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ABSTRACT  

   

In many biological research studies, including speech analysis, clinical research, and 

prediction studies, the validity of the study is dependent on the effectiveness of the training 

data set to represent the target population. For example, in speech analysis, if one is 

performing emotion classification based on speech, the performance of the classifier is 

mainly dependent on the number and quality of the training data set. For small sample sizes 

and unbalanced data, classifiers developed in this context may be focusing on the 

differences in the training data set rather than emotion (e.g., focusing on gender, age, and 

dialect).  

 

This thesis evaluates several sampling methods and a non-parametric approach to sample 

sizes required to minimize the effect of these nuisance variables on classification 

performance. This work specifically focused on speech analysis applications, and hence 

the work was done with speech features like Mel-Frequency Cepstral Coefficients (MFCC) 

and Filter Bank Cepstral Coefficients (FBCC). The non-parametric divergence (𝐷𝑝 

divergence) measure was used to study the difference between different sampling schemes 

(Stratified and Multistage sampling) and the changes due to the sentence types in the 

sampling set for the process. 
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1. INTRODUCTION 

 

The accuracy of a research study heavily depends on the effectiveness of the training data 

set to represent the target population. Broadly speaking, studies show that a more 

significant accuracy can be obtained with a larger sample size [1]. For clinical research, it 

is not possible to collect a large target population for a study. The usual approach to solve 

this is to include a part of the target population called the sample population in the training 

data [2]. The availability of training data for the target population can be challenging. In 

addition to this challenge of availability, the training data may be unbalanced, resulting in 

biased results. In the case of a binary emotion classifier, if we have a training data which 

is unbalanced in gender, the classifier may be giving more weight to the difference in the 

training data due to gender difference rather than the emotion. Similar is the case with any 

machine learning or deep learning-based studies as these analyze the results based on the 

training set. This thesis deals with this problem of unbalanced and insufficient training data 

and focuses explicitly on sample size estimation or power estimation for unbalanced data 

for speech analysis applications. 

Sample size estimation is the process of predicting a sample size that gives adequate 

credibility to reject the null hypothesis put forward in the study [3]. To do sample size 

estimation, one usually needs to know the distribution of the data being analyzed; based on 
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this distribution, power estimation can be done in a parameterized way [4]. However, the 

distribution of the data is not always known.  

In this thesis, we evaluate the effects of various experimental design methods to avoid these 

challenges using the 𝐷𝑝 divergence measure. This process gives a minimum number of 

samples required in a training set to make it balanced by detecting the possible differences 

in the training set. The following sections detail some of the background knowledge used 

in this thesis. 

 

1.1.Sampling methods 

The process of selecting the sample population can be done in multiple ways depending on 

the sampling methods. There are probability sampling methods and non-probability 

sampling methods. Probability sampling methods ensure equal representation for all 

members of the target population in the sample population, whereas non-sampling methods 

do not [2] [3]. In probability sampling methods, there are four different methods: simple 

random, stratified random, systematic, and clustered random.  

In simple random, the required number of samples are drawn randomly from the entire 

training set. In stratified random sampling, the entire available data set is classified into 

subgroups (called strata) based on demographic factors that can influence the study. An 

equal number of samples are randomly drawn from each of these strata, giving equal 

representation for each of the strata in the sampling set over the simple random case. In 
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systematic random sampling, the samples are selected using a fixed rule (e.g., one in every 

five). In cluster sampling (also called multistage sampling), a random number of strata are 

selected, and from each of these, a random number of samples are chosen. In this thesis, 

we have analyzed and implemented stratified and multistage probability sampling 

methods. 

 

1.2.𝐷𝑝 divergence 

𝐷𝑝 divergence measure belongs to the class of f-divergences and provides a non-parametric 

way of estimating the classification bounds. 𝐷𝑝 divergence has the advantage that it can be 

used when the conditional distributions of data for the problem are not known [5]. For the 

problem of finding the 𝐷𝑝 divergence measure between two different sets of data with 

probability distribution functions of 𝑓0 and 𝑓1 and for a parameter 𝑝 ∈ (0,1), 𝑞 = 1 − 𝑝, 

from [6] it is given by: 

𝐷𝑝(𝑓0, 𝑓1) =  
1

4𝑝𝑞
 [∫

(𝑝𝑓0(𝐱) − 𝑞𝑓1(𝐱))
2

𝑝𝑓0(𝐱) + 𝑞𝑓1(𝐱)
𝑑𝐱 − (𝑝 − 𝑞)2] 

To find the 𝐷𝑝(𝑓0, 𝑓1) value using the above equation, 𝑓0 and 𝑓1 functions should be known. 

But using the method given in [6], the 𝐷𝑝(𝑓0, 𝑓1) value can be found by the extension of 

the Friedman-Rafsky (FR) multi-variate two-sample test statistic [7]. A two-sample test is 

used to verify the null hypothesis that both 𝑝 and 𝑞 are not the same and can give a 

probability that these are not the same. This computation can be done using the empirical 
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data of the two distributions with 𝑁𝑝 and 𝑁𝑞 samples from 𝑝 and 𝑞 respectively. Let 𝐗𝒑  ∈

 ℝ𝑁𝑝 × 𝐾 denote a sample from the distribution of 𝑝 and 𝐗𝒒  ∈  ℝ
𝑁𝑞 × 𝐾 denote a sample 

from the distribution of 𝑞 and each of these samples are vectors of length 𝐾. And by [6], 

the above equation reduces to:  

𝐷𝑝(𝑓0, 𝑓1) = 1 − ∁(𝐗𝒑 , 𝐗𝒒)
𝑁𝑝 + 𝑁𝑞

2𝑁𝑝𝑁𝑞
 

Here, ∁(𝐗𝒑 , 𝐗𝒒) is the FR test statistic. This value is found by [7] the following steps:  

1. Construct a minimum spanning tree by combining both the data points of 𝑓0 and 

 𝑓1. A minimum spanning tree is a tree with a unique path between each node. 

2. Remove all the edges connecting different samples (edges connecting 𝐗𝒑 to 𝐗𝒒). 

3. ∁(𝐗𝒑 , 𝐗𝒒) is the number of the resulting disjoint subtrees. 

This 𝐷𝑝 divergence value is always between zero and one. Also, it becomes zero when both 

the distribution functions are the same and gives a value close to one when they are 

different. Hence, using this divergence measure a null hypothesis that 𝐗𝒑 and 𝐗𝒒 are not 

the same can be rejected for a 𝐷𝑝 divergence value of zero. This divergence measure, along 

with its properties, was used to implement this thesis.  
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1.3.Features 

MFCC and FBCC are the two features derived here. MFCC is prevalently used for speech 

feature extraction in various systems [8]. MFCC is Mel Frequency Cepstral Coefficients. 

These represent the frequency components in different frequency bands and their energies. 

Mel frequency is a scale of frequency that represents how humans perceive frequency. 

Humans can discern lower frequencies better than the higher frequency ranges. So, this 

scale converts the linear frequency range in such a way that the higher frequency range is 

compressed, and the lower frequency range is expanded. This conversion is done using the 

log function given by: 

𝑀(𝑓) = 1125 ln (1 +
𝑓

700
) 

Here, 𝑓 is the linear frequency, and 𝑀(𝑓) is the frequency in the Mel scale. The converse 

of this can be found by: 

𝑓(𝑚) = 700(10
𝑚
2595⁄ − 1) 

The following are the steps involved in deriving MFCC. Pre-emphasis is done to the signal 

before any analysis to boost the energy levels of higher frequencies. This boosting makes 

the information of higher frequencies more available as the lower frequencies. The signal 

is then divided into shorter frames assuming that the signal remains stationary in this 

interval by windowing. Windowing the frames helps in reducing the noise that shows up 

in the frequency domain due to the time domain chopping. The Discrete Fourier Transform 

of each frame 𝑠𝑖(𝑛) and a window function of ℎ(𝑛) is done by: 
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𝑆𝑖(𝑘) =  ∑ 𝑠𝑖(𝑛)ℎ(𝑛)𝑒
−𝑗2𝜋𝑘𝑛

𝑁

𝑁

𝑛=1

 , 1 ≤ 𝑘 ≤ 𝐾 

Here, 𝑁 is the window length, and 𝐾 is the DFT length. The power spectral estimate of 

each frame is found from its periodogram by: 

𝑃𝑖(𝑘) =  
1

𝑁
|𝑆𝑖(𝑘)|

2 

Next, this periodogram signal is passed through triangular bandpass filter banks in the Mel 

scale given by: 

𝐻𝑚(𝑘) =  

{
 
 
 

 
 
 

0                                𝑘 < 𝑓(𝑚 − 1)

𝑘 − 𝑓(𝑚 − 1)

𝑓(𝑚) − 𝑓(𝑚 − 1)
          𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

1                                 𝑘 = 𝑓(𝑚)

𝑓(𝑚 + 1) − 𝑘

𝑓(𝑚 + 1) − 𝑓(𝑚)
         𝑓(𝑚) < 𝑘 ≤ 𝑓(𝑚 + 1)

0                             𝑘 > 𝑓(𝑚 + 1)

 

Here, 𝑚 is the frequency in the Mel scale, 𝑓(𝑚) is the frequency in linear scale, and 𝑘 is 

the linear frequency variable of the filter bank. The output from these filter banks forms 

the FBCC features. The next step is to find the log of each of the filter band outputs. 

Typically, 26 filter bands are used. Finally, Discrete Cosine Transform (DCT) of these 26 

signals is taken, of which only the lower 13 filter band values are retained, and these form 

the MFCC coefficients.       

  



 

7 

 

2. EXPERIMENTAL DESIGN 

 

The primary objective here was to develop a process that could help in deriving the least 

number of samples needed in a training set that removes the effect of unbalanced data. We 

focused on speech analysis applications, hence the training data that we worked with were 

the features (section 2.2) derived from the speech samples in the training set (section 2.1). 

We chose to work with the demographic traits of gender, age, and dialect as those that can 

cause differences. Following the process of forming strata (section 2.4), we were able to 

create different strata from the training set, samples of each stratum being more similar to 

each other. This process helps in forming a balanced dataset based on the traits chosen. We 

formed two different classes, each with a specific number of samples (as given in Table 2) 

from the balanced data set using either of the sampling methods in section 2.5. 𝐷𝑝 

divergence value of these two classes was calculated using the steps in section 1.2 and 2.6. 

This value gives us a quantitative measure of how close these two classes are in their 

distribution. The same process was repeated for a higher number of samples in each class. 

We repeated this process for different types of analysis (section 2.7). Once we obtained the 

raw data points, we extrapolated the data as in section 2.8. We did this extrapolation to 

derive the threshold crossing point (section 2.9) of the 𝐷𝑝 divergence graph versus the 

number of speakers for each of the analyses done. We compared different sampling 

methods, various features, and levels of strata by analyzing the convergence of the 𝐷𝑝 



 

8 

 

divergence versus the number of speaker’s graph. We found the mean of all the threshold 

points obtained for each of MFCC and FBCC to conclude a performance analysis between 

them. We repeated the same averaging process for comparison between different sampling 

methods and different levels of strata as well. The comparison results are given in chapter 

3. The following sections describe in detail the procedure and specifics followed for the 

design and implementation of the process explained above.   

 

2.1.Dataset Used  

The data set used for all the experiments was TIMIT Acoustic – Phonetic Continuous 

Speech Corpus. This data set has a complete recording of around 630 speakers at a 

sampling frequency of 16 kHz with each speaker reading ten sentences, of which two are 

universal among all speakers, and the rest eight are different. This data set includes 

recordings of speakers from 8 different dialects, different age groups (between 20 and 76 

years old), and gender. We considered two different types of analysis, namely the same 

(using only the two universal sentences in the data set per person) and different (using all 

the ten sentences in the data set per person). The data set is divided into two separate groups 

one for training and one for testing. We worked with the training data set, which included 

462 different speakers. 
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2.2.Generating features 

We extracted two different sets of features, namely MFCC and FBCC, from the above data 

set using a window size of 25ms and an overlap length of 10 ms. This windowing results 

in a frame length of 400 samples, and so a Fast Fourier Transform (FFT) size of 400 or 

above gives the accurate FFT values. We chose an FFT size of 400(default) for MFCC and 

512(default) for Mel-filter bank coefficients. For both the features, we extracted 14 

different coefficients, where the first coefficient is the frame energy. Along with these, we 

also extracted the delta and double delta coefficients, resulting in 42 coefficients per frame. 

Delta coefficients are the change in the original 14 coefficients from one frame to another, 

and double delta is the change in the delta coefficients from one frame to another.  

Each of the coefficients obtained had a different mean and range, resulting in invalid results 

when computing 𝐷𝑝 divergence values due to the unequal weightage the coefficients with 

larger amplitudes had over the ones with smaller values. Hence, we performed the mean 

normalization of these coefficients by converting them to values between -1 and 1. We 

obtained this by using the mean and range of each of the coefficients across all the training 

set. 

 

2.3.Simulation environments 

We used MATLAB to generate the MFCC coefficients and python to generate the Mel-

filter bank coefficients using the library python_speech_features on the anaconda 
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environment. Due to the large size of the feature matrices generated during the sampling 

experiments, we simulated these on the agave cluster to incorporate the large memory 

requirements. 

  

2.4.Forming Strata 

As described before, it is possible to divide the data set into different strata based on gender, 

dialect region, and age group. There are two different useful gender groups - male and 

female. There are eight different dialect groups possible for the TIMIT data set. 

Moreover, we divided the data set into three and six different groups, based on age, forming 

two possible versions (3A and 6A, respectively, for naming conventions). We created the 

age groups by making sure the number of speakers in each group was nearly equal. This 

process ensures an equal probability of being chosen for all the speakers across different 

age groups. The histogram representation for each age group division and the 

corresponding limits used are given in Figure 1, Figure 2, and Table 1. 
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Figure 1: Histogram plot for the division of dataset into 3 age groups 

 

 

Figure 2: Histogram plot for the division of dataset into 6 age groups 
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Age limits for each group 

3 age groups (years) 6 age groups (years) 

18 – 25.76 

25.76 – 30.67 

30.67 – 76  

18 – 24.2 

24.2 – 25.76 

25.76 – 27.45 

27.45 – 30.67 

30.67 - 36 

36 - 76 

Table 1: Limits used to create different groups based on age 

For the first level of strata (named T to represent training samples), there is only a single 

stratum with all the speakers in the dataset. For the second level of strata (named T + G for 

Training + Gender), we divided the stratum in the first level into two different strata based 

on gender. For the third level of strata, we simulated two different variations choosing 

either age-based (T + G + A) or dialect based (T + G + D). Adding the fourth level of strata, 

we simulated only T + G + D + A and not T + G + A + D as the second case results in 

empty strata due to the size of the training set. 
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2.5.Sampling methods 

The 𝐷𝑝 divergence measurements between two different classes (which is the subset of the 

data set chosen for analysis) frame the primary analysis of this thesis. The method of 

selecting the constituent strata in each class gives us different sampling schemes. We 

simulated two different sampling schemes: Stratified Sampling and Multistage Sampling. 

For stratified sampling (SS) scheme, there is equal representation for all the strata in the 

class, hence one speaker, randomly chosen from each stratum, constitutes the class for the 

starting point of 𝐷𝑝 divergence measurements between two classes. The 𝐷𝑝 divergence 

measurements found the next point by choosing two speakers randomly from each stratum. 

The repetition of this process for a higher number of speakers from each stratum gave more 

analysis points. 

For the multistage sampling (MS) scheme, we chose only a fixed number of randomly 

chosen strata. For the selected strata, we repeat the same process as above. For this 

sampling scheme, two different types of sampling are possible, namely matched and 

unmatched multistage sampling schemes. In matched sampling, we chose the same strata 

for both the classes formed for the 𝐷𝑝 divergence analysis. Whereas, in unmatched 

sampling, we chose different combinations of strata for each class. 
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2.6.𝐷𝑝 divergence measurement 

We chose 𝐷𝑝 divergence as a quantitative measurement to analyze the similarity between 

two classes. Each class here was formed by concatenating the feature vector of each sample 

in the class one after the other. We did the 𝐷𝑝 divergence measurements for a range of 

speakers, as given in Table 2. We repeated each of these 𝐷𝑝 divergence measurements for 

400 Monte Carlo iterations to reduce errors due to the randomness involved in the sampling 

process. Using the Markov Chain Monte Carlo Sampler, the required measures can be 

found from the probability distribution of the 400 𝐷𝑝 divergence values obtained. Here we 

used the mean of these 400 samples to represent the final value.  

 

2.7.Analysis 

We simulated all the above 𝐷𝑝 divergence measurements for two different types of data set 

based on the sentences spoken: 1. with only the two common sentences (same sentences) 

and 2. with all ten sentences included in the data set per speaker (different sentences). For 

each of these types, we measured the 𝐷𝑝 divergence values in four different levels of strata. 

Moreover, for each of these levels except the first (T) and the second one (T + G), we 

implemented both the sampling schemes. T has only one stratum; hence we implemented 

it by picking the number of speakers needed directly from the training data set. For T + G, 
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the number of strata is only two, hence MS scheme implementation will be the same as 

level 1 T implementation. 

For the T + G + D + A level, we simulated only the MS scheme. Furthermore, for this 

scheme, we implemented two different versions: randomly choosing eight strata (8g) and 

16 strata (16g). For all other MS schemes, we randomly chose half of the number of strata 

in the specific level for measurements. Given in Figure 3 is a flow diagram showing all the 

simulations done on the training data set and given in Table 2 is the range of the speakers, 

starting point, number of speakers, ending point for each of these simulations. We chose 

the range of speakers in each case, such that there are enough points needed to extrapolate 

the graph further. This extrapolation helps in finding the point of zero crossings in the 𝐷𝑝 

divergence versus the number of speaker’s graph.   

We simulated all these analyses for two different feature sets – MFCC and FBCC. So, the 

coefficients chosen for each speaker to form the class are either of these feature 

coefficients. 
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Figure 3: Block diagram of simulations done with MFCC coefficients. The number in red 

represents the corresponding cases for later reference. Numbers from 31 to 60 represents 

the same analysis done with FBCC coefficients. 
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No: Case #strata #strata 

chosen 

for MS 

Starting 

#speakers 

Step 

size 

of 

simul

ation 

Ending 

#speakers 

1 MF-S1T1g 1 - 1 1 90 

2 MF-S2TG2gSS 2 - 2 2 90 

3 MF-S3TGA3gSS 6 - 6 6 192 

4 MF-S3TGA3gMSm 6 3 3 3 120 

5 MF-S3TGA3gMSum 6 3 3 3 120 

6 MF-S3TGA6gSS 12 - 12 12 192 

7 MF-S3TGA6gMSm 12 6 6 6 120 

8 MF-S3TGA6gMSum 12 6 6 6 120 

9 MF-S3TGD8gSS 16 - 16 16 224 

10 MF-S3TGD8gMSm 16 8 8 8 144 

11 MF-S3TGD8gMSum 16 8 8 8 144 

12 MF-S4TGDA8gMSm 48 8 8 8 144 

13 MF-S4TGDA16gMSm 48 16 16 16 144 

14 MF-S4TGDA8gMSum 48 8 8 8 144 

15 MF-S4TGDA16gMSum 48 16 16 16 144 

16 MF-D1T1g 1 - 1 1 90 

17 MF-D2TG2gSS 2 - 2 2 90 

18 MF-D3TGA3gSS 6 - 6 6 192 

19 MF-D3TGA3gMSm 6 3 3 3 120 

20 MF-D3TGA3gMSum 6 3 3 3 120 

21 MF-D3TGA6gSS 12 - 12 12 192 

22 MF-D3TGA6gMSm 12 6 6 6 120 

23 MF-D3TGA6gMSum 12 6 6 6 120 

24 MF-D3TGD8gSS 16 - 16 16 224 

25 MF-D3TGD8gMSm 16 8 8 8 144 

26 MF-D3TGD8gMSum 16 8 8 8 144 

27 MF-D4TGDA8gMSm 48 8 8 8 144 

28 MF-D4TGDA16gMSm 48 16 16 16 144 

29 MF-D4TGDA8gMSum 48 8 8 8 144 

30 MF-

D4TGDA16gMSum 

48 16 16 16 144 
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Table 2: Simulation ranges for MFCC coefficient analysis. The same holds for FBCC 

coefficient analysis from 31 to 60 with ‘FB ‘in the case naming instead of ‘MF. ‘ 

 

 

2.8.Extrapolation 

The 𝐷𝑝 divergence values obtained during the simulations for an increasing number of 

speakers in a class gives the data, as shown in Figure 4, which was observed to be 

decreasing exponentially. To generalize the process of finding the threshold crossing, it 

was necessary to find a curve-fitting model that could accurately represent the decreasing 

exponential curve for all the simulation cases.  

 

Figure 4: 𝐷𝑝 divergence data points obtained 
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Given below in Table 3 is a comparison of different curve fitting models that we 

experimented with and the resulting graphs in Figure 5.  

 

 

Model name Pow1 Pow2 Exp1 Exp2 

Equation 𝑎 ∗ 𝑥𝑏 𝑎 ∗ 𝑥𝑏 + 𝑐 𝑎 ∗ 𝑒𝑏∗𝑥 𝑎 ∗ 𝑒𝑏∗𝑥 + 𝑐

∗ 𝑒𝑑∗𝑥 

SSE 0.0023 8.0424e-05 0.0027 2.5741e-05 

R-square 0.9669 0.9988 0.961 0.9996 

Adjusted R-

square 

0.9645 0.9987 0.9583 0.9995 

RMSE 0.0128 0.0025 0.0138 0.0015 

Table 3: Comparison of curve fitting models 
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Figure 5: Curve fitting graphs 

In Table 3, SSE stands for the sum of squared error, which predicts the deviation of the 

predicted values from the actual values. A lower value of SSE is preferred for higher 

accuracy in the fitting. R-square is the ratio of response variation to that of the total 

variation, and a higher value of R-square is preferred. Adjusted R-square is another version 

of R-square, and a higher value is preferred. RMSE is the abbreviated form of root mean 

square error, which is the standard deviation of the residuals, and a lower value of RMSE 

is preferred for higher accuracy.  

Exp2 was chosen for all simulations after comparing the curve fitting models using the 

goodness of fit measures discussed above.  

Hence, we implemented extrapolation using the curve fitting model ‘exp2’ given by: 

𝑣𝑎𝑙(𝑥) = 𝑎 ∗ 𝑒𝑏∗𝑥 + 𝑐 ∗ 𝑒𝑑∗𝑥 
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We bounded the coefficients for exp2 here, as given in Table 4, to force the curve to zero 

at infinity.  

Coefficient Lower bound Upper bound 

a -∞ 1 

b -∞ 0 

c -∞ ∞ 

d -∞ 0 

Table 4: Coefficient bounds 

 

2.9.Choosing the threshold crossings 

To reject the null hypothesis that the distribution of the chosen classes is not the same, the 

𝐷𝑝 divergence value obtained should be zero, as given in section 1.2. However, the curve 

fitting model which was chosen in section 2.8 for the 𝐷𝑝 divergence values for a different 

number of speakers approach zero at an infinite number of speakers. Hence, we chose a 

threshold level very close to zero to reject the null hypothesis. Moreover, the point at which 

the curve fitting model crosses this threshold level was chosen as the least point at which 

the null hypothesis can be rejected. At this point, it can be predicted that the distributions 

of both the classes are the same.   
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3. SIMULATION RESULTS 

We derived the following threshold points from the analysis specified in Table 2 for a 

chosen threshold level of 0.025. 

Sl. No: Case Threshold point 

1 MF-S1T1g 321 

2 MF-S2TG2gSS 324 

3 MF-S3TGA3gSS 281 

4 MF-S3TGA3gMSm 286 

5 MF-S3TGA3gMSum 295 

6 MF-S3TGA6gSS 330 

7 MF-S3TGA6gMSm 287 

8 MF-S3TGA6gMSum 307 

9 MF-S3TGD8gSS 266 

10 MF-S3TGD8gMSm 286 

11 MF-S3TGD8gMSum 273 

12 MF-S4TGDA8gMSm 49 

13 MF-S4TGDA16gMSm 45 

14 MF-S4TGDA8gMSum 92 

15 MF-S4TGDA16gMSum 91 

16 MF-D1T1g 295 

17 MF-D2TG2gSS 307 

18 MF-D3TGA3gSS 279 

19 MF-D3TGA3gMSm 264 

20 MF-D3TGA3gMSum 265 

21 MF-D3TGA6gSS 270 

22 MF-D3TGA6gMSm 275 

23 MF-D3TGA6gMSum 274 

24 MF-D3TGD8gSS 297 

25 MF-D3TGD8gMSm 249 

26 MF-D3TGD8gMSum 265 

27 MF-D4TGDA8gMSm 38 

28 MF-D4TGDA16gMSm 40 
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Sl. No: Case Threshold point 

29 MF-D4TGDA8gMSum 91 

30 MF-D4TGDA16gMSum 71 

31 FB-S1T1g 240 

32 FB-S2TG2gSS 245 

33 FB-S3TGA3gSS 248 

34 FB-S3TGA3gMSm 220 

35 FB-S3TGA3gMSum 238 

36 FB-S3TGA6gSS 258 

37 FB-S3TGA6gMSm 220 

38 FB-S3TGA6gMSum 234 

39 FB-S3TGD8gSS 234 

40 FB-S3TGD8gMSm 206 

41 FB-S3TGD8gMSum 246 

42 FB-S4TGDA8gMSm 35 

43 FB-S4TGDA16gMSm 45 

44 FB-S4TGDA8gMSum 89 

45 FB-S4TGDA16gMSum 83 

46 FB-D1T1g 206 

47 FB-D2TG2gSS 205 

48 FB-D3TGA3gSS 208 

49 FB-D3TGA3gMSm 191 

50 FB-D3TGA3gMSum 204 

51 FB-D3TGA6gSS 225 

52 FB-D3TGA6gMSm 185 

53 FB-D3TGA6gMSum 207 

54 FB-D3TGD8gSS 193 

55 FB-D3TGD8gMSm 185 

56 FB-D3TGD8gMSum 194 

57 FB-D4TGDA8gMSm 29 

58 FB-D4TGDA16gMSm 32 

59 FB-D4TGDA8gMSum 74 

60 FB-D4TGDA16gMSum 52 

Table 5: Threshold points obtained 
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The 𝐷𝑝 divergence graphs obtained for each of the analysis cases are given in the appendix 

A. The comparison graphs for each type of analysis is given below: 

 

Figure 6: Comparison of thresholds obtained for levels of strata 

 

Figure 7: Comparison of threshold obtained for different sentence types 
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Figure 8: Comparison of thresholds obtained for different features 

 

Figure 9: Comparison of thresholds obtained for different sampling methods 
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Figure 10: Comparison of thresholds obtained for different age groups 

 

The results obtained for the comparison by averaging are given below: 

 
Figure 11: Average of thresholds for each level of strata 
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Figure 12: Threshold points averaged for features 

 
Figure 13: Threshold points averaged for sampling sentence type 
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Figure 14: Threshold points averaged for sampling methods 

 
Figure 15: Threshold points averaged for different age groups 
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To show the improvement in accuracy with this design step, an age classifier was 

implemented using SVM with a gaussian kernel. The training data was a subset of the 

TIMIT training set derived randomly to form unbalanced data. Two different age groups 

were formed by dividing the data into adults (samples younger than 45 years) and elderly 

(samples older than or equal to 45 years). The training data consisted of 118 speakers with 

102 adults (59 females and 43 males) and 16 elderly (5 females and 11 males). Thus, there 

was an imbalance in the gender in both groups. Besides, there were also eight dialect groups 

among the speakers. A new set of features (39 elements) appropriate for age classification 

was formed, and the divergence graph was obtained as below. 

 

Figure 16: Divergence graph obtained for the new training data with new features 
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Testing the classifier with the unbalanced data gave lower accuracy rates. New sub-samples 

were formed from the unbalanced data using the stratified sampling schemes. This process 

of stratified sampling improved the performance of the classifier, as can be seen from the 

below table.  

 Unbalanced data Stratified (100 

speakers) 

Stratified (180 

speakers) 

Training 95.06% 100% 100% 

Testing 77.81% 82.6875% 92.777% 

Table 6: Performance results for age classification 

From Figure 16, it can be observed that just by changing the sampling data to balanced, 

there is an improvement in accuracy. This improvement in accuracy is further increased by 

increasing the number of speakers in the group to around the threshold point ( which is 

around 180 for a threshold level in divergence value of 0.025). 
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4. CONCLUSION 

From Figure 8 and Figure 12, it can be observed that the analysis with FBCC features 

resulted in faster convergence or a smaller threshold crossing point than MFCC features. 

This result also indicates that FBCC is better in representing the speech samples than 

MFCC for the design process implemented here. The high correlation present in FBCC 

coefficients can be the reason for this faster convergence. 

Figure 10 and Figure 15 gives a comparison between two different groupings of the training 

set based on age. The three-age group case converges better than the six age group. 

Figure 9 and Figure 14 shows the comparison between the sampling methods SS, MS 

matched, and unmatched. MS matched converges faster than MS unmatched, which 

converges faster than SS. This can be because SS has a higher number of speakers than the 

corresponding case of MS in each class. The higher number of speakers contributes to more 

significant variability in the class, hence higher threshold points.   

Figure 7 and Figure 13 shows that when there are different types or more number of 

sentences in the sampling set per speaker, the convergence is faster than having the same 

sentence types. Even with the variability resulting from the same speaker speaking different 

sentence types, the different sentence case has lower threshold crossing point. 

Figure 6 and Figure 11 shows that as the levels of strata increases, the convergence 

becomes faster. For level 3, 3TGD performs slightly better than 3TGA, suggesting that 

dialect may be a better trait in forming balanced data than age. Also, there is a massive 
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drop in the threshold point for 4TGDA compared to other levels of strata, indicating that 

higher levels of strata are preferred to have a smaller threshold crossing point. A smaller 

threshold crossing point indicates the requirement for a smaller number of samples in the 

data set. This result shows that the experimental design implemented here helps in bringing 

down the number of training data required, usually (level 1 - 260), to a lower value of 60 

(level 4).  

Observing the improvement in the performance of the classifier as described in chapter 4, 

it shows that only by changing the sampling data to a balanced form, improvement in 

accuracy is possible.  

Through this thesis, we were able to design a process to convert unbalanced training data 

into a balanced one. This process helps in deriving a minimum number of speakers for the 

training when there is a limitation in the training data. If one is working with a new set of 

features, following the design steps described in the project, one can obtain the divergence 

graphs. From this divergence graph, the appropriate feature can be selected that converges 

faster if the time complexity of training is a concern. This process can be used for other 

applications as well by changing the features required appropriately for the study. 
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APPENDIX A 

ADDITIONAL SIMULATION RESULTS OBTAINED 
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Given below are the 𝐷𝑝 divergence graphs obtained for each of the analysis cases: 

 

1. 𝐷𝑝 divergence versus #speakers for MFCC features: 
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2. 𝐷𝑝 divergence versus #speakers for FBCC features: 
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