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ABSTRACT  
   

Generative Adversarial Networks are designed, in theory, to replicate the 

distribution of the data they are trained on. With real-world limitations, such as finite 

network capacity and training set size, they inevitably suffer a yet unavoidable technical 

failure: mode collapse. GAN-generated data is not nearly as diverse as the real-world data 

the network is trained on; this work shows that this effect is especially drastic when the 

training data is highly non-uniform. Specifically, GANs learn to exacerbate the social 

biases which exist in the training set along sensitive axes such as gender and race. In an 

age where many datasets are curated from web and social media data (which are almost 

never balanced), this has dangerous implications for downstream tasks using GAN-

generated synthetic data, such as data augmentation for classification. This thesis presents 

an empirical demonstration of this phenomenon and illustrates its real-world 

ramifications. It starts by showing that when asked to sample images from an illustrative 

dataset of engineering faculty headshots from 47 U.S. universities, unfortunately skewed 

toward white males, a DCGAN’s generator “imagines” faces with light skin colors and 

masculine features. In addition, this work verifies that the generated distribution diverges 

more from the real-world distribution when the training data is non-uniform than when it 

is uniform. This work also shows that a conditional variant of GAN is not immune to 

exacerbating sensitive social biases. Finally, this work contributes a preliminary case 

study on Snapchat’s explosively popular GAN-enabled “My Twin” selfie lens, which 

consistently lightens the skin tone for women of color in an attempt to make faces more 

feminine. The results and discussion of the study are meant to caution machine learning 

practitioners who may unsuspectingly increase the biases in their applications. 
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CHAPTER 1 

INTRODUCTION 

Despite the breakthroughs in deep learning for the field of computer vision, one 

glaring drawback of the technique persists: neural networks require massive amounts of 

data to train. Where data acquisition can prove expensive or infeasible, this places a 

burden on machine learning practitioners who seek to utilize the pattern-recognition 

capabilities of the technology. Those frustrated by their limited, sparse, and unbalanced 

training datasets have turned to an explosively popular method of data augmentation: 

generation of synthetic data. Generative Adversarial Networks (GAN, Goodfellow et al. 

2014) are a deep learning technology designed to create realistic never-before-seen data 

by mimicking the patterns it finds in a training set. While it may seem to the machine 

learning practitioners that they are receiving novel inputs to their downstream classifiers 

(as opposed to what they would receive from traditional data augmentation techniques, 

such as affine transformations (O’Gorman and Kasturi 1995) which seemingly duplicate 

training data)  for little cost, it is not clear that they recognize the inherent dangers of this 

approach caused by inbuilt failures of the original GAN design. 

As is the case with any machine learning technology, GANs are intended to 

capture the patterns in the data they receive, and thus cannot avoid also capturing any 

biases inherent in the data. Even in this (imaginary) best-case scenario where they work 

exactly as designed, this is an area for practitioners to tread lightly. The biases which 

exist in the original data will still be present – in the same capacity – in the generated 

data. In an average-case scenario, the biases in the original data are actually worsened in 

the generated data. A necessary condition of effective data augmentation is to sample 
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data from the same distribution 𝑝!"#"	as the train and test data, so that classifiers trained 

on data augmented with these samples will have an increased ability to generalize to a 

learned underlying real-world distribution. To illustrate, given a limited dataset of cat 

images, the traditional data augmentation technique of performing simple rotations and 

translations on a single image does not make it any less cat-like; an upside-down cat is 

still a cat. GANs on the other hand, while theoretically guaranteeing that their generated 

distribution 𝑝$ converges to 𝑝!"#", do not meet this criterion in practice. One of the most 

pernicious and pervasive failure cases of GAN non-convergence is mode collapse: the 

generated distribution is far less diverse than the training distribution. GANs will create 

realistic images which appear to be sampled from the original data’s underlying 

distribution, but actually are only representative of a small subset of the types of values 

present in the training data.  

This fact about GANs has especially unfortunate implications for modes of data 

which are underrepresented in the augmented data. In this thesis, the work uses a facial 

image domain to investigate social biases, because we as a society are attuned to 

recognizing the underrepresentation of racial and gender minorities. We train an off-the-

shelf DCGAN to “imagine” faces of engineering professors. The training set it sees is 

curated from university faculty directories of 47 of the best engineering schools in the 

country. This dataset is (unfortunately) already biased: the images are skewed toward 

white males. Exacerbation of bias is particularly harmful for minority classes. This work 

highlights how the DCGAN places far less priority on generating faces with a non-white 

skin color and feminine facial features, and thereby creates a new distribution of 
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professors with even less representation of minorities than in the already-skewed real-

world professor distribution. 

That a machine learning model captures and perpetuates bias is already 

regrettable, though unsurprising to anyone who is familiar with machine learning. It must 

be stressed, though, that we aim to show that the GANs susceptible to mode collapse 

amplify bias. For any feature which is skewed in the original data, a GAN is likely to 

make the divergence between the modes along that dimension even more drastic. For 

example, if university professors have a, say, 3:1 ratio of men to women, then a GAN’s 

imagination of university professors could have a worse ratio of 10:1. Augmenting the 

original distribution with the generated distribution will shift a downstream classifier’s 

training distribution to make more extreme the biases of the real world. This is significant 

because real-world datasets are always skewed across crucial features, unless they are 

carefully constructed not to be. Data extracted from the web or from social media is 

bound to carry the same social biases from the real world. 

Since a GAN only sees low-level features such as pixel values, it will not 

distinguish between any high-level features it ends up biasing. This exacerbation will 

occur for any skew in a dataset. For facial images, this could be pose, lighting, facial 

expression, or accessories. We choose to focus only on sensitive features to analyze bias. 

This thesis defines sensitive features to be social characteristics historically discriminated 

against, and which are or ought to be legally protected. As we shall see, though the GAN 

used in the experiment seems to pick up on the bias that professors often wear glasses, 

the thesis does not mark this as a problematic failing of GANs for facial data; there is no 

systemic problem where individuals with perfect vision face any more difficulties in 
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navigating academia than individuals who wear glasses. This definition still leaves a 

large set of important characteristics (which can be reasonably deduced from images) to 

consider, such as age. However, the experiments conducted in this work specifically 

investigate biases along two axes: gender and race. 

Chapter 2 opens the work with a technical description of the theoretical GAN 

objective, summarizes related works detailing why mode collapse occurs in practice, and 

provides an experiment to verify that the effects of the technical failure are more severe 

for GANs trained on highly non-uniform training sets than uniform ones. Chapter 3 

describes the experiments conducted to showcase the implications of this GAN failure for 

social data bias in facial images. Chapter 4 shows that conditional variants of GANs, 

which solve image-to-image translation problems rather than pure image generation, are 

also susceptible to capturing social data bias. It draws attention to Snapchat’s presumably 

GAN-based “My Twin” gender-swap selfie lens by demonstrating that it consistently 

lightens skin tones for women of color. It then presents a hypothetical “Engineering 

Professor” selfie lens to translate images of celebrities to engineers and notes that it 

reliably transforms feminine facial features to male ones and lightens skin tones for 

people of color. Chapter 5 offers a discussion on the ethical implications of exacerbating 

data bias from applying GANs or GAN-based data augmentation for downstream tasks 

by briefly analyzing the discrimination along two sensitive features, generalizing the 

implications of this work to another domain, and concludes the thesis. 
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CHAPTER 2 

THE ADVERSARIAL GAME 

1. The Loss Function 

A GAN simulates a zero-sum game between two players, the discriminator 𝐷 and 

generator G; each player’s reward is the other player’s loss. 𝐷 and G are differentiable 

functions with respect to their inputs and parameters. 𝐷 is a function over an observed 

variable 𝑥, and G is a function over a latent variable 𝑧. Both functions aim to minimize an 

individual cost (𝐽% or 𝐽&) which depends on both players’ parameters (𝜃% and 𝜃&), while 

only being able to control their own. This is not an optimization problem, such as those 

solved by traditional classifiers. The solution to an optimization problem is a minimum, 

while the solution to a game is a Nash equilibrium (Goodfellow 2016).  

𝐷 and G are both represented by neural networks. 𝐷 is a binary classifier which 

aims to discriminate between images which come from a real-world data distribution 

𝑝!"#" and those who do not. G aims to generate images from 𝑝$ that fool 𝐷 into thinking 

they come from 𝑝!"#" (Figure 1). Thus, one can see the generator network’s goal as 

sampling from 𝑝!"#", given input of a random noise vector. It optimizes its weights 

according to a loss function representing how “real” its generated images look. The 

generator never directly compares the image from its generated distribution 𝑝$(𝑥) to an 

image from 𝑝!"#"(𝑥). It instead optimizes its weights to minimize the reward of 𝐷, 

receiving feedback from the discriminator’s cross-entropy through backpropagation. 
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Figure 1: Generative Adversarial Network Architecture for images. Figure reproduced 
from Silva 2018. 
 

A traditional cross-entropy loss is used in the discriminator for all GANs. Here, it 

is binary (Goodfellow et al. 2014):  

𝐽% 	= 	−
1
2𝔼'~)!"#" log3𝐷

(𝑥)4 −
1
2𝔼*~)$ log 51 − 𝐷3𝐺

(𝑧)46	 

Minimizing this cost maximizes the likelihood of D marking inputs x as real, in expectation 

over the space of real images from a dataset 𝑝!"#", and maximizes the unlikelihood of D 

marking an input 𝐺(𝑧) as real, in expectation over the space of random noise (𝑝* ,	the prior 

of 𝑧). The generator’s cost is simply the negative of the discriminator’s, so 𝐽% + 𝐽& = 0.	

𝐽& 	= −𝐽% =		
1
2𝔼'~)!"#" log3𝐷

(𝑥)4 +
1
2𝔼*~)$ log31 − 𝐷

(𝐺(𝑧))4 

Since both costs are associated with each other, the 𝐷’s reward can be used to 

summarize the value of the two-player game.  

𝑉(𝐺, 𝐷) = 𝔼'~)!"#" log3𝐷(𝑥)4 + 𝔼*~)$ log31 − 𝐷(𝐺(𝑧))4 

Training Data

Fake Image

Real

Fake

Random
Noise

Generator
Discriminator
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𝐺(𝑧) and 𝑥~𝑝!"#" are both values in an image space; they just come from different 

distributions. The second term can be equivalently written as 𝔼'~)% log31 − 𝐷(𝑥)4. An 

expectation of a continuous random variable 𝑥 is its integral with respect to its probability 

density function 𝑓(𝑥). 𝔼[𝑥] = 	∫ 𝑥	𝑓(𝑥)	𝑑𝑥	
ℝ , so the value of the game is rewritten: 

𝑉(𝐺, 𝐷) = A𝑝!"#"(𝑥) log3𝐷(𝑥)4
	

'
+ 𝑝$(𝑥) log31 − 𝐷(𝑥)4 𝑑𝑥 

𝑝$(𝑥) refers to the probability that 𝑝$	assigns to some input 𝑥. This is the relative 

likelihood 𝑥 appears in the dataset, compared to other images. 

An equilibrium of the game occurs at 𝑚𝑖𝑛& 	𝑚𝑎𝑥%	𝑉(𝐺, 𝐷), or expanded, 

𝑚𝑖𝑛& 	𝑚𝑎𝑥% 	A 𝑝!"#"(𝑥) log3𝐷(𝑥)4
	

'
+ 𝑝$(𝑥) log31 − 𝐷(𝑥)4 𝑑𝑥 

For 𝐺 and 𝑝$ fixed, the cost function of 𝐷 finds its minimum at 𝐷∗(𝑥) = 	 )!"#"
)!"#".)%

 . The 

equilibrium of this game 𝑉(𝐺∗, 𝐷∗) occurs when  𝑝$	converges to 𝑝!"#", where 𝐷∗ = 0.5 

(Goodfellow et al. 2014). In other words, 𝐺 samples from a distribution identical to 𝑝!"#" 

and produces images that are so realistic, in 𝐷’s perspective, that it cannot tell the 

difference between real and fake images.  

The training procedure to solve this game is to sample examples from the data and 

latent distributions and iteratively update their parameters simultaneously with respect to 

the gradients of their costs. While their costs aren’t computed at the same time and using 

the same parameter values, their updates are considered “simultaneous” because their 

costs are being calculated in the same training iteration and on the same minibatch of  𝑧. 

A generator’s ability to learn depends on the gradients it receives. In practice, it 

works better to adjust the cost function so that 𝐺 is not maximizing 𝐷’s cross-entropy.  In 
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the theoretical minimax game, the term in 𝐽&  corresponding to the discriminator’s 

classification over fake images is	log31 − 𝐷(𝐺(𝑧))4. There is no substantive gradient 

sent to 𝐺 when 𝐷 can reliably distinguish between real and fake images, such as in the 

beginning of training when the generator has not yet learned how to make believable 

examples, because 𝐽&  approaches 0 as 𝐷(𝐺(𝑧)) approaches 0.  Instead of maximizing 𝐽%, 

𝐺 may minimize 𝐷’s cross-entropy over fake images with flipped targets, (where fake 

images are labeled 1) in a non-saturating game (Goodfellow 2016). Then, 

𝐽& =	−log3𝐷(𝐺(𝑧))4, which approaches ∞ as 𝐷(𝐺(𝑧)) approaches 0. This alters the 

game so it is no longer zero-sum, but the steep cost function ensures that a real-world 

generator will make sufficient parameter updates to learn. Intuitively, with the change 𝐺 

is maximizing the log-likelihood of 𝐷 being fooled instead of minimizing the log-

likelihood of 𝐷 being correct. This is no longer a zero-sum game, and it cannot be 

represented with one cost function, but it works well in practice. 

 

2. Mode Collapse 

In practice, there is a common technical failure of GANs, called mode collapse, 

where the diversity of the generator’s output images is far lower than the original training 

data. Complete mode collapse is rare; this is where the generator maps multiple inputs in 

the latent space to the exact same output, producing identical images for differing values 

of 𝑧. Partial mode collapse, on the other hand, is a largely unavoidable problem for most 

GANs: the generator maps different inputs in the latent space to similar outputs, such as 

those which have the same colors/textures or depict the same object (Figure 2). While the 

minimax game does have an optimal solution, the training procedure used to achieve this 
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equilibrium in practice is not guaranteed to converge. For example, in some games, 

instead of Simultaneous Stochastic Gradient Descent (SGD) approaching equilibria, it 

will only orbit them.  

 

 

Figure 2: Complete and partial mode collapse 

 

While the generated distribution converges to the original training distribution in 

the game presented, a training procedure making updates to 𝐷 and 𝐺 might approach a 

solution to an entirely different game. Simultaneous SGD is thought to be one of the 

reasons for the failure case of mode collapse, because it behaves like a minimax game at 

times and like a maximin game others (Goodfellow 2016, Grnarova 2018). 𝐺 has 

extremely different optimal strategies for these two versions. 

𝑚𝑎𝑥!	𝑚𝑖𝑛"𝔼#~%!"#" log+𝐷(𝑥)/ + 𝔼&~%$ log+1 − 𝐷(𝐺(𝑧))/

≠ 	𝑚𝑖𝑛"𝑚𝑎𝑥! log+𝐷(𝑥)/ + 𝔼&~%$ log+1 − 𝐷(𝐺(𝑧))/ 

In the first game, 𝐺 only needs to learn to generate the image that will look most 

realistic to 𝐷. The maximin game over 𝐷 focuses on the discriminator adjusting its 
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strategy to maximize its worst-case value without knowing 𝐺’s strategy (Shah 2017): 𝐷 

must spend its effort learning to detect this fake image, until 𝐺 will learn to produce a 

different single realistic image. A cat-and-mouse game ensues. In other words, the 

generator’s optimal strategy in the first game is complete mode collapse.  

In the second game, 𝐺 chooses its strategy over a worst-case scenario of 𝐷’s 

actions, where 𝐷 is free to learn the ratio of the two distributions’ densities. The minimax 

game over 𝐺 focuses on the generator adjusting its strategy to minimize 𝐷’s best-case 

value without knowing 𝐷’s strategy. Here, the generator’s optimal strategy is to 

reproduce the entire training distribution, so 𝐷 cannot tell the difference between any real 

and fake images. 

There are several GAN architectures which reduce the effects of mode collapse. 

One of these is the Unrolled GAN (Metz et al. 2016), which ensures that the inner 

maximization over 𝐷 is completed first in a minimax game by building a computational 

graph to describe the updates of 𝐷 k steps into the future and optimize 𝐺 over more than 

one copy of the discriminator. Other GAN architectures which perform well in 

converging to the original training distribution are the Wasserstein GAN (Arjovsky, 

Chintala, and Bottou 2017) and VEEGAN (Srivastava et al. 2017). These GAN 

architectures, while impressive in their coverage and diversity, do not create images of 

good quality (Lala et al. 2018), even for the MNIST dataset (LeCun 1998), so they are 

not usually used for practical applications. 
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3. Finite Settings 

 The theoretical guarantee for 𝑝$ to converge to 𝑝!"#" in Goodfellow et al.’s work 

(2014) is the result of assuming an infinite training set size and infinite network capacity 

for both 𝐺 and 𝐷. In practice, a GAN using the original loss function will not converge, 

and mode collapse will occur as a result of insufficient examples and network parameters.  

The problem of attracting sufficient gradients is an important consideration in 

understanding mode collapse. Theoretically, 𝐺 will gradually adjust its mapping of noise 

inputs 𝑧, and as a result adjust 𝑝$, according 𝑝!"#": for the images 𝑥 where 𝐺 assigns too 

much probability mass, 𝑝$ contracts by mapping less inputs 𝑧 from the latent space to 

those images. In the areas with too little probability mass, it maps more inputs 𝑧, so as to 

generate certain colors and textures more often. 𝑝$	will converge to 𝑝!"#" over infinite 

training samples given the assumption that both image distributions are non-zero 

everywhere. Che et al. (2016) explain that in practice with a finite dataset, 𝐺 may not 

receive enough gradients from the discriminator for parts of the image space. This results 

in some modes of 𝑝$	in the image space, called major modes, with disproportionately 

more probability mass than other, minor modes (Figure 3); the intuition here is that 𝐺 can 

only learn to generate the modes for which it receives feedback from the discriminator. If 

𝐺 does not originally visit certain areas of the image space, it will not receive feedback to 

learn to generate images in those areas and continue not to visit them. And so, a cycle 

begins, resulting in 𝐺 barely learning to create the modes it did not originally create 

often.  
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Correcting this failure case is a challenge given the GAN design; the only way for 

𝐺 to map more noise inputs 𝑧 to minor modes in 𝑝$ is to learn from gradients. These 

necessary gradients come from visiting the images 𝐺(𝑧) that correspond to the minor 

modes or to the boundary of minor and major modes. However, by definition, the 

generator creates images in these modes disproportionately less often, and so it receives 

these gradients disproportionately less than other gradients. This occurs regardless of 

training set distribution; mode collapse has proved an aggravating problem even with 

uniform datasets. The generator’s not visiting the values of 𝑧 which map to minor modes 

enough to learn to generate them is one of the reasons for mode collapse.  

 
 

 

Figure 3: 𝐺(𝑧) trained on a uniform, bimodal 𝑝!"#" without and with mode collapse. 
Figure inspired by Goodfellow et al. 2014, Figure 1 
 

The problem of partial mode collapse, where the generator maps different inputs 

to similar outputs, is equivalent to the problem of lack of diversity in the generated 

dataset. Diversity of a probability distribution can be quantified by its support (Arora et 

al. 2017, Arora, Risteski, and Zhang 2017, Arora 2017), or the combination of possible 

values the random variable can take on. For images, this would ideally correspond to 



  13 

individual pixel values, but since complete mode collapse is rare, it can be interpreted as 

corresponding to high-level features. The support, then, is the set of all possible 

combinations of the values that high-level features take on in the generated distribution, 

such as style of attire, hair color, complexion, etc. (Arora et al. 2017).  

To explain how GANs perform in practice with finite network capacity, Arora et 

al. explain that for input images of dimension 𝑑, the number of peaks – or modes – in 

𝑝!"#" can be exponential in the size of 𝑑 (2017). The number of parameters 𝑝 in the 

discriminator will, on the other hand, be much smaller. The authors present a theorem 

that the distance of the generated and training distributions is within 𝜖 when 𝑝$ is a 

uniform distribution over a random sample from 𝑝!"#" with size /)
0&123())

, where C is a 

fairly small constant. In other words, when the GAN is near its equilibrium, 𝑝$ only 

selects a small set of modes from 𝑝!"#" from which to sample to fool 𝐷. Real-world 

discriminators do not prevent 𝑝$ from even having diverse samples, so they certainly do 

not encourage 𝑝$ to converge to 𝑝!"#". Arora (2017) clarifies that this theorem also 

demonstrates that this is not a problem of training set size; adding more training samples 

can only improve the GAN objective by at most 𝜖, and in a subsequent work, Arora, 

Risteski, and Zhang (2017) empirically verify that the support of the generated 

distribution is (only) near-linear in 𝑝. 

 

4. Skewed Datasets 

We hypothesize that mode collapse is prone to be more severe in applications 

using highly skewed datasets, under an assumption that the discriminator will perform 
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differently for different modes. Let the skewed training dataset contain two modes with 

differing frequencies: 𝑚6	is the mode which occurs less and 𝑚7 is the one which occurs 

more. Let 𝐺(𝑧6) and 𝐺(𝑧7) map to 𝑚6 and 𝑚7 respectively. On a finite dataset, 𝐷 will be 

worse at distinguishing between real and fake images that correspond to 𝑚6 than 𝑚7 

(because it sees more examples of 𝑚7), so it will be worse at understanding that 𝐺(𝑧6) is 

fake than 𝐺(𝑧7). In other words, 𝐷 assigns 𝐺(𝑧6) a higher likelihood of being real, so 

𝐷3𝐺(𝑧6)4 > 𝐷(𝐺(𝑧7)). For the non-saturating game used in practice, this results in 

𝐺(𝑧6) receiving smaller gradients than 𝐺(𝑧7), since 𝐽& =	−log3𝐷(𝐺(𝑧))4 gets flatter 

when 𝐷(𝐺(𝑧)) approaches 1. 

This thesis highlights that the modes that GANs collapse to align with the 

majority modes in the original data. This is an interesting claim because it is well-studied 

that the mode collapse in GANs depends on the prior distribution 𝑝* of the latent input to 

the generator, which has nothing to do with the distribution 𝑝!"#"	of the training set. Few 

related works studying mode collapse and the bias and generalization of GANs do not 

make a distinction between uniform and non-uniform datasets, presumably because mode 

collapse is a pernicious problem for all training datasets, not just skewed ones. The only 

work we know of is Mishra et al.’s experiments to showcase that the divergence between 

𝑝$ and 𝑝!"#" does indeed get worse as the training data is more skewed (2018): they train 

various GAN variants on a dataset with two classes from the MNIST dataset at a 50:50, 

70:30, and 90:10 distribution. Using three clustering metrics and the Fréchet 

Classification Distance to analyze how close the distributions are, they report a trend that 

the GANs’ ability to match the training distribution decreases as the training set’s skew 

increases. 
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Our work verifies this result with one GAN variant, but it uses a different dataset 

and metric to evaluate the divergence between distributions. Mishra et al.’s metrics are 

four scalar values which do not provide much insight on how the distributions differ; their 

work verifies that the effects of mode collapse are more drastic with skewed datasets but 

does not show which modes the generator collapses to. To qualify the difference in GAN 

performance across a uniform and skewed dataset, we follow the framework introduced 

by Zhao et al. (2018) to project the support of the original and generated distributions to a 

low-dimensional feature space (where, in this case, the number of features is just two: 

size and color).  

 

 

Figure 4: A random sample of a DCGAN-generated distribution trained on the two-object 
CLEVR dataset 

 

One of their experiments uses a two-object CLEVR image dataset. CLEVR 

(Johnson et al. 2017) is a synthetic dataset of images of objects for visual reasoning, 

designed to artificially control biases. These objects may vary in size, color, shape, and 

material. Johnson et al. provide code to generate new CLEVR images using Blender, a 

3D computer graphics programming tool, which we utilize for our experiment. The two-
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object CLEVR image dataset controls two properties of two objects: their shape and 

color. The characterization of the distributions and measurement of their divergence, 

then, are not done in the image space, but are only done for two high-level features: 

object shape and color (Figure 8). If two objects are each allowed three colors and three 

shapes to take their form, the projections to the random variable in this feature space have 

just (3 × 3)7 possible values; a support size of 81 can be easily visualized. 

 

 

Figure 5: Uniform training distribution and total of three DCGAN-generated distributions 
 

We use a Deep Convolutional Generative Adversarial Network (DCGAN, 

Radford, Metz, and Chintala 2015), because it is a stable architecture whose loss function 

is the same as the one presented in this chapter. We train three initializations of a 

DCGAN on a dataset of 80,028 images, uniformly distributed along combinations of 

shape and color. Each of the two objects can be red, blue, or green, and have the shape of 

a cone, cylinder, or sphere. A random sample of 1000 images from each initialization is 

manually assigned to one of the 81 classes (Figure 9). The DCGAN shows signs of 

having mode collapsed, even in this projected state; the total number of images created 

containing two cylinders over the three generated distributions is much higher than the 
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total number of images containing two spheres. However, though the most-generated 

class appears in the generated dataset almost eight times more often than the least-

generated class, every class enjoys at least 1% of the probability mass; the degree of 

mode missing is slight. 

 

 

Figure 6: Skewed training distribution and total of three DCGAN-generated distributions 
 

To characterize how DCGAN performance varies with the training distribution, 

we also create a skewed dataset of two-object CLEVR images. This dataset of 133650 

images is highly non-uniform, with some classes occurring almost nine times more often 

than some others. 1000 images are randomly sampled, again, from each of three 

initializations of DCGAN trained on the skewed dataset and classified manually. The 

divergence between 𝑝!"#" and 𝑝$ is much more pronounced for this skewed training 

distribution than for the uniform one (Figure 10). The phenomenon of missing modes is 

more prominent than that of actually collapsing to modes; several minority classes 

patently occur disproportionately less than in the original distribution. It should be noted 

that the third initialization of DCGAN undergoes an extreme case of mode collapse; 45 of 
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the 81 modes are never visited even once, and the generator assigns over a fifth of the 

probability mass to one single class.  

This experiment supports Mishra et. al’s result that it is much harder for 𝑝$ to 

converge to 𝑝!"#" when 𝑝!"#" is non-uniform than when it is uniform, or, in other words, 

that mode collapse is worse when the modes are not balanced. We find that it is also easy 

to predict the direction of the skew, since the modes that DCGAN misses in 

𝑝$	correspond to the minor modes in the original training distribution 𝑝!"#". 

In summary, mode collapse is a pernicious failure of GANs arising from the real-

world constraints of the network and optimization algorithm design. It inhibits models 

from converging to a theoretically guaranteed equilibrium where the generator wins and 

successfully fools the discriminator with a realistic distribution. While a large area of 

research, it is still not such a well-understood phenomenon that it may be overcome by 

models that can scale to generating high-quality images. To summarize, there are four 

major causes of mode collapse in practice for skewed datasets. The first is that 

simultaneous gradient descent does not necessarily solve the correct minimax game and 

can make progress toward the generator learning to completely mode collapse. The 

second is that the prior of the latent space does not send enough inputs 𝑧 to 𝐺 which 

would correspond to minor modes in 𝑝$. The third is that the diversity of 𝑝$ is limited by 

the capacity 𝐷. These first three are universal for all finite training sets, regardless of 

their distribution. The final cause that this work suggests is that 𝐷 is less confident about 

generated images which correspond to small modes 	𝑚6 in the original dataset 𝑝!"#", so it 

assigns a higher likelihood and sends smaller gradients for those generated outputs; this 

last cause only applies to skewed training datasets. 
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CHAPTER 3 

IMAGINING AN ENGINEER 

The purpose of this thesis is to empirically demonstrate that mode-collapsing 

GANs exacerbate social biases when trained on skewed datasets. The illustrative task of 

this work is to contrast the already-skewed real-world dataset of U.S. universities’ 

engineering faculty faces with the generated distribution of faces the GAN imagines 

when asked to create engineer professors to highlight the differences in the proportions of 

minority classes in the two datasets, specifically surrounding feminine facial features and 

non-white skin tones. The hypothesis is that when trained on the engineering faculty 

images, the GAN will skew its generated facial images toward white males. This skew 

will not capture the same distribution of biases as the original data, which would actually 

be a best-case scenario, but will rather exacerbate them further. The proportion of white 

males will be higher in 𝑝$ than in 𝑝!"#". 

We again use a Deep Convolutional GAN, which incorporates design choices for 

the architecture to stabilize training. As expected, the discriminator and generator consist 

of deep neural networks which use convolutional layers. Notably, this architecture omits 

pooling layers (Springenberg et al. 2014) and applies batch normalization (Ioffe and 

Szegedy 2015) to every layer in the networks except the output of the generator and the 

input of the discriminator. The justification for using this GAN variant is that it is popular 

among machine learning practitioners; it is readily available as an off-the-shelf model. 

Since it uses the same objective function as the original GAN, it is well-known that it is 

susceptible to mode collapse, which we claim is the primary cause of social data bias 

exacerbation. Finally, it is the state-of-the-art model for facial images in the 
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unconditional setting, which solves pure generation problems. In unconditional GAN 

variants, the generator receives random noise as input, as opposed to conditional variants 

where the generator receives an image as input, which solve image-to-image translation 

problems. 

 

1. Experiments 

The design of the experiments presented in this section revolve around the 

intentional use of a dataset known to have social biases: U.S. university engineering 

faculty headshots. The creation of a dataset ready to be used by a neural network involves 

three steps: collection, cleaning, and preprocessing. For data collection, we scrape images 

from the faculty directories of all engineering departments of 47 universities on the 2020 

U.S. News “Best Engineering Schools” list. This process is automated by using a testing 

browser to iterate through a paginated directory and download all images on the page. 

Care is taken to filter the directories to exclude administrative staff and other non-faculty 

positions to ensure the integrity of the engineering professor dataset. To clean the dataset, 

each image was input to the Python face-recognition library, which uses an unsupervised 

object detection model, the Histogram of Oriented Gradients (Dalal and Triggs 2005), to 

act as an unsupervised face detector. This method divides the image into evenly spaced 

grids and computes the average gradients of each group by convolving the pixel values 

over a derivative mask. It normalizes the gradients for each group and compares the 

average to a known face pattern; if it finds a match, a face is detected. All images for 

which no face was detected are removed from the dataset. This automates the process of 

removing noisy images, such as ghost images or logos when a faculty directory lists a 
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professor but has no image record, or images that are of poor quality. In a final step, the 

remaining images are manually examined, and noisy images with faces, such as those 

with multiple people, are deleted. Most images are faculty headshots with similar lighting 

and backgrounds. We crop the images to the face to prevent the discriminator from 

learning to recognize patterns in the dataset semantically unrelated to the face itself. This 

task is again accomplished using the face-recognition library, which returns the 

coordinates of the pixel groups bounding the gradients which matched to the known face 

patterns. We crop the images and resize them all to a consistent 64 × 64 pixels so they 

can be input into a neural network. This resizing is a decrease in resolution for most of 

the images. The final dataset consists of 17,245 facial images. 

 

 

Figure 7: DCGAN-generated samples after training for 50 epochs on the engineering 
faculty dataset on three random initializations 

 

We train a DCGAN for 50 epochs on three random initializations to generate 

three separate synthetic datasets (Figure 4). It is immediately apparent that the generator 

does not learn to create diverse skin colors. To evaluate the potential social biases that the 

generator learns to fool the discriminator, we annotate a random sample of images from 
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each of the four distributions: the original faculty dataset 𝑝!"#" and each of the three 

generated distributions 𝑝$', 𝑝$&, and 𝑝$(. We are interested in the proportion of feminine 

and non-white faces in the original dataset, and the average proportion of feminine and 

non-white faces of the three generated datasets. We do this in two ways: we ask humans 

through Amazon Mechanical Turk to each annotate gender and race on 50 images, and 

we use a commercially available classifier to annotate gender.  

We recruit 132 master Turkers for a seven-minute study. Workers receive a 

master qualification when they earn a high reputation by completing multiple tasks. All 

Turkers in our study are paid $1.20 for their work. Each Turker labels a set of images 

uniformly sampled from one of the four distributions (with no mix-and-match). The 

annotation process is designed as a between-subject study: each Turker only sees images 

from one distribution. The Turker must select the most appropriate option from two sets 

of multiple-choice answers. One question is used to qualitatively assess gender 

appearance: “face has mostly masculine features,” “face has mostly feminine features,” 

and “neither of the above is true.” The second question is used to qualitatively assess 

race: “skin color is mostly white,” “skin color is mostly non-white,” and “can’t tell.” 

Each Human Intelligence Task (HIT) took an average of five minutes to complete, 

though a few of the workers did utilize their full seven minutes. To ensure the quality of 

the annotation, each Mechanical Turk worker receives 52 images to label: 50 are from 

one of the distributions, and two are images of celebrities – Scarlett Johansson and Idris 

Elba – for which the answers to both questions are trivial (mostly feminine and white for 

Johansson and mostly masculine and mostly non-white for Elba). The Turkers’ answers 

to these two questions allowed us to prune meaningless data which may have risen from 
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the use of bots randomly selecting answers or humans hurriedly completing the task 

without paying attention. We pruned 18 such workers’ answers, leaving 114 valid 

completed HITs. This resulted in 25 valid sets of annotations for images sampled from 

𝑝!"#", 30 valid sets of annotations for images sampled from 𝑝$' and 𝑝$(, and 29 valid 

sets of annotations for images sampled from 𝑝$&.  

 

2. Results 

The results of this experiment support our hypothesis (Figure 5). Using majority 

voting for classification, the percentage of images classified as having feminine features 

decreased from 20% in the original distribution to just 6.67% on average across the three 

generated distributions. The hypothesis was also supported along the axis of race: the 

percentage of images classified by the majority of Turkers as having a non-white skin 

color decreased from 24% in the original distribution to 1.33% on average across the 

three generated distributions. This result shows a drastic divergence, suggesting that it is 

likely that for one or two GAN initializations, this mode may have been missed entirely! 

We verify that both results are statistically significant by using a one-tailed two-

proportion z-test with the following null and alternate hypotheses: 𝐻8:	�̂� = 𝑝8 and 

𝐻":	�̂� < 𝑝8. The p-values of this test are 0.0094 and 8.7 × 109: for the divergences 

across the dimensions of gender and race, respectively, showing statistical significance. 
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Figure 8: Distributions of classifications for gender and race from human annotations on 
a random sample from 𝑝!"#" and the average human annotations of random samples from 
𝑝$', 𝑝$&, and 𝑝$(, using majority voting.  
 

We measure the confidence of the annotations by plotting how the dataset would 

be classified if we were to use a different thresholding technique than majority voting 

(Figure 6). For the original images, there is a consensus of which images depict 

masculine and feminine features and a consensus of which images depict white and non-

white skin tones. For the generated images, the reaction of the crowd is different, 

presumably because DCGAN does not create photorealistic faces. 

 

 

Figure 9: Classifications for gender and race on thresholding values 
 

One interesting observation is that for every image in the generated dataset, there 

are at least three Turkers who label it as having mostly masculine features and at least 

seven Turkers who label it as having a mostly white skin color. The classification of 



  25 

images to having masculine or white features does not decrease considerably as the 

number of required votes increases, suggesting that the crowd is confident about the 

images they mark as masculine or white. However, the opposite is true for the 

classification of images to having feminine or non-white facial features. The proportion 

of images that the crowd classifies as having a minority feature decreases as the number 

of required votes increases. There are two valid but conflicting interpretations to this 

result. The first is that the generator is better at generating convincing masculine and 

white features than it is at generating convincing feminine and non-white features. This 

interpretation supports the idea that the generator has collapsed to the white and male 

modes; these images may be better quality because the generator received more gradients 

from these modes and had the opportunity to learn them well. The second is that humans, 

when asked to classify gender and race, may have a bias to default to male and female for 

ambiguous images. This second interpretation may be explained away by the fact that 

none of the images are labeled to the third, ambiguous category with confidence; the 

options corresponding to neither masculine or feminine for gender, and “Can’t tell” for 

race are not ever selected for any image by more than four Turkers, meaning that even 

when the workers become less decisive about whether images are female, they are not 

more decisive that the image is ambiguous.  

The human annotation results were supplemented by using a commercially 

available classifier to annotate the images by gender. We use Microsoft Azure Cognitive 

Services’ Face API because it had the best overall accuracy in Gender Shades 

(Buolamwini and Gebru 2018), a study conducted to test three commercial classifiers’ 

performance across different groups from six countries in Europe and Africa. As this is 
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an automated annotation process, we were able to drastically increase the number of 

images being labeled. We increased our sample size of each of the four datasets 𝑝!"#", 

𝑝$', 𝑝$&, and 𝑝$( from 50 to 1000 and performed the analysis over five initializations of 

the DCGAN instead of three.  

 

 

Figure 10: Distributions of classifications for gender from Microsoft Azure Cognitive 
Services Face API on a random sample from 𝑝!"#" and the average of random samples of 
five generated distributions. 
 

The percentage of feminine features decreases from 16.5% in the original dataset 

to 11.38% on average over the five generated datasets (Figure 7). The results of this 

experiment do not show as harsh of a divergence between the original and average 

generated distributions as the human labeling did, but we still reject the null hypothesis 

that the proportions are the same, with a p-value of 6.4	 ×	109:. 

 

The results of this experiment show that the GAN collapses along the latent 

dimensions of gender and race, and it learns to bias the synthetic faces toward masculine 

features and light skin tones when asked to “imagine” engineering faculty. 
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CHAPTER 4 

PHOTO-EDITING LENSES: A CASE STUDY 

1. Snapchat “My Twin” Lens 

Thus far, this thesis has focused on just one class of GANs: the state-of-the-art 

unconditional variant, where the generator receives random noise from a latent variable 

as input. DCGAN is designed to use the same objective as the original GAN and solve 

the same problems. It is only the second-most popular GAN variant. Conditional variants 

of GANs do not solve the pure image generation problem, but rather an image-to-image 

translation problem to transform images from one domain to belong to another. The two 

domains have a close correspondence; a transformation can be found by changing the 

geometries minimally, if at all. Some examples of successful applications for image-to-

image translation are conversion of horses to zebras, street photographs to their semantic 

segmentation, aerial photos to Google maps, and summer landscapes to winter 

landscapes. Conditional variants of GANs can also be used as an augmentation technique 

to abet the sparse data problem. In the domain of medical imagery, one could use these 

GANs to convert common images of healthy patients to rare images unhealthy patients. 

Conditional GAN variants can also be used with facial image data, such as to swap one’s 

apparent gender or to edit a visage to have certain desirable attributes.  

The most popular off-the-shelf GAN variant used by machine learning 

practitioners today (as measured by the number of stars on the most-used GitHub 

repositories for the model, carpedm20 2019 and junyanz 2020) is CycleGAN (Zhu et al. 

2017). This conditional variant learns mappings between two unpaired datasets, where 

images do not exactly correspond between sets. CycleGAN minimizes several losses for 
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two domains 𝑋 and 𝑌 and two functions 𝐺: 𝑋 → 𝑌 and 𝐹: 𝑌 → 𝑋. The first two are GAN 

losses, which are traditional cross-entropy losses from the discriminator for fake images 

𝐺(𝑥) and real images 𝑦, and fake images 𝐹(𝑦) and real images 𝑥. The second is a cycle-

consistency loss to ensure that a mapping from one domain to another is revertible; it 

encourages that 𝐺3𝐹(𝑦)4 ≈ 𝑦 and 𝐹3𝐺(𝑥)4 ≈ 𝑥. Finally, to stabilize the training, a third 

is an identity loss. When the GAN is asked to map an image to the domain it already 

comes from, the GAN should not change the image, so 𝐺(𝑦) ≈ 𝑦 and 𝐹(𝑥) ≈ 𝑥. 

One may expect that conditional GAN variants do not suffer the failures of mode 

collapse. To paint a picture, if a generator from a conditional GAN variant is trained on 

facial data and it sees some proportion of females to males in its training set, it is not 

obvious to expect that the gender proportions will change in the generated set. To do this, 

a GAN would have to actively work to change the gender appearance of a face; it seems 

it would be easier just to leave the masculine and feminine features alone. However, it is 

known that even conditional GAN variants whose generators have a chance to see real 

images from the training set are not immune to mode collapse (Ma et al. 2018). While 

this thesis does not perform a comprehensive evaluation of how CycleGAN-generated 

distributions differ along the axes of gender and race from their original training 

distributions as it did for DCGAN, it details a preliminary and speculative study on its 

applications and offers examples of potential mode collapse. The findings in the 

remainder of this work are intended to open discussion and further avenues for research. 

Core to the brand of Snapchat is its computer-vision-assisted facial filters, or 

“selfie lenses” (Snapchat Support). These augmented reality lenses allow users to snap 

pictures of their faces with additional features warped onto their image, such as crowns or 
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dog ears. In 2019, Snapchat released two lenses called “My Twin,” colloquially known as 

the gender-swap filters. These lenses aim to transform a user’s face into a quintessential 

male or female. The male filter noticeably squares the jawline and adds facial hair, while 

the female filter seems to make the chin pointed, slim the nose, and soften the facial 

features. Both versions of the filter are available to all users on the app. CycleGAN was 

known, before the release of this selfie lens, to be able to perform a “gender-swap,” or 

translate images of women to images of men and vice-versa. A CycleGAN used by this 

lens could have been trained to minimize cycle-consistency and identity losses for 

transformations between two domains: male faces and female faces. While Snapchat has 

not released its algorithm, dataset, or architecture specifications for these lenses, there 

seems to be common consensus in the machine learning community that this lens mostly 

likely takes advantage of the capabilities of conditional GANs (Yanjia 2019, Liang 2019, 

aDutchofMuch 2019). Of course, the lens may use traditional landmarking technologies 

in tandem, such as to enhance the jawline and add facial hair to images. 

We present how this presumably conditional-GAN-based technology reacts to the 

sensitive features this work discusses. When a GAN for this lens is trained on a biased 

dataset of faces, it is susceptible to collapsing multiple selfie inputs to similar colors and 

textures. It seems that a pattern in the female “My Twin” selfie lens is that, when used on 

women of color, it lightens their skin tones. This is not the case for white women using 

the same filter. To quantify this perceived color change, we use the shades on L’Oréal 

Research’s skin color chart (“Expert in Skin and Hair Types,” Figure 11).  
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Figure 11: L’Oréal Research “A New Geography of Skin Color” chart 
 

We collect before-lens and after-lens selfies of several women and manually 

discard noisy pairs of images where the position of the face changes, as this can affect 

lighting in the image. Machine analysis is conducted on the same section of each face, 

which is a manually-cropped region spanning both cheeks and falling between the eyes 

and mouth. An automated process finds the average pixel value of the region on this face 

and matches it to its closest shade in the skin color chart. Lightness in the skin color 

increases as one moves right in the chart, and warmth in the skin color increases as one 

moves down. This experiment discards the information about the skin tone (warmth) and 

is only interested in skin color (lightness). The selfie lens consistently lightens the skin 

color by one shade on the chart for women of color, while it acts arbitrarily for white 

women. Of the six women of color whose images we study, five faces are lightened one 

shade, and one remains unchanged. For the six white women whose images we study, 

two faces are lightened one shade, two remain unchanged, and two faces are darkened 

one shade.  

 



  31 

 

Figure 12: Transformations using the female “My Twin” selfie lens on 12 women, six 
white and six non-white, with the regions used for machine analysis highlighted 

 

It is possible that lighting changes cause the arbitrary performance for white 

women, but this does not explain why the selfie lens has a consistent reaction to one class 

of inputs and an arbitrary reaction to another. A potential cause of lightening skin tones in 

women of color is that a GAN used by the selfie lens collapses all inputs in a region of 

the image space to output lighter colors. Indeed, if this technology uses a conditional 

GAN variant, mode collapse would be an unsurprising explanation for this phenomenon 

of lightening skin colors for a minority race, since we have already seen in the previous 

chapter that a DCGAN biased its outputs along the dimension of race by almost entirely 

missing non-white faces.  

It must be noted that though the selfie lens was likely intended to be used across 

domains for gender-swap, we still have an expected performance for GANs used to 

translate images of women to images of women. Conditional variants of GANs typically 

are trained to preserve identity when asked to map images to their own domain with a 

regularizing term built into their loss functions. CycleGAN’s identity loss has already 

been described. In fact, it was inspired by the identity loss from the Domain Transfer 

Network (Taigman, Polyak, and Wolf 2016), a GAN-based architecture which places a 

heavy weight on minimizing the distance between 𝐺(𝑥) and 𝑥 for all images in the 

dataset for a given distance metric. This suggests that a female selfie lens using a GAN 
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which does not mode collapse should, at most, minimally change the appearance of 

women’s faces. 

There is not enough data to analyze distributions and diversity to conclude 

whether this would constitute exacerbation of social biases or simple perpetuation, but 

this observation does open an intriguing research problem. This can be studied further if 

Snap, Inc. confirms that it is using a GAN or provides insight into its data-collection 

process; white female users make up the single largest demographic of Snapchat’s base 

(Newberry 2019). Snapchat’s having trained a model on its own data skewed toward 

white females, for example, would explain mode collapse to light-skinned outputs from 

its non-white users. This work does not intend to be a final word on the matter, and 

concedes that much more research will need to be done in the area of mode collapse in 

skewed dataset for conditional GANs to make any convincing claims, but this case study 

opens up thought-provoking questions about social data bias perpetuation in social media 

applications.  

 

2. Engineering Professor Lens 

Stirred by the idea that Snapchat selfie lenses are using GAN-based image-to-

image translation technology, we train our own “selfie lens” to convert regular faces to 

their engineering professor counterparts. Our intuition might have told us that conditional 

variants of GANs are less susceptible to mode collapse, because to underrepresent minor 

modes in the training set, the GAN would have to perform an extra step to convert 

images to belong to the majority mode of 𝑝!"#". But since we suspect from the previous 

case study that CycleGAN, given a skewed output domain, does change the inputs in the 
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direction of sensitive features to transform their gender and race, we hypothesize that a 

CycleGAN trained to translate to our engineering faculty dataset will lighten skin tones 

for people of color and make women’s faces more masculine. Like the DCGAN, a 

CycleGAN will bias its outputs to make them lighter and more masculine. 

 

 

Figure 13: Random samples of the GAN transformations on the test sets, divided into 
four categories: non-white male, white male, white female, and non-white female. 

 

 One of our domains is the engineering faculty dataset, and the other is the CelebA 

dataset (Liu et al. 2015), which consists of over 200,000 annotated images of celebrities. 

We balance our datasets, creating two training sets of 16,500 engineering professors and 

16,500 celebrities. We also hold out two test sets with four categories of 100 images 

each: nonwhite, white, male, and female, where there may be overlap among the 

categories. We run the off-the-shelf CycleGAN for 200 epochs with a batch size of 1, as 

is done in the original paper. We test the model to translate celebrities from the four 

categories to engineering professors.  

Even when these transformations are randomly sampled, it is evident that the 

GAN learns to lighten skin tones for people of color, make women’s faces more 

masculine, and largely leave white male faces untouched in comparison (Figure 13). We 

also present illustrative sets of transformations to emphasize the transformations made by 
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the CycleGAN on female (Figure 14) and non-white (Figure 15) individuals. In addition 

to making changes along gender and race, the GAN also learns to add glasses, create 

smiling facial expressions, and dramatically increase the apparent age.  

 

 

Figure 14: Illustrative test set of transformations on female celebrity faces 
 

 

Figure 15: Illustrative test set of transformations on non-white celebrity faces 
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As discussed in the introduction, we can expect a GAN to perpetuate and 

exacerbate biases along all dimensions where there exists a skew in the training set; some 

axes’ skews have innocuous explanations: the faculty directories comprise mostly 

headshots, where individuals usually smile wide, and members of academia are thought 

to be more likely to develop short-sightedness than those not in academia due to their 

heightened amount of close-up work and use of screens. This work highlights that the 

CycleGAN picks up these biases when it learns its mapping from celebrities to professors 

but reiterates that this kind of bias is not the focus of the work; machine learning systems 

are designed to find correlations in its attempt to learn patterns. This correlation-seeking 

is only problematic in social data when models perpetuate and exacerbate biases for 

minority groups that have faced systemic disadvantage or discrimination. 

Again, this thesis has not completed exhaustive studies for CycleGAN to analyze 

and measure the diversity of its generated distributions and the original distributions from 

their training sets, nor has it conducted research to deduce whether the phenomena 

mentioned are result of exacerbation of bias or mere perpetuation. Both tasks would 

require annotating sample of the original real-world data and the generated data, either 

using humans or a commercial classifier. Rather, this work simply makes a reasonable 

case that conditional variants of GAN like CycleGAN suffer from all the previously 

mentioned implications of mode collapse – even though they are seemingly constrained 

by their inputs – because they have the ability to change the class of their input. The 

results of these three studies support the claim that most GANs (not just those who solve 

the pure generation problem) amplify biases along the direction of a skew in the training 

dataset. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Machine learning practitioners and software engineers should tread lightly when 

using GANs for data augmentation and data transformation. While GANs are an elegant 

solution to the problem of supervised generation and domain translation, they have their 

own drawbacks which must be carefully considered when designing experiments and 

applications. Their non-convergence cases are a subtle failure mode that can do more 

harm to the data than good. Most GANs amplify bias in skewed datasets because of this 

failure mode, and all datasets are skewed unless meticulously designed not to be. This 

work highlights how the technology exacerbates social biases, so social media 

applications ought to use GANs responsibly. 

 Colorism has pervaded across the corners of the Earth through the centuries 

(Hunter 2007). For Asian communities, its beginnings are found in early hierarchical 

structures: the wealthy “leisure” class who were fortunate enough to not need to work in 

the sun tended to have lighter skin. For Latin communities, its beginnings are found in 

European imperialism: in Latin America, creoles, mestizos, and mulattoes all had higher 

places in the social order. For African-American communities, its beginnings are found 

on U.S. plantations before the Civil War: lighter-skinned slaves were treated better than 

darker-skinned ones by being given jobs inside the house instead of working on the 

fields. When light skin is seen as being more “beautiful” today, it carries the weight of 

those historical, racial associations of light skin with power. 

Since GANs have a technical failure which forces them to amplify these harmful 

biases along sensitive features, they should be used with the utmost care, if at all, in 
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social applications. Snapchat is a social media application whose largest demographic is 

young users aged 13-24; they comprise 90% of its user base. Over 250 million users are 

active on the app daily (“Snapchat by the Numbers”). Snapchat caters mostly to 

impressionable users and holds the reins in controlling youth perceptions. The release of 

a GAN-assisted selfie lens adds fuel to the already-present narrative that Snapchat’s 

beautification lenses lighten skin tones. The messaging that girls and young women 

receive when using this app, even subconsciously, is that beauty and femininity depend 

on skin color and superiority. 

Women have seen uncountably many successes in legal battles for civil rights in 

the past century but still find themselves running an obstacle course of inequality in the 

workplace. The most well-known disparity is the wage gap: white women receive 82% of 

what white men do, and Hispanic women receive a meager 58% (Akhtar 2019). Women 

also undergo social motherhood penalties when men receive fatherhood bonuses; mothers 

face an additional pay gap to childless women because they are considered less 

committed to work when they have children, whereas fathers receive more pay compared 

to other childless men (Budig 2014). Women find they are valued less and are often 

blocked by their supervisors (Marcus 2016). Women face sexual harassment. These 

effects are especially destructive for women of color. 

When a GAN uses social data characterizing a profession skewed against women, 

such as used by our engineer-imagining DCGAN, a technical failure will force it to 

amplify the same gender biases that already create a lack of opportunities for women. 

Applications using techniques which further bias along the dimension of gender are 

underrepresenting women even further, working to erase their presence in fields that they 
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have struggled to climb their way into. The CycleGAN trained to transform faces to look 

like engineers learned a foolproof method to do so for women: convert them into men. 

Mode collapse is a technical failure of GANs to force it to diverge from the real world, 

but since it occurs along the same direction as the original data, it also sheds light to the 

social biases that exist in the real world. Women often find that their gender is the largest 

obstacle to their success. 

As a final remark, this work highlights social biases as a means to understanding a 

technical failure of GANs, but it must be reiterated that GANs susceptible to mode 

collapse will amplify any bias in the original data. This work uses a facial dataset of 

engineering faculty to showcase this result because humans are better able to understand 

and visualize social biases than those which may exist in, say, chest x-rays. This result 

generalizes to all domains, and care must be taken that data augmentation does not 

further underrepresent minorities regardless of the application, especially in life-or-death 

scenarios; one area where this technique has been awarded accolades is in the domain of 

medical imaging.  

Medical imaging is, of course, data collected from real humans, so any medical 

dataset can contain all the same social biases as a facial dataset, subject to the same bias 

exacerbation and mode missing from GANs. Machine learning practitioners use GAN-

based data augmentation as a technique to “balance” their datasets between healthy and 

unhealthy examples. In their study, Salehinejad et al. use a DCGAN-based data 

augmentation technique to train a classifier to detect pathology from chest x-rays (2018). 

Frid-Adar et al. also use a DCGAN to generate synthetic medical images of liver lesions 

(2018). Though these machine learning practitioners are hopeful that the use of GAN-
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generated synthetic images will balance the biases in their data, they are sure to amplify 

latent biases along dimensions among the classes that they might not even be aware of. 

Unfortunately, since the medical image domain is so esoteric and inaccessible, it may be 

difficult to identify and analyze the biases created, perpetuated, and exacerbated by 

GANs; identifying the features along which medical biases can exist is not trivial. We 

urge machine learning practitioners to carefully consider the implications of most GANs’ 

susceptibility to mode collapse, and even urge them not to use GANs in those 

applications where creating additional bias would pose a direct disadvantage for any 

minorities in the dataset, placing preference on data-augmentation techniques known to 

better align to the original distribution. 
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APPENDIX A 

GLOSSARY OF TERMS 
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conditional variant – GAN model which receives deterministic input. For images, a  
conditional GAN solves an image-to-image translation problem of adapting styles 
to convert images of one domain to belong to another similar one, such as night to 
day, photograph to painting, or zebra to horse 

 
high-level feature – a feature understood by humans but not directly given as input to a  

machine learning model 
 
mode – a local maximum in a probability distribution. For images, a mode is a category  

of colors or textures which occur in the distribution 
 
mode collapse/missing – a non-convergence case of GANs where the generator fails to  

capture some modes which were present in the original training distribution; 
equivalently, a lack of diversity in the generated distribution 

 
minor mode – a mode that is assigned less probability mass in a distribution than another;  

when sampled uniformly from a distribution, values of a random variable which 
occur less frequently than other 

 
sensitive feature – social biases with a history of discrimination or inequity, especially  

toward a minority class 
 
skewed dataset – a dataset with minor and major modes; datasets are skewed along some  

dimensions of high-level features unless carefully designed not to be 
 
support – the set of unique values a random variable takes with non-zero probability. For  

facial images, this can be understood as the combinations of position, lighting,  
expression, gender, race, age, accessories, hair color, attire, etc. present in a  
distribution; a metric for diversity which does not account for the probabilities  
assigned to values of a random variable 
 

unconditional variant – GAN model which receives random noise as input. For images,  
an unconditional GAN solves a pure image-generation model; images that a 
generator outputs are not constrained to comprise any particular colors or 
geometries 

  
 
 
 


