL) andH for the final HOSVD result. Since matrix is 2-order tensor,

the procedure in Fig.2.13 is the procedure for Type-III LT-SVD in Theorem 2. Moreover,

the traditional solutions to LT-SVD, e.g. re-SVD in Table 2.4, can be directly extended for

LT-HOSVD in the same spirit.

2.3.3 Experiment

In this section, experiments are given to show the efficiency and accuracy of several

solutions to LT-SVD and LT-HOSVD. The traditional three solutions (abbreviation) in Ta-

ble 2.4, are compared with my solution based on SVD transform (ST). Since re-SVD is

the precise solution of both LT-SVD and LT-HOSVD problems, I take its computation time

and Singular vectors as the reference for comparison.

Efficiency

LT-SVD. I only compare the efficiency of RS with the ST, because BT and ID dont really

compute SVD. Instead, the two methods transform either Singular vectors or the samples

as quick approximation to LT-SVD. I only test the Type-I LT-SVD, because it is the base

for other LT-SVD types.

The computation of RS lies in two parts. Let the size of Xbe M × N and LL be

D×M . Then the complexity of the first part is multiplication, i.e. LLX , with a complexity

of O(DMN); the second is the SVD of LLX with a complexity of O(DN ·min(D,N)).

I ONLY compare the complexity of the second part, because the SVD takes the major

computation of re-SVD and this can free us from an extra parameter M in discussion. I

fix the feature dimension D=2000, and test the sample size (N) on 3 different levels, i.e.

200 (N � D), 2000 (N ∼ D), 20000 (N � D). For each N, the first t Singular vectors
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are computed by our ST method defined in Theorem 1. I use random matrix and repeat

10 times for each pair of N and t, and the median time cost of both re-SVD (TRS) and our

ST (TST ) are compared. The result in Fig.2.14 coincides with Remark 1. For large dataset

(N � D), the computation of ST is much less than RS (TST ∼ 10−5TRS for t = 5) and

the time cost will gradually increase with t. The time advantage of ST is not so obvious

for small dataset ((N � D)) . Note that if the first multiplication part of RS, i.e. LLX , is

included, the time gap between ST and RS will be further enlarged, because I only need to

compute a much smaller multiplication, i.e. LLUtΛt, where multiplication by diagonal Λt

is just a columnwise multiplication by scalar.

LT-HOSVD. I also compare the complexity of our ST to re-SVD. Let Y = X ×1

L1 ×2 L2 with Y ∈ RD×D×N . I fix D=100 and test 3 different data size (N), i.e. 2000

((N � D)2), 10000 (N ∼ D2), 50000 (N � D2). In our ST, truncated HOSVD eq.2.12

with the first t Singular vectors on each dimension is used. I use random matrix and repeat

10 times for each pair of N and t and take the median time cost. As can be seen in Fig.2.15,

the complexity of our ST is greatly reduced from re-SVD which coincides with Remark 4.

Accuracy

LT-SVD. The accuracy is illustrated in two aspects. The first is reconstruction error; the

second is the similarity between the Singular vectors of re-SVD and that of other solution.

I only test the Type-I LT-SVD, i.e. SVD(LLX), since it is the base of other LT-SVD types.

In fact, the Singular vectors and their approximation error are decided by data matrixXand

operator LL based on which the SVD is computed. I use a data set of 10377 nature images

with a uniform size of 128 × 128, and the LL is a series of bilinear interpolation to resize

the images into different scales. The i-th image is the i-th column in X.

The reconstruction error is the absolute error averaged over all sample dimensions and

dataset, so it is independent to the size of sample and dataset. To be specific, let Ût be

43



the first t approximated Singular vector of LLX provided by a LT-SVD solution. Then

err = (DN)−1 · ‖ŨtŨT
t LLX −LLX‖1 is the reconstruction error, where D×N is the size

of LLX . Since ID approximately inverse (L̃+
L ) the test data into training domain and use the

original SVD, i.e. Ût, to compare with others, the error is achieved after re-transform into

the testing domain, i.e. err = (DN)−1 · ‖LL(ŨtŨ
T
t )(L̃+

LLL)X − LLX‖1. In Fig.2.16, err

is divided by (DN)−1 · ‖LLX‖1, to be independent of value range, and two resize scales

are tested: one is close to the original size (0.8), and the other is much smaller (0.4). It

is clear that RS has the lowest reconstruction error, because it is the precise solution of

LT-SVD. However, our ST is very close to RS, for it is a very good approximation (Remark

1). The error of ID and BT is much worse, because they are not precise approximation of

SVD(LLX). In fact, the bases provided by BT are even not orthogonal to each other.

The gap between re-SVD and other methods increases with reconstruction dimension.

In fact, their reconstruction errors are very close at the first several dimensions. The reason

is that the first several Singular vectors derived from natural images are highly structured,

and therefore easy to be approximated. But the structure will be gradually lost in subse-

quent Singular vectors. The reconstruction efficiency increase with resize scale. In fact,

the average reconstruction error in scale 0.8 is much lower than that of scale 0.4 for all

methods. The reason is similar to above: the image downsize will eliminate its inherent

structure, and thus slower the SVD approximation.

I further investigate the similarity between the Singular vector of RS, i.e. u0, and its

provided by other solutions , i.e. u, via absolute cosine, i.e. |〈u, u0〉| ∈ [0, 1]. The ID is not

compared, for it does not compute Singular vectors explicitly.

Since the accuracy of our ST and BT are not on the same scale, I use log10(1−|〈u, u0〉|)

in Fig.2.17 where the average absolute cosine of first several percent of Singular values are

compared (2.5% ∼ 10%). For our ST, truncated SVD with first t vectors ofXis used

to approximate the SVD of LLX . For BT, the accuracy is fixed, i.e. independent to t,
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because it always use LL to transform the original Singular vectors of X. As I can see, the

accuracy of ST is very high and will increase with more t for reconstruction. However, the

accuracy of Singular vectors provided by ST will decrease for vectors related to smaller

Singular values (compare the curve of 2.5% with that of 10% in Fig.2.17). The reason is

that, for natural images, the leading Singular vectors are highly structured and enjoy a large

gap among adjacent Singular values. From Remark 2, this implies a good approximation

accuracy of Singular vectors. However, the structure and gap will gradually diminish.

LT-HOSVD. I use the same comparison measures and dataset as the above experiments

for LT-SVD. Now the image dataset is organized as a tensor X where X (:, :, i) is the matrix

related to the i-th image. The problem here is to get the HOSVD of X ×1 L1 ×2 L2 where

Ln(n = 1, 2) is bilinear interpolation to resize the n-th dimension.

The comparison of reconstruction error in Fig.2.18 provides similar observations to that

of LT-SVD in Fig.2.16.The precise Singular vectors by RS present the best approximation

rate. Our ST is comparable to RS whose approximation error is much lower than that of

ID and BT. The performance gap enlarges with either the increase of truncated dimension

t (Singular vectors gradually lose their structure) or the increase of resize scale (downsize

will make image smoother and easier to be approximated). However, there are two obser-

vations different than the LT-SVD. First, the approximation of RS, ST, and BT are very

close at lower truncated dimension, which indicates the high similarity among their bases.

Second, the approximation error of BT is even lower than that of ID in the case of low re-

size scale (0.4). The reason is that, in the tensor case, I resize the image in each dimension

individually, i.e. X ×1 L1 ×2 L2. As a result, the inverse transform adopted in ID is worse

than direct bilinear interpolation of the whole image. The situation is severe for low resize

scale.

The similarity between the Singular vectors of RS and the vectors provided by BT and

our ST is provided in Fig.2.19, which shows similar result to those of LT-SVD. However,
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the angle between the vector provided by BT and Singular vector is much smaller than that

of LT-SVD. The reason is that the Singular vector of HOSVD is derived individually for

each image dimension. So it is very smooth and well approximated by bilinear interpola-

tion.

2.3.4 Conclusion

In this chapter, I present the linear transformed SVD problem which arises when SVD

or EVD is required by machine learning methods and testing domain can be characterized

or approximated by a linear transform from training domain. The problem is quite general

since SVD or EVD is essential to many machine learning methods, and a lot of transforms

have their linear approximation as is illustrated by the examples in this chapter. In contrast

to traditional solutions, our method achieves both efficiency and accuracy. I also extend

the transformed SVD problem to its tensor case and provide solutions in the same spirit.

My points on efficiency and accuracy are proofed by both theoretical analysis and numer-

ical experiments. In future work, I will try to extend the transformed SVD problem to

generalized Eigen problem.
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Figure 2.7: Complete Procedure.
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Figure 2.8: Sample Images from the FDDB Dataset

Figure 2.9: Illustrating the Manually-obtained Ground Truth.
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Figure 2.10: Original Emage; SAR eye Retection result;FVC Eye Detection Result; ICA

Eye Detection Result.
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Figure 2.11: An Example of LT-SVD Problem as the PCA of Down-sized Face Images.

Figure 2.12: Procedure of HOSVD for Tensor X .
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Figure 2.13: Procedure of LT-HOSVD for Y = X ×1 L1 ×2 ...×N LN .

Figure 2.14: Comparison of Complexity Between Re-SVD (TRS) and TST for Type-I LT-

SVD, with LLX ∈ RD×N and D=2000.
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Figure 2.15: Comparison of Complexity Between Re-SVD (TRS) and TST for LT-HOSVD

of Y = X ×1 L1 ×2 L2 with Y ∈ RD×D×N and D=100.
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Figure 2.16: Comparison of Reconstruction Error for Type-I LT-SVD between ST and

Other Solutions.
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Figure 2.17: Accuracy Comparison of LT-SVD by the Average Inner Product (θave) be-

tween the First (2.5% ∼ 10%) Singular Vectors and Those Provided by ST and BT.
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Figure 2.18: Comparison of Reconstruction Error by Different LT-HOSVD Methods.
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Figure 2.19: Accuracy Comparison of LT-HOSVD by the Average Inner Product (θave)

between the First (2.5% ∼ 10%) Singular Vectors and Those Provided by ST and BT.
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Chapter 3

LEARNING WITH PARTIALLY LABELED DATA AND NOISY DATA

3.1 Non-negative Dictionary Learning with Pairwise Partial Similarity Constraint

3.1.1 Introduction

Face retrieval and recognition has been a popular topic and is intensively studied in

recent years. Due to the increasing number of available multimedia sources,fast and robust

face retrieval remains a challenge task. Sparse coding based on over-completed dictionaries

has been widely used in many applications in visual computing including face recognition

and retrieval. Although a baseline dictionary D could be formed directly from the training

data samples (as in Wright et al. (2009)), learning a proper dictionary D is often a central

task of such approaches. A compact dictionary may be learned by the K-SVD algorithm

Aharon et al. (2005) or its variants. For making the learned dictionary more effective for

classification (in addition to representation), discriminative dictionary-learning algorithms

have also been proposed, such as the D-KSVD algorithm Zhang and Li (2010) and the

LC-KSVD algorithm Jiang et al. (2011). Other examples of this sort include the methods

proposed in Yang and Zhang (2010), Shenghua Gao (2010), Yang et al. (2011a), Quach

et al. (2014), Theodorakopoulos et al. (2011), Shiau and Chen (2012) for face recognition

and other classification tasks.

The above approaches for increasing the discriminative power of the learned dictionary

rely on the class labels of the training samples.But in real applications, massive multimedia

data often does not have complete labels. Many types of methods have also been proposed

for applications that lack such full labeling information. For example, pairwise matching

labels (indicating whether each pair of training sample is the same or different) were used
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in Guo et al. (2013) for learning a discriminative dictionary. The latter approach, greatly

improve the quality of the dictionary under such limited label information. While the dis-

criminative power of a dictionary often comes from the class label information, Guo et al.

(2013) provides the discriminative power from only the pairwise label(‘same’ and ‘differ-

ent’). In this chapter, I propose a novel framework to learn a dictionary when even fewer

label information is available - only the ‘same’ labels are available. To be specific, given

two signals, if the label is ‘same’, they are from the same class, otherwise they may or may

not come from the same class.

In this chapter I deal with a similar problem but with much less labeling information:

the training data contain only limited sample pairs that should be labeled as the same.

Further, I allow the matched pairs to be similar only on a portion of the data samples. Such

a problem naturally arises in real applications like face retrieval, where the training set

may contain several labeled instances of some subjects and the goal is to learn an effective

dictionary for retrieving faces. And clearly in order to accommodate localized differences

among images of the same subject (e.g., due to occlusion by sun glasses or variations of

facial expression), I will need to confine the pairwise similarity constraint to only a portion

of the data samples (with the location possibly varying from one pair to another). How to

learn a discriminative dictionary under such constraints is a new problem that cannot be

addressed by the prior work.

I propose a learning framework for addressing the above problem. my formulation of

the problem supports incorporation of limited pairwise label information as well as repre-

sentation of the rest of the data. Further, the approach allows the pairwise partial similarity

constraint to be imposed on the input pairs in a sample-adaptive manner. This is partially

achieved first by imposing the non-negativity constraint on sparse coding (similar to non-

negative matrix factorization for face recognition Guillamet and Vitria (2002), Wang et al.

(2005b), Zhang et al. (2008), which naturally leads to a part-based representation, but more
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importantly by the introduction of a “selection operator” that explicitly specifies which

parts of the input samples are considered for imposing the similarity constraint. I design an

optimization algorithm for finding the optimal solution under the proposed framework, and

I prove its convergence. I show that even with the limited label information, a discrimina-

tive dictionary can still be learned. The learned dictionary enforce signals from the same

class to have similar sparse representation. My dictionary learning approach also explicitly

impose the non-negativity constraint to the sparse code and dictionary, and a pairwise par-

tial similarity constraint. The pairwise partial similarity constraint, force partial elements

of the pair of signals from the same class to be close. For a pair of signals like images

of human face, even if they are from the same class, the distance between them can be

very large due to distortion and occlusion. Thus the pairwise partial similarity constraint

is robust to these distortion. I report results from experiments designed to systematically

evaluate the proposed method.

The rest of the chapter is organized as follows. I first formulate the problem, and then

present an optimization algorithm for finding a solution under my formulation. Further-

more, I provide the proof of convergence of the proposed algorithm. Experimental results

are reported next, which are followed by conclusion.

3.1.2 Formulating the Problem

For completeness, I first describe the basic dictionary learning problem. Let X =

[x1, ..., xN ] ∈ RM×N be a set of N M -dimensional input vectors. Learning a dictionary

for reconstruction with K atoms for the sparse representation of X can be written as the

following minimization problem:

< D∗, A∗ >=D,A ‖X −DA‖2F + λ‖A‖1,1 (3.1)
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where D = [d1, ..., dK ] ∈ RM×K (K > M , making the dictionary over-complete) is the

learned dictionary, A = [α1, ..., αN ] ∈ RK×N is the sparse representations of the input

vectors in X , ‖X −DA‖2F represents the reconstruction error, λ is the sparsity constraint

factor. This problem can be further split into the following two sub-problems (3.2) and

(3.3):

D∗ =D ‖X −DA‖2F (3.2)

A∗ =A ‖X −DA‖2F + λ‖A‖1,1 (3.3)

The construction of D can be achieved by solving Equation (3.2). One common approach,

the K-SVD algorithm Aharon et al. (2006), has been used widely in many applications.

When D is given, the task of sparse coding is to compute the sparse representation A of X

by solving (3.3).

Now, considering the desired properties for the new dictionary learning problem dis-

cussed in the previous section, I propose the following dictionary learning problem:

< D,A > =D,A ‖X −DA‖2F + λ‖A‖1,1

+
µ

2

∑
i,j

‖P ijD(αi − αj)‖22

=D,A ‖X −DA‖2F + λ‖A‖1,1

+
µ

2

∑
i,j

‖P ijDA(J i1 − J j1)‖2F

s.t. D ≥ 0, A ≥ 0

(3.4)

Compared with the basic problem of (1), there are some differences in the definitions of the

symbols, which are explained below. X = [x1, x2, ..., xN ] ∈ RM×N+ denotes the training

data with N signals, D = [d1, d2, ..., dK ] ∈ RM×K+ is the dictionary to be learned, A =

[α1, α2, ..., αN ] ∈ RK×N+ is the sparse representation of input data X , and R+ = [0,∞) is

the set of non-negative real number. J ij is a single-entry matrix, where its element equals

to 1 at (i, j), 0 elsewhere. P ij is a diagonal matrix which choose the largest ϕ% elements
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from D(αi − αj) if αi and αj are from the same class. If they are from different class, P ij

equals to a zero matrix. To be precise for the first case, if (D(αi − αj))n, the nth element

of D(αi − αj), is among the largest ϕ% elements of D(αi − αj), I set (P ij)nn = 1 else

(P ij)nn = 0.

In the objective function, ‖X−DA‖2F represents the reconstruction error, ‖A‖1,1 repre-

sents the sparsity regularization, and
∑

i,j ‖P ijD(αi−αj)‖22 is the pairwise partial similar-

ity constraint, which requires that only the chosen percentage of pixels of the reconstructed

image are needed to be close, if the two images are from the same object. The parameters λ

and µ are the weights of the sparsity regularization and pairwise partial similarity constraint

respectively.

In the above formulation, the constraint of pairwise partial similarity has been imposed

through the term
∑

i,j ‖P ijD(αi−αj)‖22. Here, P serves as a sample-adaptive selector such

that only a chosen percentage of pixels is included in comparison of two images. Note that

my model does not necessary required any fixed particular components of the images to be

chosen since P is sample-adaptive.

An Algorithm Aolving the Optimization

In this section, I present an algorithm for solving the optimization problem defined in the

previous section. It is challenging to solve (3.4) since it is not convex in both D and A

together simultaneously. Fortunately, the problem is convex when one of the variables is

fixed. Hence I solve (3.4) by an iterative multiplication update rule, updating the variables

one at a time as follows.

Update D: when A is fixed, only the second term is independent of D, so the equation of
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updating D can be written as:

min
D
||X −DA||2F +

µ

2

∑
i,j

‖P ijD(αi − αj)‖2F s.t. D ≥ 0 (3.5)

The update rule for D can be written as:

Dmn ← Dmn

(XAT + µ
∑

i,j P
ijD(αiα

T
j + αjα

T
i ))mn

(DAAT + µ
∑

i,j P
ijD(αiαTi + αjαTj ))mn

(3.6)

Update A: To update A, I fix D and solve the following problem:

min
A
‖X −DA‖2F + λ‖A‖1,1 +

µ

2

∑
i,j

‖P ijD(αi − αj)‖22 (3.7)

By introducing a new variable γ, (3.7) can be split into two minimization problem (3.8)

and (3.9):

min
A
‖X −DA‖2F + λ′‖γ − A‖2F

+
µ

2

∑
i,j

‖P ijD(αi − αj)‖22 s.t. A ≥ 0
(3.8)

and

min
γ
λ‖γ‖1,1 + λ′‖γ − A‖2F s.t. γ ≥ 0 (3.9)

The following update rule can be used to solve (3.8):

Amn ← Amn
(DTX + λ′γ + µ

∑
i,j D

TP ijDAJ ij)mn

(DTDA+ λ′A+ µ
∑

i,j D
TP ijDAJ ii)mn

(3.10)

The solution of (3.9) is given in Goldstein and Osher (2009), by using the shrinkage

operator:

γmn = shrink(Amn,
λ

2λ′
), (3.11)

where

shrink(a, b) =
a

|a|
∗max(|a| − b, 0) (3.12)

It is clear that γ will be non-negative if it is initialized with non-negative values. The

convergence of (3.9) under (3.11) has been proved in Goldstein and Osher (2009). Algo-

rithm 1 ?? summarizes the overall computing steps of the proposed optimization algorithm.
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Algorithm 1 The proposed algorithm

Input: X ,D0,A0,γ0,parameters: λ, λ′, µ

Output:D,A

1: While Not convergent or i <= max iteration number do

2: Update D using Eq.3.6;

3: Update A using Eq.3.10;

4: Update γ using Eq.3.11;

3.1.3 Convergence of the Proposed Algorithm

I now prove the convergence of my algorithm. The proofs are based on either existing

results of Lee and Seung (2001) or my extension of some results therein to a more general

situation matching my problem formulation. Some basic definitions are given first. A

function g : Rn × Rn → R is an auxiliary function for f : Rn → R if

∀x, y ∈ Rn, g(x, y) ≥ f(x) and g(x, x) = f(x) (3.13)

Let T : Rn → Rn be an operator. A function f : Rn → R is said to be decreasing (or

non-increasing) under the update rule y(t+1) = T (y(t)) if

f(y(t+1)) ≤ f(y(t)), ∀t ∈ {0, 1, 2, . . .} (3.14)

Lemma 1. Lee and Seung (2001) Let g : Rn × Rn → R be an auxiliary function for

f : Rn → R. Then f is decreasing under the update rule

y(t+1) =y g(y, y(t)) (3.15)
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Lemma 2. Let y ∈ Rn+, f : Rn+ → R+ be a function such that Hf(y) ∈ Rn×n+ . Define

K : Rn → Rn×n as follow:

Kij(y) = (Hf(y)y)i δij/yi (3.16)

where δij = 1 if i = j, δij = 0 if i 6= j. Then K(y) is a diagonal matrix. Also, if

y, y(k) ∈ Rn+, then

g(y, y(t)) = f(y(t)) + (y − y(t))T∇f(y(t))

+
1

2
(y − y(t))TK(y(t))(y − y(t))

(3.17)

is an auxiliary function for f(y).

Proof. g (y, y) = f(y) is trivial. To prove g
(
y, y(t)

)
≥ f(y), I first expand f :

f(y) = f(y(t)) + (y − y(t))∇f(y(t))

+
1

2
(y − y(t))THf(y(t))(y − y(t))

(3.18)

Then,

g(y, y(t)) ≥ f(y)

⇔(y − y(t))T (K(y(t))−Hf(y(t)))(y − y(t)) ≥ 0

(3.19)

To prove K(y(t))−Hf(y(t)) is positive semidefinite. Consider

Bpq(y
(t)) = (y(t))p(K(y(t))−Hf(y(t)))pq(y

(t))q (3.20)

which rescales the components of K −Hf . So, K −Hf is positive semidefinite⇔ B is

positive semidefinite.
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∀v ∈ Rn,

vTBv =
∑
pq

vpBpqvq (3.21)

=
∑
pq

[
(y(t))p(Hf(y(t)))pq(y

(t))qvp
2 (3.22)

− vp(y(t))p(Hf(y(t)))pq(y
(t))qvq

]
(3.23)

=
∑
pq

(Hf(y(t)))pq(y
(t))p(y

(t))q (3.24)

(
1

2
vp

2 +
1

2
vq

2 − vpvq) (3.25)

=
1

2

∑
pq

(Hf(y(t)))pq(y
(t))p(y

(t))q(vp − vq)
2) (3.26)

So, B is positive semidefinite⇒ g
(
y, y(t)

)
≥ f (y)

Combining (3.15) in Lemma 1 and (3.17) in Lemma 2, I can conclude that under the

update rule

y(t+1) = y(t) −K(y(t))−1∇f(y(t)) (3.27)

f is decreasing.

The objective function in (3.8) is decreasing under the update rule in (3.10).

Proof. If I update αi one by one, and fix other αj (j 6= i), consider

f(αi) = ‖xi −Dαi‖22 + λ′‖γi − αi‖22

+
µ

2

∑
j

‖P ijD(αi − αj)‖22
(3.28)

Then (3.8) is equivalent to minαi
f(αi). I then calculate the gradient and Hessian of f:

∇f(αi) = (2DTD + 2λ′I + 2µ
∑
j 6=i

DTP ijD)αi

−(2DTxi + 2λ′γi + 2µ
∑
j 6=i

DTP ijDαj)

(3.29)
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Figure 3.1: Sample Images Used in Experiment 1.

Hf(αi) = 2DTD + 2λ′I + 2µ
∑
j 6=i

DTP ijD (3.30)

The proof is achieved by substituting (3.29) and (3.30) into (3.27).

The objective function in (3.5) is decreasing under the update rule in (3.6).

Proof. The proof is similar to the one for the update rule in (3.8): First define a function of

di, then find its gradient and Hessian, and substitude it into (3.27).

Also, the objective function in (3.9) is decreasing under the update rule in (3.11) Gold-

stein and Osher (2009). Hence by the above proofs, the objective function in (3.4) con-

verges under the proposed algorithm.

3.1.4 Experiments and Results

I conduct three experiments: the first one uses simulated occlusion to face images to

verify the idea and the second one uses a subset of AR face dataset Martinez (1998) of

challenging face images and demonstrate face retrieval task using my proposed method.

The third experiment uses a subset of both AR and LFW dataset to demonstrate face verifi-

cation task. All experiments show the superiority of the dictionary learned by my proposed

method.
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Figure 3.2: Histogram of the Rankings.

Experiment 1: Evaluation with Simulated Occlusion

The purpose of the first experiment is to verify the correctness of my proposed method and

its optimization procedure. Ergo I use synthetic data with a simple experimental setup. I

use a frontalized version of LFW dataset Hassner et al. (2015), choosing 187 images from

187 subjects. Then I overlay a black patch on random locations of the images to generate

3 variations of each subjects in addition to the original clean image. Fig. 3.1 shows a set of

training images belonging to one subject. Another 1000 images are randomly picked and
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Methods Pair 1 Pair 2 Pair 3

KSVD 740 729 709

Proposed Method 2 3.57 3.44

Table 3.1: Average Ranking Using Proposed Method and KSVD on the Simulated Occlu-

sion Training Dataset.

added to form the training set. I normalize each image to size 30× 30.

For each subject Xi from the 187 subjects, the four training images (Xi1, Xi2, Xi3, Xi4)

can form 6 possible pairs. I only assume 2 pairs< Xi1, Xi2 > and< Xi3, Xi4 > are labeled

in the training stage, and the other 4 pairs are not used as constraints (hence simulating a

more realistic situation where only partial labeling information is available). After I trained

my dictionary on this dataset, I compute the codewords using (3.4) but now D is fixed. I

define the similarity score between signal xi and xj as such:

Sij = ‖P ijD(αi − αj)‖2F , (3.31)

For the 6 pairs of each subject,I pick 3 pairs: < Xi1, Xi2 > (Pair 1), < Xi1, Xi3 > (Pair 2)

and < Xi1, Xi4 > (Pair 3) to evaluate my proposed method against the KSVD baseline. I

rank the similarity score of each of these three pairs among scores from all possible pairs

formed by xi and xj . Table 3.1 shows the average ranking. I also show the histograms of

the rankings in Fig. 3.2.First row results from the proposed method for Pair 1, Pair 2 and

Pair 3 and second row:KSVD results for Pair 1, Pair 2 and Pair 3.

From these results, I can see that for Pair 1 (which is given an associated/labeled pair

in the training stage, as mentioned above), I improve the rankings significantly compared

with KSVD. Neither Pair 2 nor Pair 3 were labeled in the training stage, yet I are still able

to generate much better ranking results compared to KSVD. Fig. 3.3 shows some atoms
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Figure 3.3: Left: Sample Cropped and Frontalized Face Images from LFW. Right: Sample

Atoms of Learned D.

Figure 3.4: Sample images used in Experiment 2.

from the learned dictionary. As desired, each atom appears to represent certain part of the

original face image.

Experiment 2: Face Retrieval Using AR Dataset

In the second experiment, I use real challenging images from the AR dataset. In the dataset,

for each subject, there are 26 variations of different facial expressions, lighting conditions

and occluded images. I exclude those images with lighting variations, resulting in 12 im-
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Figure 3.5: The Convergence Curve on the Simulated Occlusion Dataset Used in Experi-

ment 1.

ages for each subject. Sample images are shown in Fig. 3.4. I form two disjoint sets

containing 840 and 360 images respectively for training and testing. Then half of the im-

ages were randomly picked to serve as queries to evaluate face retrieval result using P@k

defined as (3.32) on both the training set and the disjoint test set. I compare my method

with both KSVD and DDLPC1 in Guo et al. (2013). My proposed method improved the

P@K measure significantly on both training and testing datasets, as summarized in Table
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Figure 3.6: How P Capture the Occluded Part.

Methods P@1 (training/testing) P@3 (training/testing) P@5 (training/testing)

KSVD 82.86%/82.78% 63.86%/65.93% 52.76%/51.89%

DDLPC1 84.44%/81.11% 68.15%/65.56% 56.77%/50.89%

Proposed Method 100%/91.11% 77.06%/76.11% 61.43%/65.78%

Table 3.2: Retrieval results on AR dataset.

3.2.

P@K =
#relevant images in top K retrieved results

K
(3.32)

Since P plays an important role in the model, I demonstrates how P impacts on the

retrieval result. Table 3.3 shows P@K values on the testing set using differentϕ. In general

smaller value of ϕ tolerates more differences between two images. For this particular AR

test set, the peak performance happens at ϕ = 60% to 70%.
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ϕ P@1 P@3 P @5

90% 89.44% 72.41% 59.78%

80% 91.11% 75.40% 63.44%

70% 91.11% 76.11% 65.78%

60% 91.11% 76.11% 65.78%

50% 91.11% 75.89% 64.46%

40% 91.11% 75.89% 68.89%

Table 3.3: P@K Using Different Value of varphi.

Experiment 3: Face Verification Using AR and LFW Datasets

In this experiment, I evaluate my proposed method in face verification task. The definition

of the task is defined as follows: given a pair of face images, decide whether they belong to

the same person or not. I use the most common ’image-restricted’ setting here: I only know

whether the pair belongs to the same person, but the identity of the person is not given.

The LFW dataset provides a division of 10 folders with disjoint subject identities for

cross validation the face verification result. I combine these 10 folders with the AR subset

I used in experiment 2 3.1.4. Every face image is first cropped and normalized to size 30

by 30. In my experiment, for each independent evaluation,I randomly pick 300 matched

pairs and 300 unmatched pairs from one LFW folder and the AR subset to form the test

sets. Another 750 matched pairs and 750 unmatched pairs are randomly picked from the

remaining images to serve as the training dataset to get dictionary D. The evaluation is

repeated for 10 times. I compare my proposed method with KSVD Aharon et al. (2006)

and DDLPC1 in Guo et al. (2013). Fig.3.7shows the ROC curve of my proposed method,

the KSVD and DDLPC1, averaged on 10 evaluations.

The result shows that the face verification accuracy of my approach outperforms other
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Figure 3.7: The ROC Curve of the Face Verification Experiment.

compared methods in this challenging experiment setting. Since the AR dataset I use here is

very challenge because of the large areas of face occlusion, the performance of both KSVD

and DDLPC1 decreases significantly comparing to what reported in Guo et al. (2013). It

is also worth nothing that in the training stage, I use much less labels than the DDLPC1,

because I only use matched pair labels, unmatched pairs are not explicitly labeled.

It is worth noting that although I do not explicitly encode the unmatch pair information

into the objective function, but the result shows that the difference between faces from dif-

ferent person is actually enlarged compared to the KSVD dictionary representation. The

average similarity score of unmatched pairs is 33.6% greater than that of pairs in the train-
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ing set using my method. But this ratio for KSVD is only 10.1%. This ratio to some level

indicates how well the sparse codewords can discriminate whether two samples image be-

longs to the same subject. The larger this ratio is, the better discriminative performance can

be achieved.

3.1.5 Discussion

The theoretical analysis of convergency of the proposed algorithm has also been veri-

fied empirically: my proposed algorithm converges within the first 2000 iterations in both

experiments. As an example, Fig. 3.5 illustrates the objective function of Eq. (3.4) mono-

tonically decreasing during training for the simulated occlusion image dataset (experiment

1).

In terms of complexity, for a single iteration, the complexity of updatingD isO(MKN+

hMK), the complexity of calculating P is O(hM logM), the complexity of updating A

is O(MKN + hM2K), where h is the number of pairs from the same class, and K logK

comes from the term P ij(αi − αj), which is a sorting problem. Hence, the overall com-

plexity is O(MKN + hM2K).

Experiments show that my algorithm takes about 2000 iterations to converge, since the

dictionary can be trained offline, my approach is still considered to be more valuable than

the KSVD.

A percentage for quantifying the P matrix should be defined for the model. If the

percentage is too large, the objective function of Eq. 3.4 tends to consider the whole

‖D(αi − αj)‖ thus local distortion or occlusion will influence the result. If the percent-

age is too small, the learned D will lose discriminative power. I would like to point out

that, given the nature of matching images, if e.g., 80% is used a good match is found, the

e.g. 75% will also support a good (and in general better) match. Hence the key idea is on

enabling the exclusion of some parts for matching while learning the dictionary. In my ex-

74



periments, I used a fixed P (ϕ = 70%) for both experiments only to illustrate this point. In

practice, if computation cost is not a constraint, a search for the best percentage could also

be incorporated into the algorithm. Fig. 3.6 illustrates how the automatically-figured-out

P can capture the occluded part of a face, in a sample-adaptive fashion.

Although there are many other state-of-the-art methods for tasks like face retrieval and

face recognition, I only pick KSVD and DDLPC1 to compared with for the reason that they

are representative dictionary based methods. KSVD is a classical but powerful plain dic-

tionary learning model and the DDLPC1 is state-of-the-art constrained dictionary learning

model. While the main contribution in this chapter is to propose a new dictionary learning

method, it is not fair to compare my method with other non-dictionary based method. As

shown in Fig.3.3, my learned dictionaries preserve the part based property. And numerical

experiment results show that associate information is successfully encoded in the learning

of D.

3.1.6 Conclusion

I formulated a new dictionary-learning problem with limited number of pairwise asso-

ciation constraints and under the assumption that the association/similarity is defined only

after some portions of the data samples are ignored. This would be a proper setting for

applications like face matching/retrieval under partial occlusion or expression variations.

An algorithm was designed and its convergence proven. Experiments demonstrate that,

in comparison with relevant baselines, the proposed approach has clear performance gains.

Future work along this direction includes seeking a more general P matrix that may support

some transformation group.
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3.2 Improving Robustness Of Random Forest Under Label Noise

3.2.1 Introduction

Random forest has a successful history in solving machine learning tasks. It has many

appealing properties like simple structure, good ability to handle high dimensional data and

relatively good speed performance in both training and testing. Recently, random forest has

been used in many computer vision applications Bosch et al. (2007); Criminisi and Shotton

(2013); Ren et al. (2015); Montillo et al. (2013); Richmond et al. (2015); Shotton et al.

(2013) and generated many state-of-the-art results.

While random forest has many superior properties, it also has certain inefficiencies.

Since in random forest the evaluation of each split node is based on the purity of the node,

label noise in the training data may impact purity evaluation and hence degrading the per-

formance. There are some existing efforts on improving the performance of random forest

under noisy labels. A recent study Ghosh et al. (2017) showed that under symmetric label

noise and large sample size at each node, the decision tree and random forest algorithms

are robust; while in asymmetric noise, they are not robust in general. Unfortunately, in

most real applications, label noise can be very asymmetric, and thus it remains an unsolved

problem to improve robustness of random forest in face of label noise.

Label noise exists in many computer vision tasks. As the sizes of image datasets ex-

plode Krizhevsky and Hinton (2009); Deng et al. (2009), the manual work of labeling the

images increases significantly. Nowadays the labeling of many datasets involves anony-

mous online users, thus the labeling precise is much more difficult to guarantee. While

there may be many kinds of noise in real applications, in this work I deal with only the

class-conditional random label noise, which assumes that the label noise depends only on

the classes but not on the samples. Many types of real world label noise can be approxi-

mated by this simplified noise model.
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In this work, I propose an approach to improving the performance of random forest

under class-conditional random label noise. When random forest minimizes the classifier

loss implicitly via recursively reducing the uncertainty of given training samples, there is

no control over an overall classifier loss and its proper minimization. In Ren et al. (2015),

a framework was proposed to incorporate a global loss function into the training of random

forest. I adopt a similar strategy in my work and propose an estimator for the multi-class

classifier loss under the assumed noise model. My approach not only preserves the structure

and appealing properties of the classic random forest, but also makes it more robust to label

noise. I evaluate my approach on 5 different datasets for classification, reporting promising

results. The main contribution of this chapter is summarized as the following:

• To my best knowledge, this is the first attempt to consider asymmetric label noise in

training random forest.

• I proposed a general multi-class noise-tolerant loss function that can be used in many

noise settings.

• Extensive experiments on different datasets demonstrate the effectiveness of the pro-

posed model under various noise settings.

In Section 3.2.2, I briefly revisit related prior work. In Sections 3.2.3, I present my

proposed model and report experimental results. Further discussion summarizing important

observations is given in Section 3.2.5. I conclude in Section 3.2.6.

3.2.2 Related works

Random Forest: Applications and Variations

Random forest Breiman (2001) is a widely-used machine learning model, which is an en-

semble of a set of decision trees. In training, each decision tree is trained independently
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and outputs its own prediction. The final prediction of the forest is an average of each tree’s

outputs. The “randomness” mainly comes from two processes: the random selection of a

subset from the training data for each tree and the random selection of a subset of features

from the feature space.

Besides having a simple structure for implementation, random forest has many other

good properties including being able to handle high-dimensional data, and fast training

and testing. The appealing properties of random forest has made it one popular machine

learning algorithm especially for computer vision applications Dı́az-Uriarte and De Andres

(2006); Lindner et al. (2015); Del Rı́o et al. (2014); Belgiu and Drăguţ (2016). Work in

Criminisi and Shotton (2013) demonstrate the success of random forest in computer vision

domain especially in medical image analysis.In Ren et al. (2014),the author propose a

better learning based approach using random forest. This approach regularizes learning

with a locality principle based on two insights: for locating a certain landmark at a stage,

1) the most discriminative texture information lies in a local region around the estimated

landmark from the previous stage; 2) the shape context and local texture of this landmark

provide sufficient information. The author used a classic regression random forest to learn

local feature mapping function for fast face alignment. Both works show promising results

of using random forest in computer vision tasks.

In recent years, efforts have been made in order to further improve the classic random

forest, resulting in many variations Menze et al. (2011); Montillo et al. (2011); Qiu and

Sapiro (2015); Kontschieder et al. (2012). The following two recent efforts are most related

to my proposed work. In Schulter et al. (2013),the author introduces a novel classification

method termed Alternating Decision Forests (ADFs) , which formulates the training of

Random Forests as a global loss minimization problem. The losses are minimized via

keeping an adaptive weight distribution during the training over the training samples, which

is similar to Boosting methods.During the training, each decision tree grows simultaneously
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in a breadth-first manner so the global loss can be measured at each state of the entire

model. The author derived the new classifier and give evaluations on standard machine

learning data sets. Furthermore, the author shows how ADFs can be easily integrated into

an object detection application. A later work Ren et al. (2015) also uses the global loss to

guide the learning process of random forest, but instead of measuring it at each tree growing

stage, the loss is only used to modified the leaf nodes once the pre-trained random forest

is given. The author in this paper claims that the learning and prediction of random forest

is inconsistent: the learning of individual trees is independent but the prediction averages

all trees outputs. As a consequence, he loss functions implied from these two processes

are actually different which limits the fitting power of random forest. To alleviate such

inconsistency the method proposed in this paper discard the old values stored in all tree

leaves of a pre-trained random forest and relearn them through a global refinement.Both of

these two works explored the possibility of adding global loss function into random forest.

Another state-of-the-art work is Kontschieder et al. (2015) in which the author pro-

posed a novel structure which combines deep neural network and random forest structure.

Different from using impurity function to split nodes in classic random forest, in the struc-

ture proposed, each node contains a routing probability driving by the output of a neural

network. The structure is fully differentiable thus the forest can be updated using back

propagation.

The afore-mentioned improvements do not consider label noise in training. Although

by injection of randomness, random forest is more robust to outliers than most linear clas-

sifiers, it still suffers dramatic performance degradation especially under asymmetric label

noise, as I will illustrate in Section 3.2.4.
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Learning with Noisy Labels

In most real world applications, one needs to take care of label noise. Explicitly correcting

label error for large datasets is expensive and thus may not be done with guarantee. Ergo

it is desirable to improve the performance of machine learning under label noise. Recent

years have seen intensified study on this regard. In Xiao et al. (2015), a framework was

introduced to train Convolutional Neural Networks (CNNs) with only a limited number of

clean labels and millions of noisy labels. The relationships among images,class labels and

label noises are modeled with a probabilistic graphical model and integrate into an end-to-

end deep learning system. In Jindal et al. (2017), a drop-out regularization was presented

to deal with label noise in deep networks. These noisy label learning techniques are heavily

rely on either huge deep networks and/or large amount of training data.

Among many attempts to deal with label noise, the work in Natarajan et al. (2013)

provides a lightweight, general formula to generate an unbiased estimator of any bounded

binary loss function under class-conditional random label noise, which also provides proofs

of guarantee for risk minimization without any assumption of on the true noise distribution.

This work appears to be by far the most general formulation of the problem of learning with

noisy labels.

On the other hand, how to improve random forest under noisy labels is less studied. A

recent work Ghosh et al. (2017) analyzed the robustness of decision tree based algorithms

under label noise, where it was showed that gini index criteria based decision tree and

random forest learning is robust under symmetric label noise and large sample size for

binary classification. However, neither asymmetric label noise nor multi-class cases are

studied.

Inspired by such efforts, in this work I attempt to address the problem of multi-class

learning with noisy labels with random forest. I first introduce a global multiclass noise

80



Figure 3.8: An Illustration of S(X) and W from a Random Forest.

tolerant loss function and then incorporate it with the learning process of classic random

forest. I show that the classic random forest suffers from asymmetric label noise and held

extensive experiments to show that even use limited number of training samples with rela-

tively high label noise rate, the proposed Noise Robust Random Forest still gives promising

results on different datasets and noise settings.

3.2.3 The Proposed Noise Robust Random Forest (NRRF)

Basic Random Forest Formulation

To set the stage, I first briefly review the classic random forest approach Breiman (2001),

which is an ensemble ofK binary decision trees. In the training process, each tree is trained

independently and generates a prediction. The prediction function of a single tree can be

written as τt(x) : X → RN , where X is the input feature space and RN = [0, 1]N is the

class distribution over the label space Y = [1, ...N ]. In testing, each sample is sent to all

decision trees, and the final predicted label ŷ is an average of returned class distribution

pn(y|X) from each tree:

ŷ = argmax
1

K

∑
N

pn(y|X) (3.33)

During training, a random subset of the training data is fed to each decision tree (i.e.,

bagging). For each single decision tree, the training data relies on randomly sampling a
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subset of the features and splitting the training samples at each node such that the training

samples in the newly created child nodes is pure according to some impurity measurements.

Each tree is grown until some stopping criterion, e.g., the maximum tree depth, is reached

and the class probability distributions are estimated by the number of labels from each class

in the leaf nodes. Commonly-used impurity measurements are entropy and gini index.

Through out this chapter, I pick gini index as the impurity measurements for both classic

random forest and my proposed NRRF. An N class gini index of a node D of a tree is

defined as:

lgini(D) = 1− (p21 + p22...+ p2N) (3.34)

where

pn =
{(x, c(x)) ∈ D : c(x) = cn}

|D|
(3.35)

Then the best splitting for a node is chosen by minimizing

Iscore =
|L|

|L|+ |R|
lgini(L) +

|R|
|L|+ |R|

lgini(R) (3.36)

where L and R are the left and right child node of D respectively.

Particularly in a two-class case, let p = n0/n, q = n1/n be the fractions of the two

classes at node v under noise free samples, where n0, n1 are the number of samples in class

0 and 1 respectively, and p + q = 1 holds for each node. The gini impurity then becomes

GGini(v) = 2pq. Under symmetric label noise rate θ, gini impurity gain becomes:

Gθ
Gini(v) = 2pθqθ

= 2[((1− 2θ)p+ θ)((1− 2θ)q + θ)]

= 2pq(1− 2θ)2 + (θ − θ2)

= GGini(v)(1− 2θ)2 + (θ − θ2)

(3.37)

Similar expressions hold for Gθ
Gini(vl) and Gθ

Gini(vr): the left and right child node of v.

The (large sample) value of criterion or impurity gain of f under label noise can be written
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as:

gainθGini(f)

=Gθ
Gini(v)− [αGθ

Gini(vl) + (1− α)Gθ
Gini(vr)]

=(1− 2θ)2[GGini(v)− αGGini(vl)− (1− α)GGini(vr)]

=(1− 2θ)2gainGini(f)

(3.38)

where α represents |vl|
|vl|+|vr| .Thus for any θ 6= 0.5, if gainGini(f1) > gainGini(f2), then

gainθGini(f1) > gainθGini(f2). Which means that a maximizer of impurity gain based on

gini impurity under clean samples will also be a maximizer of gain under symmetric label

noise, under large sample limit. The work in Ghosh et al. (2017) studied the performance

of random forest under noise rate varied from 0% to 40% with different sample sizes, the

conclusion is that while the above proof holds for symmetric label noise, it is hard to arrive

at same conclusion for asymmetric noise. In general, decision tree based classifiers are

not robust under asymmetric noise. Similar to (3.37), when the noise is asymmetric, under

large sample limit, the gini impurity at a node v becomes:

ĜGini(v) = 2p̂q̂

= 2[((1− θ0 − θ1)p+ θ1)((1− θ1 − θ0)q + θ0)]

(3.39)

where p̂ and q̂ are observed noisy fractions of class 0 and class 1. From (3.39) I can

approximately recover the ”clean” gini impurity by:

GGini(v) =
2[p̂− θ1][q̂ − θ0]

1− θ0 − θ1
(3.40)

I named this as ”modified gini index” because the class fractions in each node is mod-

ified to approximate the gini impurity for clean samples. It’s worth noting that the above

equation only holds under large sample limit. This sample limit is set as a parameter in

the learning stage. As the splitting process goes, at some point the number of samples in

a node will fall below the sample limit. After the large sample limit is reached, the above

approximation is not guaranteed.
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Based on above discussion, it is not easy to remove the label noise impact within the

structure of classic random forest. It is intuitive to think about adding additional training

steps to solve this problem. In the following sections, I explore a global loss function based

method.

Introducing a Relaxed Multi-class Noise-tolerant Loss

Let D = (X, Y ) be the distribution of the sample space, where X ∈ Rd and Y ∈

{1, ..., N}, and N is the number of classes. For any sample drawn from D, it has the

form (Xn, Yn). If I inject random classification noise to the labels, I obtain (Xn, Ỹn). The

classification noise can be defined as follows:

ρij = P (Ỹ = j | Y = i) ∀i, j ∈ {1, ..., N} (3.41)

I assume that the noise rates are known during the training stage, although it is not necessary

in practice. In Natarajan et al. (2013), a method of unbiased estimation for the loss was

proposed, which is stated as follows:

Lemma 3 (Method of Unbiased Estimators Natarajan et al. (2013)). For a 2-class classi-

fication problem (y ∈ {−1, 1}), let l(x, y) be any bounded loss function. Define l̃(x, y) as

follows:

l̃(x, y) =
(1− ρ(−y,y))l(x, y)− ρ(y,−y)l(x,−y)

1− ρ(−y,y) − ρ(y,−y)
(3.42)

Then l̃ is an unbiased estimator for l.

This method is surrogate-loss based, which exploits a symmetry condition on the loss

function such that it can provide an unbiased estimator of the non-noisy risk. Later re-

searchers extended this idea into the multiclass scenario Patrini et al. (2016), as given

below:
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Lemma 4 (Backward Corrected Loss Patrini et al. (2016)). Assume that the noise rate

matrix P is non-singular. For a given loss function l, the backward corrected loss l̃ can be

defined as:

l̃(x, y) = P−1[l(x, 1), l(x, 2), ..., l(x,N)]T (3.43)

where

P =



ρ11 ρ12 . . . ρ1n

ρ21 ρ22 . . . ρ2n
...

... . . . ...

ρN1 ρN2 . . . ρN1


(3.44)

Then l̃ is an unbiased estimator for l.

The loss function in Eq. (3.43) is a multiclass generalization to the one in Eq. (3.42).

When N = 2, they are equivalent.

Inspired by Natarajan et al. (2013), I propose a simpler loss function for training with

noisy labels:

Lemma 5. Let l(x, y) be the loss function for noisy-free dataset. The loss function for

training with noisy labels can be defined as:

l̃(x, y) =
(1−

∑
i 6=y ρiy)l(x, y)−

∑
j 6=y ρyjl(x, j)

1−
∑

i 6=y ρiy −
∑

j 6=y ρyj
(3.45)

Then l̃ is an estimator for l.

Although Eq. (3.43) is a natural extension of Eq. (3.42), there is no guarantee that the

matrix P is non-singular. Comparing to Eq. (3.43), my loss function in Eq. (3.45) does not

have such constraint thus it can be viewed as a relaxed version of (3.43).

I name Eq. (3.45) ”relaxed multi-class noise-tolerant loss”. It can be minimized using

SGD Zhang (2004).
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Formulation of Noise-Robust Random Forest

I now formulate the proposed Noise-Robust Random Forest. Similar to Ren et al. (2015),

first I define a selecting function S(x): the routing process of a sample in a forest can

be viewed as mapping the input x onto selected leafs. S(x) is binary and has the same

dimension of number of leaves. Each dimension indicates whether the input finally arrives

at the leaf node or not (1 or 0). Figure 3.8 illustrate the structure of a random forest with 3

trees and corresponding W,S(X) for a particular input.

Each leaf node of the RF represents a prediction (e.g., a estimated distribution for clas-

sification or continuous values for regression). I denote each leaf as a vector wi, and all the

leaf nodes in a random forest can be written as W = [w1, w2, ...wT ] where T is the number

of leaves.

Having S(x) and W , the prediction of the random forest defined in Eq .(3.33) can be

rewritten as :

p̂ = WS(x) (3.46)

With Eq. (3.46) and Eq. (3.45), I formulate the objective function of NRRF in the

following form:

min
1

2
||W ||2F + λ

M∑
i=1

l̃(ŷi, y),

s.t. yi = WS(x),∀i ∈ {1, ...,M}

(3.47)

where M is the number of training samples, λ is a control parameter trading off between

the L2 norm of W and the noisy loss.

Throughout my experiments, I use multiclass log loss as l(t, y), which is defined as:

logloss = − 1

N

N∑
i=1

M∑
j=1

yi,jlog(p̂i,j) (3.48)

where M is the number of observations, N is the number of classes, log is the natural

logarithm, yi,j is 1 if observation i is in class j and 0 otherwise, and p̂i,j is the predicted
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probability that observation i is in class j. There are other loss functions like hinge loss

and tanh loss. Although I do not explicitly explore all of them in this chapter, I believe in

principle the performance of NRRF should be similar under such losses.

The complete NRRF approach is shown in Algorithm 1. I initialize the forests using

classic RF and update W iteratively using Eq. (3.45) until convergence. For testing, a

sample will first go through the classic RF to calculate its corresponding S(X). The final

prediction ŷ will be generated using Eq. (3.46).

Algorithm 1: Learning the NRRF
Input : Training set X, Training labels Y

Parameters: Parameters for RF(Max depth,Min samples etc), learning rate λ

Output : Trained NRRF

1 while Depth < Max depth and # of samples > Min samples do

2 Splitting current node using gini index

3 end

4 while not converge do

5 Calculate loss using eq(3.45);

6 Compute gradient of the loss: grad(loss);

7 Update leaf nodes W : W− = grad(loss) ∗ λ

8 end

3.2.4 Experiments

I evaluate my proposed NRRF on classification tasks on four standard machine learning

dataset and Cifar10. I compare my proposed NRRF model with the classic random forest

model (referred as RF in the rest of this section) and the Global Refined Random Forest

Ren et al. (2015) (referred as GRRF in the rest of this section). I study the impacts of
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different label noise distributions on all three models.

Experiment settings

In this section I describe how I set up each experiment. First I come up a way of generating

”noisy” training set. Since all the standard dataset are noise-free in labels, I artificially

introduce random label noise into the training splits. In my implementation, I define ρi to

be the total probability of a true class i sample to be observed as class other than i. For

implementation simplicity, I assume that the probability of a sample in class i to flip into

any other class is equal. For example, in a 10-class classification task, a ρ1 = 0.36 means

the probability of class 1 samples get flipped into another class is ρ1
9

= 0.04, so given ρi,

the ith row of matrix P can be calculated accordingly.

I assume the noise vectors are given in all my experiments. I want to make it clear that

it is not necessary in practical. There are multiple ways to estimate noise levels, two most

recent methods are described in Natarajan et al. (2013) and Patrini et al. (2016) respec-

tively. The first method uses cross validation information and the second one estimate each

component of matrix P just based on noisy class probability estimates from the output of a

softmax layer.

I set the rest of the experiment parameters as the following. Unless stated otherwise,

the number of trees is set to 50. The number of random features sampled and tested in each

node is set to the square root of the feature dimension, as recommended in Breiman (2001).

The minimum sample number for split is set to 10. The maximum depth of the tree is set

to 10,15 or 25, depending on the size of the training data. I use the given training/testing

for most of the dataset. For datasets without standard training/testing split, I randomly split

the dataset into 60% for training and 40% for testing.

Most existing noise classification makes the assumption that the noise is content based,

using information like a cat is more likely to be mislabeled as dog than car. But in general,
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Dataset MNIST Cifar10 letter covtype usps

# Train Samples 60000 50000 15000 348607 7291

# Test Samples 10000 10000 5000 232405 2007

# classes 10 10 26 7 10

# Feature dimensions 784 512 16 54 256

Table 3.4: The Properties of Datasets Used in the Experiments.

this kind of information is not always available. Since I try to approach the problem in

a different way: using only noise rate information, thus it is different from most existing

methods. The key contribution I intended to make is to explore a new way of improving RF

with label noise information. Thus I compare my proposed NRRF with two other methods:

RF and GRRF.

Properties of Datasets Used

I use 5 widely used dataset to evaluate my proposed NRRF: MNISTLeCun et al. (1998), Ci-

far10 Krizhevsky and Hinton (2009), letterFrey and Slate (1991), covtypeBlackard (1998)

and uspsHull (1994).The properties of these datasets can be found in the corresponding

cited papers. In experiment I and IV, I evaluate my proposed NRRF and other comparing

models on all five datasets. In experiment II, III and IV, I use the well known MNIST

dataset.

Experiment I: Comparison of RF, GRRF and the Proposed NRRF

In this experiment, for each dataset I generate 10 sets of class conditional random noises

and flip the samples in the training dataset accordingly. For all of RF, GRRF and proposed

NRRF, I use the training parameters described in experiment settings. The learning rate is
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Method RF GRRF NRRF

MNIST 0.1986± 0.05 0.1845± 0.05 0.1142± 0.02

letter 0.2038± 0.05 0.1977± 0.05 0.1570± 0.05

covtype 0.2306± 0.04 0.2276± 0.03 0.1879± 0.01

usps 0.1862± 0.08 0.1759± 0.08 0.0804± 0.01

Cifar10 0.5416± 0.06 0.5322± 0.04 0.5013± 0.03

Table 3.5: Results on Classification Task.

set to 0.001 for updating W in NRRF. I report both the average classification error rate and

the testing loss with standard deviations resulting from 10 repetitions of each noise setting.

Table 3.5 shows the classification error rate on 5 datasets.

Table 3.6 shows the average training and testing loss using multiclass log loss. Inter-

estingly, my proposed NRRF have a higher training loss though out the experiments. This

is expected because by adding the global noise tolerant loss function I are explicitly telling

the NRRF model that there are noise in the training set although I only know the informa-

tion about the noise rate not exactly the particular noisy samples. As a result, the NRRF

tries to figure out ”how much” it should be ”fitted” in the training, thus the training loss

goes up because some of the training samples are treated as noise and are ”less fitted”.

The standard deviations of classification error is quite small among all the experiments

for NRRF, which means that the NRRF is quite robust under different noise setting. Instead,

the classic RF and the comparing GRRF have higher std. In the next experiment I will

analyze the performance of RF under different class conditional noise.
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Method RF GRRF NRRF

MNIST 0.681/0.736 0.428/0.557 0.616/0.425

letter 0.644/0.994 0.418/0.862 0.957/0.675

covtype 1.030/0.087 0.840/0.079 1.034/0.073

usps 0.292/0.375 0.451/0.530 0.312/0.309

Cifar10 0.925/1.764 0.913/1.527 1.106/1.686

Table 3.6: Training/Testing Loss.

Experiment II: Impact of Different Label Noise Distribution on RF and NRRF

As proofed in Jindal et al. (2017), RF is robust to symmetric label noise under large sample

size limit. I observed in my experiment I that when the noise rate in each class are close

to uniform distribution, RF and proposed NRRF intend to perform similarly which verifies

the proof in Jindal et al. (2017). Here I take a closer look at the performance of RF under

asymmetric label noise distributions.

In this experiment, I only use MNIST dataset. I generate 3 groups of noise rate vectors.

According to their values I give them different names:

1. ”Uniform”:Noise rate in each class is equal to 0.2

2. ”One peak”:One class has significantly higher noise rate then other classes,

the peak noise rate is 0.8.

3. ”Two peaks”:Two classes has significantly higher noise rate then other

classes, the peak noise rates are 0.8.

I randomly generate 10 noise rate vectors that satisfied the conditions for each group. The

performance is reported in terms of the average classification accuracy in each group.
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Figure 3.9: (a) The Performance of NRRF under Variations of True Noise Rate; (b) The

Performance Differences on Different Label Noise Distributions

For ”One peak” group, the average performance gain of NRRF over RF is 12%; for

”Two peaks” group, the average performance gain is 9%; for ”Uniform” group, the per-

formance gain is 2.5%. Clearly, I can see that with one peak and two peak noise, the

performance of RF degraded significantly comparing to the uniform group. Figure 3.9(b)

plots the mean accuracy bar charts under 3 groups of noise rate vectors.

One the other hand, my proposed NRRF have a stable performance around 92% test

accuracy in all three groups, which is a appealing property in real world applications.

Experiment III: Learning with Uncertain Noise Rate

I have assumed given noise rate in above discussion. In practice, I can at best know an

estimate of the true noise rate for each class. Hence, I now evaluate how the proposed

NRRF perform without knowing precise noise rate (but using only a close estimate). I start

by picking an asymmetric label noise vector to serve as the ground truth and generating the

noisy training set. Then I add some small random noise between [−0.1, 0.1] to the ground
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Figure 3.10: The figures show the performance and accuracy of NRRF: (a) the accuracy

curve by varying number of trees; (b) the accuracy curve by varying number of features

tested at each node.

truth noise vector:

ρtrue = [0.5, 0.3, 0.2, 0, 0, 0, 0, 0.6, 0, 0]

By “adding noise” for different trials (I do 25 trails here), I obtain different variations of

the ground truth noise vector.

Then I feed the above noise rate vectors to NRRF, Figure 3.9(a) shows the performance

(in terms of classification accuracy) of NRRF. The blue line is the NRRF performance when

given ground truth noise rate vector; the red line is the performance of RF. The results of the

trials fall into the space between the two lines. Obviously, with various small variations of

the ground truth noise rate, the NRRF is still able to generate better predictions compared

to the classic RF. Hence I argue that my proposed NRRF is robust under small uncertainty

of the underline ground truth noise rate. And obviously if large size of clean test data is

available, one can use cross validation to find the best noise rate that generates the optimal
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Dataset MNIST letter covtype usps Cifar10

Loss A 0.1142 0.1570 0.1879 0.0804 0.5013

Loss B 0.1208 0.1578 0.2034 0.1031 0.5013

Table 3.7: Test Error Rate Using Different Loss Functions.

prediction results.

Experiment IV: NRRF with Different Loss Function

In this experiment I compare the performance of my relaxed multiclass noise tolerant loss

function (referred as ”Loss A” in the rest of this section) with the one proposed in Ghosh

et al. (2017) (referred as ”Loss B” in the rest of this section). Table 3.7 shows the error

rate on 5 datasets using both loss functions when the noise matrix P defined in Eq.(3.44) is

invertible. I can see that with my proposed Loss A and Loss B, the NRRF generates similar

results in most datasets when the inverse of P exists. The limitation of Loss B is that P

must be invertible. Now I show that when P does not have its inverse, my proposed Loss A

can still generate improved results comparing to the classic RF when Loss B fails. Taking

the MNIST dataset as an example, I generate 10 different P matrix which are singular or

close to singular. My proposed loss A still gives an average of 10% improvement over RF

while Loss B completely failed.

Analysis of RF Parameters

In this section I use the well known MNIST dataset and analyze the impact of two parame-

ters related to RF: number of trees and number of features tested at a split node. The other

parameters in this section unless otherwise noted ,are the same as described in experiment

settings.
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Figure 3.10(a) shows the classification accuracy curves of RF and my proposed NRRF

by varying the number of trees. The performance of my proposed NRRF keep boosted as

the number of trees increases, but the accuracy of classic RF stays and oscillates between

0.74 to 0.76.

Figure 3.10(b) shows the classification accuracy curve of RF and NRRF by varying the

number of features tested at each split node. Both RF and NRRF have a performance gain

as the number of tested features increases, but for NRRF the increase is more substantial.

3.2.5 Discussion

There are several important observations from my experiments. First, the my proposed

loss function converges very fast in training. Usually I only need about 10 iterations for

getting optimal results. I implement my proposed NRRF using python, the RF part is

written using RandomForestClassifier from the sklearn package. For a random forest with

50 trees, 10 max depth, it has approximately 25k leaf nodes. Taking MNIST dataset as an

example, the size of W will be about 10× 25k, each iteration for updating w is less than 2

minutes. The total running time of the NRRF is the time of fitting an RF plus updating W.

For MNIST experiment, this running time is about 17 minutes.

Second, as I stated in Section 3.2.3, my proposed global loss function Eq (3.45) is a

relaxed version of Eq (3.43). I compared performance of NRRF under either version. The

NRRF using my proposed loss function consistently gives an average of 2% accuracy gain

over the loss function defined in Eq (3.43).

3.2.6 Conclusions and future work

In this work, I present a noise robust random forest model that improves the fitting

power of classic random forest under class conditional random noise.This is the first work

of learning noisy labels using RF structure.I evaluate my proposed NRRF on five datasets.

95



The results show that it outperforms the classic RF and Global refined RF under asymmetric

class conditional random noise. The proposed NRRF is robust under different settings of

noise rate and is very light weight in terms of implementations and running time. The

NRRF perfectly preserved the structure and properties of RF meanwhile fit better to noisy

data.

The relaxed multiclass noise tolerant loss function I proposed is verified to be a appro-

priate loss function by intensive experiments. I claim that this function is a relaxed version

of Eq (3.43) and is more powerful in real application because of removing the constraint.

As in this chapter and prior related works, the improvements of RF are all done by

adding a feedback. The feedback can be a loss function or something else. This process is

actually adding another ”layer” or learning process to the classic random forest.

A more compact and intuitive way of improving the RF may be modifying the impurity

function when learning it. There is a possibility that a noise tolerant impurity function can

be derived then the learning process of the improved RF is exactly the same as learning a

classic RF. As briefly discussed in section 3.2.3, simply modify the gini impurity measure-

ments based on the noisy rate may not be a good idea, but other impurity measurements like

cost sensitive measurement may be considered. This is an interesting direction to explore

and may be my future work.
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Chapter 4

SIMULTANEOUS CLUSTERING AND FEATURE SELECTION VIA LDA MODELS

In the era of Internet and social media data explosion, analyzing multi-modal data is an

important task to gather information from rich content. Image tweets/microblog posts

which have image and/or video embedded make the content more vivid. According to

(Chen et al., 2015), multimedia form attracts larger viewership than text only posts. On

the other hand, many real-world applications involve high-dimensional data in various rep-

resentations/views that provide related and complementary information. For example, one

image can be described by its different views like color histogram, texture information,

SIFT descriptor and so on. As the views are in general high-dimensional and may provide

complementary information, selecting most relevant features from such data is often a nec-

essary step for further analysis tasks. Based on above discussion, I aim to embed feature

selection into LDA topic model. When multi-view LDA model can capture the correlations

between each view and the text/annotations, feature selection step further make use of the

correlation between views to build a more precise model of multi-modal data.The approach

integrates unsupervised clustering and multi-view feature selection into a unifying formu-

lation so that relatedness of the views, clustering of the data and importance of the features

are all simultaneously considered.

In this chapter,I propose a new model that incorporates the feature selection procedure

into the existing multi-view LDA algorithm framework to analyze social media data. To

find a solution under the proposed model,I apply an iterative procedure to switch between

feature selection and LDA. The evaluation of the approach is done using controlled dataset.
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4.1 Introduction

In the era of Internet and social media, multi-view data source like twitter, instagram

and flicker are seeing phenomenal growth. Given an image with multiple annotations,

one way to described the correlations between the images and annotations is modeling

them using topic model. The research problem is formally defined as follows: given a

datasets of images and corresponding annotations, analyze hidden correlations between

different views, via feature selection LDA model. The basis of our proposed approach is

two-view lda model. While existing work focuses on purely topic modeling using different

graph structures,I improve this modeling problem from the following angle: extract most

important features from different views of data beyond simple concatenation of them.

The contributions of our work are summarized as follows: Firstly,I propose a new LDA

model by adding feature selection component. Secondly, to solve the new formulation,I

propose an efficient algorithm and evaluate via experiments its efficiency and effectiveness.

4.2 Related Work

In this section,I review briefly related research, and discuss the difference between the

reviewed work and our proposed method.

4.2.1 Topic Modeling in Data Mining

Topic modeling is a convenient way of analyzing large amount of unclassified doc-

uments. The definition of a topic is a group of words that often appears together. A

successful topic modeling will learn the connections of words with similar meanings and

distinguish words with different meanings.

There are various kind of topic models, such as Latent Semantic Analysis (LSA), Prob-

abilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA), Correlated
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Topic Model (CTM). These topic models have successfully improved classification accu-

racy in the area of discovering topic modeling. Among the above mentioned models, the

most used and studied one is the latent Dirichlet allocation (LDA). LDA is a generative

probabilistic model was first introduced by Blei et al. (2003) for single view data, to be

specific, collections of discrete data such as text corpora. The original LDA is a three-level

hierarchical Bayesian model, in which each item of a collection is modeled as a nite mix-

ture over an underlying set of topics. Each topic is modeled as an innite mixture over an

underlying set of word probabilities. In the context of text modeling, the topic probabilities

provide an explicit representation of a document.

Later, many work adapted the original LDA for multiview data. In Blei and Jordan

(2003), the author extend the LDA to correspondence LDA model (corr-LDA), which can

be used for modeling the relationship between two views: images and their tags/annotations.

In Chen et al. (2015), the author claims that among multiple views that can describe an im-

age, each particular tag may associate with only one view. This idea further extends LDA

model into a three view graph model. Figure.4.1 shows the developing of LDA models

from single view to multiview with (a): The original single view LDA model used for

modeling textual data; (b) corr-LDA model used for annotated data; (c) Multi view LDA

model, capture complex relationships between different views.

Although there are many variations of LDA models, the fundamental assumption used

in these models are the same. The LDA models assume that the corpus are generated by a

group of hyper parameters, a typical generative process of two-view data (visual view and

text view) is described below:

1. Draw topic proportions θ ∼ Dirichlet(α).

2. For each visual word wn, n ∈ {1, , N}:

(a) Draw topic assignment zn | θ ∼Multinomial(θ).
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(b) Draw visual word wn | zn ∼Multinomial(φzn)

3. For each textual word tm,m ∈ {1, ,M}

(a) Draw discrete indexing variable ym ∼ Uniform (1, ..., N)

(b) Draw textual word tm ∼Multinomial(ψzym )

Through out this chapter, I use this generative model to generate experimental data.

This generative process is related to corr-LDA described in Blei and Jordan (2003), the

difference is that, instead of assuming each textual word is associate with one region of the

image,I assume that each textual word is associate with one visual feature of the image.I

refer to this model as two-view LDA in the following sections.

4.2.2 Unsupervised Feature Selection

Feature selection, which reduces the dimensions of the data by selecting only a subset of

most relevant features, has been proven in (Yu and Liu, 2003; Xing et al., 2001) as effective

for addressing the issue of curse of dimensionality, as written in Bellman (2015). Curse

of dimensionality occurs in many machine learning problems involving high-dimensional

data.

Existing feature selection methods may be broadly divided into two categories: Super-

vised feature selection (Guyon and Elisseeff, 2003; Song et al., 2007; Sotoca and Pla, 2010)

and unsupervised feature selection(Mitra et al., 2002; Li et al., 2012; Cai et al., 2010). In

many real-world applications, labeled data are often limited while unlabeled data are abun-

dant (e.g., considering unlabelled on-line images), and thus, unsupervised feature selection

has attracted attention. Unsupervised feature selection may select features that can better

preserve some measures of data similarity in the feature space, as mentioned in research

from He et al. (2005); Zhao and Liu (2007). In recent years, sparse learning has been em-

ployed for unsupervised feature selection. Sparse learning based approaches usually rely
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Figure 4.1: LDA and Its Variations
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on sparse coding enabled by critically labeled features using clustering strategy. Works

include Unsupervised Discriminative Feature Selection (UDFS) in Yang et al. (2011b)and

Multi-cluster feature selection (MCFS) in Cai et al. (2010). Recently, Embedded Unsuper-

vised Feature Selection (EUFS) was introduced in Wang et al. (2015), incorporating both

sparse learning and feature selection into a single step.

One common observation in the most of the existing work is that, while modeling the

correlation between different views of a given document, few were discussed concerning

the features used during the modeling processes. In particular, the number of dimension

and the kinds of features used are all empirical. When several features are derived, all

which are concatenated into one vector to be the final feature vector. For example, in Chen

et al. (2015), saturation, brightness, hue, color names, pleasure, arousal, and dominance are

features that are used, ending with the final feature vectors are the simple concatenation of

these features. In our work, I focus on proposing a new model which can capture the share

information between different views and use that information to perform feature selection

for getting an optimized feature dimension simultaneously via topic modeling.

4.3 Problem Description

The research problem in this chapter is formally defined as follows: given a training set

of image \ annotation pairs, learn a topic model and optimal feature dimension at the same

time. While existing work focuses on designing new graph models,I study this modeling

problem from the following angle: finding the optimal feature dimension for the topic

model during the learning process. To achieve this goal, I proposed an procedure that

updates feature dimension and model parameters iteratively.

Notations related to two-view LDA model of this chapter are described in the following.
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symbol Description

K number of image-visual topics.

D,T,C number of documents,unique textual words, unique image-visual

words,respectively.

φ, a K × C matrix indicating image visual topic word distribution.

θ, a D ×K,matrix indicating image-visual topic proportions.

ψ a K × T matrix indicating textual topic-word distribution.

Md,t,NV
d,c number of textual words, image-visual words in the d-th docu-

ment.

Md,z number of textual words in d-th document that are assigned to

topic z.

NV
d,k number of image-visual words in d-th document that are assigned

to topic k.

In my work, instead of learning topic model only on empirical features,I update the

dimension of features in the meantime. The complete learning procedure is summarized as

in Algorithm 2.

4.4 Solving the Proposed Model

To solve the above formulation, two parts need to be taken into consideration – param-

eter estimate for the LDA model and the feature selection optimization problem. We will

explain the solution in detail in the following subsections.

4.4.1 Inference and Estimation of Two-view LDA

Exact probabilistic inference for LDA models are intractable; Therefore we need to ap-

proximate the posterior distribution over the latent variables given a particular image/annotation.Two

major approach to do the inference are variational inference method and Gibbs sampling.
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Algorithm 2: Learning the Two View LDA Model with Feature Selection
Input : Training image-annotation pairs (visual features and words)

Parameters: Parameters for LDA models

Output : Trained LDA model

1 Estimate of LDA model parameters;

2 while not converge do

3 Remove one dimension of the features which is not previously removed;

4 Estimate LDA model parameters using Gibbs sampling method; Calculate

perplexity;

5 if perplexity increases then

6 Adding back the removed feature dimension

7 end

8 end

We adopt Gibbs sampling to estimate the model parameters, due to its simplicity in deriv-

ing update rules and effectiveness in dealing with high-dimensional data. The basic idea of

Gibbs sampling is to sequentially sample all variables from the targeted distribution when

conditioned on the current values of all other variables and the data.

To sample for zi, we condition on current value of all other variables, which leads to:

P (zi = k | W,T, Z−i, Y )

∝
NV
k,c,−i + βc

NV
k + Cβ − 1

· (
NV
d,k

NV
d,k−i

)Md,k ·
NV
d,k,−i + αk

NV
d +Kα− 1

(4.1)

Similarly, we sample the latent topics y of the textual words based on the topic assign-

ment of imagevisual words, which leads to:

P (yi = k | W,T, Z, Y−i)

∝
Mk,t,−i + γ

Mk + Tγ − 1
· Nd,k

Nd

(4.2)
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Iterative execution of the above sampling rules until a steady state results allows us to

obtain the values of the latent variables. Finally, we estimate the model parameters by the

following equations:

θk,d =
NV
k,d + α

NV
d +Kα

φVk,c =
NV
k,c + β

NV
k + Cβ

ψz,t =
Mz,t + γ

Mz + Tγ

(4.3)

4.5 Experiments

In this section, we present experimental results based on a controlled synthetic dataset

to show the performance of our proposed model and the comparison with existing LDA

models without feature selection.

The reason we employ synthetic dataset here is that with synthetic dataset, we can

control the ground truth as well as the generative process, which make the evaluation of

model performance more straight forward than using real image dataset, which can be only

evaluated by perplexity value or a secondary task.

We generate our synthetic dataset following the generative process described in Blei and

Jordan (2003), and this part of data are referred as ”clean dataset”. We use 3-dimension

feature to represent the visual features from an image, the size and dimension for the clean

dataset is mentioned in Table 4.1.After we have the clean dataset, we manually add another

3 dimension noise to view 1. Now view 1 is noisy but view 2 is still clean. The underline

assumption is that for real world data, visual features may contain noisy dimensions, and

the text view are generally speaking free of noise.

We define 5 topics over both views. In the content of topic modeling, a topic is defined

as a multinomial distribution over the target feature space. We also define 5 topic propor-

tions, each topic proportion governed 100 documents. In reality, each document may have
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feature dimension vocabulary size training samples testing samples

View 1 3 10 450 50

View 2 1 260 450 50

Table 4.1: Size and Dimension of Clean Synthetic Dataset.

Figure 4.2: Left: 5 Topics Defined Over Visual Features; Right: 5 Topic Proportions De-

fined Over Topics.

different topic proportions, but for verification purpose, we simplify the settings.

In this experiment, we will see that the noise in feature space will affect the performance

of topic modeling which proof the necessary of doing feature selection.

Figure 4.2 shows the ground truth of topics and topic proportions we used to generate

clean synthetic data.

We now show the performance of two-view LDA model on different settings,eg. with

or without feature selection. First we use our proposed model, the recovered topics and

topic proportions are shown in Figure 4.3. It is worth noting that the order of the topics

may change in the recovered versions, but it is easy to find its corresponding one in the

ground truth. We can see that with feature selection embedded, the two-view LDA model
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Figure 4.3: Left: Recovered 5 Topics; Right: Recovered 5 Topic Proportions.

can faithfully recover the topics and topic proportions that used as hyper parameters to

generate the training documents.

Now we move on to evaluate the two-view LDA model without feature selection on

noisy features. We do three experiments on different settings: 1. 3 clean dimensions+3

noise dimensions; 2. Remove one clean dimension; 3. Remove one noise dimension.

The recovered results are shown in Figure 4.4, where the first column is recovered topic

distributions and the second column is recovered topic proportions. The first setting reflects

the general performance of LDA models on hand picked features and the latter two reflects

the performance with some random dimension removed. We can see that among the three

settings, the best performance is generated by removing one noise dimension. We also

show the total KL distance between the ground truth and each of the recovered results in

Figure 4.4 as well as the one with feature selection in Table 4.2. The recovered result

generated by feature selection is closest to the ground truth.

4.6 Conclusion and Future Work

I present a new structure that combines topic model with feature selection component.

The learning process iteratively update feature dimensions and model parameters. We cur-
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(a) (b) (c) with feature selection

Topic distribution 1.6647 1.6216 0.6970 0.2053

Topic proportions 0.6471 0.7888 0.3418 0.2093

Table 4.2: KL Distances Between Different Results and the Ground Truth

rently only verified the idea on synthetic dataset. Future work will include evaluation on

real image dataset with applications like tag prediction. There are several future directions

can be considered: 1.Our current feature selection step requires exhausted search for an

optimal solution, an more efficient way may which can simultaneously update the feature

dimensions and model parameters is worth study; 2.Our current protocol of embedding

feature selection is still an isolated process, a future direction would be to combine it with

topic model would be using an objective function to link the feature selection result into

the leaning process of topic model; 3.Another possible extension is to do feature selection

among N views, N ≥ 3. The computational cost will be an issue for this extension as well

as the complexity of the graph model.
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Figure 4.4: Recovered Results: (a) 3+3 Dimensions; (b) Remove One Clean Dimension;

(c) Remove One Noisy Dimension.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this chapter, I summarize my major contributions in this dissertation and list some pos-

sible future extensions of my work.

5.1 Major Contributions

Visual processing, as an important field of study in the age of Internet and big data, in-

volves many research tasks in Computer Vision. There are many challenges in this research

field and I picked three issues which I feel are very important: handling scale differences in

computer vision tasks like facial component detection and face retrieval; building efficient

classifiers using partially labeled data and noisy data; and employing multi-modal model

and feature selection to improve multi-view data analysis. For each solution, intensive

experiments revealed that the proposed methods provide promising results.

Scale-insensitive Detection and Matching in Face Image Processing Contributions of

this dissertation to scale-insensitive detection and matching in face image processing in-

volves two works. First, I designed a quick and accurate scale-insensitive algorithm to

detect eye centers and bounding box in wild images. As shown in many previous research

works, eyes are among the most important facial recognition features of humans, and ac-

curately locating eye positions can provide reliable foundations for many computer vision

tasks. Secondly, I extended the scale-insensitive Eigen approach into a generalized Eigen

problem setting. The extension makes it possible to accurately approximate the singular

vector decomposition of linear transformed high order matrices in quick fashion. Several

experiments were conducted and the results show the superiority of this proposed method.
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Learning with partially labeled data and noisy data When using user-generated online

media as the input to an analysis algorithm, it is difficult to avoid partially labeled or noisy

data in many computer vision tasks. For this problem, I proposed two distinct algorithms.

First, I proposed a dictionary-learning based approach with pair-wise constraints, which

requires only relative labeling as training input. Furthermore, the constraints are designed

to pick a portion of the image. Experiments on facial image datasets show that the proposed

algorithm is robust to occlusions and noises. Secondly, I proposed a modified random forest

structure that not only preserves the simplicity and efficiency of random forest, but also

makes the original structure robust to class dependent label noise. This is the first work

that links random forest to learning with noisy labels. Experiments on different datasets

and various noise settings demonstrate the success of the proposed noise robust random

forest.

Simultaneous clustering and feature seletion via LDA models Simultaneous cluster-

ing and feature selection via LDA models: LDA topic models have been intensively studied

during the past decade. While much research has shown that LDA models are powerful

in modeling multi-view data, few were concerned about the feature used in learning the

model. I used synthetic datasets to show that noise in the feature space will hurt the perfor-

mance of LDA models. Based on this observation, I bridged the gap by introducing feature

selection into the learning framework. The complete procedure iteratively updates feature

dimensions and model parameters.

5.2 Future work

In this section, I discuss some potential future extension of my research.
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Preliminary exploration of embedded multi-view unsupervised feature selection Our

proposed model involves an exhausted search for optimal feature dimensions. It is intuitive

to explore a more efficient way of research. The embedded multi-view unsupervised fea-

ture selections are based on the following observations. Data in different views are inter-

mittently divergent and similar, with many multimedia data collected from varying sources

described from different views. For example, one image can be described by its different

views such as color information, SIFT descriptor, word descriptions, and more. Intuitively,

one could concatenate all the views into a single view before performing feature selection,

as done in many previous works, or feature selection could take place before combining

the results. Some disadvantages in these strategies include being unable to fully capture

the relation among different views for coherent feature selection.

Assuming that we are given data having v representations (i.e., views). Let X(i) =

[x(i)1,x(i)2, ...,x(i)n] = [x
(i)>
1 ;x

(i)>
2 , ...,x

(i)>
m ]> ∈ Rm×n denotes the i -th view, m is the

feature numbers and n is number of data samples; x(i)j and x
(i)
k denote the j -th data sample

and k -th feature in view X(i), respectively. A cluster indicator is needed to control the

clustering structure, in order to consider all views simultaneously in each iteration,and

matrix V(i) is the cluster indicator in each view. Based on the assumption that different

views shared the same clustering structure, the superscript (i) from V can be dropped. By

doing this all views are forced to use the same cluster indicator and V now acts as the bridge

among views. The superscript (i) to α and β is for balancing different views. Finally the

framework can be summarized as:

arg min
U(i),V

v∑
i=1

||X(i) −U(i)VT ||2F +
v∑
i=1

α(i)||U(i)||2,1

+
v∑
i=1

β(i)Tr(V>L(i)V), s .t V>V = I,V ≥ 0

(5.1)

Since both U and V are sparse while X is not, the reconstruction error may easily

dominate the objective function because of the F−norm is used. Thus, the loss function
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can be replaced by l2,1-norm:

arg min
U(i),V

v∑
i=1

||X(i) −U(i)V>||2,1 +
v∑
i=1

α(i)||U(i)||2,1

+
v∑
i=1

β(i)Tr(VTL(i)V), s .t V>V = I,V ≥ 0

(5.2)

However, it is not easy to solve Eq. (5.2) directly since the objective function is not con-

vex.This issue can be solved by updating U(i) and V(i) alternatively, then it becomes a

convex optimization problem and Alternating Direction Method of Multiplier (ADMM)

can be applied. By introducing two auxiliary variables E(i) = X(i) −U(i)VT and Z = V,

the optimization problem becomes

arg min
U(i),V,E(i),Z

v∑
i=1

||E(i)||2,1 +
v∑
i=1

α(i)||U(i)||2,1 +
v∑
i=1

β(i)Tr(ZTL(i)V)

s .t E(i) = X(i) −U(i)V>,Z = V,V>V = I,Z ≥ 0

(5.3)

After adding Lagrangian multipliers Y1 and Y
(i)
2 , the final formulation is

arg min
U(i),V,E(i),Z

v∑
i=1

||E(i)||2,1 +
v∑
i=1

α(i)||U(i)||2,1

+
v∑
i=1

β(i)Tr(ZTL(i)V) + Tr(Y>1 (Z−V))

+ Tr(Y
(i)>
2 (X(i) −U(i)V> − E(i)))

+
µ

2
(||Z−V||2F + ||X(i) −U(i)V> − E(i)||2F )

s .t VTV = I,Z ≥ 0

(5.4)

One simple way to initialize V and U(i) is to set them to be all 0, but doing this will lead

to slow convergence. Another way is to use k-means to obtain initial clusters as done in

Wang et al. (2015). However, a sub-optimal solution might be possible due to the limitation

of k-means. Considering the success of non-negative matrix factorization (NMF) for multi-

view clustering as shown in Liu et al. (2013), it can be used to group X(i) into k clusters as
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Figure 5.1: Optimize Dictionary Size and Feature Dimensions.

the initialization.This is a embedded unsupervised multi-view feature selection (EUMFS)

formulation for the multi-view feature selection problem. This feature selection approach

is a possible way to further improve the LDA model proposed in Chapter 4.

Finding the optimal dictionary size The term ”Visual word” is not so clear defined

as text word. In general it refers to a small patch on the image (array of pixels) which

can carry any kind of interesting information in any feature space (color changes, texture

changes ...etc.).

Most existing methods do not consider the need of finding optimal visual dictionary

size, but visual words exist in their feature space of continuous values, implying huge num-

ber of words and therefore a huge vocabulary. For effective modeling, it may be beneficial

to reduce the number of visual words. As illustrate in Figure 5.1, optimizing visual dictio-

nary size and visual feature dimension may be a good extension of our work.
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