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ABSTRACT  

   

Firms compete for profitable positions in their technological environments by 

capitalizing on their design and other capabilities to conceive and realize marketplace 

strategies more effectively and more efficiently than rivals do. However, research on how 

technological environment characteristics change the payoff from these capabilities is 

minimal. Given that possessing superior firm capabilities is a primary source of 

competitive advantage for firms, this study seeks to fill these critical research gaps in the 

literature. This dissertation, which is composed of two essays, seeks to answer what 

capabilities pay off more in various technological conditions. It benefits from the most 

comprehensive sample to date that includes 2132 publicly traded firms in the United 

States (US) over 34 years. All the technological industry conditions are captured by using 

the entire data of utility patents in the US. The first essay shows that design is a firm 

capability that enhances sales growth. Its effect, however, is attenuated by technology 

intensity because, in markets with high technology intensity, design attributes become 

less salient. Moreover, technological competitive intensity and maturity amplify design 

capability’s positive effect because when technical attributes of products provide limited 

differentiation, design attributes receive more attention, and consumers overweight them 

in decision making. The second essay examines the effect of marketing and research and 

development (R&D) capabilities on return on assets (ROA) in three technological market 

conditions: Technological turbulence, uncertainty, and acceleration. It shows that all the 

technological environments amplify the positive ROA performance outcomes from 

marketing capability, with technological turbulence having the most potent effect. R&D 
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capability, however, is most influential in technologically accelerating markets. Finally, 

the second essay unveils that marketing and R&D capabilities are complementary only in 

technologically turbulent markets. These studies thus provide valuable insights to 

researchers and managers on the payoff from these capabilities and offer new guidance 

on which capabilities firms should emphasize on under different technological market 

conditions. 
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CHAPTER 1 

DESIGNED FOR GROWTH: THE INTERPLAY BETWEEN DESIGN CAPABILITY 

AND TECHNOLOGICAL MARKET CONDITIONS 

Abstract 

Firms in a variety of industries employ design to compete and enhance their sales. 

Notably, however, researchers have thus far overlooked the circumstances upon which 

investment in design could pay off more or less. Although design and technology 

frequently intersect with one another in practice, the academic research examining this 

intersection is sparse and conflicting. Therefore, I study the sales impact from design, as 

a firm capability, across different technological market conditions. I compile a large 

dataset of 539 publicly traded US firms from 2000 to 2015 to examine the impact of 

design capability on sales growth. Using patent data, I capture the primary technological 

industry conditions under which firms operate–technology intensity (TI), technological 

competitive intensity (TCI), and technological maturity (TM). I show that design 

capability enhances sales growth, and technology intensity attenuates design capability’s 

impact because, in such conditions, design attributes become less salient. However, 

technological competitive intensity and maturity amplify design capability’s positive 

effect because when technical attributes of products provide limited differentiation, 

design attributes receive more attention, and consumers overweight them in decision 

making. I discuss the implications of these results for academic researchers and 

managers. 
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Introduction 

Aesthetics, or styling, has become an accepted unique selling point - on a global basis 

- GE’s head of the division of global aesthetics program (Postrel 2003) 

Firms in a variety of industries employ design1 (i.e., product form or appearance) 

to differentiate their products and gain competitive advantage. Home furniture, 

automobiles, consumer electronics, home appliances, and B2B industries such as medical 

devices are just a few examples. The increasing popular press devoted to design and the 

expanding number of design awards indicate this growing attention of practitioners 

toward this subject (Jindal et al. 2016). 

Further, companies such as Apple, Herman Miller, OXO, and BMW continuously 

launch products with superior designs, while most firms operating in their industries are 

unable to do so. In firms with strong designs, the practices of their design departments are 

highly patterned and over time become embedded as organizational routines, suggesting 

that design is a firm capability that is difficult to copy and trade (Krasnikov and 

Jayachandran 2008; Levinthal 2000; Teece, Pisano, and Shuen 1997). Design as a firm 

capability, however, has yet to receive scholarly attention.  

Looking at practice, one would have a hard time understanding where investment 

in design would pay off more or less. The fact that some firms strong in design can have 

flops (e.g., Apple’s Newton) (Badal 2008) suggests that industry factors may play a role 

in the payoff from design. Indeed, this begs questions like: is design more effective in 

high-tech industries like consumer electronics or low-tech industries like home furniture? 

 
1 For the sake of conciseness, I simply use ‘design’ to refer to product form. This has also been termed 

ornamental design.   
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Is it better to employ design in contexts with more technological competition? How may 

the worth of design change when technologies in an industry mature? Given the 

prevalence of design across industries and different technological contexts, the lack of a 

clear understanding of the contingent effects of design warrants scholarly attention.  

In this study, I focus on one of the most critical market conditions—the firm’s 

technological environment—to study the relationship between design capability and sales 

growth. Beyond the strong intersection observed between technology and design in 

practice, two theoretical considerations motivated this focus on the technological 

environment.   

First, academic theorists suggest that two main dimensions of end products are 

form (i.e., ornamental design) and function (i.e., underlying technology) (Luchs, Swan, 

and Creusen 2016), regardless of factors beyond the end product (e.g., price), and firms 

combine both elements in their products (Kuang 2015). Therefore, studying design 

capability and its performance consequences in the context of technology is particularly 

critical.  

Second, research shows that technological conditions are essential in studying 

firm performance, especially when it comes to the outcome effects of firm capabilities 

(Jaworski and Kohli 1993; Song et al. 2005; Wilden and Gudergan 2015). However, as 

depicted in table 1.1, past studies that examined the interaction between design and 

technology on firm performance outcomes are typically limited to single industries and 

suggest conflicting results: either positive (Rubera 2014), negative (Jindal et al. 2016), or 

insignificant (Talke et al. 2009). As a result, both scholars and practitioners are largely 

blind to in what situations such intersections of design and technology are worthwhile.  
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I thus seek to answer the following two research questions of interest to scholars 

and practitioners alike: (1) does design capability enhance sales growth? (2) how may 

this relationship be affected by different technology industry contexts? Organizational 

theory identifies three primary environmental dimensions: capacity, dispersion, and 

instability (e.g., Dess and Beard 1984; Milliken 1987). Thus, applying these to the 

technological environment, I focus on technological intensity (i.e., capacity), 

technological competitive intensity (i.e., dispersion), and technological maturity (i.e., 

stability) as potential moderators of design capability’s impact.  

I compile a large sample of 539 firms across 28 industries (2-digit SIC codes) 

over 16 years (2000-2015), with 8.55 years of data for each firm on average. Following 

conceptions of R&D capabilities (Dutta, Narasimhan, and Rajiv 1999), I define design 

capability as the ability of a firm to deploy its design-related resources to achieve 

superior and novel designs relative to other products in the market. I assess the 

technological environment characteristics using yearly industry patent data and test the 

hypotheses employing the system GMM method. The findings are robust to allowing for 

heteroscedasticity of the error term in the design capability estimation, controlling for 

additional control variables, using various lag structure criteria in the system of 

equations, and accounting for outliers, providing additional confidence in my findings.  

This study thus offers several contributions to theory and practice. First, I propose 

design is a firm capability and develop a way to measure it utilizing the SFE method. I 

illuminate that design capability enhances sales growth. Therefore, firms that have 

developed robust design capabilities can sustainably boost their sales by capitalizing on 

design. 
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Second, I identify and distinguish between the key technological environmental 

conditions—technology intensity, technological competitive intensity, and technological 

maturity. These three conditions are conceptually and empirically different and 

examining their specific impact within the marketing strategy domain is relevant to 

theory and practice. It is noteworthy that prior approaches have discretely classified 

industries into binary groups of high-tech vs. low-tech or into specific technological 

stages (e.g., growth and maturity). I, however, measure technology intensity and 

technological maturity as continuous factors that vary across industries and over time. 

This allows the technological conditions to move over the ‘technology continuum’ 

(Gardner et al. 2000), enabling me to capture the average characteristics of technologies 

within industries and over time. 

Third, by considering these three technological dimensions, I reveal the nuances 

in the relationship between design and technology. I show that as the technology intensity 

in a market increases, design capability’s impact on sales growth gets weaker. This effect 

occurs because, in high-tech markets, technical attributes of products become more 

salient and receive more weight, owing to their more substantial variability (i.e., range) in 

high-tech markets. Moreover, new designs can increase product complexity and impede 

consumers’ understanding of product category membership. In contrast, technological 

competitive intensity and technological maturity amplify the relationship between design 

capability and sales growth, primarily owing to the lower range and fewer number of 

levels of technical attributes in such markets. When firms do not have a technological 

edge over one another or do not offer much of technology improvement, design attributes 

become salient in consumer decision making and can creatively differentiate the 
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products. Through these findings, my investigation thus provides valuable new insights to 

firms on how to allocate their resources to design capability in order to best compete in 

different technological environments.  

Finally, nearly all the prior work on the performance impact of design has been 

limited to single industry studies of the automobile industry or centered over short time 

spans and reliant on subjective measures. This study benefits from the most 

comprehensive and strongest sample to date with 539 firms across 28 industries (2-digit 

SIC codes), lending more reliability and generalizability to the findings.   

Theory and Hypotheses 

 

First, I briefly review the literature on the firm capabilities-performance link. I then turn 

to design and discuss design as a firm capability and how it may impact firm performance 

(i.e., sales growth). Then, I delve into how technology intensity, technological 

competitive intensity, and technological maturity may affect the relationship between 

design capability and firm performance. Figure 1.1 presents a visualization of the 

conceptual framework of this study. I utilize sales growth as the focal performance 

measure. Sales growth captures the firm’s short-term performance in gaining market 

positions and is one of the most used market performance variables in the innovation 

domain (Rubera and Kirca 2012). 
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Figure 1.1: Conceptual Framework 
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Firm Capabilities and Firm Performance 

Briefly, both resource-based view (RBV) and dynamic capability theories 

postulate that firm capabilities drive firm performance. RBV considers firms as bundles 

of resources and capabilities that allow firms to capture valuable market positions. 

Resources are productive factors that a firm utilizes to achieve its business goals, and 

capabilities are a firm's ability to deploy these resources effectively. Firms differ in the 

endowment of their resources and capabilities (Wernerfelt 1984), and, as a result, some 

firms outperform others. The dynamic capability perspective also posits that in addition 

to resource endowment, firms must deploy and leverage their resources in ways that 

match their changing market environments to gain a competitive edge (Teece, Pisano, 

and Shuen 1997).  

Design as a firm capability. Design is a widely used concept across various 

disciplines. Luchs and Swan (2016), in a review paper, suggest that most academic 

papers on design incorporate this term in three different manners: product form, function, 

or a combination of both.2 Product form, the focus of this research, refers to product 

appearance, such as textures, shapes, colors, materials, and ornamentations (Eisenman 

2013), whereas product function pertains to the engineering aspects of product and 

relationships among internal components, materials, and technologies delivering 

functional utility (Ulrich and Eppinger 2012). 

 
2 There are a few other studies that introduce other elements in their conception of design. For instance, 

Srinivasan et al. (2012) add the meaning dimension, which refers to the shared significance and memorial 

associations of the product, and Homburg, Schwemmle, and Kuehnl (2015) introduce the symbolic 

dimension, which refers to the perceived message a product communicates regarding a consumer’s self-

image. Jindal et al. (2016) introduce ergonomics as the third dimension of design that is more about ease of 

use, comfort, and user experience.  
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Design does not happen in isolation. Product design can enhance user-product 

interfaces through aesthetic and ergonomic properties while meeting the operational and 

cost restrictions (Ulrich and Eppinger 2012), requiring numerous back and forth iterations 

within the firm. Not only do firms protect their designs by means of patents, but they also 

build their design capabilities through interaction and collaboration among several 

departments, including design, marketing, R&D, engineering, and manufacturing. 

Therefore, design capability is deeply rooted in organizational processes and is embedded 

within firms in a complex mesh of interconnected actions that make it very difficult for 

competitors to replicate or trade (Krasnikov and Jayachandran 2008). Thus, the market 

positions produced through design are sustainable. As such, I define design capability as 

the ability of a firm to deploy its design-related resources to achieve superior and novel 

designs relative to other products in the market. 

Design Capability’s Impact on Sales Growth 

Extant research on design from a marketing perspective has focused on design’s 

intermediate behavioral outcomes (Chitturi, Raghunathan, and Mahajan 2007) and its 

impact on product or firm performance (Homburg, Schwemmle, and Kuehnl 2015; Jindal 

et al. 2016; Landwehr, Wentzel, and Herrmann 2013; Liu et al. 2017; Rubera 2014), 

particularly in the automobile industry and without any attention to environmental 

conditions. Table 1.1 provides a summary of representative research on prior studies on 

the market performance effects of design and how this study differs. In sum, with some 

exceptions, prior studies provide evidence that design enhances firm performance 

outcomes; however, these studies have neglected to consider whether firm performance 

outcomes are contingent upon environmental factors.



 

1
1
 

Table 1.1. Representative Research on Firm-Level Design Effects 

Study 
Objective 

Measurement 

Environmental-Factor 

Moderators 

Multiple 

Industry 
Sample Main Findings 

Hertenstein 

Platt, and 

Veryzer (2005) 

No  

(Expert ranking) 
No Yes 

16 SICs 

172 firms 

7 years 

D increases firm financial 

performance measures but does 

not increase sales growth 

Talke et al. 

(2009) 
No No No 

14 firms  

29 years 

D newness persistently increases 

sales over time; there is no 

interaction between D and T 

newness 

Rubera and 

Droge (2013) 

Yes 

(design patents) 
No No 

200 firms 

6 years 

D newness increases sales and 

Tobin’s Q for only corporate 

brands; the interaction between D 

and T depends on branding 

Landwehr, 

Wentzel, and 

Herrmann 

(2013) 

Yes 

(Euclidian distance among 

50 features) 

No No 

German 

cars 

7 years 

Products with atypical Ds reach 

their sales peak at a later point 

than products with typical Ds 

Rubera (2014) 
No  

(Magazines reviews) 
No No 

57 brands 

26 years 

D newness diminishes initial sales 

but increases sales over time; T 

newness, brand strength, and 

advertising enhance the effects of 

D 

Jindal et al. 

(2016) 

No 

(APEAL study’s Style 

measure) 

No No 
33 brands 

6 years 

D (i.e., form) does not affect 

market share; there is a negative 

interaction between D and T 

Liu et al. (2017) 
Yes  

(Morphing technique) 
No No 

33 brands 

8 years 

D characteristics impact market 

share 

This Study 
Yes 

(SFE method) 

Yes 

(TI, TCI, TM) Yes 

28 2-digit 

SICs 

539 firms 

15 years 

D capability enhances sales 

growth; technological market 

conditions moderate the effect of 

D capability 

D and T refer to Design and Technology 



12 

 

There are a number of reasons to suggest firm design capability has a positive 

impact on product demand and, in turn, firm sales, regardless of the firm’s technological 

environment. First, effective designs elicit a variety of affective (Rindova and Petkova 

2007) and aesthetic responses (Crilly, Moultrie, and Clarkson 2004; Hertenstein, Platt, 

and Veryzer 2005; Rindova and Petkova 2007), leading to positive consumer behaviors, 

including further product investigation, product purchase and trial, and positive word-of-

mouth (Bloch 1995; Creusen and Schoormans 2005; Crilly, Moultrie, and Clarkson 2004; 

Homburg, Schwemmle, and Kuehnl 2015; Talke et al. 2009). These effects speed up the 

adoption process and increase sales (Rubera and Droge 2013).  

Second, design also triggers consumer cognitive responses. It is a powerful tool 

for drawing consumer attention and creating perceptual cues with regard to product 

categories (Creusen and Schoormans 2005). Design has the potential to change the 

product meaning (Norman and Verganti 2014), and facilitate the social construction 

process by conveying and communicating what a product does (Ravasi and Rindova 

2004). Thus, firms can utilize design elements to shape consumers’ perception toward 

brand category membership and extend their product lines (Kreuzbauer and Malter 2005). 

Further, design provides cues about the functional values of products (Bloch 1995; Crilly, 

Moultrie, and Clarkson 2004; Noble and Kumar 2010; Stoneman 2010). Consumers 

incorporate such cues into performance judgments that are resistant even when presented 

with conflicting information from different sources (Hoegg and Alba 2011). Thus, 

effective designs enhance the perceived functional value of products.  

 Third, firms can utilize design to creatively differentiate their products 

(Hirschman 1983; Kotler and Keller 2011; Morgan, Kaleka, and Katsikeas 2004), leading 
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to higher product involvement and triggering reward for consumers that result in product 

choice (Reimann et al. 2010). Indeed, past research strongly suggests that products that 

are creatively differentiated gain performance over competitors by meeting unique 

market demands in meaningful ways (Im and Workman Jr 2004).  

Therefore, firms with strong design capabilities can advantageously manage their 

product portfolios to effectively replace their products with newer models that are 

differentiated only with respect to their external appearance (i.e., design) to create 

demand and increase their sales.  

H1: Design capability has a positive impact on sales growth  

Context Matters 

A prominent topic in marketing is how the set of products and brands that 

consumers face (i.e., choice set) can affect consumer judgment, preferences, and decision 

making. The underpinning assumption in early utility models was independence from 

irrelevant alternatives, which states preferences among existing alternatives do not 

depend on additional alternatives to the choice set. This is reflected in other assumptions 

in early utility models: proportionality, which states that a new product takes from other 

products in proportion to their original shares (Luce 1959); and regularity, according to 

which the addition of an option to a choice set can never increase the probability of 

selecting an option from the original set.  

The assumption of independence from irrelevant alternatives, however, has been 

violated by various studies. For instance, according to the similarity effect, a new product 

takes a greater share from similar items (Tversky 1972), therefore, potentially changing 

the preferences of consumers; when a new extreme option is introduced to the choice set, 
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sometimes consumers’ preferences get reversed, and they tend to choose the 

“compromise” option  (Simonson 1989; Tversky and Simonson 1993); and interestingly, 

when an asymmetrically dominated option (i.e., ADE or decoy) is added to the choice set, 

it can help a similar option gain more share (i.e., attraction effect) (Huber, Payne, and 

Puto 1982; Huber and Puto 1983). The common theme across all these findings is that 

choice set can affect how consumers evaluate their options, which in turn influence their 

choice. In other words, the context in which consumers make their decision matters and 

preferences are dependent on it.  

Originally, Huber, Payne, and Puto (1982) assert that the range of variation and 

frequency of attribute levels can explain why an ADE option is selected. Although later 

research provides different interpretations, it confirms that the dimension that is extended 

receives significantly more weight (Ariely and Wallsten 1995; Wedell and Pettibone 

1996; Bonaccio and Reeve 2006). Similarly, the impact of the “range of variation” and 

“number of levels” has been well documented in the extant conjoint literature. A product 

attribute becomes more important as its range of variation or number of levels increases 

(Verlegh, Schifferstein, and Wittink 2002; Wittink, Krishnamurthi, and Reibstein 1990).  

The theory of context-dependent-weighting, on which I mainly build my theory, 

explains how choice is dependent on the context (e.g., Ariely and Wallsten 1995; Huber, 

Payne, and Puto 1982; Tversky and Simonson 1993). It states that the weight or 

importance of product attributes (i.e., dimensions) can change predictably. Huber, Payne, 

and Puto (1982) assert that an increase in the variability of an attribute draws more 

attention to that particular attribute, and as such, it becomes more salient (Taylor and 

Thompson 1982) and receives more weight in consumer decision making (Bonaccio and 
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Reeve 2006; Bordalo, Gennaioli, and Shleifer 2013). In other words, if the variability of a 

dimension increases, the weight of that dimension increases. Consumers evaluate their 

options by aggregating information regarding different attributes and attach 

disproportionate weights to the product attributes (Bordalo, Gennaioli, and Shleifer 

2013).  

In my theoretical grounding, I consider form (i.e., design) and function (i.e., 

technology) the main end-product dimensions (Luchs, Swan, and Creusen 2016) that 

consumers jointly evaluate and weight. I theorize how the weight of design and 

technology may change in various conditions. Since an increase in the weight of a 

dimension leads to a decrease in the relative weights of other dimensions (Wedell 1998), 

I posit that in conditions where technology becomes more (less) salient in decision 

making, it receives more (less) weight, and as such, design becomes less (more) salient 

and receives less (more) weight.  

How Technology Intensity, Technological Competitive Intensity, and Technological 

Maturity Moderate the Design Capability-Sales Growth Relationship  

 

According to contingency theory (Levinthal 2000), the benefits of capabilities 

also depend on the context in which the capabilities are deployed (Feng, Morgan, and 

Rego 2017; Schilke 2014). Thus environmental factors can influence the return to a 

firm’s resource or capability (Song et al. 2005). This notion is in line with the dynamic 

capabilities perspective that posits that firms must deploy and leverage their resources in 

ways that match their dynamic market environment (Teece, Pisano, and Shuen 1997).   

As stated by organizational theory, the primary environmental dimensions are 

capacity, dispersion, and instability (e.g., Dess and Beard 1984; Milliken 1987). I apply 
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these three dimensions to technology contexts to derive the technological environmental 

factors: technology intensity (capacity) – the extent of new product and process 

technologies in an industry relative to industry size; technological competitive intensity 

(dispersion) – the degree of dispersion of new technologies among firms competing in the 

same industry; and, technological maturity (stability) – the degree of standardization of 

technologies in an industry (Utterback 1994; Utterback and Abernathy 1975). In what 

follows, in theorizing each hypothesis, first, I define the particular environmental 

technology dimension, and what it means from a consumer’s and a firm’s point of view, 

then I theorize about how that condition can change the effect of design capability on 

sales growth. 

Technology intensity and design capability-sales growth relationship.  

Technology intensity refers to the extent of new product and process technologies 

in an industry relative to industry size a firm embeds (Ang 2008). It is very similar to the 

high- vs. low-tech typology of markets (Rosen, Schroeder, and Purinton 1998). My 

conception, however, is a matter of degree instead of type because there is a ‘technology 

continuum’ (Gardner et al. 2000) on which industries can shift toward either direction. 

The mobile phone and home furniture industries are good examples of high and low 

technologically intensity markets. 

The impact of design capability on sales growth will likely be attenuated by 

technology intensity for several reasons. First, in high technology intensity markets, 

product attributes change rapidly, and firms continuously advance their underlying 

technologies – to respond to and shape consumer expectations (Rosen, Schroeder, and 

Purinton 1998) – as this is a critical factor for firms’ survival (Ang 2008). In these 
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markets, there is a high rate of technological change, hence the range of variability of 

technical performance of products is more than in markets where technology is not an 

essential product attribute. Therefore — as the theory of context-dependent-weighting 

suggests — the range of variability would draw more attention to the technical attributes 

(Huber, Payne, and Puto 1982), and therefore, they should become salient (Taylor and 

Thompson 1982) and receive more weight in decision making (Ariely and Wallsten 1995; 

Tversky and Simonson 1993; Bonaccio and Reeve 2006). Prior studies also suggest that 

consumers are generally more concerned with the technical performance of products in 

high-tech markets (Chitturi, Raghunathan, and Mahajan 2007; Davies and Walters 2004), 

and thus technology attributes of products are more salient in consumer decision making. 

When technology attributes become more important in decision making, design attributes 

receive less weight (Wedell 1998). Moreover, in these markets, consumers are more 

involved in purchase decisions (Gardner et al. 2000), and therefore, they tend to make 

more deliberate decisions. As such, immediate response to affective stimuli, such as 

appealing designs, is lessened.   

Second, the analogical transfer paradigm (Gregan-Paxton and John 1997) 

demonstrates that consumer reaction to new products is a learning process in which 

knowledge from a familiar domain is transferred to the lesser-known new product. 

Wrapping new technologies, which consumers have little experience with, in a familiar 

product design facilitates the establishment of a mere appearance comparison, namely the 

knowledge transfer from a product with a similar physical appearance to the new one. 

Moreau, Lehmann, and Markman (2001) argue that acquiring knowledge about the new 

technology is necessary for consumers to recognize the relative advantage of the 
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innovation and adopt it, suggesting that technological innovations are more accepted by 

consumers when they are conveyed in less novel designs. In markets where new 

technologies are highly incorporated in products, familiar, less novel designs can 

effectively facilitate the social construction process by conveying the product meaning 

(Ravasi and Rindova 2004), resulting in product acceptance and trial. Further, the design 

and the underlying technology of a product jointly determine a product’s degree of 

complexity and novelty (Luchs, Swan, and Creusen 2016). A complex product may be 

incompatible with customers’ existing values and experiences (Gourville 2005), requiring 

extensive mental effort and cognitive processing (Bloch 1995) that is not desirable from a 

consumer standpoint. Rindova and Petkova (2007) give the example of TiVo, which was 

designed to resemble a VCR physically. Even though the technology was very different, 

the familiar product design helped consumers make sense of the new technology.  

Finally, consumers tend not to purchase products that overshoot their willingness 

to pay. Products with high levels of both design and technological innovation, however, 

prompt higher supply restrictions because they require difficult trade-offs among the 

product aspects (Luchs, Swan, and Creusen 2016) and a significant change in the firm’s 

production facilities that can impart higher costs to the firm (Rubera 2014). Thereby, 

firms in an attempt to make up for lower profit margins may increase their prices that are 

higher than mainstream consumers’ willingness to pay (Jindal et al. 2016), resulting in 

lower levels of product trial and demand. 

All these arguments combined, I predict that in more technologically intense 

markets, while firms with greater design capabilities would still be able to execute 

strategies to achieve value-producing positions, the firms’ ability to capitalize on these 
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positions would be less. Conversely, markets with limited emphasis on new technologies 

provide a more fertile ground for firms to capitalize on their design capabilities. 

Therefore, the design capability’s impact on sales growth is attenuated when technology 

intensity is high. 

H2: The greater the technology intensity, the weaker the relationship between design 

capability and sales growth 

 

Technological competitive intensity and design capability-sales growth relationship.  

I define technological competitive intensity as the degree of dispersion of new 

technologies among firms competing in the same industry. Therefore, if technology 

advancement happens by a small portion of firms in an industry, technological 

competitive intensity is low, whereas when the majority of firms advance their 

technologies to a relatively similar extent, new technologies are dispersed in the industry, 

and technological competitive intensity is high. This creates a competitive context, 

generally where firms are ‘structurally equivalent’ (Burt 2009). As such, technological 

competitive intensity captures the magnitude of effect that a firm has on its competitors’ 

chances of gaining a technological edge. Akin to competitive intensity, I use the industry 

concentration of utility patents published by firms in the same industry to measure 

technological competitive intensity. 

I expect that as technological competitive intensity in a market increases, the 

effect of design capability on sales growth gets stronger for two primary reasons. First, 

products in markets with high technological competitive intensity are likely to be similar 

with respect to their underlying technologies and technical attributes. This similarity 

happens because periods of high competitiveness correspond to the rapid diffusion of 
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new technologies among firms (Robertson and Gatignon 1986); thus, a firm can only gain 

a technological edge over its rivals for a short period. In these periods, imitation is a 

primary firm strategy (Porter and Millar 1985), and firms reverse engineer and copy their 

competitors’ technologies at a fast pace (Zhou, Yim, and Tse 2005). Therefore, in 

conditions of high technological competitive intensity, firms’ technological advantages 

are not sustainable as they match their offerings with their competitors’ (Jaworski and 

Kohli 1993).  

Thus, in both technologically intense and less technologically intense markets, 

this technological similarity of products—from technological competitive intensity—

would lead to a fewer number of levels of technical product attributes. As the theory of 

context-dependent-weighting states, a product attribute becomes more salient and 

receives more weight as it receives more attention (Taylor and Thompson 1982; 

Bonaccio and Reeve 2006; Bordalo, Gennaioli, and Shleifer 2013). Prior studies vastly 

agree that when the number of product levels of an attribute increases, consumers tend to 

pay more attention to that attribute, and as such, it becomes more salient and receives 

more weight in consumer decision making (Verlegh, Schifferstein, and Wittink 2002; 

Wittink, Krishnamurthi, and Reibstein 1990). Therefore, technical attributes of products 

should receive less weight when their number of levels decreases in high technological 

competitive intensity markets, and consequently, design attributes become more salient 

and receive more weight (Wedell 1998). Thus, firms with strong design capabilities 

would be able to take advantage of these conditions effectively by capitalizing on design. 

Second, competitors gain relatively similar positions concerning the level of new 

technologies they achieve as their offerings become technologically homogenous. Thus, 
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consumers face a lot of clutter regarding the merits of brands’ technological claims and 

cannot easily compare and rank them based on their functional values. Further, this slows 

down consumers’ decision making and makes their performance judgments slower. 

Under these consumer-decision making circumstances, affective responses, such as those 

due to new or appealing designs, become more salient (Page and Herr 2002). Product 

designs that are novel and stand out draw consumer attention (Creusen and Schoormans 

2005) and become more critical in consumer decision making (Bordalo, Gennaioli, and 

Shleifer 2013).  

Therefore, in markets with a high degree of technological competitive intensity, 

design attributes become more salient and get overweighed in consumer decision making. 

Firms with robust design capabilities can, therefore, more effectively differentiate their 

products (Hirschman 1983; Kotler and Keller 2011; Morgan, Kaleka, and Katsikeas 

2004) based on unique design attributes that grab consumers’ attention toward their 

products; thus, I hypothesize: 

H3: The greater the technological competitive intensity, the stronger the relationship 

between design capability and sales growth. 

Technological maturity and the design capability-sales growth relationship.  

I define technological maturity as the degree of standardization of technologies in 

an industry (Utterback 1994; Utterback and Abernathy 1975). As Sood and Tellis (2005) 

point out, there is no “single, strong, unified theory of technological evolution.” The 

common theme across the technological evolution models, however, is that technologies 

go through phases of growth and maturity (Wang 2017). New technological regimes 

occur from radical and discontinuous technological innovations that have their own 
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technological trajectories that lead to eras of great ferment, experimentation, and 

shakeouts in the market (Anderson and Tushman 2001; Tushman and Anderson 1986). 

Eventually, a ‘dominant design’ –in the form of key technological elements that become 

the industry standard– emerges, technological innovation becomes more incremental, the 

focus shifts from product to process innovations (Adner and Levinthal 2002; Utterback 

1994; Utterback and Abernathy 1975), and consumers develop expectations about the 

underlying technologies of products (Eisenman 2013). 

I predict that as technological maturity in the market increases, the effect of 

design capability on sales growth gets stronger for two reasons. In markets with high 

technological maturity, innovations become incremental and process-oriented (Utterback 

and Abernathy 1975; Eisenman 2013); therefore, technical attributes of products would 

have less range of variation, making the technical attributes less salient (Chitturi, 

Raghunathan, and Mahajan 2007; Davies and Walters 2004). Not only is there little 

variation of technologies in mature markets, but also firms’ offerings gravitate toward 

each other and become technologically homogenous (Eisenman 2013); therefore, in 

mature markets, there are fewer number of technical product attribute levels. Technology 

thus gets less weight in consumers’ decision making (Verlegh, Schifferstein, and Wittink 

2002; Wittink, Krishnamurthi, and Reibstein 1990). Novel designs, however, draw 

consumer attention (Creusen and Schoormans 2005) and become more salient (Taylor 

and Thompson 1982). Further, evidence indicates that in conditions like technological 

maturity where all of the products in a choice set exceed functional cutoffs, consumers 

attach greater significance to the hedonic attributes such as design (Chitturi, 

Raghunathan, and Mahajan 2007).  
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Moreover, firms can use design to conceal the absence of any technological 

change that is meaningful to consumers and launch new products by exploiting the same 

core functions and technologies repeatedly by only changing the product design 

(Eisenman 2013; Hoffer and Reilly 1984). That is, in technologically mature markets, 

firms with design capabilities can entice their customers to replace older product models 

with newer ones, despite offering little technological improvement (Christensen 1995; 

Utterback et al. 2006). Indeed, gravitation toward competitive parity in mature markets 

can be averted through creative initiatives such as product design (Andrews and Smith 

1996). I expect that firms with strong design capabilities can effectively use this initiative 

to launch new products or modify their current products to enhance their sales growth, 

therefore,  

H4: The greater the technological maturity, the stronger the relationship between design 

capability and sales growth. 

 

Methodology 

Data  

I collect the data from several secondary sources, allowing the testing of the 

hypotheses using a large sample of firms over a long period. I obtain all the design and 

utility patents published since 1995 through 2017 in the United States. Most firms – even 

outside of the US – tend to patent their significant innovations in the US (Tellis, Prabhu, 

and Chandy 2009). In 2008, the USPTO issued more patents to foreigners than to 

Americans, while the absolute number of patents increased (Arndt 2009). Design patents 

are a particular category of patents that can be granted in the US for a "new, original, and 

ornamental design for an article of manufacture" whereas utility patents are issued for the 
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invention of a new machine, device, or manufactured item and refer to the functionality 

of a product. Design patents must be issued for the aesthetics and not the function or 

utility of an invention. The scope of a design patent is limited to the "overall, ornamental, 

visual impression." Designs that are hidden in their end-use or are necessary for the 

proper functioning of the device are not ornamental and, therefore, not patentable as a 

design patent. 

This data contains 4,895,721 patents, of which 9.2% are design patents. Through 

extensive coding, I match the company names from the Compustat data and patent 

assignee names in the patent data obtained from USPTO. I account for companies using 

different names or business units. I were able to match 1,759,606 patents to the 

Compustat data, indicating a reasonable matching rate compared to that of the patent data 

project by the National Bureau of Economic Research (NBER), which had matched 

patents with Compustat data until 2006. Using the merger & acquisition data from SDC, I 

also track down the changes in ownership of firms. This step is crucial as a firm may 

acquire another firm, though the acquired firm continues to file patents using its original 

name. I use the matched data set, which contains of 6,736 firms over 22 years across 28 

2-digit SIC codes, to calculate the capability and technological environment variables. 

Since five prior years of design patent data are needed to calculate DSGN_STOCK, used 

as an input in the SFE model to calculate design capability, the sample starts from 2000. 

In line with prior capability studies that use patent data, I use patent application dates 

instead of grant dates because once an entity applies for a patent, it is ready to use that 

technology/design, and most of the patent rights are granted after application. Besides, 

the time that it takes for a patent to get granted is out of the firm’s control and varies for 
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patents, with respectively 1.52 and 2.85 years for design and utility patents. Following 

Dass, Nanda, and Xiao (2017), I used the historical distribution of patents to correct for 

truncation bias. This correction is important because the patent application data is 

censored in the sense that if a patent is applied for but has not been granted by the time 

that data is collected, it is not included in the data. To use extra caution, I drop the last 

two years of the data because the data in recent years are more significantly censored. 

Additionally, I lose one year of data so as to perform first-differencing in the model. A 

firm has to have six consecutive years of patent data to be included in the final sample. 

Due to missing data across control variables, the final data set used for estimation 

comprises of 539 firms across 28 2-digit SIC codes and 4,378 firm-year observations, 

with 8.12 years of data for each firm on average from 2000 to 2015.  

Operationalization of Variables 

Design capability. Design patents are applied to a wide variety of products such as 

consumer electronics, apparels, textiles, furnishing, and fashion products. Firms also use 

design patents to protect their packaging, graphic symbols, and user interfaces. Therefore, 

design patents can effectively show how much a firm invests in improving the design of 

its products.  

I measure the design capability (DSGN_CAP) by using the stochastic frontier 

estimation (SFE) method. I use design patent stock (DSGN_STOCK) in the past five 

years, number of design employees (DSGN_EMP), and design expenditures 

(DSGN_EXP) as the inputs of design capability and the number of design patents (DO) 

as the output. A firm's stock of innovative design enhances its ability to develop newer 

generations of designs; therefore, a firm's past experiences in design innovation is a good 
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indicator of its ability to develop newer and better designs. I utilize the Koyck lag 

structure (Dutta, Narasimhan, and Rajiv 2005) to calculate DSGN_STOCK, with 

declining weight of .5 to the power of year difference, such that more recent years receive 

greater weights. 

 Further, human resources are probably the most indicative of a firm’s focus on 

design (Kuang 2015). I use patent inventor data to count the number of unique design 

inventors in each firm. There are 3,772,501 patent inventors in the data, and 333,998 of 

them have a record of design patent invention. If an inventor has more number of design 

patents than utility patents on his record, that person is considered a design inventor. 

Ultimately, 265,501patent inventors fall into this category, and the number of design 

inventors serves as my proxy for number of design employees.  

Finally, as Stoneman (2010) suggests, design expenditures are most likely 

subsumed under R&D expenditures; therefore, I prorate firms’ R&D expenditures 

between design and utility innovations based on design and utility patent numbers and 

their number of claims. The number of claims of design patents is always one, whereas 

utility patents almost always have multiple claims. Design expenditures in my data on 

average constitute 8.55% of R&D expenditures.  

I use a Cobb-Douglas formulation in a ‘true’ random effect SFE model (Greene 

2005) and specify the design capability frontier as follows:  

ln (DOit) =   α01 + α11 ln (DESIGN_STOCKit) + α21 ln (DSGN_EMPit) + α21 ln 

(DSGN_EXPit) +  ωi1 + vit1 - uit1,                                                                                                           (1) 

where the scripts i and t respectively represent firms and years; ωi represents time 

invariant firm  heterogeneity that is not related to the production structure; vit is the 
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intrinsic randomness in a firm's frontier output level and is purely stochastic error 

affecting the frontier outputs; uit captures the inefficiency and is the downward deviation 

from the efficient frontier. The ‘true’ random effect SFE model disentangles the time 

invariant firm heterogeneity from the inefficiency term. This is particularly important 

because the data comprises of firms from various industries that are potentially different 

in their design resource deployment. 

I assume that random error has a normal distribution with mean of zero and that 

the inefficiency term has an exponential distribution (Meeusen and van Den Broeck 

1977); however, as Greene (2005) points out this assumption has no major influence on 

the results. As a robustness analysis and following Dutta, Narasimhan, and Rajiv (1999), 

I allow for heteroscedasticity and model the error term as a function of firm size. 

Intuitively, the inefficiency term is the difference between the maximum possible output 

that a firm could have achieved (efficient frontier) by fully efficiently deploying its 

resources and the firm’s actual achieved output (Dutta, Narasimhan, and Rajiv 1999). I 

use simulated maximum likelihood to estimate the ‘true’ random effect SFE model, and I 

transform the inefficiency term to calculate design capability using the exp[-E(u|e)] 

transformation.  

Sales Growth. Sales growth (SG) is measured as the difference between sales in the 

current year and the past year divided by sales in the past year ( 
𝑆𝑎𝑙𝑒𝑖𝑡−𝑆𝑎𝑙𝑒𝑖𝑡−1  

𝑆𝑎𝑙𝑒𝑖𝑡−1  
). 

Control Variables. I collect a variety of variables to be included as control variables 

based on previous literature on the firm capability-firm performance relationship to 

reduce omitted variable bias to the extent possible. In particular, I control for two levels 
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of factors: firm characteristics and technological industry conditions, whose interactions 

with design capability are also incorporated in the model. 

Firm characteristics. Using Compustat data, I control for prior firm performance, 

i.e., Return on Assets (ROA), measured as income before extraordinary items divided by 

total assets; firm size (SIZE), measured as log of number of employees (Morgan, 

Vorhies, and Mason 2009); R&D expenditures (RD_EXP).  

Technological industry conditions. Generally, scholars have measured 

technology-related market conditions, such as turbulence, either with expert ratings (e.g., 

Song et al. 2005) or by surveying managers (Wilden and Gudergan 2015). However, I 

directly utilize utility patents, as they are indicators of technological changes, to measure 

technology intensity, technological competitive intensity, and technological maturity. A 

particular advantage of utilizing such patenting activities is that I can test hypotheses 

across a wide range of industries over time.  

  I measure technology intensity (TI) of an industry (i.e., the extent of new product 

and process technologies in an industry relative to industry size) as the proportion of total 

number of utility patents published by firms operating in the industry in a certain year to 

industry size (total sales) and excluding the focal firm. By excluding the focal firm in 

calculation of technology intensity, I capture the technology intensity that each firm 

experiences facing its competitors. This measurement is similar to that of Ang (2008) 

where technology intensity is defined as the ratio of R&D expenditures to the firm 

output. Since the distribution of technology intensity is strongly right-skewed, I log-

transform it.  
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 Technological competitive intensity is defined as the degree of dispersion of new 

technologies among firms competing in the same industry. I rely on the ‘structurally 

equivalent’ characteristic of competitive contexts (Burt 2009) and similar to how 

competitive intensity is measured, I measure technological competitive intensity (TCI) by 

utility patent concentration index (-Σ Up𝑆𝑖𝑗𝑡
2), where Up𝑆𝑖𝑗𝑡 is utility patent share of firms 

i in industry j and in year t. Therefore, if firms gain relatively similar shares of utility 

patents in their industry, new technologies are dispersed in the industry (i.e., low 

concentration) and technological competitive intensity is high. 

 Technological maturity is measured as the ratio of process innovations to product 

innovations in an industry, following prior conceptions of maturity (Adner and Levinthal 

2002; Utterback 1994). I use patent claim data to classify utility patents into product and 

process innovations. According to sections 101 and 100(b) of US patent laws, product 

and process are two major categories of innovations, with “the term ‘process’ means 

process, art, or method, and includes a new use of a known process, machine, 

manufacture, composition of matter, or material.” Therefore, I parse near 36 million 

independent claims of utility patents issued from 2000. If a patent claim includes 

“method” or “process” keywords (excluding words such as processor), it is classified as 

process, otherwise as product. Technological maturity (TM) is then measured as the ratio 

of total number of process claims to the total number of product claims. The relationships 

between the technological environmental condition variables are displayed in figure 1.2. 

For information on the correlation structure and descriptive statistics, see Table 1.2. 
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Table 1.2 

Correlation Matrix and Descriptive Statistics 

 Mean Std. Dev. 1 2 3 4 5 6 7 8 

1. Sales Growth .073 .249 1        

2. Design Capability  .833 .109 .046 1       

3. Technology Intensity .397 .107 .007 .026 1      

4. Technological Competitive Intensity .481 .089 .065 .002 .159 1     

5. Technological Maturity .562 .120 .036 .009 .049 .111 1    

6. Firm Size 9.257 1.947 -.119 -.018 -.220 -.091 -.016 1   

7. Prior Performance (Lag of ROA) 3.037 19.033 -.188 -.001 -.065 -.014 .008 .240 1  

8. R&D Expenditure 897.122 1845.138 -.042 -.016 -.024 .085 .082 .523 .089 1 

Correlations with an absolute value greater than .036 are significant at p < .05. 

Figure 1.2 

Technological Environmental Conditions 

(a) (b) (c) 
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Model Specification  

Preliminary tests confirmed the presence of heteroscedasticity and serial 

correlation in the panel data used. Moreover, firm capabilities are generally developed 

over long periods and have carryover effects on firm performance (Grewal and Slotegraaf 

2007).Therefore, to account for this persistence effect and to reduce serial correlation 

(Wooldridge 2015), I introduce the lag of sales growth (SG), thus also controlling for 

otherwise omitted variable bias (Germann, Ebbes, and Grewal 2015).  

I use an (Arellano and Bover 1995) and (Blundell and Bond 1998) dynamic panel 

estimation (i.e., system GMM). System GMM has been commonly used in the marketing 

strategy literature and is suited for situations where past realizations of the dependent 

variable affect its current state, the covariates are not strictly exogenous (i.e., covariates 

are correlated with the past or current realizations of the error term), arbitrarily 

distributed fixed individual effects are present, heteroscedasticity and autocorrelation 

within individuals are suspected, and finally the number of available time periods is small 

but the number of panel members is large (Roodman 2006). I propose the following 

model specifications: 

SGit = β0 + β1. SGi(t-1) + β2 DSGN_CAPit +                                                                                (2) 

β3 DSGN_CAPit × TIit + β4 DSGN_CAPit × TCIit + β5 DSGN_CAPit × TMit + 

β6 TIit + β7 TCIit + β8 TMit + β9 SIZEit + β10 ROAi(t-1) + β11 RD_EXPit + β12-26 YEAR + 

ηi + εit   

where ηi is the time-invariant unobservable firm effects, εit is the i.i.d errors capturing the 

idiosyncratic shocks, and YEAR is a vector of time (year) dummies. The estimation 

challenge of this model is that the lagged dependent variable is correlated with the error 



32 

 

term, and therefore, using linear regression results in inconsistent results. Therefore, in 

using linear regression models, I do not incorporate the lag of SG. I only report these 

results to compare them with those from the system GMM. 

System GMM takes the level and first-differenced equations as a system of 

equations, where the lagged differences of SG are used as instruments for the level 

equation, and values of past realizations of SG are used as instruments for the first-

differenced equation (Arellano and Bond 1991; Roodman 2006). 

In summary, I control for unobserved time-invariant firm heterogeneity, carryover 

effects of the firm’s prior status, time fixed-effects, and other factors that can affect firm 

performance to reduce omitted variable bias to the extent possible. I allow for 

heteroscedasticity at the industry level and utilize the robust or sandwich estimator of 

variance to produce valid standard errors.  

Results and Discussion 

First, I present the results of design capability estimation in the first stage, and then I turn 

to results from the second stage in which I test the hypotheses. I use a ‘true’ random SFE 

model to calculate design capability. Table 1.3 presents the results from the simulated 

maximum likelihood estimation of the design capability SFE model.   

 The model is statistically significant (p < .001), with log simulated likelihood of -

2588.09 and Wald chi2 of 5886.17. All the inputs in the SFE model are significant (p < 

.001), providing empirical support that these inputs are relevant design resources. Based 

on the results, the most important input is the number of design employees as it has the 

highest coefficient (.552) among the input set. The inefficiency and random error terms 
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are assumed to be homoscedastic3as Usigma and Vsigma only contain the constant term (p < 

.001). The heterogeneity term is also significant (𝜃 = -.253; p < .001), supporting the 

presence of time invariant firm-heterogeneity that is not a part of the inefficiency.  

 

Finally, the results indicate that the variance of the inefficiency term is statistically 

significant (𝜎𝑢= .175; p < .001) and as the test of λ shows, its proportion to the random 

error term is meaningful (.6; p < .001).  

 After measuring design capability in the first stage, now I incorporate it into the 

main model to test the hypotheses. I estimate the model using OLS, random-effect, fixed-

effect, and system GMM. As discussed, the lag of the dependent variable is not included 

in the first three models because it is correlated with the error term and thereby leads to 

inconsistent results. In all these models, I relax the independence assumption and only 

require that the observations be independent across the industries. Therefore, I allow for 

 
3 As a robustness check, I allow for heteroscedasticity of the error term and model it as a function of firm 

size (Dutta, Narasimhan, and Rajiv 1999); the results remain unchanged. 

Table 1.3. Design Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

DSGN_STOCK .109 .010 1.830 .000 .089 .128 

DSGN_EMP .106 .006 18.940 .000 .095 .117 

DSGN_EXP .552 .018 3.200 .000 .517 .588 

Constant .121 .016 7.470 .000 .089 .153 

Usigma 

   Constant 

 

-3.487 

 

.190 

 

-18.310 

 

.000 

 

-3.860 

 

-3.114 

Vsigma 

   Constant 

 

-2.466 

 

.090 

 

-27.310 

 

.000 

 

-2.643 

 

-2.289 

𝜃 -.253 .014 -18.480 .000 -.280 -.226 

𝜎𝑢 .175 .017 1.500 .000 .145 .211 

𝜎𝑣 .291 .013 22.140 .000 .267 .318 

λ .600 .028 21.350 .000 .545 .655 
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the heteroscedasticity across industries, and as such, all the standard errors are adjusted 

using the robust or sandwich estimator of variance. First, I present the results from the 

baseline model specification without introducing any interaction terms in order to make 

sure the significance levels of the main effect is not due to the inclusion of the interaction 

terms and to capture the magnitude of the main effect. I present the results in Table 1.4. 

Table 1.4. Results 

 
Pooled 

OLS 

Random 

Effect 

Fixed 

Effect 

System 

GMM 

Design Capability (H1, +) .081*** .081*** .078*** .067***   

Technology Intensity (TI) -.077** -.068** -.066** -.068*     

Technological Competitive Intensity 

(TCI) 
.138*** .045 -.051 .119***   

Technological Maturity (TM) .049 .032 .01 .035 

Firm Size  
-

.011*** 
-.005 .055** -.008**    

Prior Performance (Lag of ROA) -.002* -.002** -.001** -.002**    

R&D Expenditure .000 .000 .000 .000 

Lag of Sale Growth N/A N/A N/A .167*** 

Constant .109*** .034 -.504** .036 

Time Fixed Effect Yes Yes Yes Yes 

N 4385 4385 4385 4378 

Number of Groups (i.e., Firms) NA 540 540 539 

Number of Instruments 0 0 0 93 

R2 .120 .11.8 .130 NA 

F-statistic (Wald chi2) 1,736.6 (23122.5) 2,575.7 2,944.1 

Degrees of Freedom 21 21 20 24 

AR(II) test (p value) N/A N/A N/A .583 

Hansen Overid. test (J-statistic) N/A N/A N/A 5.996 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 

 

 The results are very consistent across all the models. Design capability has a 

significant positive effect on sales growth (.067, p < .003), supporting hypothesis 1. The 
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effect of design capability is also economically significant4, providing a 10.04% increase 

in sales growth, on average. Now, I introduce the interaction terms to estimate the full 

model specification. I center the covariates before generating the interaction terms 

(Aiken, West, and Reno 1991). Variance inflation statistics (VIF) shows that 

multicollinearity is not a concern in the model as the VIF ranges from 1.01 to 2.08. I 

present the results in table 1.5. The results are once again very consistent across all the 

models. However, since controlling for lag of the dependent variable (i.e., SG) is critical 

for dealing with reverse causality, I focus on the results from the system GMM 

estimation.  

 The Hansen test of over-identification (J test) indicates that the moment 

conditions are valid, and the specification is not over-identified (p > .99). System GMM 

uses the lagged realizations of the endogenous variables as instruments for them. Since 

due to autocorrelation the first lags are also endogenous, higher-order lags are used. The 

AR(II) test indicates that the second-order lags are not correlated with the error term (p > 

.56), and therefore can be used as instrumental variables. However, to avoid over-

identification and biases associated with “too many instruments” I limit the number of 

instrumental variables to only the second-order lags through the fifth-order lags in the 

estimation (Roodman 2006). All the reported results are generated with these settings.5  

 Moreover, I use the difference-in-Hansen test to examine whether the instruments 

of the model are empirically exogenous. These instruments include the GMM type and 

other covariates, including design capability and its interactions, in both first-differenced 

 
4 Calculated as the standard deviation of design capability times its coefficient divided by mean of sales 

growth 
5 I also examine the results using different settings of lag structure and find the results to be robust 
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and level equations. The difference-in-Hansen test is preferred to Durbin-Wu-Hausman 

tests because it can report test statistics that are robust to various violations of conditional 

homoscedasticity (Baum, Schaffer, and Stillman 2003). The results from the difference-

in-Hansen test of endogeneity reveal that both groups of instruments are exogenous (p 

~=.99). 

Table 1.5 

Results 

 
Pooled 

OLS 

Random 

Effect 

Fixed 

Effect 

System 

GMM 

Design Capability (H1, +) .070*** .065*** .059*** .058*** 

Design Capability × TI (H2, +)  -.242** -.425*** -.483*** -.254** 

Design Capability × TCI (H3, +) .488** .704*** .738*** .406** 

Design Capability × TM (H2, +) .449*** .437*** .407*** .386*** 

Technology Intensity (TI) -.077* -.068** -.065** -.068* 

Technological Competitive Intensity 

(TCI) 
.138*** .047 -.048 .118*** 

Technological Maturity (TM) .05 .035 .013 .035 

Firm Size  -.010*** -.005 .055** -.008** 

Prior Performance (Lag of ROA) -.002* -.002** -.001** -.002** 

R&D Expenditure .000 .000 .000 .000 

Lag of Sale Growth N/A N/A N/A .167*** 

Constant .108*** .033 -.499** .035 

Firm Fixed Effect Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes 

N 4385 4385 4385 4378 

Number of Groups (i.e., Firms) NA 540 540 539 

Number of Instruments 0 0 0 99 

R2 .121 .121 .132 NA 

F-statistic (Wald chi2) 2,158.1 (68,694.4) 16,802.5 7,567.9 

Degrees of Freedom 24 24 23 27 

AR(II) test (p value) N/A N/A N/A .57 

Hansen Overid. test (J-statistic) N/A N/A N/A 1.413 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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The effect of design capability on sales growth remains significant (.058, p < 

.007) with the inclusion of the interaction terms. The interaction term between design 

capability and technology intensity is significant with a negative sign as predicted (-.254, 

p < .013), in support of hypothesis 2, and thus having strong design capabilities in 

markets with high technology intensity is less rewarding. The sign of the coefficient of 

technology intensity is also negative (p < .09), suggesting that firms operating in 

industries with high technology intensity on average have a harder time enhancing their 

sales. Further, the interaction between design capability and technological competitive 

intensity is also significant and, in line with my prediction, has a positive coefficient 

(.406, p < .039), in support of hypothesis 3. Therefore, the effect of design capability on 

sales growth is strengthened by technological competitive intensity. The effect of 

technological competitive intensity is also positive and significant (.118, p < .004), 

suggesting that these environments are supportive of firm growth. Finally, I find 

empirical support for hypothesis 4 as the interaction between design capability and 

technological maturity is significant with a positive coefficient (.386; p < .003), thus 

technological maturity strengthens the impact of design capability on sales growth.  

Overall, my results are in support of my theory and predictions. Hypothesis 1 

through 4 are all empirically supported; however, to get a more in-depth sense of the 

interactions, I utilize simple slope analysis, where low levels of each dimension are one 

standard deviation below their average values, whereas high levels of each dimension are 

one standard deviation above their average levels. The simple slope analysis plots are 

presented in Figure 1.3 (a-c). 
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Firms with strong design capabilities gain better performance; however, design 

capability is a more valuable resource in industries with low technology intensity. The 

impact of design capability in low technology intensity condition is more than 2.6 times 

bigger than its impact in high technology intensity industries (economic significance of 

14.4% vs 5.5%). Further, in industries with low technological competitive intensity, 

design capability does not make a significant difference in enhancing sales growth, 

whereas in industries with high levels of technological competitive intensity, design 

capability enhances sales growth by 14.4% on average. Finally, design capability has the 

strongest impact on sales growth in technologically mature industries, with a 16.4% 

increase in sales growth.   

Figure 1.3. Simple Slope Analysis 

(a) 

 

 

(b) 
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(c) 

 

 
 

In summary, I show that technology intensity attenuates the relationship between 

design capability and sales growth. Design cannot make up for lack of technical 

excellence in high-tech markets because technical attributes of products are more salient 

and consumers take them more into account in their choice decisions (Chitturi, 

Raghunathan, and Mahajan 2007; Davies and Walters 2004). In addition, new designs 

may increase product complexity and impede consumers’ understanding of product 

category membership. On the contrary, technological competitive intensity amplifies the 

relationship between design capability and sales growth because when products do not 

have a technological edge, design attributes become salient in consumer decision making, 

and firms with strong design capabilities can effectively use novel designs to creatively 

differentiate their products. Finally, technological maturity amplifies the relationship 

between design capability and sales growth. When technologies mature, technical 

advancement of products become very incremental from a consumer’s standpoint; 

therefore, consumers develop expectations regarding the technologies embedded in 

products and take them for granted (Eisenman 2013). Novel designs, however, can grab 

consumer attention (Creusen and Schoormans 2005) and become salient in consumer 
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decision making (Bordalo, Gennaioli, and Shleifer 2013). Moreover, design can mask the 

absence of any meaningful technological change (Eisenman 2013; Hoffer and Reilly 

1984), and firms operating in mature industries can capitalize on their design capabilities 

to launch new products, albeit offering little technological improvement (Christensen 

1995; Utterback et al. 2006) to boost their sales.  

Robustness Checks 

I provide a number of additional analyses to lend credence to my findings. I show 

that the findings are robust to: (1) allowing for heteroscedasticity in the calculation of 

design capability, (2) controlling for additional firm-level and industry-level factors, (3) 

other lag structure specification, and (4) accounting for outliers.  

Allowing for heteroscedasticity in the calculation of design capability. I extend 

the SFE formulation and model the heteroscedasticity by allowing the variance of the 

random shock to vary across firms, with the variance as a function of firm size (Dutta, 

Narasimhan, and Rajiv 1999). Results of the SFE model are reported in Table 1.6. The 

coefficients are similar to those from the homoscedastic model. Further, firm size 

effectively predict the variation of error term (.69; p < .019). The results of the main 

model with the heteroscedastic design capability remain substantively unchanged. See 

table A.1 in Appendix A. 

Controlling for additional firm-level and industry-level factors. In addition to the 

firm-level control variables in the main model specification, I control for marketing and 

R&D capabilities. Similar to the estimation of design capability, I use a ‘true’ random 

effect SFE model (Greene 2005) to estimate marketing and R&D capabilities. For 

marketing capability, I use firms’ sales and general administrative expenses, receivables 
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(Narasimhan, Rajiv, and Dutta 2006), and number of trademarks the firm owns (Wiles, 

Morgan, and Rego 2012) as the inputs and revenues as the output. I follow Narasimhan, 

Rajiv, and Dutta (2006) to calculate R&D capability, with stock of utility patents in the 

past five years–using koyck lag structure with declining weight of .5 to the power of year 

difference– and prorated R&D expenditures as the inputs and number of utility patents in 

a year as the output. The capability variables are once calculated with the assumption of 

homoscedasticity of the error term, and once with allowing for heteroscedasticity (Dutta, 

Narasimhan, and Rajiv 1999). See tables A.2, A.3, A.4, and A.5 in Appendix A for more 

details on the estimation results of marketing and R&D capabilities from the SFE models.  

Table 1.6 

Heteroscedastic Design Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

DSGN_STOCK .104 .010 1.040 .000 .084 .125 

DSGN_EMP .107 .006 19.050 .000 .096 .118 

DSGN_EXP .547 .019 29.370 .000 .510 .583 

Constant .116 .020 5.840 .000 .077 .155 

Usigma 

   Constant -3.602 .243 -14.850 .000 -4.077 -3.127 

Vsigma 

   Firm Size .069 .029 2.370 .018 .012 .126 

   Constant -3.009 .270 -11.140 .000 -3.539 -2.480 

𝜃 .265 .018 15.090 .000 .231 .300 

𝜎𝑢 .295    .294 .295 

𝜎𝑣 .165 .020 8.250 .000 .130 .209 

 

Further, in addition to controlling for technological environmental conditions, I 

control for other important industry conditions: market munificence, market uncertainty, 

competitive intensity (Feng, Morgan, and Rego 2017), and design intensity. I use 

Compustat data and adapt the Keats and Hitt (1988) approach. I regress the total sales of 

firms in a SIC industry against the past five years to estimate munificence and uncertainty 
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for the sixth year, as follows: yt = b0 + b1 t + et, where yt is the total sales in the industry in 

year t, t represents years, and e is the error term. I calculate industry munificence and 

uncertainty by dividing the year’s standard error and coefficient (b1) by the average total 

sales of the industry in the past five years. I use industry concentration as a proxy for 

competitive intensity such that higher concentration indicates lower competition and vice 

versa. Following prior research, I measure competitive intensity as -Σ 𝑀𝑆𝑖𝑗𝑡
2, where MSjt 

is the market share of firm i in industry j at year t. Finally, I measure design intensity in 

the industry in a similar fashion as technology intensity is measured; however, instead of 

number of utility patents, I count the number of design patents published by firms and in 

the industry. Therefore, it is the log transformed proportion of total number of design 

patents published by firms operating in the industry in a certain year to industry size 

(total sales) and excluding the focal firm. The results after controlling for these variables 

(see table 1.7.) are consistent with the results from the main model specification. It is 

noteworthy that the effect of marketing and R&D capabilities are significant with greater 

impact than that of design capability.  

Lag structure setting. I run several models using different numbers of 

instrumental variables. I limit the number of lags, ranging from the second-order to the 

seventh-order. I also compere the results with the free lag restriction model. The results 

(Appendix A, Table A.6) are substantively similar, and therefore the findings are not 

sensitive to the setting of instrumental variables.   

Outlier sensitivity analysis. I perform Winsorizing at various percentages (.5%, 

1%, and 2%) to test for outlier influence. However, the findings mostly remain 

unchanged (Web Appendix A, Table A.7).  
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Table 1.7 

Results with Additional Control Variables 

 
Homoscedastic 

Capabilities 

Heteroscedastic 

Capabilities 

Design Capability (H1, +) .045** .052** 

Design Capability × TI (H2, +)  -.247** -.318** 

Design Capability × TCI (H3, +) .387** .472* 

Design Capability × TM (H2, +) .474*** .511*** 

Technology Intensity (TI) .050* .049* 

Technological Competitive Intensity (TCI) .104** .107** 

Technological Maturity (TM) -.018 -.015 

Firm Size  -.007** -.006* 

Prior Performance (Lag of ROA) -.001 -.001 

R&D Expenditure .000 .000 

Munificence -.05 -.049 

Uncertainty -.035 -.019 

Competitive Intensity .011 .011 

Design Intensity -.002* -.002* 

Marketing Capability .167*** .144*** 

R&D Capability .068*** .085*** 

Lag of Sale Growth .176*** .175*** 

Constant .000 .000 

Firm Fixed Effect Yes Yes 

Time Fixed Effect Yes Yes 

N 4245 4245 

Number of Groups (i.e., Firms) 525 525 

Number of Instruments 97 97 

F-statistic (Wald chi2) 2,646.06 1,758.52 

egrees of Freedom 33 33 

AR(II) test (p value) .131 .126 

Hansen Overid. test (p Value) ~.99 ~.99 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 

Limitations  

There are a few limitations that offer future research opportunities. First, I use 

patent data to calculate the technological industry conditions. The norms and standards 



44 

 

for deciding to file a patent and the time that it takes for patents to get published change 

over time. Any shift in such standards, if it occurred, may have a small biasing effect on 

my calculation of technological conditions. Using application dates instead of grant dates 

and the inclusion of year fixed effects in the models, however, mitigate this bias. Further, 

some patent decisions might not be completely exogenous. For instance, the choice 

between product versus process innovation might be affected by the reverse engineering 

threat that the firm feels from its competitors (Levin et al. 1987). However, allowing for 

firm heterogeneity and calculating technological conditions at industry level mitigate this 

problem. 

Second, industries comprise of various product groups and technologies that may 

differ in terms of technological characteristics. By calculating the technological 

conditions at the industry level, I capture the average technological stand of industries 

over time. However, future research should look at the contingent effects of design 

initiatives at the product level to delineate a clearer pathway for gaining market positional 

advantage through design. 

Third, I use the SFE method to calculate the capability measures, and like others 

utilizing this method, I assume that all the inputs are exogenous variables for SFE 

outputs. However, the amount of some of the design-related resources that firms devote 

could be determined by their expected outputs. For instance, a firm that plans to develop 

more new designs may tend to hire more designers and devote higher design budgets. 

The inherent endogeneity of the SFE inputs can raise concern in interpretation of the SFE 

inputs’ coefficients; however, the implications for the effect of design capability remain 

valid as it is derived from the inefficiency term.  
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Fourth, my sample is based on the US publicly traded firms and utilizes US patent 

data. Future research should also extend this study to private firms and firms in other 

countries. Scholars could also extend this to look at how other performance metrics are 

impacted by design capability and examine how these technological environmental 

characteristics may moderate other capability-performance linkages. 

Implications for Theory  

Using a large sample of publicly traded firms in the US, this research presents an 

examination impact of design capability on the sales growth in various technological 

market conditions over a relatively long period. The findings provide several implications 

for theory. First, this research adds to the firm capability literature by illuminating the 

important role of design capabilities. Design capability is a valuable, rare, and non-

imitable capability that yields positive firm performance outcomes. It provides a crucial 

differentiator and enhances sales growth. Firms have a design function that can operate in 

conjunction with—but remains separate from—marketing. For instance, IBM currently 

employs over 1,600 trained designers operating in 44 studios around the world. The 

functional structure of design within the organization can take many forms—from 

standalone departments to embedded design teams. Future research should look at the 

types and forms of marketing-design linkages and on how the different functional 

structures influence the quality of their relationship and the effectiveness of market 

outcomes. 

Second, I enhance prior examinations of the impact of the firm’s technological 

environment by distinguishing between technology intensity, technological competitive 

intensity, and technological maturity, adding insight on how technological environmental 
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factors may alter the impact of firms’ strategic actions on their performance outcomes. 

Further, I introduce an objective way to measure technological conditions based on 

archival data, which allows the technology conditions to be measured as continuous 

factors that vary across industries and over time. This advances prior measures of the 

technological environment, such as technological turbulence (Jaworski and Kohli 1993), 

based on survey data.  Separating and objectively measuring these technological 

conditions would help better illuminate how firm capabilities impact firm performance in 

different technological environments; therefore, it is particularly important for future 

research to investigate the contingent impact of other firm capabilities, such as marketing 

capability, under these technological conditions. However, until then, this research 

provides the first attempt to depict a picture of the worth of a firm capability in various 

technological conditions.  

Third, mostly drawing on the theory of context-dependent-weighting (e.g., Ariely 

and Wallsten 1995; Huber, Payne, and Puto 1982; Tversky and Simonson 1993), I 

theorize and empirically show how technological conditions impact the relationship 

between design capability and sales growth. I show that when range of variation or the 

number of levels of technical attributes of products decreases, they become less salient 

and less important, and design attributes receive more weight in consumer decision 

making.  

Past studies offer conflicting findings on the interaction between design and 

technology, mainly because these studies are limited to single industries and centered 

over various time spans. Using the most comprehensive and most robust sample to date 

with 539 firms across 28 industry sectors, this study reliably reveals that the interplay 
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between design and technology is more complicated than what the current literature 

suggests. Depending on what technological conditions a firm competes, design 

performance outcomes are reinforced or diminished.  

Thus, the findings of this study potentially resolve some of the conflicting 

findings in the past literature. For instance, Rubera and Droge (2013) use consumer 

electronic industry data, and Jindal et al. (2016) use car industry data. Both studies, 

however, happen to use data for a similar time span (2002-2007). My data indicates that 

for this period, the level of technological competitive intensity and maturity of the car 

industry (SIC code of 3711) were low and diminishing; therefore, technical attributes of 

car products in this period were more important, and as such, design attributes were less 

important in consumer decision making. Notably, Jindal et al. (2016) did not find any 

effect for design (i.e., form) on market share. In contrast, the level of technological 

competitive intensity and maturity in the consumer electronic markets (e.g., SIC code of 

3663) are high and growing, making design attributes more important. Interestingly, 

Rubera and Droge (2013) found that design increases sales in this environment. Thus, I 

provide a mechanism to explain these conflicting findings. 

In sum, I reveal the interplay between design capability and sales growth is 

attenuated by technology intensity yet amplified by technological competitive intensity 

and technological maturity, contributing to the new product development literature as 

well as to the strategic management literature. 

Implications for Practice 

This research shows that market positions produced by design capability are 

sustainable and are a source of competitive advantage as design capability is difficult to 
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trade or imitate, therefore, it is advantageous for managers to invest in building and 

enhancing design capability. I find no technological environment condition where firms 

with robust design capabilities perform worse than those with weak design capabilities in 

terms of their sales growth. This finding should support firms’ efforts to create Chief 

Design Officers and to move the design conversation to the boardroom (Lockwood 

2011). This would also suggest that firms should consider tying senior-management 

financial compensation to design-based metrics, such as design awards and consumer 

usability scores.     

Further, I provide valuable new guidance for managers about the payoffs from 

design capability under various technological conditions. My findings indicate that 

design capability has less payoff when technology intensity in the industry is high (i.e., 

high-tech markets). Given this finding, many Silicon Valley enterprises that try to 

incorporate new technologies in new designs (Kuang 2015) should proceed with caution. 

Moreover, the results confirm that in highly technological competitive industries design 

effectively acts as a differentiator that helps products stand out of competition; therefore, 

in industries where most firms do not have a technological edge over their competitors, 

investing in developing robust design capabilities is more rewarding. Finally, the payoff 

from design capability is higher in technologically mature industries. This evidence 

should encourage firms in markets with slower rates of technological change to place 

relatively more emphasis on their design capabilities to expand their product lines by 

incorporating their technologies in new designs. When firms possess the know-how 

knowledge of the standard technology variants, exploitation of their current technologies 

becomes more crucial to gain competitive advantage (Tushman and Rosenkopf 1992), 
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and firms should focus on standardization and efficiency (Lepak, Takeuchi, and Snell 

2003). For instance, the mobile phone market, a high technology intensity market, went 

through many changes in the 1990s when various technologies, such as text messaging 

and touchscreen in 1993, internet access in 1996, GPS system in 1999, Mp3 player and 

mobile cameras in 2000, were adopted by the mobile phone manufacturers, following by 

a more mature phase in which manufacturers like Apple gained huge positional 

advantage by capitalizing on design. Combined, these results provide valuable new 

guidance for firms on how they should shift their focus toward design capability 

depending on the specific technological environment the firm faces. Moreover, managers 

can follow my approach and use publicly available patent data to create a dashboard to 

indicate the current state of their technological environment.  
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CHAPTER 2 

PROFITING FROM TECHNOLOGICAL MARKET DYNAMICS: 

THE IMPACT AND INTERPLAY OF MARKETING AND R&D CAPABILITIES 

Abstract 

Firms attend to their technological environment and use their capabilities to compete 

therein. However, little is known about how technological environment characteristics 

(i.e., technological turbulence, uncertainty, and acceleration) alter the payoff from these 

capabilities. Given that possessing superior firm capabilities is a primary source of 

competitive advantage for firms, this study seeks to fill these critical research gaps in the 

literature. I utilize the most comprehensive sample, to date, of 2132 publicly traded firms 

in the US over 32 years to investigate the effects of marketing and R&D capabilities on 

return-on-assets (ROA) in different technological environments. The findings reveal that 

all the technological environments amplify the positive ROA performance outcomes from 

marketing capability, with technological turbulence having the most potent effect. R&D 

capability, however, is most influential in technologically accelerating markets. Finally, I 

unveil that marketing and R&D capabilities are complementary only in technologically 

turbulent markets. This study thus provides valuable insights to researchers and managers 

on the payoff from these capabilities and also provides new guidance on which 

capabilities firms should emphasize on under different technological market conditions. 

 

Keywords: marketing capability, R&D capability, technological turbulence, technological 

uncertainty, technological acceleration  
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Introduction 

Firms vie for profitable positions in their technological environments by capitalizing on 

their capabilities to conceive and realize marketplace strategies more effectively and/or 

more efficiently than rivals do. The resource-based view (RBV) theory and accumulating 

evidence indicate that firm capabilities are the main drivers of firm performance 

(Krasnikov and Jayachandran 2008; Moorman and Slotegraaf 1999). However, extant 

research has mostly focused on the direct performance impact of firm capabilities, 

leaving gaps regarding the potential effects of market conditions in which firms operate 

(Feng, Morgan, and Rego 2017). 

I focus on one of the most critical market conditions—the firm’s technological 

environment. Technological change is a prime concern of the C-Suite companies. Indeed, 

a recent study of CEOs indicated that keeping up with technological changes is one of the 

CEO’s most salient concerns (Feser 2017). Despite the managerial attention paid to the 

technological environment, there has been little empirical investigation on how firm 

capabilities relate to performance in different technological conditions. These prior 

studies are either not generalizable as their results are based on a single industry (Dutta, 

Narasimhan, and Rajiv 1999) or centered over short time spans and reliant on subjective 

measures (e.g., Song et al. 2005). Thus, knowledge on whether technological 

environment conditions make firm capabilities more or less valuable remains limited.  

I capture technological dynamism in a market via three technological 

characteristics: the rate of technological change (i.e., technological turbulence), 

predictability of those technological changes (i.e., technological uncertainty), and 

changes in the speed of technological changes (i.e., technological acceleration). I attempt 



52 

 

to fill the above-mentioned research gaps, by particularly seeking to answer whether the 

technological environment changes the positive performance outcomes of marketing and 

R&D capabilities. I then try to empirically investigate whether marketing and R&D 

capabilities are indeed complementary, and if so, how their joint effect varies in different 

technological environments.  

The rationale for my selection of marketing and R&D capabilities are two-folds. 

First, they are among the most influential firm capabilities (e.g., Krasnikov and 

Jayachandran 2008). Second, product development is a spanning process that integrates 

inside-out (e.g., R&D) and outside-in (e.g., marketing) capabilities (Day 1994). 

Therefore, it is interesting to examine how these two capabilities that coexist jointly 

enhance firm profitability. 

I compile a large sample of 2132 firms across 48 industries (2-digit SIC codes) 

over 32 years (1985-2016), with 5.78 years of data for each firm on average. I test these 

relationships by employing the system GMM method, and I assess the technological 

environment characteristics using yearly industry adjusted patent count data. My findings 

are robust to accounting for potential selection bias, various distributions of inefficiency 

in calculation of firm capabilities, relaxing the assumption on heteroscedasticity in the 

calculation of firm capabilities, accounting for outliers, and other lag structure 

specifications.  

This study thus offers several contributions to theory and practice. First, this study 

is the first to distinguish between technological turbulence, uncertainty, and acceleration. 

This enriches scholarly research by conceptually and empirically showing that these 
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technological dimensions are different and can change the outcomes from firms’ strategic 

actions in different directions. 

Second, this study shows that indeed the effects of marketing and R&D 

capabilities are contingent upon the technological environment. I reveal that all the 

technological environments amplify the relationship between marketing capability and 

ROA, and technological turbulence has the most potent effect. However, only 

technological acceleration amplifies the R&D capability-ROA relationship. These 

findings add to the strategic management literature by providing strong evidence that the 

technological environment is influential in the returns to a firm’s capability investments. 

Further, finding support for a stronger effect of marketing capability in technologically 

uncertain markets empirically confirms the notion of causal ambiguity, adding to the 

RBV theories.  

Third, this study enriches the literature on the interplay between capabilities by 

showing that marketing and R&D capabilities are only complementary in technologically 

turbulent markets. Therefore, the extent of fit between firm capabilities and market 

environment can change the value of each capability as well as those of their interactions, 

adding to the dynamic capability literature. 

Finally, prior studies on the effect of technological conditions are very spare and 

very limited in scope. This study benefits from the most comprehensive and strongest 

sample to date with more than 2,132 firms across 48 industries over a long period, 

lending more reliability and generalizability to the findings.  
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Theory and Hypotheses 

 

First, I briefly review the literature on the firm capabilities-performance link. 

Then, I introduce technological conditions (i.e., turbulence, uncertainty, and acceleration) 

and delve into how they may affect the relationships between marketing and R&D 

capabilities and firm performance. Figure 2.1 presents a visualization of the conceptual 

framework of this study. I utilize return on assets (ROA) as the focal performance 

measure. ROA has long been viewed as the firm’s short-term profitability (Narver and 

Slater 1990) and is the most used financial position variable that incorporates both 

revenue- and cost-based views on firm performance (Rubera and Kirca 2012). 

Firm Capabilities and Firm Performance 

The resource-based view (RBV) regards firms as bundles of resources and 

capabilities that drive valuable market positions. Firms differ in the endowment of their 

resources and capabilities (Wernerfelt 1984), and firms with more robust bundles of 

resources and capabilities can outperform others. The dynamic capability perspective also 

suggests that firms must practice resource configuration, complementarity, and 

integration in ways that match their changing market environments to leverage firm 

capabilities’ performance outcomes (Kozlenkova, Samaha, and Palmatier 2014; Teece, 

Pisano, and Shuen 1997). Jointly, both RBV and dynamic capability theories suggest that 

firm capabilities drive firm performance. 

Marketing capability-performance and R&D capability-performance. Capabilities are 

complex bundles of skills and knowledge embedded in organizational processes that 

transform the firm’s available resources into valuable outputs (Day 1994; Dutta, 
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Figure 2.1. Conceptual Framework 
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Narasimhan, and Rajiv 1999). The performance effects of marketing capabilities and  

R&D capabilities have received the most attention in the literature. Marketing capability 

represents the firm's ability to understand customer needs and effectively link its 

offerings to customers (Krasnikov and Jayachandran 2008), whereas R&D capability is 

concerned with developing a continuous stream of break-through, patentable, and 

revolutionary new products (Feng, Morgan, and Rego 2017). The overall body of the 

literature suggests that firm marketing and technological capabilities are positively 

associated with a number of measures of firm performance (e.g., Dutta, Narasimhan, and 

Rajiv 1999; Morgan, Vorhies, and Mason 2009), including ROA (Feng, Morgan, and 

Rego 2017).  

Various firm capabilities coexist within firms and are often intertwined (Feng, 

Morgan, and Rego 2017). Theoretically, different firm capabilities may complement one 

another, such that one capability enhances the effect of another on firm performance. 

This complementarity occurs if the firm’s efficiency and/or effectiveness in deploying its 

resources increases, potentially resulting in new applications of resources (Kozlenkova, 

Samaha, and Palmatier 2014; Teece, Pisano, and Shuen 1997). However, it is also 

possible that a firm capability diminishes another capability’s effect because firm 

resource limitation and goal conflicts across capabilities can create inter-capability trade-

offs and inefficiencies (King, Slotegraaf, and Kesner 2008). Given the prior research on 

the relationship between marketing and R&D capabilities, which tends to report a 

complementary relationship (Dutta, Narasimhan, and Rajiv 1999; Moorman and 

Slotegraaf 1999; Song et al. 2005), I later empirically explore how the interplay between 

marketing R&D capabilities changes in various technological environmental conditions. 
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How Technological Turbulence, Technological Uncertainty, and Technological 

Acceleration Moderate Specific Capability (Marketing, R&D, and Design)-ROA 

Relationships  

 

According to contingency theory (Levinthal 2000), the benefits of capabilities 

also depend on the context in which the capabilities are deployed (Schilke 2014). Thus, 

environmental factors can influence the return to a firm’s resource or capability (Song et 

al. 2005). Extant research has been primarily focused on one technological environment 

characteristic, technological turbulence (Glazer and Weiss 1993; Hanvanich, Sivakumar, 

and Hult 2006; Jaworski and Kohli 1993; Moorman and Miner 1997). Technological 

turbulence is the rate of technological change (Jaworski and Kohli 1993). To this, my 

study adds to the literature by examining two other aspects of the firm’s technological 

environment: technological uncertainty—the absence of pattern and inability to 

accurately forecast the changes in the underlying technology6, and technological 

acceleration—change in the rate of such technological change. I discuss how each 

capability-ROA relationship may be affected by each distinct technological 

environmental condition.  

Technological Turbulence 

 Technological turbulence has been defined as the rate of technological change in 

the industry, in which a firm embeds (Hanvanich, Sivakumar, and Hult 2006; Jaworski 

and Kohli 1993; Moorman and Miner 1997). Technological turbulence is high when 

 
6 Some authors have considered uncertainty as part of technological turbulence. However, it generally does 

not load with the other items designed to capture the rate of change (e.g., Jaworski and Kohli 1993; Wilden 

and Gudergan 2015), suggesting it is a separate dimension of the firm’s technological environment. 

Further, while some authors have suggested that “a rapid pace of technological change creates uncertainty” 

(Weiss and Heide 1993, p. 221), uncertainty is not a proxy for variation or rates of change as, for instance, 

rapid but predictable changes create no uncertainty at all (Dess and Beard 1984).  
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firms operating in the same industry heavily advance their underlying technologies (i.e., 

product and process), and it is low when technical changes are minor and infrequent. 

Firms operating in high technological turbulence markets need to continuously advance 

the underlying technologies of their offerings to respond to customer requirements. In 

contrast, firms in low technological turbulence markets try to milk the long-linked 

technologies while having a focus on standardization and efficiency (Lepak, Takeuchi, 

and Snell 2003). For instance, the communications equipment and home apparel 

industries are high and low on technological turbulence.  

Technological turbulence and the marketing capability-ROA relationship. I 

expect that the effect of marketing capability will be strengthened in markets with high 

technological turbulence for two primary reasons. First, in these markets, consumers may 

face a lot of clutter regarding the merits of different technological claims. Thus, firms 

need to adequately inform their customers concerning their technical excellence (Dutta, 

Narasimhan, and Rajiv 1999) and motivate them to try such new technologies. Robust 

marketing capabilities can help firms break through the technological clutter and 

competitive interference in such markets, thus increasing customer trial of new products 

(Wilden and Gudergan 2015). 

Second, in technologically turbulent markets, the basis for competition is 

continually evolving. Firms with strong marketing capabilities can better identify their 

customers’ changing needs and choice factors. In addition, product management 

proficiency, which is also a component of marketing capability (Morgan, Vorhies, and 

Mason 2009), enable firms to effectively customize their offerings to address their 

customer requirements (Lepak, Takeuchi, and Snell 2003). This capability is critical 
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because firms need to balance their product portfolio in ways that their products do not 

cannibalize each other, but rather seek to increase their total sales. Further, such firms are 

also in a better position to understand which new technological features and how much 

customers would be willing to pay. Thus, in addition to aiming for increasing their sales, 

they would charge a premium price for technological features that they add on their 

products, increasing their profit margin as well. Therefore, I expect that technological 

turbulence strengthens the ROA impact of marketing capabilities. 

H1a: The higher the technological turbulence, the stronger the relationship between 

marketing capability and ROA. 

Technological turbulence and the R&D capability-ROA relationship. Firms in 

technologically turbulent markets must shift, integrate, and reconfigure their resources 

toward technological innovations as keeping up with the high rate of technological 

change in such markets is a key survival factor (Ang 2008). Therefore, firms with robust 

R&D capabilities may be better off in these markets than firms with weak R&D 

capabilities. Further, there are reasons to predict that the positive impact of R&D 

capabilities on ROA may be amplified by technological turbulence.  

First, products have shorter life cycles in technologically turbulent markets 

(Dutta, Narasimhan, and Rajiv 1999). As such, firms need to continually advance the 

technical performance of their products by employing new technologies. Firms that have 

robust R&D capabilities are more adept in improving their technologies and 

incorporating them into their products. R&D capability enables firms to upgrade their 

products and launch them in their markets, which increases their sales. Furthermore, 

R&D capability affects how fast a company can introduce its new products to the market 
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(Rabino and Moskowitz 1981). Firms that do not have robust R&D capabilities may fall 

behind the competition and loses their share.  

Second, consumers pay more deliberate attention to the technical performance of 

products in markets with high technological turbulence (Chitturi, Raghunathan, and 

Mahajan 2007; Davies and Walters 2004). Firms with robust R&D capabilities can stand 

out of their competition by effectively technologically differentiating their products to 

gain share from their competitors and increase their sales. Combining these arguments, I 

expect that a firm’s robust R&D capability increases the sales of the firm. Since firms 

that have developed robust R&D capabilities are efficient in deploying their resources, an 

increase in their sales should result in more profitability (ROA). 

H1b: The higher the technological turbulence, the stronger the relationship between 

R&D capability and ROA. 

Technological Uncertainty 

 I define technological uncertainty as the degree of unpredictability of 

technological changes in a market. Markets with little technological uncertainty are 

characterized by evident trends in technological advancement, and firms operating in 

those markets can reliably anticipate such trends based on the information they have in 

hand. A primary reason for periods of technological uncertainty is discontinuous 

technological innovations with their own technological trajectories that lead to eras of 

great ferment, experimentation, and shakeouts in the market (Anderson and Tushman 

2001; Tushman and Anderson 1986). Technological uncertainty peaks when a 

technological regime replaces another, but it is not evident what form of the new 

technology will become the industry standard (Tushman and Rosenkopf 1992). 
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Technological uncertainty and the marketing capability-ROA relationship. A 

major challenge that firms face is to predict which variant of the new technology will 

become the dominant design that customers prefer (Tushman and Rosenkopf 1992). 

Marketing capability becomes essential in technologically uncertain markets as it 

supports market sensing and customer linking through effective information acquisition 

and utilization (Day 1994). Marketing capabilities can reduce the uncertainty that the 

firm experiences—via frequently scanning customer demands, competitor actions, and 

the acceptance of new technologies in the marketplace (Li and Calantone 1998). Thus, 

firms with robust marketing capabilities benefit from high-quality consumer feedback 

(Griffin and Hauser 1993) and can reconfigure their recourses toward the next directions 

of technologies and to avoid wastage of resources.  

Moreover, technological uncertainty may cause demand uncertainty (Anderson 

and Tushman 2001). Firms that have strong relationships with their customers and 

effective channel relationships, owing to their robust marketing capabilities, can better 

mitigate any demand uncertainty in technologically uncertain environments. Therefore, I 

theorize that when technological uncertainty increases, marketing capabilities can help 

guide firms’ technological investments, reduce wastage of resources, and facilitate 

customer adoption and acceptance. Thus, 

H2a: The higher the technological uncertainty, the stronger the relationship between 

marketing capability and ROA. 

Technological uncertainty and the R&D capability-ROA relationship. When firms 

cannot predict what variants of technology will standardize in the market, the exploration 

of new technological opportunities becomes more crucial for them to gain competitive 
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advantage. Firms with robust R&D capabilities can effectively and efficiently cope with 

such technologically uncertain conditions by continuous risk-taking, experimentation, 

and discovery. These firms eventually gain expertise and reach to a level of excellence in 

new technologies that once were not the industry standard (Tushman and Rosenkopf 

1992). 

Finally, causal ambiguity in how and what R&D resources firms utilize to achieve 

technological innovations increases in highly technologically uncertain markets 

(Eisenhardt and Martin 2000), creating barriers to replication. As such, a firm with robust 

R&D capabilities can more effectively explore technological opportunities, with less 

imitation treat from its rivals, when the technological environment is uncertain. For all 

the reasons mentioned, I posit:  

H2b: The higher the technological uncertainty, the stronger the relationship between 

R&D capability and ROA. 

Technological Acceleration 

 I define technological acceleration as the speed of change in the rate of 

technological change in a market. During periods of technological acceleration, 

opportunities for technological innovation and commercialization of new product lines 

rapidly arise, and technological imitation and reverse-engineering becomes more difficult 

as technological innovations accelerate (Davies and Walters 2004; Levin et al. 1987). For 

instance, the mobile phone market went through a high technological acceleration phase 

in the 1990s when various technologies, such as text messaging and touchscreen in 1993, 

internet access in 1996, GPS system in 1999, Mp3 player and mobile cameras in 2000, 

were adopted by the mobile phone manufacturers. 
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Technological acceleration and the marketing capability-ROA relationship. When 

technological changes accelerate, consumers pay more attention to technological trends 

and technical attributes of the products. For instance, this was the case when cellphone 

manufacturers begin employing the technology of digital photography in their products in 

the early 2000s. These periods are great opportunities for firms with strong marketing 

capability to create a lot of buzz about the new technologies of their products by effective 

marketing communications, another aspect of marketing capability (Morgan, Vorhies, 

and Mason 2009). They also make their products relatable to their customers. They can 

extract and convey the meaning of those newly emerged technologies and help their 

customers understand what the product stands for, therefore, increasing customer trials in 

such technologically accelerating markets. 

Moreover, effective channel relationships, due to robust marketing capabilities 

(Morgan, Vorhies, and Mason 2009), are incredibly crucial in technologically 

accelerating markets as they facilitate timely product launches. Emerging technologies, 

when they have a clear pathway forward, generally lead to market expansion or new 

markets. In technologically accelerating markets, firms can capitalize on their strong 

channel relationships to place their products in the market in a timely manner and gain a 

competitive advantage over time (Moorman and Slotegraaf 1999). Moreover, If the firm 

has fallen behind the competition in reaching those accelerating technologies, then the 

strong channel management would create barriers to entry (Reve 1986) for those rivals 

that have reached to such technologies. For these reasons, the impact of marketing 

capabilities on ROA will be amplified when technological acceleration is high.  

H3a: The higher the technological acceleration, the stronger the relationship between 

marketing capability and ROA. 
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Technological acceleration and the R&D capability-ROA relationship. The 

returns from R&D capabilities are expected to be amplified in markets with high rates of 

technological change. However, I expect to observe more benefits for R&D capabilities 

when technological changes are accelerating.  

To compete in a technologically accelerating environment, firms must exploit 

knowledge faster and more effectively as time is of the essence, and fast organizational 

learning becomes essential as development times shrink (Rycroft 2007). Firms have to 

move from an old technology to a new one (Tushman and Rosenkopf 1992), and R&D 

capabilities facilitate this transition (Song et al. 2005) through a timely introduction of 

new products and replacing obsolete technologies (Wind and Mahajan 1997). R&D 

capabilities are also important to the speed of product development (Moorman and 

Slotegraaf 1999) and have been found to influence time to market (Rabino and 

Moskowitz 1981). When new technology areas emerge, firms that own these 

technological positions first can capture rents. These rents cannot be competed away as 

quickly because firms without strong R&D capabilities cannot keep up. Thus,  

H3b: The higher the technological acceleration, the stronger the relationship between 

R&D capability and ROA. 

 

Methodology 

Data  

The data is collected from several secondary sources. First, I obtain all the utility 

patents that are published in the US since 1975 through November of 2018. This data is 

collected from the United States Patent and Trademark Office (USPTO) and includes 

more than 6.2 million patents. Firms apply for utility patents to protect their technologies 
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and prohibit other individuals or companies from making, using, or selling the invention 

without obtaining authorization. Utility patents cover the creation of a new or 

improvement of a useful product, process, or machine. Therefore, they are used in a 

variety of industries, from low-tech to high-tech markets, and most firms, even foreign 

firms, patent the majority of their technological innovations in the US (Tellis, Prabhu, 

and Chandy 2009). 

Second, I use the Compustat data, which contains financial information of firms 

in various industry sectors. The major challenge in preparing the data is to integrate the 

patent data with the Compustat data as the only common variable between these two 

databases is company name (i.e., conm in Compustat and assignee in USPTO). However, 

in many cases, business units apply for patents, and as a result, a company may have 

multiple assignee names. Relying on software packages and the patent data project by the 

National Bureau of Economic Research (NBER) and through extensive coding, I 

standardize the assignee names and match them with company names in Compustat. 

Using these matched names, I integrate the patent data with Compustat data. The 

matched data contains 2,233,778 utility patents published by publicly traded firms in the 

US.  

I consider patents effective since their date of application because by the time that 

a firm applies for a patent, it already has gained the know-how knowledge, and most of 

the patent rights come into effect immediately after the application. However, the patent 

application data is censored because if a patent is never granted, it is not included in the 

data. Thus, there are many patent applications that are not included in the data because 

they are yet to be granted, and only patent applications that are granted by November of 
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2018 are included. To correct this truncation bias, I dropped patents published within 

2017 and 2018 as they are more intensely censored. I also employed the method offered 

by Dass, Nanda, and Xiao (2017) that uses the historical distribution of patents to correct 

for truncation bias. 

Further, in many cases, the ownership of a firm changes over time due to mergers 

and acquisitions. Thus, using the merger and acquisition data from the SDC database, I 

also track down such changes in ownership. If a firm is acquired by another firm but 

continue publishing patents using its original name, then I consider those newly 

published patents for the acquiree firm.  

Finally, five prior years of data are needed to calculate the technological 

uncertainty and acceleration variables; therefore, the first five years of data are not 

included in the final sample. Additionally, data-points for another year are dropped out of 

the final data to perform first-differencing in the model. Due to missing data across all the 

variables, some data points are excluded. The final data set comprises of 2,132 firms 

across 48 2-digit SIC codes and 12,332 firm-year observations, with 5.78 years of data 

for each firm on average from 1983 to 2016.  

Operationalization of Variables 

Dependent Variable.  I use Return on Assets (ROA) as dependent variable in this 

study.  ROA is income before extraordinary items divided by total assets (ib/at). I obtain 

this data from Compustat.  

Technological Environment Conditions. I measure technological turbulence 

(TECH_TURB) of an industry (i.e., rate of technological change) as the total number of 

utility patents published by firms operating in the industry in a certain year. For 
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technological acceleration (TECH_ACC) and uncertainty (TECH_UNC), I adapt the 

approach of Keats and Hitt (1988) and regress the total number of utility patents of firms 

in a 2-digit SIC industry against the past five years to estimate technological acceleration 

and uncertainty for the sixth year, as follows: 

yt = b0 + b1 t + et, where yt is the sum of utility patents in the industry in year t, t 

represents years, and e is the error term. Thus, yt is a rate and the coefficient (b1) captures 

a change in rate, or acceleration. I calculate technological uncertainty and acceleration by 

dividing the year’s standard error and coefficient (b1) by the average total number of 

utility patents of the industry in the past five years. The relationships between the 

technological environmental condition variables are displayed in figure 2.2 (a-c). I log-

transform the technological environmental condition variables because they are strongly 

right-skewed.  

Figure 2.2 

Technological Environmental Conditions 

(a) 
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(b) 

 

(c) 

 

Firm capabilities. Following prior research, I measure the firm capabilities by 

using the stochastic frontier estimation (SFE) technique. I use firms’ sales and general 

administrative expenses (SGA; xsga in Compustat), receivables (RECEIVABLES; rect in 

Compustat), and the number of trademarks7 (TRADEMARKS) the firm owns 

(Narasimhan, Rajiv, and Dutta 2006; Wiles, Morgan, and Rego 2012) as the inputs for 

marketing capability (CAP_MKTG) frontier, while I use revenues (REVENUE; sale in 

Compustat) as its output. I follow Narasimhan, Rajiv, and Dutta (2006) to calculate R&D 

capability (CAP_RD), with R&D expenditures (xrd) and adjusted utility patent stock in 

 
7 This data collected from the United Stated Patent and Trademark Office 
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the past five years (TECH_BASE) as the inputs and sum of adjusted number of utility 

patents published in the year as the output (UO). To calculate TECH_BASE, I utilize a 

Koyck lag structure (Dutta, Narasimhan, and Rajiv 2005) with declining weight of 0.58, 

so that more recent years receive higher weights. To calculate operations capability 

(CAP_OPS), I use a cost frontier, instead of a production frontier, as the goal of 

operations capability is to minimize the cost of production. In line with prior research, the 

number of employees (EMPLOYEES; emp in Compustat), total inventories and 

(INVENTORIES; invt in Compustat), and total net of total plant, property, and 

equipment (PPENT; ppent in Compustat) are used the inputs and cost of good sold 

(COGS; cogs in Compustat) is the output of the operations frontier (Feng, Morgan, and 

Rego 2017; Mishra and Modi 2016). Following past research, I also control for year and 

industry fixed effects in all the frontier equations (Feng, Morgan, and Rego 2017; Xiong 

and Bharadwaj 2011). I use a Cobb-Douglas formulation and specify the marketing and 

R&D frontiers as follows:  

(1) Marketing Capability: 

ln (REVENUEit) = α01 +  

α11 ln (SGAit) + α21 ln (RECEIVABLESit) + α31 ln (TRADEMARKit)  

+ ω11 INDi + ω21 YEARt + vit1 - uit1                                                                               

(2) R&D Capability: 

ln (UOit) = α02 +  

α12 ln (RD_EXPit) + α22 ln (TECH_BASEit) +  

ω12 INDi + ω22 YEARt + vit2 - uit2 

 
8 Alternatively, I used different weights (.4 and .45) to calculate TECH_BASE. Final results, however, 

remain unchanged. 
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(3) Operations Capability: 

ln (COGSit) = α03 +  

α13 ln (EMPLOYEESit) + α23 ln (INVENTORIESit) + α33 ln (PPENTit) 

ω13 INDi + ω23 YEARt + vit3 - uit3 

where the scripts i and t represent firms and years, respectively, INDi represents industry 

dummy variables that control for unobserved heterogeneity due to market conditions, and 

YEARt captures the fixed effect of years. Here, vit is the intrinsic randomness in a firm's 

frontier output level and is purely a stochastic error affecting the frontier outputs; uit, 

however, captures the inefficiency and is a downward deviation from the efficient 

frontier. Following the approach by Dutta, Narasimhan, and Rajiv (1999), I also assume 

that the random shock is a function of firm size, taking into account the heteroscedasticity 

of firms. 

For all the capability calculations, the assumption is that the random error (v) is 

normally distributed and has a mean of zero. I also assume that the inefficiency term (u) 

has an exponential distribution9 (Meeusen and van Den Broeck 1977) (note that uit cannot 

be negative). The inefficiency captures the difference between what a firm could have 

maximally achieved and what the firm actually achieved (i.e., output) (Dutta, 

Narasimhan, and Rajiv 1999). If the firm completely efficiently deploys its resources, it 

will be somewhere on the efficient frontier. In contrast, when the firm is inefficient in 

deploying its resources, it deviates from the efficient frontier, and the inefficiency term 

grows. 

 
9 I also calculate the firm capabilities assuming the inefficiency term is half normal. The results are robust 

to the assumption on the distribution of the inefficiency term. 
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Finally, I use maximum likelihood to estimate the SFE model, and using the exp[-

E(u|e)] transformation, I calculate the capabilities. Intuitively, a firm has a stronger 

capability when it is less inefficient in deploying its resources.  

Technological environmental condition variables. In the past studies, researchers have 

occasionally incorporated technology-related market conditions, such as turbulence. In 

their measurement, however, they relied on either expert rating (e.g., Song et al. 2005) or 

surveys (Wilden and Gudergan 2015). In this study, I directly utilize utility patents data 

to measure technological turbulence, uncertainty, and acceleration. This enables me to 

test my hypotheses across a wide range of markets.  

Additional Control Variables. I collect data from Compustat to additionally 

control for two firm-level variables (i.e., firm size, and market share) and three market-

level variables (i.e., competitive intensity, advertising intensity, and R&D intensity10) that 

can simultaneously affect firm capabilities and ROA (e.g. Morgan, Vorhies, and Mason 

2009; Rubera and Kirca 2012). I measure firm size by taking the natural log of total 

assets, and market share as a firm’s sales in a year divided by total sales of all firms 

operating in the same industry.  

I use industry concentration as a proxy for competitive intensity such that higher 

concentration indicates lower competition and vice versa. Following prior research (Dess 

and Beard 1984), I measure competitive intensity as 1-Σ 𝑀𝑆𝑖𝑗𝑡
2, where MSjt is the market 

share of firm i in industry j at year t. This index ranges from 0 to 1, with 0 representing a 

perfect monopoly and 1 representing a perfect competition. Advertising intensity 

 
10 R&D intensity has a high correlation with technological turbulence; therefore, I re-estimate the model 

without controlling for R&D intensity. Since the results remain substantively similar, I keep R&D intensity 

as a control variable. 
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Table 2.1 

Correlation Matrix and Descriptive Statistics 

 Mean Std. Dev. 1 2 3 4 5 6 7 8 9 10 11 12 

1. ROA .013 .201 1            

2. Marketing Capability  .773 .129 .354 1           

3. R&D Capability .776 .128 .075 .007 1          

4. Operations Capability .773 .112 -.110 -.296 .029 1         

5. Firm Size 6.834 2.190 .356 .083 .052 -.049 1        

6. Market Share .003 .015 -.008 -.008 .008 .021 .067 1       

7. Competitive Intensity .949 .035 .021 -.002 -.014 -.087 -.060 -.164 1      

8. Advertising Intensity .049 .043 .039 -.049 .000 -.044 .058 -.011 .230 1     

9. R&D Intensity .067 .025 .021 .002 -.027 -.118 -.074 -.166 .408 .148 1    

10. Technological Turbulence 8.452 1.439 .007 .027 -.018 -.077 -.045 -.206 .492 -.026 .749 1   

11. Technological Uncertainty .032 .578 .007 -.021 -.008 -.013 -.022 -.069 .075 .096 .085 .093 1  

12. Technological Acceleration -.043 1.113 .001 -.002 -.008 .005 -.060 .009 -.038 .142 -.020 -.046 .122 1 

Correlations with an absolute value greater than .021 are significant at p < .05. 
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and R&D intensity are total advertising and R&D expenditures in an industry divided by 

total sales (Fang, Palmatier, and Steenkamp 2008; Rubera and Kirca 2012). Descriptive 

statistics and correlations are presented in Table 2.1. 

Model Specification  

It is crucial to control for prior performance because it may affect the firm’s 

current performance. Therefore, I introduce the lag of ROA to control for otherwise 

omitted variable bias (Germann, Ebbes, and Grewal 2015), to account for inertia and 

persistence, and to reduce serial correlation (Wooldridge 2015), which preliminary tests 

confirm its presence in the data. The estimation challenge is that the lag of the dependent 

variable is correlated with the error term, and, thus, using a linear regression would result 

in inconsistent results. To address this challenge, I use system GMM dynamic panel 

estimation (Arellano and Bover 1995; Blundell and Bond 1998). System GMM is 

commonly used in the marketing strategy literature because it can tackle several 

estimation challenges, including the case when some covariates (e.g., lag of ROA) are 

correlated with the past or current realizations of the error term (i.e., not strictly 

exogenous). System GMM uses the level and first-differenced equations as a system of 

equations. The lagged differences of the dependent variable are used as instruments for 

the equation in level, and deep lags of the dependent variable are used as instruments for 

the first-differenced equation (Roodman 2006). 

System GMM can also handle cases where arbitrarily distributed fixed individual 

effects are present. In addition to the presence of autocorrelation in the data, which is the 

case in this study, system GMM requires that the number of available time periods to be 

small, but the number of panel members to be large (Roodman 2006). The data satisfies 
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these requirements as there are 2132 firms for which 5.7811 years of data are available, on 

average. I propose the following model specifications: 

ROAit = β0 + β1 ROAi(t-1) +  

β2 CAP_MKTGit × TECH_TURBit + β3 CAP_RDit × TECH_TURBit + 

β4 CAP_MKTGit × TECH_UNCit + β5 CAP_RDit × TECH_UNCit + 

β6 CAP_MKTGit × TECH_ACCit + β7 CAP_RDit × TECH_ACCit + 

β8-18 × CONTROLS + β19-52 YEAR + ηi + εit                                               (4)                                                                                                                                              

where ηi is the time-invariant unobservable firm effects, and εit is the i.i.d error capturing 

the idiosyncratic shocks. CAP is a vector of marketing, design, and R&D capabilities. 

CONTROLS is a vector of the control variables. It consists of firm capabilities (i.e., 

marketing, R&D, and operations capabilities); technological variables (i.e., turbulence, 

uncertainty, and acceleration), market conditions (i.e., competitive intensity, advertising 

intensity, and R&D intensity); and firm-level variables (i.e., firm size, market share). 

YEAR is also a vector of year dummies, and η represents the firm fixed effects.  

In sum, I control for variables identified relevant in changing both the capability 

measures and firm performance (e.g., Morgan, Vorhies, and Mason 2009; Rubera and 

Kirca 2012). I also control for endogeneity due to unobserved time-invariant firm 

heterogeneity by adding the ηi term. Finally, adding the lagged dependent variable, I 

control for further reduce the omitted variable bias (Germann, Ebbes, and Grewal 2015) 

and account for carry-over effects of the firm’s past actions.  

 

 
11 Although the panel is long, I limit the number of lags in estimation to not run into overestimation 
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Results and Discussion 

First, I present the results of the SFE models in the first stage.  

I then turn to results from the second stage in which I test the hypotheses. Tables 2.2., 

2.3., and 2.4 present the results from the maximum likelihood estimations of the 

marketing, R&D, and operations capability SFE models.   

 

 

Table 2.2  

Marketing Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

SGA .290 .007 39.12 .000 .276 .305 

RECEIVABLES .748 .007 108.94 .000 .735 .762 

TRADEMARK .023 .003 7.39 .000 .017 .029 

Constant 1.608 .064 24.99 .000 1.482 1.734 

Usigma 

         Constant -2.211 .050 -44.06 .000 -2.309 -2.112 

Vsigma 

         Firm Size -.056 .017 -3.38 .001 -.089 -.024 

         Constant -1.911 .127 -15.10 .000 -2.159 -1.663 

E(𝜎𝑣) .320    .319 .320 

𝜎𝑢 .331 .008 39.86 .000 .315 .348 

Table 2.3 

R&D Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

RD_EXP .086 .003 24.51 .000 .079 .092 

TECH_BASE .850 .004 22.29 .000 .842 .857 

Constant -.169 .070 -2.43 .015 -.305 -.032 

Usigma 

         Constant 

 

-2.409 

 

.048 

 

-50.10 

 

.000 

 

-2.504 

 

-2.315 

Vsigma 

         Firm Size 

 

-.071 

 

.008 

 

-8.64 

 

.000 

 

-.087 

 

-.055 

         Constant -1.139 .049 -23.09 .000 -1.235 -1.042 

E(𝜎𝑣) .448    .447 .448 

𝜎𝑢 .300 .007 41.59 .000 .286 .314 
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All the SFE models are statistically significant (p < .001). Moreover, all the inputs 

of the frontiers are also significant (p < .001), providing empirical support that these 

inputs are relevant to the capabilities. The coefficients can be interpreted as elasticities. 

The random error terms are assumed to be heteroscedasticity, where they are a function 

of firm size (Dutta, Narasimhan, and Rajiv 1999). In all the models, firm size is a 

significant factor of Vsigma (p < .001), supporting the assumption of heteroscedasticity. 

Finally, the results indicate that the variance of the inefficiency terms are statistically 

significant (p < .001). Overall, the results from the SFE models suggest are empirically 

strong and significant.  

Having calculated the firm capabilities, I center the explanatory variables before 

generating the interaction terms (Aiken, West, and Reno 1991). Variance inflation 

statistics (VIF) suggest that multicollinearity is at a low level as the VIF ranges from 1.03 

to 3.06, with an average of 1.76, which is within a conveniently safe level. Now, I utilize 

the system GMM technique to test my hypotheses.  

Table 2.4 

Operations Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

EMPLOYEES .381 .011 33.75 .000 .359 .403 

INVENTORIES .384 .009 42.39 .000 .366 .401 

PPENT .368 .007 50.80 .000 .353 .381 

Constant .912 .064 14.34 .000 .788 1.037 

Usigma 

         Constant -2.311 .055 -41.640 .000 -2.420 -2.202 

Vsigma 

         Firm Size -.157 .008 -18.690 .000 -.173 -.140 

         Constant -.220 .052 -4.210 .000 -.322 -.117 

E(𝜎𝑣) .539    .538 .540 

𝜎𝑢 .315 .009 36.040 .000 .298 .333 
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The Hansen test of overidentification (J test) shows that the moment conditions 

are valid, and the estimation is not over-identified (p > .99). The AR(II) test indicates that 

the second-order lags can be used as instrumental variables as they are not correlated with 

the error term (p > .297). However, to avoid overidentification and biases associated with 

“too many instruments,” I limit the number of instrumental variables to only from 

second-order to fifth-order lags in my main estimation12 (Roodman 2006). Moreover, the 

difference-in-Hansen test confirms that the instruments of the model, as well as other 

covariates, are empirically exogenous, as the P-value is greater than .997 in all the 

subsets of variables. These instruments include the GMM type and other covariates, 

including firm capabilities and technological conditions, in both first-differenced and 

level equations. The difference-in-Hansen test is preferred to Durbin-Wu-Hausman tests 

because it can report test statistics that are robust to various violations of conditional 

homoscedasticity (Baum, Schaffer, and Stillman 2003).  

Although multicollinearity is not a concern, I add the interactions of each of the 

technological conditions separately to use extra caution. It gives more confidence that the 

significance of the coefficients is not due to the inclusion of other variables. Each of 

models 1 through 3 adds the interactions of a technological environment variable with 

marketing and R&D capabilities; and, model 4 is the full model specification with all the 

interaction terms. In all the estimations, I account for the heteroscedasticity of the error 

term, and as such, all the standard errors are adjusted at the industry level. The results are 

presented in Table 2.5. 

 

 

 
12 I assess the robustness of the results using different lag structure settings 
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Table 2.5 

Main Results 

 Model 1 Model 2 Model 3 Model 4 

Marketing Capability ×  

Technological Turbulence (H1a, +) 
.644***   .645*** 

R&D Capability ×  

Technological Turbulence (H1b, +) 
.006   .014 

Marketing Capability ×  

Technological Uncertainty (H2a, +) 
 .284***  .244*** 

R&D Capability ×  

Technological Uncertainty (H2b, +) 
 .003  -.01 

Marketing Capability ×  

Technological Acceleration (H3a, +) 
  .267** .213** 

R&D Capability ×  

Technological Acceleration (H3b, +) 
  .158*** .170*** 

Prior Performance (Lag of ROA) .324*** .324*** .324*** .324*** 

Marketing Capability  .333*** .340*** .348*** .330*** 

R&D Capability .058*** .059*** .060*** .059*** 

Operations Capability .016 .015 .016 .016 

Firm Size .021*** .021*** .021*** .021*** 

Market Share -.202*** -.209** -.197** -.205*** 

Competitive Intensity .118* .142** .143** .118* 

Advertising Intensity .06 .034 .038 .057 

R&D Intensity .444** .478** .473** .446** 

Technological Turbulence -.055* -.060* -.058* -.056* 

Technological Uncertainty .011 .012 .014 .01 

Technological Acceleration -.004 -.005 -.007 -.006 

Constant -.320*** -.329*** -.344*** -.303*** 

Firm Fixed Effect Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes 

N 12332 12332 12332 12332 

Number of Firms 2132 2132 2132 2132 

Number of Instruments 219 219 219 227 

Degrees of Freedom 51 51 51 55 

AR(II) test (p value) .297 .288 .321 .289 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 

 



79 

 

The results across all the models are fully consistent, and therefore, I discuss the 

results of from the full model (model 4). As expected, the main effects of marketing and 

R&D capabilities are significant (.330, p < .001; .059, p < .001). In terms of the economic 

significance13, marketing capability increases ROA by .043, and R&D capability 

increases it by .007. Considering the standard deviation of ROA, one can conclude that 

the effect sizes of these capabilities are strong as marketing and R&D capabilities 

increase ROA by 21.7% and 3.7% of its standard deviation. It is also noticeable that the 

effect size of marketing capability is more than five times that of R&D capability on 

short term profitability.  

The interaction between technological turbulence and marketing capability is 

significant (.645, p < .001), supporting H1a. However, the interaction between 

technological turbulence and R&D capability is insignificant (.014, p > .76), rejecting 

H1b. Therefore, in line with my prediction, marketing capability is crucial in 

technologically changing environments. The stronger effect of marketing capability in 

technologically turbulent market occurs possibly because firms with robust marketing 

capability can reduce customer clutter and manage their products more proficiently. 

Firms in technologically turbulent markets may face a red queen competition situation in 

which they are forced by their rivals to participate in continuous and escalating 

technological development such that each firm competes just so as to stand still relative 

to its competitors (Derfus et al. 2008). As a result, although R&D capabilities are 

important survival factors in technologically turbulent markets, they do not gain 

additional rents.  

 
13 Calculated as the standard deviation times coefficient 
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Moreover, the interaction between marketing capability and technological 

uncertainty is significant (.244, p < .003), but the interaction between R&D capability 

and technological uncertainty is not significant (-.010, P > .82). Therefore, I find 

empirical support for H2a and not for H2b. These findings likely owe to the significant 

market sensing role of marketing in technologically unpredictable markets. In contrast, 

firms that have robust R&D capabilities tend to explore new technology areas more that 

does not translate into profitability in the short-term when it is not clear what variant of 

new technologies will dominate the other and become the new industry standard.  

Finally, I find a significant positive interaction between marketing and 

technological acceleration (.213, p < .05), supporting H3a, as well as a significant effect 

for the interaction between R&D capability and technological acceleration (.17, P < 

.006), in support of H3b. Therefore, when technological changes accelerate in a market, 

firms can capitalize on their reliable channels and entice their customers to try and 

purchase the new products if they have robust marketing capabilities. Firm with robust 

R&D capabilities can also more effectively reconfigure their resources to move fast 

toward mastering and deploying new technologies.   

Furthermore, to understand how the effect of marketing and R&D capabilities 

changes in various technological conditions, I perform margin analysis. High and low 

levels of each variable is calculated based on one standard deviation above and below its 

average value. The plots of the marginal effects of marketing and R&D capabilities are 

presented in Figure 2.3 (a1, a2, b1, b2, c1, and c2).  
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Figure 2.3 

Margin Analysis 

Marketing Capability R&D Capability 

(a1) 

 

(a2) 

 

(b1) 

 

(b2) 

 

(c1) 

 

(c2) 
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Firms with strong marketing and R&D capabilities are always better off, 

regardless of their technological conditions in their markets. The margin analysis reveals 

that the positive interaction of marketing capability and technological turbulence is 

mainly driven by the fact that firms that have weak marketing capabilities lose more 

profitability in highly turbulent markets than in lowly turbulent markets. Further, the 

effect of marketing capability on enhancing ROA in markets with technological 

turbulence is almost twice as large as in markets with low technological turbulence (.11 

vs. .06). Firms with strong marketing capabilities slightly perform better in 

technologically uncertain markets than in markets with little uncertainty (.10 vs. .07); 

however, there is no differential effect for R&D capability in high and low 

technologically uncertain markets. Finally, the effect of marketing capability in 

technologically accelerating markets is .10, which is slightly higher than its effect in 

markets with little technological acceleration (.08). However, R&D capability is crucial 

in these markets as its effect is twice in magnitude (.02 vs. .01). It is interesting that in 

technologically accelerating markets, if a firm already has a robust R&D capability, it 

gains performance, but if it does not, it loses profitability.  

Supplementary Analysis 

The results as well as the RBV theory that suggests various firm capabilities are 

intertwined and mutually present within firms (Feng, Morgan, and Rego 2017) motivate 

to explore further how marketing and R&D capabilities jointly affect firm performance, 

and how their joint effect changes in various technological conditions. As such, I propose 

the following model specifications: 
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ROAit = β0 + β1 ROAi(t-1) + β2 CAP_MKTGit × CAP_RDit 

β3 CAP_MKTGit × TECH_TURBit + β4 CAP_RDit × TECH_TURBit + 

β5 CAP_MKTGit × TECH_UNCit + β6 CAP_RDit × TECH_UNCit + 

β7 CAP_MKTGit × TECH_ACCit + β8 CAP_RDit × TECH_ACCit + 

β9 CAP_MKTGit × CAP_RDit × TECH_TURBit + 

β10 CAP_MKTGit × CAP_RDit × TECH_UNCit + 

β11 CAP_MKTGit × CAP_RDit × TECH_ACCit + 

β12-22 × CONTROLS + β23-56 YEAR + ηi + εit                       (5)                                                                                                                                              

The 3-way interactions of marketing and R&D capabilities with each of the 

technological environment conditions (i.e., technological turbulence, uncertainty, and 

acceleration) are added to the main model specification. As such, I use an identical set of 

covariates, and akin to the main analyses, I use the system GMM to estimate this model. I 

present the results in table 2.6. 

Again, the Hansen test of over-identification indicates that the moment conditions 

are valid (P > .99) ; the AR(II) test indicates that the second-order lags can be used as 

instrumental variables (P > .291); and the difference in Hansen test indicates that the 

instruments of the model are empirically exogenous (P > .99). The results are very 

consistent with those from the main analysis. Therefore, I only focus on the joint effect of 

marketing and R&D capabilities in various technological environment conditions. 

Noteworthily, the interaction between marketing and R&D capabilities is not significant 

(.005, P >.97), suggesting that, on average, marketing and R&D capabilities only have 

additive effects on short-term profitability. However, the joint effect of these capabilities 

positively interacts with technological turbulence. The 3-way interaction of marketing 

and R&D capabilities is statistically significant (1.381; P < .019), indicating that these 

capabilities are complementary when the rate of technological change is high in the 

market. The other two 3-way interactions, however, are not significant (.555, P >.645; -

.102, P >.890). These results reveal that marketing and R&D capabilities show neither 
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complementary nor substitutive effect in technologically uncertain or accelerating 

markets.  

Table 2.6. Supplementary Analysis 

Marketing Capability × Technological Turbulence .660***   

R&D Capability × Technological Turbulence .004 

Marketing Capability × Technological Uncertainty .245***   

R&D Capability × Technological Uncertainty -.018 

Marketing Capability × Technological Acceleration .215*     

R&D Capability × Technological Acceleration .170***   

Marketing Capability × R&D Capability .005 

Marketing Capability × R&D Capability × Technological Turbulence 1.381**    

Marketing Capability × R&D Capability × Technological Uncertainty .555 

Marketing Capability × R&D Capability × Technological Acceleration -.102 

Prior Performance (Lag of ROA) .323***   

Marketing Capability  .332***   

R&D Capability .058***   

Operations Capability .016 

Firm Size .021***   

Market Share -.207***   

Competitive Intensity .116*     

Advertising Intensity .058 

R&D Intensity .450**    

Technological Turbulence -.057*     

Technological Uncertainty .01 

Technological Acceleration -.006 

Constant -.303***   

Firm Fixed Effect Yes 

Time Fixed Effect Yes 

N 12332 

Number of Firms 2,132 

Number of Instruments 235 

Degrees of Freedom 68 

AR(II) test (p value) .291 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Again, I perform margin analysis to depict the average marginal effect of 

marketing capability, given the R&D capability and technological environmental 

conditions. The plots for the marginal effect are presented in Figure 2.4 (a-c). 

Figure 2.4 

3-Way Interactions Margin Analysis 

(a) 

 

 

(b) 

 

 

(c) 
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The average marginal effect of marketing capability on ROA is strongest when 

the firm has robust R&D capabilities and operates in a market with high technological 

turbulence. It is more significant than if the firm has weak R&D capabilities in that 

environment (.49 vs. .43). In contrast, when technological turbulence is low, the average 

effect of marketing capability is stronger when R&D capability is weak than when it is 

strong (.27 vs. .22).  

Further, the best-case scenario for a firm is when it has superior marketing and 

R&D capabilities and performs in a technologically turbulent market. As technological 

turbulence decreases, the firm’s profitability diminishes as well. When firms have weak 

marketing capabilities in a market with high technological turbulence, their R&D 

capabilities barely makes a difference. It suggests that R&D capability is dependent on 

marketing capability technological turbulence is high. 

Combined, I conclude that these findings fully support the notion that marketing 

and R&D capabilities are complementary if technological turbulence is high in the 

market. I observe a similar pattern in terms of technological uncertainty, although the 3-

way interaction between the capabilities and technological turbulence is not statistically 

significant. The average marginal effect of marketing capability is stronger if R&D 

capability is strong in technologically uncertain markets (.42 vs. .38) or R&D capability 

is weak in markets with little technological uncertainty (.31 vs. .32). Therefore, 

marketing and R&D capabilities only show a mere complementary relationship with one 

another, given technological uncertainty into account. Finally, the relationship between 

marketing and R&D capabilities is purely additive with respect to technological 

acceleration. The difference between the average marginal effect of marketing capability, 
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regardless of R&D capability, in high and low technological acceleration markets is 

about .04, not supporting any complementarity or substitution effect between these two 

capabilities. 

Robustness Checks 

I perform several additional analyses to lend credence to my findings. I show that 

the findings are robust to: (1) correcting for potential selection bias, (2) various 

distributions of inefficiency in calculation of firm capabilities, (3) relaxing the 

assumption on heteroscedasticity in the calculation of firm capabilities, (4) accounting for 

outliers, and (5) other lag structure specification. 

Correcting for potential selection bias. Although the Compustat database includes 

almost all the publicly traded firms in the US, the use of USPTO restricts the sample, 

which can result in selection bias. To account for this potential bias, I utilize the two-

stage Heckman (1979) approach. The Heckman approach estimates a probit model in the 

first stage using the sample of firms that does not suffer from selection bias (i.e., 

Compustat in this case). The control variables in the main model specification are the 

covariates, and a dummy variable of whether the firm has published any utility patents is 

the dependent variable. I calculate the inverse Mills ratio and include it in the model as an 

additional control variable. The results remain substantially unchanged, lending support 

that the results do not suffer from selection bias (Table 2.7). The only difference is that 

the interaction between marketing capability and technological turbulence becomes 

statistically insignificant in model 4 (.183, p > .122), though it remains significant in 

model 3 (.23, p < .047). 
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Table 2.7 

Accounting for Selection Bias 

 Model 1 Model 2 Model 3 Model 4 

Marketing Capability ×  

Technological Turbulence (H1a, +) 

.614***   .615***   

R&D Capability ×  

Technological Turbulence (H1b, +) 

.023   .032 

Marketing Capability ×  

Technological Uncertainty (H2a, +) 

 .265***  .231***   

R&D Capability ×  

Technological Uncertainty (H2b, +) 

 -.006  -.02 

Marketing Capability ×  

Technological Acceleration (H3a, +) 

  .233** .183 

R&D Capability ×  

Technological Acceleration (H3b, +) 

  .146*** .161***   

Prior Performance (Lag of ROA) .299*** .299*** .299*** .299***   

Marketing Capability  .286*** .291*** .298*** .283***   

R&D Capability .066*** .068*** .069*** .067***   

Operations Capability .029 .028 .029 .029 

Firm Size -.498*** -.511*** -.511*** -.493***   

Market Share -.215*** -.222*** -.211*** -.219***   

Competitive Intensity .07 .091 .093 .07 

Advertising Intensity .07 .046 .05 .067 

R&D Intensity .451** .484** **.480 .454**    

Technological Turbulence -.055* -.061* -.059* -.056*     

Technological Uncertainty .015 .016 .018* .013 

Technological Acceleration .019 .018 .016 .017 

IMR -13.679*** -14.005*** -14.031*** -13.531***   

Constant -17.690*** .699*** -2.071*** -5.539***   

Firm Fixed Effect Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes 

N 12332 12332 12332 12332 

Number of Firms 2132 2132 2132 2132 

Number of Instruments 221 221 221 229 

Degrees of Freedom 52 52 52 56 

AR(II) test (p value) .229 .222 .247 .222 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Various distributions of inefficiency in calculation of firm capabilities. Assuming 

the inefficiency terms have half-normal distributions, I recalculate all the capability 

measures and retest my hypotheses. Once again, my results remain completely 

unchained, suggesting that the results are robust to the assumption on the inefficiency 

term (Appendix B, Table B.1). 

Relaxing the assumption of heteroscedasticity in the calculation of firm 

capabilities. I assume that the random error in the SFE models is homoscedastic and no 

longer model its variance as a function of firm size. I recalculate the firm capabilities and 

test the hypotheses again. The results remain similar, suggesting the results are robust to 

this assumption (Appendix B, Table B.2). 

Accounting for outliers. To account for outliers, I winsorize at various 

percentages (.5%, 1%, and 2%). However, the findings mostly remain unchanged 

(Appendix B, Table B.3). 

Other lag structure specification. I run several models using different numbers of 

instrumental variables by restricting the lags, ranging from the second-order to the 

seventh-order. I also compare the results with the free lag restriction model. The results 

(Appendix B, Table B.4) are substantively similar, and therefore, the findings are not 

sensitive to the setting of instrumental variables.   

Limitations 

 

There are a few limitations that offer future research opportunities. First, I use the 

SFE method to calculate the capability measures, and like others utilizing this method, I 

assume that all the inputs are exogenous variables for SFE outputs. However, the amount 
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of resources that firms devote may be pre-determined by outputs the firm desires to 

achieve.  

Second, I use patent data to calculate the technological environmental conditions. 

The norms and standards of patenting may have shifted a bit over time. For instance, the 

time gap from when a patent is applied for and when it gets published has changed over 

the years. Changes in such standards, may have a small biasing effect on my calculation 

of technological conditions. However, I use application dates and correct for these time 

lags. Also, the inclusion of time fixed effects in the models mitigates this bias.  

Third, in any industry, there are multiple product groups, for which technological 

characteristics can be different. I measure the technological conditions at the industry 

level, therefore, assuming they do not vary across product groups. However, future 

research should use a similar approach but rather on product categories to calculate 

technological conditions in order to delineate a cleaner mechanism for gaining firm 

performance through firm capabilities. 

Fourth, my sample is based on the US publicly traded firms and utilizes US patent 

data. Future research could also extend this analysis to private firms and possibly to other 

countries. Scholars could also extend this work by other performance long-term metrics, 

either expected or actual. However, until then, this research provides the first 

comprehensive picture of the worth of marketing and R&D capabilities—in various 

technological conditions—based on a large sample of firms and industries over thirty-two 

years.  
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Implications for Theory  

This study uses a large sample of publicly traded firms in the US and examines 

the ROA impact of marketing and R&D capabilities in various technological market 

conditions. Consistent with most of the prior studies (e.g., Dutta, Narasimhan, and Rajiv 

1999), I find positive main effects for marketing and R&D capabilities. Regardless of 

what market conditions a firm embeds in, it will always enjoy higher levels of ROA if it 

has robust capabilities. This study, however, provides a comprehensive picture of how 

the effect of each of the marketing and R&D capabilities changes with the level of the 

other capability and technological market conditions. Thus, this study offers several 

implications for theory.  

First, it enhances prior examinations of the impact of the firm’s technological 

environment by distinguishing between technological turbulence (rate of change), 

technological uncertainty, and technological acceleration. I also introduce an objective 

way to measure these based on archival data. Extant research has not previously 

examined technological acceleration, and it has studied the other two dimensions 

conjoined together (Jaworski and Kohli 1993; Song et al. 2005). Not only these 

dimensions are conceptually different, but the correlations among them are low. 

Therefore, it is crucial for future research to examine further the contingent impact of 

firms’ strategic actions in these technological conditions. This research provides the first 

attempt to depict a picture of the worth of a marketing and R&D capabilities in these 

technological conditions.  

Second, this study advances the literature by revealing the profit performance 

impact of marketing capabilities is amplified by technological turbulence, most likely 
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owing to communication management and product proficiency. Importantly, without 

robust marketing capability, a firm can never gain performance above the market 

average, regardless of its level of R&D capability. And not surprisingly, those firms that 

have weak marketing capabilities perform exceptionally poorly in high technologically 

turbulent markets. This finding implies that firms must allocate their resources to and 

invest in developing robust marketing capabilities to achieve performance in such 

markets. In contrast, counter-intuitively, the effect of R&D capability does not 

significantly change in technologically turbulent markets. Although firms must shift, 

integrate, and reconfigure their resources toward technological innovations in these 

markets, they face a red-queen competition effect. As such, R&D capability becomes 

more of an essential factor that firms must develop and invest in to survive. 

Third, RBV theorists have asserted that uncertain environments generally increase 

causal ambiguity, impede the ability of other firms to imitate resources (Eisenhardt and 

Martin 2000), and boost the efficacy of firms’ dynamic capabilities (Drnevich and 

Kriauciunas 2011). I provide the first empirical test for this for technological uncertainty 

and find the impact of marketing capability is enhanced in technologically uncertain 

environments, supporting this theoretical logic. However, although R&D capability is 

crucial in the long-term, it does not translate into short-term profitability because firms 

with robust R&D capabilities tend to practice the exploration strategy to a higher extend 

in the periods of technological uncertainty, leading to an increase in their costs. 

Fourth, this study reveals that technological acceleration marginally increases the 

effect of marketing capability, potentially owing to its channel management facet. 

However, technological acceleration significantly amplifies the ROA outcomes of R&D 
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capability. Firms that have developed robust R&D capabilities can exploit new areas of 

technology faster and capture rents that cannot be easily competed away by firms without 

strong R&D capabilities. 

Finally, this study enriches the scant literature on the interplay between 

capabilities by showing that marketing and R&D capabilities are only complementary in 

technologically turbulent markets. This complementarity happens because the origin of 

the majority of new technologies is in customer requests and suggestions, and marketing 

capability can effectively span the bridge between the market and R&D department. A 

firm with strong marketing capability provides high-quality consumer feedback to its 

R&D department and thus benefits from desirable market-pull ideas – which start from 

the analysis of user needs and then lead to the development of products to satisfy those 

needs. Further, firms with superior R&D capabilities can continually improve the 

technical performance of their products and introduce new upgraded products. If they 

have superior marketing capabilities as well, they can more effectively expand their 

product portfolios, vertically and/or horizontally, to increase their revenues. However, 

marketing and R&D capabilities do not show any complementary or substitutive effect in 

other environments possibly due to firms’ resource constraints.   

Implications for Practice 

From a managerial perspective, this research confirms that it is advantageous for 

managers to invest in building their marketing and R&D capabilities. Interestingly, I find 

no technological environment condition where having a robust marketing or R&D 

capability diminishes firms’ ROA. This finding should support firm efforts to allocate 

their resources to developing these capabilities. Selecting board members from the 
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marketing and R&D departments can empower those departments, and it potentially 

shifts more resources toward those departments.  

On average, the payoff from marketing capability is significantly higher than from 

R&D capabilities. Managers, in general, should prioritize investing in developing 

marketing capabilities as they are crucial for gaining a competitive advantage. Firms that 

have weak marketing capabilities, always perform more poorly than an average firm in 

their market.  

Further, I provide valuable new guidance for managers concerning where their 

firm capabilities are more rewarding. In technologically turbulent and/or uncertain 

markets, marketing capability is more rewarding. This evidence should encourage 

mangers, especially those whose companies are in markets with fast rates of 

technological change and/or in with unpredictable technological trends, to capitalize on 

their marketing capabilities more to gain profitability. 

In contrast, having strong R&D capabilities in technologically turbulent markets 

only keeps firms in the game and serves as a minimum condition. It is likely, however, 

that firms that have exceptional R&D capabilities still gain additional rents in turbulent 

markets. R&D capability can open new opportunities for firms in technologically 

accelerating markets. When firms can swiftly move along new technology trends, they 

enjoy a pioneering effect and gain huge market shares in new emerging markets due to 

those accelerating technologies. This is clearly the case for many technology start-ups.  

Finally, marketing and R&D capabilities are complementary in only markets with 

high technological turbulence. This complementarity should encourage managers to 

increase resource integration and synergetic interactions between their marketing and 
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R&D departments to gain additional rents. In sum, this study provides valuable new 

guidance for firms on how they should shift their focus between their strategic 

capabilities depending on the technological environment the firm faces.  
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Table A.1 

Effect of Heteroscedastic Design Capability 

Design Capability (H1, +) .058*** 

Design Capability × TI (H2, +)  -.254** 

Design Capability × TCI (H3, +) .406** 

Design Capability × TM (H2, +) .386*** 

Technology Intensity (TI) -.068* 

Technological Competitive Intensity (TCI) .118*** 

Technological Maturity (TM) .035 

Firm Size  -.008** 

Prior Performance (Lag of ROA) -.002** 

R&D Expenditure .000 

Lag of Sale Growth .167*** 

Constant .035 

Firm Fixed Effect Yes 

Time Fixed Effect Yes 

N 4378 

Number of Groups (i.e., Firms) 539 

Number of Instruments 99 

F-statistic (Wald chi2) 7,567.90 

Degrees of Freedom 27 

AR(II) test (p value) .57 

Hansen Overid. test (J-statistic) 1.413 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 

 

 

 

 

 

 

 

 

 

 



110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.2 

Homoscedastic Marketing Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

SGA .724 .022 33.250 .000 .681 .767 

RECEIVABLES .228 .035 6.510 .000 .159 .297 

TRADEMARKS -.008 .005 -1.590 .112 -.018 .002 

Constant 2.572 .278 9.250 .000 2.027 3.117 

Usigma 

   Constant 

 

-3.134 

 

.211 

 

-14.860 

 

.000 

 

-3.547 

 

-2.721 

Vsigma 

   Constant 

 

-5.696 

 

.399 

 

-14.290 

 

.000 

 

-6.478 

 

-4.915 

𝜃 .829 .060 13.710 .000 .710 .947 

𝜎𝑢 .209 .022 9.480 .000 .170 .257 

𝜎𝑣 .058 .012 5.020 .000 .039 .086 

λ 3.601 .032 112.640 .000 3.538 3.664 
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Table A.3 

Homoscedastic R&D Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

TECH_STOCK .804 .020 4.020 .000 .765 .844 

TECH_EXP .092 .012 7.730 .000 .068 .115 

Constant -.620 .084 -7.400 .000 -.784 -.455 

Usigma 

   Constant -2.33642 .096963 -24.1 .000 -2.52647 -2.14638 

Vsigma 

   Constant -2.140 .085 -25.200 .000 -2.307 -1.974 

𝜃 .243 .021 11.520 .000 .202 .284 

𝜎𝑢 .311 .015 2.630 .000 .283 .342 

𝜎𝑣 .343 .015 23.550 .000 .316 .373 

λ .907 .027 34.130 .000 .855 .959 
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Table A.4 

Heteroscedastic Marketing Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

SGA .709 .012 58.800 .000 .686 .733 

RECEIVABLES .265 .014 19.320 .000 .238 .291 

TRADEMARKS -.005 .004 -1.410 .159 -.013 .002 

Constant 2.100 .149 14.130 .000 1.809 2.392 

Usigma 

   Constant -3.236 .185 -17.520 .000 -3.598 -2.874 

Vsigma 

   Firm Size -.385 .093 -4.120 .000 -.568 -.202 

   Constant -2.676 .736 -3.630 .000 -4.119 -1.233 

𝜃 1.121 .018 61.710 .000 1.086 1.157 

𝜎𝑢 .064    .063 .064 

𝜎𝑣 .198256 .018311 1.83 0 .165429 .237597 
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Table A.5 

Heteroscedastic R&D Capability 

 Coefficient Std. Err. z P Value 95% Conf. Interval 

TECH_STOCK .822 .021 39.050 .000 .781 .863 

TECH_EXP .087 .013 6.920 .000 .062 .111 

Constant -.649 .088 -7.340 .000 -.822 -.476 

Usigma 

   Constant -2.412 .107 -22.520 .000 -2.622 -2.202 

Vsigma 

   Firm Size -.180 .033 -5.540 .000 -.244 -.116 

   Constant -.670 .232 -2.890 .004 -1.123 -.216 

𝜃 .226 .022 1.270 .000 .183 .269 

𝜎𝑢 .348    .347 .350 

𝜎𝑣 .299 .016 18.680 .000 .270 .333 
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Table A.6 

Various Lag Structure Settings 

 (2-2) (2-3) (2-4) (2-5) (2-6) (2-7) (2-.) 

Design Capability (H1, +) .059*** .062*** .063*** .063*** .063*** .063*** .064*** 

Design Capability × TI (H2, +)  -.212** -.207** -.205** -.205** -.205** -.205** -.205** 

Design Capability × TCI (H3, +) -.402 -.398 -.397 -.397 -.397 -.397 -.397 

Design Capability × TM (H2, +) .378*** .387*** .390*** .389*** .389*** .389*** .390*** 

Technology Intensity (TI) -.054 -.056 -.056 -.056 -.056 -.056 -.056 

Technological Competitive Intensity (TCI) -.03 -.031 -.031 -.031 -.031 -.031 -.031 

Technological Maturity (TM) .04 .043 .044* .044 .044 .044 .044 

Firm Size  -.008*** ***.009- -.009*** -.009*** -.009*** -.009*** -.009*** 

Prior Performance (Lag of ROA) -.002** -.002** -.002** -.002** -.002** -.002** -.002** 

R&D Expenditure .000 .000 .000 .000 .000 .000 .000 

Lag of Sale Growth .203*** .174*** .165*** .167*** .167*** .167*** .163*** 

Constant .034 .000 .045 .044 .044 .044 .000 

Firm Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

N 4378 4378 4378 4378 4378 4378 4378 

Number of Groups (i.e., Firms) 539 539 539 539 539 539 539 

Number of Instruments 63 76 88 99 109 118 154 

F-statistic  40,029.88 8,107.13 5,328.06 4,699.04 4,650.86 5,021.11 14,713.88 

Degrees of Freedom 27 27 27 27 27 27 27 

AR(II) test (p value) .735 .597 .556 .57 .569 .566 .549 

Hansen Overid. test (J-statistic) .083 4.494 4.527 4.44 3.96 3.96 3.957 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Table A.7 

Outlier Sensitivity Analysis 

 % Winsorized Obs. 

 .5% 1% 2% 

Design Capability (H1, +) .061*** .064*** .066*** 

Design Capability × TI (H2, +)  -.274** -.297*** -.323*** 

Design Capability × TCI (H3, +) .399* .408* .416* 

Design Capability × TM (H2, +) .423*** .466*** .506*** 

Technology Intensity (TI) -.068* -.069* -.069 

Technological Competitive Intensity (TCI) .119*** .119*** .119*** 

Technological Maturity (TM) .037 .039 .041 

Firm Size  -.008** -.008** -.008** 

Prior Performance (Lag of ROA) -.002** -.002** -.002** 

R&D Expenditure .000 .000 .000 

Lag of Sale Growth .163*** .163*** .163*** 

Constant .000 .000 .000 

Firm Fixed Effect Yes Yes Yes 

Time Fixed Effect Yes Yes Yes 

N 4378 4378 4378 

Number of Groups (i.e., Firms) 539 539 539 

Number of Instruments 154 154 154 

F-statistic  16,094.94 17,100.61 17,168.51 

Degrees of Freedom 27 27 27 

AR(II) test (p value) .549 .548 .546 

Hansen Overid. test (J-statistic) 3.244 3.189 3.085 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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APPENDIX B 

SUPPLEMENT TO CHAPTER 2  
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Table B.1 

Half-Normal assumption on the Distributions of Inefficiency  

 Model 1 Model 2 Model 3 Model 4 

Marketing Capability ×  

Technological Turbulence (H1a, +) 
.627***   .625***   

R&D Capability ×  

Technological Turbulence (H1b, +) 
.017   .025 

Marketing Capability ×  

Technological Uncertainty (H2a, +) 
 .319***  .256***   

R&D Capability ×  

Technological Uncertainty (H2b, +) 
 .009  -.005 

Marketing Capability ×  

Technological Acceleration (H3a, +) 
  .308** .264**    

R&D Capability ×  

Technological Acceleration (H3b, +) 
  .157*** .164***   

Prior Performance (Lag of ROA) .320*** .320*** .320*** .320***   

Marketing Capability  .305*** .313*** .320*** .305***   

R&D Capability .054*** .055*** .056*** .055***   

Operations Capability -.027 -.026 -.025 -.025 

Firm Size .023*** .023*** .023*** .023***   

Market Share -.224*** -.221*** -.212** -.226***   

Competitive Intensity .126* .146** .146** .125*     

Advertising Intensity -.021 -.036 -.031 -.025 

R&D Intensity .468** .493** **.487 .473**    

Technological Turbulence -.053 -.057* -.055* -.054 

Technological Uncertainty .008 .009 .010 .007 

Technological Acceleration -.005 -.007 -.008 -.007 

Constant -.339*** -.359*** -.357*** -.337***   

Firm Fixed Effect Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes 

N 12332 12332 12332 12332 

Number of Firms 2132 2132 2132 2132 

Number of Instruments 219 219 219 227 

Degrees of Freedom 52 52 52 56 

AR(II) test (p value) .256 .251 .275 .253 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Table B.2 

Relaxing the Assumption of Heteroscedasticity in Calculation of Capabilities  

 Model 1 Model 2 Model 3 Model 4 

Marketing Capability ×  

Technological Turbulence (H1a, +) 
.653***   .653***   

R&D Capability ×  

Technological Turbulence (H1b, +) 
.026   .035 

Marketing Capability ×  

Technological Uncertainty (H2a, +) 
 .270***  .230***   

R&D Capability ×  

Technological Uncertainty (H2b, +) 
 .004  -.012 

Marketing Capability ×  

Technological Acceleration (H3a, +) 
  .259** .208*     

R&D Capability ×  

Technological Acceleration (H3b, +) 
  .182*** .195***   

Prior Performance (Lag of ROA) .324*** ***.324 .323*** .324***   

Marketing Capability  .338*** .346*** .353*** .335***   

R&D Capability .064*** .065*** .067*** .064***   

Operations Capability .005 .003 .003 .006 

Firm Size .021*** .021*** .021*** .021***   

Market Share -.198** -.205** -.194** -.201***   

Competitive Intensity .116* .142** .143** .116*     

Advertising Intensity .065 .040 .043 .063 

R&D Intensity .435** .467** .463** .439**    

Technological Turbulence -.054* -.059* -.058* -.055*     

Technological Uncertainty .011 .013 .015 .010 

Technological Acceleration -.004 -.006 -.008 -.007 

Constant -.316*** -.341*** -.341*** -.314***   

Firm Fixed Effect Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes 

N 12333 12333 12333 12333 

Number of Firms 2133 2133 2133 2133 

Number of Instruments 219 219 219 227 

Degrees of Freedom 52 52 52 56 

AR(II) test (p value) .302 .291 .326 .292 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Table B.3 

Accounting for Outliers 

 .5% 1% 2% 

Marketing Capability ×  

Technological Turbulence (H1a, +) 
.672*** .685*** .688***   

R&D Capability ×  

Technological Turbulence (H1b, +) 
.015 .022 .034 

Marketing Capability ×  

Technological Uncertainty (H2a, +) 
.265*** .264*** .251**    

R&D Capability ×  

Technological Uncertainty (H2b, +) 
-.014 -.002 .003 

Marketing Capability ×  

Technological Acceleration (H3a, +) 
.242** .287** .350***   

R&D Capability ×  

Technological Acceleration (H3b, +) 
.205*** .220*** .255***   

Prior Performance (Lag of ROA) .326*** ***.327 .328***   

Marketing Capability  .327*** .324*** .318***   

R&D Capability .058*** .058*** .058***   

Operations Capability .018 .018 .017 

Firm Size .021*** .021*** .021***   

Market Share -.202*** -.201*** -.201***   

Competitive Intensity .115* .112* .111*     

Advertising Intensity .057 .053 .048 

R&D Intensity .449** .449** .443**    

Technological Turbulence -.056* -.058* -.059*     

Technological Uncertainty .009 .01 .011 

Technological Acceleration -.009 -.011 -.013 

Constant -.300*** -.311*** -.292***   

Firm Fixed Effect Yes Yes Yes 

Time Fixed Effect Yes Yes Yes 

N 12333 12333 12333 

Number of Firms 2133 2133 2133 

Number of Instruments 227 227 227 

Degrees of Freedom 55 55 55 

AR(II) test (p value) .292 .318 .361 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 
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Table B.4 

Various Lag Structure Settings 

 (2-2) (2-3) (2-4) (2-5) (2-6) (2-7) (2-.) 

Marketing Capability × Technological Turbulence (H1a, +) .611*** .636*** .641*** .645*** .651*** .654*** .663***   

R&D Capability × Technological Turbulence (H1b, +) .013 .014 .014 .014 .014 .014 .015 

Marketing Capability × Technological Uncertainty (H2a, +) .231*** .241*** .243*** .244*** .246*** .247*** .251***   

R&D Capability × Technological Uncertainty (H2b, +) -.012 -.01 -.01 -.01 -.01 -.01 -.009 

Marketing Capability × Technological Acceleration (H3a, +) .204* .210* .212** .213** .214** .215** .217**    

R&D Capability × Technological Acceleration (H3b, +) .166*** .169*** .170*** .170*** .171*** .171*** .172***   

Prior Performance (Lag of ROA) .365*** .335*** .329*** .324*** .317*** .314*** .302***   

Marketing Capability  .311*** .325*** .328*** .330*** .333*** .335*** .340***   

R&D Capability .055*** .058*** .058*** .059*** .059*** .060*** .061***   

Operations Capability .016 .016 .016 .016 .016 .016 .016 

Firm Size .020*** .021*** .021*** .021*** .021*** .021*** .022***   

Market Share -.198*** -.203*** -.205*** -.205*** -.207*** -.207*** -.209***   

Competitive Intensity .111* .116* .117* .118* .119* .119* .121*     

Advertising Intensity .059 .058 .057 .057 .057 .057 .056 

R&D Intensity .422** .440** .444** .446** .451** .453** .460**    

Technological Turbulence -.053* -.055* -.055* -.056* -.056* -.056* -.057*     

Technological Uncertainty .010 .01 .01 .01 .01 .01 .01 

Technological Acceleration -.006 -.006 -.006 -.006 -.006 -.006 -.007 

Constant -.285*** -.298*** -.301*** -.303*** -.321*** -.308*** -.328***   

Firm Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

Time Fixed Effect Yes Yes Yes Yes Yes Yes Yes 

N 12333 12333 12333 12333 12333 12333 12333 

Number of Firms 2133 2133 2133 2133 2133 2133 2133 

Number of Instruments 134 166 197 227 256 284 658 

Degrees of Freedom 55 55 55 55 55 55 55 

AR(II) test (p value) .366 .313 .298 .289 .273 .266 .244 

*** significant at p < .01; ** significant at p < .05; * significant at p < .1 

 


