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ABSTRACT

The burden of adaptation has been a major limiting factor in the adoption rates

of new wearable assistive technologies. This burden has created a necessity for the

exploration and combination of two key concepts in the development of upcoming

wearables: anticipation and invisibility. The combination of these two topics has

created the field of Anticipatory and Invisible Interfaces (AII)

In this dissertation, a novel framework is introduced for the development of an-

ticipatory devices that augment the proprioceptive system in individuals with neu-

rodegenerative disorders in a seamless way that scaffolds off of existing cognitive

feedback models. The framework suggests three main categories of consideration in

the development of devices which are anticipatory and invisible:

• Idiosyncratic Design: How do can a design encapsulate the unique characteris-

tics of the individual in the design of assistive aids?

• Adaptation to Intrapersonal Variations: As individuals progress through the

various stages of a disability/neurological disorder, how can the technology

adapt thresholds for feedback over time to address these shifts in ability?

• Context Aware Invisibility: How can the mechanisms of interaction be modified

in order to reduce cognitive load?

The concepts proposed in this framework can be generalized to a broad range

of domains; however, there are two primary applications for this work: rehabili-

tation and assistive aids. In preliminary studies, the framework is applied in the

areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-

compliance during rehabilitative exercise.
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Chapter 1

INTRODUCTION

As the baby-boomer generation ages into the geriatric population, the adoption of

assistive technology grows with it at an alarming rate. With each passing day, new

wearable devices are deployed which explore applications in all aspects of life ranging

from entertainment to health. Healthcare has specifically become a focal point in this

progression due to growing demand. The last five years alone have given rise to a

broad suite of exercise bands (Nike Fuel Band, Fitbit, JawBone, etc.), smart watches

(Pebble, Apple Watch, Galaxy Gear), and mobile health apps. These technologies

offer access to information that was previously unavailable and provide platforms for

a plethora of new assistive devices and services through remote monitoring. However,

one of the main barriers of entry for these devices is the burden of adaptation. Every

time a new device is released, it brings with it a new interface and an entirely new set

of interactions to which the user is forced to adapt in order to be able to adequately

use the technology.

This burden has created a necessity for the exploration and combination of two

key concepts in the development of upcoming wearables: anticipation and invisibility.

Anticipation of user needs shifts the paradigm of interaction with these devices to

allow the device to predict and respond to user behaviors through contextual infor-

mation. Invisibility will allow users to utilize these devices in day-to-day activities

without the device impeding their primary task or objective. The combination of

these two topics has created the field of Anticipatory and Invisible Interfaces (AII).
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1.1 Problem Statement

This dissertation explores the concept of AII for assistive devices through the

lens of neurodegenerative disorders. The fundamental contribution of this research is

to propose a framework and considerations that guide the development of devices to

augment an individual’s proprioceptive system in a way that seamlessly integrates into

their own perception of self. This framework looks to shift the burden of adaptation

from the user to the device. Systems designed under this framework anticipate an

individual’s needs based on current context and adopt a person-centric approach by

adapting to the user based upon their personal characteristics. The interface for

the device is abstracted from the user and considers internal and external context

as an implicit input paradigm rather than the traditional approach of using explicit

interaction. Thus, the interaction is able to take place without the attention of the

user and the technology can cater to the human seamlessly. Ideally, this will open

the doors to adoption for a new generation of person-centric assistive devices.

1.2 Previously Published Work

The contents of Chapter 5 include previously published work, SmartGym: An

Anticipatory System to Detect Body Compliance During Rehabilitative Exercise by

Tadayon et al. (2017). The contents of Chapter 6 include two previously published

articles, A shoe mounted system for parkinsonian gait detection and real-time feedback

by Tadayon et al. (2015a) and Utilizing Neural Networks to Predict Freezing of Gait in

Parkinson’s Patients by Zia et al. (2016). The contents of Chapter 6 also include work

that is currently in review, HaptiCadence: A System for Continuous and Discrete

Vibrotactile Feedback to Promote Steady Gait in Parkinson’s Patients.

2



Chapter 2

DEFINITIONS

2.1 Anticipatory Interfaces

With the rise of mobile devices comes a greater ability to infer about a user’s

location, activity, and social setting than ever before. As these devices continue to

advance with new sensors, a shift may occur from inference to prediction of context

that will, in parallel, open the door for anticipation within computing applications.

Robert Rosen defines an anticipatory system as one that “contains an internal, predic-

tive model of itself and its environment, which allows it to change state at an instant

in accord with the model’s predictions pertaining to a later instant” (Rosen, 2012).

Although the principle of anticipation has been known, most existing approaches on

the interaction-cycle for assistive devices have been “laissez-faire”. In simple terms, a

device will wait for explicit interaction from the user before it processes and provides

an output.

In discussing applications, it is important to first differentiate prediction from an-

ticipation since the two are often incorrectly used interchangeably. Predictive appli-

cations are those that simply build predictions of the user’s current or future context.

Anticipation is set in the domain of action that is based on the predictions of future

context in order to impact the future to the benefit of the user. Applications in the

field of anticipatory computing rely on two key steps prior to the ability to anticipate.

These are to sense the surrounding context and then create a predictive model of this

context. Once the predictive model has been created, the system then uses this for

anticipation of a user’s future needs (Pejovic and Musolesi, 2015).

3



2.2 Invisible Interfaces

One of the crucial factors affecting the future expansion of anticipatory devices

is their ease of use. Many current approaches to the development of devices have

embedded the interface for the applications into the existing interface of the mobile

phone or other technology in order to create a non-obtrusive feedback loop. Pantic

et al. take this one step further and state that the key to anticipatory interfaces is

“ease of use” and the ability to “unobtrusively sense certain behavioral cues of the

users and to adapt automatically to his or her typical behavioral patterns and the

context in which he or she acts” (Pantic et al., 2007).

It is this ability to unobtrusively sense behavior cues and to use those as inputs for

technology that is deemed an invisible interface in this work. Future endeavors seek to

abstract the traditional methods of explicit human-computer interaction away from

the user and instead use both internal and external context as the primary inputs for

the technology. This promotes the principles of ubiquitous computing and transforms

the technology into an extension of the person.

Although most applications in mobile computing still maintain the need for inter-

action with a physical interface, there has been a major effort towards the development

of context-aware applications. These systems are generally split into two major sub-

categories: external context (physical) and internal context (logical). Context is any

information that can be used to characterize the situation of an entity where an entity

is a person, place, or object that is considered relevant to the interaction between a

user and an application, including location, time, activities, and the preferences of

each entity (Hong et al., 2009).These systems face many challenges including deter-

mining relevant information, dealing with uncertainty, and privacy (Baldauf et al.,

2007).

4



2.3 Body Compliance

Body compliance is a field of research pertaining to the study of the proprioceptive

system and how an individual’s body responds to what the brain is willing it to

do. While this field is traditionally explored within the domain of prosthetics where

the brain is willing a technology to respond (Rossi et al., 2019; Clites et al., 2018),

research is also being done in the application of similar principles to the domain of

neurodegenerative disorders where many of the neural pathways of motion often get

interrupted in a similar fashion (Dursun Erbil et al., 1996). In this context, the devices

look to augment an individual’s sense of self and provide an extension to a person’s

natural ability to determine potentially dangerous body positions. This could mean

things such as being off balance, putting too much pressure on a single joint, or

walking in a manner in which you may trip and fall. Because this is traditionally

such an autonomous process, this area also comes with the additional necessity of

minimizing cognitive load in the delivery of feedback.

5



Chapter 3

RELATED WORK

3.1 Anticipatory Interfaces

Since the concept of anticipation in mobile computing is quite novel, few appli-

cations exist that are truly anticipatory. The majority of the work in this area has

utilized robotics. Within robotics, the principle of anticipation has been on the fore-

front in navigation (Gorbenko and Popov, 2012), perception (Hoffmann, 2007), and

human movement characterization (Rett and Dias, 2007). Similarly, authors have

explored applications in gaming through eye-tracking to predict a player’s actions

(Koesling et al., 2011). These early systems have helped to show the applicability

and usefulness of anticipation, but are restricted in context.

Within the mobile domain, recent literature focuses on the predictive applications

of internal and external context. One example of an application that explores the

usefulness of mobile phones in determining external context is SoundSense (Lu et al.,

2009). This project explored the use of the microphone to determine characteristics

such as activity, location, and social events. The authors proposed a scalable frame-

work for modeling sound events and were able to classify four different activities:

walking, driving a car, riding an elevator, or riding a bus (the precision on riding a

bus was much lower with respect to the others). Similarly, a project that explored

internal context, called EmotionSense, was designed to infer a user’s emotional state

from microphone data (Rachuri et al., 2010).

Furthermore, one of the other major research efforts on the classification of hu-

man behavior and extrapolation of context through mobile phones is Darwin Phones

6



(Miluzzo et al., 2010). The authors developed an initial framework in the mobile

domain that is able to automate the updating of models over time, pool models that

have been created and evolved within other mobile devices, and combine classifica-

tion results from multiple mobile phones. This methodology is a step above many

approaches in literature that rely on the local sensing abilities of a single mobile device

rather than crowd-sourcing the classification.

A host of other applications exist within the mobile domain which look at context

prediction; many literature surveys cover these in detail. Instead, the focus of this

work lies specifically in the next step beyond prediction: anticipation, a concept

largely left unexplored within the realm of this research.

Pejovic & Musolesi have proposed the potential for applications of anticipatory

computing within the emerging field of digital behavior change interventions in mo-

bile environments (Pejovic and Musolesi, 2015). The authors have referenced UbiFit

(Consolvo et al., 2008) and BeWell (Lane et al., 2011) as two applications that have

taken very rudimentary steps towards the inclusion of anticipation in mobile appli-

cations as well as provided potential architectures for applications in this domain

(Pejovic and Musolesi, 2015). UbiFit is a personal health application that was de-

signed to monitor the weekly activity and provide subtle feedback when the user is

lacking in this activity. The system predicts negative longterm health implications

by monitoring daily activity levels. For feedback, the app displays a virtual garden

which thrives if the user is meeting activity goals and remains barren if the user has

remained inactive for too long. BeWell is a mobile application that monitors a user’s

health along three dimensions: sleep, physical activity and social interaction. This

application used movement and ambient noise during sleep to predict sleep duration

and quality. Much like UbiFit, this application provides intelligent feedback to the

user to promote better health through an ambient display of an aquatic background

7



which becomes more active as its user makes healthier decisions.

3.2 Invisible Interfaces

The literature in this domain is quite developed and uses context as an input

in a variety of different ways. A unique approach that has been taken looks to

combine the influences of internal and external user context to proactively determine

recommendations (Liu, 2014). The system builds a context history and a profile for

the user in each of these contexts in order to accurately be able to predict the user’s

needs simply based on past behavior.

Fenza et al. explore the usefulness of internal context in the healthcare domain

by using a network of wearable sensors to determine the individual’s current state of

health and provide personalized services based on that. The authors use Fuzzy Logic

to automatically characterize context and find healthcare services that approximately

meet this context (Fenza et al., 2011).

Muñoz et al. explore the development of a context aware messaging system in a

hospital environment (Muñoz et al., 2003). Users (doctors, nurses, physicians, etc.)

are given mobile devices to write messages to each other that are only sent when a

specified context is encountered. For instance, a nurse could leave a message for the

next doctor entering a given room. The system automates the delivery based upon

sensed context across many devices. However, this system doesn’t fully embrace the

concept of an invisible interface since the main method of interaction is still a physical

one from the user rather than an automated interaction solely based on context.

3.3 Remaining Challenges

The existing bodies of work in the areas of anticipatory and invisible interfaces

have already addressed many challenges related to the development of assistive aids,
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however there exist several shortcomings that have not yet been addressed due to the

limited contexts in which these devices have been explored. Most work in this field has

used standard study design approaches to solve problems with anticipatory/invisible

interfaces. In doing so, they treat users as a relatively homogeneous entity where a

single user is just a “part of the whole” and the focus is on solving the “function”

(for example, raising awareness of an oncoming freezing-of-gait episode) rather than

accounting for the individual’s specific problem with that function. Therefore, these

approaches have not sufficiently addressed the following challenges:

1. In the realm of disability, every individual is a unique case. How can a device

account for these idiosyncrasies between various individuals in the design of

anticipatory and invisible solutions?

2. As individuals progress through the various stages of a disability/neurological

disorder, their proprioceptive capabilities, motor ability and reactive capacities

change in time. How can an anticipatory/invisible device account for this change

in its model of an individual and/or how is this reflected in its design?

3. How can the proprioceptive system be augmented in a seamless way without

detracting from the subject’s primary motor task?

9



Chapter 4

PROPOSED FRAMEWORK

In this dissertation, a framework is proposed to address the limitations of existing

approaches in the field of anticipatory and invisible interfaces. There are three critical

principles in the design of AII, within the context of assistive devices, that need to be

considered: idiosyncratic design, adaptation to intrapersonal variation, and context

aware invisibility. The proposed framework guides the development of functional

devices through the lens of these principles as a holistic approach to the production

of real-world assistive technologies. This research looks to address limitations in

existing approaches and create a set of generalizable criteria for the design of systems

that augment the proprioceptive system and provide additional feedback protocols to

an individual’s sense of body compliance in various contexts.

4.1 Idiosyncratic Design

One of the biggest limiting factors in most prior approaches is that the concept of

interpersonal variation often gets lost in the mix of population grouping. Therefore,

subjects are treated as groups and experiments are designed around observing shifts

between and within these groups rather than within the individual. This methodol-

ogy in study design has also translated into the approaches taken in systems design

as well. Traditionally, Randomized Clinical Trials (RCT) with large populations and

randomization on subject selection and group assignment have been argued as the

standard for scientific study design (Sackett et al., 1996). However, in contexts such

as Freezing of Gait with Parkinson’s Disease, where we don’t have a concrete un-

derstanding of the underlying basis and only a rudimentary understanding of the
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Figure 4.1: Considerations for Idiosyncratic Design

pathophysiology (Lewis and Barker, 2009; Diamond and Jankovic, 2006), it is critical

to consider a multi-baseline approach as interpersonal variation can be substantial.

In this style of approach, the subject’s performance is compared against their own

abilities and progression which necessitates that the system builds a baseline and

a person-centric intervention method for which to compare pre and post measures

(Barnett et al., 2012; Graham et al., 2012). This means that the subject serves as

their own “control” within the study and progression/outcomes are measured against

their baseline. Thus, in an idiosyncratic approach, it is important that the study and

device design consider the following questions (Fig 4.1):

1. What is the context of assessment for an individual? Where do idiosyncrasies

occur within an individual?

2. How does the system form an internal model for an individual? What are we

tracking that relates to the individual’s idiosyncrasies?

3. What are the person-centric thresholds of compliance?
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4.1.1 Standardization of Assessment

In the design of assistive technologies with AII that take idiosyncrasies into ac-

count, we must consider the characteristics of the individual that distinguish the

nature of their range of ability and ailment from others with similar conditions. The

appropriate characteristics to consider are determined by their relevance to the task

that the user is trying to perform through the use of the assistive device. As an

example, unique features associated with an individual’s angular range of joint mo-

tion would be important to consider within an application that is looking to augment

rehabilitative exercise programs for individuals with limited motor control. This char-

acterization of an individual becomes the building block for a standard of comparison

to denote progress over time and is a critical step in the “sensing of the context”

portion of the anticipation loop.

A standardized assessment is applied to all the individuals uniformly, and there-

fore the assessment itself is not necessarily person-centric. That is, the assessment or

metric is not uniquely designed for each individual. However, in order for a machine

to learn what distinguishes one individual from another, it must use some common

context by which to compare and contrast them. In other words, the varying per-

formances of individuals under a standardized assessment serve as the basis for their

idiosyncrasies. If a user scores very highly on a range of motion assessment, that indi-

vidual is considered to have a very healthy range of motion, so a system expects large

and flexible motions to be the norm for that individual compared to another who

scores very poorly. The underlying mechanisms of musculoskeletal function in these

individuals are understood at a very basic level by this system through quantitative

evaluation of their assessment outcomes.

Clinical practice in rehabilitation, for example, might use the Parkinson’s disease
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Activities of Daily Living Scale (PADLS) (Hobson et al., 2001) to determine motor

function or the Berg Balance Test (Bogle Thorbahn and Newton, 1996; Qutubud-

din et al., 2005) to determine fall risk within the Parkinsonian population. Other

examples of clinical assessments to encapsulate idiosyncrasies are show in Table 4.1.

Medical experts often rely on these baseline assessment metrics to diagnose and create

individually-tailored programs for each patient. As such, an AII device can benefit

from this approach in a similar manner by having a metric of comparison.

Context Assessment Description

Parkinsonian

Disease Stage

Modified Hoehn

and Yahr Stag-

ing (Hoehn,

1997)

Used to describe the motor symp-

tom progression in 8 different

stages

Clinical Spas-

ticity in Cere-

bral Palsy

Ashworth Scale

(Charalambous,

2014)

Muscle tone assessment by scor-

ing the resistance encountered in a

specific muscle group by passively

moving a limb through its ROM on

a 5-point scoring scale

Balance and

Mobility

Timed Up and

Go (TUG)

(Salarian et al.,

2010)

TUG includes several complex

subcomponents, namely: sit-to-

stand, gait, 180 degree turn, and

turn-to-sit; the only outcome is the

total time to perform the task.

Table 4.1: Examples of Standardized Assessments in Clinical Practice
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4.1.2 Motion Blueprint

Once a standardized method of measurement has been established, it is important

to create a model to digitally encapsulate the individual. In the context of assistive

devices for augmentation of the proprioceptive system, this model is deemed the

“motion blueprint” as it gives the device a snapshot of the user’s current body context.

Over time, the motion blueprint becomes a temporal series of snapshots which allow

the system to then make inferences on future context based on the current and past.

This is a critical step in the “prediction of the future context” of the anticipation

process.

Figure 4.2: A Simple Example of a Motion Blueprint

This blueprint can be distinguished from the standardized assessment above in

that it is a method used by an AII to determine the changes that occur in an individual

14



over time, or in other words, intra-personal variation, as opposed to the standardized

assessment which determines the difference between that individual and others under

the same context, or inter-personal variation. In the previous case, a system would

determine, for example, an individual’s risk level for Parkinsonian Gait, using some

kind of metric or assessment that involves their motion (ex: H & Y Stage, UPDRS).

Now, the system needs to take a closer look into the individual and determine in what

contexts he or she is walking, whether it be at home or in public spaces, and what

other attributes of that individual characterize the type of sensing that can occur.

Based on this information, we can then determine what type of features characterize

the individual’s motion in real-time. The set of these features comprises a blueprint

for that individual’s motion. In some cases, noncompliance characterizes itself in a

similar manner between most or all individuals. For example in FoG, festinating gait

is a commonly recognized precursor of the episode. This clues us in on the usage

of ankle/heel/etc. data as good features to form blueprints for most individuals.

However, perhaps one individual has a very pronounced knee movement in his or her

normal gait which is notably affected when shuffling occurs. This unique attribute can

be captures in a highly effective standardized assessment strategy as denoted above,

and then incorporated into the feature set that forms that individual’s blueprint, as

it is an idiosyncrasy of that individual’s motion.

For example, as shown in figure 4.2, a motion blueprint for a delivery driver could

be rotational angle of the steering wheel, to see how sharply and safely the driver

executes turns, the acceleration and speed of the car, and, in that individual’s case

since he is prone to late night driving, the back posture, since the driver tends to lean

into the steering wheel when falling asleep. The standardized assessment could be a

driving course or map, because it provides a standard context to determine how each

driver behaves in the same environment.

15



4.1.3 Person-Centric Compliance Threshold

After the system understands the context by which individuals differ (standardized

assessment) and characterizes the changes that can occur in an individual (motion

blueprint), the system must then determine at what precise point those changes cause

an individual to become noncompliant (compliance threshold). This progression of

metrics moves the AII system from identifying to monitoring to anticipating the

individual.

Figure 4.3: A Simple Example of a Compliance Threshold

The last step within the anticipatory loop is the “feedback and delivery” portion

which looks to provide a signal to disrupt the future context of an individual if the

system deems that it is a dangerous one. An important consideration in the delivery

of feedback is the understanding of what performance thresholds exist within the

limitations of the individual’s spectrum of ability. These thresholds become person-

centric determinations of compliant versus non-compliant states for the individual

and determine when feedback should be delivered.

As an example, one of the main considerations in the prescription of standard
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exercise programs by trainers is an individuals fitness threshold as measured by their

resting heart rate. People of varying levels of fitness, weight, BMI, etc. cause them

to have different basal heart rates and thus different levels of tolerance for strenuous

activity. Knowing that, a system can then determine their target heart rate and un-

safe heart rate threshold as an upper bound as shown in figure 4.3. A AII treadmill

device can anticipate that an individual will have a heart attack or other compli-

cation based on this information and intervene when the heartbeat for that specific

individual (based on his or her blueprint and assessed fitness) surpasses the threshold

of compliance.

4.2 Adaptation to Intrapersonal Variations

As individuals progress through the various stages of a disability/neurological

disorder, their proprioceptive capabilities, motor ability and reactive capacities change

in time. These changes can either be improvements through continued use of AT or

could be a degradation due to the disorder. Thus, it is important that the thresholds

for feedback discussed in the above section also adapt over time to address these shifts

in ability. In considering the principle of adaptation, it is important to answer the

following questions:

1. What specific parts of the system need to be adapted?

2. How do we know when the thresholds need to be changed?

3. To what degree and how often are the values adapted?

4.2.1 Characteristics of Adaptation

There are two main points of adaptation that can occur within the system in order

to shift the burden of adaptation from the user to the device. Those two things are:
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adaptation of threshold and adaptation of feedback.

Adaptation of Threshold As an individual fluctuates in their degree of body

compliance over time, it is critical that the system adapts the thresholds for which

they are considered compliant to match this change in ability. The system should

maintain an optimal compliance target in order to maintain engagement and to elim-

inate frustrations associated with unrealistic or undemanding goals. Similarly, static

thresholds can result in injury do to impaired ability as a result of fatigue or other

internal factors associated with degraded motor performance. A user straining to hit

an unrealistic threshold based on their current internal context given slower muscle

response time and/or limited range of motion.

As an example, in the case of a bilateral jumping exercise for muscle rehabilitation,

an individual may get tired after a number of repetitions and no longer be able to hit

the target jump-height threshold. The system should, either through internal sensing

or external intervention, relax the goal threshold over time or make recommendations

on taking a break. In the external intervention approach, this could be a trainer

pausing the system and instructing the individual to rest or adjusting the goals for

the next set of repetitions manually.

Adaptation of Feedback As an individual gets more experience using an AII,

the goal is that they adapt to the feedback quite well. However, if feedback is never

adjusted over time, this can create a dependency on feedback which can cause re-

lapses in motor performance with the absence of the device. Thus, the frequency

of feedback could be faded over time to address this issue of dependency and pro-

mote the reconstruction of the body’s natural systems for sensation of compliance

and proprioception.
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As an example, in the case of providing feedback for the correction of gait, a

starting point might be providing feedback on every step that the user takes. As the

user adapts to this feedback over time, feedback might fade to only providing signals

on every other step or every third step. Once this level of adaptation is achieved, the

system might switch to only providing feedback on incongruent steps after an anomaly

is detected. This progression gradually softens the dependency curve. However, this

approach may not always be feasible in instances where the individual’s proprioceptive

systems cannot be rebuilt and require longterm augmentation.

4.2.2 Triggers of Adaptation

As mentioned in section 4.2.1, baseline thresholds of compliance can either be

determined in a “supervised” context where an expert can provide measures through

observation or they can be determined in an “unsupervised” context where the system

has a training period to gather baseline conditions from the user himself/herself.

Once the system has a baseline, the upper and lower limits for compliance should

be updated over time based on user performance. A continued pattern of errors

could result in a relaxation of boundary values and a pattern of repetitive successful

actions could result in a tapering of boundaries. Tadayon discusses an example of

this model of adaptive feedback thresholds within the application of serious games

for rehabilitation (Tadayon, 2017) and outlines two applicable approaches: cluster

analysis and bayesian networks.

4.2.2.1 Cluster Analysis

This technique uses a set of features (such as those developed in the motion

blueprint) to classify subjects with similar motor capabilities or performance, or to

classify the behavior of a single subject based solely on their own performance. This
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allows the approach to be used as an adaptation technique for both inter and intraper-

sonal variations. The system determines over time what ”categories of performance”

an individual can fall into by creating up to K classifications and then collecting per-

formance data for that individual over time to train itself. This approach requires

time for the system to learn about the individual and can become stronger and more

fine-tuned the more data the system gets over time.

For the intrapersonal scenario, each performance of a task (ex. a step taken

or a repetition of a motion of exercise) is considered against the set of historical

performance data points. Using a pre-defined set of rules, the system will categorize

the new point within an existing cluster of data. A rudimentary approach could

simply look to classify as compliant or non-compliant based on the various parameters

of the data point. A more complex approach could further sub-classify non-compliant

points based on suspected cause. For example, threshold relaxation should occur only

temporarily for non-compliance due to fatigue versus cognitive load.

In the interperonsal scenario, this approach looks to classify an individual with

others who have similar characteristics or progression/regression patterns over time.

This is a common prediction technique in domains such as online shopping where

user behavior can be easier compared to others in a similar cohort. As an example, if

two users buy 3 products and have the similar reviews of those products, when User

A purchases product 4 and rates it well, we know that we can recommend it to User

B based on their history and patterns of behavior. The biggest challenge is that in

domains that are less binary, such as motion performance, the selection of the clus-

tering criteria becomes much more nuanced. Because of the idiosyncrasies associated

with motion, the assumption that interpersonal variations can be generalized over

time relies on there being an immense and well distributed dataset in order to find

accurate segments. However, assuming a representative dataset, principles of domain
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adaptation and transfer learning could be effectively applied.

4.2.2.2 Bayesian Networks

In this approach, the system maintains a qualified belief about the user’s cur-

rent state of progress which is adapted in real time based on current performance

trends. Bayesian Networks (Pearl, 1988) and more specifically Dynamic Bayesian

Networks (Reye, 2004), a form of Bayesian Network tailored for real time analysis,

can be excellent models for adaptation. As an example, Pirovano et al. utilize a

simple approximation of performance as a “hit ratio”, relating the number of suc-

cessful attempts at a motion to the total number of attempts (Pirovano et al., 2012).

The authors take a naive approach in assigning a preliminary target ratio based on

previous performance or expert opinion. Performance is then monitored on a “per-

attempt” basis (in the example of Parkinsonian gait, this could be per step) based on

a comparison of the targets current hit ratio and the target ratio. If the current hit

ratio is below the target then criteria around compliance can be loosened while the

opposite occurs if the hit ratio is above the target.

4.2.3 Windows of Adaptation

After first identifying what should be adapted (section 4.2.1) and when it should

be adapted (section 4.2.2), the AII should then consider how threshold or feedback

should be adapted. Regardless of if the threshold or feedback are being manipulated,

considerations must be made as to if the shift should exist within the spatial and/or

temporal domain. Within the spatial domain, the system considers how big of a step

up or down should be taken. Within the temporal domain, a shift in frequency is

taken into account. In the hit-ratio detection approach outlined in section 4.2.2.2,

the system should default to making shifts in small increments to the frequency of
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feedback delivered. The windows for frequency are determined by iterations which

are encompassed in the motion blueprint outlined in section 4.1.2. Once the system

determines what comprises one full iteration, it can then create a window that is first

very frequent (once per iteration) and can relax over time when it determines that

the individual’s performance has become relatively consistent. If, after frequency

adjustment, the ratio still does not reach a desired positive outcome, bigger shifts

should be considered. Adaptation of feedback should always be considered before

adaptation of threshold as it has smaller longterm consequences (increased device

reliance versus compliance performance degradation).

As an example, in the case on adaptation for Freezing of Gait, if the system

continuously detects degraded performance over time it may eventually classify the

individual as a higher risk category on the FoG scale. At the point, if the AII was

providing feedback only on steps where non-compliance was predicted, the system

might change the frequency of feedback towards a more consistent method of feedback

on some compliant steps as well as all those predicted to be non-compliant. It this

still doesn’t achieve the desired hit-ratio, the system might again adapt frequency to

provide feedback on every step. Given that providing feedback on every step is the

upper limit on our ability to increase frequency, if positive change is still not detected,

the system should then determine the degree to which target gait parameters (target

cadence, target step length) should be loosened.

4.3 Context Aware Invisibility

There are two main considerations in creating a device that are contextually in-

visible:

1. The data collection/input mechanism of the device should blend into the user’s

existing day-to-day activities.
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2. The feedback delivery of the device should scaffold off of existing cognitive

models and not introduce additional cognitive load.

4.3.1 Invisible Interface

Traditional devices require that the individual explicitly interacts with some sort of

visible interface or physical buttons. The concept of invisibility looks to abstract the

interface away from the user and use the individual’s movement, body characteristics

and internal context as an implicit form of interaction. This means that the user

is, in effect, constantly interacting with the device through his or her activities of

daily living. As an example, in the scenario of body compliance during rehabilitative

exercise, an individual simply using the exercise equipment becomes the input for the

technology.

As technology becomes more ubiquitous, the ability to seamlessly embed devices

into day-to-day environments becomes easier. In order for a device to be contextually

invisible, the design must first consider what elements within the environment are

static and thus applicable as hosts for which the technology may be embedded. In

scenarios where the external environment is changing, the subject’s clothing or body

can be considered as the static anchors for the system. The context of environment

becomes the determinant of a wearable or embeddable approach.

4.3.2 Invisible Feedback

The concept of context aware invisibility relies on the device’s ability to fade

feedback into a subconscious process and not detract from primary motor tasks such

as walking or exercising. This means that feedback needs to be designed in a way

that does not introduce a secondary cognitive task on the user, but instead, almost

becomes an extension of their own proprioceptive system.
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Figure 4.4: Nigay and Coutaz (1993) Classification Model for Multimodal Feedback
Systems

Since human interaction is multimodal by nature (Bunt et al., 1998), AII’s must

consider the integration of feedback modalities in trying to scaffold off of existing cog-

nitive models. Much prior work in the realm of HCI has been interested in suggesting

strategies for weaving different mediums of feedback across multiple application do-

mains (Johnston et al., 1997; Wu et al., 1999; Chai et al., 2004; Mendonça et al.,

2009; Song et al., 2012). Nigay and Coutaz (1993) present a classification model of

multimodal systems (figure 4.4) which support two salient properties: concurrency of

processing and data fusion. The concurrency of processing dimension primarily cov-

ers the absence or presence of parallelism in the presentation of feedback cues across

multiple modalities. An example would be providing auditory and visual cues at the

same time. The dimension of fusion looks at the combination of different types of

data. The union of the axis “Fusion” and “Use of modalities” result in four categories

of systems: “Exclusive”, “Alternate”, “Concurrent”, and “Synergistic”.
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Alternate In this approach, multimodal feedback, where the different modalities

represent the same type of information, is delivered sequentially. This means that in-

formation related to a single task can be first provided through auditory, then through

haptic and finally through visual in a progressive manner. Given the variation in de-

grees of freedom and perceptual bandwidth, the different modalities can vary with

respect to the granularity of the feedback that they are providing. In the rehabilita-

tive exercise example, a device could first play an auditory tone to inform the user

that they are off balance and allow the user to attempt to correct their posture. If

they do not respond well after a certain amount of time, it may switch to providing

haptic guidance to inform the user of which direction they need to shift their body. If

they are still not centered, the system can provide visual information to show exactly

what part of their body is misaligned. Given that all modalities are focused on a

specific type of information, the system loses the ability to provide feedback across

the multiple dimensions necessary for body compliance.

Synergistic In this approach, cues across multiple modalities are presented to-

gether and are all uniformly assigned to the same type of information or task. This

means that the system determines a single type of motor adjust to focus on at one

time and uses any combination of feedback modalities to inform the user. As an

example, in the Parkinsonian gait application, this could look like the combination

of rhythmic auditory stimulation with haptic patterns to provide feedback on step

cadence and gait rhythm. This approach works well in scenarios where there is a

single point of focus for the user at any given time such as simple motions since the

device is focusing all attention on an individual piece of information. However, for

more complex and dynamic tasks, the device is determining a prioritization scheme

and may have to forgo the delivery of other relevant critical information.
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Exclusive The exclusive feedback category of systems refers to those which se-

quentially deliver multimodal feedback cues with each modality being associated to

a different type of information or task. This is achieved by segmenting the differ-

ent classifications of feedback and assigning each to its own modality and presenting

those consecutively as an individual progresses through a movement. This allows the

individual to focus on a single piece of feedback at a time and also categorize feed-

back modalities to create associations with intended behaviors. However, given that

the feedback modalities are presented sequentially, this can have significant impact

if there are two different pieces of information that need to be delivered to the user

simultaneously. It, in essence, creates a race condition where certain feedback types

need to be inherently prioritized over others. In considering body compliance during

rehabilitative exercise, this could mean that we are prioritizing feedback related to

safety and injury over cues related to progression.

Concurrent This approach differs from the exclusive approach in that it looks to

provide feedback across multiple modalities in parallel cues. The feedback cues are

not combined and maintain that each modality provides a disjoint type of information

to the user. In the Parkinsonian gait application, this could be implemented by using

auditory feedback to provide information relative to postural stoop while also using

haptic feedback to provide step length and cadence information. This approach allows

for all relevant information to be simultaneously presented and relies on the individual

to be able to effectively compartmentalize the different cues being delivered. The user

is also put under additional cognitive load as they are undergoing a constant exercise

in prioritization of feedback response. This may mean that their personal preferences

for getting feedback in one modality over another will result in their prioritization of

response to that information.
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Chapter 5

BODY COMPLIANCE DURING REHABILITATIVE EXERCISE

5.1 Introduction

Training and exercise programs, under the guidance of skilled therapists and train-

ers, have become important tools during the rehabilitation process for individuals who

exhibit issues with proprioception. In the past, these programs have been impossible

to adequately implement in an at home environment due to the need for a trainer to

observe and provide realtime feedback on body compliance during the performance

of the motions required for exercise. Non-compliance caused by impaired propri-

oception can result in serious injuries and counteract the intended benefits of the

exercise programs which, if left uncorrected, can significantly slow motor learning

as a consequence. New research is actively seeking new automated methods for the

detection and intervention of non-compliance in unsupervised environments. Within

the realm of non-compliance detection and prevention, there are two main challenges

that together comprise the bulk of the scope of work:

• Anticipation: how does a system anticipate the occurrence of non-compliance?

• Intervention: how does a system intervene to correct the behavior of the

individual to prevent prolonged non-compliance?

In this application, an anticipatory system is introduced to detect and intervene

before non-compliance or compensation occurs (Tadayon et al., 2017). The applica-

tion of anticipation, rather than detection, in this space is especially important given
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the subsequent risk of injury to the individual that increases for any time spent in

a non-compliant state. Although detection has been adequately explored in prior

work, this level of forethought and prediction has been lacking. Once risk of injury

is adequately detected, the system provides multimodal feedback through auditory,

visual and haptic cues to correct the harmful behavior before it results in injury.

The feedback protocols have been mapped to the same modality of feedback that the

trainer would give which was dependent on the context or type of issue.

The initial application area of rehabilitative exercise for individuals with cerebral

palsy is used to provide a context to demonstrate the effectiveness of the system in

anticipating and correcting body position. Although cerebral palsy is not neurode-

generative in nature, because the symptoms have ”varying severity and complexity”

across the lifespan of an individual, it is still considered within the domain. In this

application, the SmartGym, an intelligent Total Gym Pro that monitors an individ-

ual’s performance and provides feedback through haptic, auditory and visual cues is

proposed. Prior work shows the need for an effective tool for anticipation, rather than

detection, of potentially dangerous body states, which is explored in the design of the

SmartGym. An overview of the implementation of anticipation is given with details

and justifications for design decisions in the feedback that the system provides. The

prototype is evaluated for both usability and effectiveness in a case study involving

an adult with cerebral palsy who has developed a hemiparetic lower extremity and

her physical trainer. The system is deployed within the subject’s regularly scheduled

training and presents feedback to test the effectiveness of replicating the trainer’s

feedback.

The proposed approach has two main objectives:

1. Anticipate when a user is going to become non-compliant before injury occurs
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Figure 5.1: System Design for the SmartGym (Tadayon et al., 2017).

2. Provide multimodal feedback to an individual so that they can correct their

body in real-time

To achieve the goal of anticipation, the system breaks down the problem of non-

compliance by looking at sensing events that occur before risk of injury. In determin-

ing the risk of an accidental fall from the Total Gym machine, the system considers

center of balance and postural stability as both of these are key attributes that worsen

gradually throughout the individual’s exercise routine. These attributes worsen due

to lack of attention to proper form and are often exaggerated due to fatigue. In calcu-

lating center of balance, the SmartGym measures pressure placed by each foot against

the landing plate of the Total Gym Pro and warns the user when compensation oc-

curring between the affected limb and unaffected limb is sensed. Compensation can

lead to early fatigue and can also lead to the individual being imbalanced before the

start of a movement leading to injury during landing. Secondly, the system considers
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postural stability by looking at body alignment and warning the user if he or she is

leaning to one side while lying down on the machine. By sensing these two indicators,

the system can anticipate that the user is going to enter a non-compliant state and

provide feedback to correct this before injury.

In order to provide feedback to the individual, three modalities are used: auditory,

visual, and haptic. The three feedback channels were chosen to map to the feedback

that is given by the instructor during supervised exercise. The instructor begins

by verbally informing the individual to correct posture or balance. He or she will

then visually show the correct body positioning themselves so that the individual can

mirror this. Finally, the trainer will physically touch the limb or area of the body

that is out of position to shift it back into place. This methodology is emulated in

the SmartGym since the system begins by making an auditory tone, then displaying

a visual feed of the subject’s body superimposed upon an image showing the correct

body posture, and finally vibrating the Total Gym board to inform the user of the

direction that he or she must shift in order to return to a compliant state.

The SmartGym has been built and integrated with the Total Gym Pro (a com-

mercially available piece of exercise equipment). The system consists of a Wii Balance

Board, a laptop with Bluetooth communication, a Microsoft Kinect, an array of pan-

cake motors, an Arduino Uno and a webcam. The laptop serves as the central link

between all the devices and uses information from each of the sensors to anticipate

when the user is going to enter a non-compliant state.

The Balance Board is positioned on top of the landing platform of the exercise

equipment and is used to detect pressure applied by the feet. Each of the user’s

feet has two pressure sensors under it to measure the difference between pressures

put on the ball of the foot versus pressure put on the heel. This pressure is used

to determine balance throughout the exercise motions. The system is able to detect
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Figure 5.2: Interface Design for the SmartGym That Includes a Visualization for
Pressure Between Feet on the Left, Center of Balance in the Middle, and Joint Track-
ing on the Right (Tadayon et al., 2017).

if the user is compensating by using one foot more than the other or, similarly, if

the user is compensating by prioritizing the ball or heel of one foot. This is done by

comparing cumulative pressure on each of the four pressure sensors within the Wii Fit

Balance Board. When pressure placed on one sensor is measured as greater between

two repetitions of the exercise, the system flags the event as compensation. A webcam

is also placed facing the individual’s feet to give a heads-up display indicating where

the user’s feet are positioned on the Balance Board to avoid false positives because

of incorrect alignment of the feet. This is an important factor given that impaired

proprioception is a common side-effect within our target user population.

The Kinect is positioned above the exercise equipment and faces down toward the

user to measure joint and skeletal position. Prior work has shown that the camera

can achieve a high degree of accuracy in measuring joint angle positions within 50-

100mm (Wang et al., 2015; Mobini et al., 2014). This measure gives insight into

postural stability during movement and warns the user when his or her body exits
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Figure 5.3: Location of the Pressure Sensor and Pancake Motor Pairs Along the
Outside of the Total Gym Pro (Tadayon et al., 2017).

the threshold for compliance. Measurements are collected for the shoulders, elbows,

wrists, hands, hips, knees and feet. Before starting the exercise, the user is asked to

hold a neutral state in which all joints are lined correctly for the upcoming motion.

The system captures these positions and uses them to create a bounding box around

each of the joints that determines the threshold for compliance. This threshold is

set as a variable within the system and can be adjusted by the trainer to become

smaller as the individual progresses within their exercise routines. As an example,

the baseline threshold of compliance for knee position was set to check within 100mm

of the normalized perfect posture. All information from these sensors is streamed

to the laptop, which handles all of the processing and gives the auditory and visual

feedback.

Two arrays of six pancake vibration motors were embedded onto the Total Gym

Pro’s padded board and placed horizontally spanning the outside edges of the board

as shown in Fig. 5.3. Each of these motors has a pressure sensor connected to it which

will detect if the user is beginning to lean or slide to one side of the board before or

during the exercise. These motors and pressure sensors were connected to an Arduino

Uno which served as the logic unit for this feedback mechanism. If the pressure sensors

pass a certain threshold as determined by the user’s upper-body weight, the haptic

motors are activated and are used to guide the user back to a neutral state where

he or she is balanced on the board. Twelve motors were used in order to fully span
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Figure 5.4: Squat Exercise (Tadayon et al., 2017).

the area on the board that a user’s body could encompass. This allows the device

to detect shifts from the shoulders all the way down to the user’s hips. The motors

will continue to vibrate until the user shifts his or her body to rectify their postural

stability. Given the information that is gathered through the Kinect and presented

on the visual interface, this information can sometimes be redundant, but serves to

offer the user multiple modalities of feedback that he or she can choose between.

Occasionally, a user’s vision might be pre-occupied with an alternate task and thus

haptics can be a more effective method of providing knowledge of performance.

The system was designed for use by an individual with cerebral palsy during

rehabilitative exercise. Specifically, an exercise is employed wherein the individual

starts with his or her feet against the landing plate, as shown in Fig. 5.4, and presses

off to slide up and then lands back on the plate. According to the trainer in this

work, the key components of this exercise are to ensure that the individual has both

knees and feet together throughout the entire exercise and to make sure that they

are positioned on the center of the exercise equipment in order to avoid falling off

or injuring themselves. The trainer’s role is to monitor the individual throughout

this exercise and to provide feedback whenever he or she is breaking these safety

guidelines. The interface and feedback have been mapped to the same protocol that

the trainer uses in instructing the individual to correct body positioning as shown in

Table 5.1.
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Behavior Trainer Feedback SmartGym Feedback

Uneven

Feet

Tell the subject and demon-

strate correct positioning with

his own body

Show heat map with differentiat-

ing colors to show which foot is

uneven. Camera on the user’s feet

to also augment lack of propriocep-

tion.

Imbalanced
Tell the subject to align their

body

Circle shown which changes to

green once proper balance is

achieved

Sliding Off

Platform

Tell the subject to move back to

the center of the board. If that

doesn’t work, physically help

the subject by pushing the non-

compliant body part back onto

the equipment.

Red points shown on body map

to signify which joints are out of

position. Tone played until body

is compliant. Haptic signals also

used to guide the user.

Table 5.1: Feedback Protocol

For the purposes of this system, only individuals with moderate, hemiparetic

cerebral palsy are considered as these individuals can often gain better motor control

through rehabilitative exercises. However, this design can also be used in many other

domains where hemiparesis can occur such as in stroke since the same principles of

body compliance and compensation play major roles.
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5.2 Idiosyncratic Design

5.2.1 Standardization of assessment

In determining the standardization of assessment, the SmartGym considered the

main goal of the exercise program being delivered. Due to the hemiparetic nature

of the disorder, all of the motions where focused on the elimination of compensation

from the unaffected limb and the re-development of muscular control on the affected

side. Thus, compensation was selected as the criteria by which to asses the user over

time. Because the trainer had method of measuring compensation outside of strict

observation, the introduction of this assessment method required the acquisition of a

baseline. The trainer was able to adequately look at the subject while performing the

exercises and note when he presumed compensation was occurring, but had no way of

quantifying it. Through the use of the SmartGym, the system was first used without

any feedback provided as an assessment period and collected baseline measurements.

5.2.2 Motion Blueprint

Once compensation had been identified as the key metric of measurement, the

system must then break down compensation into its atomic components to create

a blueprint of the user’s body compliance during exercise. Through feedback from

the trainer, it was determined that balance and body position are the two critical

components that lead to compensation with position being a leading indicator and

balance being a lagging indicator. Thus, the system must create a mapping of the

users body and consider measuring these critical components to provide snapshots of

compensation throughout the exercise regimen.

Postural stability and balance were primarily collected through the use of the

WiiFit balance board which was able to detect shifts in body weight between the
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two lower limbs during the preparation period as well as the landing period of the

exercise. Pressure sensors embedded within the platform were also used to detect

when the subject was leaning towards one side or another. The pressure sensors were

synced to the individual’s body weight and measured only when equilibrium was

breached between the two sides of the platform. Similarly, a Microsoft Kinect camera

was used to measure joint and skeletal position as these are the two critical underlying

factors that lead to postural instability and, consequently, compensatory behavior.

Combined, these data points served as the holistic blueprint for which thresholds of

compliance would need to be determined by the trainer.

5.2.3 Person-centric Compliance Threshold

Once a blueprint was put in place, the trainer provided an initial set of guidelines

on what was considered compliant based on his prior experience working with the sub-

ject. Without this initial input, the system would assume that a ”compliant” state for

the subject occurs when their body weight is completely equally distributed between

the left and right feet. Similarly, the system would assume that the individual should

be fully aligned with respect to their shoulders, hips and knees. However, based

on experience, the trainer noted that the affected limb could currently only main-

tain a 20-30% threshold of body weight and thus these parameters were adapted to

be person-centric. Throughout the exercise routine, they were continuously adapted

based on observation of system feedback where the trainer would note that the subject

was starting to be fatigued and thus the thresholds should be slightly relaxed. Sim-

ilarly, feedback methodologies needed to be adapted to match the trainer’s existing

modalities.

As shown in table 5.1, an initial feedback protocol was developed to map to the

trainer’s existing approach based on this subject’s learning methodlogy. In a pre-
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liminary user study, the system tracked the amount of time spent in a noncompliant

state and found that the subject was much quicker to respond to haptic feedback

rather than the other modalities. Survey results also showed that the subject pre-

ferred haptic feedback over visual since the haptic feedback mapped better to her

internal perception of self. This demonstrates the importance of learning preference

in the development of person-centered technologies and the need to develop adaptive

feedback protocols which can support various learning biases. Because of the modu-

larity in the feedback design of the SmartGym, the mappings can be easily adjusted

to shift preferences to one modality over another. Although relatively little research

has been done to examine the effects of learning styles and learning style prefer-

ences in the realm of motor learning in contrast to classroom learning (Alvine, 2015),

the Learning Styles Hypothesis developed from Pashler et al. claims that learners

will perform better when instructed using their preferred style of learning (Pashler

et al., 2008). Thus, a few approaches to adapting for visual, auditory and kinesthetic

learners are discussed below. Although these protocols rely on a primary feedback

modality, they still maintain principles of multimodality and redundant feedback.

The primary feedback modality is denoted through the use of perceptual bandwidth

in that the modality which conveys the most information relevant to the intended

behavior is deemed as the primary.

Although the use of a primary modality for feedback can help map more closely to

an individual’s preferred style, very rarely is an individual a strictly unimodal learner.

Rather, learning styles fall on a spectrum of preference where, although there may be

one style with a greater preference than the others, the individual may still learn well

in other modalities. The predominate standard for learning style evaluation in re-

search is the VARK questionnaire. The VARK measures four perceptual preferences:

visual (V), aural (A), read/write (R), and kinesthetic (K) to provide scores in each of
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these of these learning types (Fleming and Baume, 2006). Prior work has suggested

that the threshold of neural activation is reached earlier by multimodal learning than

by unimodal learning (Seitz and Dinse, 2007; Shams and Seitz, 2008). These stimuli

are also typically perceived more precisely and quickly than strictly unimodal stimuli

(Doyle and Snowden, 2001; Forster et al., 2002; Fort et al., 2002; Giard and Peronnet,

1999). This holds true even during active movements (Hecht et al., 2007) such as the

jumping squat motion discussed in the application. Therefore, although having a

primary modality to support learning styles is important, maintaining some level of

redundancy can have beneficial effects in motor learning contexts.
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5.2.3.1 Visual Learners

Behavior Trainer Feedback SmartGym Feedback

Uneven

Feet

Tell the subject and demon-

strate correct positioning with

his own body

Show heat map with differentiat-

ing colors to show which foot is

uneven. Positive tone played once

balance is achieved.

Imbalanced
Tell the subject to align their

body

Circle shown which changes to

green once proper balance is

achieved. Positive tone played

once balance is achieved.

Sliding Off

Platform

Tell the subject to move back to

the center of the board. If that

doesn’t work, physically help

the subject by pushing the non-

compliant body part back onto

the equipment.

Red points shown on body map to

signify which joints are out of po-

sition. Overlay a compliant out-

line over the subject’s body. Hap-

tic signals also used to guide the

user.

Table 5.2: Visual Feedback Protocol for the Trainer and SmartGym

For informing the user of uneven foot placement, the system shows a heat map

of the pressure plate that the user is standing on. The heat map is split into four

quadrants that show colors spanning from light red for little pressure to dark red

for high pressure. The user’s goal is to get all four quadrants to the same color to

achieve symmetry. When conformity is achieved, a tone is played to reinforce that

the user is now ready to perform the exercise. In this scenario, visual feedback is used

to inform the user of the non-compliance as well as provide feedback on knowledge

39



Figure 5.5: Interface Design for Prioritizing Visual Feedback.

of performance and knowledge of results as the heat map adapts while the user is

adjusting his or her positioning. Auditory feedback is used strictly to reinforce the

feedback on the user’s knowledge of results.

Similarly, if the user’s body is imbalanced, the system gives this feedback through

the use of a ball that shifts around the interface with the user’s weight distribution.

If the user leans to the right, for example, the ball will shift to the right side of the

screen. There is a target circle in the middle of the interface within which the user

must attempt to center the ball. As shown in figure 5.5, when the ball fully enters

the compliant zone, it changes color from red to green. An audio tone is played to

reinforce and affirm this compliance.

If the user is sliding off of the platform, the system can show the user’s skeletal

outline as an overlay to the underlying platform to show how the body is aligned

with the device. The user can visually see that his or her body is off-center and areas

that need to be adjusted will be marked in red as shown in figure 5.5. As the user

shifts the body, so does the avatar to give feedback on performance and progression

towards compliance. A haptic pattern can also be given to the user’s back on the

side that he or she is leaning towards to “nudge” the user back towards the center

of the board. In this scenario, the haptic feedback serves as as a secondary feedback
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mechanism that supports the visual feedback being given by the system. Once the

user is centered on the board, the haptic feedback stops and the avatar will no longer

have red zones for non-compliance.

One of the main challenges with this approach is that the interface can easily

become too cluttered and the user has to shift his or her gaze from one point-of-

interest to another in order to get a full understanding of what adjustments need to

be made. This can become especially chaotic when having to also conduct a complex

movement for the exercise. As the user is shifting up and down on the platform, it

can become very difficult to maintain a line of sight on the feedback interface.
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5.2.3.2 Auditory Learners

Behavior Trainer Feedback SmartGym Feedback

Uneven

Feet

Tell the subject and demon-

strate correct positioning with

his own body

Play audio of trainer giving feed-

back on which foot is uneven and

what needs to be done to correct.

Visual check mark displayed on the

interface when the user is compli-

ant.

Imbalanced
Tell the subject to align their

body

Play audio of trainer telling the

subject to place equal pressure on

the affected limb. Visual check

mark on the interface when the

user is compliant.

Sliding Off

Platform

Tell the subject to move back to

the center of the board. If that

doesn’t work, physically help

the subject by pushing the non-

compliant body part back onto

the equipment.

System tells the user which way to

shift his or her torso in order to

align with the platform. Haptic

signals also used to guide the user.

Table 5.3: Auditory Feedback Protocol for the Trainer and SmartGym

Auditory feedback protocols can be developed to map directly to the instructions

that the trainer regularly gives. In most scenarios, even if the trainer is demonstrating

visually, the trainer is also explaining verbally what the undesired behavior is and

what the correct positioning should be. This feedback protocol would rely on the
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verbal instructions that the trainer gives at critical points and use haptic and visual

cues as secondary feedback points strictly to reinforce the feedback on the user’s

knowledge of results. Audio of the trainer’s instructions could be pre-recorded and

played back to the subject when the system anticipates non-compliant behaviors.

As an example, to inform the user of uneven foot placement, the system could

play an audio clip of the instructor explaining which foot is misaligned and what the

subject needs to do to adjust his or her body. Progression clips could also be played

as the user is making adjustments giving words of encouragement to reassure the

subject that his or her postural corrections are acceptable. Once the user has reached

compliance, an auditory confirmation can be played and a visual check mark can

be displayed on the screen showing that the feedback has effectively been addressed.

Similarly, when the user is imbalanced, the system can relay the trainer’s voice telling

the subject to shift his or her weight to one direction or the other and a visual check

mark can confirm this for the subject as well after the necessary adjustment is made.

Lastly, if the user is sliding off of the platform, the system can tell the subject to either

shift his or her torso to the right or the left. Haptic patterns can also be used here to

guide the user back into the center of the board. Once the user is realigned with the

board, an auditory confirmation message can be played along with the discontinuation

of the haptic signal.

One of the main challenges of auditory feedback is that these signals can often

make it challenging to provide multiple instruction points at one time. The system

must play the audio synchronously so that the user can process one message at a time.

This greatly reduces the effectiveness of the protocol for on-the-fly modifications and

rather requires the user to pause, adjust, and then continue motion. This approach

also relies on there being a finite number of potential variations of non-compliance

that can be pre-recorded.
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5.2.3.3 Kinesthetic Learners

Behavior Trainer Feedback SmartGym Feedback

Uneven

Feet

Tell the subject and demon-

strate correct positioning with

his own body

Haptic patterns on the user’s

shank to convey what direction an-

kles need to be rotated or knees

need to be shifted. Camera on the

user’s feet to also augment lack of

proprioception.

Imbalanced
Tell the subject to align their

body

Haptic pattern at the subject’s

hips to convey weight distribution.

Ball shown on the screen to rein-

force weight shifts and center of

balance.

Sliding Off

Platform

Tell the subject to move back to

the center of the board. If that

doesn’t work, physically help

the subject by pushing the non-

compliant body part back onto

the equipment.

Haptic signals also used to guide

the user to the center of the bal-

ance. If the user is leaning to one

side, haptic array activates to pull

the user back into the center.

Table 5.4: Kinesthetic Feedback Protocol for the Trainer and SmartGym

Kinesthetic feedback protocols rely on haptics as the primary mode of information

transfer. Within the SmartGym application, the subject preferred haptic feedback

over visual or auditory and reacted much faster to these signals. The current system

relies on two rows of haptic motors aligned on the sides of the Total Gym Pro.

44



However, for this approach, more vibrotactile motors would need to be added to the

system in order to effectively communicate these various behavior changes. Namely,

this approach proposes the use of haptic bands, such as the Myo Armband (noa,

2020), to provide additional feedback sites at each of the user’s shanks.

For informing the user of uneven feet, the system will use the haptic bands on

the subject’s legs to show patterns relating to fine motor adjustments of the lower

limbs. The patterns can be directional or circumferential to inform the user of which

body site is noncompliant (ankles or knees) and also what the corrective action should

be. The intensity of the vibrations can give feedback on progression so that the user

knows how far he or she is from being in a compliant state. A heads up display can be

used to show where the user’s feet are positioned as an optional redundant feedback

mechanism. Similarly, a pattern can be played on the user’s lower back, right behind

the hips, with two actuators to give the user an idea of his or her center of balance. If

the subject shifts weight to one side, vibrations on that side of the hip can intensify

to push the user back to the other side. An affirmative auditory tone can be played

when the user reaches compliancy. Likewise, if the user is sliding off of the platform,

the system can use the protocol designed in the initial implementation to guide the

user back into place. That is that if the user is leaning to one side, the array of motors

on that side of the exercise equipment will activate and will stay active until the user

is centered again.

Haptic feedback has the benefit that the user does not need to maintain visual

attention throughout the motion of the exercise. Visual attention can be selective to

augment the feedback gained from the vibration signals and can be used to reaffirm

corrective actions. Although kinesthetic signals provided through the system have

the advantage of asynchronicity in many respects, patterns displayed at a specific site

still need to be synchronized. For example, patterns for knee shift and ankle rotation
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of the same foot cannot be displayed at the same time since they rely on the same

output mechanisms.

Haptics for fine motor control

The principles of using haptic feedback for fine motor control have been well explored

in the literature. Applications for these principles span from the field of medicine

where devices with vibrotactile feedback for robot assisted surgery have been proposed

(Schoonmaker and Cao, 2006) to whole body vibration therapy for rehabilitation of

fine motor control (Cochrane et al., 2009). Within the context of the SmartGym

application, the utilization of haptic feedback has been proposed for fine motor control

of the lower limbs as the subject responded more quickly to vibrotactile signals and

also noted that this mode of feedback mapped more closely to her internal perception

of body. Specifically, the goal of the haptic feedback is to affect the rotation of the

ankle in the transverse plane and also provide feedback on knee positioning during

the initiation and termination of motion. Although haptic feedback for lower limbs

has not been explored nearly as much as feedback for the upper limbs, some work

has been done to test the effectiveness of site-specific haptic feedback for the feet.

Mildren et al. have investigated the use of vibrotactile feedback provided at the

foot sole (heel or metatarsals) or foot dorsum in an ankle joint-matching task along

the sagittal plane (Mildren and Bent, 2016). Some of the key features of the haptic

modality that can be utilized to provide fine motor control guidance are its abilities

to convey directionality (McDaniel et al., 2008; Regenbrecht et al., 2005), distance

(McDaniel et al., 2009) and spatial error (Lee et al., 2011; Bark et al., 2011; Kapur

et al., 2010).

As shown in figure 5.6, the trainer defines an acceptance threshold for foot po-

sitioning which can then be sensed through the use of the Microsoft Kinect. The
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Figure 5.6: Ankle Rotation Acceptance Threshold

system needs to provide feedback on which limb is noncompliant and how to correct

the issue. Currently, the individual’s back is already occupied through the use of a

vibrotactile display for gross motor functions that include overall body posture with

respect to the exercise equipment. A rudimentary thought would be to implement

patterns within the haptic display that could distinguish between gross motor issues

and fine motor issues. However, there exist a few complications with this approach;

primarily, maintaining mutual exclusivity between patterns involving upper body and

lower body actions is a challenge. This is necessary because of overlapping patterns

in the case of non-compliance in both the upper body and the lower limbs, wherein

the feedback could become indiscernible. Similarly, providing haptic feedback on the

back for an intended result in one of the lower limbs requires two cognitive steps:

first the user must understand which limb the pattern is intending to affect, and af-

terwards he or she must perceive what the intended corrective action is. Site-specific

haptic signals address these limitations.

Haptic Push/Pull Metaphor

One potential approach for site-specific signals would require the use of an additional

set of motors that could be placed on each side (interior and exterior) of the the user’s

ankles and knees as shown in figure 5.7. The ankle is chosen because haptic sensitivity
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and spatial acuity is highest when the vibration is provided in distal body parts

(Wilska, 1954). This approach would map to the same metaphors used in the design

of feedback protocols for gross motor functions in this application and could thus

potentially reduce the learning period for this new signal. The proposed vibrotactile

feedback is built to push or pull the user’s lower limbs back into a compliant state

depending on ankle internal or external rotation and knee separation. With this

approach, multiple patterns could be explored using the various degrees of freedom

that vibration motors provide. As an example, if the user’s right foot is externally

rotated, the haptic motor on the inside of the ankle could activate and remain active

until the user shifts his or her foot back in. Similarly, the feedback protocol could

activate the motor on the outside of the ankle if the foot is internally rotated. The

strength of the haptic signal could be modulated to various intensities depending

on how far away the user was from a compliant state and could gradually diminish

to an off state as the user shifts the affected foot in the right direction. Similarly,

haptic signals could be produced on the inside and outside of the knee to affect knee

abduction and adduction respectively.

This approach is beneficial in that it allows separate haptic motors for the knees

and ankles so that the user does not have to first discern which body site needs to be

adjusted. It allows for higher levels of granularity in feedback as the system can inform

the subject of the exact body part that is out of compliance and can also provide

information on the degree to which this body part needs to be adjusted in order to

become compliant. Also, it maps to existing cognitive patterns that the user has

developed for gross motor function as the same pattern design philosophy is used for

those signals so the learning curve may be less steep. Where this approach is limited

is that, when integrated with gross motor feedback, the user now has many different

body sites (left back, right back, inside and outsides of both knees, insides and outsides
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Figure 5.7: Haptic Motor Placement for Metaphor Approach

of both ankles) that he or she must pay attention to. There may be an issue with

information overload if several of these body sites are out of compliance and the user

must prioritize which feedback to attend to first. However, this could be addressed

through software with a precedence structure where the most important corrections

are given the highest intensity of vibrations. A secondary potential limitation is that

the subject of the user study may lack the tactile sensitivity needed to easily perceive

the patterns on the affected limb. In this case, this approach may not be suitable and

a different body site may need to be used.

Follow the Signal (Saltation)

Another potential approach for fine motor feedback is through the use of a haptic illu-

sion of apparent motion called saltation (Geldard and Sherrick, 1972). This approach

would use a band of vibration motors placed around the shank (midpoint between the

knee and ankle) that vibrate in a series of quick vibrotactile bursts which would be

perceived as a train of evenly spaced phantom vibrations. Although the calf is not a

common spot for haptic feedback, it maintains a similar vibratory threshold as that of
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Figure 5.8: Haptic Patterns for Both Ankle Rotation and Knee Shifts Showing
Patterns of Activation with Numbers and Shading Indicating the Order of Tactor
Activation

the upper arm (Wilska, 1954) which has commonly been used in haptic applications.

Jones & Ray explored the development of pattern recognition with tactile displays

and found that participants were able to identify tactile patterns presented with a

one-dimensional display and achieved an overall rate of 99% correct, with only two

participants making one error each (Jones and Ray, 2008). Their approach explored

the use of haptic patterns for navigational cues or instructions and used circumfer-

ential and directional patterns. This approach would build on this existing work and

explore the application of these results to body compliance tasks. As an example, if

the user’s right foot is externally rotated, the haptic feedback would play a circumfer-

ential pattern starting from the outside of the band and rotate clockwise to indicate

the need for inward rotation. A separate directional pattern could be derived for the

traversal shifts of the knees inward. Figure 5.8 shows the tactile array and activation

orders for the two desired behaviors.
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One of the major benefits of this approach is that the denotation of type of non-

compliance as well as corrective behavior are embedded in a pattern and thus the

feedback does not need to be tied to a specific body site. If we find that the affected

limb is not sensitive enough to vibrational feedback, as an example, it would be easy

to shift the site of this feedback to the hips through the use of a haptic belt (McDaniel

et al., 2008). Similarly, because it encodes several pieces of information into a single

array of motors, the user may not be overwhelmed given that the distribution of

motors across body sites is now more limited. However, the negative effect of this

encoding is that information must now either be sequentially presented to the user or

separate encodings would need to be developed for more complex dual adjustments

since the same motors are involved in multiple patterns. Providing information on

two behaviors for the same appendage in parallel, such as right knee shift and right

ankle rotation, would result in pattern overlap and render both patterns meaningless.

This approach could be integrated with the haptic feedback for gross motor functions

through separate encodings and arrays. The haptic display currently being used for

the back could be augmented with more strips of motors to create a two dimensional

array that could display similar patterns using saltation for gross adjustments.

5.3 Adaptation to Intrapersonal Variations

Cerebral palsy (CP) is a term that encompasses a group of conditions that have

in common an impairment in brain function or structure that causes an enduring

impairment in the development of motor control, often (but not invariably) with

additional central nervous system impairments such as epilepsy, learning disabilities,

and sensory difficulties (Rosenbaum et al., 2007). Cerebral palsy affects people in

different ways and can affect body movement, muscle control, muscle coordination,

posture and balance. Although cerebral palsy is a permanent life-long condition, some
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of the symptoms of CP can improve over time through involvement in rigorous exercise

programs under the guidance of trained professionals (Verschuren et al., 2007). One

of the major limitations of these programs is strict adherence to the exercise regimen

in the home environment where the trainer is not present. Thus, it is important

to develop anticipatory protocols that can learn about an individual’s performance

and adapt the characteristics of the exercise to create progressive functional goals to

maintain maximal effectiveness and engagement.

Within the SmartGym application, an anticipatory system is proposed to pre-

dict subject injury by monitoring predictive characteristics of exercise performance.

The system relies on the trainer to develop and adapt acceptance criteria for body

compliance over time as the user progresses through an exercise program. In order

for this system to be fully autonomous, two challenges need to be addressed: the

development of methods for creating performance baselines specific to an individual

and methods of creating performance adaptation within the evaluation criteria for a

given algorithm.

5.3.1 Development of Baseline Criteria

A physiotherapist will typically design motor therapy exercises for a patient based

on a number of factors, including the patient’s age, gender, usual handedness, and

the specific characteristics of his or her medical condition. The difficulty level of

the exercises and even the body parts activated during the various tasks may be

adapted to an individual patient’s needs under the discretion of the therapist. For

example, a jumping squat exercise might be adapted for a hemiparetic user to allow for

landing mostly on the unaffected limb until the affected side builds the muscle mass to

support weight. However, if a user who could support weight load on the affected limb

was exhibiting the same behavior, the trainer might deem this as compensatory and
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instruct the subject to maintain compliance during the landing portion of the exercise

by landing equally on both feet. To develop a standardized assessment of the nature of

CP within the individual, therapists apply an industry standard test called the Gross

Motor Function Measure (GMFM). The GMFM is a validated instrument designed to

assess motor status specifically in CP and to quantify change over time or as a result

of intervention (Russell et al., 1989). It consists of 88 metrics within eight dimensions

that span a broad range of common daily activities: (1) supine; (2) prone; (3) four

point position; (4) sitting; (5) kneeling; (6) standing; (7) walking and (8) climbing.

Scores are expressed as a percentage and are standardized to expected performance

so that a normally developing child would score 100%. As this assessment is closely

tied to activity, it is the role of the therapist to analyze an individual’s performance

of the tasks and scores to build an exercise program which will benefit most in the

target areas. In doing this, the therapist also must determine which body parts are at

risk for non-compliance in the conduction of these exercises based on the individual.

With this understanding, it would be very challenging and likely impractical to

try to automate a system in which the device determines what parts of the body

need to maintain compliance. Rather, it is important to maintain a human-in-the-

loop solution even when considering automation where the input of the trainer serves

as the initial building block. With the critical points as an input, the system can

do an evaluation of baseline performance to get a quantitative assessment of a user’s

current ability. As an example, for the individuals with hemiplegia, the percent of

strength asymmetry between the corresponding muscle group on the affected versus

the unaffected extremity can be calculated and used as a baseline for developing

protocols to detect compensation. If a subject has 20% of the muscle strength on the

affected limb, then the system can develop an initial goal of supporting 25% of the

weight supported by the unaffected limb. Similarly, range of motion should also be
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measured as a percentage of ability in the unaffected limb. This metric should be

used in feedback protocols around limb and joint posture and positioning during the

movement of the exercise. If a subject can only move the affected limb 10% of the

rage than he or she can move the unaffected limb, then wider initial thresholds should

be put in place that consider a user compliant. Additionally, data collected during

the rehabilitation session can be used to further improve the patient experience.

Such in-session data (e.g., the time taken to perform an exercise, the accuracy of the

motion performed or the stimuli-response time) can be used to evaluate the initial

configuration of the system. If motion performance is not being successfully completed

then the compliance criteria should be configured to make accomplishment easier.

Similarly, if the exercises are being completed trivially, acceptance criteria could be

made incrementally more difficult.

5.3.2 Goal Adaptation

The concept of Flow Theory was first proposed by Csikszentmihalyi and suggests

that in the development of an adaptive program, it is important to find a balance

between the annoyance of an activity that is perceived as trivial and the frustration

of one that is perceived as too difficult (Csikszentmihalyi, 2002). This theory has

been extensively explored in the development of games (Charles et al., 2005), virtual

reality for stroke rehabilitation (Ma et al., 2007), and even specifically in the area

of exercise programs for Cerebral Palsy (Tadayon et al., 2016, 2015b). Creating

goals that adapt to user progress has also been shown to be incredibly effective in

maintaining adherence to exercise programs (Petosa and Holtz, 2013). For body

compliance, this means narrowing target thresholds, where the user is considered

in a compliant state, as muscular control and proprioceptive abilities are enhanced

while keeping in mind safety criteria set by the trainer in the initial evaluation.
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Overall, algorithms for updates to compliance metrics should be made primary based

on a user’s performance but should also use an individual’s affect and physiology as

evaluations before and after updates are made.

Within the SmartGym application, there are two important variables to consider

when adapting target benchmarks: frustration and fatigue. Measuring frustration

is a critical metric in the advancement of goal criteria as it gives insight into the

achievability of a new goal. If a compliance goal is too ambitious, a user may fail

many times in trying to achieve that posture and become frustrated with the feedback

provided by the system. This can have negative consequences for motor progression

and can result in abandonment of the regimen. However, as shown through the

principles of Flow Theory, maintaining an optimal level of challenge can increase

engagement and have an astoundingly positive effect on performance. Prior work

has demonstrated the ability to extrapolate engagement and frustration from facial

tracking and expression recognition (Grafsgaard et al., 2013) which could be used

in the adaptation protocol. When the system senses that the user has missed the

objective multiple times and has ruled out fatigue as a factor (discussed in the next

paragraph), this could trigger a frustration check where the subject’s engagement can

be evaluated and if deemed too high, a simple rollback can be done on goal criteria.

Muscle fatigue is another critical factor in a user’s ability to maintain compli-

ance as thresholds are narrowed. Given that individuals with CP often have lower

level of muscle mass and strength in their affected limbs, fatigue often occurs much

quicker than in their healthy counterparts. Fatigue is a common complaint among

people performing physical activities on the basis of training or rehabilitation and can

cause limbs to become less responsive over time. Fatigue can have a negative effect

on proprioception, kinesthesia, joint position sense, somatosensation, balance, and

reflexive joint stability (Abd-Elfattah et al., 2015). Local fatigue can be estimated
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through the use of surface EMG sensors (Luca, 1993) and could provide insight into

the nature of the performance. If the system detects repeated non-compliance due to

fatigue, feedback should be provided instructing the user to take a break by resting

in a neutral position before continuing the exercise. Performance goals should not

regress until the user re-attempts these metrics after a recovery period in order to

accurately assess whether the fundamental cause of failure was muscle fatigue or an

over ambitious goal.

5.3.3 Limitations

An automated system provides many benefits over traditional self-monitored ap-

proaches if adopted for at-home training. In many cases the system can make decisions

based on measured, quantifiable data that trainers often don’t have access to in or-

der to enhance exercise programs for maximum effectiveness. The system can ensure

that the subject is maintaining peak levels of motivation and develop more informed

justifications for failures to complete motions accurately. However, this proposed ap-

proach is limited in that there exists a subject performance ceiling where the system

can no longer make progressive adaptations. As an example, if a patient has been un-

dergoing an exercise program for a long duration and has capitalized on the beneficial

aspects of a given exercise, the system can’t make a new exercise recommendation

but would rather rely on the trainer to step in and make this update. Similarly, there

exists limitations on the ability to programmatically understand which body parts

should have compliance criteria put in place and what the safety limitations on those

metrics are for a given individual.
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5.4 Evaluation 1: Real-Time Feedback

The aim of evaluation of this system is to test the effectiveness of the proposed

system in affecting non-compliant behaviors to avoid injury in the home environment.

The subject was a 35 year old female participant undergoing a rehabilitative exercise

program for hemiparetic cerebral palsy and her trainer. The participant had limited

motor control on the left side of her body and is using a strength building program

that incorporates a variety of exercises to rebuild muscle strength. For the purposes

of this study, the focus is limited to a specific exercise (jumping squat) as an initial

proof-of-concept for the system.

The participant was first given an overview of the study and then asked to com-

plete an informed consent form. The participant then underwent a 10-minute fa-

miliarization phase during which the interface and feedback pattern were described.

Each feedback was demonstrated twice and the expected behavior was described. The

participant then completed two trials with each trial consisting of the following:

Five minute session in which the subject completed the jumping squat exercise

without any feedback from the trainer and the system collected data without pro-

viding feedback. Five minute session wherein the trainer provided feedback and the

system collected data but provided no feedback. Five minute session in which the

system provided feedback and the trainer observed the session for safety purposes.

Breaks were given between sessions and trials to control for fatigue. The session

times were determined by the trainer as this was a standard session time assigned

to the subject during regular workouts. The system tracked two main values: the

amount of time spent in a non-compliant state and the cumulative pressure applied

by each foot. Time spent in non-compliance was determined by a multitude of factors

including whether the joints and bones were correctly aligned throughout the motion,
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whether the upper-body was centered on the Total Gym Pro device and whether the

center of balance was over both feet. These criteria were split into two categories:

measurements for upper body included the positioning of the body from the waist up

and measurements for lower body included positioning of the hips and legs. Threshold

values were used for variability of position that were defined by the trainer to deter-

mine when a joint or bone would be considered non-compliant. Cumulative pressure

was tracked as it is a measure of compensatory behavior which the system aimed to

reduce. These metrics were not displayed to the subject but were collected for offline

comparison.

After the two trials, the subject was given a questionnaire with eight Likert-scale

questions and one open-response question:

• Q1: How comfortable was the gym equipment without any embedded sensors?

• Q2: How comfortable was the gym equipment with the embedded sensors?

• Q3: How well do the vibration patterns represent the intended movements?

• Q4: How well did the visualization of the ball represent your center of balance?

• Q5: How well did the color quadrant visualization represent your center of

balance?

• Q6: How easy was the interface to understand?

• Q7: How well do you feel that interface helped in your ability to complete the

exercise?

• Q8: How well do you feel you can complete the exercise independently using

the feedback provided by the system?
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• Q9: Please comment on any improvements/changes you would like to see in the

system.

5.4.1 Results & Discussion

Overall, the subject seemed to report a positive response to the use of the Smart-

Gym, but did show a faster response rate to the feedback given for upper body versus

lower body compliance as shown in Table 5.5. For upper body compliance (waist and

above), the subject spent on average 10 seconds less in a non-compliant state when

using the system versus getting the feedback from the trainer. Some potential factors

that could have affected this are that the system’s feedback was much more imme-

diate than the trainer’s in instructing the subject that their body was misaligned.

Secondly, the system’s feedback was persistent until the behavior was fixed whereas

the trainer would take pauses between commands. This made the trainer’s feedback

easier to ignore during the first instruction.

Feedback
Upper Compliance Lower Compliance

Trial 1 Trial 2 Trial 1 Trial 2

None 123 157 93 120

Trainer 41 35 25 24

System 34 22 40 38

Table 5.5: Non-Compliance Times Measured in Seconds

However, for lower body compliance, it was observed that the subject on average

reacted 13 seconds slower than when receiving instruction from the trainer. Part of

the limitation here was that the Kinect would sometimes lose tracking and attempt

to re-track the joints, potentially causing a slight delay in the feedback. More insight
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into this behavior was provided in the questionnaire when the subject mentioned

that the lower body feedback that the system was giving didn’t map well to the

subject’s internal image of body alignment and therefore seemed wrong. When given

no feedback from the trainer or the system, the subject struggled to maintain a

compliant form during the five-minute trials. The subject was non-compliant for 123

and 157 seconds in the trails for upper body and for 93 and 120 seconds in the trials

for lower body. In all areas where feedback was provided (either from the system

or from the trainer) the subject performed better during the second trial, suggesting

that there might be a slight learning effect between trials. However, due to the

implementation of feedback methods for the first trial before the second, this learning

effect didn’t change the trainer-versus-system comparison. Also, it is important to

note that no feedback was given regarding the amount of time spent in non-compliant

states between sessions.

Feedback
Left Leg Right Leg

Trial 1 Trial 2 Trial 1 Trial 2

None 130 120 240 275

Trainer 180 174 300 311

System 243 296 297 320

Table 5.6: Cumulative Pressure (in lbs) Placed Against the Wii Balance Board.

Cumulative pressure also increased significantly for the affected leg relative to

the unaffected one when using the feedback provided by the SmartGym as shown in

Table 5.6. Some of the difference between the trainer and system feedback in this

category can be attributed to the observation that the trainer often misses moments

when compensation occurs that are not easily discernible to the eye. Throughout

the two trials, there were only two explicit instances in which the trainer told the
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subject to make sure to land on both feet at the same time. During these trials, the

system identified 12 instances in which compensation was occurring. Therefore in

total, the system identified 10 instances of compensation missed by the trainer over

the observed sessions.

In the post-experiment questionnaire, the system was evaluated for usability, in-

tuitiveness and overall functionality. Trends were observed in the subject’s responses

that seemed to match what was shown in the data. Overall, the subject seemed to

prefer the feedback that was given on upper body compliance to the feedback that was

given on lower body compliance. She rated the vibration patterns as being very repre-

sentative of the intended motions but added comments about the visualizations that

the Kinect provided, noting that they often seemed incorrect. This was an interesting

point of feedback as it provides evidence that the external tracking of the subject’s

body did not map well to the internal and impaired proprioception and thus created

a conflict. Because of this, the subject felt less comfortable following the feedback of

the system as it related to joint and bone positions. The ball visualization and heat

map were rated highly representative of their intended movements which can be seen

through the cumulative pressure outcomes. Results from the questionnaire are shown

in Table 5.7.
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Question Score

Q1 3

Q2 3

Q3 5

Q4 4

Q5 2

Q6 5

Q7 4

Q8 5

Table 5.7: Questionnaire Responses Based on Likert-Scale: 1(Low) to 5(High)

5.5 Future Work: Feedback Fading

Prior work in the area of motor learning has shown that accuracy and consis-

tency, in a delayed retention test, is greater in individuals who practice motor skills

in feedback-faded environments as compared to those who practice with feedback pro-

vided during every trial (Schmidt et al., 2018; Winstein and Schmidt, 1990; Wulf and

Schmidt, 1989). As a result, clinicians who deal with physical therapy for neurological

disorders have shifted focus to the incorporation of frequency manipulation of extrin-

sic feedback during intervention sessions (Palisano, 2012; Levac et al., 2011; Zwicker

and Harris, 2009). This principle also holds true in the specific case of intervention

techniques for Cerebral Palsy. Spearing & Poppen explored the use of switches that

were attached to the left shoe of a male university student with CP who dragged his

foot while walking (Spearing and Poppen, 1974). He was provided with a negative

stimulus in the form of a bicycle horn whenever his foot dragged in an effort to restore

normal gait. Foot dragging was reduced to near zero even when the feedback from
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the bicycle horn was gradually faded. However, in a study conducted by Burtner et

al. with children with CP, no statistically significant difference was found between

feedback subgroups of children who received faded feedback versus those who did not,

although the 100% feedback group consistently demonstrated less error in retention

(Burtner et al., 2014). This study was conducted over a 24 hour period where as the

study involving the university student was conducted over four months suggesting

that signal fading may need to occur over longer temporal spans to prove effective

within this population.

5.5.1 Feedback Fading Design

The initial design of the SmartGym application provides signals in haptic, audio

and visual modalities for various behaviors as mirrored in the protocol that is used by

a trainer. In designing protocols for feedback fading of these signals, critical points for

performance analysis must be developed through metrics for individual progression in

motor learning. Prior work has proposed the separation of the motor learning process

into three distinct stages (Anderson, 1982): cognitive, associative, and autonomous.

Cognitive Stage

The cognitive stage is the first stage of motor learning and varies in length by in-

dividual. In this stage, the learner has no mental model or cognitive scaffolding for

which to build off of in the acquisition of a new motor ability. During this stage of

the learning process, the primary goal of the subject is to develop an understanding

of the skill and the motions involved. The learner is still familiarizing himself or

herself with the objectives of the skill and begins to consider contextual factors that

will affect the user’s abilities to produce the movement. The individual relies heavily

on somatosensory feedback and typically uses trial and error as the main learning
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mechanism. Due to the nature of this stage, all feedback should be maintained and

provided consistently to reaffirm and negate positive and negative behaviors respec-

tively. The consistency of this feedback through repetition builds mental models for

the intricacies involved in producing the movement correctly. Similarly, within this

stage it is important to maintain feedback redundancy and provide multimodal cues

on performance that reinforce the learning process. Once the user has repeated the

motion enough to develop a rudimentary understanding of the metrics for compliance,

cognitive associations are built between stimulus-response couplings.

Associative Stage

In this stage of the motor learning process, the subject begins to develop a more

refined movement through practice and has developed strong mental associations

with feedback signals. Although responses to feedback are not yet automatic, the

attention with respect to motions shifts to “how to do” from “what to do” in the

cognitive stage. This is the stage in which proprioception plays a larger role as focus

is put on the movement of the body in space and what is being felt from the joints and

muscles to inform corrections and adjustments. In this stage, the system should begin

gradually fading feedback signals to shift the dependency in performance evaluation

from extrinsic feedback to intrinsic. The approach on signal reduction should begin

by eliminating redundancy in skills that the user has become very competent in as a

minimization technique which will force user attention to skills that he or she is still

lacking in where consistent, multimodal feedback is still provided. As an example

within the SmartGym application, the current approach to providing feedback on

gross motor adjustments in the upper torso is through the primary modality of the

haptic channel with vibrotactile actuators along the user’s back and is reinforced

through visual feedback of skeletal tracking where body parts that are non-compliant
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are marked in red. If the user consistently seems to be performing well in this area

overall, a reduction technique could involve disabling visual feedback for this behavior

and allowing the subject to rely more heavily on his or her own proprioceptive signals

combined with haptic signals. As a secondary effect, reducing signal in the general

spaces where users are progressing effectively allows users to heighten focus in specific

feedback areas.

Autonomous Stage

In the final stage of motor learning, the skills become mostly automatic. Progression

to this level allows the learner to perform the skill almost innately with very little

cognitive involvement compared to the first stage of motor development. It is at this

stage that the subject is considered an expert in the intended movement and now

may use feedback signals only as reminders rather than directional cues. Once an

individual achieves this level of proficiency, a more aggressive approach can be taken

in scaling down the frequency of extrinsic stimuli. The system should consider in

what areas of motor performance the user is continuously achieving trivial success

and completely eliminate feedback protocols for those areas in a systematic manner.

One specific area of feedback should be evaluated at a time to eliminate potential

confounding effects between feedback areas. The system should then remove any

stimulus provided for that behavior and evaluate if the user is still able to achieve the

desired goal over a span of time. If the user maintains his or her success rate, then

the system can move on to evaluate a different area of compliance. However, if the

user does not retain performance attributes, then feedback should be reinstated for

the behavior.
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5.5.2 Feedback Fading Evaluation

Stimulus fading approaches for feedback protocols in the motor learning space can

provide many benefits in that they promote stimulus-behavior independence and sup-

port the construction of neural pathways for successful motion. This approach works

to shift an individual’s performance reliance from extrinsic to intrinsic signals that

better allow for adaptations to changing contexts by reinforcing the proprioceptive

systems. However, one of the major limitations of feedback fading systems within

the domain of cerebral palsy is that beneficial and learned behaviors can revert over

time (Spearing and Poppen, 1974). Another potential limitation is that if feedback

is faded too early, this can introduce a great deal of frustration in the user, and it

would be difficult for the system to differentiate between frustration due to lack of

feedback versus frustration due to difficulty of the task. Furthermore, if feedback is

not faded early enough or rapidly enough and the user develops a dependency on the

feedback early on, frustration and high error can develop when that feedback should

be faded.
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Chapter 6

PARKINSONIAN GAIT ANTICIPATION

6.1 Introduction

The affects of Parkinson’s disease (PD) on an individual remains largely a mystery

even under today’s modern medical practices. According to the Parkinson’s Disease

Foundation, there are currently an estimated 7-10 million people worldwide who are

living with PD (www.parkinson.org). Domestically in the United States, around

60,000 people are diagnosed with the disease annually and have a combined direct

and indirect cost of $25 billion per year to the healthcare system.

Parkinson’s disease is a neurodegenerative brain disorder with a progression pe-

riod typically spanning around 20 years within an individual. While the disease itself

is not fatal, the Center for Disease Control (CDC) has rated secondary complications

that result from the disease as the 14th highest cause of death in the United States

(www.parkinson.org). As a result, a nationwide push has been established to conduct

fruitful research on this disease and its complications. Largely because of this initia-

tive, there are now multiple medical treatment methods to mitigate the symptoms

of the disease including medication as well as an invasive procedure known as deep

brain stimulation (DBS).

The symptoms of PD can be categorized into three main groups: primary motor

symptoms, secondary motor symptoms and non-motor symptoms. According to the

National Institute of Neurological Disorders, the primary motor symptoms include

bradykinesia, tremor, rigidity, and postural instability, which often cause secondary

effects (secondary motor symptoms) in an individual. Of the secondary motor symp-
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toms in PD, one of the most disconcerting is issues with the individual’s gait. Specif-

ically, reduced step length, increased cadence, increased stride time, and postural

stoop. In parallel, during the later stages of the disease, these symptoms are also ac-

companied by an episodic phenomenon that is unexplained by bradykinesia or rigidity

known as freezing of gait (FoG). Freezing of gait is defined as a “brief, episodic absence

or marked reduction of forward progression of the feet despite the intention to walk”.

This description fully encapsulates the variable nature of the episodes including those

in which the individual cannot initiate gait (“start hesitation”) and cessation in for-

ward progression during ambulation (“turn” and “destination” hesitation), as well as

periods of shuffling where traditional aspects of the gait cycle degenerate and steps

can often become centimeters in length. Freezing episodes that occur during forward

progression can often be triggered by environmental factors such as high pressure or

timed tasks. Examples include trying to walk down a narrow hallway or having to

cross a street where you have a fixed amount of time to get from one side to the

other. These factors can have a large impact on an individual’s quality of life since

independence is limited. Due to this secondary symptom not being well understood

within the current pathophysiological models for Parkinson’s, there does not exist

an effective treatment option to address it medically. This phenomenon actually re-

sponds poorly and often paradoxically to treatment with traditional dopaminergic

medications that are regularly used to treat other symptoms of PD. However, a link-

age found that FoG, during walking, results when the sequence effect is superimposed

on a reduced step length (Chee et al., 2009).

Due to the implicit dangers that FoG provides, significant research has been done

to explore methods of offsetting the episodes from resulting in a full freeze and pre-

venting them from occurring as frequently. However, to date, the overwhelming ma-

jority of this prior body of work has looked to utilize the auditory and visual feedback
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channels in technologies that cue changes in gait characteristics (Nieuwboer, 2008;

Bachlin et al., 2010). The main limitation that this approach has introduced is that

these devices often occupy the primary sensory channels used in travel as people rely

on their sight and hearing to avoid obstacles and navigate their environment. This

research proposes the development of a system to track step patterns and to provide

haptic cueing to an individual to offset the progression of freezing of gait episodes

(Tadayon et al., 2015a). Specifically, this research seeks to accomplish two main goals.

The first is to extend the existing model for normal human gait to be able to detect

the abnormal cycles in Parkinsonian gait. This involves the development of new and

adaptable algorithms that can accommodate for variations based on human-centric

characteristics. Secondly, this research looks to develop a ubiquitous system that can

monitor day-to-day activities and provide real-time cueing to the user to offset the

FoG episode so that the individual can continue their normal gait cycles.

6.2 Implementation 1: Context Detection

Under the lens of context detection, an initial goal in the detection of FoG events

is to create an accurate digital model to represent Parkinsonian gait characteristics.

This is a challenging problem in that Parkinsonian cycles, immediately before and

during a FoG event, are inherently unique from traditional gait models and thus

require the identification of distinct features and events within this new model. One

critical consideration is to stray away from the traditional detection of heel-strike

and toe-off events that occur in normal gait because these characteristics are often

degraded beyond recognition in patients with PD. Instead, this work implements

analysis on the frequency domain as the main method of step detection and uses

pressure shifts between the toe and heel as a validation method, rather than detection,

in order to develop a model for start and stop events. This model can then be applied
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Figure 6.1: Sock With Embedded Sensors and Actuators (Tadayon et al., 2015a).

to an assistive device that the user can wear everyday with minimal intrusion.

Some of the primary considerations in the development of a device that can be

used in everyday environments are form factor and weight. A device that is expected

to be worn daily needs to be relatively small and should be embedded into the clothing

that a user already wears. Similarly, it should not be significantly heavy as a device

that is worn on the feet would add weight to each of foot during gait and may

introduce concerns around fatigue due to the extra weight. This work demonstrates

the development of a device that can be worn on the user’s sock and can be easily

hidden using pockets over the sock. The batteries for the device will be worn over

the shank to decrease the amount of weight carried by the foot since these are the

heaviest pieces.
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To implement the approach discussed above, a system was designed that consists

of two small devices that can be worn over each of the user’s socks. The devices

consist only of a microprocessor, an accelerometer, an XBee module, and a pressure

sensor. Processing is currently being done offline; however, in future iterations, these

devices could integrate with the user’s smartphone as a central location for online

calculations.

As shown in Fig. 6.1, the device was built using the Lilypad board for easy

embedding into the sock. The accelerometer is worn above the toe since this was the

location that was found to have the least angular displacement during toe-off events

and reduced the distortion of the signal during those events. The pressure sensor is

worn under the heel and is used as a method of validating steps taken by the user.

The pressure data relies on a threshold value that will be person-centric and easily

adjustable depending on the weight of the individual using the system. The device

streams data for both acceleration and pressure that is annotated with timestamps

to a computer for storage. Once the walking data is collected, it is processed to first

identify which events were steps and then to determine the length of each of those

steps.

6.3 Implementation 2: Motion Modeling and Prediction

In the process of anticipating FoG episodes, it is important to consider the charac-

teristics of gait that make that individual unique so as to be able to more accurately

predict anomalies. In the first study described above, a naive approach was taken

in the consideration of individuality. A running average stride length was calculated

based on the acceleration of the foot during each step. Through offline process-

ing, stride comparisons were made against the subject’s historic data to determine if

whether the new data point was an outlier. This approach was expanded upon by
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Figure 6.2: Layered Recurrent Network (LRN) Model (Zia et al., 2016).

Zia et al. through the implementation of a neural network (Zia et al., 2016). A class

of neural networks known as layered recurrent networks (LRNs) was applied to an

open-source FoG experimental dataset donated to the Machine Learning Repository

of the University of California at Irvine. The independent variables in this exper-

iment – the subject being tested, neural network architecture, and down sampling

of the majority classes – were each varied and compared against the performance of

the neural network in predicting impending FoG events. The effectiveness of neural

networks in predicting the onset of Parkinsonian symptoms has not been extensively

explored; however, previous publications have proposed other methods of predicting

FoG. Such studies include analyzing skin conductance (Mazilu et al., 2015), motion

data (Mazilu et al., 2013), and EEG data (Handojoseno et al., 2015) using a variety

of methods. Though previous studies have attained reasonable success in this area,

neural networks provide the benefit of adaptability to each patient’s unique symptom

presentation while other methods require varying degrees of tailoring to account for
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human factors. The LRN model used is shown in Fig. 6.2.

6.4 Implementation 3: Context Invisibility & Cueing

Due to the debilitating nature of FoG combined with the fact that its prevalence

often responds poorly to dopaminergic medication (Bloem et al., 2004), years of re-

search have been dedicated to exploring assistive systems that can counteract freezing

episodes and return the individual to a normal gait cycle. These systems operate un-

der the understanding that Parkinson’s disease has an adverse effect on the basal

ganglia, which are thought to play an important role in regulating motor programs

involved in gait and in the fluidity and sequencing of movement (Hausdorff et al.,

1998). Due to this impairment, it is postulated that, for individuals with PD, the

autonomic processes of balance and gait are shifted to the frontal cortex and require

an individual’s active attention through somatosensory cueing in order to operate

undisturbed. Similarly, delayed gait initiation in freezers was found to be related to

greater variability in deciding which limb to activate during stepping tasks (Okada

et al., 2011), which suggests that an inadequate ability to select a motor response

interfered with output. Many of these systems look at providing auditory or visual

feedback to drive users’ attention back to their gait and ultimately create synchronic-

ity between strides by guiding the user through the response selection process.

Visual Cueing Martin and Hurwitz first explored the value of visual cueing as a

rehabilitory technique in 1962 where they suggested that placing visual cues perpen-

dicular to the direction of travel spaced one step length apart was most effective in

improving gait in patients with PD (Martin and Hurwitz, 1962). Since this initial

discovery, much work has been done to explore the positive effects of visual cueing

within the space. Espay et al. developed a system which was composed of a set of
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augmented reality goggles combined with headphones to “display a life-size virtual

tiled-checkerboard superimposed on the real world” (Espay et al., 2010). This was

a multi-session intervention in which the participants use the device twice daily (30

minute sessions) over the course of two weeks. The approach was found to improve

walking velocity and stride length, with an overall improvement in gait as measured

by the Freezing of Gait Questionnaire. It is important to note that of the fifteen

participants in this study, two of them did not follow the recommended procedures

outside of the lab environment, because they felt the device was “clunky” or “embar-

rassing to use in public” highlighting the importance of discrete feedback and form

factors that do not obstruct day-to-day living.

In another study, authors explored the attachment of lasers to the participants

shoes (Ferraye et al., 2016). In this approach, lasers are mounted to the front of each

of the individuals shoes and the shifting of bodyweight to the heel as an individual

is about to initiate a step activates a laser on the load bearing side. The laser lines

are projected orthogonally in front of the patient’s stepping foot and are activated

intermittently, in-parallel with the step frequency of the subject. Although the initial

evaluation was posed as a case study, a larger study was conducted with the device

later to show that the device was associated with a significant reduction in the number

of FOG episodes (Barthel et al., 2018). Similarly, other devices have looked at using

a walker to project the target laser lines rather than the shoe with similar results

(Van Gerpen et al., 2012; Bunting-Perry et al., 2013).

The major limitation of visual cueing in real-world environments is that users

are expected to be staring at the floor as they walk making them oblivious to their

surroundings. This can prove especially dangerous in contexts such as crossing a street

or walking in a crowded area. Looking downward may also accentuate deterioration

in an already stooped posture causing steps to become even shorter. A secondary
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limitation is the visibility of these projected lines as they often depend on having

enough contrast with the surface that they are being projected onto as well as having

lighting conditions that adequately support their visibility. The overarching goal of

these systems is to help the individual identify an appropriate step magnitude and

eliminate that process as a cognitive task.

Auditory Cueing The effects of Rhythmic Auditory Stimulation (RAS) within

Parkinsonian gait is a topic that has been well explored in literature. Thaut et al.

(1996) first defined RAS as “metronome-pulse patterns” which were embedded into an

exercise program over the course of two weeks. Participants were asked to do activities

including walking on a flat surface and stair stepping which were synced to the target

rhythm. Three different rhythm cadences were tested: a baseline or comfortable

pretest cadence, a quick cadence which was set to 5-10% above the baseline, and

a fast cadence which was another 5-10% above the quick cadence. Between these

three different conditions, it was found that the “quick” cadence had the best overall

performance with a target threshold of 10% above baseline cadence. This study found

that participants with RAS improved their gait velocity by 25%, stride length by 12%,

and step cadence by 10% more than self-paced subjects.

One of the main limiters in RAS is that often the feedback can become asyn-

chronous to the stepping pattern of the individual and actually cause disturbances in

gait as the subject tries to adapt. To further advance research in the space, Miyake

(2009) proposed the development of context-aware RAS feedback protocols which

shifted the burden of adaptation from the user to the device and allowed the feed-

back to sync to the individual’s steps. The device detects the stepping cadence of

the individual through accelerometry and, through a phase-shift in the metronome,

will automatically adjust to match their gait cycle. Moens et al. expanded the body
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of work around adaptive feedback protocols by extending beyond the concept of the

metronome and looking at adaptive music as a delivery mechanism (Moens et al.,

2017). In doing so they found that fixed tempo metronomes resulted in the highest

increase for cadence, velocity and stride length, fixed-tempo music increased velocity

and stride length, and adaptive-tempo music increased stride length.

Similar to visual cueing, auditory cueing is limited in its application in real-world

environments due to the congestion of a sensory channel used in navigation. We

often use sounds to navigate our environment and avoid dangerous situations. As an

example, we know to step away from a curb when we hear a car approaching from

our rear. Also, despite its efficacy in literature, RAS suffers from a major drawback

in that its effectiveness weakens through time. As such, longitudinal cuing is not

recommended (Cubo et al., 2004; Rubinstein et al., 2002) as the efficiency of RAS

decreases exponentially over longer durations. It is best suited for short interaction

cycles during rehabilitative exercise programs.

6.4.1 Cueing Approach

Given that the visual and auditory channels are the primary channels used for day-

to-day navigation, the aforementioned solutions have stark limitations in real-world

environments. This has led to the exploration of haptics as a medium for feedback in

this context. Given the degrees of freedom that the haptic medium provides in both

spatial and temporal domains, it has a unique advantage in being able to encapsulate

the benefits of visual and auditory channels without blocking the sensation needed for

navigation. It is hypothesized that, through intelligently designed haptic patterns, the

step amplitude feedback of visual cues and the rhythmic timing feedback of auditory

cues can be delivered in a non-intrusive manner.

This section presents a novel approach to the development of vibrotactile patterns
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Figure 6.3: The Haptic Belt Which Contains Six Haptic Tactors and a Control Box
for Communication.

that vary across spatial and temporal domains to create intuitive, directional cues for

gait cycles. Under this approach, cueing is delivered through a haptic belt (McDaniel

et al., 2010), pictured in figure 6.3, that contains six vibrotactile motors equally

spaced around an individual’s abdomen. The long-term goal of this work is to create

a discrete device that can be worn during day-to-day navigation tasks which will

subdue stride variability and ultimately reduce the impact of freezing episodes. The

approach is evaluated in a study with nine participants who have Parkinson’s and

experience FoG.

6.4.2 Hardware & Software Design

The system consists of a haptic belt with six modular tactors and a control box

as shown in figure 6.3. Each of the tactors contains a pancake motor which vibrates

with an intensity similar to a cell phone. These tactor modules can be controlled
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Figure 6.4: The Placement of the Opal Sensors and Haptic Tactors on the Haptic
Belt.

independently which means that the timing and frequency of the independent modules

can be varied to create simple or complex patterns that only activate specific modules.

The control box houses a bluetooth chip which allows for remote control of the belt

over serial communication. A simple interface was developed for controlling which

pattern to deliver depending on the trial as shown in figure 6.4. The belt itself

is made of a nylon material with an adjustable buckle that allows for tightening

or loosening as necessary in order to achieve a snug fit and ensure that all of the

tactors are in close contact with the subject’s body. To measure gait characteristics,

a total of six APDM Opal sensors (https://www.apdm.com/wearable-sensors/) were

used. Placement of the sensors is shown in figure 6.4. The APDM Moveo Explorer

(https://www.apdm.com/kinematics/) was used to analyze gait characteristics from
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the sensor data.

6.4.3 Haptic Cueing Design

When developing protocols for information delivery, two important neurological

characteristics need to be evaluated: sensation and perception. With respect to

sensation in the consideration of body site for haptic cueing, it is important to have

an understanding of spatial acuity and sensitivity to vibration on various parts of the

human body. One of the foundational pieces of literature in the space of sensitivity

was published by Wilska where comparisons of vibrotactile sensitivity at various body

sites increases as your move from the proximal structures (center of body) to the distal

anatomical structures (extremities) (Wilska, 1954). Similarly, in a study conducted

by Weinstein (Weinstein, 1968) and later verified by E. H. Weber (Weber, 1996), it

was found that spatial acuity improves from proximal to distal body parts as well.

Once we know a signal can be well-sensed, we must then consider the cognitive load

of information perception as it relates to the feedback signal. Jones & Sarter suggest

that the ability to localize a point of haptic stimulation is best when it’s presented

near anatomical points of reference (Jones and Sarter, 2008). Therefore, providing

feedback at the point closest to the body part for intended behavior modification

will theoretically result in the greatest level of perceptual ability. These principles

were used in the design and development of the initial iterations of the Parkinsonian

gait device. However, within the populations of individuals with Parkinson’s disease,

the location of haptic feedback remains a research question that requires further

exploration.

This domain provides a unique set of challenges in that the feedback site can play

an important role in the intuitiveness of the perceived signal. If the perception of

the signal does not map to an almost innate response, the feedback protocol could
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Figure 6.5: Ordering of the Various Events in the Gait Cycle (Donald, 2002)

introduce a secondary cognitive task and actually induce a freezing episode rather

than prevent it (McIsaac et al., 2015). For this reason, a study is conducted to

evaluate the intuitiveness and effectiveness of haptic patterns designed for real-time

gait modification. The goal of this study is to conduct a comparative analysis of cueing

signals provided at the hip and at the shanks of individuals with PD. Similarly, the

intuitiveness of the design strategies for various patterns that map to cadence and

step amplitude thresholds will be evaluated. The two main strategies for feedback

design are as follows:

Haptic Metronome In this design strategy, we look to map haptic signals to an

almost literal translation as a form of sensory substitution for gait characteristics

to limit cognitive load. Feedback for step cadence is provided through location-

specific, timed pulses that correlated with the target step frequency for each foot.

The beginning of a pulse provided on the right side of the body represents the timing

for a toe off event for the right foot and similarly a pulse on the left side relates to the
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left foot step initiation. As a reference, figure 6.5 depicts the ordering of the various

events in the gait cycle. The dimension of time is used to map step amplitude as

the duration of the signal denotes the intended step length. As an example, when

the system predicts an upcoming FoG episode, an alternating pulse pattern will play

either at the user’s hips or at their shanks. Subjects will be informed to modify

their step frequency to match the pattern and increase the length of steps with the

duration of the signal. If the tactor is vibrating, then the user should maintain mid-

swing and continue forward movement until the signal stops at which point he or she

should have a heel strike event for that foot. Based on prior research that evaluated

the effectiveness of auditory and visual stimuli for improving gait characteristics,

haptic signals should convey a normalized step length for each subject, as determined

by leg length (normalizedStepLength = 0.8 ∗ legLength) (Hof, 1996). Although it

is not as important that each step hit this threshold, having this as the stimulus

goal can be very favorable. Chee et al. demonstrated that when visual cues were

set to this person-centric normalization, most participants benefited (Chee et al.,

2009). Similarly, research conducted by Willems et al. found that providing cues

operating at a cadence 10% to 20% above an individuals baseline value results in a

statistically significant increase in stride length for individuals who exhibit freezing

with Parkinson’s disease (Willems et al., 2006).

This mapping strategy was developed as an extension of existing work that has

looked at the application and relative success of auditory feedback in this space.

Rhythmic auditory stimulation (RAS) has been shown to have beneficial effects within

the domain (Bachlin et al., 2010; Hausdorff et al., 2007a; Arias and Cudeiro, 2010).

Regular metronome ticking sounds were provided as a form of RAS with a rate of

110% of the natural cadence of the tested patient. This feedback served to enhance

their gait speed and reduced gait variability (i.e., it improved gait stability (Hausdorff
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et al., 2007a)) and was found to have a 76% reduction in freezing episodes (Arias and

Cudeiro, 2010). However, auditory signals introduce limitations for navigation which

can be alleviated through the use of haptics.

Vibrotactile Metaphors (follow the signal) In this approach, patterns are de-

veloped by scaffolding off of existing cognitive structures to derive meaning from the

signals. Patterns are designed with a push/pull metaphor used to coax the user into

taking steps that follow the signal. As an example, using an array of vibrotactile

actuators that go around a user’s hip, a simple pattern can be developed that starts

from the back of the user and travels along the left side of the waist to the front

to denote taking a step with the left foot as shown in figure 6.6. The initiation of

the signal would map to the toe off event of the left foot and the user would follow

the pattern with his or her foot moving forward until the signal reaches the front

mid-section of the waist where the user would terminate the step. To address step

length, the principles of conveying distance through the on/off modulation times of

vibrotactile motors has been explored by McDaniel et al. (2009). Similarly, in this

approach, distance is metaphorically associated with the speed of of the overall pat-

tern. As an example, a quick signal that travels across the side of a user could denote

short, terse steps where as one that moves slowly along the hip could denote long

pronounced steps.

The benefits of haptic metaphors in signal perception have been well researched in

prior work (Snibbe et al., 2001; Panchanathan et al., 2014; Mcdaniel, 2012). Although

haptic metaphors can have a higher learning curve as the mapping is not as direct

as literal translations, this approach is hypothesized to have a stronger recall in real

world settings since stronger associations can be formed between stimulus-response

couplings. Metaphors often rely on a haptic illusion of apparent motion called salta-
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Figure 6.6: Haptic Pattern for a Step Taken with the Left Foot. Numbers Denote
Order of Actuator Activation.

tion (Geldard and Sherrick, 1972) where groups of pulses in equal temporal succession

provided at distinct body sites are reported to be perceived as a linearly sweeping

movement of discrete pulses at the actual locations of feedback and also at illusory

sites between them. Within this application, this allows for a seamless method of

conveying directionality that maps to a physiotherapists approach of occasionally

physically touching the subject on the leg that needs to produce longer steps.

6.4.4 Human Perceptual Bandwidth for Haptics

Human perceptual bandwidth is the limit on the amount of information which can

be perceived at any given instance through an individual’s sensory receptors. When

considering the ability to process information through a given modality, it is important
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to look at the bandwidth in a temporal rather than discrete context to get a better

understanding of the limitations imposed by these sensory bandwidths in real world

applications. The maximum rate at which information may be reliably processed by

a channel has been studied for the various modalities (touch, vision, and hearing)

(Savica et al., 2016). Vision was found to have the highest information transfer rate

of 1,000,000 bits/sec followed by hearing which had a limit of 10,000 bits/sec and

lastly the sense of touch which had a limit of 100 bits/sec (subject to both the type of

stimulus and the surface dimensions of reception). These perceptual rates, however,

are limited in their ability to fully encompass the ability to effectively understand

information through a given sensory channel. These differences in maximum rate of

perception make it difficult to translate perceptual stimuli from one domain to another

and maintain the granularity of feedback. However, various strategies have been

explored in translating stimuli through sensory substitution. These systems typically

translate from higher perceptual bandwidths to lower and propose various mapping

strategies that fit within the limitation of the substitution. As an example, mappings

for various dimensions common in visual stimuli such as distance, direction, color,

size and shape to haptic stimuli have been explored with various degrees of success

(Lederman and Klatzky, 2009; Erp, 2005; Cappelletti et al., 1998).These mappings

often utilize the various dimensions of haptic sensation including pressure, vibration,

temperature, pain and limb movement.

6.4.4.1 Information Transfer

Information transfer (IT) is a quantitative measure of the increase in information

that results from knowledge and recognition of the received signal. Ideally, the output

should have a high correlation with the input signal denoting that the user did perceive

all of the information that was given. The formula (Tan et al., 1999) for Information
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Transfer (IT) is as follows:

where (Si, Rj) represent a given stimulus-response pair and k is the number of

alternatives from which the user perceives and responds. Thus IT is the average of

the amount of information, measured in bits, weighted by the joint probability of

stimulus-response pairs. P (Si, Rj) is the joint probability of stimulus Si and response

Rj, and P (Rj) is the probability of Rj. The maximum likelihood estimate of IT,

ITest , can be computed by counting how often stimulus-response pairs, (Si, Rj),

occur within a k x k confusion matrix:

where n is the total number of trials in the experiment, nij is the number of times

the joint event (Si, Rj) occurs, and ni =
∑k

j=1 nij and nj =
∑k

i=1 nij are the row and

column sums. Because IT is measured in bits, we can express the maximization of the

IT function, ITmax, with respect to the number of alternatives, k, since a single bit

can express a maximum of two different pieces of information given an on/off state.

Similarly, two bits could represent four and four bits could represent 16, etc.

It follows that if there are only two alternatives, then the maximum IT is one

bit. A simple comparison between the ITest and the ITmax can provide insight into

whether or not the full bandwidth of perception is utilized effectively in the given

feedback design. If ITest is less than the ITmax then there exists a gap between the
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information being presented and the information being perceived. The number of

alternatives should be reduced in this scenario to address this perceptual rift. The

optimal number of alternatives can be derived by setting ITmax equal to ITest and

reduced to k′ = 2ITest .

6.4.4.2 Parkinsonian Gait Information Transfer

A major challenge in considering IT within the domain of gait adaptation is that

the measure was developed with Absolute Identification (AI) tasks in mind where

a given stimulus should elicit a distinct response. However, within the application

of the gait modification system for Parkinson’s, it can be challenging to identify AI

tasks with respect to haptic stimuli for gait adjustments given that there aren’t al-

ways discrete values of interpretation. There are two main response categories that

the device looks to provide feedback for: cadence and step amplitude. Thus, the

goal of haptic feedback within this application is to convey distance and rhythm for

steps, once a FoG event is predicted, as these are the two basic building blocks of

cadence and step amplitude. Based on prior research that evaluated the effective-

ness of auditory and visual stimuli for improving gait characteristics, haptic signals

should convey a normalized step length for each subject, as determined by leg length

(normalizedStepLength = 0.8 ∗ legLength) (Hof, 1996). Although it is not as im-

portant that each step hit this threshold, having this as the stimulus goal can be

very favorable. Chee et al. demonstrated that when visual cues were set to this

person-centric normalization, most participants benefited (Chee et al., 2009). Simi-

larly, research conducted by Willems et al. found that providing cues operating at

a cadence 10% to 20% below and individuals baseline value results in a statistically

significant increase in stride length for individuals who exhibit freezing with Parkin-

son’s disease (Willems et al., 2006). Thus, the desired response to stimulus within
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this system is not necessarily concerned with perfection, as the range in acceptable

cadence suggests, but rather that the subject makes progress and elicits some level

of behavior change in the spatial and temporal domains.

In considering the dimensionalities of distance and rhythm, it is thus important to

consider multiple design patterns for rhythm and distance given the target thresholds

and follow an AI format by having subjects identify these patterns either verbally or

through demonstration of the intended gait characteristics. This would give insight

into the expressive capability of the signal and thus the effectiveness of the informa-

tion transfer within the designed patterns. The main measure being performed in this

case is “how many perceptually distinct patterns are being successfully recognized by

the individuals compared to the number of intended response variations”? While this

metric is subject to the proficiency of an individual with estimating gait character-

istics and the sensitivity of that individual to the modality presented as well as the

effect of pre-training, this method provides valuable information on the perceptual

bandwidth in the haptic channel. Information transfer could be approximated as

the error between the subject’s response and the expected response after sending a

corrective signal.

6.4.5 Increasing Bandwidth: Information Encoding

As discussed above, perceptual bandwidth is measured by the number of percep-

tually distinct stimuli that can be discerned through a modality. The maximization

of bandwidth relies on high effectiveness in utilizing the sensory and perceptual capa-

bilities of our skin. In order to achieve this goal for haptic interfaces, highly efficient

feedback protocols need to be developed which encode meaning through the various

degrees of freedom that haptic signals allow (location, frequency, time, etc). As an

initial proof of concept, a prototype was developed which contained a single haptic
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motor on each of the user’s ankles which was used to convey a static pattern that

solely gave feedback with respect to cadence. The device played an alternating rhyth-

mic feedback loop that was meant to inform the user of when to take a step with each

foot. However, given a single actuator, it is difficult to encode directionality, distance

and timing in a manner that is intuitive. Thus, a follow up study was conducted using

a more complex system for signal delivery that allows for greater dimensionality in

the patterns provided. Fundamentally, the system needs to provide feedback in to

main areas:

1. Cadence: Haptic patterns need to give the user a step pattern to regulate his

or her speed of walking. (1 bit)

2. Step Amplitude: Feedback also should inform the user of how far away he or

she currently is from an intended step length. (1 bit)

Within this project, the approach is to develop a set of vibrotactile patterns

through the use of a haptic belt. Although a great deal of prior work has been done

to examine the effectiveness of providing tactile feedback at various body sites, there

hasn’t been much work in the area of feedback sites for Parkinson’s. This domain

provides a unique set of challenges in that the information transfer through the feed-

back site can play an important role in the intuitiveness of the perceived signal. If

the perception of the signal does not map to an almost innate response, the feedback

protocol could introduce a secondary cognitive task and actually induce a freezing

episode rather than prevent it. Similarly, the patterns need to be encoded to map to

existing cognitive structures in order to limit the use of working memory. Miller quan-

tified the limitation of the human working memory to 7 +/- 2 as the magic number

(Miller, 1956). Within the PD population, prior research has shown that there may

exist even stricter limitation on working memory as a result of cognitive deficiencies
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that accompany the disease (Parrao-Diaz et al., 2005). Miller also provides insights

into overcoming this limitation (Miller, 1956) through the use of information “chunk-

ing”. This theory suggests that the human brain has the ability to create scaffolding

structures for information where building blocks of data are combined into larger

informational units. An example of this approach is in the processing of language.

We begin by learning letters as the basic building block, then their combination into

words, then the combination of words into phrases, and the combination of these

phrases in various structures into sentences. Through a similar approach, informa-

tion on gait performance can be recognized through the construction of signals into

patterns and patterns into behaviors. The learning curve for these patterns can be

greatly reduced if there already exist cognitive structures that feedback signals can

utilize.

Thus the approach looks to compare literal (low level) versus metaphorical (high

level) mappings of feedback to test the effectiveness of these protocols in eliciting the

desired gait behaviors. An example of a direct mapping could be that the haptic belt

vibrates on the side of the body that the user needs to increase step length on and

uses frequency as a sensory substitution method to denote distance. An example of

a metaphorical approach to pattern development would be building a pattern that

vibrates from the back of the user down the right sight of the hip to the front of the

user to signify a step taken with the right leg. In each of these mappings, to increase

the perceptual bandwidth to touch, the full dimensionality of vibrotactile signals are

planned to be used.

6.5 Idiosyncratic Design

In determining a metric of assessment, it is first important to consider the idiosyn-

cratic characteristics of the problem space. In doing so, the system must first deter-
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mine a standard of assessment that may be used in the development of a blueprint

and thresholds. Clinical measures such as the MDS-UPDRS (Goetz et al., 2008)

have complete sub-sections dedicated to measuring regression of walking character-

istics and specifically, freezing of gait. However, these clinical assessment do not

give enough specificity that a system would be able to adequately measure it. Thus,

this application further broke down the problem of freezing into its component parts.

Specifically, stride symmetry was the primary metric of assessment as this was in-

dicative of how much freezing an individual was experiencing (Plotnik and Hausdorff,

2008).

Once a metric of assessment has been determined, the system must then determine

how to accurately create a blueprint of motion based on this metric. In the application

domain of freezing of gait, the biometric characteristics of gait are the most obvious

in determining the building blocks of a motion blueprint. Wert et al. (2010) note

gait speed, step width, stance time, and cadence as primary metrics. For individuals

with Parkinson’s, because a linkage found that FoG, during walking, results when

the sequence effect is superimposed on a reduced step length (Chee et al., 2009), it

may be important to consider step length and step cadence as critical factors. Both

of these elements are entirely unique to an individual and represent a model of their

movement characteristics while walking. In section 6.2, the system design is outline

of a wearable technology which uses a combination of accelerometers and pressure

sensors to determine step lengths. Section 6.4 further discusses the measurement of

cadence through the use of APDM sensors to augment the sock-worn device.

In the development of person-centric thresholds for step length, the system first

underwent a training period to understand what an individual’s “normal” step length

looked like (section 6.3. In this training period, a normalized distribution was created

(motion blueprint) to represent the individuals gait. Once in an evaluation state, the
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system would look for outliers using the standard 1.5 ∗ IQR method, however, this

could be adapted based on the individual. Furthermore, section 6.4 outlines the

development of a person-centric threshold for cadence. Again, the system used a

training period to understand baseline cadence for an individual and then set the

target threshold to 110% of the baseline as this was shown to have the most positive

result in reducing freezing episodes (Arias and Cudeiro, 2008; Hausdorff et al., 2007b).

6.6 Adaptation to Intrapersonal Variations

Because Parkinson’s is a disease which progresses over a very long duration (years

and sometimes decades), intrapersonal variations have often been overlooked. An

approach to threshold variation in the context of non-compliant steps was mentioned

in section 6.5 in that the outlier detection formula can be adapted by individual. Since

steps often naturally become shorter with age, this means that instead of looking for

a traditional outlier, we may vary either the entirety of the step length distribution by

shifting the entire dataset one phase left (shorter steps) or by re-developing a baseline

once the system hits a consecutive number of false positives for non-compliant steps.

In doing this, the system is adapting the entire blueprint to the individual over time.

Because the current evaluations of the system were not longitudinal, these shifts did

not need to occur within the contexts of the studies conducted.

In order to adapt the feedback over time, section 6.10 outlines a rudimentary ap-

proach. In this evaluation, a baseline feedback protocol was developed that provided

feedback on every step that the user took regardless of if they were exhibiting reduced

cadence or shortened steps. However, as one of the cases within the trials, feedback

was randomly delivered on only 50% of the steps taken by the individual and was

silent on other steps. This was to assess whether there was a learning or progression

metric to be evaluated within this context. Although no learning effect was found,
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further research should be conducted in a longitudinal study as other feedback pro-

tocols have found minor improvements in no-feedback conditions after sustained use

of devices over many weeks (Espay et al., 2010).

6.7 Context Aware Invisibility

In developing an invisible interface, the application considers both directions of

interaction. That is making an invisible input protocol for the user to provide infor-

mation to the system as well as creating an invisible feedback protocol for information

provided from device to subject. Within the Parkinsonian gait device, this has been

explored in multiple different ways.

Invisibility of Input The implementation of the shoe worn device has abstracted

the interface away from the subject and uses their movement during steps as an

implicit input to the system. The use of an accelerometer combined with a pressure

sensor allow the system to consistently be collecting information on gait without

the need to disrupt the user. Thus, the biomechanics of the person’s gait become

the data entry and allow for the anticipatory loop to persist with a pseudo human-

in-the-loop approach. Although the processing is currently being done offline, this

autonomous data collection enabled the use of the device in real-world environments

without interfering with the person in the wild.

Invisibility of Feedback Feedback provided to the user should, similarly, be in-

visible and not create significant additional cognitive load. Given that the primary

goal of gait is navigation through an environment, an invisible system should not

block the primary modalities used in this context: visual and auditory. People need

to look at their surroundings as well as listen for potential hazards while navigating
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in unpredictable domains. As an example, we need to listen for oncoming traffic and

look for other people while crossing a street. Because of these limitations, the PD

device has provided feedback signals through the use of haptics. In order to minimize

cognitive load, these signals have been designed in a way to map to cognitive models.

For a longer explanation on this, please refer to section 6.4.3.

6.8 Evaluation 1: Context Detection

In the initial evaluation of the system, two primary components were assessed:

the accuracy of detecting when steps were taken and the accuracy of the calculation

of stride length. As a preliminary study, these components were evaluated for an

individual with normal gait characteristics so that a baseline could be formed to

determine the practicality of distance calculation using a single accelerometer.

Overall, ten separate trails were conducted where the subject walked 8 steps for-

ward down a hallway, turned around, and then walked 8 steps back. Each of the steps

was manually measured by marking off the heel-strike locations along a tape measure

which spanned the entire hallway. Stride length was measured using the distance

between heel-strike events on each foot. As shown in Fig. 6.7, the pressure values

validated the starting and stopping points for each step. The acceleration curve fol-

lows what one would expect to see for normal gait and allows visual identification of

the points where the heel-strike and toe-off events are occurring as well as adequately

showing the mid-swing. The system was able to accurately detect every step event

within the data, but was limited in accuracy with respect to the distance calculated.

This was due to the posture of the foot during mid-swing that is not accounted for

with a single-accelerometer approach. A solution is to modify the system to use an

IMU in order to solve for this issue in accuracy by receiving angular acceleration

from the foot and shank. Since this study, other research has been conducted to show
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Figure 6.7: Graph Showing Corrected Acceleration, Velocity and Step Detection
(Tadayon et al., 2015a).

height-adaptive methods for more accurately calculating step length (Zhang et al.,

2018).

Although more extensive evaluation is required, preliminary results have shown

that this system does show promise in being able to detect asynchronous steps. Future

work may augment the single-accelerometer approach to include an IMU in order to

more accurately determine angular acceleration of the foot and thus make the distance

calculation much more accurate. This is because single-accelerometer approach has an

inherent flaw in that offset error in the acceleration will cause the velocity calculation

error to rise linearly with time. The effectiveness of site-specific haptic stimulation

will be evaluated as well once step length can be more accurately determined since

recent research has shown its effectiveness (Rabin et al., 2013). The system with

these modifications will be evaluated for effectiveness as a tool for the anticipation

and prevention of Freezing of Gait episodes.
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6.9 Evaluation 2: Motion Modeling and Prediction

In the dataset used for this study, motion data was captured from each subject us-

ing three accelerometers with different placement (shank, thigh, and torso) (Bachlin

et al., 2010). Any FoG events that occurred were then manually time-stamped into

the dataset by an independent observer. In this study, three subjects were chosen

at random and only the data from the three-axis shank accelerometer was used. For

each subject, neural networks were trained using the first half of their dataset. In

this training period, each time-stamp where FoG occurred was shifted 1,000 samples

(approx. 5 seconds) toward t = 0 such that the networks were trained to recognize

the precursor symptoms of each FoG event. Once these networks were trained, they

were tested using the second half of the dataset to yield the results shown in the fol-

lowing section. For each subject, several different neural networks were tested. The

parameters that were varied include:

1. N - number of hidden layers

2. M - number of hidden units per layer

3. f0 - number of samples included in back-propagation through time (BPTT)

algorithm

4. D - down sampling factor

After these trials were performed, the precision and recall for each network con-

figuration were calculated. The precision is the percentage of FoG warnings by the

trained network that correctly predicted a FoG event while the recall is the percentage
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Figure 6.8: Precision and Recall Values in Trials (Zia et al., 2016).

Figure 6.9: Number of FoG Events per Dataset (Zia et al., 2016).

of FoG events that were predicted by the trained network. Only the configurations

which yielded statistically-significant precision and recall values are shown in the Fig.

6.8. Fig. 6.9 indicates the number of FoG events present in each dataset used for

training and testing.

These results suggest that LRNs may be a viable method of predicting FoG events.

The data shows that FoG events were predicted up to 47% of the time for Subject

1, 30% for Subject 2, and 27% for Subject 3 while the corresponding network preci-

sion was 42%, 89%, and 57% respectively. As listed in figure 6.8, the most effective

networks (highlighted) were those that were both small and utilized down sampled

data. This may indicate that larger networks, which detect more nuanced patterns,

require either more computation time or more extensive datasets to provide compara-

ble predictive power. Based on the results, LRNs may be used in the future to assist
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Parkinson’s patients in their daily lives.

6.10 Evaluation 3: Invisibility of Cueing

The aim of the study is to evaluate the effectiveness of haptic patterns in allow-

ing an individual to seamlessly understand and follow a target cadence. Based on

prior work (Arias and Cudeiro, 2008; Hausdorff et al., 2007b), the frequency of cue

presentation was set to a target cadence of 110% of the ON-period baseline cadence

for each subject during comfortable walking. Stimulation at this frequency is known

to reduce the confounding variable of stride time (Arias and Cudeiro, 2008; Haus-

dorff et al., 2007b) which is strongly associated with FOG events. Two patterns were

tested which varied in complexity with a binary and simple representation as well

as one with higher level analogous representation of movement. A third pattern was

introduced which randomly skipped cueing on 50% of an individual’s steps to test

any residual effects on gait. The study also looked to evaluate whether a dual task

affected an individual’s ability to adequately sense, process and respond to the haptic

stimuli to simulate cognitive tasks that often occur in day-to-day activities. This

was done through the introduction of a serial subtraction task on certain trials while

the individual’s were receiving cueing from the belt. As metrics of evaluation, we

primarily look at how this intervention effects cadence, gait speed, stride length.

6.10.0.1 Participants

A total of 9 subjects with Parkinson’s disease who also have issues with freezing

of gait participated in the study with 3 men and 6 women with ages ranging from

57 to 76. Prior to participation, the following set of screen questions were asked to

evaluate selection criteria:

1. Do you ever experience freezing, or the feeling your feet are stuck to the floor,
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Subject NFOG-Q 2 Point Ab (cm) 2 Point Back (cm)

1 14/28 4.1 2.5

2 19/28 5.0 5.8

3 25/28 4.6 5.4

4 25/28 5.6 6.7

5 13/28 4.1 4.5

6 14/28 3.9 3.9

7 19/28 5.1 3.0

8 14/28 4.9 4.6

Table 6.1: Subject NFOG-Q Scores and Two Point Discrimination Results

when walking or getting up out of a chair?

2. Do you have any diagnosed neurological or orthopedic conditions (other than

PD)? If so, what?

3. How far or for how long (in minutes) can you walk?

4. How far can you walk without resting?

5. If you take seated rests, how far can you walk?

6. Do you ever use a cane or walker? If so, in what situations?

7. Do you have any numbness or tingling in your hands or feet?

8. How is your vision? Do you wear glasses?

9. What medications do you take for Parkinson’s disease and in what dosages?

10. Do you have any questions for me?
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11. After hearing about the study, can you describe to me in your own words or

show me what you understand you will be doing during the study and the

potential risks?

The subjects MDS-UPDRS (Goetz et al., 2008) score as well as their score on the

New Freezing of Gait Questionnaire (NFOG-Q) (Nieuwboer et al., 2009) was recorded

prior to the study. NFOG-Q scores ranged from 9/28 to 25/28. This means that there

was a wide distribution of heavy freezers to those with minimal freezing. A two point

discrimination test was also administered on both the abdomen as well as the back

of each participant to ensure that they could sense two points with at least 10cm

between. This value was used because this was the closest that the tactor modules

could sit next to one another on the belt depending on the size of the individual’s

waist. The two point discrimination on the abdomen ranged from 3.9cm to 5.6cm and

on the back from 2.5cm to 6.7cm. This was measured given that the dynamic haptic

cues required the ability to sense two points with 10cm between them. For additional

information on this, please refer to table 6.1. The sessions were also scheduled around

an hour after the subject had taken their last dose of medication to verify that they

were in the ON state.

6.10.0.2 Procedure

The goal of the study was to assess an individual’s ability to match a desired target

cadence through haptic patterns. Although freezing can occur in many different

contexts such as gait initiation, obstacle avoidance, turning, etc., this study was

primarily looking at freezing that occurs in the middle of continuous walking. The

participant was first asked to walk down and back a 20 meter hallway in order for the

system to get a baseline, comfortable cadence. This cadence was input to the system

and was used to calculate target thresholds for all other cueing conditions.
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Two different primary cueing conditions were evaluated: haptic metronome and

haptic metaphor. A third condition in which cue fading occurred with the haptic

metaphor was also evaluated to test any short-term learning effects that may occur.

In each of these conditions, a trial consisted of the subject walking 20 meters in a

single direction with no turns or obstacles down a carpeted hallway. It is important

to note that the hallway was wide enough to not illicit freezing episodes on its own.

In each of these cue conditions, the study consisted of six trials: 2 training trials,

2 single-task trials and 2 dual-task trials. The order of the trials was as follows:

1. Training Trial #1

2. Training Trial #2

3. Single Task Cueing Trial #1

4. Dual Task Cueing Trial #1

5. Dual Task Cueing Trial #2

6. Single Task Cueing Trial #2

The trials were organized in this way to offset any potential confounding variables

around learning between trials. It is also important to note that in the last feedback

condition (feedback fading), no training occurred as the subject had already learned

the feedback pattern in the metaphor condition. Dual task trials consisted of the

individual walking to the desired step pattern while also being given a secondary,

disjoint cognitive task. In these trials, subjects were tasked with a serial three sub-

traction task where they were given a three digit number right before the start of

the walking and asked to count backwards by 3’s for the duration of the trial. This

was to evaluate the intuitiveness of perceiving the feedback through the haptic belt.
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Introducing a secondary cognitive task is known to be a trigger of freezing episodes

(O’Shea et al., 2002). Thus, the study considered if the introduction of additional

cognitive load would offset an individual’s ability to effectively follow the desired

increase in cadence or if the patterns were innate enough that the user could split

attention.

6.10.0.3 Results

Feedback

Average

Change in

Cadence

St Dev Range

Metronome with Single Task 9.03% 7.53% 2.81 - 10.27%

Metronome with Dual Task 2.25% 4.67% -4.13 - 9.49%

Metaphor with Single Task 1.40% 7.88% -12.24 - 10.34%

Metaphor with Dual Task -7.11% 10.25% -25.76 - 1.38%

Fading with Single Task -1.96% 4.81% -9.59 - 4.59%

Fading with Dual Task -2.06% 3.09% -6.80 - 2.81%

Table 6.2: Average Change in Cadence by Various Feedback Protocols Across All
Subjects

A summary of the participants NFOG-Q scores as well as their performance on the

two point discrimination test can be seen in table 6.1. Overall, every subject showed

an increase in cadence under the single task condition of the haptic metronome feed-

back protocol with an average increase of 9.03% over their baseline gait. One partic-

ipant showed a 26.42% increase in cadence. Under the dual task scenario with this

feedback, an average increase of only 2.25% was found. Under the haptic metaphor

condition, subjects showed a very slight increase in cadence under the single task
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with an average of on 1.40% increase in steps per minute, but a decrease of 7.11% in

the dual task scenario. This signifies that these higher level feedback patterns may

be introducing too much additional cognitive load and require more of a subject’s

attention to accurately perceive. In the feedback fading condition, a decrease was

detected across both conditions (single task and dual task) signifying that, at least in

the short term, no learning effect occurs between steps through the use of this system.

However, further research needs to be conducted to evaluate any potential learning

effects after prolonged use. For this scenario, a longitudinal study is suggested where

the subjects use the device for at least 30 minutes a day for a minimum of two weeks

as outlined in Espay et al. (2010). A summary of the data can be found in table 6.2.

6.11 Parkinsonain Gait Future Work

6.11.1 Multimodal Feedback Design

The effectiveness of anticipatory applications relies heavily on the ability for the

approaches to accurately measure and process contextual information that are pre-

dictors of future context. In determining predictive indicators for freezing of gait

(FoG) episodes, it is important to first try to gain insight into fundamental causes

of the phenomenon. One of the principle challenges in characterizing freezing of gait

for individuals with Parkinson’s disease is that it is still not fully understood why

the disease has an episodic effect on gait at all (Giladi et al., 2001). However, sev-

eral models have been proposed in attempting to characterize the episodic nature

of FoG (Nieuwboer and Giladi, 2013; Plotnik et al., 2012; Lewis and Barker, 2009;

Vandenbossche et al., 2013; Jacobs et al., 2009):

• Threshold Model: This model assumes that the episodes occur when the

accumulation of various motor deficits reinforce each other to a point of motor
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breakdown.

• Interference Model: This model suggests that the episodes represent an in-

ability to deal with multiple, concurrent cognitive, limbic and motor inputs

which causes an interruption in the automatic process of gait as the individual

is trying to address other stimuli.

• Cognitive Model: This model proposes that FoG is caused by a failure to

process response conflicts which leads to indecision.

• Decoupling Model: This model views FoG as an issue in the disconnection

between the preparatory system from the intended motor action as a result of

which automatic movements are broken.

However, none of these models still fully encompass the complexity or variability

of freezing episodes. Moreover, walking styles of PD patients differ greatly across

subjects (including diverse motor anomalies) (Nieuwboer et al., 2004). Thus, eventual

patterns in the data that lead up to a FoG event will also likely be highly subject-

specific and vary greatly by individual. Nevertheless, previous work suggests that

there is a deterioration of the normal gait before FoG which can be expressed in

various ways (Plotnik et al., 2012; Nieuwboer et al., 2004; Nutt et al., 2011). Although

the pathophysiology of this symptom remains enigmatic, early research has indicated

that there may exist a dual requirement of a reduced step length and a successive

step-to-step amplitude reduction that leads to FoG episodes (Chee et al., 2009). Some

potential metrics of exploration for the estimation of the properties of step length and

step amplitude can be described as follows:

• Postural Stoop - The angle of the upper body plays an important role in gait

as it defines the center of gravity for an individual’s weight. As the angle shifts
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forward, taking longer steps becomes physically more difficult. Festination while

walking is defined clinically as a tendency to move forward with increasingly

rapid, but ever smaller steps, associated with the centre of gravity falling for-

ward over the stepping feet. This is a common occurrence for individuals with

Parkinson’s and can be measured through an IMU being placed on the chest.

An interesting challenge to explore would be to determine if there is a stan-

dardization that could be developed for stoop threshold to define a potentially

dangerous angle. Furthermore, although early research has indicated that pos-

tural instability can potentially play an important role in the activation of FoG

episodes (Nantel and Bronte-Stewart, 2014), more work needs to be done to

determine the predictive capabilities of this measurement.

• Cadence - Walking cadence is a representation of walking speed and is typically

measured in strides taken per minute. In Parkinson’s, modulation of cadence

remains intact and unaffected even for individuals who experience severe gait

issues; however, cadence is used as a compensatory mechanism for a decrease

in stride length to maintain walking pace (Morris et al., 1994). Thus, this

measure can be used as a secondary indicator for shortened step length and

can also provide contextual information to help limit false positives within the

prediction algorithm. As an example, a system may detect shortened stride

lengths over a prolonged period of time and may flag this as a FoG episode.

However, the individual may be just standing in a slow-moving line where large

strides are infeasible. In this scenario, the system could denote a slow cadence

as well which would indicate that the user is intentionally taking shorter steps.

If the system noticed a fast cadence in combination with decreased stride length,

this would be a much stronger indicator for a FoG episode and could greatly
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increase the precision of predictive algorithms.

• Electromyographic Data - Some early work has been done in analyzing dif-

ferences of EMG patterns that occur in standard gait termination versus those

that occur during freezing (Nieuwboer et al., 2004). This study found that a

consistent pattern of premature timing of tibialis anterior and gastrocnemius

activity occurred before freezing, as distinct from standard gait stopping events,

which was interpreted as a disturbance of central gait cycle timing. The study

found that the timing of these events rather than the magnitude of the signals

were the primary indicator which correlates directly with findings that the tim-

ing of stepping is fundamental to freezing. Although these signals occur in close

proximity to the actual freezing event, this data in combination with kinematic

data could further validate and help predict episodes. A limiting factor with

the inclusion of this metric is the concept of mobility as there are no current

mobile solutions that provide the level of granularity and precision while also

allowing for real time signal decomposition required for utilizing these signals

in an “in the wild” setting.

• Environmental Context - While FoG episodes are typically considered a

motor impairment, some research has been done to show that there may be

a perceptual bias that contributes to these events. Specifically, key differences

have been shown in the perceptual processing capabilities of individuals with PD

who experience freezing episodes compared to those who do not (Almeida and

Lebold, 2010; Davidsdottir et al., 2005). Generally speaking, freezing episodes

are more likely to occur when an individual is undergoing a high-stress or timed

task such as navigating through a narrow corridor or crossing a street. These

observations fit within both the interference model and the decoupling model
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as the individual has to process multiple inputs and factor those into the plan-

ning/timing process for gait. Thus, adding some sort of sensing capability

where the system could detect the environmental context of a user and enter

a “heightened-awareness” state could greatly increase the recall capabilities of

predictive algorithms.

6.11.2 Pre-Training & Domain Adaptation

In the realm of neurological disorders, no two individuals ever manifest the same

exact symptoms. This is especially true in the case of Parkinson’s disease where

disease progression can vary drastically by individual and some individuals can exhibit

conditions that don’t affect others at all. Issues with mobility are a primary example

of this as only about 70% of the PD population experiences falls on an annual basis

as a result of a mobility issue (Wood et al., 2002). Even for those that do exhibit

mobility challenges, there are various degrees to which this may inhibit the individual

as mobility issues can manifest as stooped posture, freezing of gait (FoG), festination,

shuffling steps, falling, or any combination of these. One of the main challenges of

neural networks for predicting FoG is the need for extensive labeled training data

to develop robust models for classification. Prediction, as opposed to detection, is a

three-class classification problem where the two classes of detection (FoG and Normal

Gait) are considered as well as a third class pre-FoG. Within the PD application, a

naive initial approach was taken to attempt to address the person-centered nature of

FoG patterns in that, for each subject, the neural network was trained using the first

half of their dataset and tested using the remaining. This approach greatly limits

the size of the training set and can result in overfitting if the training data is not

well representative of the intra-subject variation in gait patterns that can lead to

freezing episodes. To address this limitation, domain adaptation techniques may be
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utilized so that the network can be trained on a larger, more representative dataset

and fine-tuned to address variations by individual.

In domain adaptation, the primary goal is to develop a robust model from a broad

source distribution such that it will perform well when tested on a different, but re-

lated, target distribution. In order to broaden the source distribution in the PD

application, pre-training can be conducted on the entire labeled dataset of Parkin-

sonian gait rather than on a single individual’s gait data as done by Mazilu et al in

their work comparing feature learning approaches to unsupervised ones based on PCA

(Mazilu et al., 2013). This study ran on the UCI Daphnet Freezing of Gait Data Set

(Bachlin et al., 2010) and was able to achieve an F1-measure of 56% by varying the

window of data to be considered as pre-FoG between one and six seconds. However,

the authors did note that this window will probably vary between individuals even

for different FoG episodes for the same patient further highlighting the need for fine

tuning. One potential method for fine tuning is in the use of the Backpropagation

Through Time (BPTT) algorithm that is used to update the weights of the recurrent

neural network (RNN) (Werbos, 1990). Once the network is trained on the generalized

gait data, we can implement a Truncated Backpropagation Through Time (TBPTT)

technique to limit the depth of error propagation within our network so that we only

propagate through the latter layers. This is motivated by the observation that earlier

layers encapsulate more generic features of Parkinsonian FoG that would be useful in

addressing overfitting concerns, but latter layers become progressively more specific

to the details of the classes contained in the original dataset (Sutskever, 2013). Thus,

conducting error correction for these end layers could result in more person-specific

categorizations. More recently, Torvi et al. (2018) also studied the application of

transfer learning on gait characteristics between two individuals with Parkinson’s.

In this study, they evaluated the performance of Long Short-Term Memory (LSTM)
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architectures to predict FoG at short time durations.
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Chapter 7

REMAINING CHALLENGES & FUTURE WORK

This dissertation introduces a novel framework for the design and development of

a new category of assistive devices with anticipatory and invisible interfaces. The

fundamental contribution of this research is to propose a set of guidelines and con-

siderations that guide the development of devices to augment an individual’s propri-

oceptive system in a way that seamlessly integrates into their own perception of self.

The framework looks to shift the burden of adaptation from the user to the device.

Systems designed under these principles anticipate an individual’s needs based on cur-

rent context and adopt a person-centric approach by adapting to the user based upon

their personal characteristics. In this work, the scope of assessment was restricted

to explore application areas related to neurodegenerative disorders as these context

provide a unique set of circumstances that mandate the benefits described above. In

Chapter 5, a preliminary motion monitoring system that is embedded into exercise

equipment is presented and evaluated through the lens of the framework. Opportu-

nities for further evaluation within this context are also presented. In Chapter 6, a

multi-study body of work is presented in the real of FoG anticipation for individu-

als with Parkinson’s disease. Three different evaluations are presented to encompass

the different steps of anticipation: sensation, prediction and feedback. Each of these

evaluations validates modules of the proposed framework.

Based on the results presented, there are many topics left to be explored to op-

timize the design of these systems through this framework. Chapter 5 discusses the

need to explore feedback fading approaches and Chapter 6 presents the opportunities

to explore multi-modal feedback as well as domain adaptation techniques. Here, some
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additional topics for consideration in future work are presented.

7.1 Generalization of Motion Blueprint

In examining the applicability of domain adaptation and transfer learning to the

realm of motor performance, it is critical to identify similarities between features that

can be normalized across different application spaces. Although the topic of ”motor

performance” as a whole may be too generalized to identify meaningful feature over-

lap, future research should look into sub-dividing categories of motion with enough

specificity for which templates of blueprints may be developed. As an example, in the

development of predictive models for freezing, human gait involves significant subject-

based variability and a machine learning model trained on a particular patient’s data

may not generalize well to other patients.

In section 6.11.2, a preliminary approach is discussed in adapting gait charac-

teristics from one individual with FoG to another. However, it may be beneficial

to consider other domains in which issues with gait are predicted as a generalized

approach. In this scenario, instead of looking strictly at freezing, algorithms look

at a more generalized category of compliant versus non-compliant walking patterns.

Research would then need to be done to determine if some of the same predictors

of non-compliance in other domains can extend to freezing. Examples would include

step asymmetry issues with stroke patients (Allen et al., 2011) and gait-based pre-

dictions of falls in the elderly (van Schooten et al., 2015). Predictive characteristics

could consider festination, step asymmetry, and cadence as examples of predicting

factors.
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7.2 Standardized Assessment for Proprioception

One of the primary challenges in the design of idiosyncratic systems under the

proposed framework is the identification of a standardized assessment protocol. This

problem is especially true as it relates to proprioceptive evaluation given that the field

is quite diverse and no true clinical standards yet exist. Currently both“proprioception”

and “kinaesthesis (kinaesthesia)” continue to be used as terms in the published liter-

ature noting that there isn’t even a strict agreement on the fundamental biophysical

structures. Future work should look at current assessment tools used in research to

identify commonalities for a generalized approach. Similarly, looking at current clin-

ical protocols for determining proprioceptive ability, including threshold to detection

of passive motion, joint position reproduction, and active movement extent discrim-

ination (Han et al., 2016), as a means of generalizing an assessment protocol should

be considered.
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