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ABSTRACT

Neglected tropical diseases (NTDs) comprise of diverse communicable diseases

that affect mostly the developing economies of the world, the “neglected” popula-

tions. The NTDs Visceral Leishmaniasis (VL) and Soil-transmitted Helminthiasis

(STH) are among the top contributors of global mortality and/or morbidity. They

affect resource-limited regions (poor health-care literacy, infrastructure, etc.) and pa-

tients’ treatment behavior is irregular due to the social constraints. Through two case

studies, VL in India and STH in Ghana, this work aims to: (i) identify the additional

and potential hidden high-risk population and its behaviors critical for improving

interventions and surveillance; (ii) develop models with those behaviors to study the

role of improved control programs on diseases’ dynamics; (iii) optimize resources for

treatment-related interventions. Treatment non-adherence is a less focused (so far)

but crucial factor for the hindrance in WHO’s past VL elimination goals. Moreover,

treatment non-adherers, hidden from surveillance, lead to high case-underreporting.

Dynamical models are developed capturing the role of treatment-related human be-

haviors (patients’ infectivity, treatment access and non-adherence) on VL dynamics.

The results suggest that the average duration of treatment adherence must be in-

creased from currently 10 days to 17 days for a 28-day Miltefosine treatment to

eliminate VL. For STH, children are considered as a high-risk group due to their

hygiene behaviors leading to higher exposure to contamination. Hence, Ghana, a

resource-limited country, currently implements a school-based Mass Drug Administra-

tion (sMDA) program only among children. School staff (adults), equally exposed to

this high environmental contamination of STH, are largely ignored under the current

MDA program. Cost-effective MDA policies were modeled and compared using alter-

native definitions of “high-risk population”. This work optimized and evaluated how

MDA along with the treatment for high-risk adults makes a significant improvement
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in STH control under the same budget. The criticality of risk-structured modeling de-

pends on the infectivity coefficient being substantially different for the two adult risk

groups. This dissertation pioneers in highlighting the cruciality of treatment-related

risk groups for NTD-control. It provides novel approaches to quantify relevant met-

rics and impact of population factors. Compliance with the principles and strategies

from this study would require a change in political thinking in the neglected regions

in order to achieve persistent NTD-control.
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Chapter 1

INTRODUCTION

1.1 Neglected Tropical Diseases

What are Neglected Tropical Diseases (NTDs)?: NTDs are the ancient dis-

eases of poverty most common in low-income populations and are endemic in 149

countries with different factors such as cultures, economies, infrastructures and cli-

mates shaping their patterns (1; 2). World Health Organization list 20 diseases

as NTDs which urgently need prioritization: bacterial (Buruli ulcer, Endemic tre-

ponematoses (Yaws), Leprosy, Trachoma), protozoan (Chagas disease, Leishmani-

asis, Human African trypanosomiasis), viral (Dengue and Chikungunya fever, Ra-

bies), helminthic (Echinococcosis, Foodborne trematodiases, Lymphatic filariasis, On-

chocerciasis, Schistosomiasis, Soil-transmitted helminthiasis, Dracunculiasis, Taenia-

sis/cysticercosis), Chromoblastomycosis and other deep mycoses, Scabies and Snakebite

envenoming (3). Although NTDs are affecting daily life of more than 1.4 billion peo-

ple around the world, they receive less funding and attention as compared to other

infectious diseases like Tuberculosis and HIV, hence the name neglected. Even in

developed countries, NTDs affect the poorest populations (4). The NTDs may have

come to light (i.e. may be attributed to be less neglected in the current time) due to

the implementation of global programs to tackle them. Therefore, I have presented

various arguments in Table 1.1 to initiate the discussion on what will make the NTDs

to stop being neglected in the future. WHO believes that the control of NTDs will re-

sult in reducing problems from multiple ends including “illness, social exclusion and
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mortality”, which then will directly contribute to the development of the resource

limited countries (1).

Health, Economic and Social Effect of NTDs:

• Health effect : NTDs impact populations in various ways such as malnourish-

ment, growth impairment, co-infections with deadlier diseases, permanent dis-

ability, morbidity, and mortality. In some cases, NTDs can cause serious disabil-

ities like blindness (Onchocerciasis and Trachoma), disfigurement (Lymphatic

Filariasis, Leishmaniasis, Leprosy, and Buruli ulcer), and are often eventually

life-threatening (African trypanosomiasis, Chagas disease, Dengue fever, and

Schistosomiasis) (5).

• Economic effect : NTDs can cause families to enter into deep poverty traps or

financial ruin due to costly treatment (which may be a result of poor investment

return for the pharmaceutical companies). Moreover, it is well documented that

NTDs are costing developing economies billions of dollars annually.

• Social effect : Social stigma, poor mental health, absenteeism in school and life

quality are some of the direct social effects of NTDs. For example, stigma,

defined as a social process characterized by exclusion, rejection, blame or de-

valuation of an individual by a person or group, is extremely common in many

parts of the affected world.

WHO’s efforts for prevention, control, elimination and eradication of NTDs

Prevention and eradication becomes critically important because continuity “of the

appalling stigma, disfigurement, blindness and disabilities caused by NTDs.” The

possibility of eliminating or eradicating Dracunculiasis, Leprosy, Lymphatic Filaria-

sis, Onchocerciasis, Trachoma, sleeping sickness, Visceral Leishmaniasis, and canine
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rabies within the next ten years was the principal aim of the London Declaration

on Neglected Tropical Diseases, which is a collaborative effort involving the WHO,

the World Bank, the Bill & Melinda Gates Foundation, the world’s 13 leading phar-

maceutical companies, and government representatives from US, UK, United Arab

Emirate, Bangladesh, Brazil, Mozambique and Tanzania (6). This meeting was pri-

marily evolved in 2012 in order to mitigate the burden of NTDs. The efforts include

mass deworming, integrated vector management, WASH (Water, sanitation and hy-

giene) interventions, investment in research and development for new diagnostics,

drugs and vaccines, provision of drugs for treatment with a discount or free of cost,

active and passive case detection, mass drug administration etc. The elimination or

even eradication for some diseases were thought to be possible because of the pres-

ence of single host species, accurate diagnostic method, effective treatment, etc. For

example, feasibility of eliminating Visceral Leishmaniasis from the South-east Asian

region is attributed to humans being the only known reservoirs and infecting sandfly

species being susceptible to the insecticides; STH can be potentially controlled and

reduced to the level of no public health significance due to the availability of a safe

and single-dose preventive drug (3).

Risk factors and populations: A wide range of human- and environment-sourced

factors such as travel behavior, societal influences, pathogen evolution and adapta-

tion, economy status, capacity of public health system, etc. lead to the emergence

and persistence of NTDs (7). The other common risk factors are immuno-suppression,

contaminated water, living conditions (e.g. vectors live in the cracks of mud houses),

sanitary human behavior and compliance to interventions etc. (8). Risk factors are

broadly categorized into the categories such as water, sanitation and household re-
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Table 1.1: Arguments on attributions of NTDs being neglected and what constitutes

an epidemiological vector.

lated, socio-cultural, poverty, environmental and migration (9) so that the challenges

faced in controlling the NTDs can be addressed systematically.

On the other hand, some of the NTDs are transmitted by distinct and/or multiple

transmission modes. Hence, based on transmission routes, spread of NTDs is closely

related to human behaviors that in turn are related to sanitation and hygiene practices

(10). Since the affected communities are often hard-to-reach and affected regions are

resource-limited (poor health-care infrastructure and access, health and treatment

illiteracy, etc), patients’ treatment behavior is irregular (late access to health care,

non-adherence to treatment, non-compliance with the preventive interventions etc.)

as it also depends on other social constraints of individuals. These risky behaviors

pose a challenge to NTD control since the effectiveness of the efforts is conditional on

the communities’ cooperation.
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Public Health Surveillance: Surveillance is defined as “the ongoing systematic

collection, analysis, and interpretation of health data” (11). It has been identified as

an important intervention tool. One of the strategies by WHO for NTD control is

improved surveillance since it would lead to monitoring of disease prevalence as well

as the effect of the interventions. It also provides a good source for identification

of critical factors for disease transmission, dynamics of patient follow-up, outbreaks,

and failure of treatment (if any) (12). However, implications of surveillance are only

as good as its implementation. Many countries (especially developing countries) lack

robust disease surveillance systems due to insufficient resources, inadequate public

health capacity, and outdated or poor health information systems (13). The major

population that is unreported in the surveillance are the asymptomatic cases, people

who do not access health-care, people who do not go to public health systems for

diagnosis and/or treatment and false negatives due to suboptimal performance of

diagnostic tests (14). Due to this underreporting, the projections and interventions

could end up being inadequate and thus lead to failure of NTD control, elimination or

eradication goals. Moreover, the passive collection of data by the health surveillance

system often fails to continue to follow up on reported cases, leading to leakage

information and preventable further transmission of infection.

Progress of the WHO interventions Although significant progress has been

achieved towards the goals for many of these NTDs, there has been minimal gains

for 4 diseases: Trichuriasis, Hookworm disease, Food-borne trematodiases, and Cys-

tic echinococcosis. Furthermore, for Dengue and other arbovirus infections such as

Leishmaniasis and Chagas disease, we are “Losing the battle” (as suggested by well

known tropical disease scientist Prof. Peter Hotez ) (15).
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Social Science and NTDs: Although the NTDs have been targeted for control

since the mid-2000s, the status of the role of social science research is still neglected

(16). There are enough funded social science research projects, but integrating their

results into policy decisions needs to be made better (17). Therefore, it becomes

important to involve the community directly to effectively use the outcomes from

scientific research for enhancing intervention outcomes (18).

Mathematical models for NTDs control: Mathematical tools have been used

to model infectious diseases to understand transmission dynamics and perform pre-

dictions which are helpful in informing policies to control them. The first known use

of mathematical modeling for smallpox spread and treatment was used by Bernoulli

(1766). The concept of using compartmental models for infectious diseases was intro-

duced in the early 1900s by a series of researchers, including Hamer, Ross, McKendrick

and Kermack (19).

Mathematical models have been playing an important role in modeling and iden-

tifying major pathways of transmissions of NTDs, evaluating their control and/or

elimination targets, validating novel strategies and optimizing them (20). Some of the

published mathematical modeling studies which have impacted the NTDs control and

elimination programs are collected by NTD Modeling Consortium and can be found

at https://www.biomedcentral.com/collections/ntdmodels2015. Mathematical

models have an advantage in addressing the control of these “neglected” diseases as

modeling is not bound by limitations posed by sparse data or infrastructure funding

(21).
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1.2 Dissertation Focus

Overview of dissertation: For many NTDs, treatment is the foremost interven-

tion and can play a significant role in mitigating their burden if implemented effec-

tively. However, in reality it is accompanied by some major challenges. There are

multiple reasons why the treatment might fail at a population level – treatment non-

adherence (due to initial healing of patients and public health illiteracy), poverty,

access to treatment facilities, inadequate surveillance which lacks follow-up to know

accurate completion of treatment, systematic non-adherence etc. Also, in case of

an outbreak, usually the focus is on intense active case detection which is not al-

ways affordable for the resource-poor countries. Therefore, this work attempts to

identify hidden novel characteristics of population behaviors (particularly

with respect to treatment implementation) in order to significantly im-

prove existing control programs (and likelihood of potential elimination of

a disease) for two ecologically and epidemiologically contrasting diseases

and places: VL in India and STH in Ghana. Moreover, it aims to study

disease dynamics due to changes in these hidden characteristics of human

behaviors via development of new modeling frameworks.

The specific goals of this work are to (i) identify high-risk population and their

behaviors that have been neglected but are critical for implementing improved inter-

ventions and/or surveillance, (ii) develop novel dynamical models with identified high-

risk population and behaviors in order to study the role of control programs related

to high-risk populations on the dynamics of VL and STH, and (iii) suggest effective

policies that can simultaneously optimize disease burden and public health resources

over time.
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Table 1.2: Summary of Overarching Goals and Dissertation Objectives

Highest global DALYs are attributed to helminthic infections with STH leading

the list, whereas highest DALYs among protozoan NTDs are due to Leishmaniasis

(22; 8; 23). The two case studies- VL in India and STH in Ghana - are chosen and

studied here with the aim of addressing above-mentioned goals. VL is a micropara-

sitic disease and is spread to humans by sandflies whereas STH is a macroparasitic

disease and transmitted through contaminated environment (soil). The summary of

differences between micro- and macro-parasitic infectious diseases are presented in

Table 1.3. Note that STH may be considered to be vector-borne in a philosophical

sense; refer Table 1.1 for the attributes of an epidemiological vector. Control-wise

perspective, VL is categorized into innovative and intensified disease management

(that is, enhancement of NTD control within primary health-care by combining ex-

pertise in disease-specific areas with cross-cutting issues such as surveillance, capac-

ity building, advocacy and research) and STH into preventative chemotherapy and

transmission control (that is, an emphasis on a coordinated, cost-effective approach

to the implementation of national elimination and control activities where preven-
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Microparasitic diseases Macroparasitic diseases

Example: Visceral Leishmaniasis Example: Soil-transmitted helminthi-

asis

Microparasites multiply and develop

quickly within host(s)

Developmental stages (larvae) can be

free-living

Number of infected individuals is crit-

ical

Distribution of parasites per host is

important

Population level model with Units as

individual

Population level model with Units as

pathogen

Typical compartmental transmission

model looks like

Typical compartmental transmission

model looks like

Table 1.3: Summary of the Differences Between Micro- and Macro-parasitic Infectious

Diseases

tive chemotherapy is the main tool; e.g. regular antihelminthic drug administration).

Thus, the dissertation will broadly cover a representative group for most NTDs, pri-

marily described as a main three projects in this dissertation. The overarching goals,

novelties and objectives for the two diseases, VL and STH, are summarized in Ta-

ble 1.2. For VL in India, the potential, but currently hidden from the surveillance,

high-risk group is the treatment non-adherers. This group of population gets inaccu-

rately reported as treated due to lack of thorough follow-up while still spreading the

infection; thereby being a hidden source of infections. For STH in Ghana, hookworm

9



disease is the most prevalent helminthic infection and MDA efforts do not seem to

decrease STH prevalence as effectively as for Lymphatic Filariasis and Onchocerciasis

(24). Although the current MDA in Ghana for STH is focused on administering drug

to school-age children, it has been seen that the hookworm prevalence is equivalently

high for population with age greater than 15 years (25). Since school-based MDA

are shown to be cost-effective before, incorporating adults at schools in this policy

may be considered. These adult sub-population are potentially high-risk since they

spend half of their time among the highly prevalent school children. Them sharing

the latrines and surfaces touched by high density of children exposes them to higher

contamination risk for hookworm infections.

This dissertation consists of five chapters. The current Chapter 1 introduces the

topic of NTDs and provides relevant terminology in the field and overall research

goals of the dissertation. The three novel projects are described in Chapters 2 to 4

whereas final Chapter 5 concludes with overall implications from this dissertation as

well as limitations and future directions. The specific goals addressed and studied

through three main projects in this dissertation are described below in more detail.

1.2.1 Project Summaries

Project 1 (Described in Chapter 2): In spite of VL being fatal if not treated,

treatment adherence in Bihar, India is not perfect. It can be seen from limited data

that in regions with lower treatment adherence, the VL prevalence is higher. However

due to scarcity of data and inadequate follow-up of patients, it is difficult to under-

stand the impact of this group, which seems to be contributing significantly towards

disease burden. Treatment adherence has been previously studied for some directly-

transmitted diseases like tuberculosis and leprosy. Inspired by that, I developed a

novel mathematical vector-host-type VL outbreak model to estimate average treat-
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ment non-adherence in Indian state of Bihar and to study its effect, in combination

with varying treatment access rate and patients’ infectivity, on the VL transmission

dynamics and endemicity levels.

Project 2 (Described in Chapter 3): To eliminate VL from Bihar, WHO and

the Indian government have implemented sophisticated vector control programmes

which have either reduced vector biting rates, larval density or vector density itself.

However, in spite decades of control efforts through the vector control programs,

India has been unable to reach its elimination target goals. In this work, I have

used mathematical models to analyze and evaluate the time to elimination if the

treatment adherence was increased when vector control programs are implemented

at the current rates. Since the data on population treatment behaviors are scarce, in

this project, I also studied the role of different assumptions related to the distribution

of treatment non-adherence. In particular, two models are developed assuming two

different types of treatment non-adherence distributions (exponential vs gamma) in

the population since the treatment non-adherence mechanism is not fully explored

yet. I also quantify the effect of increasing treatment adherence in presence of different

vector controls on the reduction in VL incidence. This is done with an aim to assess

which vector control works best in combination increasing treatment adherence in the

case if resources were limited and implementation of not all the vector controls were

feasible.

Project 3 (Described in Chapter 4): STH is a directly transmitted macropar-

asitic disease with a worldwide prevalence of around 24%. STH has the highest

prevalence in sub-Saharan Africa wherein Ghana has an above global average preva-

lence of 25.4%. To control STH in Ghana, WHO has been implementing at least an
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annual mass drug administration with an aim to cover 75% of the children population,

considered as the high-risk group for STH. The popular treatment (both curative and

preventative) for STH is a single dose of Albendazole in Ghana. Single dose, leads to

no non-adherence as long as the people have access to it during MDA. The disease

has not been controlled even after almost 20 years of MDA. For some other countries,

it has been shown that community-based MDA may not be cost-effective especially in

resource limited countries like Ghana. In this work, I developed novel sets of math-

ematical models and carried out model-based cost-effectiveness analysis to compare

the impact of community-based MDA with that of risk-based MDA with the assump-

tion that the school workers and officials were the high risk populations (currently

ignored in MDA implementation in Ghana) that could be covered in school-based

MDA.

We have been knowing about Neglected tropical diseases (NTDs) for at least a

century but it has not been given due attention and hence, we have been unable to

eliminate it. Through this dissertation, I have hoped to provide some novel interven-

tion strategies for VL and STH that might be a game changer in achieving elimination

targets set by WHO. The strategies and methods discovered are novel and appropri-

ate for poor settings like seen in India or Ghana. The suggested strategies here are

different from the traditional public health view perspective that have been taken

until now for these two NTDs. In this dissertation, I provide frameworks for real time

evaluations of suggested strategies. However, as with any other modeling studies, this

work also requires additional data to validate its results, which is kept for future work.

Moreover, eradicating these diseases will require a multi-pronged approach including

drug administration, health education, vector control and clean sanitation facilities,
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which in turn will require a high level of local government commitment along with

strong partnerships among major stakeholders.
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Chapter 2

TREATMENT NON-ADHERENCE AND DYNAMICS OF VISCERAL

LEISHMANIASIS

2.1 Introduction

Epidemiology of VL : Visceral Leishmaniasis (VL) is a neglected tropical disease

with an estimated 50,000 to 90,000 new cases and over 20,000 to 40,000 deaths an-

nually worldwide. In 2015, more than 90% of new cases reported to WHO occurred

in 7 countries: Brazil, Ethiopia, India, Kenya, Somalia, South Sudan and Sudan (1).

VL, if not diagnosed and treated, is fatal in 95% cases (2) and is second in causing

maximum deaths per year after Malaria.

Causes of VL : In India, VL is caused by the parasite Leishmania donovani. It

is transmitted to humans through the insect vectors Phlebotomine sandflies which

are tiny in size (about 3-6mm long and 1.5-3mm in diameter). Phlebotomine sand

flies occur throughout the tropics and sub-tropics, as well as in temperate zones.

The lifecycle of this Leishmania parasite is completed partly in sandfly and partly in

humans. Adult female sandflies pick up the parasite through the peripheral tissues by

biting an infected individual for blood-sucking. The parasite reproduces asexually in

the sandfly’s alimentary canal and proceeds to its gut for regurgitational tranmission.

The parasite is introduced to humans locally at the infected sandfly’s bite location

which then spreads infection to its liver and spleen (3; 4). For a more detailed life

cycle of Leishmania, refer to (5; 6; 7).
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Treatment for VL: Miltefosine (MIL) is the only oral drug known to treat VL in

India. MIL 28-day monotherapy has been recommended to be the first-line treatment

regime to treat VL in India (8). Because of improper private practices and availabil-

ity of the drug over the counter, drug failure and potential resistance has arisen as

challenges. Additionally, due to the limited supply of the drug, the weekly dosage

is now made available to patients only through public hospitals (9). The long dura-

tion of treatment, difficult access to the drug and side-effects are leading to increased

treatment non-adherence in the population. Treatment non-adherence with a lack of

a systematic follow-up and surveillance of patients leads to inaccuracy in reports of

disease status: over-reporting of treatment completion and under-reporting of total

cases (since non-adherent patients are assumed to be treated); thereby making policy

recommendations improperly informed.

Definition of treatment adherence In general, adherence is defined as the extent

to which patients are able to follow the recommendations for prescribed treatments

(10). Non-adherence may constitute of– not seeking treatment upon diagnosis of in-

fection, permanently stopping the treatment midway or inconsistency in taking doses

exactly as prescribed. Studies use different terms for non-adherence like defaulting,

non-compliance to be defined differently for the respective studies. Kansal et. al.

(2017) define defaulting as discontinuation of treatment from a particular PHC (pub-

lic health center) (11) while Uranw et. al. (2013) define it as not following up with

the treatment until 2 days later than the expected day (12). The general flow of

treatment access and treatment behaviors can be seen in the Figure 2.1.

Treatment non-adherence is usually studied for long-term therapies for diseases

like Asthma, Depression, Cancer, HIV/AIDS, Tuberculosis, Diabetes, Epilepsy, Hy-

pertension and Tobacco Cessation (13). Although most of these are non-communicable
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Figure 2.1: Flow of Treatment Access and Behaviors.

diseases, the adverse impact of treatment non-adherence on the disease spread, treat-

ment efficacy and drug resistance has been studied for HIV and Tuberculosis. We

intend on addressing the importance of treatment adherence in the control of VL by

using data-driven and mechanistic approaches.

Treatment non-adherence for VL in Bihar : Bihar is one of the poorer states

in India which is home to most VL cases of India. VL patients in Bihar do not strictly

adhere to the treatment due to the fear of loss of wages and livelihood. Other causes

of non-adherence in patients generally is cost of drugs, side-effects, “I am cured”

syndrome in which patients stop the treatment upon remittance of symptoms, dif-

ficult access to the sparsely located health centers, health and disease illiteracy etc.

(14; 15; 16). Kansal et. al. (2017) traced and interviewed defaulters in Muzaffarpur

region to identify self-stated causes of non-adherence specific to the VL treatment

(11). These causes are “Wanted to have second opinion”, “Preference for KA spe-

cialist”, due to other illness, Side effects of drug, Felt better after starting treatment,
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Figure 2.2: VL prevalence and treatment non-adherence percentage in different health

facilities in India and Nepal based on the data from (19). For data a table with facility

names, refer Table A.1.

Outstation duties during treatment, PHC is too far from home, Dissatisfied with

the behaviour of PHC staff and treatment, Financial problem and Personal reasons

(marriage, death, festival). According to a study (17), the main reported reasons

for treatment interruption were lack of money for treatment (68.7%) and side effects

(15.7%). For any treatment, adherence is crucial because non-adherence leads to mor-

bidity, mortality, drug resistance etc. and results in loss in terms of health, money,

facilities and overall quality of life (18; 12).

VL treatment non-adherence and its surveillance: Only around 30% VL pa-

tients access public health-care facilities. Since the current surveillance system mainly

reports cases through public health centers, the VL cases are highly underreported

(20) or face a big delay in getting reported (21). This also means that the treatment
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non-adherence in private sectors is unreported. Furthermore, due to lack of thor-

ough follow up of patients, treatment non-adherers are falsely reported as treated.

This subpopulation of treatment non-adherers, depending on the treatment duration

before defaulting, may be infectious thus serving as a hidden source of additional

infections.

The differences between “underestimation”, “underreporting” and “underascer-

tainment” are discussed by Gibbons et. al. (2014) (22). The underestimated in-

fectious cases according to them, are a sum of the underreported cases (infectious

cases diagnosed and seeking healthcare but not reported) and underascertained cases

(all asymptomatic cases and all symptomatic cases that did not seek healthcare and

therefore cannot be possibly reported through passive surveillance). In this chapter,

we refer to underreporting as the difference between the actual number of infectious

individuals and the number of health-seeking individuals assuming that all health-

seeking get reported.

Goal of this paper As seen from Figure 2.2, higher treatment non-adherence

appears to correspond to higher VL prevalence. However, the available data on VL

treatment adherence in India is very scarce and thus conclusions on how the non-

adherence and prevalence correlates cannot be made. The trends (type and intensity

of nonlinear relationship) are also unclear. In a situation like this, mechanistic models

are a great tool to gain insights on the problem.

There are various modeling studies on the role of non-adherence to the treatment

for directly transmitted diseases like HIV (Human immunodeficiency virus), Soil-

transmitted Helminthiasis, Tuberculosis, Leprosy etc. (details discussed in Section

2.2.2) and how it is detrimental to the reduction of disease prevalence and spread,

however, there is no such study for VL, a vector-borne disease. Most of the existing
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studies in literature are empirical (observational and interview) and we were unable

to find any dynamical study, which typically uses mathematical models to specifi-

cally incorporate non-adherence. This work is the first study of its kind where we

understand the impact of mechanisms related to patients’ treatment behaviors on

the transmission dynamics of VL via a data-driven mathematical model. We discuss

the impact of different assumptions on non-adherence level, infectivity status of non-

adherent individuals on the endemic prevalence, treatment access rate and suggest

implications based on speeding up the reduction of VL cases from the South-east

Asian region.

The specific research questions addressed are:

1. What is the critical proportion of treatment adherence needed to control VL

via improved treatment implementation efforts in India?

2. How is improvement in treatment adherence related to the endemicity of VL in

India under different treatment access rates?

3. What is the critical proportion of treatment non-adherence above which un-

derreporting becomes crucial due to increased infection load by non-adherent

patients?

2.2 Methods

2.2.1 Previous VL Modeling Studies

The first model-based study for anthroponotic VL was by Dye and Wolpart (1988)

to identify mechanisms driving the outbreaks in Assam (23). The more contemporary

and popular models are by Mubayi et. al. (2010) to estimate the underreporting of

VL cases (24) and by Stauch et.al. (2012 and 2014) to understand the effect of vector
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Figure 2.3: Examples of previous compartmental infectious disease transmission mod-

els which have incorporated treatment non-adherence. Sources of models: (28; 29).

control and PKDL cases on VL transmission (25; 26). Medley et. al. (2015) used VL

dynamics model to show that early health-seeking can significantly reduce VL cases

(27). In this chapter we will use a similar vector-host compartmental mathematical

model to incorporate treatment non-adherence of patients under VL treatment.

2.2.2 Previous Mechanistic Treatment Non-Adherence Models

Patients’ non-adherence to prescribed drug has been modeled using standard eco-

nomic models for non-communicable diseases but not the effect of non-adherence on

a population dynamics level (30). Mathematical modeling to capture the mechanism

and effect of treatment non-adherence has been previously captured for to some ex-

tent for HIV (Human Immunodeficiency Virus), tuberculosis and leprosy due to their

long treatment durations. These various studies have modeled drug concentration in

an individual (31; 32; 33) within a host or population level dynamics to incorporate

non-adherence as a fraction of people leaving treatment (34; 35; 36; 28; 37; 38). A

couple examples are shown in Figure 2.3. Goals of these studies were to observe

23



the impact of relapse and treatment non-compliance on drug resistance and infection

spread. Inspired from this literature and from the high potential for under-reporting

and treatment non-adherence, in this study, we built a population level vector-host

model for VL to explicitly capture patient class and their treatment behavior in

terms of rate of treatment access, proportion of non-adherence and their contribution

to infection spread before they recover. We have considered the infectivity due to

the patients and have performed rigorous analysis on global stability of the system,

unlike the previous studies.

2.2.3 Model Description

To capture the disease dynamics of Visceral Leishmaniasis, we use a compartmen-

tal vector-host model since VL is anthroponotic in India. The model is structured

by dividing the human (host) population in Susceptibles (SH), Infected (IH), Under

treatment or patients (TH) and Recovered (RH). Adult female sandfly (vector) popu-

lation is divided into Susceptible (SV ) and Infected (IV ) compartments. Although the

incubation time of the parasite in humans is about 4 weeks and in sandflies about 4-

25 days (39), we have not considered a separate incubation or exposed class in both

humans and vectors. Instead, we have incorporated this delay in the infection coeffi-

cients βHV and βV H of successful transmission of infection upon sandfly bite. Studies

((40; 41)) have analyzed the leishmaniasis transmission model with exposed classes

for humans and vectors which will be useful in understanding the effect of VL control

if the interventions are related to reducing vector bites. Treatment non-adhering pa-

tients are the focus for intervention in this project. In this study we assume that the

infected people who undergo and complete the treatment as prescribed get recovered

and get permanent immunity from getting infected again (42). The infected people

who start the treatment but stop midway are said to be “non-adhering” people.
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Note that the lifecycle of sandflies is highly dependent on the temperature and

rainfall. If the temperature falls below 10 degC in winter, the breeding is reduced

due to diapause (43). Heavy rainfalls in monsoon may destroy the resting areas

of developmental stages and affect flying activity thus affecting the maturity and

reproduction of sandflies (44). However, in this work, we are assuming a constant

rate related to vector biting and life cycle since the focus of this work is on the effect of

human treatment behavior on VL over a time period (in years) which is significantly

on a bigger scale than that of a sandfly’s generation time. Therefore we assume

that the seasonalities in vector-related parameters are negligible on the time-scale of

interest.

Following set of ODEs describe the system represented by Figure 3.1:

dSH
dt

= ΛH − bβV HSH
IV
NH

− µHSH

dIH
dt

= bβV HSH
IV
NH

− γIH + θ(1− φ)TH − (δ + µH)IH

dTH
dt

= γIH − θTH − µHTH
dRH

dt
= θφTH − µHRH

dSV
dt

= ΛV − bβHV SV
IH + αTH

NH

− µV SV

dIV
dt

= bβHV SV
IH + αTH

NH

− µV IV

(2.1)

Apart from the dynamics of susceptible humans getting bit at rate b to get in-

fected with a transmission rate βV H (that is 1/βV HIV is the mean length of time an

average susceptible human takes to become infected if it is exposed to IV infective

vectors), infected humans proceed to access treatment at a rate γ. The mechanisms

of treatment non-adherence is similar to the model presented for Tuberculosis (29).

A proportion φ of the people under treatment completely adhere to the treatment to

get recovered at a rate θ. Due to high treatment efficacy of MIL in India, we assume
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Figure 2.4: Flowchart of the vector-host model for VL dynamics. Here the com-

partments are Susceptibles (S), Infected (I), Under treatment or patients (T) and

Recovered (R) where subscript H identifies host (humans) population and subscript

V identifies vector population. Non-adherence to treatment for VL is captured by the

expression (1− φ) which is the proportion of people defaulting from the treatment.

that everyone who perfectly adheres is recovered. The rest (1− φ) proportion of the

patients move back to the infected compartment by defaulting from the treatment.

Since TH constitutes of patients getting treatment for the first time as well as default-

ers who needed treatment again, on an average patients are capable of transmitting

VL at reduced rate αβHV TH where 0 < α < 1. All humans are born susceptible to

the disease and at a birth rate ΛH ; natural per capita mortality rate is µH . Infected

people can also die due to the disease at a rate δ per capita.
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Sandflies’ birth rate is ΛV , and all newly recruited female adult sandflies are

susceptible to the disease. Per capita mortality rate of vectors is µV . Susceptible

sandflies can get infected by biting either infected humans or humans under treatment

at a rate b to get infected at average transmission rates βHV and αβHV respectively.

2.2.4 Model-derived Novel Health Metrics

We analyze the dynamics of the disease and effect of non-adherence to the treat-

ment independent of the effects of the ongoing vector control program. Furthermore,

we compare the effect of treatment non-adherence on various new model-derived

health-metrics as following:

• Total treatment non-adherence rate = (1− φ)θ

• Treatment non-adherence as proportion = (1− φ)

• Total true prevalence (all infected compartments) = IH + TH

• Total reported prevalence (passive surveillance considers only people under

treatment) = TH

Note that, the difference between true and the reported prevalence constitute

for the underreported cases due to treatment non-adherence.

• True incidence (total new infectious cases) = bβV HSHIV /NH
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State variable Definition

SH Number of humans susceptible to VL

IH Number of humans infected with VL

TH Number of individuals being treated for VL

RH Number of humans permanently recovered from VL

SV Density of sandflies in a unit area susceptible to VL

IV Density of sandflies in a unit area infected with VL

Table 2.1: Definitions of the State Variables in the Model 2.1

• Reported Incidence (passive surveillance considers only people starting the treat-

ment) = γIH

• Additional infectious cases due to treatment non-adherence = θ(1− φ)TH

In the first two definitions above, note that the treatment rate (θ) is understood

in terms of the inverse of the total average duration of time spent in VL treatment

by patients. Non-adherence proportion is usually the quantity measured through the

observational or empirical field studies and hence the proportion φ is varied to measure

the impact on outcomes so that the results are comparable with the literature. This

implies that we assume that the distribution of non-adherence over time remains the

same, but the change in outcome is due to the change in the proportion.

2.2.5

For numerical results based on the model, we obtained the estimates for model

parameters as discussed in this section. In this model, we assume that the only treat-
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Parameter Definition

βHV Transmission rate of infection from humans to sandflies upon

a susceptible vector biting an infected human

βV H Transmission rate of infection from sandflies to humans upon

a susceptible human being bitten by an infected sandfly

µH Per capita natural mortality rate of humans

µV Per capita natural mortality rate of sandflies

δ Per capita rate for diseased deaths in infected humans

b Biting rate of sandflies per human

ΛH Natural birth rate of humans

ΛV Natural birth rate of sandflies

γ Per capita rate of infected humans initiating treatment

θ Per capita rate of humans leaving the treatment either due to

recovery or non-adherence

φ Proportion of humans leaving the treatment due to recovery

α Ratio of infectivity of the patients with respect to the infec-

tivity of the infected humans

Table 2.2: Definitions of the Parameters in the Model 2.1
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Figure 2.5: Observed number of defaulters (that is, non-adherence) to the treatment

in Muzaffarpur district, Bihar, India where total number of patients initially was 542.

Data obtained from (11).

ment administered is the 28-day MIL drug, the first-line treatment for VL in India.

With the assumption that after every initiation of treatment it takes 28 days to com-

pletely recover from the disease, the rate of recovery θφ is 1/28 days−1. The average

proportion of people adhering to the treatment (φ) was calculated from the study by

Kansal et. al. (2017) (11) . The authors record defaulters from December 2009 to

June 2012 to show that 87 patients out of 542 cases completed the treatment (refer

Figure 2.5 for histogram of number of defaulters per week) making the defaulters’

percentage to be 16.3%.

Since the non-adherence is not uniform over the treatment regime, we find the

value of treatment adherence (φ) using Pearson χ2 goodness-of-fit statistic since the

underlying distribution for data is unknown. From the original model (Equation 2.1),

the treatment non-adherence rate is given by the part

dTH
dt

= θ(1− φ)TH
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Therefore, using the relation that θ = (1/28)/φ and the solution of the non-adherence

rate:

TH(t) = TH(0)e−θ(1−φ)t

where TH(0) = 542 is fixed. We use Pearson’s χ2 method for goodness-of-fit since the

data, even if ordinal, is binned with underlying distribution unknown. We assume

that the data is homo-skedastic. Minimizing χ2 statistic (Figure 2.7)

χ2 =
∑
i

(Observedi − Expectedi)2

Expectedi

for parameter sweep for φ between 0 to 1 (biologically feasible range) by uniformly

sampling 10,000 values yields the estimate of the parameter φ (proportion of treatment

non-adherence).

2.3 Mathematical Analysis

In this section, we first show the model to be mathematically and biologically well-

posed. Then, as shown in the flowchart in Figure 2.6, we prove existence and local

stability of the disease-free equilibrium (DFE) using threshold reproduction number

(Rc). We also prove the existence of backward bifurcation near Rc = 1 conditional

on the treatment non-adherence proportion. The model is then reduced by assuming

no disease-induced mortality rate (that is, δ = 0) due to very few such reported VL

cases for Bihar. For the reduced model, we show existence and local stability of one

endemic equilibrium (EE) and a forward bifurcation at the threshold reproduction

number of reduced system (Rc(δ = 0) = Rc1 = 1). For Rc1 < 1, the DFE is globally

asymptotically stable. We then further reduced the system to exhibit quasi-stationary

state using singular perturbation theory since lifespan of humans longer than lifespan

of sandflies ( 1
µH

>> 1
µV

). Furthermore, VL has been endemic in India, therefore

we can reduce the model further to have dynamics similar to direct transmission
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Figure 2.6: Flow of analysis of the model (Equation 2.1 done in this paper where Rc

refers to the reproduction number calculated in Section 2.3.

(that is, Holling Type II interaction between SH and IH reduced to Holling Type

I). Under the assumption µH << bβV H
NV
NH

, the vector-host model approximates the

direct transmission model near the endemic equilibrium. Uniform persistence of VL

is proved using this reduced model for reproduction number greater than 1.

Well-posedness and dissipativity: The system (2.1) is dissipative since the so-

lutions are non-negative and uniformly eventually bounded (as defined in (45)) and

it is biologically and mathematically well-posed. (Proof in Appendix B)

Disease-free equilibrium: The disease-free equilibrium (DFE) of the system 2.1 is

calculated by setting the derivatives equal to zero with IH = 0 and IV = 0. Therefore

the DFE (S̃H , ĨH , T̃H , R̃H , S̃V , ĨV ) = (ΛH
µH
, 0, 0, 0, ΛV

µV
, 0) asymptotically as shown in

Appendix B.
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Control reproduction number: While the basic reproduction number (R0) quan-

tifies the average secondary infections by primary cases, the control reproduction

number (Rc) does so under a specified control which is treating infected humans in

our case.

R2
c(α, (1− φ), γ, δ) =

(
bβV H( αγ

θ+µH
+ 1)

δ + µH + γ(1− θ(1−φ)
θ+µH

)

)(
bβHV
µV

)(
ΛV /µV
ΛH/µH

)
(2.2)

This Rc is computed using the next-generation matrix method (46) as shown in

Appendix B.

Local stability of the equilibria:

Theorem 1. The DFE is locally asymptotically stable if R2
c < 1 and unstable if

R2
c > 1.

Proof in Appendix B.

Note that, in ideal cases, that is, perfect adherence ((1 − φ) = 0), that is when

patients complete the treatment as prescribed in the first time, and no infectivity by

patients (α = 0), the reproduction number R2
c here will be simply

R̃2
c = R2

c(α = 0, (1− φ) = 0) =

(
bβV H

δ + µH + γ

)(
bβHV
µV

)(
ΛV /µV
ΛH/µH

)
≤ R2

c(α, (1− φ))

(2.3)

This establishes that the disease can be controlled relatively easily in the ideal

situations as described above, given that the initial prevalence is low enough.

Backward bifurcation:

Theorem 2. The model (2.1) undergoes a backward bifurcation at Rc = 1 if per

capita rate of mortality due to VL is sufficiently large.

See proof in Appendix B.
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Corollary 1. The system undergoes backward bifurcation at Rc = 1 if the proportion

of non-adherence (1− φ) is large enough for δ > 0. Specifically if

(1− φ) >
θ + µH
2µV γθ

((µH + γ)(2µV + bβHV µHNV )− 2µV δ)

The source of this backward bifurcation may be solely the presence of diseased-

deaths of infected humans at a rate δ as seen in other vector-borne disease models

(47).

Endemic equilibrium: With the assumption δ = 0, that is, the rate of humans

dying of VL is comparatively lower than natural mortality rate (µH), the total human

population is constant. The total vector population is also constant. That is, NH =

ΛH/µH and NV = ΛV /µV are constant. Therefore the system can be reduced to four

dimensions as follows

dSH
dt

= ΛH − bβV HSH
IV
NH

− µHSH

dIH
dt

= bβV HSH
IV
NH

− γIH + θ(1− φ)TH − µHIH

dTH
dt

= γIH − θTH − µHTH
dIV
dt

= bβHV (NV − IV )
IH + αTH

NH

− µV IV

(2.4)

such that RH = NH − (SH + IH + TH) and SV = NV − IV .

The endemic equilibrium (EE) of this reduced system is

S∗H =
NH

b2βHV βVHI
∗
HΛV µH(αγ+θ+µH)

ΛHµV (bβHV I
∗
HµH(αγ+θ+µH)+ΛHµV (θ+µH))

+ 1

I∗H =
µV ΛHNH(θ + µH)(R2

c − 1)

bβHV (bβV HNV + µHNH)(αγ + θ + µH)

T ∗H =
γ

θ + µH
I∗H

I∗V =
bβHVNV (1 + αγ

θ+µH
)I∗H

µVNH + bβHV (1 + αγ
θ+µH

)I∗H

(2.5)
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and the control reproduction number for this reduced system is

R2
c(δ = 0) = R2

c1 =

(
bβV H( αγ

θ+µH
+ 1)

δ + µH + γ(1− θ(1−φ)
θ+µH

)

)(
bβHV
µV

)(
NV

NH

)
(2.6)

Note that the EE exists only if R2
c1 > 1.

Global stability of DFE

Theorem 3. If δ = 0 and Rc < 1, then the DFE for the model 2.4 is globally

asymptotically stable in the positively invariant space

Ω = {(SH(t), IH(t), TH(t), RH(t), SV (t), IV (t))|

0 ≤ SH(t) + IH(t) + TH(t) +RH(t) = NH , 0 ≤ SV (t) + IV (t) = NV ∀t > 0}.

Proof in Appendix B.

Singular perturbations: The time scale of vector dynamics is relatively fast as

compared to the host dynamics since the lifespan of humans is very large compared

to sandflies’ (i.e. 1/µH >> 1/µV ). Let a small quantity ε > 0 be defined as ε = µH
µV

.

With the substitution µV = µH/ε, the differential equation for IV becomes

ε
dIV
dt

= bεβHV (NV − IV )
IH
NH

− µHIV

with α = 0 that is the patients are infecting. This assumption holds if patients

follow a behavior such that they are not exposed to sandflies.

As ε −→ 0, if εβHV −→ β∗ > 0 then, the system 2.4 can further be reduced to

three dimensions with the assumption of quasi-stationary state of IV (t, ε) −→ I∗V .

That is, since the time scale of vector dynamics is relatively fast as compared to the

host dynamics, we assume that the vector population reaches steady state quickly.
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Therefore, the reduced model is as follows

dSH
dt

= ΛH − bβV HSH
I∗V
NH

− µHSH

dIH
dt

= bβV HSH
I∗V
NH

− γIH + θ(1− φ)TH − µHIH

dTH
dt

= γIH − θTH − µHTH

(2.7)

where,

I∗V =
bβHVNV IH

bβHV IH + µHNH

Using Levinson-Tikhonov theorem, as ε −→ 0, the solution of the reduced system is

a good approximation for that of the original system in the interval 0 < d ≤ t < ∞

for some d. Furthermore, using Hoppensteadt theorem, the solution of the reduced

system converges uniformly to that of the original system as ε −→ 0 in closed subsets

of time interval 0 < t < ∞ (48). Therefore, this reduced system can be used as a

good approximation for the previous version of the model except near t = 0.

The control reproduction of this special case is

R2
c2 = lim

ε−→0
Rc1(ε, α = 0) =

(
bβV H

µH + γ(1− θ(1−φ)
θ+µH

)

)(
bβ∗

µH

)(
NV

NH

)
(2.8)

Uniform persistence of EE: The quasi-stationary state assumption made in

system 2.7 represents the transmission term to be of the form Holling Type II inter-

action. The assumption µH << bβV H
NV
NH

(that is, disease transmission from vector to

human is faster than mortality) allows the vector-host system to have dynamics like

that of a direct transmission model near the EE (49; 50). Since, we want to study

conditions for persistence of VL, we reduce the model derived from 2.7 to now look
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like (with Holling Type I interaction for disease transmission):

NH = SH + IH + TH +RH

S ′H = ΛH − βSH
IH
NH

− µH

I ′H = βSH
IH
NH

− (µH + γ)IH + θ(1− φ)TH

T ′H = γIH − (θ + µH)TH

(2.9)

where β = b2βVHβ
∗

µH
. The reproduction number can be rewritten as a function of β as

R̃2
c =

(
bβV H

µH + γ(1− θ(1−φ)
θ+µH

)

)(
β

µH

)(
NV

NH

)
.

We now introduce a new variable ZH as follows

ZH = kIH + TH

. Taking the time derivative

Z ′H = kI ′H + T ′H

= k(βSH
IH
NH

− (µH + γ)IH + θ(1− φ)TH) + (γIH − (θ + µH)TH)

= kβSH
IH
NH

− k(γ + µH)IH + γTH + (kθ(1− φ)− (θ + µH))TH

Setting k = θ+µH
θ(1−φ)

, Z ′H does not depend on TH and TH = ZH − θ+µH
θ(1−φ)

IH . Using these

substitutions, the system now becomes

NH = SH −
θφ+ µH
θ(1− φ)

IH + ZH +RH

S ′H = ΛH − βSH
IH
NH

− µH

I ′H = βSH
IH
NH

− (µH + γ)IH + θ(1− φ)(ZH −
θ + µH
θ(1− φ)

IH)

Z ′H = β
θ + µH
θ(1− φ)

IH(
SH
NH

− 1

R̃2
c

)

R′H = θφZH −
φ

1− φ
(θ + µH)IH − µHRH

(2.10)
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Notice that

0 ≤ IH + TH ≤ ZH ≤ NH(1 +
θφ+ µH
θ + µH

)

because SH , IH , TH and RH are non-negative and add up to NH .

Note the meaning of the following notations used in this paper

y∞ = lim sup
t−→∞

y(t)

y∞ = lim inf
t−→∞

y(t)

Theorem 4. Let R̃2
c > 1. If ZH(0) > 0, ZH(t) does not converge to zero as t −→∞

and SH∞ ≤ NH
R̃2
c

.

Proof in Appendix B

Corollary 2. If R̃c > 1 and IH(0) > 0 then IH(t) does not converge to zero as t −→

∞. If SH(t), IH(t) and TH(t) are bounded then the system is uniformly persistent as

t −→∞ for all initial conditions with IH > 0 and hence, EE is globally asymptotically

stable.

2.4 Results

2.4.1 Parameter Estimates

Estimating treatment adherence parameter: The estimate of the proportion

of treatment non-adherence upon minimizing the Pearson’s χ2 statistic comes out to

be φ = 0.82 ± 0.07 (Pearson χ2 = 2.342, df = 4, p =0.22) for statistical significance

level 0.95 (Figure 2.8). Therefore, current value of θ is 0.044 day−1.

Point estimates of model parameters from literature: The total human pop-

ulation is assumed to be around 4.8 million which was taken from the 2011 census

for the district of Muzaffarpur in Bihar, India (51). The number of sandflies present
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Figure 2.7: Minimizing χ2 statistic for parameter sweep for φ between 0 to 1 (bi-

ologically feasible range) by uniformly sampling 10,000 times. The best fit esti-

mate is 0.82 ± 0.07 (95% confidence interval) as shown in the plot. Equation:

TH(t) = TH(0)e−θ(1−φ)t where t is x-axis and TH(t) is y-axis. χ2 = 2.342

was taken to be 0.75 times the human population following the conversion by Biswas

(2017) (52). In the study by Medley et. al. (2015), the average duration from initia-

tion of symptoms to diagnosis was quantified for Bihar to be 98 days. Assuming that

the people start treatment immediately after diagnosis, the rate of health-care access

γ is calculated to be 1/98 day−1 (27). As per our knowledge, the infectivity of people

under treatment relative to the newly infected humans has not been quantified and

hence α is varied between 0 through 1. All other estimates as shown in Table 3.3.3

are taken from the estimates used by ELmojtaba et.al. (2010) (53).
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Parameter Point estimate [Range] Source

ΛH 0.0015875 x NH day−1 (53)

ΛV 0.299 x NV day−1 (53)

NH 4.8×106 (51)

NV 0.75NH (52)

b 0.2856 day−1 (53)

γ 0.0102 day−1 (27)

βHV 0.22 day−1 (53)

βV H 0.0714 day−1 (53)

θ 0.044 day−1 Computed using (54) and (11)

µH 0.00004 day−1 (53)

µV 0.189 day−1 (53)

φ 0.82 [0,1] Computed using data from(11)

δ 1/730 day−1 (55)

α [0, 1] -

Table 2.3: Parameter estimates for the model. See Section 2.4.1 for details.
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Figure 2.8: Expected number of people in treatment using best fit treatment adher-

ence proportion (φ) as 0.82 overlaid on the observed data.

2.4.2 Results from mathematical analysis

From Equation 2.3, it can be seen that the disease can be controlled relatively

easily in the ideal situations (i.e. patients not infectious and perfect treatment adher-

ence), given that the initial prevalence is low enough. Although, when the disease-

induced mortality rate (δ) is positive, we can find the critical proportion of treatment

non-adherence (1 − φ) for which the system undergoes backward bifurcation. That

is, if treatment non-adherence is greater than the critical, even if the reproduction

number is less than 1, the system might attain endemic equilibrium depending on the

initial prevalence.

41



As treatment non-adherence increases, the rate of health-care access should also

increase rapidly to be able to control the disease (i.e. attain Rc < 1). However,

when relative rate of infection spread due to patients is high enough, as treatment

non-adherence increases, one might get in a situation where no amount of health-care

access rate will ensure the feasibility of VL control (Figure 2.9).

When the disease-induced mortality is negligible, we can find a critical treatment

non-adherence (when Rc < 1) below which VL can be controlled irrespective of initial

prevalence. If Rc > 1 the system will reach endemic state if the initial prevalence is

high enough.

Under the assumptions µH/µV << 1 and µH << bβV HNV /NH , that is when the

natural mortality rate of humans is significantly lower than that of the vectors and is

lower than the total infection transmission rate of VL from sandflies to adults, then

even if the initial prevalence is very low, VL will persist. However, we will not know

precisely at what level.

It is apparent that the total VL prevalence can be estimated from the model as

IH + TH . However, based on the current surveillance for VL cases in Bihar, the re-

ported prevalence is quantified as the people who get diagnosed and are being treated

for VL, corresponding to TH class from the model. As treatment non-adherence

increases, the discrepancy in the reported and the true endemic prevalences (as esti-

mated from the model) increases in a certain range. The effect of increasing treatment

non-adherence is stronger on reported cases as compared to that on true cases (Figure

2.10). Notice that, the effect of varying treatment adherence is not linear unlike as

hypothesized from Figure 2.2.

The true VL incidence can be estimated from the model to be bβV HSH
IV
NH

rate.

The incidence reported is the new cases initiating the treatment corresponding to γIH

rate in the model. The true incidence is higher than reported for low treatment non-
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Figure 2.9: Reproduction number threshold curve (Rc = 1). Regions under the curves

represent Rc > 1, and regions over the curves represent Rc < 1.

Figure 2.10: Discrepancy of the effect of varying treatment non-adherence on the

reported and the true endemic prevalences (as estimated from the model).
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Figure 2.11: Effect of increasing treatment non-adherence (1 − φ) on the true

(bβV HSH
IV
NH

) and reported (γIH) incidence metrics from the model in endemic state.

adherence. As treatment non-adherence increases, the reported incidence at endemic

state increases rapidly as compared to the increase in true incidence (Figure 2.11).

The total rate of non-adherence (θ(1− φ)TH) represents the additional infectious

cases arising due to the defaulters. This quantity is seldom reported. Figure 2.12

shows that increasing treatment non-adherence leads to increased additional VL case

load. Furthermore, when the treatment non-adherence is high, the rate of health-care

access (γ) needs to be considered to quantify this additional load correctly.

Additionally, we also found conditions for which (1) vector population attains

quasi-stationary state (limε−→0 εβHV = β∗ > 0 for ε = µH/µV ); (2) the endemic

state of the vector-host system can be estimated from direct transmission type model

(µH << bβV HNV /NH). It was shown that in the case of negligible disease-induced

mortalities, reproduction number being less than 1 is a crucial threshold to control VL

even when prevalence is low.
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Figure 2.12: Effect of treatment non-adherence on the additional infectious cases per

day arising due to the defaulters (θ(1 − φ)TH) for different health-care access rates

(γ).

2.5 Discussion

Even though Visceral Leishmaniasis is fatal in 95% of the cases if untreated, treat-

ment adherence is relatively low in Bihar, India as also is its reporting. Mathematical

models for tuberculosis and leprosy have studied population level dynamics to incor-

porate non-adherence as a fraction of people leaving treatment (34; 35; 36; 28; 38).

Inspired from this literature and from the high potential for under-reporting and

treatment non-adherence, in this study, we built a population level vector-host model

for VL to explicitly capture patient class and their treatment behavior in terms of rate

of treatment access, non-adherence and their contribution to infection spread before

they recover. We have considered the infectivity due to the patients and have per-

formed rigorous analysis on global stability of the system, unlike the previous studies.

We could find the conditions for which the effect of treatment non-adherence on en-
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demic state of vector-host disease would approximate its effect on directly transmitted

disease.

We estimated that from the data from (11) for Bihar, the average treatment

adherence was 82% which is close to that in Nepal (83%) as shown by (12). The data

used was a one time weekly measurement of 542 people who started the treatment.

Daily measurement would help the parameter estimation be better informed and more

explorations can be done in terms of the distribution of treatment non-adherence.

From the model developed in this study, we could see that if the proportion of

non-adherence to treatment gets very small, backward bifurcation can occur. That is,

when treatment adherence is improved actively to reduce disease spread and failure of

treatment, one should be careful about the prevalence level; the prevalence should be

made low enough through other interventions to prevent the disease from stabilizing

at the endemic level.

We showed that in the ideal situation of perfect adherence and patients being non-

infectious, controlling the disease would be easier. Since the treatment adherence was

seen to be different from city to city (Figure 2.2), the heterogeneity in the reproduction

numbers in spatial context can also be measured using the model. However, due to

the high dimension of the model, extending it to include spatial heterogeneity will

increase the complexity. We proved successful reduction of model from 6-D to 3-D

upon specific assumptions as shown in previous section to increase model’s scope of

future extensions. However, quantifying the total rate of perfect treatment adherence

(in presence of some treatment non-adherence) is not possible through the model

since the patients class consists of both first-time treatment seekers and treatment

non-adherers reinitiating the treatment.

We know that the half-life of MIL is about 7 days (56), but the average infectivity

of the patients based on their MIL concentration has not been quantified. Due to
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extremely low perfect treatment adherence (53% in Nepal (12)), patients’ infectivity

plays an important role in the VL dynamics (Figure 2.9). Although the study assumes

homogeneous mixing of host and vector population, and considers MIL monotherapy

for all, it lays a framework for capturing the effect of treatment non-adherence for VL

and treatment behavior. The model can be easily extended to further consider the

effect of treatment non-adherence resulting from various different causes (monsoons

affecting treatment access, different effects of mild and severe drug side-effects, disease

awareness, etc.) and can be used in region-specific studies. Refer to Appendix C for

some sample potential extensions.

Medley et. al. (2015) showed that instead of providing diagnostic tests for VL

to the patients suffering from fever for more than 2 weeks, it would be better if the

rate of health-care seeking was higher (27). They also quantified the average time

from symptoms to treatment initiation to be 98 days in Bihar, which is excessive.

Upon assessment of the effect of treatment access-rate in combination with treatment

non-adherence (Figure 2.12), we can see that the impact of increasing access rate is

important when the treatment non-adherence is high.

In Bihar, VL cases get reported when infected people access some public hospital

(public health center) for diagnosis. From the model, we could identify the reported

incidence as the flow of infected people into treatment class (at a rate γIH). But, the

true incidence of VL is the rate at which people are newly infected (bβV HSHIV /NH

from the model). It was seen that reported incidence increases faster in comparison

with true incidence as treatment non-adherence increased (Figure 2.11). This is due

to the increased number of people in infected class due to non-adherence and hence the

total access rate keeps growing as less people complete the treatment as prescribed.

As treatment non-adherence increases, the total prevalence (infected people as well

as patients) increases rapidly even if it cannot be seen from the reported prevalence,
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which counts only patients (Figure 2.10). This shows that a thorough follow-up of

patients with record-keeping and improving treatment adherence is critical for reliable

reporting outcomes.

The model developed in this paper studies VL dynamics with only treatment

as control. However, to control and hopefully eliminate VL from Bihar WHO in

collaboration with the Indian government has been implementing sophisticated vector

management programs. The combined effect of implementing vector control and

improving treatment adherence can be studied by extension of the model. We also

assumed that all patients (treated for 1 day vs. for 27 days) exhibit a similar average

treatment non-adherence behavior as well as infectivity which may not be realistic. To

correct for this, the treatment class can be split up into multiple classes based on their

different attributes (as done in (35) for tuberculosis). In spite of these limitations, we

believe that this paper gives readers an insight on the average impact of treatment

behaviors on VL dynamics and encourages more informed data collection to obtain

specific policy guidance through it.

Treatment is effective only if people take it, and development of new treatments

is an expensive and time-taking process. Treatment non-adherence is an important

aspect in VL spread, specially due to the length of MIL monotherapy (which is the

most common treatment recommendation in Bihar) and inadequate surveillance. To

get closer to the elimination target in Bihar, along with the on-going control strategies,

improvement in treatment adherence should be also actively monitored and corrected

for. In the future studies, we plan to consider defaulters separately from the new

infectious cases since the treatment behavior as well as infectivity is different for

them due to some exposure to the drug. This would result in capability to study the

differences in effect of patient behavior in different phases of their treatment.
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Chapter 3

MODEL SELECTION AND ROLE OF MODEL ASSUMPTIONS FOR

TREATMENT NON-ADHERENCE ON VISCERAL LEISHMANIASIS

ELIMINATION

3.1 Introduction

3.1.1 WHO-led VL elimination target

In 2005, the governments of India, Bangladesh, and Nepal in collaboration with

the WHO launched a regional initiative to eliminate Visceral Leishmaniasis by 2015.

Elimination was defined as reducing incidence to a level at which it would cease to

be of public health importance i.e. less than one per 10,000 inhabitants per year

at sub-district levels. Due to failure in attainment of the targets, subsequent target

dates have been 2015, 2017, 2020 and now WHO has published a road map for VL

until the year 2030 (1). The national strategy for the elimination of VL, which is in

line with the WHO Regional Strategic Framework for elimination of Kala-Azar from

the South-East Asia Region (2011-2015), includes early case detection, integrated

vector management, supervision, monitoring and surveillance, strengthening human

resource capacity for health, programme management etc. (2). Elimination is fea-

sible in the Indian subcontinent because VL is anthroponotic (i.e. humans are the

only known reservoirs), availability of drugs with high treatment efficacy, limited and

clustered geographical distribution of cases and a strong political commitment and

inter-country collaboration to control VL cases (3). Vector control interventions are

considered to be most effective in controlling this vector-borne disease. Main efforts
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towards elimination include integrated vector management (optimal and sustainable

vector screening and control) and treating infected individuals.

3.1.2 Sandfly control interventions:

Several sophisticated vector controls are being implemented in India to achieve the

VL elimination goal. The most common are Indoor Residual Spraying (IRS) to control

adult sandflies, source reduction, treatment of breeding sites with chemical, biological

agents and Long Lasting Insecticidal Nets (LLINs) or Insecticide Treated Nets (ITNs)

for personal protection using bed nets. Environmental Vector Management (EVM)

or Larval Source Management (LSM) is implemented to reduce the sandfly and larva

density in and around the house (4).

IRS effect lasts for about 10 weeks and hence is applied twice a year before and

after monsoon since sandfly density peaks around then. For the IRS, 150 grams

insecticides per 75 square feet is recommended. The insecticides used are DDT

(DichloroDiphenylTrichloroethane) 50% WP (weight of product), Malathion 25% WP

and synthetic pyrethroids. Synthetic pyrethroids include Deltamethrin 2.5% WP,

Cyfluthrin 10% WP, Lambdacyhalothrin 10% WP and Alphacypermethrin 5% WP.

These are also injected in bednets to make them LLINs. LLINs holes are big enough

for male sandflies and unfed female sandflies to pass through, but prevent the infect-

ing fed female sandflies. These nets are distributed for free in India. It has been

identified that cracks in mud walls in houses, dense vegetation and animal burroughs

are some of the popular places of sandfly breeding, nesting and resting. Thus through

LSM, the places are chemically treated or more popularly the cracks in house walls

are plastered and limed (5; 6).

The effect of these vector controls are sensitive to their implementation and use.

This study will use the effects of these vector controls in terms of (i) reduction in
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vector biting rate, (ii) reduction in recruitment rate of adult female sandflies, and, (iii)

increased mortality rate of adult female sandflies. Although we have considered fixed

values for the parameters corresponding to these effects from (6), in later sections,

we provide global sensitivity of the reproduction number on the parameter values.

3.1.3 Non-Adherence to the Treatment of VL

Causes and Effects of non-adherence to VL treatment : Bihar is one of the

poorer states in India and patients do not strictly adhere to the treatment due to

the fear of loss of wages and livelihood. Other causes of non-adherence in patients

generally is cost of drugs, side-effects, “I am cured” syndrome in which patients stop

the treatment upon remittance of symptoms, difficult access to the sparsely located

health centers, health and disease illiteracy etc. (7; 8; 9). Kansal et. al. (2017)

traced and interviewed defaulters in Muzaffarpur region to identify self-stated causes

of non-adherence specific to the VL treatment (10). These causes are “Wanted to have

second opinion”, “Preference for KA specialist”, due to other illness, Side effects of

drug, Felt better after starting treatment, Outstation duties during treatment, PHC

is too far from home, Dissatisfied with the behaviour of PHC staff and treatment,

Financial problem and Personal reasons (marriage, death, festival). Miltefosine is the

only oral drug for VL and its 28-day regime is prescribed as first-line treatment. It

can sometimes cause gastrointestinal side-effects. It stays in the body for a very long

time, which could potentially make the parasite resistant to it (3). According to a

study (11), the main reported reasons for treatment interruption were lack of money

for treatment (68.7%) and side effects (15.7%). The long duration of the treatment

also leads to increased possibility of non-adherence. For any treatment, adherence is

crucial because non-adherence leads to morbidity, mortality, drug resistance etc. and

results in loss in terms of health, money, facilities and overall quality of life (12; 13).
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There are various studies on the role of non-adherence to the treatment for diseases

like HIV, malaria, Lymphatic Filariasis, Soil-transmitted Helminthiasis etc. and how

it is detrimental to the reduction of disease prevalence and spread, however, there

is no such study for VL in India. Due to the complex nature of various causes of

treatment non-adherence to VL, the distribution of non-adherence may be different

in different regions. Therefore, we derive a novel data-driven model to capture non-

adherence behavior. Furthermore, since we established the importance of treatment

non-adherence in the previous chapter, we build an extension to the model in previous

chapter to incorporate the perfectly adhering patients separately from the treatment

non-adherers to examine the impact of increasing perfect adherence on the potential

for VL elimination in presence of current vector controls.

3.1.4 Treatment non-adherence and case underreporting in Bihar

This paper mainly focuses on spread and control of VL in Bihar, India because it

is estimated that 90% VL cases of India are from Bihar (14). Reportedly, there has

been a decline in disease burden with a peak of 80,000 cases in 1992 to less than 9,000

in 2015. But multiple studies (15; 16; 17; 18) highlight the current under-estimation

of neglected tropical disease cases and its adverse effects on the mortality rate as well

as DALYs (disability-adjusted life years). Furthermore, the serious under-reporting

of cases (as high as 90% (19)) reported and estimated in (20; 21; 22; 23) result in

increasing difference in infected cases and reported cases as the cases increase (24).

Singh et. al. (2006) point out that the fault lies in the reporting system which picks

up only those VL cases which are registered for treatment with the public health care

delivery system (PHC), District Hospital and Government Medical colleges leaving

out a vast majority of patients who opt for the private health care system (25; 26; 22).

The number of cases does not also include the number of non-adherent individuals
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who may be clinically resolved but not completely recovered and hence infectious, thus

a potential for transmission. These individuals pose a similar threat as the PKDL

(Post Kala-azar Dermal Leishmaniasis) cases (VL reservoirs) (27). Therefore, current

challenges in controlling VL in Bihar include (but may not be limited to) delay in

seeking health-care, varying treatment adherence levels (28), synchronizing multiple

vector control programs, managing reservoirs, availability and supply of drugs and

poor surveillance (29).

Even though studies (30; 29) show that non-adherence to treatment of VL and

VL cases have reduced over the years, only around 30% of the patients go to the

public health center for the treatment and those who receive treatment fail to follow

up as prescribed by practitioners due to socio-economic constraints and negligence

(11). Mondal et. al, (2009) suggest that geographical inaccessibility for village health

workers, indigenous healers, and prescription by local chemists could be primary

factors for negligence in accessing and following proper treatment, but for selecting

between private and public sector the most frequently mentioned factors were faith

(belief that VL can be treated adequately) and good interpersonal communication.

The surveillance data used for making policies and understanding the magnitude of

the disease have started including cases from private sectors only recently and not

much is known about the coverage. Given that a large population seeks health-care

at private clinics, the result that the disease and non-adherence is reducing must be

re-evaluated.

Different behavioral aspects underlying successful treatment and recovery of a pa-

tient is summarized in Figure 3.1 out of which (31) stated the importance of early

health-care seeking in reducing VL cases. Debroy et. al. (2016) reviewed the mod-

elling studies on VL to understand the factors (divided into 6 categories: atmosphere,

access, availability, awareness, adherence and accedence) that were identified and ad-
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Figure 3.1: Flowchart of Behavioral Aspects in Treatment and Health-Seeking

dressed for controlling the disease and eliminating it from the South-east Asian region

(32). They remark that there exists few or no mathematical modeling studies focus-

ing primarily on non-adherence to treatment VL. Therefore, this paper will highlight

and model the non-adherence to the treatment of VL to emphasize on its adverse

effects resulting in it being a hindrance in its elimination.

3.1.5 Goal of this paper

We analyze the impact of treatment non-adherence on the dynamics and potential

elimination of VL via the results of following research questions:

1. Probability of VL treatment non-adherence is highest after one week of treat-

ment and therefore the average waiting time in treatment approximates a gamma

distribution. In this context, what is the critical level treatment non-adherence
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Figure 3.2: Percent defaulters at different stages during the treatment. Source of

data: (10)

rate above which VL elimination is impossible when treatment is the only con-

trol?

2. Treatment non-adherers have different treatment behavior and infectivity as

compared to the newly infected population. Considering this difference, how to

compare the mechanisms in this new model with the previous model?

3. When treatment non-adherers are explicitly modeled, what is the critical pro-

portion of perfect treatment adherence below which elimination is impossible

in combination with current vector control?

3.2 Methods

3.2.1 Data-driven non-adherence model (Model I)

Gamma-distributed Treatment Non-adherence

Treatment non-adherence has been modeled for tuberculosis and leprosy as T ′ = rT

(33; 34).We used the similar structuring in the previous chapter. This modeling

structure results in exponentially distributed probability of leaving treatment class.

However, as seen from Figure 3.2 (Kansal et. al., 2017), the proportion of treatment
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non-adherence peaks around 7 days since treatment initiation.In this chapter, con-

clusions drawn are mostly simulation-based and hence we take the complete model

from the previous chapter (without any assumptions for special cases), and extend it

to incorporate this difference in distribution. We found out this proportion of non-

adherence’s best-fit gamma distribution (Gamma(α = 1.118, β = 1.174)). Best fit

exponential distribution for the same is Exponential(λ = 0.15) (Figure 3.3). The pa-

rameters of these distributions were computed using weighted mean and variance of

the data presented in Figure 3.2 (Refer to Appendix D for calculations). It was seen

that Pearson’s χ2 statistic for the exponential distribution equals approximately 101

times that of the gamma distribution with the Akaike Information Criterion (AIC)

for the former being greater than the latter. Thus, we can conclude that gamma-

distribution describes the non-adherence better.

Modeling Framework

“Linear chain trick” is used to obtain gamma-distributed waiting time using ODE

model (35). It is based on the principle that the sum of n identical exponential

probability density functions converges to a gamma probability density function as

n −→∞. As shown in Figure 3.4, VL transmission is modeled such that susceptible

human population (SH) gets infected (IH) upon infected sandfly (IV ) bite(s) at a

rate bβV HSH
IV
NV

NV
NH

, where NH and NV are the total human population and the total

vector population density respectively. A susceptible sandfly (SV ) gets infected at a

rate bβHV SV
IH
NH

+ α
∑
i Ti
NH

if it bites an infectious human. In this case, the population

in infected class and treatment classes are infectious; latter due to treatment non-

adherence. b is the average biting rate per sandfly, β’s are infection transmission

coefficients and α ∈ [0, 1] is a scaling factor to indicate the relative infectivity of the

patients with respect to infected populations that are not in treatment. Assuming
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Figure 3.3: Comparison between best fit exponential and gamma distributions for the

probability of leaving treatment. Exponential(λ = 0.15). Gamma(α = 1.118, β =

1.174). The Pearson’s χ2 statistic for the exponential distribution equals to ap-

proximately 101 times that of the gamma distribution with the Akaike Information

Criterion for former being greater than the latter.

that the disease deaths due to VL are negligible (due to enforcement of treatment

to every diagnosed individual), an infected individual seeks treatment at the rate

γH and enters treatment to move through the stages Ti, i = 1, 2, . . . , n. He/she is in

treatment for a Γ(n, n(θ1 +ρ))-distributed time where θ1 is the rate of defaulting from

the treatment during the n stages. This means that the expected average treatment

period is 1/(θ1 +ρ), its standard deviation is 1/(θ1 +ρ)
√
n and the squared coefficient

of variation is 1/n. The person recovers from the infection only upon completing all

the treatment stages without defaulting midway. Furthermore, humans and sandflies

are born into SH and SV compartments at constant rates ΛH and ΛV respectively

and their average per capita death rates are µH and µV respectively.

The system of equations describing the above mechanistic framework is:
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Figure 3.4: Data-driven Non-adherence Model: Stage Progression Model for VL Dy-

namics with Gamma-Distributed Treatment Non-Adherence

dSH
dt

= ΛH − bβV HSH
IV
NH

− µHSH (3.1)

dIH
dt

= bβV HSH
IV
NH

− γHIH − µHIH + nθ1

n∑
i=1

Ti (3.2)

dT1

dt
= γHIH − n(θ1 + ρ)T1 − µHT1 (3.3)

dTi
dt

= nρT(i−1) − n(γH + α)Ti − µHTi 2 ≤ i ≤ n (3.4)

dTH
dt

= nρTn − θ2TH − µHTH (3.5)

dRH

dt
= θ2TH − µHRH (3.6)

dSV
dt

= µVNV − bβHV SV
IH + αn

∑n
i=1 Ti

NH

− µV SV (3.7)

dIV
dt

= bβHV SV
IH + αn

∑n
i=1 Ti

NH

− µV IV (3.8)

where NH = SH + IH +
∑n

i=1 Ti + TH + RH and NV = SV + IV are constant for

NH = ΛH/µH and NV = ΛV /µV .
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3.2.2 Explicit Treatment Adherence Model (Model II)

Explicit Incorporation of Treatment Non-adherers

The treatment behavior and infectivity of the treatment non-adherers is not neces-

sarily equivalent to the newly infected people. Therefore, non-adherers flowing back

into the IH compartment incapacitates the modeler to incorporate this difference in

treatment behavior. Treatment adherence in Nepal = 83% with only 53.9% perfect

adherence (13). Quantifying perfect treatment adherence for Bihar is not possible

with the current compartmentalization (Model I). Furthermore, asymptomatic infec-

tious cases arise out of partial treatment (i.e. when treatment non-adherence happens

upon the resolution of symptoms).

Modeling Framework

We develop an alternative vector-host model to incorporate the difference in treat-

ment behavior between newly infected populations and treatment non-adherers (Fig-

ure 3.5). Humans and sandflies are born into SH and SV compartments at constant

rates ΛH and ΛV respectively and their average per capita death rates are µH and

µV respectively. Sandfly-to-human VL transmission happens similar to as in Model

I. In Model II, human-to-sandfly transmission can happy when a susceptible sandfly

bites either a newly infected human (IH) or treatment non-adherer who is asymp-

tomatic but infectious (VH). We assume the patients (TH and CH) indulge in safety

precautions to avoid sandfly bites and therefore are not infectious.

Similarly as Model I, assuming that the disease deaths due to VL are negligible

(due to enforcement of treatment to every diagnosed individual), an infected indi-

vidual seeks treatment at the rate γH . φ proportion of health-seeking individuals

are assumed to practice “perfect adherence”, i.e. treatment is taken exactly as pre-
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scribed in the first time and thus enter CH . People in CH complete the treatment in

28 days (Miltefosine) as prescribed. The non-adhering proportion (1 − φ) enters TH

wherein average duration in treatment is shorter due to non-adherence upon symptom

resolution. The asymptomatic infectious treatment non-adherers (VH) reinitiate the

treatment at the per capita rate η when symptoms reappear. (1 − ξ) proportion of

these people will enter CH to now complete the treatment as prescribed. We assume

that the people reinitiate treatment after at least 15 days and hence are prescribed

the complete 28-day regime from the beginning.

Note that, in this modeling framework, the treatment non-adhering populations

TH and VH are falsely reported as treated cases and are hidden and this contribute

to underreporting of cases.

Figure 3.5: Explicit Treatment Adherence Model : Flowchart of VL Dynamics with

Explicit Incorporation of Treatment Non-Adherers and with Vector Control.
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Incorporating the effect of vector control: Sophisticated vector controls (LLIN,

LSM, IRS) have been implemented in Bihar. To analyze potential for elimination, it

is important to consider the effect of the ongoing vector control interventions. These

interventions’ effect is captured in Model II (Figure 3.5) as: (1) biting rate b reduced

by a factor ε ∈ [0, 1]; (2) sandfly mortality due to insecticide δV ; (3) Reduction in the

rate of recruitment of susceptible adult sandflies (ΛV (1− ψ)).

The system of equations describing the above mechanistic framework along with

the vector controls is:

dSH
dt

= ΛHNH − bεβV HSH
IV
NH

− µHSH (3.9)

dIH
dt

= bεβV HSH
IV
NH

− γHIH − µHIH (3.10)

dTH
dt

= (1− φ)γHIH − θ1TH + ξηVH − µHTH (3.11)

dVH
dt

= θ1TH − ηVH − µHVH (3.12)

dCH
dt

= φγHIH + (1− ξ)ηVH − θ2CH − µHCH (3.13)

dWH

dt
= θ1CH − µHWH (3.14)

dSV
dt

= ΛV (1− ψ)NV − (bεβHV IH + αbεβHV VH)
SV
NH

− µV SV − δV SV (3.15)

dIV
dt

= (bεβHV IH + αεbβHV VH)
SV
NH

− µV IV − δV IV (3.16)

3.2.3 Are Model I and Model II Mechanistically Equivalent?

We want to assess if under the respective assumptions, are Models I and II mech-

anistically different. However, both models are of high dimensions and complex. To

compare them, they must be reduced to optimally minimum compartments (that is

without losing the treatment aspects) so that they are structurally equivalent enough

to be compared.
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Reduction of Model I

Using the data of defaulters, defined as who discontinued treatment from a PHC

(Public health center), by (10) as represented in Figure 3.2, we calculate the average

period of time patients remain in treatment. The average period in treatment, 1/(θ1)

(=10.575 days), is calculated with weighted ties of people leaving treatment at a

particular point of time. Therefore, using the variance of the distribution, the number

of stages is

variance =
1

nθ2
1

= 40.36 =⇒ n =
10.5752

40.36
≈ 3

Therefore, the Model I with n = 3 can be reduced to a 6 compartment model as

shown in Figure 3.7. The assumptions in doing so are that the compartment T̂ is the

combination of T1, T2 and T3 classes while preserving the reproduction number of the

original model. The parameter scaling as shown below ensures this condition:

θ′′1 = θ1

That is, average treatment non-adherence rate is preserved.

ρ′′ = ρ

That is, the average recovery rate is preserved.

α′′ = F (α, θ1, ρ)

α′′ =
α (9θ2

1 + 6θ1µH + 27θ1ρ+ µ2
H + 9µHρ+ 27ρ2) (γH(µH + ρ) + µH(θ1 + µH + ρ))

γH (9θ2
1µH + 3θ1µH(2µH + 9ρ) + (µH + 3ρ)3) + µH(3θ1 + µH + 3ρ)3

+
θ1 (9θ2

1(2µH + 3ρ) + 3θ1 (4µ2
H + 24µHρ+ 27ρ2) + 2µ3

H + 21µ2
Hρ+ 81µHρ

2 + 54ρ3)

γH (9θ2
1µH + 3θ1µH(2µH + 9ρ) + (µH + 3ρ)3) + µH(3θ1 + µH + 3ρ)3

such that the reproduction number of the original model with n = 3, is equal to

the reduced model.
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Reduction of Model II

First, we consider Model II without vector so that it can be compared with Model I.

That is consider the model in Figure 3.6 which is derived from original Model II with

δV = 0, ψ = 0 and ε = 1 in Figure 3.1.

Next, we reduce the model to a minimal number of compartments while still

capturing treatment behavior well. We do this by combining the compartments TH

and VH into T , i.e. T will now be the class which contains all treatment non-adherers

until before they enter CH to successfully complete the prescribed treatment. The

flowchart of the reduced model can be seen in Figure 3.8. The new average waiting

time in T before entering CH is computed by considering all routes of going from TH

to CH as follows:

1

η′1
=

θ1

θ1 + µH

1

η(1− ξ)
+

θ1

θ1 + µH

ηξ

η + µH

θ1

θ1 + µH

1

η(1− ξ)
+ . . .

=⇒ η′1 =

(
µH

(
1

η + µH
+

1

θ1

)
+
η(1− ξ)
η + µH

)
(1− ξ)η

And, the scaling down of infectivity coefficient of the new non-adherent class:

α′ =
θ1

θ1 + µH

µH + η′1
µH + η(1− θ1ξ

θ1+µH
)
α

makes sure that the reproduction number of the original Model II with no vector

control is preserved in the reduced model.

3.3 Results

3.3.1 Parameter Estimates

For both models I and II, for initial conditions initial number of infected people

is assumed to be 8500 and everyone else susceptible (2). The parameters same and

common for both models I and II are: natural mortality of humans (µH) and sandflies
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Figure 3.6: Flowchart of Model II with No Vector Control. That is δV = 0, ψ = 0

and ε = 1 in Figure 3.1

Figure 3.7: Model I (data driven implicit gamma-distributed treatment non-

adherence) reduced as described in Section 3.2.3 so that threshold measure (repro-

duction number) is preserved.
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Figure 3.8: Model II (explicit treatment non-adherence) reduced as described in Sec-

tion 3.2.3 so that threshold measure (reproduction number) is preserved.

Variable Definition

SH Number of susceptible hosts

IH Number of infected hosts

Ti Number of hosts in the ith stage of treatment for 1 ≤ i ≤ n

RH Number of recovered hosts due to complete treatment

SV Density of susceptible vectors

IV Density of infectious vectors

Table 3.1: Variable Description for Model I.
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Variable Definition

SH Number of susceptible hosts

IH Number of infected hosts

TH Number of hosts non-adherent to the treatment

CH Number of host adhering to the treatment

VH Number of hosts in clinically resolved state

WH Number of completely recovered hosts

SV Density of susceptible vectors

IV Density of infectious vectors

Table 3.2: Variable Description for Model II.

(µV ), vector biting rate (b), total population of Bihar (NH), infection transmission

coefficients for human-to-vector (βHV ) and vector-to-human (βV H), and, treatment

initiation rate (γH ; inverse of average number of days (98 days) taken by a symp-

tomatic patient to start the treatment (36)). The point estimates for these obtained

from literature are shown in the Table 4.4.

Model I

• Treatment non-adherence rate: The total treatment non-adherence rate θ1 is

computed as the inverse of total time patients spend in treatment before de-

faulting (10.575 days, (10)).

• Coefficient of infectivity of patients : The parameter α is the scaling parameter

of how infectious patients are as compared to the newly infected people and
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lies between 0 and 1. The value for this parameter has not been estimated in

literature and hence will be varied in the study.

• Rate of progression in next treatment stage: The average total rate ρ at which

a patient in Ti progresses in Ti+1 to eventually be adhering and go in CH class.

Since n = 3 as shown in previous sections, ρ can be computed as the inverse of

total treatment duration (28 days for MIL).

Model II

• Adherence proportion: As estimated in the previous chapter (based on data

from Kansal et. al., 2017) proportion of treatment non-adherence ((1 − φ))

is 0.16. Using the data from (10) for patients who eventually complete the

treatment (after defaulting), ξ was calculated to be 0.862. The value for the

rate of defaulting (i.e. for how many days a person stays in treatment before

defaulting), the weighted mean for defaulting data from (10) over 28 days was

taken to calculate θ1 to be approximately 0.095.

• Vector control parameters : The values for parameters (δV , ε, ψ) related to the

vector control program (IRS, LLIN and Larval source management respectively)

were calculated to be 0.319, 0.563 and 0.58 respectively from a cluster study

(6).

Since no study has recorded the average delay in resuming or restarting the treatment,

we varied the value for η from 0 to 1. This is a novel work testing the effect of clinically

recovered but infectious individuals on the dynamics of the disease, therefore the value

of α in Model II was chosen from range 0 to 1. Table 3.3.3 summarizes parameters’

description and values.
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3.3.2 Bifurcation Analysis

Reproduction number for Model I:

R2
c =

bβHV
µV

NV
NH

bβV H(
1 + αγH

nθ1+nρ+µH

∑n−1
i=0 (

nρ
nθ1+nρ+µH

)i

µH + γH(( µH+nρ
µH+nρ+nθ1

)n + µH

(µH+nρ+nθ1)n

∑n−1
i=1 (nθ1)

n−i∑i
j=1(nρ)

j−1(n− j)(µH + nρ)j+1)

)

For n = 3, the reproduction number is

R2
c =

b2βhvβvhNv
(
αγ
(
9θ12 + 6θ1µh + 27θ1ρ+ µh2 + 9µhρ+ 27ρ2

)
+ (3θ1 + µh + 3ρ)3

)
µvNh

(
γ
(
9θ12µh + 3θ1µh(2µh + 9ρ) + (µh + 3ρ)3

)
+ µh(3θ1 + µh + 3ρ)3

)
And endemic equilibrium:

I∗H =
ΛH(R2

c − 1)

R2
c(µH + R2

cNH
bβVHNV

)

Reproduction number for Model II: R̃2
c = bεβHV

γH+µH

bεβVH
µV +δV

NV
NH

(1 + αγHθ1(1−φ)
(θ1+µH)(η+µH)−ηθ1ξ )

And endemic equilibrium:

I∗H =
bεβV H(1− ψ)NVNHµH(R̃2

c − 1)

R̃2
c(µH + γH)(bεβV H(µV + δVNV (1− ψ) +NH)

Remark: Since both reproduction numbers were computed using the next gen-

eration matrix method (37; 38), the corresponding disease-free equilibria (that is all

compartments except susceptible classes have zero number) is locally stable for the

reproduction numbers less than 1 for a low enough initial prevalence. Note that

the reproduction numbers are functions of the treatment- and vector control-related

parameters thus impacting the elimination threshold.

3.3.3 Model I and Model II are Mechanistically NOT Equivalent

Upon reduction of Models I and II as shown in Section 3.2.3, the comparison can

be made as shown in Table 3.3.
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Model I Model II

ÎH consists of newly infected as well as

treatment non-adherent people

IH consists of newly infected people

only

Non-adherence captured as a rate θ
′′
1 Non-adherence captured as proportion

(1− φ)

Perfect treatment adherence cannot be

explicitly quantified

Per capita perfect treatment adher-

ence rate is φγH

T̂ compartment consists of both treat-

ment adherers and non-adherers.

T compartment consists of treatment

non-adherers.

True prevalence is ÎH + T̂ ; Reported

prevalence is T̂

True prevalence is IH + T + CH ; Re-

ported prevalence is T + CH

True incidence is bβV HSHIV /NH ; Re-

ported incidence is γH ÎH

True incidence is bβV HSHIV /NH ; Re-

ported incidence is γHIH

Total rate of treatment completion is

ρ′′T̂

Total rate of treatment completion is

η′1T + φγHIH

Average time spent in ÎH before treat-

ment completion:

Average time spent in IH before treat-

ment completion:

γH
µH+γH

1
ρ′′
.

θ′′1 +ρ′′+µH
γH(ρ′′+µH)+µH(θ′′1 +ρ′′+µH)

1
φγH

+ (1−φ)γH
µH+γH

1
η′1

Table 3.3: Comparison of the reduced versions of Model I (Figure 3.7) and Model II

(Figure 3.8).
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Parameter Definition

ΛH Human birth rate

ΛV Adult sandflies recruitment rate

b Average biting rate of sandflies per human

θ1 Per capita rate of patients not adhering to treatment

γH Per capita rate of infected humans initiating the treatment

βHV Infection coefficient from host to vector

βV H Infection coefficient from vector to host

θ2 Per capita recovery rate of humans upon complete treatment

µH Per capita human natural mortality rate

µV Per capita sandfliy mortality rate

α Scaling factor for infection coefficient of patients as compared to

infected people not under treatment

n Number of treatment stages

Table 3.4: Parameter Description for Model I.
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Begin of Table

Parameter Definition Value estimate Source

ΛH Human birth rate 0.0015875 × NH

day−1

(39)

ΛV Sandflies birth rate 0.299×NV day
−1 (39)

NH Total host population 4.8 million (40)

NV Total vector population 0.75×NH (41)

b Average biting rate of sandflies

per human

0.2856 day−1 (39)

θ1 Per capita rate of defaulting mid-

treatment

0.095 day−1 (10)

γH Per capita treatment rate of newly

infected humans

0.175 day−1 (11)

βHV Infection probability from host to

vector

1/98 day−1 (31)

βV H Infection probability from vector

to host

0.0714 day−1 (39)

θ2 Per capita permanent recovery

rate (through Miltefosine 28-day

regime)

0.036 day−1 (42)

µH Per capita human natural mortal-

ity rate

0.00004 day−1 (39)
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Continuation of Table 4.4

Parameter Definition Value estimate Source

µV Per capita sandfliy mortality rate 0.189 day−1 (39)

ε Reduction in biting rate due to

LLINs

0.563 (6)

φ Probability of complete adherence 0.837 (10)

ψ
Per capita mortality rate of sandfly

larvae due to LSM

0.58 day−1 (6)

δV Per capita mortality rate of vec-

tors due to IRS

0.319 (6)

ξ Proportion of resuming treatment 0.862 (10)

α Proportion of infection transmis-

sion from VH

0 to 1 Assumed

η Proportion of resuming treatment 0 to 1 Assumed

Table 3.5: Parameter Description and Estimates for Model II.

End of Table

3.3.4 Effect of Treatment Adherence on Elimination

Model I

Using Model I with three treatment stages (n = 3) to compare the VL outcome with

current non-adherence rate θ1 = 1/10.575 with the outcomes with reduced treatment
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Figure 3.9: Effect of decreasing treatment non-adherence rate on potential VL elimi-

nation from Bihar by 2021 based on Model II (Figure 3.4).

non-adherence. Note that reducing θ1 implies increasing the average waiting time of

treatment non-adherers in the treatment. We can see that this waiting time can be

increased to successful VL elimination in the future (Figure 3.9).

Model II

Model II (Figure 3.1) considers the complete model with consideration of non-adherence

and vector control both.

Figure 3.10 sheds light on the underreporting of the non-adherent patients as

infected cases. As the infectivity (α) of the non-adherent patients increases compared

to the infectivity of new cases, reported number of new cases also increase, but for

all values of α it can be seen that the proportion of reported cases is lower than real

number of cases by a significant percentage.

The lines in Figure 3.11 represent the relation of levels of non-adherence to treat-

ment (φ) in population with rate of resuming treatment after non-adherence (η) at
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Figure 3.10: Under-reporting of cases due to non-adherence to treatment. Solid line

i.e. “Reported number of cases” represents only the new infected cases (
I∗H

I∗Hα=1

) and

dashed line i.e. “Real number of cases” represents the new infections as well as

non-adherent patients who are infectious in the population (
I∗Hα+V ∗Hα

I∗Hα=1
+V ∗Hα=1

).

R0 = 1 for different levels of infectivity of the non-adherent patients (α). This relation

is given by the following equation

η =
µH(θ1 + µH)

θ1(1− ξ) + µH − αθ1(1−φ)
R1−1

where

R1 =
(µV + δV )2(γH + µH)ΛH

b2ε2βV HβHV ΛV (1− ψ)µH

Figure 3.12 shows the normalized sensitivity indices of the reproduction number

of the complete model with respect to the various parameters that it depends on.

If we compare the vector control parameters, it can be seen that the reproduction

number is most sensitive to changes in ε (representing reduction in sandfly bites due
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Figure 3.11: In Model II, relation between levels of non-adherence to treatment (1−φ)

in population and rate of resuming treatment after non-adherence (η) for achieving

R0 < 1 for different levels of infectivity of the non-adherent patients (α).

to Long Lasting Insecticidal Nets) followed by ψ (Larval Source Management) and

then δV (Indoor residual spraying).

Furthermore, to address the efficacy of the systematic Integrated Vector Manage-

ment (IVM) program with the consideration of extra incidences due to the clinically

resolved but infectious cases in combination with varied levels of adherence to the

treatment is demonstrated in Figure 3.13. It can be seen that the effect of IVM on

decreasing the endemic prevalence increases with increase in population’s adherence

to treatment. Notice that the effect of LSM is most improved due to an improved

adherence to treatment.
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Figure 3.12: Normalized Sensitivity Indices for R0 for Various Parameters in Model

II.

Figure 3.14 shows how different parameters in the model namely treatment rate

(γH), proportion of perfect adherence (Type I; φ), proportion of adherence to treat-

ment after defaulting at least once (Type II; ξ) and rate of resuming or restarting the

treatment after defaulting (η) respectively have effect on the prevalence of disease in

humans (
I∗H+V ∗H
NH

). Since it could be seen that the dependence of φ on the prevalence

is linear, while others non-linear, it is important to understand the effect of Type I

and Type II adherence behaviors on the health-seeking behavior of the individuals as

seen in Figure 3.5. This was seen under the assumption that the value of R0 > 1 is 2.

Finally, to address the potential for elimination of VL from Bihar, India by 2020,

Figure 3.15 uses the current population of Bihar as the susceptible humans out of

which approximately 5000 are assumed to be infected currently. The figure depicts

that given current vector control and level of adherence (solid red line), the disease

is not eliminated by 2020. But it can be seen from the dashed lines in the plot that
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Figure 3.13: Effect of the combination of different vector control strategies with

improved adherence on the proportion of change of disease prevalence in humans.

by improving adherence to the treatment in the population, the elimination target

becomes achievable.

3.4 Discussion

Even if a Visceral Leishmaniasis endemic block successfully attains the incidence

number of less than 1 case per 10,000 population, the elimination in the block is

validated if the number is maintained under 1 for consecutive 3 years (43). To main-

tain the number of low incidence cases, it is necessary that potential reservoirs are

spotted and addressed (44). Risk of non-adherence is high and Model II in this study

provides a framework to incorporate the non-adherence to treatment in a more re-

alistic way by assuming a gamma-distributed waiting time. This was inspired from

the study that showed that the non-adherence is highest after around the first week
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Figure 3.14: (Clockwise starting top-left) Effect of treatment rate (γH), proportion of

perfect adherence i.e. completing the treatment exactly as prescribed in the first time

(Type I; φ), proportion of adherence to treatment after defaulting at least once (ξ)

and rate of resuming or restarting the treatment after defaulting (1− η) respectively

on the prevalence of disease in humans (
I∗H+V ∗H
NH

).

into the treatment (10) as shown in Figure 3.2. We could see the effect of increasing

the waiting time of treatment non-adherers in treatment before defualting increases

the possibility of achieving elimination solely with treatment. This may be done with

improved follow-up and surveillance.

Hirve et. al. (2016)(45) analyzed the disease transmission to conclude that the

asymptomatic Leishmaniasis infection (ALI) contributed to 82% of the overall trans-

mission. Also, they showed that there is as high as 90% under-reporting of ALI cases

which act as potential reservoirs. Therefore, quantifying the infectiousness of the ALI

cases or transmission from relapse and clinically recovered population becomes crucial
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Figure 3.15: Feasibility of elimination of VL from Bihar, India by 2020 for different

levels of adherence to treatment. This scenario incorporates the effects of current

vector control strategies (Long Lasting Insecticidal Nets, Larval Source Management

and Indoor Residual Spraying). It is assumed that non-adherent individuals (VH) are

70% as likely to spread infection upon sandfly bite as the infected individuals before

any treatment (IH).

for designing strategies for elimination and its validation. Model II was constructed

to address this.

Although 20% of Indian VL endemic regions continue to be highly endemic, India

saw 75% reduction in VL cases within the first decade of the WHO elimination pro-

gram (45). As we near the elimination, it is important to continue the controls long

enough to reduce the chances of its resurgence (46). Even if elimination gets suc-

cessfully achieved, sustaining it would be difficult without the availability of vaccines

(47). In this context of nearing elimination and aim to sustain it, one may start to

consider stochastic modeling to analyze the behavior of the system around the criti-
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cal threshold (48), since the number of infectious individuals will be very small (49).

This would consider the drastic reduction on the effect of controls leading to higher

perturbations around the critical elimination threshold as shown in the series of pa-

pers (50; 51; 52) with an example of a host-vector model for mosquito-borne disease.

Furthermore the use of the basic reproduction number (R0) does not incorporate the

rapid changes in current time, therefore, consideration of the mathematical results

from this study can be redone in terms of the effective reproduction number which is

R0 × S(t) where S(t) is the number of susceptible people at time t. However, DNDi

stated that the decline in VL cases in India has not been regular (53). Also, in the

light of high estimated underreporting of the cases (35) we may be sufficiently far

from the critical elimination threshold to gain insights on dynamics and elimination

potential of VL with treatment non-adherence through ODE systems.

From Figure 3.14, it can be seen that people who default from the treatment

pose more risk by becoming hidden from the surveillance than the people who delay

accessing the treatment. Therefore, there is a need to focus efforts on clinically

recovered infecting defaulters. Seeking a balance in reducing delay in health-care

access and improving overall adherence to treatment is crucial to the effectiveness of

the current efforts. Using the empirical studies like (11), (10), (13) and others, it

has been identified that main reasons for non-adherence are side-effects of treatment,

cost of drugs, lack of faith in the health centers and illiteracy about the disease and

treatment. Simultaneous efforts on addressing factors for behavioral issues and their

effect is critical.

To upgrade the already existing sophisticated interventions directed towards elim-

inating Visceral Leishmaniasis from the South-east Asian region, it is important to

identify the factors that are hindering the process, quantify the effects of different

factors and prioritize them accordingly and then design a new protocol based on this
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knowledge. A study (54) concludes the need for reinforcement of the integrated vector

management methods. We have shown that the effect of improving adherence to the

treatment varies for different combinations of the methods used (Figure 3.13) which

may work as a guideline for the new protocols. The significance of the vector control

strategies is also highlighted from their high sensitivity indices for the reproduction

number, but it is noteworthy that other factors explored in this study play a crucial

role in reducing the endemicity of VL. Assuming that the current efforts in vector

controls programs is maximal, Figure 3.15 shows how improvement in adherence can

be a field to input further efforts. This can be done by education and awareness and

by tracking the follow-ups of the patients for treatment.

We also demonstrated a way to reduce the dimension of models while preserving

the critical outcome measures and waiting times in treatment. Through the reduced

structures, the Models I and II could be compared to see how different assumptions on

treatment non-adherence behavior leads to different mechanisms. Therefore, it is im-

portant to base the mathematical models on region-specific causes of non-adherence.

The purpose of this study was to emphasize on the need for considering different

subjective factors like illness beliefs and treatment beliefs which determine the ad-

herence to the treatment (55). Additionally, significance of active detection of early

asymptomatic cases, surveillance and reporting of cases of relapse and overall im-

provement of quality of life of the population in the endemic regions are needed to

be explored in addition to the IVM interventions. This will ensure that the incidence

is low in reality and not just on the reports so that a delayed surge of infection, if

any, can be predicted beforehand. Note that, there is high spatial heterogeneity in

the endemicity of VL in different sub-districts of Bihar (56). Different regions show

present outcome of the same interventions implemented (35). Therefore, to achieve

the goal of bringing the incidence below 1 per 10,000 people may need different ef-
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forts in different regions. This may be addressed in future work by either getting

region-specific parameters and even by meta-population model to consider movement

of people between the regions.

The plots are capable of only qualitative description because the parameter values

assumed are from literature and might not be in line with each other and with the

current scenario but they suffice the purpose of identification of behavioral factors

hindering the elimination process. Some parameter values had to be assumed between

the range [0,1] due to the unavailability of the data of patients after starting the

treatment in terms of after how many days a patients follows the treatment regularly,

defaults from the treatment, resumes treatment after non-adherence etc. as well

as for the infectiousness of the patients who have gone under incomplete treatment

highlights the need for more studies and research and improved and publicly available

records in these aspects.
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Chapter 4

RISK-STRUCTURED MASS DRUG ADMINISTRATION FOR THE CONTROL

OF SOIL-TRANSMITTED HELMINTHIASIS IN GHANA

4.1 Introduction

4.1.1 Epidemiology of soil-transmitted helminthiasis

Globally, Soil-transmitted helminthiasis (STH), a neglected tropical disease, is

considered one of the major public health problems. It is an infection with the

helminthic parasites, Ascaris lumbricoides, Trichuris trichiura, and hookworm (An-

cylostoma duodenale and Necator americanus), which are transmitted via contam-

inated soil, hence the name. STH had global prevalence of 12.14% in 2017 with a

loss of 1.9 million DALYs (Disability-adjusted life years) (1).Although this disease

mostly causes morbidity, around 3000 deaths are also attributed to STH worldwide

(1). Roundworm affects about 1.1 million people worldwide; hookworm and whip-

worm affect between 740,000 to 800,000 worldwide (Centers for Disease Control and

Prevention, 2013) with the highest prevalence in sub-Saharan Africa (2). Along with

east Asia, hookworm prevalence is reportedly highest in sub-Saharan Africa (3). In

Ghana, the 2017 prevalence of all STH was 14.25% (1) (see Figure 4.2 for species-wise

prevalence) while the prevalence of hookworm in the middle belt was as high as 45%

(4).

4.1.2 Life cycle of STH

Ingestion of helminths happens upon consumption of food that is contaminated

by helminth worms or when hands or food with contaminated dirt are put in mouth
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Figure 4.1: Life Cycle and Mode of Transmission of Helminths (Hookworm)(5; 7)

without washing (5). Roundworm and whipworm are transmitted by ingestion of

worm eggs which then settle and grow in the intestines of humans. Hookworms (for

example Ancylostoma duodenale) are transmitted by the penetration of filariform (a

larvae form) through the skin and then enters the bloodstream to travel and mature

in the small intestine. The Ancylostoma may also be transmitted through ingestion.

The adult worms then release eggs into the soil (or environment) through improperly

disposed human feces (6). As shown in Figure 4.1, the worms are infective only when

they enter the human body (either by ingestion or by penetration through skin) in

the filariform larva stage.

4.1.3 Risk factors of STH

People infected with STH or intestinal worms show symptoms such as diarrhea,

general abdominal pains, weakness and in the case of hookworm, blood loss which can

result in severe anemia. All three species of helminths thrive in warm and temperate

regions and particularly in places where sanitation and hygiene are poor.
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Environmental factors such as inaccessibility to safe drinking water, improperly

cooked foods, limited or lack of toilets, lack of flowing water are examples of difficulties

faced by millions of people in Ghana.

Immunological factors : Post preventive chemotherapy, the intensity of reinfec-

tion of STH in a host is higher. Dunn et. al. (2019) showed that the rounds of MDA

should be frequent enough to prevent the reinfection of treated people (8).

Coinfection and co-circulation : Co-infection and co-circulation of all 3 types of

STH are common in highly endemic regions (9). Additionally, the coinfection of STH

(specially hookworm) and Plasmodium is also common in various countries, including

Ghana (10; 11; 12).

At risk sub-populations: Various sub-populations can be considered to be at

high-risk depending on spatial variation and infection distribution. These include

children (due to high susceptibility to roundworm and whip worm and playing in dirt),

farmers (working barefoot in the soil; (13) shows results for Ghana), pregnant women

(since parasites may travel to mammary glands making vertical transmission of disease

possible), parents (due to high exposure to contamination through sharing home and

toilet environment with their children), and school workers (due to high exposure

to contamination through sharing school surfaces and toilets with high density of

children at least half of the day).

4.1.4 Mass drug administration (MDA) for STH control in Ghana

MDA is defined as the delivery of essential medicines as a preventive measure

where populations or sub-populations are offered medicine irrespective of their health

condition or individual diagnosis (15). MDA is essential for decreasing pathogen levels
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Figure 4.2: Prevalence of STH in Ghana for different helminth species. Data down-

loaded from (14).

in the population, reducing and interrupting the transmission of the disease, thereby

controlling and eliminating NTDs like Lymphatic Filariasis, Trachoma, Onchocerci-

asis, Schistosomiasis and STH (16; 17).

In line with WHO’s guidelines on MDA, 7 million people in Ghana have been

targeted for MDA (also called as preventive chemotherapy) through the use of al-

bendazole or mebendazole - two drugs used against STH. MDA is a key strategy

currently being used to control the spread of STH by Ghana’s Ministry of Health.

Although MDA has been implemented in Ghana since 2000, this disease is still re-

curring among vulnerable populations, especially people in rural areas. Along with

WASH (Water, Sanitation and Hygiene), school-based MDA is the main strategy

used for control. WHO guidelines: treat 75% of SAC since intensity is highest. For

hookworm other parts of the community (like pregnant women, miners, school work-
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ers etc.) (18). Due to resource limitations and logistics to conduct community-wide

MDA, researchers have been investigating the cost-effectiveness of community-wide

preventive chemotherapy.

School-based (environments where STH is most likely to be transmitted) MDA,

health education and awareness, use of clean water and the monitoring and evaluation

of progress of MDA are some of the interventions used by the Ministry of Health in

Ghana to curb the disease. The target group for MDA in Ghana is children, partic-

ularly school-aged children (5-14 years). Other age groups that are vulnerable to the

disease are the pre-school aged children (0-4 years) and high-risk adults (¿ 15 years)

but these age groups are not targeted in current MDA efforts (19). Although there are

positive indicators leading to the gradual achievement of these goals for WASH pro-

grams (WASH and the Neglected Tropical Diseases, 2013), the 75% coverage target

of MDA was not reached in Ghana in 2017 (20). Hookworm infection is common in

children, the prevalence and infection intensity are highest in adults (21). This adult

population more susceptible to hookworm infection is systematically missed due to

the children-centric MDA.

4.1.5 Goal of the study

Lo et. al. (2015) carried out a study in Ivory Coast and showed that a community-

wide treatment for STH is the most cost-effective when structured and implemented

based on age groups. That is when both school-based MDA (for treating school chil-

dren) and community-based MDA (for treating adults in the community). Since the

cost of delivery for community-based MDA is high, its cost-effectiveness is debated.

Therefore, we identify that the adults (school officials) at school are at higher risk of

STH infection due to their activities among children (who are known for unhygienic

behaviors) and hence exposed to higher contamination. The goal of this work is to
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extend the prior work in Ivory Coast and identify the optimal age-structured cover-

age of MDA in the Ghanaian context. To achieve the goal, a transmission dynamics

model for STH (focusing particularly on hookworm infection transmission) was used

to capture infection levels for different coverages for MDA. The infection dynamic

model was coupled with a cost model and various policies were evaluated based on

the cost-effectiveness of strategies. The examination involved comparison of existing

MDA Ghanaian policy (focusing only on children) with age and risk structured poli-

cies in which both adults and children are covered in systematic way under MDA

implementation. The policies are evaluated under two broad categories, limited and

unlimited available drug pills for MDA. Turner et. al. (2016) point out that the

success of the community-wide treatment is highly dependent on the epidemiological

setting and types of population groups (22). Hence, we further assessed the cost-

effectiveness of school-based MDA that included treatment of high-risk adults along

with children.

In summary, the study examines community-wide MDA by finding optimal cov-

erage of MDA between adults and children in Ghana. In particular, we aim to focus

on these research questions: (1) How does the dynamics of STH in Ghana change

when different MDA coverages in children and adults are considered? (2) What are

the optimal percentages of coverage between adults and children that could reduce

prevalence of STH in Ghana below a target level in a specified time and are also

cost-effective? (3) How do these optimal coverages differ if the MDA is covered based

on risk groups, high-risk adults, and children population?

4.2 Methods

This section will introduce the readers briefly with the rich past of STH mathe-

matical modeling. Then we will extend the previously used age-structured model to a
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risk-structured model. Based on these models we develop a corresponding cost model

with various scenarios of MDA coverages. Then we perform a cost-effectiveness anal-

ysis to compare the cost-effectiveness of current MDA policy in Ghana with respect to

the most cost-effective community -based MDA policy and to the most cost-effective

risk-structured school-based MDA policy.

4.2.1 Summary of progression of STH modeling

Truscott et. al. (2016) present a thorough review of different forms of mathe-

matical models used in the past to capture STH transmission (23). Compartmental

modeling to capture and understand dynamics of STH had been first done in 1979

with host, parasite and environment and three classes. Which was then transformed

into modeling mean worm density (weighted average of worms per host) and envi-

ronment due to the importance and non-uniform distribution of worm densities per

host (24). Croll et. al. (1982) provided us with a data-driven formulation for the

computation of prevalence from the mean worm density (25). To capture the distinct

hosts’ age profile of the distribution of worms, Anderson and May (1985) introduced

us to a way to build an age-structure in hosts (26). Then to capture the effect of

MDA on the worm density, a data driven functionality was given by Anderson and

Medley (1985) (27). Since MDA comes with a massive cost, Medley et. al. (1993)

introduced model-based cost-effectiveness analysis for cost per unit worm density re-

duced (28). Since then multiple cohort-based STH modeling studies have been done

for various regions to compute the effectiveness of school-based and community based

deworming to treat and prevent STH. One recent example is Lo et. al. (2015), who

showed through a study for Ivory Coast that community-based MDA is more cost-

effective than only school-based MDA (29) with their age-structure model based on

Chan et. al. (1994) study (30). However, Medley and Hollingsworth (2015) wrote a
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commentary indicating that the costs for community-based treatment may have been

under-estimated. Coffeng et. al. (2015) have provided a simulation-modeling software

WORMSIM (31) but obtaining all the parameter values for Ghana was not feasible

to us. Our motivation was to identify the high-risk adults (based on exposure), MDA

for whom will need a minimal additional cost as compared to school-based MDA for

children only. We studied this using a compartmental modelling method.

4.2.2 Population-structuring

Mixing of populations : In this study, we considered two types of mixing patterns

of the individuals in our modeling population: homogeneous mixing and heterogeneous

mixing. Homogeneous mixing refers to the scenario where all adults mix or spend

time equally with all the children in the population. Heterogeneous mixing scenario

is only considered for adults and represents the situation where some class of adults,

like teachers or school-workers, mix or spend time disproportionately more with the

children as compared to the rest of the adults.

Age-structured categorization : Our modeled population is assumed to be di-

vided into two groups based on age: Children (0 to 14 years) and Adults (15 years

and above). This classification of age group is specially based on two relevant points

for effective transmission of infection: (i) the hospitality of the host body for growth

and reproduction of parasites and (ii) the level of contacts with contaminated en-

vironment. For example, higher likelihood of children playing bare-feet in the soil

which may be contaminated, thus increasing susceptibility to infection.

Risk-structured categorization : In the heterogeneous mixing scenario, certain

group of adults are assumed to spend more time with children, who are involved
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with the unhygienic behavior which leads to high exposure to parasites from the

environment. The teachers are considered to be part of this group which is referred

to as high-risk adults since they are exposed to parasites on the surfaces of desks,

chairs, doors etc. while sharing the same space with children. Hence, such a group is

more likely to get the STH infection due to ingestion of these parasites.

4.2.3 Modeling framework

We use the widely used age-structured model for STH dynamics given in (32)

with the reduction in mean worm density due to preventive chemotherapy as given in

(33). Based on different combinations of coverages of MDA in children and adults, we

compute the reduction on prevalence achieved and cost of MDA per year to perform

incremental cost-effectiveness analysis, against the current policy of treating 75%

children, to suggest the optimal coverage policy. Then we extend the age-structured

dynamical model framework to differentiate between mean worm burden of high-risk

and low-risk adult populations with preventive chemotherapy being administered to

high-risk adults along with children in a school-based MDA setting. The summary of

the two population structures used in the study are shown in Table 4.1. A similar cost-

effectiveness analysis was performed to find optimal coverages in this new proposed

setting. The structure of analysis is summarized in Figure 4.3.

Homogeneous Mixing of Adults with Children

Dynamical Model

Homogeneous mixing refers to the scenario where all adults mix or spend time equally

with all the children in the population. Mean worm burden is the number of worms

an individual host carries. The dynamics of worms in hosts (children and adults) and

environment and how MDA reduces the mean worm burden in the system is shown
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Table 4.1: Summary of population structuring used in the current work.

Figure 4.3: Flowchart of Analyses
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in Figure 4.3. This is modeled using the following system (34)

dMc

dt
= βcl − σMc − θcMc

dMa

dt
= βal − σMa − θaMa

dl

dt
= ψzλf̄1 − µl

where Mc and Ma represent the mean worm burden in children and adult pop-

ulations respectively and l is the average infection density (larvae) in the environ-

ment. βcl and βal represent the uptake of larvae due to contact with the infection in

the environment in children and adults respectively. σMc and σMa are the natural

rates of excretion of worms from the host bodies. The reciprocal of µ is the aver-

age lifespan of larvae living outside the host body. θc (= − log (1− gch)/d) and θa

(= − log (1− gah)/d) are the per capita rates of reduction of mean worm burden from

children and adult populations respectively due to preventive chemotherapy, where h

is the efficacy of the drug, gc and ga are the proportion of children and adult popu-

lations administered MDA per round and d is the interval between rounds of MDA.

The addition of infective larvae in the environment at a rate ψ is a density-dependent

process which incorporates the effect of z (= e−γ; egg-production), λ (average eggs

per female worm per gram of feces) and f̄ (average fecundity) given by the expression

f̄1 = f(Mc; kc, z)ncp+ f(Ma; ka, z)na(1− p)

where nc and na are children and adult population sizes respectively, p the fraction

of egg output that enters the environment from children and f is the fecundity, the

“measure of the number of off-spring produced by one organism over time” (Biology

Dictionary, 2013), as a function of the mean worm burden (M), the negative binomial

aggregation parameter k of the distribution of worms in different hosts and z as defined
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above

f(M ; k, z) =
M

(1 + M(1−z)
k

)k+1

The basic reproduction number (R0) is defined as the successful transfer and matu-

ration of a worm in host upon reproduced by an adult worm in a host body and is

given by the expression

R0 =
ψzλβ̄1

σµ

where β̄1 is the weighted average of the contact rates βc and βa calculated as

β̄1 = βcncp+ βana(1− p)

In this system we are only considering female worm population since only fe-

males are capable of reproduction. Using the mean worm burden from the dynamical

system, the prevalence is calculated (34):

P (M ; k) = 1−
(

1 +
M

k

)−k
As summarized along with other variables in the dynamical model in Table 4.2, Pc =

P (Mc; kc) is the prevalence in children and Pa = P (Ma; ka) is the prevalence in adults.

The number of infected individuals are then Ic = Pcnc in children and Ia = Pana in

adults.

Using the expression of R0 and assumption on quasi-stationary state of l (that

is, the infective larvae in environment reach steady state earlier as compared to the

worms in hosts), the dynamical system becomes

dMc

dt
= βcl

∗ − σMc − θcMc (4.1)

dMa

dt
= βal

∗ − σMa − θaMa (4.2)

l∗ =
σR0f̄1

β̄
(4.3)
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Variables Definitions

Mc Mean worm burden in children

Ma Mean worm burden in adults

Ml Mean worm burden in low-risk adults

Ma Mean worm burden in high-risk adults

P0 Total disease prevalence before MDA

Pc Disease prevalence in children

Pa Disease prevalence in adults

Pl Disease prevalence in low-risk adults

Ph Disease prevalence in high-risk adults

I0 Total number of infected individuals in absence of MDA

Ic Number of infected children

Ia Number of infected adults

Il Number of infected low-risk adults

Ih Number of infected high-risk adults

f(M ; k, z) Fecundity of worms

Table 4.2: Variables Used in the Dynamical Models
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Cost Model

According to the strategic plan of WHO for elimination of STH, the budget for

MDA was divided based on the costs of components like health education, health-

worker training, drug procurement, distribution and administration, transportation,

supervision by health personnel, etc. (35). We built a cost model based on this

information.

Given a coverage for MDA in the children (gc > 0) and adult (ga > 0) populations,

the cost for administering preventive chemotherapy per individual is calculated using

the broad categories of costs for drugs (treatment), human resources and delivery and

administration (for example transportation) as follows:

Cost of implementing MDA in children is: C1 = CH + CC/gc

Cost of implementing MDA in adults is: C2 = CH + CA/ga

Here, CH is broadly defined as cost of human resources i.e. wages of nurses,

health-care workers who deliver MDA and supervision personnel; CC and CA are

defined as the transportation costs incurred in school-based delivery and community-

based delivery of MDA respectively per patient. Note that these costs (C1 and C2) are

calculated only when there is at least some MDA coverage and hence are well-defined.

We assume that as the coverage is increased, the cost of transportation per patient

decreases. Because of the effect of economies of scale which means that as the number

of people treated increases, the cost per treatment decreases (36). This scale is done

using the proportions gc and ga as shown above.

Therefore, the total cost of treating infected children and implementing MDA in

children with gc coverage is the sum of the cost of drugs needed to treat infected chil-

dren accessing health-care and the cost of implementing MDA at a certain percentage
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of coverage of the total population in children is calculated as

τ1 = CDIc + (CD + C1)gcnc

where CD is the cost of drug per patient and the number of infected children (Ic) is

obtained from the dynamical model above.

Similarly, the total cost of treating children and implementing MDA in adults with

ga coverage is the sum of the cost of drug needed to treat infected adults and the cost

of implementing MDA at a certain percentage of coverage of the total population in

adults.

τ2 = CDIa + (CD + C2)gana

where Ia the number of infected adults.

Therefore, the total cost of treating and implementing MDA strategically with gc

coverage in children and ga coverage in adults is T = τ1 + τ2.

Average Cost-Effectiveness Ratio (ACER)

The Average Cost-Effectiveness Ratio (ACER) in this analysis is the difference in cost

between existing policy (or no intervention) and a possible interventions, divided by

the difference in their effect (37). ACER computation uses the outputs of the earlier

two models: Dynamic model (Section 4.2.3) and Cost model (Section 4.2.3). ACER

is calculated as the additional cost incurred against the averted prevalence:

ACER =
T − τ0

P0 − P

The numerator is the total increment in cost due to MDA and as the baseline, we use

the costs for treatment of infected individuals (i.e. τ0 = CDI0) and no MDA; where

I0 = P0(nc + na) is the total number of people infected in the absence of MDA.
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The denominator represents the total benefit i.e. total decrements in the preva-

lence of STH in the population. The total prevalence is given by

P =
Ic + Ia
nc + na

and the baseline used, P0, is the prevalence of STH before MDA. The values of T

and P are calculated for the endemic steady state in the dynamical model for the

inferences to be made.

Scenario Analyses for Cost-effective MDA

The purpose of this work is to get an insight on the effects of different MDA strategies

with age-structure so that STH can be controlled faster and more efficiently and still

be cost-effective. As summarized in Table 4.3, the different strategies are

Scenario I : This is the baseline case in which there is no MDA at all. That is

gc = ga = 0. The cost effectiveness of all the other strategies will be tested against

this case.

Scenario II : To evaluate the current MDA strategy in Ghana, we examine the

dynamics of change in prevalence when only children are (75% of coverage) targeted

for MDA. This means that there is no coverage of adults in MDA so ga is kept at 0.

Scenario III : This case includes implementation of MDA to adults along with the

children. The assumption behind this strategy is that the resources are unlimited

and hence it is possible to treat the whole population as one of the cases. Thus, this

strategy is analyzed for all the combinations of coverages for children and adults in

0% to 100% for least ACER.
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Scenario IV : In this case, to make the previous strategy more realistic we put a

constraint on the number of individuals receiving MDA. Therefore, in this case too,

the adults are also covered in MDA, but we fixed the total number of individuals

treated to be equivalent to the number of individuals in MDA in the current policy

(Scenario II) due to constraints on the number of pills for MDA. Thus, ensuring that

the total number of individuals covered under MDA becomes ñ = 0.75nc individuals.

The range of children covered in MDA (gc) is from 0% to 75%, but the corresponding

coverage in adults is calculated as

ga =
ñ− gcnc

na

To identify the most cost-effective strategy in each scenario, ACERs are calcu-

lated for every combination of coverages as given above for the numerically solved

steady state prevalence and corresponding cost, we analyze the cases to obtain a

”cost-effectiveness frontier” (37) which will become a tool for choosing the most cost-

effective policy for a given budget.

Heterogeneous Mixing of Adults with Children

Heterogeneous mixing of adults with children may result in disproportionate risk of

infection for adults. We broadly consider two types of cases, scenarios in which each

adult experience same risk with children (Table 4.3; Section 4.2.3) and scenarios in

which some adults (e.g., teachers and school workers; Scenario V) are at high-risk

for acquiring infection as they spend more time with children. In the last case, we

consider a separate class of adults, like teachers, who mix with children more than

other adults as described under heading Mixing of populations.
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Dynamical Model

For risk-based transmission dynamics of STH, after the assumptions on quasi-stationary

state on the infection in environment as explained in Section 4.2.3, the dynamical

model (Figure 4.3) becomes:

dMc

dt
=

βcσR0f̄2

β̄2

− σMc − θcMc (4.4)

dMl

dt
=

βaσR0f̄2

β̄2

− σMl (4.5)

dMh

dt
=

βcσR0f̄2

β̄2

− σMh − θhMh (4.6)

Here, Mc, Mh and Mh are the mean worm burdens in children, low-risk adults and

high-risk adults populations respectively. In this system, the mean worm burden of

the high-risk adults (Mh) is dependent on the contact ratio (βc) similar to the children

since the high mixing is assumed to be in the schools while the fecundity is similar to

the adults. Alternatively, the contact ratio can also be a weighted average of children’s

and adults’ contact ratios. The average fecundity (f̄2) and average weighted contact

ratio (β̄2) from all the three classes of population are

f̄2 = f(Mc; kc, zc)ncp+ f(Ml; ka, za)nlq + f(Mh; ka, za)nh(1− p− q)

β̄2 = βcncp+ βanlq + βcnh(1− p− q)

where q is the proportion of infection contributed by the low-risk adults into the

environment.

The reduction in mean worm burden due to MDA is at the per capita rate θc (=

− log (1− gch)/d) in children population for gc MDA coverage in children population

(out of nc) and at the per capita rate θh (= − log (1− ghh)/d) in high-risk adult

population (out of nh). No low-risk adults will be covered under MDA, that is, no
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community-wide treatment. To calculate the number nh, we use Ghana’s student-to-

teacher ratio which was 32.83 in 2016 according to the United Nations Educational,

Scientific, and Cultural Organization (UNESCO) Institute for Statistics.

Cost Model

Consequently, the updated structure of costs would be

C1 = C3 = CH + CD/g

where C1 and C3 are the costs of delivery of MDA per individual in the two groups:

children and high-risk adults respectively. In this scenario, the reduction in cost of

delivery was scaled by the total proportion of individuals under MDA given by the

following relation

g =
gcnc + ghnh
nc + nh

g > 0. Note that the cost of transport for high-risk adults is the same as children

since they will also be given preventive chemotherapy at school. Therefore, the total

costs per group are

τ1 = CDIc + (CD + C1)gcnc

τl = CDIl

τh = CDIh + (CD + C3)ghnh

where nh = nc/32.83 is the number of teachers in population, τ1, τl and τh are the

total costs for MDA and treatment in children, low-risk adults and high-risk adults

respectively, and, Ic (= Pcnc), Il (= Plnl) and Ih (= Phnh) are the total number of

infected children, low-risk adults and high-risk adults respectively calculated from the

corresponding endemic prevalences from the dynamical model above using prevalence

function described in Section 4.2.3.
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Average Cost-Effectiveness Ratio

The corresponding ACER for this scenario is calculated using the same formula as in

Section 4.2.3 but now by using total cost T = τ1 + τl + τh and total prevalence

P =
Ic + Il + Ih
nc + nl + nh

Strategies for MDA

Scenario V : The proposed strategy in this case will be that only children and

high-risk adults will be covered under MDA. This is a more practical approach since

the location of delivering MDA will be the same. From the current policy, the number

of pills used in MDA is equivalent to covering ñ number of individuals. Thus, the

proportion gc, representing coverage level in children group, is varied in the range (0.0,

0.74] and the corresponding proportion of gh, representing coverage level in high-risk

group, is also the set of exact same values since we assume that the student-teacher

ratio is fixed and constant. Hence, the relation gcnc + ghnh ≤ ñ always holds for this

case.

Incremental Cost Effectiveness Ratio

The Incremental Cost-Effectiveness Ratio (ICER) is the difference in cost between two

possible interventions, divided by the difference in their effect (in terms of reduction

in prevalence) (37).

ICERi =
τi+1 − τi
Pi+1 − Pi

Here i is the index of the scenarios ordered in increasing order of cost. In this analysis,

the identification of optimal coverage level in Ghana is carried out in two major steps:

(i) the best strategy within each of the five scenarios is computed based on ACER, and

(ii) the best strategy from each scenario is compared with best strategy from other
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Scenario Description Coverage

Children Adults

I: Baseline No MDA 0 0

II: Current policy
MDA only to

children

0.75 0

III: Assuming

unlimited

resources.

MDA to both

children and

adults.

(0,1] (0,1]

IV: Constraint on

number of indiv-

iduals in MDA .

MDA to both children

and adults; total

number of individuals

is fixed (ñ).

(0,0.75] (0,0.5]

V: Constraint on

number of indi-

viduals in MDA

MDA to children

and high-risk adults;

total number of indivi-

duals is fixed (ñ)

(0,0.75]
(0,0.75] of high-

risk adults

Table 4.3: Summary of age- and risk-based strategies for MDA in Ghana. Scenarios

I through IV being age-structured and Scenario V being risk-based.
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scenarios using ICER. Note, the best strategy for a scenario provides optimal coverage

level based on age- or risk-structured populations under limited and unlimited budget

constraints .

4.2.4 Parameter Estimates

The biological characteristics, distribution in hosts, drug efficacy and life-cycle of

hookworms is different than the other two species of STH (Ascariasis and Trichuri-

asis). Therefore, using one model for all the helminthic worm dynamics is not ideal.

We can see from Figure 4.2, and also from the sample studies in Ghana that the

prevalence of hookworms is predominant as compared to Ascariasis and Trichuria-

sis (38; 39). Therefore, for the qualitative results, we are parameterizing the model

specific to only hookworm infections.

Initial prevalence P0, before the MDA program in Ghana, is obtained from the

hookworm infection prevalence in 2000 (year of initiation of STH control program).

Therefore P0 is 0.145 (1). The density-dependence coefficient z was calculated to

be 0.93 for hookworm with γ = 0.07 (40). The life-span of adult hookworms is 3-4

years (33) therefore we assume σ is 1/3.5 years−1. Anderson et. al. (2013) review

that the aggregation parameter for hookworm ranges from 0.33 to 0.61 (34). The

parasite aggregation parameter in host for hookworms is shown to have a curvilinear

relationship with the age (41). In that functional relation, it was seen that the

aggregation parameter is higher in higher ages and more or less the same for ages

15 to 40 years. For ages between 0 to 14 years, it was seen that the value of the

aggregation parameter increases somewhat linearly as age increases and we assume

the value of that parameter for children to be a rough average in the range mentioned.

From this knowledge, we choose the values kc = 0.47 and ka = 0.61.
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Basic reproduction number (R0) of 2.5 (range being 2-3 for hookworm infection

(33)) is taken in order to be conservative in value estimation (42). The contact ratio

of adults βa (with reference as contact ratio of children βc = 1) was obtained from the

averages of the adults contact ratios for hookworm in the four communities studied

in (29). All the parameter estimates are summarized in Table 4.4.

From a study on school-based deworming in Ghana, it was seen that 74.9% of

the total MDA cost is attributed to personnel cost (human resources cost) such as

per diem, allowance, fixed rate fees, refreshment and others (43). Transportation

takes 16.6% of the cost and drug clearance and packaging needs 8.5%. Turner et. al.

(2013) concluded that the estimated cost of annually once treatment was US Dollars

(USD) 0.45 per person (44). Therefore we take the estimates of CH to be 74.9% of

0.42 (excluding cost of drug per person), that is USD 0.31 per person approximately.

The cost of delivering school-based MDA, CC , will be 16.6% of 0.42, that is USD

0.07 per person approximately. CA, cost of delivering community-based MDA, is

approximately USD 0.21 assuming that it would cost 3 times the cost of school-based

MDA (29) due to the logistical difficulties in community-wide treatment that may

arise from traveling to different towns across Ghana. The estimates and sources for

other cost model related variables is given in Table 4.5. The number of high-risk

adults in the population (nh) is calculated using the pupil-to-teacher ratio (32.83) in

Ghana in 2016 according to the United Nations Educational, Scientific, and Cultural

Organization (UNESCO) Institute for Statistics.
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Begin of Table

Parameter Definition Value

estm.

Source

βc Contact ratio of children with the infected

environment

1.11 (23)

βa Contact ratio of adults with the infected

environment

0.56 (23)

σ Per capita mortality rate of hookworms in

host body (years−1)

1/3.5 (29)

R0 Basic reproduction number 2.5 (42; 33)

kc Negative binomial dispersion parameter of

infection in children

0.47 (29)

ka Negative binomial dispersion parameter of

infection in adults

0.61 (29)

z Egg density-dependent coefficient for

hookworm

0.93 (40)

gc Proportion of MDA coverage in children [0,1] Varied for

optimization

ga Proportion of MDA coverage in adults [0,1] Varied for

optimization

gh Proportion of MDA coverage in high-risk

adults

[0,1] Varied for

optimization
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Continuation of Table 4.4

Parameter Definition Value

estimate

Source

h Treatment efficacy for Albendazole against

hookworm infections as the drug used in

MDA

0.72 (45)

d Interval between two rounds MDA (years) 1 (46)

p Proportion of infection contributed by the

children

2/3 (34)

q Proportion of infection contributed by the

low-risk adults

1/6 Assumed

nc Total population of children in Ghana 10452322 (47)

na
Total population of adults

in Ghana

17046552 (47)

nh Total population of high-risk adults (teach-

ers) in Ghana

Nc/32.83 UNESCO

Institute for

Statistics

nl Total population of low-risk adults in

Ghana

na − nh Calculated

as “non-high

risk” adults

Table 4.4: Descriptions and Estimates of Parameters Used in the Dynamical Model.

End of Table
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Variable Quantities (per patient) Value Estimate

(USD)

Source

CD Cost per unit drug: Al-

bendazole (400 mg)

0.03 (46)

CC Cost of transportation for

implementing MDA in

children

0.07 (48)

CA Cost of transportation for

implementing MDA in

adults

0.21 Using the 3x

multiplier effect

from Lo et. al

2015 (29)

CH Cost of human resources 0.31 (44)

Table 4.5: Variable Definitions and Estimates for the Cost Model

4.3 Results

4.3.1 Average Cost Effectiveness Ratio

Homogeneous Mixing of Adults with Children

Scenario I : The prevalence of hookworm infection cases when there is no MDA,

P0, is obtained from (14). The corresponding cost incurred in treating the infected

population was calculated as τ0 = CDI0 where I0 = P0(nc+na) This formula assumes

that everyone infected would seek and get treatment. These values served as the

baseline values for ACER for all potential strategies. Without MDA, the prevalence

clearly grows drastically as seen in Figure 4.5.
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Scenario II : From Figure 4.5, it can be seen that the current policy in Ghana

of treating 75% of the children with school-based MDA, it is possible to bring the

prevalence down by a little but only temporarily and that it might not be sustainable.

Thus, we see that this policy would not be effective enough in the long-run and it

would be almost impossible to reach a point where prevalence is below 1% like WHO

aims for. And therefore, we set up the Scenarios III and IV to address this problem.

Scenario III : With the assumption of no constraints on the number of pills avail-

able for MDA, we tested for every possible combination of coverages in children and

adults. Using the steady state prevalences from the simulated dynamical system,

we calculate the ACER as described in the previous section. From ACER solely, it

was seen that administering 74% and 43% of children and adults respectively gave

minimum ACER and thus is the best strategy within this scenario. The prevalence

of hookworm infection reduced dramatically (Figure 4.5) with this strategy but this

effect comes with higher cost.

Scenario IV : When the number of individuals covered in MDA is fixed, that is

when gcnc + gana = ñ, a curvilinear relation between coverage and ACER was seen

such that 54% and 16% MDA coverage in children and adult population had the

lowest ACER.

4.3.2 Heterogeneous Mixing of High-risk Adults with Children

Scenario V : When heterogeneous mixing in populations is considered, we split the

adult population into low-risk and high-risk based on the likelihood of them mixing

with children. This case assumes constraints on the number of pills available for MDA.

In our model we consider that total number of pills available (for proposed MDA
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Figure 4.4: ACER for Different Coverages of Children and High-Risk Adults in MDA

policy) are equal to the number of individuals that can be covered under the current

policy of the Ghana government (that is a fixed number of school-aged children).

As compared to the Scenario II (current policy) and best strategy from Scenario IV,

risk-based administration of preventive chemotherapy did a better job at reducing

prevalence (Figure 4.5). The ACER was minimum for the maximum coverage possible

in this Scenario. Thus, the best strategy would be to achieve 74% children and 74%

high-risk adults. Nevertheless, notice from the Figure 4.4, the ACER would have

been low even for lower coverages but not the prevalence as much so.

4.3.3 Incremental Cost Effectiveness Ratio

Among the 5 policies obtained from the ACER analysis for each scenario, we

perform ICER analysis to compare between the scenarios to shed light on which

setup is comparatively more cost-effective. Refer to the Table 4.6 for the summary of

policies in comparison.
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Figure 4.5: Comparison of effect of best strategies (based on ACER) with each of

the Scenarios II (current policy; gc = 0.75, ga = 0.00), IV (age-structured MDA with

constraints; gc = 0.56, ga = 0.147) and V (risk-based MDA with constraints;gc =

0.74, gh = 0.74). Scenario IV was not compared since it does not have any constraints

and hence is not a feasible policy.

Find the results of ICER considering all strategies in all scenarios together, that

is the cost-effectiveness plane and cost-effective frontier, in Appendix E.

Remark : All the simulations were performed in R version 3.4.3. The initial con-

dition on the total mean worm burden for numerically solving the system was taken

such that the relation

P0 = 1− (1 +
M0(1− z)

k
)−k

holds.
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Scenario Label strategy gc ga gh
Endemic

Prevalence

Cost per year

(In million

USD)

ACER

(In million

USD)

I A 0.00 0.00 0.00 0.7497 0.62 (Baseline)

II B 0.75 0.00 – 0.5468 4.03 16.80

III C 0.74 0.43 – 0.0277 9.44 12.21

IV D 0.54 0.16 – 0.6066 7.58 48.64

V E 0.74 – 0.74 0.4122 3.84 9.56

Table 4.6: Summary of ACERs (average cost effectiveness ratios) for the best strategies in each scenario as compared to

no MDA (Scenario I). Here gc, ga and gh are the MDA coverages in children, adults and only high-risk adult populations.
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Figure 4.6: Graphical illustration of the cost-effectiveness frontier (orange line) and

how the different strategies compare.

First, we sort the 5 strategies (A through E as shown in Table 4.6) in increasing

order of their cost and then compute the ICER for the consecutive strategies as

shown in Table 4.7. And exclude the strongly dominated strategies. After exclusion

of dominated alternatives, we will obtain a cost-effectiveness frontier with strategies

A (baseline), E and C, in order as shown in the graphic illustration in Figure ??.
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Strategy Prevalence Total cost
Incremental

cost (in USD)

Incremental

benefit (Reduction

in prevalence)

ICER

(in million

USD)

A 0.7497 618458 – – –

E 0.4122 3843676 3225218 0.3375 9.56

B 0.5468 4025806 182130 -0.1346 Dominated

D 0.6066 7575927 3550121 -0.0598 Dominated

C 0.0277 9436154 1860227 0.5789 3.21

Table 4.7: Calculating incremental cost-effectiveness and identifying dominated alternatives
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4.4 Discussion

STH is a major health problem in Ghana. Hookworm infection causes intestinal

hemorrhage leading to anemia (3). Although the global prevalence of STH is decreas-

ing, the prevalence in Ghana is not as effectively (1). MDA is Ghana’s primary control

policy. The recommended coverage for MDA after a test for residual prevalence of

MDA is greater than 75% in the population (49) and since the focus of MDA is only

on school-age children, the recommended level of MDA has not been able to achieve

and hence STH has been persisting at high level in Ghana. In this study we examined

what percentages of coverage in adults and children would reduce prevalence with the

given constraints on the number of pills available. Additionally, we examined whether

it is indeed cost-effective to conduct community-wide MDA that targets both adults

and children as suggested by Lo et. al. (2015) within the Ghanaian context. Further-

more, we also evaluated the impact of policy, implementing MDA in high-risk adults

(those that spend more time with children) rather than focusing on adult individuals

at random, on the prevalence of STH in Ghana.

MDA is provenly crucial to control the neglected tropical disease STH. We use

dynamics models and data from Ghana to address our research questions under differ-

ent age-structured, risk-based and pill-constrained scenarios. Scenario I captures the

logistics when there is no MDA. In Scenario II when only 75% children are targeted,

the prevalence seems to decrease temporarily to then increase beyond the initial level.

Children will still get re-infected with the disease due to poor environmental condi-

tions and due to transmission from pregnant women to their newborns. Infection and

reinfection become cyclical. It was also seen that prevalence over time stabilizes at a

value which is “not of public health significance” by WHO standards. Therefore, in

the long run, eradication in the total population would be almost impossible when
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only children are targeted for mass drug administration. This emphasizes on the need

for investigation of new strategies.

When adults are included in MDA, we find that targeting approximately 43% of

adults and 74% of children seem to be the most cost-effective on an average (Scenario

III). This is in line with the conclusion of Lo et. al. (2015) for Ivory Coast. However

this large coverage, even if it gets us more effect per dollar spent, demands a huge

budget highly impractical for a developing country. So, for implementation of more

practical policies we decided to analyze only a subset of it such that the number of

individuals in MDA is fixed and finite. And that fixed number of individuals would

be equal to 75% of children in Ghana (ñ). This condition would make sure that

the number of pills available for MDA is equivalent to the one needed in the current

policy. Thus in Scenario IV based on ACER, the cost incurred against extra cases

avoided as compared to no MDA, the best strategy is considering 16% adults and

54% children under MDA (50).

Lastly, a model for heterogeneous mixing of adults with children was developed

and a scenario based on this model was analyzed. This scenario (Scenario V) is studied

because there is a high interaction of a particular group of adults, like teachers, who

are exposed more to the wormy environment due to mixing disproportionately more

with children rather than adults who interact or share space with only at most the

children who are their kids. In Scenario V, we found that if the number of individuals

under MDA has to be limited, 74% children and 74% high-risk adults need to be

covered to achieve drastic reduction in prevalence of STH which is most cost-effective

in comparison with no MDA.

Once we obtained the most cost-effective strategy within each scenario (based

on ACER as compared to no MDA), we moved on to comparing between scenarios.

Upon incremental cost-effectiveness analysis, we conclude that risk-based MDA im-

132



plementation strategy and a combination of children and adult populations in MDA

coverage lie on the cost-frontier plane, the former being cheaper. Thus, alternative

implementations of preventive chemotherapy based on these setups should be consid-

ered. Figure E.1) represents that the current policy does not lie on the cost-effective

frontier. But similar is the case for pill-constrained age-structured MDA. The out-

come does not change even if the risk-based policies are analyzed separately. We

conclude that the risk-based MDA should be considered and evaluated for implemen-

tation. If the age-structured policies are to be implemented, the availability of pills

should be increased for the implementation to be cost-effective.

Notice that, the total high-risk adults considered in this study amount to only

about 1.9% of the total adult population, yet it does a better job at reducing the

hookworm prevalence per dollar spent in school-based MDA. Thus, it would be im-

portant to assess the dependence of this outcome on the relative infectivity coefficient

of the high-risk adults compared with that of the others. We can also consider iden-

tifying other high-risk adult groups (examples in the Introduction section): even if

small in number, if they are clustered so that delivery of MDA is less costly than a

community-based MDA, then treating them may improve the situation in surprising

ways.

We report some limitations of our models and results. Even though we estimate

the proportions of coverage for the most cost-effective policy, we would like to remark

that these results are based on the dynamical model parameterized for hookworm

transmission only. Although pregnant women are also provided MDA for hookworm,

our study considers the current policy to be only school-based deworming. We assume

that the average values for adults are overall averages including the pregnant women

sub-population. It is noted that the results for prevalence change may depend on

parameters such as the contact rates between different groups in a population and
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the total MDA implementation cost, which depends on individual costs of human

resources and delivery specific to the region of focus. The frequency of MDA rounds

per year varies across geographic locations in Ghana based on the intensity of the

disease. Also, Mupfasoni et. al. (2019) have shown that an optimal frequency of

MDA can reduce the drug needs by 36% (51). The anti-helminthic treatment required

can be estimated from the quantification of the worm load in the host (52; 24). Due

to lack of some epidemiological data from Ghana, some parameter estimates may

not be precise. The assumption that all school-age children attend school is also

not completely realistic. Furthermore, this study focused on the costs incurred and

prevalence reduced annually after an equilibrium has reached; the costs incurred over

time also need to be collected to get a better validation of the cumulative efforts to

control the disease. In spite of some of these limitations, this study provides the first

estimate of MDA’s cost-effective strategies and coverage levels for the STH in Ghana

when high-risk targets are considered.

In conclusion, implementing MDA in only children to reduce the disease prevalence

to levels of no public significance may not be possible. However, implementing MDA

in at least some proportion of adults reduces prevalence faster and effectively. There

might be some challenges in randomly finding and delivering MDA to adults for

MDA. Also, community-wide MDA was found to be cost-effective only if there was

no constraint. Hence, it will be more feasible and cost-effective to focus on high-risk

adults who can be more approachable through existing delivery mechanisms of MDA

such as school teachers or workers. In addition, reduction in morbidity to a level of

no public health significance as aimed by the Ministry of Health could be achieved

by systematically focusing on both adult and children groups rather than focusing on

only one of the groups.
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This work also gives insight on the need for measurement of Ghana-specific pa-

rameters to get more realistic estimates of the combination of the coverages that can

significantly bring the disease prevalence down. Our models assumed that there is

a cost associated with Albendazole drug used in MDA rather than it being donated

to public health department, the cost of community-based MDA targeted to adults

is 3 times the cost of school-based MDA, the cost of implementation is the sum of

the cost of only human resources and transportation are incurred and the cost of

implementing MDA per patient in both groups decreases as coverage is increased.

The assumptions may be varied to study uncertainty in the model implications.

Using the mathematical model given by Silva and Hall (2010) to compute the

average prevalence of STH based on the three separate species (53), the results of

this study can be extended to get a more complete picture. The framework of this

research study is important because it sheds lights on the use of mathematical models

as tools that are critical in understanding the impact of health services such as MDA

and predicting outcomes. Additionally, this study suggests that community-wide

MDA at optimal percentage of coverage with consideration of the above-mentioned

case setups is imperative in the reduction of prevalence of STH in Ghana. Researches

on cost analysis to understand incremental utility and benefits are needed in Ghana

in order to better understand the policies and actions that underpins Ghana’s health

structure.
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Chapter 5

DISCUSSION AND CONCLUSIONS

5.1 Role of mathematical modeling in a NTD control

Being neglected, many mechanisms underlying NTD transmission are not com-

pletely understood. With uncertainty in non-linearities associated with a mechanism

and thus, disease transmission rates, mathematical modeling become critical to the

design and study of indirect effects related to implementation of interventions and

policies (1; 2). However the awareness about NTDs impacting billions and about

the role of mathematical models has been low (3). Through the NTD Consortium

and other NTDs’ mathematical modeling research around the world, WHO has rec-

ognized the importance of such studies for setting control targets for the diseases.

They are important for experimentation of policy outcomes which then infer the road

map for the disease through the WHO. It is through mathematical modeling that we

can incorporate and realize the interplay of different risk factors like socio-economic

conditions, health-care awareness and access, sanitation and hygiene etc. with the

efficacy of interventions and spread of diseases as well as assessing uncertainties re-

lated to these projections (4). Identification and establishment of the importance of

different risky behaviors and groups in mathematical projections have been done in

the past for diseases like HIV and HPV (5; 6) but such studies for NTDs are limited.

Its need is even more crucial for NTDs since the affected regions are resource-limited

and the budget needs to be optimal.

Considering these challenges associated with NTDs, I initiated this dissertation

with a goal of not only identifying hidden high-risk populations but also designing
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and evaluation of interventions related to the high-risk populations when data are

scarce. I have developed and analyzed dynamical models for understanding the role

of treatment-related behaviors of these hidden high-risk populations on patterns of

two distinct diseases Visceral Leishmaniasis (VL) and Soil Transmitted Helminths

(STH). Since both the diseases are common in poor communities around the world,

we focused our study using data from two ecologically different developing countries,

India (for VL) and Ghana (for STH).

5.2 VL dynamics and elimination

Chapters 2 and 3 collects details of my study on VL. Since 2013, 30% of the

research on VL prevention and control was based on mathematical epidemiology

wherein early diagnosis and vector control have been the primary focuses (7). In

this dissertation, we identify treatment non-adherence as a critical factor in shaping

patterns of VL. Multiple social risk factors in addition to the long treatment duration

for VL and toxic treatment side-effects lead to high treatment non-adherence in Bihar,

India. In the context of multiple failed elimination targets for VL in Bihar, we

studied how improving treatment adherence can aid existing control programs and

the elimination process.

Furthermore, literature review about VL patients intrigued our interest in under-

standing how difference in causes of treatment non-adherence and difference in treat-

ment behaviors led to varied outcomes in terms of anticipated time to VL elimination

in Bihar. It is also important to understand how improving treatment adherence af-

fects VL prevalence in addition to currently implemented sophisticated vector control

programs. This analysis is important since it opens the discussion about the future of

sustaining VL elimination, especially in poor regions. In the other words, my study

suggests an estimated treatment adherence level which can control VL in Bihar even
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when one or more vector controls are withdrawn in order to reallocate resources to

other interventions in resource-limited countries.

5.3 Risk-based MDA for STH control

Chapter 4 provides details of approach and results related to STH in Ghana. MDA

has been implemented in Ghana for STH control since the year 2000. Although there

has been some relief in STH burden, we are still far away from the WHO goal of

bringing the disease level low enough so that it is no longer a public health problem.

Various modeling methods (parasite-host ODE and PDE models, simulation models

etc.) have been constructed and studied for the past at least half century. Lately

there has been a debate about the cost-effectiveness of the community-based MDA in

addition to school-based MDA due to higher costs incurred by the former. In the light

of this debate, we identified that the school environment is much more contaminated

(by infective STH) due to the density and activity of children. The adult school

officials working therefore face higher exposure to the infection but have not been

part of the MDA efforts potentially due to traditional way of thinking and lack of

resources. Thus, I considered a modeling framework which has studied the impact of

this high-risk adults school staff when considered under existing MDA programs.

In this work, we have discussed and incorporated a risk-structure framework on

the pre-existing age-structure framework commonly used to track patterns of the

infected population. By doing this, we could show that having the school-based MDA

with treatment to high-risk adults (school officials) was more cost-effective than the

current policy given the resource-limited settings of Ghana. Under the limitations of

availability of treatment pills, the community-based MDA was less cost-effective than

the proposed risk-based MDA policy.
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5.4 Limitations

As with any other modeling study, this dissertation has several limitations and

we plan to incorporate in our future studies. The models used in dissertation assume

homogeneous mixing of populations and their homogeneous behaviors in the region

of focus.

For VL elimination, other interventions like early diagnosis and identified risk fac-

tors like Post Kala-azar Dermal Leishmaniasis (PKDL) patients who act as reservoirs

for VL have not been captured. Due to lack of appropriate data, the VL transmission

rates of patients and treatment non-adherers could not be estimated. The only treat-

ment regime captured in our modeling framework is the 28-day Miltefosine course,

whereas recurrent treatment non-adherers may be prescribed to the second-line treat-

ment. Each VL model is built with one cause of treatment non-adherence behavior,

but the overall causes are diverse (symptoms relief, side-effects, unhappy with health-

care officials, prefer traditional cures etc.). Upon identifying the mechanisms of treat-

ment non-adherence based on causes, the heterogeneity may be captured. Since data

from interview studies may be biased and from observational studies may be limited,

we can get inspiration from works like (8; 9) to construct model-based assessment

tool for treatment adherence of patients based on drug concentration. Treatment

adherence inevitably contributes in increasing drug resistance. The emergence of

Miltefosine failure is being monitored and studied (10). It cannot be used by preg-

nant women or women who could become pregnant within two months of treatment

due to potential birth defects. It can sometimes cause gastrointestinal side-effects.

It also stays in the body for a very long time, which could potentially make the

parasite resistant to it (11). In the future studies for long-term analysis of use and

effect of Miltefosine, the emerging drug resistance and potential risk-groups must be
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addressed. The effect of vector control is captured based on a control trial which

assumed the effective use of the vector control programs which is highly unlikely.

Therefore outcomes may change when these estimates are varied.

For STH modeling, the stratification of populations based on the risk can be

made finer (that is capturing farmers and pregnant women). The effects of hygiene

and sanitation are captured only as people’s behavior. However, the WASH (Water,

Sanitation and Hygiene) interventions laid out by the government also affect the

hygiene behavior. In this case, the cost of providing infrastructure to the public

health system may be added to improve the cost analysis. Furthermore, the economic

cost can be computed in presence of more data from Ghana. Nevertheless, this study

has provided a new simple modeling framework where the role of dual nature of

population stratification incorporating risk- and age-structures, begin to be used in

understanding the complex dynamics of STH.

5.5 Challenges associated with using the modeling results

Parameter estimation for Simulation modeling (or Complex Computa-

tional Models): The high spatial heterogeneity in both VL and STH cases was

discussed in chapters 3 and 4 respectively. Along with this variation in prevalence,

the other region-specific attributes may include climate, hospitality of the environ-

ment for parasites, people’s preventative behaviors, and infrastructure. These lead to

different need and effect of the interventions. Spatial agent-based models for disease-

spread like EpiSIM (12), EpiSimS (13) and EpiSimdemics (14) have been developed to

incorporate the spatially- and individually-varying attributes in models. Agent-based

models like these have been used to study disease spread for optimization of resources

during epidemics (15; 16; 17). Although these models come close to replicating re-

ality in a specific region, implementing these for NTDs would be extremely difficult
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due to the scarcity of data required to parameterize the model. More disease-specific

agent-based models like ONCHOSIM (18), SCHISTOSIM (19) and WORMSIM (20)

are built and used to optimize MDA. Often they have limited practicability because

the parameter estimates are usually derived from local cohort sampling-based studies-

The simulation-based models are hard to analyze mathematically, to identify driving

mechanisms of a certain outcome, which is crucial in understanding the spread of

NTDs for their efficient control.

Epidemiology without borders: Extension of the application of epidemiological

tools to non-healthcare problems (like accidents and violence) and inclusion of societal

and behavior aspects (for example, role of burial practices in the spread of Ebola and

men who have sex with men are high risk groups for HIV) as causative agents of

diseases (21). Fine et. al. (2013) discuss how behavioral interventions have proven

important in disease control. For example, the interventions were successful when the

campaigns are emotionally appealing and relatable for the community– “SuperMums”

campaign in Andhra Pradesh, India for defining role of mothers in change in hand-

washing habits without any direct health message reduced diarrhea cases in children

(22). Using those insights, there might be a need for new non-conventional ways

of implementing the results from scientific research. Furthermore, acknowledging the

impact of socio-cultural aspects on disease spread and persistence, incorporating them

in the transmission dynamics model may be considered.

Integration of sociocultural aspects in models for NTDs: Sociocultural the-

ory focuses on the interactions between developing people (in their societal roles)

with the culture (politics, attitudes, education, language, law, etc.) that they live

in. The fairly recent integration of sociocultural aspects in disease dynamics needs
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Figure 5.1: Map of system for the agent-based model for the spread of influenza in

St. Anthony, Newfoundland by Sattenspiel et. al. (2019) (23). It incorporates socio-

cultural aspects by including familial structures, occupations and faith to simulate

the movement of each individual in the village.

more exploration (21). Sattenspiel et. al. (2019) discuss how cultural principles can

be built into the community in an agent-based model. They do so by including oc-

cupations, faith and familial structures on the agents in the system to simulate their

movement to observe the spread of influenza in the village St. Anthony in Newfound-

land (23). Munday et. al. (2018) demonstrate a way of incorporating the impacts on

socio-cultural features on the transmission coefficients and susceptibility of parame-

ters in disease dynamics (24). However, in complex systems like these quantification

of social parameters and their precise definitions in the model are crucial for the

understanding, implication and replication of the results obtained (25).
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Reis and Spencer (2019) discuss the role of stakeholders and science communica-

tion through media on policy-making (26). The role of mathematical models in the

control of the current COVID-19 pandemic has been published through news articles

like (27; 28). These articles, with the use of easy-to-understand flowcharts and lan-

guage communicate how projections about the pandemic are made. Since the NTDs

mostly affect the poverty-ridden neglected masses, communicating the results and

basis of the interventions is difficult. People’s attitudes and misinformation about

the modern medicine and policy-makers in these regions leads to them not complying

and cooperating with the interventions (29; 30). Therefore, health education pro-

gram, one of the agendas of WHO for NTD-control, is critical to develop belief of

community in the methods and interventions (31).

Participatory models: Community-based participatory research includes involv-

ing the affected community to gain understanding and knowledge about the public

health problem (32). Participatory modeling is a modeling technique in which the

stakeholders are involved in the process of problem and intervention formulation as

well as to understand the mechanisms in the community. This kind of modeling

is more common in the field of natural resource management (33; 34). Whiteford

and Vindrola-Padros (2015) wrote a book on the role of community participation

in sustaining global health goals with examples on the community involvement for

behavioral change and social change cross-culturally (35). The impact of community

participation shown in various public health intervention examples ((35; 36; 37; 38))

provides an inspiration to participatory modeling for the control of endemic diseases.

However, this process is more time-consuming and costly as well as the outcomes

are very specific to the community that participated and deriving generalized under-

standing of the problem is difficult.
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Table 5.1: Summary of Novel Theoretical Understandings in This Dissertation for

Modeling of NTDs.

Delphi method relies on communication from a panel of experts for problem for-

mulation and policy-making (39). In this dissertation, the questions, modeling and

implications, based on the consultation with experts, are primarily theoretical that

will provide a baseline for future community-based participation research if sufficient

funding and empirical data are available.

5.6 Conclusion: Treatment interventions are effective if risk groups are considered

VL and STH fall in two different categories of NTDs based on the control: Innova-

tive Disease Management (IDM) and Preventive ChemoTherapy (PCT) respectively.

This dissertation serves a demonstration of how the definitions of risk groups change

based on the kind of the control imposed. Furthermore, it shows how to model these

respective risk groups for the outcome to eventually be compared based on the output

metric “disease prevalence”. In spite of the above listed limitations, this dissertation
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provides a broad understanding of the cruciality of the treatment related risk groups.

It identifies and demonstrates modeling techniques for two different types of NTDs

in two contrasting country-settings. Instead of a population level rigorous control in-

terventions, identification of these risk groups provides us with strategies for disease

control with optimal resources which is critical in the NTD-ridden resource-limited

population. In the process of research through the three projects, we achieved some

novel (theoretical) understanding related to epidemiological perspective, mathemati-

cal perspective, scenario simulations and use of available empirical data in modeling

for NTDs (Table 5.1). Through this dissertation we open a discussion to encourage

the surveillance to capture the hidden risk groups to obtain accurate health metrics

of the region and to design interventions accordingly.

5.7 Future work

This is an initial modeling exercise meant to be built upon for future analyses

with more region-specific risk factors and mechanisms to inform intervention policies.

Through these models, the importance of these risk groups is established and thus the

future implications would be to build in the socio-ecological factors. Apart from vector

control, the other interventions being tested and implemented are early diagnosis and

treatment of PKDL patients who are typically a few in number but act as reservoirs

for VL. We plan on analyzing the model with all these interventions together to

analyze the global sensitivity of the VL endemicity on each of them and all of them

taken together. For the control of STH, in the future we would like to incorporate

(i) the class ineligible for treatment specifically (like pregnant women and infants),

(ii) systematic non-adherence of MDA (that is when a specific group of people is

consistently missed during every MDA round), and (iii) the non-adherence arising
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out of people’s refusal to treatment (which may caused due to social stigma about

STH and disbelief in the medicine).

In a hypothetical situation of redoing this dissertation, there are a few that I would

do differently. I would have tried to benefit from my committee members’ expertises

much more. For example, I would have tried to quantify the vector-related parame-

ters, including vector-control, with the help of Dr. Paaijmans (entomologist; Arizona

State University). With the help of Dr. Hurtado (anthropologist; Arizona State

University), I would attempt at understanding people’s perceptions and attitudes to-

wards MDA and assessing different adult risk-groups in more detail to have a better

informed parameter estimates. I would have used the help of Dr. Michael (parasitol-

ogist; University of Notre Dame) to incorporate the impact of WASH interventions

in the cost analysis of MDA for hookworm. Apart from this, I would have tried

to collaborate with Dr. Sundar (Programme Director, Kala-Azar Medical Research

Centre) to get district-level recent monthly VL prevalence and treatment-related data

in Bihar for model validation.

I hope the advances in modeling results of VL and STH presented in this disser-

tation should one day translate into a new and robust pipeline for evaluating and

optimizing treatment access, diagnostics, and adherence related policies for targeting

high-risk groups of the populations. Compliance with the principles and strategies

from this study would require a change in political thinking in the neglected regions in

order to achieve persistent NTD-control. We have outlined novel low-cost strategies

to control the two diseases through preventive interventions.
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Table A.1: Data from (4) for Health-Facility Wise Treatment Non-Adherence and VL
Prevalence

The common symptoms of VL are fever, malaise, shivering or chills, weight loss,
anorexia and discomfort in the left hypochondrium, and infections like pneumonia,
dysentery and tuberculosis in the advanced stages resulting in their death. Dark-
ening of the skin of the face, hands, feet and abdomen is typically found in India.
The infection affects spleen, liver, lymph nodes and small-intestine tissues causing
a drastic reduction in the leukocyte and erythrocyte count resulting in anemia and
immuno-deficiency. This paper mainly focuses on spread and control of VL in Bihar,
India because it is estimated that 90% VL cases of India are from Bihar (1). Accord-
ing to WHO, the major risk factors for the spread of VL are population mobility,
socioeconomic conditions, climate change, environmental changes and malnutrition
(2). The other risk factors for VL in India are the houses are frequently constructed
with mud walls and earthen floors, and cattle and other livestock live close to humans
where the disease is most common in villages (3).
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Model analysis

Well-posedness and dissipativity

The disease is assumed to take the course as explained in the model description.
Differentiation with respect to time will be denoted by a prime, i.e. ′ = d/dt. Since
S ′H ≥ 0 if SH = 0, I ′H ≥ 0 if IH = 0, T ′H ≥ 0 if TH = 0, R′H ≥ 0 if RH = 0,
S ′V ≥ 0 if SV = 0 and I ′V ≥ 0 if IV = 0, we have SH ≥ 0,IH ≥ 0, TH ≥ 0, RH ≥ 0,
SV ≥ 0 and IV ≥ 0 for t ≥ 0. Let NH = SH + IH + TH + RH and NV = SV + IV .
Since N ′H = ΛH − µHNH − δIH ≤ 0 if NH = Λh/µH , we have NH ≤ ΛH/µH for
t ≥ 0. Similarly, since N ′V = ΛV − µVNV ≤ 0 if NV = ΛV /µV , we have NV ≤ ΛV /µV
for t ≥ 0. Thus the solution will always remain in the biologically realistic region
Ω = {(SH , IH , TH , RH , SV , IV ) ∈ R6

+| 0 ≤ NH ≤ ΛH/µH , 0 ≤ NV ≤ ΛV /µV } (where
R+ denotes the non-negative real space) if it starts in this region (1).

If NH = KH > ΛH/µH and if NV = KV > ΛV /µV then N ′H < 0 and N ′V < 0
respectively. This shows that the solution approaches Ω and asymptotically be in the
biologically realistic region {(SH , IH , TH , RH , SV , IV ) ∈ R6

+| 0 ≤ NH ≤ KH , 0 ≤ NV ≤
KV } since SH , IH , TH , RH are bounded above by NH and SV , IV are bounded above
by NV . Therefore, the system (2.1) is dissipative since the solutions are non-negative
and uniformly eventually bounded (as defined in (2)).

Furthermore, the above results satisfy the assumptions of Theorem A.4 in (2), thus
we can assert that for every (S0

H , I
0
H , T

0
H , R

0
H , S

0
V , I

0
V ) ∈ R+

6 , there exists a unique solu-
tion of 2.1, SH(0) = S0

H , IH(0) = I0
H , TH(0) = T 0

H , RH(0) = R0
H , SV (0) = S0

V , IV (0) =
I0
V , with values in R+

6 , which is defined on an interval [0,max{NH(0), NV (0)}). There-
fore, the system 2.1 is well-posed.

Control reproduction number (Rc)

To compute Rc, we compute the next-generation matrix (3; 4) by considering the
infecting compartments IH , TH and IV . First let the vector x = (SH , TH , IV ) such
that x′ = F − V where

F =


bβVHSHIV

SH+IH+TH+RH

0
bβHV SV (IH+αTH)
SH+IH+TH+RH

 V =

γIH − θ(1− φ)TH + (δ + µH)IH
−γIH + θTH + µHTH

µV IV


F = ∂F

∂x
and ∂V

∂x
evaluated at the DFE are as follows

F =

 0 0 bβV H
0 0 0

bβHV ΛV /µV
ΛH/µH

αbβHV ΛV /µV
ΛH/µH

0



V =

γ + δ + µH −θ(1− φ) 0

−γ θ + µH 0

0 0 −µV
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Therefore, Rc will be the spectral radius of FV −1 where

FV −1 =

 0 0 − bβVH
µV

0 0 0
bβHV ΛV µH(αγ+θ+µH)

ΛHµV (γ(θφ+µH)+(δ+µH)(θ+µH))
bβHV ΛV µH(α(γ+δ+µH)+θ(1−φ))
ΛHµV (γ(θφ+µH)+(δ+µH)(θ+µH))

0


R2
c =

b2βV HβHV ΛV µH( αγ
θ+µH

+ 1)

ΛHµ2
V (δ + µH + γ( θφ+µh

θ+µH
))

(B.1)

Local stability of the equilibria:

Theorem The DFE is locally asymptotically stable if R2
c1 < 1 and unstable if

R2
c1 > 1.

Proof. To prove the first part of the theorem, we compute the Jacobian matrix of the
reduced system 2.4 and evaluate it at the DFE.

J |DFE =


−µH 0 0 −bβV H

0 −γ − µH − δ θ(1− φ) bβV H
0 γ −θ − µH 0

0 bβHV ΛV µh/(ΛHµV ) αbβHV ΛV µh/(ΛHµV ) −µV


The trace of this matrix is negative. The determinant of this matrix is

∆ = − µ2
H(θ + µH)

Λ2
Hµ

2
V (µH + δ + γ

(
1 + θ(1−φ)

θ+µH

)(R2
c − 1)

Hence, ∆ is positive if R2
c < 1 thus implying local asymptotic stability of the DFE

since all eigenvalues will be strictly negative and DFE is unstable if R2
c1 > 1.

Note: For δ = 0, host population is constant and that the EE exists if and only if
R2
c1(= R2

c(δ = 0)) > 1 and from above EE will be locally asymptotically stable.

Backward bifurcation

Theorem: The model (2.1) undergoes a backward bifurcation at Rc = 1 if the
per capita rate of mortality due to VL is sufficiently large. Specifically,

δ >
1

µV
(µH(2µV + bβHVNV ) + γ(2µV

θφ+ µH
θ + µH

+ bβHVNV
µH

θ + µH
))

Proof. In the system 2.1, we saw that the vector population NV = SV + IV was
constant. Therefore, we substitute SV = NV − IV in 2.1 to work with the system of
only 5 equations. The Jacobian of this new system, evaluated at the DFE is

J∗ =


−µH 0 0 0 −bβVH

0 −(γ + δ + µH) θ(1− φ) 0 b ∗ βV H
0 γ −(θ + µH) 0 0

0 0 θφ −µH 0

0 bβHVNV µH/ΛH αbβHVNV µH/ΛH 0 −µV
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The right eigenvector of J∗ corresponding to the zero eigenvalue is given by w =
[w1, w2, w3, w4, w5]T such that,

w1 = −bβV H
µH

w5

w2 =
bβV H

γ + δ + µH − θγ(1−φ)
θ+µH

w5

w3 =
γ

θ + µH
w2 =

γ

θ + µH

bβV H

γ + δ + µH − θγ(1−φ)
θ+µH

w5

w4 =
θφ

µH
w3 =

θφ

µH

γ

θ + µH

bβV H

γ + δ + µH − θγ(1−φ)
θ+µH

w5

w5 = w5

The left eigenvector of J∗ corresponding to the zero eigenvalue is given by v =
[v1, v2, v3, v4, v5] such that,

v1 = 0

v2 =
µV
bβV H

v5

v3 = (bβHVNV
µH
ΛH

− µV
bβV H

(γ + δ + µH))v5

v4 = 0

v5 = v5

Then,

A =
5∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

is calculated and evaluated at the DFE. Here, (f1, f2, f3, f4, f5) = (S ′H , I
′
H , T

′
H , R

′
H , I

′
V )

and (x1, x2, x3, x4, x5) = (SH , IH , TH , RH , IV ). Smoothness of the system (since it is
polynomial-like) implies that the second derivatives are symmetric i.e. for any smooth
function f , ∂xyf = ∂yxf by Schwartz’s theorem. Therefore, the associated non-zero
second derivatives evaluated at the DFE are as follows

∂2f2
∂x2∂x5

= ∂2f2
∂x3∂x5

= ∂2f2
∂x4∂x5

= − bβVHµH
ΛH

∂2f5
∂x1∂x2

= 1
2

∂2f5
∂x2∂x2

= ∂2f5
∂x2∂x4

= − bβHV NV µ
2
H

Λ2
H

∂2f5
∂x1∂x3

= 1
2

∂2f5
∂x3∂x3

= ∂2f5
∂x3∂x4

= −αbβHV NV µ
2
H

Λ2
H

∂2f5
∂x2∂x3

= − (1+α)bβHV NV µ
2
H

Λ2
H

∂2f5
∂x2∂x5

= − bβVHµH
ΛH

∂2f5
∂x3∂x5

= −αbβVHµH
ΛH
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In the expression of A, we substitute βV H =
ΛHµ

2
V (δ+µH+γ(

θφ+µh
θ+µH

))

b2βHV ΛV µH( αγ
θ+µH

+1)
using the as-

sumption Rc = 1. Therefore A is

A = −
µV (−2δµV + µH(2µV + bβHVNV ) + γ(2µV (µH+θφ

µH+θ
+ bβHV µHNV

µH+θ
)

bβHV µHNV (1 + γα
µH+θ

)

=⇒ A > 0⇐⇒ δ > 1
µV

(µH(2µV + bβHVNV ) + γ(2µV
θφ+µH
θ+µH

+ bβHVNV
µH
θ+µH

))
Next,

B =
5∑

k,i=1

vkwi
∂2fk
∂xi∂δ

is calculated and evaluated at the DFE where δ is the chosen parameter for bifurca-
tion. Here fi and xi for i = 1, 2, . . . 5 are same as defined above. The only non-zero
second derivative obtained is

∂2f2

∂x2∂δ
= 1

Therefore,

B = v2w2
∂2f2

∂x2∂δ

=
µV (θ + µH)

(δ + µH)(θ + µH) + γ(θφ+ µH)
v5w5

> 0

Using Castillo-Chavez and Song theorem (2004) and Theorem 4.2 from (5), we
assert that our system undergoes backward bifurcation when Rc = 1 if

δ >
1

µV
(µH(2µV + bβHVNV ) + γ(2µV

θφ+ µH
θ + µH

+ bβHVNV
µH

θ + µH
))

Global stability of the DFE

Theorem If R2
c2 < 1, then the DFE for the models 2.4 and 2.7 is globally asymp-

totically stable in the positively invariant and attracting region Ω.

Proof. For model 2.4:
Define the Lyapunov function as follows in terms of the infected compartments (6; 7)
U : {IH , TH , IV ) ∈ Ω : IH , TH , IV > 0} −→ R by

U(IH , TH , IV ) = c1IH + c2TH + c3IV

such that c1, c2, c3 > 0 and

c2 =
θ(1− φ)

θ + µH
c1 (B.2)

c3 =
bβV H
µV

c1 (B.3)
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The time derivative of U computed along solutions of the system is

U ′ = c1I
′
H + c2T

′
H + c3I

′
V

= c1(bβV HSH
IV
NH

− γIH + θ(1− φ)TH − µHIH) + c2(γIH − θTH − µHTH)

+c3(bβHV (NV − IV )
IH + αTH

NH

− µV IV )

Substituting the expression of c2 from B.2, the TH terms vanish. Further substituting
the expression of c3 from B.3, we get:

U ′ = U1 + U2

where,

U1 = c1bβV H
IV
NH

(−NH + SH
IH
µV

)

< 0

and

U2 = c1(µH +
γ(θφ+ µH)

θ + µH
)(R2

c2 − 1)

U ′ = U1 + U2 < 0⇐⇒ U2 < 0⇐⇒ R2
c2 < 1

LaSalle’s invariant principle then implies that DFE is globally asymptotically stable
in Ω (7).
For model 2.7: For this system, define the Lyapunov function as follows in terms
of the infected compartments L : {IH , TH ∈ Ω : IH , TH > 0} −→ R by

L(IH , TH) = c̃1IH + c̃2TH

such that c̃1, c̃2 > 0 and

c̃2 =
θ(1− φ)

θ + µH
c̃1

The time derivative of U computed along solutions of the system is

L′ = c̃1I
′
H + c̃2T

′
H

= c̃1(bβV HSH
I∗V
NH

− γIH + θ(1− φ)TH − µHIH) + c̃2(γIH − θTH − µHTH)
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Substituting the expression of c̃2 from B.4, the TH terms vanish. Then,

L′ = c1IH(µH +
γ(θφ+ µH)

θ + µH
)(

µV SH
µVNH + bβHV IH

R2
c2 − 1)

L′ < 0 ⇐⇒ µV SH
µVNH + bβHV IH

R2
c2 < 1

⇐⇒ µV SHR
2
c2 < µVNH + bβHV IH

⇐⇒ (
SH
NH

R2
c2 − 1) <

bβHV IH
µVNH

⇐⇒ (
SH
NH

R2
c2 − 1)− bβHV IH

µVNH

< 0

Since SH is bounded above by NH , the condition R2
c2 < 1 is a sufficient condition for

L′ < 0 Thus, for R2
c2 < 1, LaSalle’s invariant principle implies that DFE is globally

asymptotically stable in Ω (7).

Uniform persistence of EE

Theorem Let R̃2
c > 1. If ZH(0) > 0, ZH(t) does not converge to zero as t −→∞

and SH∞ ≤ NH
R̃2
c

.

Preliminaries:

(a) The method of fluctuations (Proposition A.22 in (2)) states that there exists
sequences tn and sn such that

f(sn) −→ f∞, f
′(sn) −→ 0

f(tn) −→ f∞, f ′(tn) −→ 0

for n −→∞.

(b) Using the Proposition in (a) above, there exists a sequence tn −→∞ (n −→∞)
such that TH(tn) −→ T∞H , T ′H −→ 0, n −→ ∞. Therefore from T ′H-equation in
2.9,

0←− T ′H(tn) = γIH(tn)− (θ + µh)TH(tn)

Hence, T∞H ≤
γ

θ+µH
I∞H .

(c) Similarly as in (b), we obtain following relations

T∞H ≤
γ

θ+µH
I∞H , R∞H ≤

θφ
µh
T∞H ,

I∞H ≤
θ(1−φ)

2µH+θ+γ
Z∞H , I∞H ≤

θ(1−φ)
γ+µH

T∞H ,

TH∞ ≥ γ
θ+µH

I∞H , R∞H ≤
θφ
µh
T∞H , I∞H ≤

θ(1−φ)
2µH+θ+γ

Z∞H .

(d) In particular, (c) above implies that if IH(t) or ZH(t) converge for t −→∞, so
will SH(t), TH(t) and RH(t).
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Proof. Suppose to the contrary that ZH(t) −→ 0, t −→ ∞. Therefore we can find
a sequence tn −→ ∞ with ZH(tn) −→ 0, n −→ ∞ and Z ′H(tn) < 0. If ZH(t) tends
to zero, then from Preliminary (d), so will SH(t), TH(t) and RH(t). It follows from
S ′H- equation that SH(t) −→ NH , t −→ ∞. As R̃2

c > 1, SH(tn) − NH/R̃
2
c > 0 for

sufficiently large n i.e. Z ′H(tn) ≥ 0. This is a contradiction.

For the second part of the theorem, assume that SH∞ > NH/R̃
2
c . Then, Z ′H(t) ≥ 0

for sufficiently large t and ZH(t) converges for t −→ ∞ and so do SH(t), TH(t) and
RH(t) from Preliminary (d). As the system does not converge towards the DFE, it
converges to the EE (endemic equilibrium). In particular SH∞ ≤ NH/R̃

2
c which is a

contradiction.

Corollary 3. Let R̃2
c > 1. If ZH(0)/geq0,

Z∞H ≥ I∞H ≥ (1 +
γ

µH

θφ+ µH
θ + µH

)−1(1− 1

R̃2
c

)NH =: ε0

Proof. Combine the estimates in Preliminary (d) above,

I∞H + T∞H +R∞H ≤ I∞H (1 +
γ

µH

θφ+ µH
)

(B.4)

Note that from Theorem 4

I∞H + T∞H +R∞H ≥ (NH − SH)∞ = NH − SH∞ ≥ (1− 1

R̃2
c

)NH (B.5)

Combining equations B.4 and B.5, we get the desired condition.
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Clinical symptoms based behavior change: Model

Studies have reported that the patients tend to stop taking medication or treat-
ment once the symptoms of the disease subside (1; 2; 3). Therefore, we propose and
age-of-infection equivalent model as age-of-treatment capturing the increased rate of
non-adherence based on the progressing time spent in the treatment compartment by
infected people. The complete model is:

dSH
dt

= ΛH − bβV HSH
IV
NH

− µHSH

dIH
dt

= bβV HSH
IV
NH

− γIH +

∫ n

0

θ(1− φ(τ))TH(t, τ)dτ − (δ + µH)IH

∂TH
∂t

+
∂TH
∂τ

= γIH − θ(1− φ(τ))TH(t, τ) + θφ(τ = n)TH(t, τ)− µH)TH(t, τ)

dRH

dt
= θ

∫ n

0

φ(τ = n)TH(t, τ)dτ − µHRH

dSV
dt

= ΛV − bβHV SV
IH +

∫ n
0
αTH(t, τ)dτ

NH

− µV SV

dIV
dt

= bβHV SV
IH +

∫ n
0
αTH(t, τ)dτ

NH

− µV IV

(C.1)

where τ is the time since initiation of treatment and thus T (t, 0) denotes the number of
people who have newly initiated the treatment and n is the duration of treatment. For
VL treatment, n = 28 days for Miltefosine regime, which is the first-line treatment.

R2
c =

bβHV
(δ + µH + γ)

bβV H
µV

NV

NH

Prospective models to capture different causes and outcomes of treatment
non-adherence

To extend the VL dynamics model (Equation 2.1) to capture the treatment non-
adherence behavior driven by specific causes, we present the following scenarios and
corresponding mechanistic changes.

Awareness based behavior change

During outbreaks, as people see the rising number of fatalities and cases of a
disease, they are more aware of the disease and its horrors and therefore tend to
change their behavior to take more preventive measures (4). Funk et. al. (2010)
also review various studies which have focused on behavior changes due to prevalence
which result in the change of model parameters (4). Studies have shown that improved
disease awareness leads to a higher treatment adherence (5; 6). Thus, we propose the
parameter φ, proportion of infected people adhering to the treatment, of the model 2.1
to be a function of the prevalence. That is instead of the constant, the parameter is
now φ(IH), a saturating function (Holling Type II), such that φ −→ 1 as IH increases
(see Figure C.1).
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Figure C.1: Schematic plot of the parameter if proportion of infected people adhering
to the treatment (φ) as a saturating function of disease prevalence (IH).

Clinical symptoms based behavior change

Studies have reported that the patients tend to stop taking medication or treat-
ment once the symptoms of the disease subside (1; 2; 3). Therefore, we propose and
age-of-infection equivalent model as age-of-treatment capturing the increased rate of
non-adherence based on the progressing time spent in the treatment compartment by
infected people. The complete model is included in the Appendix ??.

dIH
dt

= bβV HSH
IV
NH

− γIH +

∫ n

0

θ(1− φ(τ))TH(t, τ)dτ − (δ + µH)IH

∂TH
∂t

+
∂TH
∂τ

= γIH − θ(1− φ(τ))TH(t, τ) + θφ(τ = n)TH(t, τ)− µH)TH(t, τ)

dRH

dt
= θ

∫ n

0

φ(τ = n)TH(t, τ)dτ − µHRH

(C.2)

where τ is the time since initiation of treatment and thus T (t, 0) denotes the number of
people who have newly initiated the treatment and n is the duration of treatment. For
VL treatment, n = 28 days for Miltefosine regime, which is the first-line treatment.

Side-effect structured non-adherence

After reviewing Visceral Leishmaniasis treatment regimes in Bihar, India, it was
seen that the majorly used drugs are Miltefosine, AmBiosome and paramomycin.
Each of these treatments have side-effects ranging from mild, like abdominal pain,
vomiting, back pain and cough, to severe, like dermatitis, hypersensitivity reaction,
atrial ectopic, severe abdominal pain and severe vomiting (7). One of the main causes
of non-adherence to VL treatment has been shown to be the side-effects (8). Based on
the severity of the side-effects, we propose a model which captures different treatment
adherence behavior. As shown in Figure C.2, the people suffering from adverse side-
effects (Ai’s; i = 1, 2, ..., n) default from the treatment follow a gamma-distributed
wait time. That is, most of them default after around 1/η time units as shown in
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Figure C.2: Flowchart of the Side-Effect Structured Non-Adherence in VL Transmis-
sion Dynamics Model

Figure C.3: Schematic Representation of Distribution of Non-Adherence to Treatment
for People with Adverse Side-Effects

Figure C.3. And the people suffering from milder side-effects follow an exponentially
decaying wait time. That is, as they progress through the treatment, the adherence
level decreases (Figure C.4). This is motivated from the survey study in (9) which
remarks that the people in the endemic regions of South-east Asian countries are not
aware of the treatment side-effects. Therefore, in the beginning of the treatment due
unexpected adverse side-effects, and thus default from the treatment at a higher rate
than in the later days of treatment.

Infected sandflies-density based behavior change

We assume that awareness of the disease also depends on the density of infected
sandflies in the regions. A heavily infected sandfly bites more frequently than an
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Figure C.4: Schematic Representation of Distribution of Non-Adherence to Treatment
for People with Milder Side-Effects

Figure C.5: Schematic plot of the parameter if proportion of infected people adhering
to the treatment (φ) as a Holling’s type II function of infected sandfly density (IV ).

uninfected sandfly (10). Therefore, as the density of infected sandflies increases,
people, aware of the threat of VL due to being bitten more, may adhere more to the
treatment. In this case the corresponding parameter φ will be a function of IV . We
propose a Holling’s type II function such that

φ(IV ) =
nIV

m+ nIV

Figure C.5 shows the graph of the behavior change.

Access-based behavior change

With 76% of the population living under recurring threat of flood devastation,
Bihar is the most flood-prone state of India (11). Due to such heavy rainfall in the
catchment areas of the river, the healthcare facilities are inaccessible to the population
during the monsoon months (July to October). Thus, the proportion of population’s
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Figure C.6: Schematic Plot of Seasonal Treatment Adherence due to Reduced Access
to Health-Care Facility During the Monsoon.

adherence to the treatment (φ) is proposed to exhibit a seasonal behavior as a function
of time of the year

φ(t) = φ0

(
1 + φ1 sin

2π(t+ t0)

365

)
such that monsoon sees the lowest adherence as shown in Figure C.6.

But, we should expect only a third of the year to face access difficulties instead of
the periodic behavior spanning over the year uniformly. Thus, we expect more like
Figure C.7 achieved from the functional form of phi represented as

φ(t) = φ0

(
1 + φ1 sin

2π(t+ t1)

365
+ φ2 cos

2π(t+ t2)

365

)
Alternatively, a periodic Heaviside step function can be constructed for more drastic
changes in behavior during monsoon.
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Probability distribution of the probability of leaving treatment class

Based on the data in the Figure 2.5, the goal is to find the underlying distribution
of the probability of leaving treatment. We compare the goodness of fit of best fit
exponential distribution and best fit gamma distribution.

The scale parameter in the exponential distribution (µ = 1/λ) is calculated as
the weighted average of the proportion of people leaving in corresponding days since
treatment initiation.

=⇒ 1

λ
=
sum5

i=1piti∑5
i=1 ti

= 0.15

where ti is the ith time point since treatment initiation and pi is the corresponding
proportion of people leaving treatment at the ith time point. That is the rate is
0.15× 7 per week (i.e. per time interval in data).

To find α (shape parameter) and β (rate parameter) for best fit gamma distri-
bution, we use the facts that mean of the distribution is α/β and variance is α/β2.
Therefore β = Mean

V ariance
. The weighted mean (µ; similar as above) is equal to 0.15.

Weighted variance is calculated as

σ2 =

∑5
i=1 ti(pi − µ)2∑5

i=1 ti
= 0.0192

Therefore, β = 1.118 and α = 1.174.

System of equations : Model I

Model I is described by following equations:

dSH
dt

= ΛH − bβV HSH
IV
NH

− µHSH (D.1)

dIH
dt

= bβV HSH
IV
NH

− γIH − µHIH + nθ1

n∑
i=1

Ti (D.2)

dT1

dt
= γIH − n(θ1 + ρ)T1 − µHT1 (D.3)

dTi
dt

= nρT(i−1) − n(γ + α)Ti − µHTi 2 ≤ i ≤ n (D.4)

dRH

dt
= θ2Tn − µHRH (D.5)

dSV
dt

= µVNV − bβHV SV
IH + αn

∑n
i=1 Ti

NH

− µV SV (D.6)

dIV
dt

= bβHV SV
IH + αn

∑n
i=1 Ti

NH

− µV IV (D.7)

where NH = SH + IH +
∑n

i=1 Ti + TH +RH and NV = SV + IV are constant.
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System of Equations: Model II

The model (Figure 3.5) is described by the following set of differential equations:

dSH
dt

= ΛHNH − bεβV HSH
IV
NH

− µHSH (D.8)

dIH
dt

= bεβV HSH
IV
NH

− γHIH − µHIH (D.9)

dTH
dt

= (1− φ)γHIH − θ1TH + ξηVH − µHTH (D.10)

dVH
dt

= θ1TH − ηVH − µHVH (D.11)

dCH
dt

= φγHIH + (1− ξ)ηVH − θ2CH − µHCH (D.12)

dWH

dt
= θ1CH − µHWH (D.13)

dSV
dt

= ΛV (1− ψ)NV − (bεβHV IH + αbεβHV VH)
SV
NH

− µV SV − δV SV (D.14)

dIV
dt

= (bεβHV IH + αεbβHV VH)
SV
NH

− µV IV − δV IV (D.15)

Mathematical Analysis: Model II

Endemic equilibrium

The endemic equilibrium of the complete model is given by:

I∗H =
R2
cΛHΛVNH(1− ψ)− µHNH(µV + δV )

ΛV (1− ψ)(γH + µH)R2
c + bεβHV µHR2

(D.16)

T ∗H =
(1− φ)γH(η + µH)

(η + µH)(θ1 + µH)− ηξθ1

I∗H (D.17)

C∗H =
φγH(η + µH)(θ1 + µH)− ηθ1γH(1− φ− ξ)

(θ2 + µH)[(η + µH)(θ1 + µH)− ηξθ1]
I∗H (D.18)

V ∗H =
θ1

η + µH
T ∗H (D.19)

W ∗
H =

θ2

µH
C∗H (D.20)

S∗V =
ΛVNHNV (1− ψ)

bεβHVR2I∗H + (µV + δV )NH

(D.21)

I∗V =
µHNH(γH + µH)I∗H

bεβV H(ΛHNH − (γH + µH)IH)
(D.22)

where

R2 = 1 +
αθ1γH(1− φ)

(η + µH)(θ1 + µH)− ηθ1ξ
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APPENDIX E

ICER RESULTS FOR CHAPTER 4
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Figure E.1: Cost-Effectiveness Plane of All Scenarios with the Cost-effective Frontier
Represented in Red Curve.

ICER results

Figure E.1 shows that some strategies in Scenario V (risk-based MDA) and Sce-
nario III (age-structured MDA with high availability of pills) lie on the cost-effective
frontier. Therefore, current policy or any other age-structured MDA policy with low
availability of pills is not cost-effective compared to the ones on the cost-effective
frontier.
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