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ABSTRACT

Cancer is a disease involving abnormal growth of cells. Its growth dynamics is per-

plexing. Mathematical modeling is a way to shed light on this progress and its medical

treatments. This dissertation is to study cancer invasion in time and space using a

mathematical approach. Chapter 1 presents a detailed review of literature on cancer

modeling.

Chapter 2 focuses sorely on time where the escape of a generic cancer out of

immune control is described by stochastic delayed differential equations (SDDEs).

Without time delay and noise, this system demonstrates bistability. The effects of

response time of the immune system and stochasticity in the tumor proliferation rate

are studied by including delay and noise in the model. Stability, persistence and

extinction of the tumor are analyzed. The result shows that both time delay and

noise can induce the transition from low tumor burden equilibrium to high tumor

equilibrium. The aforementioned work has been published (Han et al., 2019b).

In Chapter 3, Glioblastoma multiforme (GBM) is studied using a partial differen-

tial equation (PDE) model. GBM is an aggressive brain cancer with a grim prognosis.

A mathematical model of GBM growth with explicit motility, birth, and death pro-

cesses is proposed. A novel method is developed to approximate key characteristics

of the wave profile, which can be compared with MRI data. Several test cases of MRI

data of GBM patients are used to yield personalized parameterizations of the model.

The aforementioned work has been published (Han et al., 2019a).

Chapter 4 presents an innovative way of forecasting spatial cancer invasion. Most

mathematical models, including the ones described in previous chapters, are formu-

lated based on strong assumptions, which are hard, if not impossible, to verify due to

complexity of biological processes and lack of quality data. Instead, a nonparametric

forecasting method using Gaussian processes is proposed. By exploiting the local
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nature of the spatio-temporal process, sparse (in terms of time) data is sufficient for

forecasting. Desirable properties of Gaussian processes facilitate selection of the size

of the local neighborhood and computationally efficient propagation of uncertainty.

The method is tested on synthetic data and demonstrates promising results.
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Chapter 1

INTRODUCTION

1.1 Mathematical Oncology

Cancer generally refers to a group of diseases that involves uncontrolled and ab-

normally dividing cells which spread and destroy normal body tissues. Cancer has

been around for all human history (Hajdu, 2011). The word “cancer” stems from the

Greek word karkinos (crab or crayfish), which was used by Hippocrates to describe

the appearance of the cut surface of a solid malignant tumor. This name itself reflects

two hallmarks of cancer: its irregular structure resembles a crab; cancer is difficult

to eradicate, just like a crab that grabs on and does not let go. In fact, even as the

modern medicine advances, the success of treating or curing cancer is still limited.

Moreover, as the average life span increases, cancer appears to more common and

life-threatening.

To improve our chance of fighting cancer, there is no doubt about the importance

of innovations in medicine and treatment. Towards this goal, deeper understanding

of cancer biology and more quantitative approaches are imperative. Mathematical

modeling is one of the most important tools that we can rely on in this endeavor.

The evolution of cancer and its interaction with the host are often studied using

dynamical systems, including discrete time maps and differential equations.

There are many reasons for the effectiveness of mathematical modeling in under-

standing cancer biology. I will give a brief discussion considering the definition of

cancer. Cancer is usually identified with abnormal growth and loss of homeostasis.

This growth is characterized by the the rate of increase in the tumor size and spread.
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It should be noted that the term “tumor” refers the mass of cancerous cells. Even

though it is seemly used interchangeably with cancer oftentimes, not all tumors are

necessary a mass of cancerous cells. In contrast to malignant tumor, there are be-

nign tumors which do not grow fast. The most important distinction is the rate of

growth. So the time scale we are looking at the problem with matters. Moreover,

cancer biology involves a lot of underlying processes, and hence poses very compli-

cated problems. Dynamicists who study mathematical models are good at exploiting

the separation of time scales of the underlying processes in order to simplify problems

and gain insights. In some lucky cases, we can even derive a quantitative estimate

of the rate of interests. For example, in Chapter 3, the traveling wave speed, which

represents the growth rate of a tumor, is estimated using scaling techniques.

The homeostasis, from a dynamicist’s point of view, can be thought of as a stable

steady state of a dynamical system. First, a model is constructed with the necessary

components that are believed to be relevant to the development of cancer based on a

hypothesis. The disruption caused by the cancer can then be thought as loss of the

stability of a steady state due to the change of some key parameters that represent

the drive behind the cancer development. Along this thread, Chapter 2 is developed

to illustrate how responsiveness of the immune system and stochastic growth play a

role in cancer invasion.

Oncology is a branch of medicine that focuses on the treatment of cancer. Many

mathematical models have been published that model treatments explicitly and ad-

dress the questions regarding to the optimization of the treatments. Skipper et al.

(1961); Skipper (1971) pioneered the modern theory of chemotherapy with the log-kill

hypothesis. It is hypothesized that a fixed fraction of cells are killed by a drug of

certain concentration. Later refinement of the theory recognize that the rapid di-

viding cancerous cells respond better to the chemotherapy (NORTON et al., 1976;
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Simon and Norton, 2006). An interesting line of mathematical modeling is focused

on the sequencing of chemotherapeutic and surgical treatments. For example, Ko-

handel et al. (2006) tried to answer the question whether chemotherapy should be

applied before surgery. In their model formulation with a assumption of Gompertz

growth, it was shown that chemotherapy going before surgery leads to a tumor with

smaller final size than the one resulted from the other way around. Another interest-

ing question addressed by mathematical modeling fruitfully is about drug resistance

in cancer treatment. A prime example is a surge of a series of modeling work on

the intermittent treatment of prostate cancer (Ideta et al., 2008; Hirata et al., 2012;

Portz et al., 2012; Everett et al., 2014; Baez and Kuang, 2016; Phan et al., 2019).

Studies along this line suggested that intermittent deprivation of androgen can reduce

hormonal resistance of cancerous cells and improve quality of patients’ life. Success-

ful fit to clinical serum androgen data is a good validation of these models. Recent

developments have focused on parameter estimation and uncertainty quantification

(Wu et al., 2019b).

However, in this thesis the cancer treatment is not modeled explicitly. This omis-

sion is intended due to my understanding that mathematical modeling included here

has not matured enough to serve explicit guidance for medical treatment. Neverthe-

less, this work generates a lot of insights that are potentially useful in practice. For

example, the vital parameters estimated in Chapter 3 can be useful indicators for per-

sonalizing treatment. The larger migration parameter may indicate a fast spreading

tumor that requires an immediate surgical removal with a big margin. On the other

hand, the birth and death rates are useful indicators for radiotherapy and chemother-

apy since they target fast dividing cells. For another example, the forecasting method

developed in Chapter 4 gives a prediction of tumor boundary with confidence inter-

val. This would help target the tumor when administrating radiotherapy. That being
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said, caution and further study are needed if readers are interested in applying the

findings in this work in real clinical settings.

It should be noted that the dynamics and spatial patterns considered in this work

are not unique in mathematical oncology. Especially the time delay and stochasticity

are ubiquitous in many biological systems and can be interesting on itself mathemat-

ically. Hence a brief review is be given in the following sections. For a comprehensive

account of mathematical oncology, Kuang et al. (2015) is a good resource.

1.2 Stochasticity, Time delay and Bistability in Biological Systems

1.2.1 Stochasticity

Randomness in a common phenomenon and mechanism in biological systems,

which plays an important role in shaping their dynamics (Wilkinson, 2009). To make

sense of randomness, biological systems are often modeled as a stochastic process

(Wilkinson, 2011). Randomness can arise intrinsically. For example, in studying

chemical reactions, it is noted that sometimes only a few copies of molecules are

involved. They collide each other and react by chance. The number of reactions

by a time can be modeled as a Poisson progress. In general, master equations that

describe the change of the probability distribution over time can be written down.

The master equations can be hard to solve even though numerical simulations of a

sample path are widely available, e.g. Gillespie algorithm (Gillespie, 1976). Hence an

approximation in certain limit is often sought. This gives rise to a type of stochastic

differential equations (SDEs) known as chemical Langevin equations (Gillespie, 2000).

The underlying justification is due to the functional central limit theorem (Donsker,

1951). This randomness at the discrete model is turned into a white noise term in the

SDE. On the other hand, there is extrinsic noise that is due to extrinsic factors that is
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not explicitly modeled, e.g. fluctuating of the environments. Sometimes the random

noise is added in an ad hoc way to account for the imperfectness of a proposed model,

as commonly seen in the field of data assimilation.

To have a reasonable interpretation of the noise term in SDEs, stochastic calculus

is needed, which can be constructed by writing SDEs in a discrete version and then

reaching a sum resembling the Riemann sum in the deterministic case. In contrast

to Riemann sum for which the limit does not depend on the choice of the sample

point in the discrete interval, there are two common interpretations of stochastic

integrations depending on using the midpoint (Stratonovich) or left end point (Itô)

(Øksendal, 2003). In this thesis, Itô interpretation is used and hence the Itô’s formula

is a workhorse which is repeatedly used throughout the analysis in Chapter 2.

1.2.2 Time Delay

Time delay is also common in in biological systems (Rihan et al., 2018). In popula-

tion dynamics, time delay often manifests as the time required for juvenile to mature

in a population with non-overlapping generations or the time a predator takes to di-

gest its prey. In a molecular scale, it takes time for substance to diffuse over distance.

In a gene network, the synthesis of proteins also takes time and can cause time delay

in a feedback loop. From modeling point of view, it oftentimes convenient to introduce

a time delay instead of developing a full model for the underlying process that causes

the time delay. In a continuous time model, time delays are usually introduced to ap-

propriate terms in differential equations, giving arise to delayed differential equations

(DDEs) or neutral differential equations. In some cases, time delay can cause loss of

stability of a fixed point. For example, Parmar et al. (2015) reviewed DDE models

of gene regulatory networks where standard local stability analysis was conducted.

5



1.2.3 Time Delay and Stochasticity in Bistable Systems

Of particular interests is how time delay and stochasticity play a role in a bistable

system. Bistability is an important mechanism and phenomenon in biology, e.g.

synthetic gene circuit (Gardner et al., 2000), developmental biology (Tian et al.,

2013) and pattern formation (Umulis et al., 2006). There are continuing interests

in studying how time delay and stochasticity induce the transition from one state to

another. Recent development on a technique based on stochastic sensitivity functions

(SSFs) has shown a way to visualize confidence domains and chance of state transition

(Bashkirtseva et al., 2014; Bashkirtseva, 2017). It basically approximates an attractor

as a quadratic potential well so that confidence domains can be easily drawn near

it. This technique has been applied to predator-prey models (Wu et al., 2019a). It

would be interesting to apply the SSF techniques to a time-delayed SDE to illustrate

how time delay enhance the state transition.

1.3 Traveling Wave in Reaction-diffusion Systems

Reaction-diffusion equations are a type of partial differential equations (PDEs)

which are popular candidate models in spatial population dynamics. It was first used

to study the disperse of advantageous genes in the seminal work of Fisher (1937). Kol-

mogorov et al. (1937) laid the foundation for the theory of traveling waves solutions

of reaction-diffusion equations. Since then, there have been fruitful developments in

its theory and applications (Volpert and Petrovskii (2009) and reference therein). In

modeling population, the diffusion accounts for the random movement of individuals

and the reaction terms account for the reproduction of or interaction between species.

Traveling wave solutions are common in many reaction-diffusion models. The exis-

tence, stability and speed of the traveling wave are of primary interests in its analysis.
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If there is only one species, to show the existence of the traveling wave, the scalar

reaction diffusion equation can converted to a systems of two ordinary differential

equations and hence is amendable to a phase plane analysis. For a reaction-diffusion

system, if the reaction terms are monotone, maximum principle still holds and there

are established theories to show the existence of a traveling wave (Volpert, 1994).

However, if the reaction terms are not monotone, there does not exist general the-

ories. Nevertheless, analysis sometimes can be done in the phase space similar to

the one in the phase-plane analysis if the number of dimensions are not too large. In

Chapter 3, approximated wave solution is sought. The full system analysis is challeng-

ing and remains an open problem. However, if using simple linear diffusion instead

of the cross diffusion, a rigorous proof of existence of a traveling wave is possible and

provided in the Appendix B.

It should be pointed out that time delay and stochasticity can complicate the

analysis of traveling wave even more but offer interesting extension to the deter-

ministic system. For example, Doering et al. (2003) considered a type of stochastic

Fisher-KPP equation, for which they derived a duality relation to a birth-coagulation

interacting particle system. A conjecture is made about the wave speed, which states

that the noise intensity decrease the wave speed. Furthermore, there are some gen-

eral theories that have been developed on reaction-diffusion systems with time-delayed

reaction (Wu and Zou, 2001). In this thesis, however, it is decided to focus on de-

terministic PDE models, since the evidence and mechanism of the time delay and

stochasticity are not clear in cancer invasion.

1.4 Filtering, Smoothing and Forecasting

In this section, state space modeling is reviewed, including methods of filtering,

smoothing and forecasting. Many of the materials reviewed here have motivated
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Figure 1.1: Graphical representation of a state space model where the arrows show
the dependence and u’s are hidden variable and y’s are observations

the development of Chapter 4. By giving a broad background, it is hoped to make

clear the gap in the literature our work attempted to fill as well as its limitations.

Without doubt, further development of our method is needed to make it more general,

i.e. capable of tasks of filtering, smoothing and forecasting. For a comprehensive

introduction on state space modeling, see Durbin and Koopman (2012) and see Cappé

et al. (2006) for a more theoretical exposition.

Figure 1.1 is a diagram illustrating the variables and the dependence structure

in a general state space model, where u is the hidden process variable (a.k.a state

variable) and y is the observation. The objective is to estimate certain property (e.g.

mean and variance) of u based on observation y. There are three inference tasks:

given observations y1, y2 · · · yn, the filtering concerns with p(un|y1:n), the smoothing

concerns with p(ut|y1:n) for t ∈ {1, 2, · · ·n−1}, the forecasting concerns with p(ut|y1:n)

for t ∈ {n + 1, n + 2, · · · }. The method developed in Chapter 4 focuses on the task

of long term forecasting.

State space modeling is a very useful and general framework that has wide ap-

plications. For example, autoregressive–moving-average (ARMA) models (Box et al.,

8



2015) can be cast in the form of a state space model. Since the seimnal paper of

Kalman (1960) , state space modeling has been heavily researched. Its use first be-

came popular in engineering and now has applications across many fields, such as

economics and biology.

Kalman (1960) showed that in the case of linear and Gaussian models, the ana-

lytical solution about u is available. The algorithm is later known as Kalman filter.

Another important feature of Kalman filter is that the filtering is done in a recursive

fashion. That is, as data come in sequentially, the analysis is updated based on pre-

vious analysis with a correction using the newly available data. Gaussian assumption

is important for the Kalman filter to work. Gaussianity has many desirable features:

• Gaussianity is preserved under linear operations (linear combinations of normal

random variables is also a normal random variables)

• for a multivariate normal random variable, the conditional on part of it is also

Gaussian

• the integration of a Gaussian function is easy

• the product of two Gaussian functions is also Gaussian

The first two features are the foundations of Kalman filter. The last two features are

taken advantage of in the development of our method in Chapter 4. To make Kalman

filter work for nonlinear models has spur a lot of interests and been a major focus

of modern development of Kalman filter. Refined Kalman filter that can deal with

nonlinear models includes

• extended Kalman filters, which linearize the nonlinar model;

• unscented Kalman fitliers, which introduce sigma points and weights to get ap-

proximated first two moments under nonlinear maps (Wan and Van Der Merwe,
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2000);

• ensemble Kalman filters, which propagate samples through a nonlinear model

and then get approximated first two moments from the samples (Evensen, 2009).

However, almost all variants of Kalman filters still heavily rely on the Gaussian as-

sumptions on state variables. This inevitably introduces approximation error if the

underlying distribution is not normal. In particular, if the underlying distribution is

multi-modal, it can cause significant errors and in that sense the mean does not con-

vey useful information. For example, in cancer modeling, we may get into a situation

in which the location of a tumor can be either in one or the other location, but it

is unlikely that a tumor exists at both locations due to immune suppression. The

inability to handle multi-modality may be mitigated by using a mixture of Gaussians.

Nevertheless, a general method is to avoid the Gaussian assumption at all.

In the nonGaussian and nonlinear world, the particle filter is the “go to” method.

Particle filters basically rely on a technique called sequential importance sampling.

Assuming we can sample from a distribution p(x), let {xi} denote samples (particles).

Then we have the following approximation

p(x) ≈ 1

n

n∑
i=1

δxi(x)

E[f(X)] ≈ 1

n

n∑
i=1

f(xi).

In a filtering problem, it is often not possible to direct sample from p(un|y1:n). Instead,

we can use importance sampling. The importance distribution can be chosen to be

the p(ut|ut−1), which results in the so-called bootstrap particle filter.

One of the drawbacks of particle filter is its suffering from the curse of dimension-

ality (Snyder et al., 2008). In spatio-temporal modeling, the dimensionality of the

state is often very large, which is particularly true in modeling brain tumors with
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MRI data. Recently, progresses in local particle filters have shown some promise in

extending particle filters to high dimensional problems (Rebeschini and van Handel,

2015). Nevertheless, the field of high-dimensional data assimilation is dominated by

Kalman filters especially in weather models (Hunt et al., 2007).

Both Kalman filters and particle filters require a formulation of the process model

p(ut|ut−1). The formulation requires knowledge about the underlying process. With-

out specific knowledge, a random walker can be assumed. However, this approach

makes high-quality long term forecasting impossible. Towards this goal, a mechanis-

tic process model is needed. This in turn oftentimes introduces unknown parameters

that need to be estimated. Even though parameter estimation is possible using maxi-

mum likelihood (e.g., EM algorithm) or Bayesian methods, it can be cumbersome and

computational expensive. What is worse in biological applications is that the process

model itself can be questionable. The necessary model validation can be another bur-

den. This motivates a model-free (nonparametric) approach in handling p(ut|ut−1),

for which we embarked in Chapter 4.

1.5 Outline of the Thesis

In Chapter 2, a model of tumor-immune interaction is proposed: one stable equi-

librium representing a state of a tumor being contained; the other representing a

state of a tumor that escaped the control of the immune system. The effects of time

delay in immune response and stochastic noise in proliferation rate are studied. The

conditions for number of equilibrium of the ODE system is include in Appendix A. In

Chapter 3, a system of two reaction-diffusion equations is proposed to study a type

of malignant brain tumor. The model demonstrate a traveling wave that represents

tumor invasion. A novel method is developed to estimate vital parameters from MRI

data for individual patient. In Chapter 4, Gaussian processes are used to forecast
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a spatio-temporal process motivated by an application to predict growth of a brain

tumor. The computer code used for simulation and generating figures is summarized

in Appendix E.
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Chapter 2

DYNAMICS OF A MODEL OF TUMOR-IMMUNE INTERACTION WITH TIME

DELAY AND NOISE

2.1 Abstract

We propose a model of tumor-immune interaction with time delay in immune

reaction and noise in tumor cell reproduction. Immune response is modeled as a

non-monotonic function of tumor burden, for which the tumor is immunogenic at

nascent stage but starts inhibiting immune system as it grows large. Without time

delay and noise, this system demonstrates bistability. The effects of response time of

the immune system and uncertainty in the tumor innate proliferation rate are studied

by including delay and noise in the appropriate model terms. Stability, persistence

and extinction of the tumor are analyzed. We find that delay and noise can both

induce the transition from low tumor burden equilibrium to high tumor equilibrium.

Moreover, our result suggests that the elimination of cancer depends on the basal

level of the immune system rather than on its response speed to tumor growth.

2.2 Introduction

The immune system is a host defense system that distinguishes pathogens from

one’s own healthy cells and destroy them. Pathogens include bacteria and viruses

as well as abnormal cells. There are evidence that immune systems can detect and

eliminate cancer (Parish, 2003). Cancer immunology has seen renewed interests due

to recent achievements in immunotherapy (Mahoney et al., 2015). Unlike common

pathogens, cancer cells are not as distinguishable. Moreover, cancer can evade the
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control of immune systems by developing ways to achieve immune suppression (White-

side, 2006). Recent progress in immunotherapy has focused on removing immune

suppression so that cancer cells will be under attack of immune systems. Further

development of immunotherapy hinges on a better understanding of tumor-immune

system interaction.

The immune system consists of immune cells of several types and complex sig-

naling network. For example, immune cells include cytotoxic T cells, helper cells,

natural killer cells, and signaling networks involve cytokines, e.g., interlukin-2. The

immune response falls into two categories: innate and adaptive. Though the adaptive

response enables fast reaction to certain antigens, immune responses oftentimes in-

volve recruiting immune cells from bone marrows and further training or activation.

So it is inherently a delayed process. On the other hand, cancer is well-known for

its heterogeneity and characterized by fast mutation, which can render it the ability

to suppress immune response (Fisher et al., 2013; Whiteside, 2006). In this process,

stochasticity plays an important role.

Given the complexity of tumor-immune system interaction, mathematical mod-

eling naturally offers some insights by capturing the key mechanisms. Literature on

modeling non-spatial tumor growth under immune surveillance is abundant (see (Ef-

timie et al., 2011) for a review). In (Kuznetsov et al., 1994), the authors derived a

system of five equations from a kinetic scheme and further reduced it to two equations

tracking only effector cells and tumor cells. In their model, immune suppression is

represented as annihilation by mass action of tumor cells and effector cells. Their

paper inspired a number of later work. In (D’Onofrio, 2008), the author summarized
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models of this type into a family as follows

x′ = x(f(x)− φ(x)y), (2.1a)

y′ = −Ψ(x)y + σq(x) + θ(t) (2.1b)

where x is the size or density of tumor population, y is the size or density of immnue

effector population and θ(t) represents treatment . With biological-relevant assump-

tions on f(x), φ(x) and q(x), some general conclusions of were drew in (D’Onofrio,

2008).

In (Kirschner and Panetta, 1998), the authors took into account cytokines in their

model in order to gain further insight into immunotherapy. In most cases, introducing

more equations does not introduce new dynamics but is necessary to shed light on

cancer treatments (Eftimie et al., 2011). Signaling is arguably a fast process, so

sometimes a quasi-steady state approximation can reduce more complicated models

into the family of models studied by (D’Onofrio, 2008). For example, in a recent

study on immune check point inhibitor (Nikolopoulou et al., 2018), a variation of

(2.1) is derived from a more complicated model consisting of a system of 14 partial

differential equations (Lai and Friedman, 2017).

Building on aforementioned earlier work, the effect of time delay in tumor-immune

interactions are also extensively studied (Banerjee and Sarkar, 2008; D’Onofrio et al.,

2010; Ga lach, 2003; Rihan et al., 2014). On the other hand, stochasticity in tumor-

immune interaction is less often studied, and mostly focused on single-equation models

of tumor population growth ignoring explicit interaction with immune system (Lefever

and Horsthemke, 1979; Bose and Trimper, 2009; Li and Cheng, 2017). Models that

take into account both time delay and stochasticity are even rarer. To the best of our

knowledge, the work of (Guo and Mei, 2014) is the only exception. In (Guo and Mei,

2014), a single equation was considered and noise was introduced in an ad-hoc way.
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To fill this gap, we will introduce time delay and noise one at a time to a variation

of (2.1) with the novelty in its immune response term being non-monotonic.

The paper is organized as follows. In Section 2.3, we introduce our model formu-

lation and state general properties of the model in absence of noise and time delay. In

Section 2.4, we study the model with time delay where persistence, local stability and

global stability results are presented. Section 2.5 is devoted to the stochastic version

of the model where tumor extinction and persistence conditions are presented. In

section 2.6, the paper comes to the culmination where both noise and time delay are

present in the model, for which we study the effects of time delay on the stationary

distribution. We conclude the paper with a discussion of future work in section 2.7.

2.3 ODE Model Formulation and Properties

We consider the following equations

dx

dt̂
= ρ̂x(1− x

K̂
)− γ̂xy, (2.2)

dy

dt̂
= β̂ − µ̂y +

α̂x

κ̂+ x2
, (2.3)

where x denotes the tumor burden and y denotes the level of immune response. This

is a special case of (2.1) for which we specify σq(x) = β̂ + α̂x
κ̂+x2

to represent the

immune response to tumor burden in a non-monotonic fashion. In spite of being

phenomenological, it accounts for the fact that the cancer cells acquire mutations

that can down-regulate immune response as the tumor grows bigger while the tumor

is immuogenic at its nascent stage. Death term is assumed to be independent of

tumor burden and thus we have Ψ(x)y = −µ̂y. Note that without tumor, immune

system activity is maintained at the basal level β/µ. We assume logistic growth of

tumor and that killing of tumor cells by the immune system is represented as a mass
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action term so that we have f(x) = 1− x

K̂
and φ(x) = γ̂x. Both are common choices in

modeling literature (Ga lach, 2003; Nikolopoulou et al., 2018). Even though Gompertz

growth is also commonly used in modeling tumor growth and backed up by a lot of

experimental data, it predicts unbound growth rate as tumor burden approaches zero

(Eftimie et al., 2011). Hence it is not suitable to our purpose.

Note that we represent the two populations generically as tumor burden and level

of immune response, and intentionally avoid using specific units of cell density or

volume. In some sense, it justifies our choice of Ψ(x)y = −µ̂y since we are not

tracking explicitly effector cells. The rationale behind our generic representation is

that our objective is to study interesting dynamics that can arise from a simple model

with time delay and noise. It is our intention to bring attention to the possible key

mechanisms underlying cancer-immune system dynamics without making the wrong

impression that it is capable of clinical prediction.

By nondimensionlization, we can reduce the number of parameters. Let x =
√
κu,

y = α
µ
√
κ
v and t = 1

µ
t̂. We get the dimensionless system

du

dt
= ρu(1− u

K
)− γuv ≡ f(u, v), (2.4a)

dv

dt
= β − v +

u

1 + u2
≡ g(u, v). (2.4b)

where ρ = ρ̂
µ̂
, K = K̂√

κ̂
, γ = α̂γ̂

µ̂2
√
κ̂

and β = β̂
√
κ̂

α̂
are dimensionless (positive) parame-

ters. It can be shown that there is always a tumor free equilibrium E0 = {0, β} which

is stable if and only if ρ < γβ by linear stability analysis. If ρ > γβ, depending on

the parameters, there is additional either one or three interior equilibria. In this pa-

per, we focus on the case where there are three interior equilibria, namely low tumor

equilibrium E1, intermediate tumor equilibrium E2 and high tumor equilibrium E3

(see Figure 2.1). Since the intersections of nullclines are roots of a cubic polynomial,
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any results involving analytical expressions of parameters for stability conditions, if

possible, would be unwieldy. Nevertheless, qualitative argument similar to that of

in ((Murray, 2002) Page 226-230) can be made regarding to the local stability . By

doing so, we obtain the theorem below.

Theorem 2.3.1. Suppose that ρ > γβ and there are three interior equilibria E1, E2

and E3 of (2.4), then E1 and E3 are stable, and E2 is unstable.

Proof. Consider the Jacobian matrix at the equilibrium

J =


fu fv

gu gv


where fu, fv, gu and gv are the partial derivatives of f(u, v) and g(u, v) evaluated

at the equilibrium. The signs of fu, fv, gu and gv can be determined by geometric

arguments. For example, to see the sign of gu at E1, we first note that g(u, v) < 0

in the region above g(u, v) = 0 and g(u, v) > 0 in the region below. Thus as it

moves across g(u, v) = 0 at E1 along the direction of u-axis from left to right, g(u, v)

increases from being negative to being positive. Therefore, gu > 0 at E1. By the

same argument, we find out the signs of the entries of Jacobian matrices J1, J2 and

J3 at E1, E2 and E3 as follows

J1 =


− −

+ −

 J2 =


− −

− −

 J3 =


− −

− −

 (2.5)

Thus Tr(J1) < 0, T r(J2) < 0 and Tr(J3) < 0. To determine stability, we need to find

signs of their determinants too. This can be done by noting the sign of the slopes

of the nullclines. For example, at E1, dv
du

> 0 along g(u, v) = 0 and dv
du

< 0 along
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f(u, v) = 0. Implicit differentiating g(u, v) = 0 with respect to u gives dv
du

= −gu
gv

.

Similarly, we have dv
du

= −fu
fv

along f(u, v) = 0. Hence at E1, we have −gu
gv
> 0 > −fu

fv
.

Since gv < 0, fv < 0 at E1, det(J1) = fugv − fvgu > 0. Similarly, we have det(J2) < 0

and det( J3) > 0. Therefore, we proved the claimed stability.
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Figure 2.1: Nullclines of (2.4). Open circles denote unstable fixed points and
filled circle denotes stable fixed points. Parameter values used:
ρ = 2.5, β = 0.02, γ = 5, K = 10

2.4 With Delay

It is known that it takes time for the immune system to respond and take effect.

So we introduce time delay into the term representing immune response. The model

now reads as follows
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u′ = ρu(1− u

K
)− γuv (2.6a)

v′ = β − v +
u(t− τ)

1 + u(t− τ)2
. (2.6b)

where τ ≥ 0 is the time delay of immune response. We are curious about any possible

new dynamics due to the time delay in contrast to the ODE model, especially if the

time delay in immune response can lead to oscillatory solutions that may represent

cancer growth episodes.

2.4.1 Analysis

First we want to establish positivity and boundedness of the system (2.6) given

appropriate initial values. For initial values, we assume v(0) ≥ 0 and u(θ) = φ(θ) for

θ ∈ [−τ, 0] where φ(θ) ∈ C([−τ, 0]) : φ(θ) ≥ 0 and φ(0) > 0.

Proposition 1. The solution of (2.6) satisfies that u(t) > 0 and v(t) > 0 for all t > 0.

Moreover, lim supt→∞ u(t) ≤ K and β ≤ lim inft→∞ v(t) ≤ lim supt→∞ v(t) ≤ β+1/2.

Proof. Suppose there exists t1 > 0 such that u(t1) = 0 and u(t) > 0 for t ∈ (0, t1).

Note that (2.6a) is in the form u′ = uF (u, v). Then

u(t1) = u(0) exp(

∫ t1

0

F (u(s), v(s)ds) > 0,

which is a contradiction. The positivity of v is obvious as if there is t1 such that

v(t1) = 0, then v′(t1) > 0. The boundedness is straightforward.

The above proposition ensures that the solution of (2.6) is biological meaningful

and will also be useful prerequisite for our later analysis. Next we present a theorem

of the local stability of (2.6) as a counterpart to Theorem 2.3.1. In particular, we show

that as τ increases there is a possible stability switching for low tumor equilibrium
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E1. Recalling the same definition for fu, fv, gu and gv as before, we have the following

theorem.

Theorem 2.4.1. Suppose that ρ > γβ. Then the tumor free equilibrium E0 is unstable

for for all τ ≥ 0. In addition, suppose that there are three interior equilibria E1, E2

and E3 of (2.6). Then E3 is stable, E2 is unstable for all τ ≥ 0 and E1 change its

stability as τ increases if fugv + fvgu < 0.

Proof. Linearizing (2.6) at the equilibrium gives

u′ = fuu+ fvv

v′ = guu(t− τ) + gvv

Substituting u = Aeλt, v = Beλt into the above equations yields a linear system of A

and B for which the existence of a solution entails the characteristic equation

λ2 − (fu + gv)λ+ fugv − fvgue−λτ = 0. (2.7)

At E0, (2.7) becomes λ2 − (ρ− γβ)λ− ρ+ γβ = 0, which always has a positive root

and thus E0 remains unstable for all τ ≥ 0.

Theorem 2.3.1 gives the stability results of E1, E2 and E3 at τ = 0. We want to

study if their stability changes as time delay τ increases. If the equilibrium changes

its stability as τ increases, there must exists ω > 0 such that λ = iω is a solution of

(2.7) (Kuang, 1993). Substituting λ = iω into (2.7) gives

−ω2 − (fu + gv)(iω) + fugv − fvgu(cos(ωτ)− i sin(ωτ)) = 0.

Collecting real and imaginary parts gives

(fugv − ω2 − fvgu cos(ωτ))− ((fu + gv)ω + fvgu sin(ωτ)i = 0.
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Equating the real and imaginary parts to zeros respectively gives

cos(ωτ) =
fugv − ω2

fvgu
, (2.8a)

sin(ωτ) = −(fu + gv)ω

fvgu
. (2.8b)

Squaring and adding the above equations gives

ω4 + (f 2
u + g2

v)ω
2 + f 2

ug
2
v − f 2

v g
2
u = 0

which has a real solution ω = ω0 if and only if

(fugv − fvgu)(fugv + fvgu) < 0. (2.9)

From (2.5), we see that (2.9) is not satisfied for E3 and hence it has no stability

switching. Stability switching is possible for E1 and E2. For E1, (2.9) entails an

additional requirement

fugv + fvgu < 0, (2.10)

which is stated in the theorem. The critical value of τ can be found by substituting

ω = ω0 to (2.8), which leads to

τ0 =
1

ω0

[arctan(
fugv − ω2

0

(fu + gv)ω0

)].

To ensure stability switching, We need further confirm that the imaginary root crosses

the imaginary axis as τ increases beyond τ0. To do so, we think λ as a function of τ

and differentiating (2.7) gives

[2λ− (fu + gv) + fvgue
−λττ ]

dλ

dτ
= −fvgue−λτλ.

It follows that

sgn

{[
d<(λ)

dτ

]
τ=τ0

}
= sgn

{
<
[
(
dλ

dτ
)−1

]
τ=τ0

}
= sgn

{
(fu − gv)2 + 2ω2

0

f 2
v g

2
u

}
= 1.
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So for E1 which is stable at τ = 0, the imaginary root indeed crosses the imaginary

axis and stability switching is ensured. But for E2 which is unstable at τ = 0,

the imaginary root does not cross the imaginary axis and there is no change in its

stability.

The above theorem indicates that the time delay in immune response can lead to

tumor escaping the control of the immune system as a consequence of loss of stability

of the low tumor equilibrium. The condition (2.10) for this stability switching is not

explicit in terms of parameters. Nevertheless, it has a geometric interpretation that

the slope of the v-nullcine is larger than the magnitude of the slope of u-nullcline at

their interception E1. In a biological sense, it means that there would be instability

if the objective of immune response level is set to increase steeply with respect to

tumor burden while immune response time is not fast enough to catch up.

Next we study the global stability of the tumor free equilibrium.

Theorem 2.4.2. (global stability of tumor free equilibrium)

If ρ < γβ, then limt→∞(u(t), v(t)) = (0, β).

Proof. We first shift v to make its equilibrium value to be zero by letting w = v− β.

We consider the equivalent equation as below

u′ = u(ρ− γβ − ρu

K
− γw),

w′ = −w +
u(t− τ)

1 + u(t− τ)2
.

Assuming ρ < γβ, then there exists a p such that ρ− γβ ≥ p > 0. Define

V =
1

8p
u(t)2 +

1

2
w(t)2 +

1

4

∫ t

t−τ
u(s)2ds.
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It follow that

V̇ =
1

4p
u(t)2(ρ− γβ − ρ

K
u− γw) + w(−w +

u(t− τ)

1 + u(t− τ)2
)

+
1

4
(u(t)2 − u(t− τ)2)

= (
ρ− γβ

4p
)u(t)2 − ρ

4pK
u(t)3 − γ

4p
wu(t)2

−w2 − 1

4
u(t− τ)2 +

wu(t− τ)

1 + u(t− τ)2
.

By construction, we have ρ−γβ
4p

< 0 and by Proposition 1, we have w = v − β ≥ 0

Hence,

V̇ ≤ −(w − 1

2
u(t− τ))2 − ρ

4pK
u(t)3 ≤ 0

We also note that V̇ = 0 if and only if u(t) is identically zero and w = u(t − τ)/2

which implies that w must also be identically zero. Thus limt→∞(u(t), v(t)) = (0, β)

by Liapunov-LaSalle theorem (see (Kuang, 1993) Theorem 2.5.3).

If the stability condition of tumor-free equilibrium is not satisfied, we can prove

that the tumor population is persistent.

Theorem 2.4.3. (tumor persistence) If ρ > γβ, there is m > 0 such that

lim supt→∞ u(t) > m.

Proof. Suppose not. Then limt→∞) u(t) = 0. From this, it can be shown that

lim supt→∞ v(t) ≤ β. There are two cases we need to consider. The first case is

that u is eventually monotonically decreasing to zero. Then limt→∞ v(t) = β. It fol-

lows that there is a t∗ > 0 such that u(t∗) is sufficiently small and v(t∗) is sufficiently

close to β so that u′(t∗) = u(ρ− ρu
K
−γv) > 0. So we have a contradiction. The second

case is that u approaches zero in an oscillatory fashion. That is, there is a sequence of

{ti} such that u(ti)→ 0 and u(ti) is local minimum, i.e., u′(ti) = u(ρ− ρu
K
− γv) = 0.

Then for any δ > 0 there is an N(δ) such that u(ti) < δ for i > N(δ). Since ρ > γβ,
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there is a δ such that ρ− ρδ
K
− γ(β + δ) > 0. We see that for this δ, there is a T1 such

taht t > T1 implies that v(t) < β + δ and an N such that for i > N , ti > T1. Hence

for i > N , u′(ti) > 0 which is a contradiction to u′(ti) = 0.

Putting the conditions of the above two theorems in original units, we find an

important dimensionless value R0 = ρ̂µ̂

γ̂β̂
. It is the ratio of the proliferation ability

of the tumor verse the strength of the immune system, which can be viewed as the

tumor reproduction number: if

R0 =
ρ̂µ̂

γ̂β̂
< 1, (2.11)

the tumor can be totally cleaned out by immune system. The biological meaning of

(2.11) is more clear by recognizing that it is equivalent to saying that at the onset of

tumor growth, the killing rate of tumor by the immune system (γ̂β̂/µ̂) is larger than

the tumor growth rate (ρ̂). Theorem 2.4.3 tells us that otherwise (R0 > 1) the tumor

will always exist.

2.4.2 Numerical Simulation

We studied (2.6) numerically using dde23 in Matlab. We confirmed the criteria

for tumor persistence and extinction in our numerical experiment. The existence of

a stability switching for low tumor equilibrium as τ increases is also demonstrated

(Figure 2.2). Moreover, we discovered that as τ is further increased, there is a transi-

tion to high tumor equilibrium (bottom right of Figure 2.2). Interestingly, the jerky

transition to high tumor equilibrium is reminiscent of saltatory growth which is a

commonly observed pattern in tumor growth (Kuang et al., 2018). This suggests

that a weakened immune system response may be indicated by its slow action which

takes longer time delay, which may result in increased tumor growth.
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Figure 2.2: Time course of u and v with and without delay. There is a sta-
bility switch as τ increases and eventually the solution settles down to high tumor
equilibrium. The observation indicates that responsiveness of the immune system is
important to contain the tumor in its nascent size. If there is long time delay in
immune response, the tumor can grow in oscillatory fashion and eventually escape
the control of the immune system. Parameter values used to generate the plots:
ρ = 2.5, β = 0.02, γ = 5, K = 10
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2.5 With Noise

Tumor cell growth is known to lack of certain regulations compare to normal

cells, we thus assume that the innate proliferation rate of tumor cells is subject to

uncertainty. Adding white noise to it results in the following stochastic differential

equations

du = (ρu(1− u

K
)− γuv)dt+ σu(1− u

K
)dB(t), (2.12a)

dv = (β − v +
u

1 + u2
)dt. (2.12b)

where B(t) is a scalar Brownian motion defined on the complete probability space

(Ω,F , {Ft}t≥0, P ) with filtration {Ft}t≥0. We use a ∧ b to denote min(a, b), a ∨ b to

denote max(a, b) and a.s. to denote almost surely.

2.5.1 Analysis

We first show existence and uniqueness of a global solution remains inD = (0, K)×

(β, β+ um) where um = maxu∈(0,K){ u
1+u2
}, whenever it starts in D. Because the drift

term and noise term in (2.12) do not satisfy linear growth condition, the general

existence and uniqueness theorem (see (Mao, 2007) chapter 2) does not apply. The

techniques employed here are standard and follow the similar lines as (Wang et al.,

2017; Gray et al., 2011).

Theorem 2.5.1. For any given initial value (u(0), v(0)) ∈ D, there is a unique

solution defined for all t ≥ 0, and the solution remains in D a.s.

Proof. Since the drift is locally Lipschitz continuous, there is a unique local solution

on t ∈ [0, τe) where τe is the explosion time, i.e. when the solution exits D. If we can

show that τe =∞ a.s., then the solution stays in D a.s. for all t > 0.
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Let Dn = ( 1
n
, K − 1

n
) × (β + 1

n
, β + um − 1

n
) where n ∈ N+. Define the stopping

time

τn = inf{t ∈ (0, τe) : (u(t), v(t)) /∈ Dn}.

Clearly τn increases as n. Let τ∞ = limn→∞ tn and we have τe ≥ τ∞. If we can show

that τ∞ =∞ a.s., then τe =∞ a.s. and we have the unique solution (u(t), v(t)) ∈ D

for all t.

Suppose on contrary that there is a pair of constants T > 0 and ε ∈ (0, 1) such

that P (τ∞ ≤ T ) > ε. Then there is a n1 such that P (τn ≤ T ) ≥ ε for n > n1 . Define

V : D → R by

V (u, v) =
1

u
+

1

K − u +
1

v − β +
1

β + um − v
, (2.13)

where we note it is nonnegative for u, v ∈ D.

In general, given an Itô process dX(t) = b(X(t)dt+σ(Xt)dB(t) and if f ∈ C2
0(Rn),

then its generator A acting on f gives

Af(x) =
∑
i

bi(x)
∂f

∂xi
+

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj

(see Theorem 7.3.3 on Page 126 of (Øksendal, 2003)).

Consider the generator A of (2.12) and let A act on V , i.e., AV : D → R. Some
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calculation shows that

AV =


ρu(1− u/K)− γuv

β − v + u/(1 + u2)

 ·


−1/u2 + 1/(K − u)2

−1/(v − β)2 + 1/(β + um − v)2


+
σ2

2
u2(1− u

K
)2(

2

u3
+

2

(K − u)3
)

= (γv − ρ(1− u

K
))

1

u
+
ρu

K

1

K − u −
γuv

(K − u)2

+(β − v +
u

1 + u2
)

1

(β + um − v)2
+ (v − β − u

1 + u2
)

1

(v − β)2

+(1− u

K
)2 1

u
+
u2

K2

1

K − u
≤ CV,

where C = ρ
k
∨ γ(β+um)∨ (γ(β+um) + 1) a positive constant. By Dynkin’s formula

(see, e.g., (Øksendal, 2003) Page 127), we have

E[V (u(τn ∧ T ), v(τn ∧ T ))] = V (u(0), v(0)) + E[

∫ τn∧T

0

AV (u(s), v(s)ds]

≤ V (u(0), v(0)) + C

∫ T

0

E[V ]ds.

By Gronwall’s inequality,

E[V (u(τn ∧ T ), v(τn ∧ T ))] ≤ V (u(0), v(0))eCT <∞.

On the other hand, consider the set Ωn = {τn ≤ T} for n > n1 for which we know

P (Ωn) ≥ ε. For ω ∈ Ωn, we know that V ∼ O(n). Thus

E[V (u(τn ∧ T ), v(τn ∧ T ))] ≥ E[1ΩnV (u(τn ∧ T ), v(τn ∧ T ))]

= εV (u(τn, ω), v(τn, ω))→∞,

if we let n→∞. Hence we have a contradiction.
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Having established existence and uniqueness of a global solution, we present a

theorem regarding to tumor extinction. Its proof involves an application of Itô’s

formula (see, e.g., (Øksendal, 2003) Page 49) to show lim supt→∞
1
t

log(u(t)) < 0 a.s.,

namely, the tumor population tends to zero exponentially a.s..

Theorem 2.5.2. (tumor extinction) If one of the conditions holds

i) σ2 > ρ ∨ ρ2

2γβ

ii) σ2 < ρ < σ2/2 + γβ

then for (u(0), v(0)) ∈ D

lim sup
t→∞

1

t
log(u(t)) < 0 a.s.

Proof. By Itô’s formula, we have

log(u(t)) = log(u0) +

∫ t

0

ρ(1− u(s)

K
)− γv(s)− σ2

2
(1− u(s)

K
)2ds

+

∫ t

0

σ(1− u(s)

K
)dB(s)

≤ log(u0) +

∫ t

0

f(1− u(s)

K
)ds+

∫ t

0

σ(1− u(s)

K
)dB(s)

where f(y) = −1
2
σ2y2 + ρy − γβ. Note that f(y) is a concave-down quadratic func-

tion with axis of symmetry y = ρ
σ2 and y(0) < 0. There are two ways to ensure

maxy∈(0,1) f(y) < 0, i.e.,


ρ
σ2 < 1

f( ρ
σ2 ) < 0,

or


ρ
σ2 > 1

f(1) < 0

which corresponds to the stated conditions i) or ii). Thus,

lim sup
t→∞

1

t
log(u(t)) ≤ max

y∈(0,1)
f(y) + lim sup

t→∞

1

t

∫ t

0

σ(1− u(s)

K
)dB(s),

< 0 a.s.

30



where the term with integral is zero a.s. by law of large numbers of martingale (see,

e.g., (Mao, 2007)).

To complement with the condition for tumor extinction, we present a theorem for

tumor persistence in the following. The proof involves construction of a contradiction

to show that lim supt→∞ u(t) is bounded from below, and again Itô’s formula is the

workhorse behind this type of proof.

Theorem 2.5.3. (tumor persistence) If ρ > σ2/2 + γ(β + um), then for any given

initial value (u(0), v(0)) ∈ D, we have

lim sup
t→∞

u(t) > ξ

a.s. where ξ is the positive root of g(u) = −1
2
σ2(1− u

K
)2 + ρ(1− u

K
)− γ(β + um).

Proof. Assume ρ > σ2/2 + γ(β + um). We note that g(K) < 0 and g(0) = −1
2
σ2 +

ρ − γ(β + um) > 0. Thus ξ exists and g′(u) < 0 for u in a small neighborhood of

ξ. Suppose on contrary that there is a small ε ∈ (0, 1) such that P (Ω1) > ε where

Ω1 = {ω : lim supt→∞ u(t, ω) < ξ − 2ε}. Then there is T (ω) > 0 such that

u(t, ω) < ξ − ε for t > T (ω). (2.14)

We choose ε small enough so that g(u(t, ω) > g(ξ − ε) for t > T (ω). Moreover, by

law of large numbers of martingale there is Ω2 ⊂ Ω with P (Ω2) = 1 such that for any

ω ∈ Ω2, limt→∞
1
t

∫ t
0
σ(1− u(s)

K
)dB(s, ω) = 0.

Now considering ω ∈ Ω1 ∩ Ω2, we have

log(u(t, ω)) ≥ log(u0) +

∫ t

0

g(u(s))ds+

∫ t

0

σ(1− u(s)

K
)dB(s, ω)

≥ log(u0) +

∫ T (ω)

0

g(u(s)ds+ (t− T (ω))g(ξ − ε)

+

∫ t

0

σ(1− u(s)

K
)dB(s, ω).
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Thus we have

lim inf
t→∞

1

t
log(u(t, ω)) ≥ g(ξ − ε) > 0,

which implies that u(t, ω)→∞, which contradicts (2.14).

We compare the conditions in the previous two theorems to their counterparts

in section 3. In the original units, we find two noise magnitude regimes with ρ̂
µ̂

as

the threshold (we call σ2 < ρ̂
µ̂

small noise regime and σ2 > ρ̂
µ̂

big noise regime). In

the small noise regime, the tumor extinction condition is weaker than the one for

the deterministic system. The biological interpretation is that the small noise can

possibly help eliminate the tumor. The condition for tumor persistence is stronger

in the stochastic system. However, it is only a sufficient condition and there is a gap

between between the persistence condition and the extinction condition.

2.5.2 Numerical Simulation

(2.12) is simulated using Milstein’s method (Higham., 2001). As in Figure 2.3, the

simulation confirmed our extinction criteria. Also shown is that the tumor persists

in the monostability where the solution simply fluctuates about the equilibrium and

bistablity where there is a noise-induced transition to high tumor equilibrium from

low tumor equilibrium. The parameter values used in the simulations are summarized

in Table 2.1.

2.6 With Delay and Noise

In this section, we study the system when both delay and noise are present as

follows
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Figure 2.3: Computer simulated sample paths of the stochastic system (2.12) in
comparison with its deterministic version (2.4). (a) tumor extinction in small noise
regime; (b) tumor extinction in big noise regime; (c) monostable fluctuation; (d)
bistable switching. Parameter values used here are summarized in Table 2.1
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Table 2.1: Parameter values used in Figure 2.3

small noise

induced

extinction (a)

big noise

induced

extinction (b)

monostable

(c)
bistable (d)

ρ 0.12 2.5 1.5 2.5

β 0.02 0.02 0.02 0.02

γ 5 5 5 5

K 10 10 10 10

σ 0.3 5.66 0.65 0.65

du = (ρu(1− u

K
)− γuv)dt+ σu(1− u

K
)dB(t), (2.15a)

dv = (β − v +
u(t− τ)

1 + u(t− τ)2
)dt. (2.15b)

2.6.1 Analysis

The analysis in section 4 can be extended to (2.15). Because of the time delay

τ , here we need to supply suitable initial data on [−τ, 0]. The extension of Theorem

2.5.1 is stated as follows

Theorem 2.6.1. For any initial data {(u(t), v(t)) : −τ ≤ t ≤ 0} ∈ C([−τ, 0],D),

there is a unique solution defined for all t ≥ −τ and remains in D a.s.
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Proof. The proof follows similar lines as the one for Theorem 2.5.1 with an application

of method of steps. We keep the same definition of τn, τ∞, τe and V (u, v). Same as

before we want to show that τe =∞ by proving that τ∞ =∞. First we want to show

that τ∞ > τ . For any n ∈ N+ and t ∈ [0, τ∞), it can be shown by Itô formula that

dV (u(t), v(t)) = LV (u(t), v(t), u(t−τ), v(t−τ))+σ(
u

K(K − u)
+

1

K
− 1

u
)dB(t) (2.16)

where

LV (u(t), v(t), u(t− τ), v(t− τ))

=[γv − ρ(1− u

K
) + (1− u

K
)2]

1

u
+ [

ρu

K
+
u2

K2
]

1

K − u +
1

β + um − v
+

1

v − β

− [um −
u(t− τ)

1 + u(t− τ)2
]

1

(β + um − v)2
− [

u(t− τ)

1 + u(t− τ)2
]

1

(β − v)2

≤K1V

where K1 is a positive constant. For t1 ∈ [0, τ ], integrating (2.16) from 0 to t1 ∧ τn
and taking expectation gives

E[V (u(t1 ∧ τn), v(t1 ∧ τn)] ≤ V (u(0), v(0)) +

∫ t1∧τn

0

V (u(s), v(s))ds

By Gronwall’s inequality, E[V (u(t1 ∧ τn), v(t1 ∧ τn)] ≤ V (u(0), v(0))eτ < ∞. In

particular,

E[V (u(τ ∧ τn), v(τ ∧ τn)] ≤ V (u(0), v(0))eτ <∞. (2.17)

Suppose on contrary there is ε > 0 such that P (τ∞ < τ) > ε. Then there is n1 such

that for n > n1, P (Ω1) ≥ ε where Ω1 = {ω : τn(ω) < τ}. Thus

E[V (u(τ ∧ τn), v(τ ∧ τn)] ≥ E[1Ω1V (u(τn), v(τn)]

≥ εn→∞

as n→∞, which is a contradiction to 2.17. Thus for τ∞ ≥ τ . By the same argument

on t ∈ [τ, 2τ ],we have τ∞ ≥ 2τ . Repeating this procedure gives τ∞ =∞.
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It is easy to see that v(t) ∈ (β, β + 1
2
) for all t > 0. This enables Theorem 2.5.2

and Theorem 2.5.3 be extended to the system (2.15) with similar arguments.

2.6.2 Numerical Simulation

From previous analysis, we notice that the system (2.15) bears a lot of similar-

ity to the system (2.12). In this subsection, we instead focus on the effect of time

delay on stationary distributions by numerical simulations. As seen in Figure 2.4,

the stationary distribution is bimodal which is not a surprise since the underlying

deterministic system is bistable. As the delay increases (larger τ), the more density

shifts to the high tumor stable state and the bimodality becomes indistinguishable at

τ = 2. We also observe that the mean first passage time from the low tumor stable

state to the high tumor stable state is reduced by increasing τ .

2.7 Discussion and Conclusion

In this paper, we presented a simple model of tumor-immune system interactions,

in which the immune response to tumor is modeled as a non-monotonic function of

tumor burden. We studied the effects of time delay in the immune response and

the uncertainty in the innate proliferating rate of cancer cells on the tumor growth

dynamics. The conditions of tumor extinction and persistence were proved in presence

of noise or time delay. We also performed numerical experiments to confirm analytical

results and to guide future analytical work.

We showed that the magnitude of the tumor reproduction number R0 = µ̂ρ̂

γ̂β̂
relative

to 1 dictates the stability of tumor-free equilibrium. This condition does not depend

on time delay. It suggests that the elimination of cancer depends on the basal level

of the immune system rather than on its response speed to tumor growth. However,

it maybe possible to have delay-induced stability switching for the low-tumor steady
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Figure 2.4: stationary distribution of (2.15) with τ = 0, 0.5, 1, 2. The histogram is
formed by 5000 samples of u(1000).

state. We also established the global stability of tumor-free equilibrium, but that of

interior equilibria is challenging and remains an open problem.

For stochastic version of the model, we showed that the noise can help eliminate

cancer in either case of big or small noise. Similar results in an epidemic model

were obtained by (Gray et al., 2011). We note that the criteria for persistence in

Theorem 2.5.3 is not a necessary condition and in fact far from being a sharp result.

Indeed, parameter sets (c) (d) do not satisfy the persistence condition but appear

to be persistent in the numerical simulation. The improvement of the current result

will be deferred to future work. Also, as seen in the simulation, there is a stationary

distribution of (2.12). However, it is challenging to show this analytically because
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the diffusion matrix is degenerate, which makes the standard techniques employed in

(Wang et al., 2017; Gray et al., 2011) not applicable. There have been recent studies

on the stationary distribution resulting from a degenerate diffusion matrix (Lan et al.,

2018). It will also be the focus of our future work.

When including time delay with noise, we showed that the results we obtained

for noise-only system (2.12) can be easily extended to (2.15). Moreover, we found

numerically that the noise favors transition to high tumor stable state, which was also

observed for an ecological model studied in (Zeng and Wang, 2012). The biological

implication is that the less responsive the immune system is, the easier for the tumor

to escape to high burden. Same as for the noise-only version of the model, the

existence of a stationary distribution of (2.15) will be the focus of future work. There

are some perturbation techniques applied to delayed Focker-Planck equation to study

the effects of time delay on mean first passage time (Küchler and Mensch, 1992;

Guillouzic et al., 1999; Frank, 2005). Those techniques are limited to a scalar equation.

Possible extension to study a system of equations will be carried out in the future.

Time delay and stochasticity are two hallmarks of cancer dynamics. Serious mod-

eling work shall not shy away from them. The model we studied was kept minimal but

nevertheless exhibited interesting dynamics. It is hoped that this paper will stimulate

interests in stochastic delayed differential equations in modeling cancer dynamics.
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Chapter 3

PATIENT-SPECIFIC PARAMETER ESTIMATES OF GLIOBLASTOMA

MULTIFORME GROWTH DYNAMICS FROM A MODEL WITH EXPLICIT

PROLIFERATION AND DEATH RATES

3.1 Abstract

Glioblastoma multiforme (GBM) is an aggressive primary brain cancer with a

grim prognosis. Its morphology is heterogeneous, but prototypically consists of an in-

ner, largely necrotic core surrounded by an outer, contrast-enhancing rim, and often

extensive tumor-associated edema beyond. This structure is usually demonstrated

by magnetic resonance imaging (MRI). To help relate the three highly idealized com-

ponents of GBMs (i.e., necrotic core, enhancing rim, and maximum edema extent)

to the underlying growth “laws,” a mathematical model of GBM growth with ex-

plicit motility, proliferation, and death processes is proposed. This model generates

a traveling-wave solution that mimics tumor progression. We develop several novel

methods to approximate key characteristics of the wave profile, which can be com-

pared with MRI data. Several simplified forms of growth and death terms and their

parameter identifiability are studied. We use several test cases of MRI data of GBM

patients to yield personalized parameterizations of the model, and the biological and

clinical implications are discussed.

3.2 Introduction

Glioblastoma multiforme (GBM) is a highly aggressive primary brain cancer, with

median survival time from diagnosis on the order of 15 months; long-term survival is
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extremely rare (Norden and Wen, 2006). Such rapid progression is promoted by highly

proliferative and diffusely invasive cancer cells, which makes complete surgical removal

impossible. Magnetic resonance imaging (MRI) is conventionally used to identify the

location and characteristics of the tumor pre-operatively, to guide surgery, and to

monitor and track progression and treatment response. Perioperatively, MRI is used

to guide the resection of the tumor mass, to assess post-operatively the volume of

tumor resected, and to target other adjunct treatment such as radiation therapy.

GBMs morphologically typically appear (at least at initial diagnosis) as roughly

spherical but highly heterogeneous masses that often exhibit a (crudely speaking)

three-layer structure. Within the tumor there is usually extensive cell necrosis, of-

ten accompanied by tumor cells, and a cystic component as well. An outer region,

which typically appears as contrast-enhancing on T1-weighted gadolinium contrast-

enhanced MRI, is cytologically typified by proliferating cells that then infiltrate into

surrounding brain tissue. The surrounding brain tissue is generally seen to be edema-

tous on T2-weighted or T2-FLAIR MRI and at surgery, due to vasogenic edema. Prior

statistical analyses have found that edema is a prognostic indicator of patient sur-

vival (Pope et al., 2005), but the relationship is complex and appears to be mediated

by the expression of vascular endothelial growth factor and the activity of related an-

giogenic genes (Carlson et al., 2007) and various autocrine factors (Hoelzinger et al.,

2007).

The standard of care for GBM patients was largely established by the 2005 clinical

trial by Stupp et al. (2005). It comprises maximal surgical resection of the primary

tumor, followed by six weeks of radiation to the gross tumor volume, plus a 2–3 cm

margin, with concomitant oral temozolamide (TMZ), and 6–12 months of mainte-

nance TMZ chemotherapy (Gilbert et al., 2013). Maximal surgical resection appears

to offer some survival benefit. Nevertheless, the absolute survival benefit of even the
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most effective therapy is typically on the order of months. The highly infiltrative

nature of GBMs makes recurrence nearly inevitable, even with maximal resection

and aggressive adjuvant therapy, although individual tumors vary in their degree of

invasiveness.

Given the grim situation, mathematical modeling has been proposed as a method

to better understand the biophysical rules underlying GBM growth, with the ultimate

goal to provide more effective therapy. Mathematical models have been widely applied

to a variety of cancers and to cancer treatment in general (Kuang et al., 2015), and

GBM is the focus of many such works (see (Martirosyan et al., 2015) for a review).

A popular class of cancer models takes the form of a system of reaction-diffusion

equations. In many cases (Harley et al., 2014; Gerlee and Nelander, 2016; Stepien

et al., 2018), such systems generate a traveling-wave solution, with the traveling-wave

speed of great interest, as it is an indicator of how fast the cancer progresses.

Variants of the Fisher-Kolmogorov equation (Fisher, 1937), originally introduced

in the 1930s, were first suggested (to our knowledge) as models for GBM growth by

J. D. Murray and coworkers. The Fisher-Kolmogorov model is given by

∂c

∂t
= ∇ · (D∇c) + ρc

(
1− c

K

)
, (3.1)

where c(x, t) is the cancer cell density at location x and time t, D is a diffusion

coefficient, ρ is the intrinsic tumor cell growth rate, and K is the local carrying

capacity. (Variants include a linear version that replaces the logistic growth term

with a simple exponential growth rate, ρc.) Murray and coworkers have used them

to explore the effect of chemotherapy (Tracqui et al., 1995), to quantify patients’

survival as a function of the extent of surgical resection (Woodward et al., 1996), and

to estimate the time of tumor initiation (Murray, 2012).

Other authors have suggested that the net growth and diffusion parameters of
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model (3.1) may be estimated by image differencing when two sequential, pre-treatment

patient MR series are available (Swanson et al., 2008; Neal et al., 2013; Jackson et al.,

2015). Such a procedure is problematic, however, because changes in the tumor in

images taken a few days or weeks apart tend to be small and are convolved with im-

age co-registration errors (van der Hoorn et al., 2016). Some patients may be treated

with steroids following initial diagnosis to reduce tumor-related edema and resulting

neurological symptoms, which may alter the brain geometry and imaging appearance

of the tumor at subsequent times (Watling et al., 1994; Zaki et al., 2004).

Model (3.1) can yield a dense tumor core with an advancing front, but it cannot

capture the heterogeneity between live and necrotic tumor cells, as it assumes that

all cells are equally viable. While several modeling efforts have taken into account

various proliferating, migrating, and necrotic cell components (e.g., (Eikenberry et al.,

2009; Swanson et al., 2011)), they are too complicated to be reliably parameterized

by the limited number of patient MRI series in typical clinical cases. The motivation

for this work is to extend model (3.1) to include necrotic cells in a simplified way, such

that patient-specific model parameters can be estimated from suitable measurements

of MR images acquired at a single time point.

T1-weighted MRI sequences of GBM often show a partially necrotic core sur-

rounded by a bright enhancing rim that correlates with high blood vessel density and,

presumably, with rapid cell proliferation. Neurosurgical and biopsy studies indicate

that this core and rim are usually surrounded by a large expanse of edema, which is

best visualized on T2-weighted MRI and has been found to correspond with a compo-

nent of diffusely invasive GBM cells (Claes et al., 2007). By approximating the tumor

as a sphere, we may be able to identify three idealized digital marks from imaging:

necrotic radius, enhancing radius, and what we shall call the “T2” or “maximum”

radius. We hypothesize that a relatively simple mathematical model framework can
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capture all these three digital marks and yield insights into the relative contributions

of cellular proliferation, motility, and necrosis to the observed image features.

The next section describes our model and its assumptions. We demonstrate that

the model has a traveling-wave solution and present the approximate wave profile.

We describe a simple procedure to estimate patient-specific parameters by fitting

the approximate wave profile to a tumor profile derived from patient MRIs. The

identifiability of the model parameters is also discussed. We apply this parameter

estimation procedure to obtain the key model parameters (consisting of the rate of

cancer cell proliferation, death, and diffusion) for several patients.

3.3 Model and Method

3.3.1 Model Description

Our proposed model of the growth of GBM is a system of reaction-diffusion equa-

tions:

∂p

∂t
= ∇ ·

[(
Dp

p+ q

)
∇(p+ q)

]
+ g̃(w)p− δ̃(w)p, (3.2a)

∂q

∂t
= ∇ ·

[(
Dq

p+ q

)
∇(p+ q)

]
+ δ̃(w)p, (3.2b)

where

w = 1− p− q, (3.3)

and p(x, t) and q(x, t) represent the proliferating and quiescent cell densities at time

t and location x, respectively; quiescent cells are functionally equivalent to necrotic

cells in this framework. We assume that the flux of total population due to migration

is −D∇(p+ q), where D is a constant diffusion coefficient. It is further assumed that

the proportion of the total flux contributed by each cell type equals its proportion of

the total population. This form of diffusion was used in (Sherratt and Chaplain, 2001)
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to account for the key property of contact inhibition in cancer cell movement, with

the underlying assumption that the two cell populations move together with equal

motility, unaffected by necrotic cells. This type of model has successfully captured

the structure of a growing tumor.

The per capita proliferation rate is g̃(w); proliferating cells become quiescent at

the per capita rate δ̃(w), where w (Eq. 3.3) represents the availability of space or

some generic nutrient, which we will call growth factor henceforth. We have scaled

the maximum cell density to be 1. In our model, necrosis is not explicitly included

but can be regarded as being lumped into q. Insofar as quiescent cells cannot become

proliferative, δ̃(w) can be viewed as a functional death rate. Our motivation in keeping

the model framework relatively simple is to be able to estimate model parameters

directly from clinical MRI imaging that is sparse in time.

To make the model biologically reasonable, we impose the following constraints

on g(w) and δ(w):

g̃′(w) ≥ 0, δ̃′(w) ≤ 0, g̃(1) ≥ δ̃(1) = 0, δ̃(0) > g̃(0) = 0. (3.4)

That is, proliferation (death) should increase (decrease) with the availability of the

growth factor; there is more proliferation than death at maximum values of the growth

factor; and there is only death with no growth in the absence of growth factor. It

is also assumed that the death rate is negligible at maximum values of the growth

factor. With these assumptions, we observe numerically that with suitable initial

conditions, the solution of (3.2) stays positive and is bounded (p+ q ≤ 1) for all t.

We can estimate only up to three parameters based on the necrotic, enhancing,

and maximum radii to be measured from MRI images. Therefore, we place a few more

restrictions on g̃(w) and δ̃(w) to simplify the estimation of model parameters and to

ensure their identifiability. We assume that the proliferation rate at maximum growth
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factor is ρ and that the death rate at zero growth factor is k and incorporate these

parameters into g̃ and δ̃, respectively; that is, g̃(w = 1; ρ) = ρ and δ̃(w = 0; k) = k.

For reasons that will become clear later, we pick a functional form that can be written

as g̃(w; ρ) = ρg(w) and δ̃(w; k) = kδ(w). Some examples include the cumulative

distribution function of the beta distribution family (cf. the left pane of Figure 3.4).

These additional assumptions impose little impact on the generality of our model.

The benefit of including them will become clear in Section 3.3.3.

3.3.2 Approximate Wave Profile

In most biological applications of reaction-diffusion models, solutions take the

form of traveling waves. MRI images of GBM cancer growth suggest that we can

approximate the evolution of the tumor by a traveling-wave solution of its growth

model. To uniquely identify and accurately approximate GBM growth model param-

eters, it is highly desirable to obtain some analytic approximation of the traveling

wave, to enable computational matching of the image wave profile and the approxi-

mate model wave profile. For this purpose, we consider one spatial dimension, which

suffices insofar as the tumor is approximately spherical, and, at the time of diagnosis,

its radius is large enough so that radial effects are negligible. With these assumptions,

model (3.2) takes the form

∂p

∂t
=

∂

∂x

[(
Dp

p+ q

)
∂

∂x
(p+ q)

]
+ ρg(w)p− kδ(w)p (3.5a)

∂q

∂t
=

∂

∂x

[(
Dq

p+ q

)
∂

∂x
(p+ q)

]
+ kδ(w)p. (3.5b)
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We nondimensionlize the system using the characteristic length
√
D/k and the char-

acteristic time 1/k so that x =
√
D/k x̂ and t = t̂/k, which leads to

∂p

∂t̂
=

∂

∂x̂

[(
p

p+ q

)
∂

∂x̂
(p+ q)

]
+ ρ̂g(w)p− δ(w)p (3.6a)

∂q

∂t̂
=

∂

∂x̂

[(
q

p+ q

)
∂

∂x̂
(p+ q)

]
+ δ(w)p, (3.6b)

where ρ̂ = ρ/k. We seek a traveling wave solution of the form p(ξ) = p(x̂ − ct̂),

q(ξ) = q(x̂− ct̂), where c is the wave speed. Substituting these into (3.6) gives

d

dξ

[(
p

p+ q

)
d

dξ
(p+ q)

]
+ c

dp

dξ
+ ρ̂g(w)p− δ(w)p = 0 (3.7a)

d

dξ

[(
q

p+ q

)
d

dξ
(p+ q)

]
+ c

dq

dξ
+ δ(w)p = 0. (3.7b)

Linearizing at the wave head, i.e., substituting the ansatz p = Ae−rξ and q = Be−rξ

into (3.7), gives (r2 − cr + ρ)A = 0. For a biologically realistic wave front, we expect

A > 0, B > 0, and r > 0. This requires that c2 > 4ρ, which implies that the minimum

speed of the wave is cmin = 2
√
ρ̂. It is numerically verified that the minimum speed

is exactly the asymptotic speed, i.e., c = cmin.

To obtain an approximate wave profile, we adopt a method first used by Canosa (Canosa,

1973). We rescale the wave coordinate as z = −ξ/c, which leads to

1

c2

d

dz

[(
p

p+ q

)
d

dz
(p+ q)

]
− dp

dz
+ ρ̂g(w)p− δ(w)p = 0, (3.8a)

1

c2

d

dz

[(
q

p+ q

)
d

dz
(p+ q)

]
− dq

dz
+ δ(w)p = 0. (3.8b)

Assuming that 1/c2 is small, we neglect each first term of (3.8). Writing the resulting

system in terms of p and w, we obtain the reduced system

dp

dz
= p

(
ρ̂g(w)− δ(w)

)
, (3.9a)

dw

dz
= −p ρ̂g(w), (3.9b)
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Figure 3.1: A typical trajectory that connects (0, 1) and (0, w∗) in the phase plane.
Given δ(w) and g(w), this trajectory can be found by integrating (3.10). It represents
an approximate traveling-wave solution. See the appendix for a proof of its existence
under general assumptions.

which is amenable to phase-plane analysis. The approximate wave solution corre-

sponds to a trajectory that leaves (0, 1) and ends at (0, w∗), with w∗ ∈ [0, 1) (see

Figure 3.1). (In the appendix, we show that such a trajectory exists, given the as-

sumptions (3.4).) Dividing (3.9a) by (3.9b) yields

dp

dw
=

δ(w)

ρ̂ g(w)
− 1. (3.10)

Upon integration, we obtain p as a function of w, which we will use in the next section.

3.3.3 Parameter Estimation

From clinical MRI data, we may derive three idealized radii: R0, R1, and R2,

representing respectively the radius of the inner necrotic core, the radius to the edge

of the contrast-enhancing rim, and the radius to the outer edge of tumor-associated

edema. Such data have been extracted from a series of anonymized patient MRI data
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consisting of T1-contrast enhanced and T2-weighted MRIs at initial diagnosis. Using

the publicly available MATLAB software package, Statistical Parametric Mapping 12

(SPM 12) (Penny et al., 2007), MRIs are initially registered to a standard brain space,

and then, using Slicer 3D (Fedorov et al., 2012) software, the total necrotic core vol-

umes, enhancing rim volumes, and tumor-associated edema volumes are determined

from semi-manual tumor segmentation. Finally, these volumes are converted to radii

assuming a spherical tumor geometry. The width of the proliferating rim, denoted

as L1, and the width of the edematous rim, denoted as L2, can be calculated as

L1 = R1 −R0 and L2 = R2 −R1, as demonstrated visually in Figures 3.2 and 3.3.

We assume that contrast-enhancing regions of T1-weighted images correspond

to high densities of proliferating tumor cells and that edematous regions on T2-

weighted imaging correspond to low densities. We denote the respective detection

thresholds for T1 and T2 imaging as a1pmax and a2pmax, where 0 < a2 < a1 < 1

and pmax = maxz p(z), i.e., the maximum density of proliferating cells given by the

traveling-wave solution.

Often only a single MRI series is available before surgery, although in some cases,

a diagnostic MRI followed some days or weeks later by a pre-surgery MRI may be

available. In the latter case, the image-derived wave velocity V is the change in tumor

radius divided by the length of the time interval.

From our approximate wave profile, we can compute the corresponding quantities

to match with MR images (cf. Figure 3.3). The wave-solution based approximation

of the width of the proliferating rim, denoted `1, and the width of the edematous rim,

denoted `2, (in dimensional form) are computed as

`1 =
2
√
Dρ

k

∫ w+
1

w−1

dz

dw
dw, (3.11a)

`2 =
2
√
Dρ

k

∫ w−1

w2

dz

dw
dw, (3.11b)
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respectively, where w±1 and w2 satisfy, respectively, p(w±1 ) = a1pmax and p(w2) =

a2pmax. Here p(w) is obtained by integrating Eq. (3.10) (see appendix for details).

Additionally, the model-derived wave speed c = 2
√
ρD can be matched with the

image-derived speed V . Thus we have three nonlinear equations

`1 = L1, `2 = L2, c = V, (3.12)

from which we hope to find the parameters D, ρ, and k. Given our assumptions, we

can simply take the ratio of (3.11a) and (3.11b), which gives

f(ρ̂) ≡

∫ w+
1

w−1

dz

dw
dw∫ w−1

w2

dz

dw
dw

=
L1

L2

, (3.13)

insofar as the integrals are functions of ρ̂. Equation (3.13) can be solved for ρ̂ analyti-

cally in special cases or numerically in general. The monotonicity of f(ρ̂) is important

for the identifiability of parameters. Once we find ρ̂, i.e., the ratio ρ/k, all parameters

can be found by back substitution.

The above method requires two MR scans taken at two consecutive times prior to

surgery to obtain an image-derived estimate of wave speed. If no second MR series is

available, then tumor age may be estimated by the tumor radius divided by the wave

speed. However, the estimate depends on which radius (R1 or R2) is used, because

the tumor grows exponentially at first and linearly later on (Kuang et al., 2015). This

initial exponential growth stage needs to be taken into account as a correction to the

aforementioned tumor age estimation. Suppose that for 0 ≤ t ≤ t∗, quiescence is

negligible and the proliferating cancer cells grow exponentially from a point source

of density p0, and that for t > t∗, the tumor grows as a traveling wave with speed

2
√
ρD. By equating the two age estimates, we obtain

R1 −R∗1
2
√
ρD

=
R2 −R∗2
2
√
ρD

, (3.14)
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where

R∗i = t∗

√
4Dρ− 4D

t∗
ln

(
ai(4πDt∗)3/2

p0

)
, i = 1, 2, (3.15)

where R1 and R2 are respectively the T1 and T2 radii at t = t∗ (see details of R∗1 and

R∗2 in the appendix).

Replacing the last equation in (3.12) with (3.14), we again have three equations.

To solve them for the unknown parameters, we first take (3.11a) over (3.11b) as

before to obtain (3.13). It can then be solved for the ratio ρ̂ = ρ/k. Substituting this

expression back to either `1 = L1 or `2 = L2 gives the raito ρ/D. Finally, expressing

D and k in terms of ρ, (3.14) can be solved for ρ, and D and k follow.

3.4 Results

Monotonicity is crucial for parameter identifiability, so we first investigate the

monotonicity of f for some specific choices of g(w) and δ(w). Given the restric-

tions described in Section 3.3.1, the cumulative density function (CDF) of the Beta

distribution family suits our purposes. Therefore, we let g(w) = B(w;αg, βg) and

δ(w) = 1 − B(w;αδ, βδ), where B(w;α, β) is the CDF of the beta distribution with

shape parameters α and β. By varying α and β, we can get linear, sigmoidal, and

concave up/down curves (see the left pane of Figure 3.4). Our framework is robust

to those choices, that is, the monotonicity of f(ρ̂), defined by Eq. (3.13), is preserved

(right pane of Figure 3.4). Sigmoidal-shaped growth and death functions (g and δ,

respectively) may provide biologically realistic response functions to limited growth

factors (most enzymatic reaction rates have sigmoidal shapes with respect to reac-

tant concentration). Given this family of functions, we now consider the question of

estimating patient-specific tumor growth and death rates from MR imaging.

We parameterize our model with patient data in which there is only one MRI

scan before surgery. In Table 3.1, we summarize the image-derived tumor radii and
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Figure 3.2: The top half of the figure shows an example patient MRI registered to
the standard brain domain, with the three tumor segments, necrotic core, enhancing
rim, and tumor-associated edema highlighted on a single 2-D slice. The full 3-D
segmentation, and the equivalent tumor sphere with associated radii, R0, R1, and R2,
is shown in the lower half.
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Figure 3.3: Left: normalized wave profile generated by the model in the z coordinate.
Right: tumor profile seen in MR image. Parameter estimation is done by matching
model-derived quantities, e.g., `1 and `2, to the corresponding image-derived ones.

the corresponding parameters estimated by the method introduced in the previous

section. The parameters a1 = 0.9 and a2 = 0.1 are adapted from values found in the

literature (Swanson et al., 2008), while p0 = 0.02 and t∗ = 60 days are hypothetical

values. The parameters vary considerably among individual patients.

We compare our approximate quantities to those obtained from the numerical

solution of the model. As shown in Figure 3.5, the approximated results match well

with the numerical results except for some discrepancy for L2 when ρ̂ is small. This

result is not a surprise, because the approximation assumes that c = 2
√
ρ̂ is large.

Moreover, the numerical approximation of L2 is prone to errors due to the fixed grid

size and large rate of change around the threshold of L2. Overall, we believe that our

approximation is accurate for the parameter ranges estimated from the image data.
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Figure 3.4: Left: Cumulative distribution functions of some beta distributions.
These functions satisfy Eq. (3.4) and serve as candidates to represent biological re-
sponse to limitation of growth factors. Right: monotonicity of f(ρ̂) given different
choices of g(w) and δ(w) as indicated in the legend. All choices lead to a monotonic
function f(ρ̂) and hence identifiable parameters.

Table 3.1: Radii of equivalent tumor sphere derived from T1 and T2 images and the
corresponding vital parameters estimated by our protocol. We have preset a1 = 0.9,
a2 = 0.1, p0 = 0.02 mm and t∗ = 60 days.

Patient R0 (mm) R1 (mm) R2 (mm) D (mm2day−1) ρ (day−1) k (day−1)

1 14.87 20.73 27.77 0.2852 0.2102 0.0602

2 20.48 26.34 38.24 1.2791 0.2624 0.3537

3 6.61 10.91 15.24 0.0825 0.1736 0.0327

4 22.87 26.96 37.03 0.9825 0.2590 0.7819

5 8.17 14.20 25.10 0.9769 0.2520 0.2260

6 8.29 15.83 20.35 0.0687 0.1652 0.0106

53



2.5 3 3.5

approx. L1

2.5

3

3.5

n
u
m

. 
L
1

2 4 6 8

approx. L2

2

4

6

8

n
u
m

. 
L
2

0.4 0.6 0.8

approx. p
max

0.4

0.5

0.6

0.7

0.8

n
u
m

. 
p

m
a

x

0 2 4

approx. wave speed

0

1

2

3

4

5

n
u
m

. 
w

a
v
e
 s

p
e
e
d

Figure 3.5: Scatter plots of approximate wave profile characteristics (on horizontal
axis) versus the ones obtained by numerical simulation (on vertical axis) for a range
of ρ̂ from 0.5 to 5 by increments of 0.5. The size of the dot corresponds to the value
of ρ̂. The dots scatter closely to the diagonal line with slope 1, indicating agreement
between the numerical solution and our approximation.
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3.5 Discussion

In this work, we have extended the Fisher-Kolmogorov reaction-diffusion model of

GBM growth, Eq. (3.1), to explicitly separate the cancer cell proliferation and death

(or quiescence) processes, which are described in terms of generic functions that

depend upon an implicit nutrient or growth factor. We specify the proliferation and

death processes, g(w) and δ(w), respectively, by the cumulative distribution function

of a beta distribution, each uniquely specified by a single parameter, ρ and k. Thus,

along with the diffusion coefficient, D, our model describes cancer growth via three

parameters, D, ρ, and k, and yields a tumor morphology (in one dimension) consisting

of a necrotic core, a high-density rim, and an outer low density rim, which we may

correlate to three radii, R0, R1, and R2, that can be estimated from a single patient

MR image.

We have demonstrated that our reaction-diffusion system has a traveling-wave

solution, which is common in such systems. Studies on this topic date back to the

Fisher’s work in the 1930s on the spread of advantageous genes (Fisher, 1937). Rig-

orous proof of the existence of a traveling-wave solution in a reaction-diffusion system

often leads to phase-space analysis such as the one on the diffusive Lotka-Volterra

equations (Dunbar, 1983). Although in general a rigorous proof of a traveling-wave

solution is a daunting task, our reduced system is amenable to phase-plane analy-

sis, and the orbit that represents the traveling-wave solution can be identified (see

appendix).

Via traveling-wave analysis, we have developed a method to estimate D, ρ, and k

from as few as a single magnetic resonance image, based on certain growth assump-

tions. We have estimated these parameters for six patient test cases, as shown in

Table 3.1. Because of the sparsity of imaging data for a typical patient, parameter
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identifiability in this case is provided by the monotonicity of the function f(ρ̂) (as

seen in left pane of Figure 3.4); our approach differs from more common statisti-

cal practices (Eisenberg and Jain, 2017) that are appropriate when more data are

available.

Disaggregating the net cell proliferation into proliferation and death processes not

only aids in relating (simplified) tumor appearance on MRI to the model parameters,

but it may provide useful valuable information for personalized treatment design,

insofar as chemotherapy and radiotherapy target proliferating cells. Moreover, the

structural information is also potentially useful, as drug dosages might be selected to

ensure penetration through the width of the proliferating rim. Research along this

general line has been conducted using model (3.1) (Kim et al., 2017).

Our analysis uses a more complex description of motility than simple diffusion.

The diffusion term in Eq. (3.5) belongs to a more general category called cross diffu-

sion (Madzvamuse et al., 2017). It represents the phenomenon in which the gradient

in the concentration of one species causes a flux of another species. The type of cross

diffusion considered in this paper has been studied in a more general and theoretical

context (Sherratt, 2000). In a modeling study of avascular tumour growth (Sherratt

and Chaplain, 2001), the authors justified the adoption of a proportion-based cross

diffusion in a tumor-growth model by recognizing that tumor cell migration is “con-

tact inhibited”: the presence of one type of cell halts the movement of the other. This

type of cross diffusion can cause the solution to become negative (Madzvamuse et al.,

2017), but we have not encounted this difficulty so far in our numerical simulations.

We conjecture that, for suitable initial conditions, solutions remain positive, which

will be a topic for future study. Other types of density-dependent diffusion have been

considered in modeling GBM migration (Stepien et al., 2015).

Despite the existence of many possible diffusion terms, the exact form of diffusion
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does not matter in the one-dimensional analysis, because the second derivatives are

dropped in model (3.8). However, The diffusion coefficient does play an important

role in the linearized wave head, where it affects the wave speed, and in the charac-

teristic length where its square root scales the space. The scale-invariant part of the

wave profile is mostly determined by the exact forms of the proliferation and death

functions.

The major contribution of this paper is two novel methods to make patient-specific

estimates of a three-parameter model of GBM grwoth from the limited MRI data

that is typically available in clinical settings. It is possible to estimate the model

parameters from a single pre-surgery image. Improved estimates may be possible

when images are acquired at multiple time points.

As cancers progress, the underlying parameters describing their growth are un-

likely to be static. Data assimilation refers to basic method of updating parameters

as more data is acquired, and there has been research on applying full-fledged data

assimilation to cancer modeling (Kostelich et al., 2011; McDaniel et al., 2013). The

methods described in this paper can be incorporated as part of a future data assimi-

lation system.
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Chapter 4

SPATIO-TEMPORAL FORECASTING USING GAUSSIAN PROCESSES WITH

APPLICATION TO PREDICT GLIOMA INVASION

4.1 Abstract

Mathematical models have been used to study spatio-temporal patterns of brain

cancer invasion and make predictions. In order for any model predictions to be

clinically useful, they need to be confronted with data, and their uncertainty has to be

quantified. However, there is no “ground true” models in biology and all formulations

tend to under-/over-fit data. We propose a nonparametric forecasting method to

address these issues. A Gaussian process prior is assumed on the transition function.

By exploiting the local nature of the spatio-temporal process, we can make reasonable

predictions with very sparse time-series data. We test our method with synthetic data

generated by a discretized version of bistable equation and show promising results.

4.2 Introduction

Glioma is a common primary tumor that occurs in the brain. It invades aggres-

sively resulting in low patient survival rate and short life expectancy. The biological

mechanism of glioma invasion is complex, including phenotypic plasticity, genetic

variability, hypoxia-induced migration, immune system ligament, etc (Alfonso et al.,

2017). The spatio-tempoeral process of glioma invasion is partially revealed by MRI

scans or biopsy in clinical settings. This usually guides treatment decisions, which

oftentimes involves resection and radiation targeting the tumor. Improvement and

innovation of clinical treatment can benefit from a better use of the information avail-
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able and a model with prediction power.

Mathematical modeling has been applied to study glioma invasion (see Mar-

tirosyan et al. (2015); Alfonso et al. (2017) for a comprehensive review). Many of

them are developed towards to clinical applications and can provide predictions of

tumor growth. Despite effectiveness of mathematical modeling in physics, biological

systems are usually very complex and there is no canonical models for biological sys-

tems that represent the ground truth. Most models in biology focus on one or a few

aspects of the underlying biology. Oftentimes they are formulated based on heavy

assumptions, which are hard to verify due to the complexity of biological processes

and lack of data. There is no exception for mathematical models of glioma invasion.

Moreover, for any models to be clinically useful, it has to be confronted with patients’

data and the uncertainty of its predictions has to be quantified. There are two chal-

lenges in data-driven modeling of spatio-temporal processes: high dimensionality and

over-/under-fitting. High dimensionality is inherent in the need to represent space.

Compounding with this challenge is the scarcity of personal clinical data, e.g., only a

few MRI scans of each patient are usually available. It is nontrivial how to learn the

dynamics with such scarce data. As for data fitting, simple models may not capture

all the variations in data and hence tend to under-fit while sophisticated models tend

to treat noise as signals and hence over-fit. It is challenging to strike a balance to

find the best model that maximize the information extracted from the data without

over-fitting.

To tackle these challenges, we propose a state space model with a transition func-

tion as a Gaussian process (GP) acting locally. GP regression is a nonparmetric

method that in theory avoids under-/over-fitting (reviewed in next paragraph). Rep-

resenting transition function as a Gaussian process has gained a lot of interests in the

literature of machine learning and system identification (Girard et al., 2003; Deisen-
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roth et al., 2009), where it is sometimes called recurrent GP since GP is used recur-

rently to map one state to the next in time. It has been successfully used to predict

pedestrian’s movement for self-driving cars (Wang et al., 2008). But applications

to spatio-temporal process in high dimensionality settings are unprecedented to our

knowledge, which we intend to embark in this work. By exploiting the local nature of

the spatio-temperoal process, the transition function can be effectively learned using

only two consecutive data in time. In reality, these two consecutive data corresponds

to diagnostic and presurgical MRI scans. Based on these data, we can make fore-

casting onward by recurrently applying GP. By exploiting Gaussianity, uncertainty

can be propagated with exact integration, which reduces the otherwise overwhelming

computational costs.

We briefly review the GP regression. More details can be found in (Rasmussen

and Williams, 2006). A GP f(x), denoted as f ∼ GP(m(x), k(x, x′), is a stochas-

tic process that is entirely determined by its mean function m(x) and its covariance

function k(x, x′). For any finite collection of xi with i = 1 . . . n, the joint distribu-

tion of f(x1), f(x2) . . . f(xn) is a multivariate normal with mean m(x1) . . .m(xn) and

covariance matrix with entry being k(xi, xj). The GP regression assumes a model

y = f(x) + ε where iid ε ∼ N(0, σ2), and places a GP prior on the latent function f ,

denoted as f ∼ GP(m(x), k(x, x′). Given n training data D = {xr, yr : r = 1 . . . n}

where yr = f(xr) + εr as input-output pairs, the GP regression makes inferences of

f(x∗j) at the m test input x∗j with j = 1 . . .m by conditioning on D. The conditional

is easily worked out since the joint distribution is a multivariate normal, i.e.,
f

f∗

 ∼ N(


m(x)

m(x∗)

 ,


Σ K∗

KT
∗ K∗∗

)

where f , f∗,m(x) and m(x∗) are vectors, and Σ = k(x,x)+σ2I, K∗ = k(x,x∗), K∗∗ =
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k(x∗,x∗) are matrices. Here for the ease of notation we have combined individual

training data xr, yr and and test points x∗j into bold notations so that the function

acting on them are understood as vectors or matrices. For example, m(x) is a vector

with j-th component being m(xj) and k(x,x∗) is a matrix with entries [k(x,x∗)]ij =

k(xi, x
∗
j). As a result,

f |f∗ ∼ N(m(x) +KT
∗ Σ−1(f −m(x)), K∗∗ −KT

∗ Σ−1Σ∗) (4.1)

Note that in the standard GP regression, training input x and testing input x∗ are

noise-free. In the case of otherwise, the uncertainty in x and x∗ can be taken into

account by making appropriate assumptions and approximation.

The paper is organized as the following. In the Section 4.3, we motivate and

describe the local GP method. In the section 4.4, we test the method with synthetic

data. In section 4.5, assumptions made in this work are discussed and future directions

are pointed out.

4.3 Method

We motivate our method by looking at a commonly used PDE model of brain

cancer invasion: the Fisher-KPP equation

ut = Duxx + (1− u)u

where u(x, t) is the cancer cell density at position x and time t. Finite difference

discretization gives

un+1
j = unj +

∆t

∆x2
(unj+1 − 2unj + unj−1) + ∆tunj (1− unj ),

where superscripts indicate time and subscripts indicate space. This discretization

reflects the local nature of PDEs.
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Oftentimes we don’t have exact measurement of u but a noisy version of it, denote

as v at some discrete spatial points. To make use of these observation data, we let

u ≡ (uj)j∈{1:nx} and consider a state-space model

un = f(un−1) + ε (4.2)

vn = g(un) (4.3)

where f(·) is a deterministic transition function, g(·) is a probabilistic observation

model, and we assume noise ε ∼ N(0, σ2
ε I) for now. We could specify f(·) to be

the finite difference discretization of a PDE model such as Fisher-KPP or certain

parametric formula (e.g. truncated basis expansion by Wikle and Hooten (2010)).

However, there are many PDE models/basis expansion of various complexity and

aspects. There are clearly no exact models in biology. These aforementioned modeling

approaches oftentimes suffer from under-/over-fitting.

We instead take a nonparametric approach using Gaussian processes (GP). In a

sense, it is a model-free approach, i.e., we do not formulate any models to fit data,

but let the data dictate the prediction. To make use of data that is sparse in time,

we exploit the local nature by making f a local map (Figure 4.1), i.e., unj = f(un−1
N (j))

where N (j) is an ordered set of local neighbors of j including j, and accordingly un−1
N (j)

is a vector of un−1
i for i ∈ N (j) that preserve this order.

We digress here to expand an explanation of the ordering of N (j) , which also

exposes the essence of nonparametric methods and biological insight. First, the size

of the local neighborhood should reflect the scale of biological iterations in a time

step. From a modeling point of view, it is important to determine the size of the local

neighborhood, i.e., how many neighbor sites should be included. In another word, we

need perform variable selection. Luckily, Gaussian process regression with the squared

exponential covariance function has built-in variable selection capability, also known
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Figure 4.1: f as a local map. Here the neighborhood of a site includes itself and
two adjacent sites, e.g. N (j + 1) = {j, j + 1, j + 2}

as automatic relevance determination (Neal, 2012; Williams and Rasmussen, 1996;

Rasmussen and Williams, 2006). Second, the ordering of the neighborhood set should

be chosen carefully. A straightforward approach would be taking the ordering same

as the one of the spatial grids. However, it is beneficial to use an ordering of N (j)

that makes biological sense or exploits certain symmetry of the problem (see next

section for a comparison between the naive ordering and a biologically meaningful

ordering). In the case of predicting cancer cell invasion, we imagine that the fate of

a cell is solely determined by crowdedness of the site it occupies and its immediate

neighbor sites. Our data tells us how the cell behaves in a variety of situations of local

crowdedness. When we need to make a prediction in a new situation, it is natural

to base the prediction on the situations we have seen before. This entails a measure

of how similar the new situation is compared to the known situation offered by data.

It is straightforward to compare the crowdedness of the occupied site directly by

looking their difference. But how about the neighbor sites? We propose an ordering

in which the neighbor sites are ranked by its cell density and then take the difference
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component-wisely. This proposed ordering would enhance the data-use efficiency. The

price is that it is incapable to capture a process that exhibits advection or anisotropic

diffusion.

We also comment that the notation of f is slightly abused since f was used to

denote the global map in (4.2) while it is also presents a local map (Figure 4.1); we

will not distinguish them henceforth as it is easily understood in a context. We place

a GP prior on f , i.e., f(s) ∼ GP(µ(s), k(s, s′)). We could use a priori beliefs of the

dynamics to specify the mean function µ(·). For the time being, we simply assume

µ(uN (j)) = uj, e.g, the tumor activity stays unchanged, to demonstrate the capability

of the method without any specific knowledge of the dynamics. We use the squared

exponential covariance function, i.e.,

k(s, s′; Λ−1) = σ2
k exp(−1

2
(s− s′)TΛ−1(s− s′)) (4.4)

where Λ = diag(`i) is a diagonal matrix of the length scales. Here `i , σk, and possibly

σε, are hyperparameters and estimated by maximizing “marginal likelihood” (Ras-

mussen and Williams, 2006). It should be noted that the choice of covariance function

(4.4) is made to facilitate the uncertainty propagation, which will be described later.

Another benefit is that the squared exponential covariance function enables automatic

relevance determination: the characteristic length `′is tells the relative importance the

corresponding variable.

In this work, we focus on forecasting and defer filtering and smoothing to future

study. Since there has not been any clearly established quantified relationship between

cancer cell density and MRI enhancement, we choose to leave out the observation

model (4.3). Instead, we assume availability of two consecutive data (D) not far

separated in time of exact observation of the latent variable u, e.g., D = {u0,u1}.

The assumption on the small time interval is not needed in a strict sense: presumably
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the larger time interval would lead to larger interaction neighborhood, which entails

a more challenging task of learning a higher dimensional mapping. In reality, the two

observations correspond to diagnostic and presurgical MRI scans which are oftentimes

separated by a week or two. It should also be noted that (4.2) may lead to negative u.

So we cannot strictly interpret u as cell density. Instead we understand it as a measure

of abundance of cancer cells. We could exponentiate u and use it as the parameter

for Poisson observation model so that we can regain positivity. This approach has

been adopted in (Hooten and Wikle, 2008).

Recall that u2 = f(u1) + ε so that u2|u1,u0 is a multivariate normal whose mean

and variance are readily known by standard GP regression (see (4.1)). To move

forward in time, we can apply the same inferences again but with test input being

u2 this time. Since u2 is not deterministic and has uncertainty in itself, we need

a way to do the same inference with uncertain test input. Fortunately, the mean

and variance of u2 can be worked out analytically due to our choice of k(s, s′) and

the fact that the product of Gaussian functions is also a Gaussian function. Even

though u2 is not necessary Gaussian distributed any more, we approximate it as a

multivariate Gaussian by matching the first two moments. In this way, we can repeat

the procedure to propagate the uncertainty. The details on how to take into account

the uncertainty of test input are given in Appendix D.1.

One more approximation is necessary when the number of states is large. Because

the size of the covariance matrix grows quadratically with the number of the states, it

quickly becomes impractical to keep track of a dense covariance matrix. For instance,

a 2D 100 by 100 grids entails a covariance matrix of 108 entries. Since we believe

that system dynamics is dominated by local interactions, we approximate the dense

covariance matrix by only keep track of the covariance between states which are

in a local neighborhood, effectively making the covariance matrix sparse. Similar
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approaches have been taken in local Kalman Filters (Hunt et al., 2007).

4.4 Results

4.4.1 Test on 1D Synthetic Data

We obtain the synthetic data motivated by the discretization of 1D bistable equa-

tion

un+1
j = unj + θ1(unj+1 − 2unj + unj−1) + θ2u

n
j (1− unj )(unj − α) + εnj (4.5)

where εnj ∼ N(0, σ2) is independent in space and time. The choice of (4.5) is due

to its simplicity and regularity. The bistable equation is known to have a traveling

wave solution given a suitable initial condition. The traveling wave resembles cancer

progression. The zero steady state of the homogeneous system is stable. Since the

additive white noise inevitably leads to negativity, this stability is favored in contrast

to Fisher-KPP equation which may go to negative infinity. That being said, the

slight negativity may pose some issues of interpretability. Here u can be interpreted

as intensity of underlying tumor activity rather than cell density in a strict sense. We

could also interpret u as a log of the cell density. Since the focus of this chapter is on

forecasting, we forgo some of the rigor in model interpretation.

We use the numerical solution at two consecutive time points as training data. The

hyperparameters found by maximizing marginal likelihood are reported in Table 4.1.

It is obvious that only immediate neighbors are relevant and should be included in

the neighborhood set. The neighbors that are two sites away have length scale several

magnitude larger and hence does not contribute to prediction. It is as expected since

the training data are generated from two consecutive time of (4.5).

Then we obtain our forecasting results and compare them with the realized sample

paths. We pick two starting points for forecasting, namely fledged and burgeoning

66



data(see Figures 4.2 and 4.3). Our forecasting predictions captured the general trend

of the true process and showed gradual deterioration of the prediction. The quality

of the prediction depends on the starting point which controls what the training data

is used. Obviously, we shall not expect the forecasting to work well on the region of

unseen data. Even though the predicted mean was in disparity with the true mean,

the uncertainty bounds were large. This showcases the strength of the method in

uncertainty quantification.

Figure 4.2: Forecasting to time t = 2, 8, 14 and 20 with GP trained with fledged
synthetic data corrupted with noise σε = 0.01. The shaded bounds indicate the
uncertainty (two standard deviation) of the prediction.

We compute the sample average of 1000 samples and defined it as the ground

truth. Then we compute the mean squared error (MSE) of the predictive mean and

the negative log likelihood (NLL). Loosely speaking, MSE indicates how good the

predictive mean as a point estimate of the ground truth while NLL additionally takes
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Figure 4.3: Forecasting to time t = 2, 8, 14 and 20 with GP trained with unfledged
synthetic data corrupted with noise σε = 0.01. The shaded bounds indicate the
uncertainty (two standard deviation) of the prediction.

into account the error bound that penalizes being too confident on an inaccurate point

estimate or too conservative on an accurate point estimate. We see that biologically

meaningful ordering result in smaller MSE and NLL than those obtained by naive

ordering (Table 4.2), meaning that it is a better choice. We also notice that sparse

approximation of covariance is prone to be over-confident about the point prediction

but overall we are satisfied by its performance.

4.4.2 Test on 2D Synthetic Data

To get 2D synthetic data, we simply use the 2D version of (4.5)

un+1
i,j =uni,j + θ1(uni+1,j + uni,j+1 − 4uni,j + uni−,j + uni,j−1)

+ θ2u
n
j (1− unj )(unj − α) + εnj

(4.6)
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Table 4.1: Hyperparamters found by maximizing marginal likelihood. The first row
has neighborhood size being 3 and the second row has neighborhood size being 5.

σ2
k σ2

ε `−2 `−1 `0 `1 `2

0.1527 1.0277e-04 NA 6.0574 1.5658 6.9022 NA

0.1527 1.0277e-04 3.2606e+07 6.0574 1.5658 6.9022 3.6812e+07

Table 4.2: MSE and NLL of GP forecasting with or without local sparse covariance
and naturally ordered neighborhood

σε = 0.01 σε = 0.02

MSE NLL MSE NLL

sparse ordered 1.6784e-04 -306.2233 6.3806e-04 -230.5547

non-sparse ordered 1.6783e-04 -340.6569 6.3796e-04 -272.3875

non-sparse non-ordered 1.8632e-04 -335.6242 6.5192e-04 -269.7519

with periodic boundary condition. Same as in section 4.4.1, we use the numerical

solution at two consecutive time points as training data. It is obvious that only

immediate neighbors are relevant and should be included in the neighborhood set.

The neighbors that are two sites away have length scale several magnitude larger and

hence does not contribute to prediction. Again, this meet our expectation since the

data are generated from two consecutive time of (4.6).

In Figure 4.4, the prediction over time and its uncertainty is shown. As we can

see, the prediction remains regular and its uncertainty gradually grows. The highest
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uncertainty is at the wave front. The center at t = 20 shows considerable uncertainty,

which is expected since it is the region unseen in training data.
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Figure 4.4: Forecasting to time t = 2, 8, 14 and 20 with GP trained with 2-D syn-
thetic data corrupted with noise σε = 0.001. The colormap indicates the uncertainty
(two standard deviation) of the prediction.

4.5 Discussion

Instead of formulating a model of cancer invasion, we take a nonparametric ap-

proach using Gaussian processes. The novelty of this work is exploiting the local

nature of the spatio-temporal process so that we can use very sparse time-series data

to make predictions. That being said, a local map with an input of a few dimen-

sions is learned from the data instead of a global map from a high dimensional space.

This improvement of data-efficient has the advantage in applications to glioma for

which there are oftentimes only a few MRI scans of each patient. Data efficiently can

be further improved if we order the neighborhood properly with reasonable assump-
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tions. However, this is often comes at a price of generality, e.g., ignoring possibility

of anisotropic diffusion or advection.

We also achieved computational efficiency in propagating uncertainty by choosing

the squared exponential covariance function for which some integration can be done

analytically. This choice of covariance function also makes variable selection easy due

to automatic relevance determination. From the selected variables, we can determine

the neighborhood size. In the tested cases, our method correctly indicated the rel-

evant variables. Being able to identifying the neighborhood size also has biological

significance since it tells the scales of spatial interaction in a time step. In the tested

cases, the selected neighborhood is symmetric about its center due to the specific

choice of the data-generating model. However, it should be noted that this is not

necessary the case in practice. A asymmetric shape of a selected neighborhood can

be an indicator of anisotropic diffusion or advection of the underlying process.

Even though automatic relevance determination correctly identified relevant vari-

ables in the case of synthetic data. But it only gives a relative importance between

variables. It is foreseeable that in the case of real-world data, the cut-off of relevance

will not be so clear. Ideally, we need a more informed variable selection criterion with

the cut-off built-in. This will be one of the directions of future studies.

The squared exponential covariance function is a popular choice for Gaussian pro-

cesses used in data modeling. It has many desirable features as discussed early. It

also naturally arises as the covariance function as a limit of linear regression with

Gaussian priors. It can be shown that a Gaussian process with the squared expo-

nential covariance function has mean square derivatives of all orders (Papoulis and

Pillai (2002); Cramer and Leadbetter (2004); Adler (2010), see details summarized in

Appendix D.2). This strong smoothness seems unrealistic for modeling physical pro-

cesses as argued by Stein (2012). In contrast, the Matern class of covariance functions
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of the form

k(r) =
21−ν

Γ(ν)
(

√
2ν

`
)νKν(

√
2νr

`
),

where Kν is a modified Bessel function, offers some flexibility of differentiability of

the process: the process is k-time mean square differentiable if and only if ν > k

(Rasmussen and Williams, 2006). Note that in the limit ν → ∞, The Matern co-

variance function becomes the squared exponential covariance function. In this work,

the squared exponential covariance function is favored over the Matern covariance

function in order to achieve the simplicity of integration of product of Gaussians.

We left out the observation model and tested our method on synthetic data. In

the future, an observation model will be used to incorporate MRI data and brain

geometry. We will compare our method to some existing studies of predicting cancer

growth using state space framework (McDaniel et al., 2013; Kostelich et al., 2011;

Lipková et al., 2019). State space modeling is challenging for nonparametric methods

because of loss of Markov property in (4.2) (note that f(·) itself depends on all

historical u.) There are some attempts aimed at resolving this issue (Frigola et al.,

2013; Ghosh et al., 2014) but it is not clear how it can be extended to a high-

dimensional spatio-temperoal process.

Moreover, the prediction deteriorates over time inevitably, intermediate data is

needed to correct predictions. Thus we need a filtering algorithm which can assimilate

data in an iterative fashion. This will be another focus of our future study. We will

also devise a method for smoothing, which is less interesting in medical applications

but is of interests in a retrospective study.

We approximated latent variables for all subsequent forecasting with normal distri-

bution. This approximation is computationally efficient with price being complicated

matrix algebra. We would like to know the error introduced and whether there are

computational alternatives.
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Another approximation we used to achieve the sparsity of the covariance matrix

can also introduce error. The approximation is justified if the the covariance between

remote sites decay rapidly. Since spatial independent noise is added in each time

step, the assumption is expected to be met at least in the long term. A rigorous error

analysis await for future studies. It should be pointed out that similar practice and

rationale have been adopted in local Kalman filters and local particle filters. The

localization of a Kalman filter makes parallelization of computation possible (Ott

et al., 2004; Hunt et al., 2007; Szunyogh et al., 2008). Moreover, it is believed that

local analysis avoids spurious correlation that would otherwise allow obervation at

one location to influence the analysis of a location an arbitrarily large distance away

(Hunt et al., 2007). It should be noted that in our case the correlation between remote

sites are not necessarily spurious because of the nonparametric nature of the method.

Rebeschini and van Handel (2015) gave a rigorous proof to justify a simple locality

implementation called block particle filters. Since then, the local particle filter has

been implemented by Morzfeld et al. (2018); Farchi and Bocquet (2018) and refined

by Quinn (2019).

Estimating hyperparameter by maximizing marginal likelihood may not be ideal.

It is known to lead to local optimum, and sometimes two local minima has equally

good interpretations (see page 116 in Rasmussen and Williams (2006)). A full

Bayesian approach would be more warranted to properly incorporate any prior beliefs

on hyperparameters.

4.6 Conclusion

In this chapter, we proposed a method to make spatio-temporal forecasting us-

ing Gaussian processes. Instead of formulating a dynamic model for the process, we

assumed it as a Gaussian process. By exploiting the local nature of the dynamics,
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we improved the data efficiency and solved the problem of sparsity of temporal data.

By exploiting Gaussianity, prediction and uncertainty can be propagated in a com-

putationally efficient way. The method in its preliminary stage were tested on the

synthetic data and showed promising results. Future directions were pointed out in

order to make this method applicable in practice, such as forecasting glioma invasion

with MRI data.
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Chapter 5

CONCLUSION

This thesis was developed with an overarching goal to understand and predict

cancer invasion in time and space. In Chapter 2, a model of stochastic delayed

differential equations (SDDEs) was formulated with a focus on temporal dynamics of

tumor-immune interaction. Immune response is modeled as a non-monotonic function

of tumor burden, for which the tumor is immunogenic at nascent stage but starts

inhibiting immune system as it grows large. Without time delay and noise, this

system demonstrates bistability. We found that time delay and noise can both induce

the transition from low tumor burden equilibrium to high tumor equilibrium. We

also proved some conditions of stability, persistence and extinction of the tumor.

In Chapter 3, we studied Glioblastoma multiforme (GBM) using a partial differ-

ential equation (PDE) model. We proposed a mathematical model of GBM growth

with explicit motility, birth, and death processes to help relate the three highly ide-

alized components of GBMs (i.e. necrotic core, enhancing rim, and maximum edema

extent) and to the underlying growth laws. The model demonstrated a traveling

wave solution that mimics cancer progression. We developed a novel method to ap-

proximate key characteristics of the wave profile, which can be compared with MRI

data. For several simplified forms of growth and death terms, we found evidence

that support their parameter identifiability. We used several test cases of MRI data

of GBM patients to yield personalized parameterizations of the model. We found

large variations of parameters among patients. Future work on this front will focus

on a rigorous study of positivity of the solution. This is non-trivial because of the

cross-diffusion term in the model.
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Chapter 4 presented an innovative way of forecasting spatial cancer invasion. It

avoided hard-to-verify assumptions that have to be made by most mathematical mod-

els. Our approach employed a nonparametric forecasting method using Gaussian

processes. High data efficiency was achieved by exploiting the local nature of the

spatio-temporal process. We tested the method on synthetic data and the results

were promising.
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We write (2.4) as following

du

dt
= γu[η(u− u

K
)− v], (A.1a)

dv

dt
= β − v +

u

1 + u2
(A.1b)

where η = ρ/γ. First, I will address a question: would a slack immune system itself

cause loss of stability of the low tumor equilibrium? To put it precise, we assume

γ is large, i.e. growth and killing of tumor cells are fast compared to the change of

the immune system level. Note that instead of a large multiplier γ in (A.1a), we can

rescale time to put a small ε to (A.1b) which is more commonly seen in the literature.

Since this change does not make any difference to the nullclines and the geometric

argument used in Theorem 2.3.1, we conclude that slack immune system by itself

does not cause loss of stability of the low tumor equilibrium.

Next I will derive a condition for the number of interior equilibrium. Consider the

nullclines

v = η(1− u

K
), (A.2a)

v = β +
u

1 + u2
≡ h(u) (A.2b)

from which we can find the intersection(s) by solving a cubic polynomial. Since the

formula for cubic polynomial is unwieldy, we instead derive a condition to deter-

mine the number of intersections by geometric argument. Note that the boundary

cases happen when the nullcline (A.2a) is tangent to the nullcline (A.2b). That is,

− η
K

= h′(u) which gives

φu4 + (2φ− 1)u2 + φ+ 1 = 0

where φ = η/K. Real roots exist iff φ < 1/8. This inequity also makes sense by

noting that minh′(u) = −1/8. Assuming φ < 1/8, we have two roots

u± =

(
1− 2φ±√1− 8φ

2φ

)1/2

where we note that the quantity inside the bracket is positive since φ < 1/8. Let v± =

h(u±) so that (u±, v±) are tangent points of the boundary cases. Let η± = v±+ φu±,
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which are the v-intercepts of the tangent lines. In order to have three intersections,

the following inequality has to be satisfied

η+ < η < η−.

Note that η± is also a function of η. The above inequality is implicit. Nevertheless, we

can easily plot it. Figure A shows the parameter regions when β− 0.02, in which the

nullclines corresponding to regions A and C are shown in Figure A and the nullclines

corresponding region B are shown in Figure 2.1.

We further note that as the parameter values cross the boundary, there is a tran-

scritical bifurcation, which is not very interesting. In contrast, when the time delay

is introduced (see (2.6)), there is a Hopf bifurcation with the length of time delay

τ as the bifurcation parameter (see Theorem 2.4.1). Furthermore, there is a global

bifurcation which is not indicated in the local analysis: as the τ further increases, the

limit cycle runs into a saddle point and disappears (See the bottom panes of Figure

2.2; see also Page 150 of Kot (2001) on this type of bifurcation in a predator-prey

model).
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Figure A.1: Parameter regions for one and three interior equilibria when β = 0.02.
In regions A and C, there is one interior equilibrium. In region B, there are three
three interior equilibria. The red solid curve is from η = η+; The blue solid curve is
from η = η−; The dashed yellow curve is from φ = 1/8.
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corresponding the dot in region C.
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We want to show there is a traveling wave solution for the following

ut = uxx + g(w)u− δ(w)u

nt = δ(w)u

where

w = 1− u− n. (B.1)

For now we let g(w) = w, δ(w) = 1−w. Substituting u(x, t) = u(x+ ct) to the above

gives

n′ =
1

c
(u+ n)u

u′ = z

z′ = cz + (2u+ 2n− 1)u (B.2)

We want to show the existence of a traveling wave equation by showing there is a

trajectory from (0, 0, 0) to (n∗, 0, 0) where n∗ > 0.

We do so in a similar line as Dunbar (1983) (and adopt similar notations). Define

Q = {n < 1, u < 0, z < 0}
P = {n > 1, u > 0, z > 0}
W = R3 \ (P ∪Q)

where we note that W is closed and will be shown to be a Wazeeski set. We define

J1 = {(n, u, z) : n = 1, u ≤ −1, z ≤ 0}
J2 = {(n, u, z) : n ≤ 1, u ≤ 0, 2u+ 2n− 1 ≤ 0, z = 0}

The immediate leaving set W− = ∂W \ (J1 ∪ J2 ∪ {(n, u, z) : u = 0, z = 0}) which

consists of two disjoint sets ∂Q \ (J1 ∪ J2 ∪ {u = 0, z = 0}) and ∂P \ {(1, 0, 0)}.

Lemma B.0.1. Suppose n(0) ≥ 0. Then n(s) ≥ 0

Proof. Suppose contrary that there is s s.t. n(s) < 0. Let s1 = inf{s : n(s) < 0}.
Then n(s1) = 0, n′(s1) = u2 < 0, which is impossible.

Lemma B.0.2. Let c > 2. Suppose z(0) > c
2
u(0), u(0) > 0, n(0) ≥ 0. Then z(s) >

c
2
u(s), u(s) > 0 ∀s > 0
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Proof. Suppose contrary that there is s s.t. z(s) ≤ c
2
u(s). Let s1 = inf{s > 0 : z(s) ≤

c
2
u(s)}. For 0 ≤ s ≤ s1,u

′ = z > c
2
u. Since u(0) > 0, u(s) > 0 for 0 ≤ s ≤ s1. Also,

we have z(s1) = c
2
u(s1) and z′(s1) − c

2
u′(s1) ≤ 0. We will construct a contradiction

to the last inequality. Henceforth, we suppress s1:

z′ − c

2
u′ = cz + (2u+ 2n− 1)u− c

2
z

= (
c2

4
+ 2u+ 2n− 1)u > 0

since u > 0, n ≥ 0, c > 2. So we have reached a contradiction.

We draw a sufficient small circle around origin on the u-z plane. The circle in-

tersects with the strong unstable manifold and positive u-axis. Define Σ be the arc

connecting these two points in the first quadrant of u-z plane. Denote the solution of

(B.2) starting at point y1 as y(s;y1). Then we have the following

Lemma B.0.3. There is a y1 ∈ Σ such that the solution y(s;y1) remains in W for

all s

Proof. Since we can make the circle as small as needed, the trajectory starting at the

intersection between Σ and positive u-axis must enter Q (need to make more precise)

and the other end point of Σ stratifies Lemma B.0.2. Then for the trajectory starting

from the later point we have u′(s), n′(s) > 0 for all s > 0. Thus it must enter P .

To show existence of y(s;y1) remains in W , we suppose contrary that all trajec-

tories starting from Σ exit W . We can show that W is a Wazeeski set (need to make

more precise). Then by Proposition 1 in Dunbar (1983), the flow is a homeomorphism

of the connected set Σ to a disjoint set W−, which is impossible. Thus there must

exist a y1 ∈ Σ such that the solution y(s;y1) remains in W for all s

Lemma B.0.4. Suppose y(s) is a trajectory staying in W . Then it remains in the

region D = {0 ≤ u ≤ 1, 0 < n ≤ 1,−αu < z < du} where α = 2, d are some positive

numbers.

Proof. We first show u ≥ 0. Suppose contrary that u(s) < 0 for some s. Let

s1 = inf{s : u(s) < 0}. Then u(s1) = 0 and z(s1) = u′(s1) < 0. So it must enter Q

which is a contradiction.

To show u ≤ 1, suppose contrary that u(s) > 1 for some s. Let s1 = inf{s : u(s) >

1}. Then u(s1) = 1, z(s1) = u′(s1) > 0. It follows that n′(s) > 0, u′(s) > 0, z′(s) > 0

for s > s1. So it must enter P which is a contradiction. Similarly, n ≤ 1.
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To show z < du, we let d > c. Then z(0) < du(0). Suppose contrary that

z(s) ≥ du(s) for some s. Let s1 = inf{s : z(s) ≥ du(s)}. Then z(s1) = du(s1)

and z′(s1) − du′(s1) ≥ 0. We will construct a contradiction to the last inequality.

Henceforth, we suppress s1:

z′ − du′ = cz + (2u+ 2n− 1)u− dz

=

(
(c− d)d+ (2u+ 2n− 1)

)
u < 0

if we pick sufficient large d. So we have reached a contradiction.

To show z > −αu, suppose contrary that there is s1 s.t. z(s1) < −αu(s1). If there

is s2 > s1 s.t. z(s2) = −αu(s2), then z′(s2) + αu′(s2) ≥ 0. However

z′ + αu = cz + (2u+ 2n− 1)u+ αz

=

(
− α(c+ α) + (2u+ 2n− 1)

)
u < 0

if we pick sufficient large α, say α = 2. Hence there is no such s2, i.e., z(s) < −αu(s)

for all s > s1. It follows that u′(s) < −αu(s) and z(s) < 0 for s > s1. Thus it must

enter Q which is a contradiction.

To make sure the availability of nutrients represented by (B.1) stays positive, we

need the following

Lemma B.0.5. The trajectory y(s) is bounded by n+ u ≤ 1

Proof. Suppose contrary that n(s)+u(s) > 1 for some s. Let s1 = inf{s : n+u > 1}.
Then n(s1) + u(s1) = 1, and

n′(s1) + u′(s1) = z(s1) +
1

c
u(s1) > 0. (B.3)

There must exist some s > s1 such that u(s) + n(s) < 1, otherwise y(s) cannot stay

in D. Let s2 = inf{s : n+ u < 1, s > s1}. Then u(s2) + n(s2) = 1 and

u′(s2) + n′(s2) = z(s2) +
1

c
u(s2) < 0.

Also, for s ∈ (s1, s2), we have

(z +
1

c
u)′ = cz + (2u+ 2n− 1)u+

z

c
> c(z +

1

c
u).

Together with (B.3), we have z(s2) + 1
c
u(s2) > 0, which is a contradiction.
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Theorem B.0.6. If c > 2, there is a trajectory from (0, 0, 0) to (n∗, 0, 0) where

n∗ > 0, i.e., there exists a traveling wave

Proof. Define V (n, u, z) = n − log n + 1
2
u − 1

2c
z. Note that V is continuous and

bounded below in D. Also,

V̇ = −1

c
(
u2

n
+
u

2
) ≤ 0

The equality holds iff u = 0. To be invariant at u = 0, it further implies that

z = u′ = 0. Thus the trajectory must ends at (0, 0, n∗)
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Traveling-wave solutions

In the following, we rigorously establish the existence of traveling-wave solutions

in system (3.9). We first show that the solutions of system (3.9) with positive initial

values are non-negative and bounded.

Lemma 1. Assume that g(w) = wG(w), where G(w) is a bounded function. Then

the solutions of system (3.9) with positive initial values are positive and bounded.

Proof: If x′ = x f(t, x) and f is a bounded function, then

x(t) = x(t0) exp
(∫ t

t0
f(s, x(s)) ds

)
, which is positive whenever x(t0) > 0. Since

d(p+ w)

dz
= −δ(w), (C.1)

we see that (p+w) is bounded, which implies that both p and w are also bounded. �

For any w∗ ∈ [0, 1], the point (0, w∗) is an equilibrium of (3.9).

Theorem 1. System (3.9) admits positive traveling-wave solutions that correspond

to heteroclinic orbits connecting the steady state (0, 1) to another steady state, (0, w∗).

Proof: We have performed a detailed phase-plane analysis of (3.9) to show the

existence of a trajectory that starts from (1, 0) and ends at (w∗, 0), where w∗ ∈ [0, 1).

(See Figure 3.1.) First we notice that

dp

dw
=

δ(w)

ρ̂g(w)
− 1, (C.2)

d2p

dw2
=

δ′(w)g(w)− δ(w)g′(w)

ρ̂g(w)2
, (C.3)

Since g(w) and δ(w) are both positive functions and g′(w) > 0 and δ′(w) < 0 on

w ∈ [0, 1], it follows that d2p/dw2 < 0 for all w ∈ [0, 1].

We show first that the trajectory starting from (1, 0) will never cross the line

p = 1 − w. Because g(1) = 1, we have δ(1) = 0, and therefore, dp/dw
∣∣
w=1

= −1.

Since d2p/dw2 < 0, the slope of a trajectory with w < 1 will be greater than −1, which

means it will not cross the line p = 1 − w. Also, because the solution components

stay positive, the trajectory starting from (1, 0) will never cross the p-axis from right

to left.

Because the functions g and δ are monotone, there is a unique value w† ∈ (0, 1)

such that dp/dw
∣∣
w=w†

= 0. Moreover, dp/dw
∣∣
1>w>w†

> 0 while dp/dw
∣∣
0<w<w†

< 0.

Insofar as w is strictly decreasing and bounded from below by 0, there exists some

w∗ ∈ (0, 1) such that limz→∞w(z) = w∗. We claim that w∗ < w†. Otherwise, p is
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a non-decreasing function, which implies that the trajectory approaches a positive

steady state E∗ = (p∗, w∗). However, the system (3.9) does not admit any positive

steady states.

Let a ∈ (w∗, w†) and b = ρ̂g(a) − δ(a) < 0. Since limz→∞w(z) = w∗, there is a

z∗ > 0 such that for z ≥ z∗ and w < a. Therefore, for z ≥ z∗, dp/dz < bp, which

implies that limz→∞ p(z) = 0. Hence, system (3.9) admits positive traveling-wave

solutions that correspond to heteroclinic orbits connecting the steady state (0, 1) to

another steady state, (0, w∗). �

Rim width

The trajectory in Figure 3.1 corresponds to a traveling-wave profile in the z coor-

dinate as shown on the left pane of Figure 3.3. Because of our choice of nondimension-

lization, x = −
(
2
√
Dρ/k

)
z, by definition we have the rim width in the dimensional

form

`1 =
2
√
Dρ

k
(z+

1 − z−1 ) =
2
√
Dρ

k

∫ z+1

z−1

dz (C.4)

where p(z±1 ) = a1pmax. We have taken p as a function of z (cf. the left pane of

Figure 3.3). We can also take w as a function of z to make a change of variable to

the above integral, which gives Eq. (3.11a). A similar argument applies to (3.11b).

Derivation of R∗1 and R∗2

Tumor growth can be separated into two stages. First, the tumor cells grow

exponentially until the cell density is high enough (pmax) to form a stable wave profile.

Afterward, the growth of tumor cells is described by (3.9). The radii R1 and R2 are

observed from clinical MRI data and correspond respectively to the distance from

the center of the tumor to the edge of the enhancing rim and to the edge of the

edematous region on T2 imaging; they correspond to tumor dynamics before the

stable wave profile has formed (cf. Figure C.1).

During the exponential growth phase, say from 0 < t < t∗, quiescence is negligible

and the governing equation of tumor cell density is

∂p

∂t
= D

1

r2

∂

∂r

(
r2∂p

∂r

)
+ ρp, (C.5)

where spherical symmetry is used, as we assume that the tumor is spherical when its
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a1 pmax
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a2 pmax
*

Figure C.1: The transition of wave profile based on the two-stage tumor growth
model. The dotted (purple) curve represents a stable wave profile generated by sys-
tem (3.9). The solid curves are generated by Eq. (C.5) and represent the tumor’s
exponential growth phase. The stable wave profile is formed after the exponential
growth curve reaches pmax (red solid curve).

radius is small. This linear equation has the Green’s function

p(r, t) =
1

(4πDt)3/2
exp

(
ρt− r2

4Dt

)
(C.6)

(see, e.g., Kot (2001) Page 314 and Britton (2003) Page 285). Suppose that the tumor

starts at t = 0 as a point source with density p0. It follows that at t = t∗, the position

of the tumor front at density p = ai is given by Eq. (3.15).
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APPENDIX D

SUPPLEMENTAL MATERIAL FOR CHAPTER 4
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D.1 Derivation for Propagating Prediction and Uncertainty

Since product of Gaussian functions are again a Gaussian, we can do the following

integration analytically. In general, for x ∼ N(µ,Σ)∫
k(x̂,x; V)p(x)dx

=σ2
k |ΣV + I|−1/2 exp

(
− 1

2
(x̂− µ)T (Σ + V−1)−1(x̂− µ)

)
(D.1)

∫
k(x̂,x; V)k(ŷ,x; W)p(x)dx

=
σ4
k

|Σ(V + W) + I|1/2
exp

(
− 1

2

(
x̂TVx̂ + ŷWŷ − qT (V + W)q

))
exp

(
− 1

2
(q− µ)T (Σ + (V + W)−1)−1(q− µ)

)
(D.2)

where q = (V+W)−1(Vx̂+Wŷ). In the following, we show how to take into account

of the uncertainty of input in forecasting by using (D.1) and (D.2).

To simplify notations, we denote training data as D = (û, ṽ) and test input

u∗ ∼ N(m,S). Note that here we deviate from our previous notations in main text

in favor of presenting a general method. We want to find the mean and variance of

the test output u ≡ (uj)j∈{1:nx}. The GP regression tells that

u|u∗,D ∼ N(u∗ + KT
∗Σ
−1(ṽ − û),K∗∗ −KT

∗Σ
−1K∗)

where (K∗)ij = k(ûi−1:i+1,u
∗
j−1:j+1), (Σ)ij = k(ûi−1:i+1, ûj−1:j+1)+σ2

ε δij and (K∗∗)ij =

k(u∗i−1:i+1,u
∗
j−1:j+1). To simplify notation we let β = Σ−1(ṽ − û) and note that it is

sorely determined by training data D. The mean of u is easy, i.e.,

E[u] = E[E[u|u∗]]
= E[u∗ + KT

∗ β]

= m + LTβ

where by simply applying (D.1), we have

(L)rj =

∫
k(ûr−1:r+1,u

∗
j−1:j+1; Λ−1)p(u∗j−1:j+1)du∗j−1:j+1

= σ2
k

∣∣SN (j)Λ
−1 + I

∣∣−1/2

exp

(
− 1

2
(ûr−1:r+1 −mj−1:j+1)T (Sbj + Λ)−1(ûr−1:r+1 −mj−1:j+1)

)
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where SN (j) is the sub-covariance matrix that concerns only N (j).

The variance-covariance matrix of u is slightly more complicated. Let’s consider

it component-wisely. By law of total variance,

cov(ui, uj) = E[cov(ui, uj|u∗)] + cov(E[ui|u∗], E[uj|u∗])

We first compute

cov(E[ui|u∗], E[uj|u∗])
=E[E[ui|u∗]E[uj|u∗]]− E[E[ui|u∗]] · E[E[uj|u∗]]
=E[(u∗i + kT∗iβ)(u∗j + kT∗jβ)]− (mi + lTi β)(mj + lTj β)

=E[u∗iu
∗
j ] + E[u∗ik

T
∗jβ] + E[kT∗iβu

∗
j ] + βTE[k∗ik

T
∗j]β − (mi + lTi β)(mj + lTj β)

=Sij + E[u∗ik
T
∗jβ] + E[kT∗iβu

∗
j ] + βT (E[k∗ik

T
∗j]− lil

T
j )β − (mil

T
j +mjl

T
i )β

where k∗i is the i-th column of K∗ and li is the i-th column of L. We try to determine

term by term. First,

E[u∗iu
∗
j ] = Sij +mimj.

Second and third, E[u∗ik
T
∗j] is a vector and its r-th entry is∫

u∗i k(ûN (r),u
∗
N (j))p(u

∗
N (j)∪i)du

∗
N (j)∪i

=

∫
u∗i k(PT ûN (r),u

∗
N (j)∪i; P

TΛ−1P)p(u∗N (j)∪i)du
∗
N (j)∪i

=last entry of (PTΛ−1P + S−1
N (j)∪i)

−1(PTΛ−1ûr−1:r+1 + S−1
N (j)∪imN (j)∪i∪i)

if i /∈ N (j) where Pu∗N (j)∪i = u∗N (j). If i ∈ N (j), the r-th entry of E[u∗ik
T
∗j] is the one

of the entries of

(Λ−1 + S−1
N (j))

−1(Λ−1ûN (r) + S−1
N (j)mN (j))

that corresponds to the position of i in N (j).

Fourth, E[k∗ik
T
∗j] ≡ L̃ is a matrix with

L̃rs =

∫
k(ûN (r),u

∗
N (i))k(ûN (s),u

∗
N (j))p(u

∗
N (i)∪N (j))du

∗
N (i)∪N (j)

=

∫
k(PT ûN (r),u

∗
N (i)∪N (j); P

TΛ−1P)k(QT ûN (s),u
∗
N (i)∪N (j); Q

TΛ−1Q)

p(u∗N (i)∪N (j))du
∗
N (i)∪N (j)

where Pu∗N (i)∪N (j) = u∗N (i) and Qu∗N (i)∪N (j) = u∗N (j). We note that the above is in

the form of (D.2) and hence can be readily evaluated.
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Next we compute

E[cov(ui, uj|u∗)] = E[k(u∗i−1:i+1,u
∗
j−1:j+1)]− E[Tr(Σ−1k∗ik

T
∗j)]

The first term on right hand side

E[k(u∗N (i),u
∗
N (j))] =

∫
k(u∗N (i),u

∗
N (j))p(u

∗
N (i)∪N (j))du

∗
N (i)∪N (j)

=

∫
k(0,u∗N (i)∪N (j); P

TΛ−1P)p(u∗N (i)∪N (j))du
∗
N (i)∪N (j)

where Pu∗i−1:i+1∪j−1:j+1 = u∗i−1:i+1 − u∗j−1:j+1. The second term

E[Tr(Σ−1k∗ik
T
∗j)] = Tr(Σ−1E[k∗ik

T
∗j])

= Tr(Σ−1L̃)

Putting together, we have

cov(ui, uj) = Sij +E[u∗ik
T
∗jβ] +E[kT∗iβu

∗
j ] + βT (E[k∗ik

T
∗j]− lil

T
j )β − (mil

T
j +mjl

T
i )β

D.2 Mean Square Continuity and Differentiability of Gaussian Processes

In this section, we include some results of continuity and differentiability of Gaus-

sian processes for completeness. These results can be found in Cramer and Leadbetter

(2004); Adler (2010). What we present here is an extension to Cramer and Leadbetter

(2004) and a complement to Adler (2010). Consider f(s) ∼ GP(m(s), k(·, ·)) where

s ∈ Rn and squared exponential covariance function k(x, y) = exp(−‖x−y‖2
2`2

). Without

loss of generality, we assume m(x) = 0 (we could simply center the process by its

mean function). We want to investigate the continuity and differentiability of f(x).

There are many types of convergence with which continuity and differentiability can

be described. Here we focus on continuity and differentiability in the mean square

which are defined below. The mean square limit is often denoted as l.i.m.. Next we

define the mean square continuity.

Definition D.2.1. (mean square convergence) Given a sequence of random variable

Xn, we say that Xn converge to X in mean square if E[(Xn −X)2]→ 0.

Mean square convergence is preferred here because it is closely related to the

covariance function.
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Definition D.2.2. (mean square continuity) Let f be a stochastic process indexed by

s ∈ Rn. If for any sequence s1, s2, · · · that converges to s, i.e., ‖sn− s‖ → 0, we have

f(sn) → f(s∗) in mean square, then we say that f(s) is continuous in mean square

at s∗.

Theorem D.2.3. A stochastic process f(s) is continuous in mean square at s∗ if and

only if its covariance function k(s, t) is continuous at s∗.

Proof. The “if” part is straightforward. By applying definitions, we have

E[(f(sn)− f(s))2] = E[f(sn)2 − 2f(sn)f(s) + f(s)2]

= k(sn, sn)− 2k(sn, s) + k(s, s)→ 0

The “only if” part is a little more complicated. Suppose f(s) is mean square

continuous at s∗. Let {sn} and {ŝn} be two sequences that converge to s∗. Consider

|k(sn, ŝn)− k(s, s)|
= |E[f(sn)f(ŝn)]− E[f(s)2]|
= |E[

(
f(sn)− f(s)

)(
f(ŝn)− f(s)

)
+
(
f(sn)− f(s)

)
f(s) +

(
f(ŝn)− f(s)

)
f(s)]

≤
(
E[
(
f(sn)− f(s)

)2
]E[
(
f(ŝn)− f(s)

)2
] + E[

(
f(sn)− f(s)

)2
]E[f(s)2]

+E[
(
f(ŝn)− f(s)

)2
]E[f(s)2]

)1/2

→ 0

where we have applied Cauchy-Schwarz Inequality.

Let δi be a vector in Rn of all zeros except the i-th element being 1. We define

the mean square derivative below.

Definition D.2.4. (mean square derivative) If the limit

fi(s) = l.i.m.h→0
f(s+ hδi)− f(s)

h

exists, then fi(s) is called the mean square derivative of f(s) at s.

Before we show conditions for differentiability in mean square, we state a lemma

that is needed.

Lemma D.2.5. Let Xn be a sequence of random variables. Then Xn converge in

mean square if and only if E[XmXn] coverage to a finite constant as m → ∞ and

n→∞.
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Theorem D.2.6. If the derivative ∂2k(s, t)/∂si∂ti exists and is finite at (s, s), then

the mean square derivative fi(s) exists.

Proof. Assume that ∂2k(s, t)/∂si∂ti exists and is finite at (s, s). Consider

E[
f(s+ hδi)− f(s)

h
· f(s+ h′δi)− f(s)

h′
]

=
k(s+ hδi, s+ h′δi)− k(s+ hδi, s)− k(s, s+ h′δi) + k(s, s)

hh′

→ ∂2k(s, t)/∂si∂ti

as h→ 0 and h′ → 0. Then it follows by lemma D.2.5.

Follow similar lines as Definition D.2.4 and Theorem D.2.6, higher order of mean

square derivative can be defined and deduced from the differentiability of the covari-

ance. For example, the second-order derivative

fij(s) = l.i.m.
f(s+ hδi + h′δj)− f(s+ hδi)− f(s+ h′δj) + f(s)

hh′

exists if k(s, t) has derivative ∂2k(s, t)/∂si∂ti∂sj∂tj. Since the squared exponential

k(x, y) = exp(−‖x−y‖2
2`2

) is differentiable at all orders, it follows that f ∼ GP(0, k(·, ·))
is mean square differentiable at all orders.
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APPENDIX E

SUMMARY OF COMPUTER CODE
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The computer code is summarized in the three tables below for each chapter. All

code is available on the author’s Github (https://github.com/juhang62).

Table E.1: computer code files and summary for Chapter 2

file name usage

nullclines.m plots Figure 2.1

bistablefinal.m plots Figure 2.2; DDE is solved with the built-

in dde23

sdefinal.m plots Figure 2.3; SDE is solved using the Mil-

stein method

sdefinal_statdist_delayed.m plots Figure 2.4; SDDE is solved using the

Milstein method combined with the method of

steps.
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Table E.2: computer code files and summary for Chapter 3

file name usage

plotphaseplane.m plots Figure 2.1

uw-phaseplane.mat stores the trajectory data of Figure 2.1

plotwaveprofile.m plots the left pane of Figure 3.3

waveprofile.mat stores wave profile data of Figure 3.4 3.3

l1l2.m the function that generates data for Figure and

3.5

VtoR.m converts the volume data from MRI to radii

listed in Table 3.1

findparams.m the function that estimate parameters in Table

3.1.

wavprof_num.m compute the numerical estimate for Figure 3.5

wavprof.m computes analytical estimate for for Figure 3.5

scatterplot.mat stores wave profile characteristics data for Fig-

ure 3.5
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Table E.3: Computer code files and summary for Chapter 4

file name usage

main.m the main file

predictorGau.m a function takes mean and variance of the state

variable as input and compute the forecasted

mean and variance of the state variable in the

next time step

plotstuff.m plots Figures 4.2 and 4.3

plot2d.m plots Figure 4.4
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