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ABSTRACT

The inverse problem in electroencephalography (EEG) is the determination of form

and location of neural activity associated to EEG recordings. This determination is of

interest in evoked potential experiments where the activity is elicited by an external

stimulus. This work investigates three aspects of this problem: the use of forward

methods in its solution, the elimination of artifacts that complicate the accurate

determination of sources, and the construction of physical models that capture the

electrical properties of the human head. Results from this work aim to increase the

accuracy and performance of the inverse solution process.

The inverse problem can be approached by constructing forward solutions where,

for a know source, the scalp potentials are determined. This work demonstrates that

the use of two variables, the dissipated power and the accumulated charge at inter-

faces, leads to a new solution method for the forward problem. The accumulated

charge satisfies a boundary integral equation. Consideration of dissipated power de-

termines bounds on the range of eigenvalues of the integral operators that appear in

this formulation. The new method uses the eigenvalue structure to regularize singular

integral operators thus allowing unambiguous solutions to the forward problem.

A major problem in the estimation of properties of neural sources is the presence

of artifacts that corrupt EEG recordings. A method is proposed for the determination

of inverse solutions that integrates sequential Bayesian estimation with probabilistic

data association in order to suppress artifacts before estimating neural activity. This

method improves the tracking of neural activity in a dynamic setting in the presence

of artifacts.

Solution of the inverse problem requires the use of models of the human head. The

electrical properties of biological tissues are best described by frequency dependent

complex conductivities. Head models in EEG analysis, however, usually consider
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head regions as having only constant real conductivities. This work presents a model

for tissues as composed of confined electrolytes that predicts complex conductivities

for macroscopic measurements. These results indicate ways in which EEG models

can be improved.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Localization in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 EEG: PROPERTIES AND MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Basic EEG Recording Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Management and Processing of EEG Data . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 EEG Recordings and Their Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Biophysical Origin of EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Forward Models for EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 STATISTICAL PROCESSING METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Dynamic Parameter Estimation Using Kalman Filtering . . . . . . . . . . . 19

3.2 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Rao-Blackwellized Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Probability Hypothesis Density Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Independent Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 ESTIMATION OF TIME VARYING SOURCES . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Data Structures and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



CHAPTER Page

4.3 Calculation of Matrix Elements for the Dipole Model . . . . . . . . . . . . . . 34

4.4 Estimation of Dipole Moments and Positions . . . . . . . . . . . . . . . . . . . . . 37

4.5 Data Set and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 CHARGE AND POWER IN EEG MODELS . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Surface Charge Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Charge Accumulation at Region Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Surface Charge Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Eigenvalues of the SCM Charge Interaction Operator . . . . . . . . . . . . . . 63

5.6 Interpretation of the Maximum Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . 66

6 SOLUTIONS SPACE OF THE SURFACE CHARGE METHOD . . . . . . . . 69

6.1 Solutions Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Neural Dipole Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Comparison to Deflation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 FINITE ELEMENT IMPLEMENTATION OF THE SCM . . . . . . . . . . . . . . 74

7.1 Surface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Matrix Form of Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Subspace Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Computational Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 CONDUCTIVITY MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1 Confined Electrolytes in Tissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



CHAPTER Page

8.2 Displacement Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Conductivity of Confined Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.4 Comparison to Observed Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1 Source Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 Power and Charge Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3 Tissue Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



LIST OF TABLES

Table Page

7.1 Realistic Head Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



LIST OF FIGURES

Figure Page

1.1 Reconstruction of Gage’s Accident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 EEG Sensors on Face and Scalp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Sensors Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Signal Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Brain Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Neuron Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Axon Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Three Sphere Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Dipole Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 EEG Potentials Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Channel Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Independent Components Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Independent Components Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Particle Filter Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Dipole Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Dipole Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Dipole Magnitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Actual and Recovered Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Reconstruction Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Neural Activity Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Solution Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Projection Method Error Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Results for Realistic Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Eigenvalue Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



CHAPTER Page

8.1 Tissues as Confined Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Currents in Confined Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Potential, Field, Current, and Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.4 Conductivity and Permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



Chapter 1

INTRODUCTION

1.1 Localization in the Brain

Phineas Gage was an American railroad worker who in 1848 was injured in an

accident [1]. An explosion drove an iron rod through his head destroying part of

his brain. Figure 1.1 shows a reconstruction of the trajectory of the rod. While he

was able to physically recover from the accident, with his motor abilities essentially

unaltered, his personality suffered in contrast dramatic changes. His speech became

profanity laced, and his previous consistency and reliability as worker disappeared;

he became untrustworthy and irresponsible. This famous medical case provided con-

crete, if anecdotal, evidence for the theory of localization in the brain. Proponents

of this idea noted that the accounts of his behavioral change could be understood

assuming that mental activities associated with social interactions are carried out at

precise locations in the brain. With some modifications and many caveats this idea is

now firmly established. While brain plasticity allows the partial remapping of brain

functions in case of injury, normal mental tasks involve heightened activity at well

defined locations. The study of the spatial and temporal characteristics of mental

activity is nevertheless far from complete, and it is the purpose of the present work

to contribute to the understanding of brain activity through improvements in the

methods used for mapping external stimuli to their response locus in the brain.

A much less intrusive method of for studying brain activity, the electroencephalo-

gram (EEG from now on), was developed in the early 20th century by Hans Berger

and Richard Canton, following earlier experimentation in animals [2]. This method
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Figure 1.1: The path of the iron rod through Phineas Gage’ skull (from Ref.[1] )

consists of the recording of electric potentials at the surface of the subjects scalps as

shown in Figure 1.2. While these measurements are rather indirect, they do reflect

the concrete localized activity inside the brain [3, 4]. More recently, other methods of

investigation such as functional Magnetic Resonance Imaging (fMRI) [5] have been

developed that provide more detailed views of brain activity, but EEG remains a

central tool of research for its relative ease of use.

Not only is the observation of brain activity a subject of obvious scientific inter-

est, but it clearly has very important practical applications. All methods of brain

function mapping have been put to use as diagnostic tools in neuromedicine. In ad-

dition, the emerging field of brain interfacing is paving the way for the development

of effective communication methods unmediated by motor activity, with many pos-

sible applications ranging from medicine to entertainment and nearly everything in

between [6, 7].

There are several current applications of EEG to brain research and medicine. One

is the determination of the location and other properties of the brain activity elicited

2



Figure 1.2: Subject with EEG electrodes ready for measurements; a far less intrusive
alternative to brain investigations. Image by Douglas Myers, Public Domain.
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by specific external stimuli [8]. Additionally, the characteristics of the EEG under

different physiological conditions can be used as a tool for assessing the presence and

features of special brain activity states such as sleep [9] or seizure attacks [10].

1.2 Motivation for This Work

The work presented here aims at improving the methods used in applications of

EEG to brain activity localization. In a typical localization experiment, an external

visual or auditory stimulus is presented to an individual who, in turn, responds in

some way to it. Associated with the presence of the stimulus and the response,

localized neural activity appears in the brain. The activity generates electric signals

that are measured at the scalp, forming the EEG recording. These recordings can

then be analyzed to determine the location of the neural activity. This determination

is the EEG inverse problem. Such analysis requires the use of a model that can

connect observations with features of the source. A practical approach to the solution

of the inverse problem is to use filtering methods, where simulations of observation

for assumed locations are compared to the actual data and lead to an estimation of

the source location. This method requires the solution of the forward problem: the

determination of scalp potentials from prescribed information about the source.

In addition to the filtering method mentioned above, there exists many approaches

to the solution of the inverse problem. Some of these methods have been developed in

considerable detail and implemented as software packages that allow an user to input

EEG recordings and produce estimates of source localization, in addition to provide

other information. Examples of these packages are EEGLAB [11] and OpenMEEG

[12].

The EEG inverse problem cannot be considered, however, fully solved. A number

of fundamental and practical problems still exist. Methods of solution of the forward

4



problem can be improved and should be better understood. Systematic errors due

to the presence of artifacts need be addressed. The models most commonly used

to relate sources and measurements do not capture important features observed in

biological tissues. The present work contributes to the solution of these problems.

1.3 Contributions

The contributions of the present work are briefly summarized here, with more

detailed and technical conclusions presented in the relevant chapters.

This work also presents a new approach to the elimination of artifacts in EEG.

In addition to noise that can be effectively be considered as random. EEG signals

can be disrupted by the presence of artifacts: large signals associated with identifiable

physiological activity such as as yawning or eye movement. A common approach to the

elimination of these artifacts has been to carry out an independent component analysis

(ICA) of the EEG signal and identify some of the channels as associated to artifacts.

A different method is devised here that uses Bayesian sequential estimation. A key

difference between the methods is that the new approach can be used in dynamic

settings where the decomposition implied by ICA is not effective.

This work also considers in detail the structure of forward solutions that are re-

quired in filtering approaches to the solution of the inverse problem. It is shown

that the use of surface charge accumulation and power dissipation variables leads to

an alternative formulation of the forward problem. Using descriptions of the human

head as composed of a set of homogeneous regions, each with a constant conductivity,

the forward problem is formulated as an boundary integral equation, which is equiva-

lent to the commonly used Geselowitz integral equation (GIE), that uses the electric

potential as variable. Using the properties of power dissipation, it is shown that im-

portant characteristics of the integral operators that appear in these equations obey
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bounds in their eigenvalue sets. These bounds lead to a better understanding of the

problem structure and are used to develop a novel approach to the solution of the for-

ward problem. When surfaces are discretized, the integral operators are represented

as matrices, which can be singular and make the forward solution ill-defined. The

properties of the eigenvalues allow the construction of regularized versions of these

matrices, rendering them invertible and thus allowing the solution of the problem.

Other properties of the EEG system are also clarified using these variables.

All methods of solution of the inverse problem rely on physical models connect-

ing measurement and neural source. The most common model, leading to the GIE,

assumes that heads are composed of homogeneous regions each of constant conduc-

tivity. It is well established, however, that the electric properties of most biological

tissues are best described by complex conductivities so that, when considered as part

of electric circuits, they exhibit a complex impedance. In this work, a model for tissue

conductivity is developed that explicitly considers the contribution of the confined

electrolytes that appear in tissues. It is shown that they can account for most conduc-

tive properties of tissues at low frequencies These results indicate that physiological

models that include consideration of complex conductivities should be incorporated

in the study of EEG and the solutions of its associated inverse problem.

1.4 Content

This document is organized as follows. A description of the EEG and its bio-

physical interpretation appears in Chapter 2. The next set of chapters considers the

dynamic estimation of sources in the presence of artifices The statistical methods

required for its analysis are presented in Chapter 3. Their implementation, in the

context of the EEG appears in Chapter 4.
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The next few chapters detail progress on the use of charge and power variables

to establish properties of the EEG forward solution. The structure of these variables

is outlined in Chapter 5. Using these variables, it is possible to elucidate several

properties of the integral operators that appear in the problem. The space of so-

lutions of the relevant equations appear in Chapter 6. This chapter also discusses

the application of these results to the construction of a method for forward solutions

that takes advantage of the structure of the solution space. Details of the method

implementation, along with sample results, appear in in Chapter 7.

Finally, a discussion of a model of tissue conductivity based on the properties of

confined electrolytes appears in Chapter 8.
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Chapter 2

EEG: PROPERTIES AND MODELS

EEG recordings are a fundamental tool of neuroscience. They provide a view

of the large scale activity of the brain but have the drawback of coarseness and a

relatively indirect relation with cellular level processes. This chapter reviews some

of the fundamental characteristics of EEG and the models used to describe evoked

potentials, that is, activities that results from external influences.

2.1 Basic EEG Recording Techniques

Modern EEG recordings use a set of electrodes placed against the scalp at a set of

standardized positions. These electrodes record the potential difference between their

location and a a common reference point. The electrodes are typically made of a silver

alloy. This material is chosen so that the electrodes can quickly reach and maintain

stable electroplates when placed against biological tissue [4]. The electrodes can be

electrically passive or active. Passive electrodes typically present impedances of 10 to

20 kΩ, and in high precision applications, a key criteria is their uniformity. On the

other hand, the electrodes themselves can be constructed with integrated circuitry

to help in the detection and processing of signals. Standard EEG equipment often

use sets of 16, 32, 64, 128, 160 or 256 electrodes, but manufacturers can provide a

different set number. To identify their locations, a standard nomenclature has been

developed and is referred to as the ten-twenty electrode system [13]. An example of

how the labels are used is shown in Figure 2.1. When a small number of electrodes

is used, they are applied to the scalp with collodion (a thick liquid acting as a glue).

For large sets of electrodes, it is simpler to place the electrodes on a cap which is then

8



Figure 2.1: Labels in the ten-twenty nomenclature for a system of 20 electrodes.
(Public domain image)

set against the scalp that is covered with gel in preparation.

2.2 Management and Processing of EEG Data

Contemporary use of EEG recordings takes advantage of digital means of record-

ing, storing and processing of the data. Specialized software facilitate these tasks.

For this work, we processed data using the freely available EEGLAB package that

runs as an add-on to Matlab [11]. The package provides tools for data organization,

selection and labeling. For visualization purposes, it provides rendering tools for

two-dimensional (2D) and three-dimensional (3D) plots of the data, superimposed on

semi-realistic shapes of heads. It includes processing tools to eliminate biases and

noise. It also includes time-frequency analysis and independent component analysis

tools.

2.3 EEG Recordings and Their Characteristics

EEG digital recordings are typically carried out at sampling rates if the order of

100 to a 1,000 Hz. Sampling at these frequencies is sufficient to capture essential

9



Figure 2.2: A typical digital display of EEG recordings in scroll format. Data for
each sensor is identified by their name on the left. The scroll was generated by the
EEGLAB interface.

brain responses. This is because experiments addressing evoked potentials present

interesting characteristic behavior over time frames in the order of 100 ms. To resolve

these features, it is therefore required to sample the electrode potentials at 200 Hz or

higher. Such rate is feasible with common instrumentation.

The actual recordings of an EEG session are often presented in the form of a scroll,

replicating the look of paper-recorded EEGs as shown in Figure 2.2. The recordings

take the form of graphs of potential (with respect to a common fixed point) against

time. The captured potentials are typically in the µV range, but are subject to a

baseline drift that can be in the scale of the actual measurement. Elimination of these

biases requires preprocessing of the data.

Electrical activity in the brain, as measured by EEG, can be broadly classified

into spontaneous EEG and evoked potentials. Evoked potentials are recordings of

responses to experimental situations that introduce time-localized attention grabbing
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Figure 2.3: Examples of EEG brain waves in different frequency bands. (Image by
Chatterjee and Miller [14]).

events. Spontaneous EEG corresponds to experimental conditions that, while con-

trolled, do not introduce these events.

A dominant feature of spontaneous EEG is the presence of well defined waves of

relatively steady frequency [3]. These waves are typically classified by their frequency

range as illustrated in Figure 2.3. Alpha (α) waves are oscillations in the frequency

range 8-13 Hz. They are associated with a relaxed but wakeful state; in EEG record-

ings, these waves have amplitudes up to 50 µV. The beta (β) waves, in the 14-26 Hz

frequency range are an indicator of conscious activity with amplitudes in the range

of 30 µV. The gamma (γ) waves comprise any high frequency activity, at 30 Hz and

above. Delta (δ) waves, on the other hand, are low frequency oscillations in the range

0.7-5 Hz, primarily associated with deep sleep. Finally, theta (θ) waves, in the 5-9 Hz

range, indicate transitional activity from wakefulness to sleep and are also associated

with subconscious mental activity.
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Evoked potentials are responses to specific stimuli, and as such, they are localized

in time, occurring right after the stimulus.

2.4 Biophysical Origin of EEG

All human conscious processes are effected by electrical activity in the brain.

In addition, many motor and sensory functions are processed in the brain in close

interaction with the rest of the nervous system. Physiologically, the brain can be

divided into three regions, the brainstem, the cerebellum and the cerebrum [15].

The brainstem connects the brain with the spinal cord providing means for signal

transmission. The cerebellum is associated with muscular control, and cognitive

functions are associated with cerebrum processes. The outer part of the cerebrum is

known as the cerebral cortex. At a cellular level, it contains about 1010 neurons that

are strongly interconnected. These neurons can have up to 105 synapses, which are

connections with other neurons capable to transmit signals.

The fundamental activity of neurons is electric in nature. Structurally, neurons

have two special types of appendages, dendrites and an axon, as shown in the scheme

in Figure 2.4. The dendrites collect signals transmitted to them by other neurons

at synapses; while this transmission is of chemical nature, it only occurs when the

electric potential at the synapse location satisfies certain conditions. The neuron pro-

cesses this information and emits, in turn, electric signals that propagate through the

axon at speeds of order of 1 m/s and eventually excite the axon synapses to transfer

information to other neurons. The potentials generated change the rest conditions by

potential differences in the order of 10 mV. The generation and transmission of these

electric pulses are complex processes that require the intake and ejection of ions at

specific locations to create the net potential changes and currents associated with the

signals. As shown in the scheme of Figure 2.5, the local modified potential travels
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Figure 2.4: Scheme of a neuron showing its dendrites and axon and a number of
synapses.

Figure 2.5: Scheme of the ionic current structure associated with signal transmission
along an axon.

unidirectionally away from the neuron body along the axon, and in the process, gen-

erates currents inside the axon but also in the extracellular region; it is the collective

effect of these currents that is associated with EEG measurements.

2.5 Forward Models for EEG

In settings that involve evoked potentials, the fundamental model for the inter-

pretation of EEG results assumes that the response to external stimuli consists of

highly localized activity in the brain. It also assumes that this activity is reflected
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Figure 2.6: Scheme of the three sphere model of the head.

in the emergence of a relatively large but localized current. The activity of a large

number of neurons in a specific region adds up to a coherent current with an associ-

ated electric potential field. Using this idea, it is possible to construct models for the

relation between the source currents and the measured EEGs. Extensive work has

been carried out towards this goal. See reviews, for example, in [16, 17].

In practical applications, however, the most commonly used and relatively realistic

model is a three-layer model that considers currents through a set of homogeneous

environments [18–24]. A spherical head model with three layers is shown in Figure

2.6.

The three-layer model assumes that the currents in the extracellular region of the

brain flow in an environment that can be described as a homogeneous conductor,

which therefore obeys the local form of Ohm’s law given by

J = σE. (2.1)
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Here, J is the current density, E is the electric field and σ is the conductivity of

the brain’s extracellular region. In the brain region, it is assumed that the collective

effect of an evoked response is to create a strong net current, that can be represented

by a set of sources and sinks in a relatively small region. The strength and space

distribution of these sources and sinks can be approximated, as a single source and

a companion sink of the same strength. The source and sink locations are indicated

by the 3D position vectors xs, and xk. Their separation is a = xs − xk and their

midpoint is xc = (xs + xk)/2. The current emerging from the source is I and the

same current disappears at the sink. The current sinks and sources correspond to

non-zero contributions of the divergence of the current field; each source and sink

divergence can be represented as a delta function. The divergence of the current can

be expanded as:

∇ · J = I(δ(x− xs)− δ(x− xk)) ≈ I a · ∇δ(x−xc). (2.2)

where ∇ is the gradient operator. Using the relation between the current and the

field, and assuming that there are D regions with net source-sink pairs centered at

locations x
(d)
c , d = 1, . . . , D, the electric field must satisfy

∇ · E =
D∑
d=1

qd δ
′(x− x(d)

c ), (2.3)

where qd = Id ad σ is the strength of the effective dipole associated with the d-th

source-sink pair. Finally, the electric field E = −∇ψ can be written as the gradient

of the potential ψ so that

∇2ψ = −
D∑
d=1

qd · ∇δ(x− x(d)
c ) (2.4)

The structure of this equation indicates that the localized currents generate an electric
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field identical to that of a static set of dipoles in homogeneous media.

In the multilayer model, it is necessary to also require the potential to satisfy

two boundary conditions at each interface. Each interface bounds two regions; at all

points of the interface, the potential must be continuous and for regions labeled a

and b, one can write:

ψ|a = ψ|b (2.5)

where the vertical |a is used to denote the evaluation at points in the interface in the

region indicated by the subindex. Additionally, as current must be conserved, the

components of the current normal to the interface must also be equal. Assuming that

the unit vector normal to the interface is n, the condition can be written as

J · n|i = J · n|i+1. (2.6)

For models that assume homogeneous media, the total potential is linear on the dipole

moments associated with the currents. If the solutions for the potential ψ(r; rd,qd)

evaluated at position r, due to a dipole of magnitude qd located at position rd, are

known, the net potential is simply the sum of the D solutions:

ψ(r; r1, . . . , rD,q1, . . . ,qD) =
D∑
d=1

ψ(r; rd,qd). (2.7)

The solutions for individual dipoles are obtained as follows. A standard Cartesian

system of coordinates is used, as shown in Figure 2.7. In the brain region, a change

of coordinates can always be carried out so as to position the dipole at a point in the

z-axis and to have the dipole lying in the x-z plane. The solution ψI , for a single

dipole source in an infinite homogeneous space, is given by

ψI(r; rd,qd) =
1

4π

1

|r− rd|3
q · (r− rd). (2.8)
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In a finite sphere or in a region bounded by two concentric spheres, the more general

solution ψG to the Poisson equation 2.4, with a single dipole, has the form

ψG(r) =
n=∞∑
n=0

m=n∑
m=−n

(An,mr
n +Bn,mr

−(n+1))Pm
n (cos θ) eimφ. (2.9)

Here r is the point at which the potential is evaluated Its spherical coordinates ex-

pression is r = (r, θ, φ). The expansion uses two indices, n, m, and for each pair

of values, Pm
n denotes the associated Legendre polynomial. The imaginary unit is

i =
√
−1. In the dipole source case, when the orientation described above is used,

only the terms with |m| ≤ 1 are non-zero. In the brain region, the series expansion of

the infinite space solution, equation 2.8, determines the coefficients Bn,m. The coeffi-

cients An,m for this region and the coefficients for the rest of the concentric spheres

are determined from the solution to the boundary conditions in equations 2.5 and 2.6,

along with the requirement that outside the conductive regions the potential should

vanish at large distances. Schematically, the net potential can be written as the dot

product of a vector function G and the dipole moment qd:

ψ(r; rd,qd) = G(r, rd) · qd. (2.10)
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Figure 2.7: A dipole with position along the z-axis lying in the x-z plane. The figure
shows the polar θ, and and azimuthal φ angles for a generic position.
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Chapter 3

STATISTICAL PROCESSING METHODS

This chapter provides background on some statistical methods that have been

used in analyzing EEG recordings. The background information follows mostly from

[25].

3.1 Dynamic Parameter Estimation Using Kalman Filtering

A state space model provides the representation of a physical dynamic system

that can be described using continuous state variables for which measurements can be

used to estimate the states. These systems are often considered as being observed at a

sequence of equally spaced time steps. Mathematically, the relevant relations between

the system state zt at time step t, and its measurements or observed properties yt

can be presented using the pair of equations

zt = g(ut, zt−1, θ, εt) (3.1)

yt = h(zt,ut, γt) (3.2)

where ut is a vector of optional control variables, εt and γt are the system and ob-

servation noise variables, respectively, and θ are the model parameters. The function

g(·) is the transition function, while h(·) provides the observation model. The general

goal of the analysis of the system is the recursive determination of the belief state

p(zt|y1:t,u1:t, θ). The belief state is the probability that the system be described by

the parameter state vector zt at time step t, given observations y1:t from time steps

1 to t. It is assumed that the parameters θ and the control variables u1:t are known.
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The Kalman filter (KF) is a method for estimating the dynamic state parameter

vector zt, under certain conditions on the state space model [26, 27]. In particular,

the KF assumes that the transition model and the observation model are both linear

so that

zt = Atzt−1 + Btut + εt (3.3)

and

yt = Ctzt + Dtut + γt. (3.4)

It is also assumed that the system and observation noise are both Gaussian, namely,

εt ∼ N (0,Qt) (3.5)

and

γt ∼ N (0,Rt), (3.6)

where N (µ,C) denotes a Gaussian distribution with mean µ and contrivance matrix

C.

The solution to the KF is iterative. In particular, assuming an initial density

p(z0|y0, u0), the system model is used to obtain

p(zt|y1:t,u1:t) = N (zt|µt,Σt). (3.7)

The prediction stage of the KF is used to obtain

p(zt+1|y1:t,u1:t) = N (zt|µt+1|t,Σt+1|t) (3.8)
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with

µt+1|t = At+1µt + Bt+1ut, (3.9)

and

Σt+1|t = At+1ΣtA
T
t + Qt. (3.10)

The new measurement yt+1 at the update stage and Bayes’ rule are then used to

obtain

p(zt+1|yt+1,y1:t,u1:t+1) ∝ p(yt+1|zt,ut)p(zt+1|y1:t,u1:t+1). (3.11)

Explicitly, the result is given by

p(zt+1|y1:t+1,u1:t+1) = N (zt+1|µt+1,Σt+1) (3.12)

with

µt+1 = µt+1|t + Kt+1rt+1 (3.13)

and

Σt+1 = (I−KtCt)Σt+1|t. (3.14)

In these expressions rt is the residual, that is, the difference between the predicted

and actual observation

rt = yt − ŷt. (3.15)

The predicted observation is given by
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ŷt+1 = E[yt+1|y1:t] = Ct+1µt+1|t + Dt+1ut+1, (3.16)

where E denotes statistical expectation. The Kalman gain Kc in (3.14) is

Kt+1 = Σt+1|tC
T
t+1S

−1
t+1 (3.17)

and the auxiliary matrix is defined as

St+1 = Ct+1Σt+1|tC
T
t+1 + Rt (3.18)

where Rt+1 is the covariance of the measurement noise at time step t+ 1.

3.2 Particle Filtering

The particle filtering approach takes advantage of Monte Carlo simulations to

carry out the Bayesian inference of the probability distribution of a system state

given a set of previous observations and a known model [28, 29]. Unlike the KF

approach, this method does not require linearity in the state space model or Gaussian

distributed noise.

The model produces an approximation to the probability distribution of the state

of the system of the form

p(z1:t|y1:t) ≈
S∑
s=1

ŵst δ(z1:t − z
(s)
1:t) (3.19)

where ŵ(s) are normalized weights. That is, the probability distribution is then de-

rived from a collection of particles determined from previous observations.

In Monte Carlo methods, the generation of updated weights is obtained using a

proposal function q(zs1:t|y1:t). The importance weights are then

ŵst ∝
p(z1:t|y1:t)

q(z1:t|y1:t)
(3.20)
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which can then be normalized as

ŵ
(s)
t =

w
(s)
t∑

s′ w
(s′)
t

. (3.21)

A number of simplifications can be applied to this general scheme. In particular,

it is common to construct the proposal function so as to have a recursive structure of

the form

q(z1:t|y1:t) = q(zt|z1:t,y1:t)q(z1:t−1|y1:t−1). (3.22)

In this way, the importance weights also acquire a sequential structure

w
(s)
t =

p(yt|z(s)
t )p(z

(s)
t |z

(s)
t−1)

q(z
(s)
t |z

(s)
1:t−1,y1:t)

. (3.23)

A further common simplification assumes that only the most recent measurements

are needed for the construction of the proposal. This is:

w
(s)
t ∝ w

(s)
t−1

p(yt|z(s)
t )p(z

(s)
t |z

(s)
t−1)

q(z
(s)
t |z

(s)
t−1,yt)

. (3.24)

The most common proposal distribution is obtained from sampling the posterior

distribution

q(zt|z(s)
t−1,yt) = p(zt|z(s)

t−1) (3.25)

and the weights simplify to

w
(s)
t ∝ w

(s)
t−1p(yt|z

(s)
t ). (3.26)

Finally, the posterior can be approximated as
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p(z1:t|y1:t) ≈
S∑
s=1

ŵ
(s)
t δ(zt − z

(s)
t ) (3.27)

so that only the most recent step is explicitly needed for an update.

This method is generally applied with an added resampling step. The purpose is

to correct for the fact that often a number of the particles have negligible weights,

and in effect, the sampling is using a reduced number of particles.

3.3 Rao-Blackwellized Particle Filters

If the state space model can be factored into a linear and nonlinear form, then

the computational complexity of particle filtering can be reduced. This is the case for

some models for the observed potentials in EEG such as the one described in section

2.5. In these models, the dipole moments q and the dipole positionsr play in fact such

roles. The variable q enters into the model in such a simple way that its distribution

can be exactly determined as long as that of r is known. In this way one only has

to sample r. The particles of the filter represent specific values for the variables r

but carry a distribution for the variables q. The corresponding estimation method is

called the Rao-Blackwellization of the particle filtering. Its detailed description and

application to EEG recordings can be found in [29–31].

3.4 Probability Hypothesis Density Filtering

The method of probability hypothesis density filtering (PHDF) allows the treat-

ment of problems where it is required to dynamically estimate the parameters of a

number of objects simultaneously; the number of the objects can be unknown and

vary with time. Instead of using the full probability distribution for the objects, the

PHDF uses, as a set of approximations where only knowledge of the first moment

of the distribution is required [32, 33]. The first moment of the multiparticle distri-
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bution is the particle probability density in state space. The number and state of

the objects is determined from the particle probability density by associating objects

to local maxima of the distribution. These objects are assumed interchangeable and

therefore the set of particles is described as a random finite set (RFS).

The PHDF setting considers a number of objects Nt present at time t, and a

corresponding set of Mt measurements. The collections of objects state parameters

and measurements are represented collectively as

Zt = {z1
t , . . . , z

Nt
t } (3.28)

and

Yt = {y1
t , . . . ,y

Mt
t }. (3.29)

The PHDF method seeks to characterize the posterior density functions p(zt|yt−1)

by means of an intensity function λ(zt|yt−1). This function is effectively a density in

state space, and technically is the first moment of the posterior density p(zt|yt−1).

The prediction at time t is obtained from knowledge of previous intensities and terms

corresponding to new particles:

λ(zt|yt−1) =
∫

[Pt|t−1(zt−1)p(zt|yt−1) +

λspn(zt|yt−1)]λ(zt−1|yt−1)dxt−1 + λnew(zt|yt). (3.30)

In this expression, λspn is the intensity function of particles spawned by already

present particles while λnew corresponds to new particles. The posterior is updated

using new measurements:
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λ(zt|yt) = (1− PD(zt))λ(zt|yt−1) +∑
Zk

PD(zt)p(yt|zt)λ(zt|yt−1)

λclutter(yt) +
∫
PD(z̃t)p(zt|z̃t)λ(z̃t|yt−1)dz̃k

,

where PD(zt) is the probability that a source with state parameter zt at time t still

exists at time t + 1, and λclutter is a contribution to the intensity associated to the

presence of clutter in the state space.

The PHDF can be implemented as a particle filter [34]. The key assumption is that

the intensity function can be represented as a set of Tt particles with corresponding

weights w
(n)
t :

λ(zt|yt) ≈
Tt−1∑
n=1

w
(n)
t δ(zt − z

(n)
t ) + λnew(zt|yt). (3.31)

It is assumed that the values {z(n)
t }Tt−1

n are drawn from the proposal density q(·|z(n)
t ,yt)

while the remaining particles are drawn from the density p(·|yt),

z
(n)
t ∼


q(·|y(n)

t , zt) n = 1, . . . , Tt−1

p(·|yt) n = Tt−1 + 1, . . . , Tt

(3.32)

so that the total predicted intensity is

λ(yt|zt) ≈
Tt∑
n=1

w
(n)
t δ(zt − z

(n)
t ). (3.33)

The difference between expressions (3.31) and (3.33) is in the use of Tt − Tt−1extra

particles.

3.5 Independent Component Analysis

Independent component analysis (ICA) is a method for signal analysis [35–37]

that has been extensively used in the context of EEG investigations [38, 39].
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ICA is based on the idea that the mixture of two or more signals with different

spectral properties add up to a net signal that has distinctive non-Gaussian properties.

The basic example is the addition of two sinusoidal waves with different frequencies,

each contributing to two different measuring channels. A sampling of the waves in the

measuring channels leads to a set of points with essentially uniform density living in a

region bounded by a rectangle. In contrast, a Gaussian model of these measurements

leads to a density with elliptical geometry. The ICA method takes advantage of these

differences to recover the initial independent components that make up the signal.

Following reference [37], one can consider the composition of an observed signal

x in terms of a set of statistically independent variables that can be arranged in a

column vector s with dimension equal to the number of assumed components. The

observation is assumed linear on these components:

x=As. (3.34)

The ultimate goal is to obtain a description of the components s in terms of the

observation. That is, to construct the inverse W of the mixing matrix A :

s = Wx. (3.35)

The identification of the independent components requires the careful definition of

independence in itself. In particular, two of the entries of the vector s, si and sj, are

independent if their joint probability distribution is the product of their individual

distributions:

p(s1, s2) = p1(s1)p2(s2). (3.36)

This relation implies other more directly accessible conditions. It leads to a factor-
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ization, and thus uncorrelatedness of the expectations:

E[s1s2] = E[s1]E[s2]. (3.37)

This is, however, not a strong enough requirement for the identification of the inde-

pendent components and other measures of non-Gaussianity, and therefore indicators

of the presence of independent components, are necessary. A commonly used quanti-

fier is the kurtosis of a random variable s, given by:

kurt(s) = E[s4]− 3E[s2]2. (3.38)

For a Gaussian distribution, this value is simply zero and therefore is a concrete

measure of the deviation from Gaussianity.

Algorithmically, it is possible to pursue the identification of the linear subspaces

with largest deviations from Gaussian behavior. The original sampled data is first

normalized so as to have unit variance in all directions. A maximum of kurtosis indi-

cates the location of an independent component. The algorithm can then recursively

pick all the independent components. Other methods to obtain the ICA decomposi-

tion use other measures of the non-Gaussianity as indicators of independence.

3.6 Gaussian Mixture Models

To aid in the classification of complex data, it is useful to describe it in a relatively

simple parametric way. Gaussian Mixture Models (GMM) provide an approximation

to the distributions of variables that capture the location of maxima of a probability

density as well as the spread of the distribution around those maxima [40]. Algorithms

associated to GMMs aim to construct the best representation of a distribution by

means of a Gaussian mixture. The mixture selected is the one that maximizes the

likelihood of the observed data under the proposed distribution.
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The general setup of the construction of GMMs is the assumption that the ap-

proximate probability distribution is

p(x|θ) =
K∑
k=1

πkN (x|µk,Σk) (3.39)

where it is assumed that there are K components, with weights πk, each contributing

a Gaussian distribution with mean µk and variance Σk. These parameters are collec-

tively represented by θ. The likelihood of an observed set, given a particular value of

parameters is

`(θ) =
∑
i

log p(xi|θ). (3.40)

The optimal parameters are

θ̂ = arg(max(`(θ))). (3.41)

A solution to the problem is often sought using the expectation-maximization

(EM) algorithm. In this iterative approach, the E and M steps are carried out in an

alternating sequence. In the E step, one calculates the so called responsibilities rik

rik =
πkp(xi|θ(t−1)

k )∑
πk′p(xi|θ(t−1)

k′ )
. (3.42)

These are, in essence, the probabilities that a given observation i is explained by

component k. In the M step, the weights are updated as

πk =
1

N

∑
i

rik. (3.43)

The mean and covariance are updated as

µk =

∑
rikxi
rk

(3.44)
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and

Σk =
Σrikxix

T
i

rk
− µkµTk . (3.45)

The algorithm can be stopped when the iterations do not further increase the likeli-

hood by a preset value.
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Chapter 4

ESTIMATION OF TIME VARYING SOURCES

4.1 Background

The problem of extracting information from evoked potentials measured through

EEG and MEG has been addressed in many previous works before. As noted above, it

is a basic assumption of the modeling of these recordings that it is possible to represent

the potentials by means of a small set of activated localized dipoles with dynamic

amplitudes but fixed locations and orientations. Such determination is known in the

literature as the EEG/MEG inverse problem. As reviewed, for example, in [8], several

methods have been employed in their solution. The most commonly used approaches

have been the use of (a) multiple signal classification (RAP MUSIC) [41, 42], (b)

spatial filters or beamformers [43, 44], and (c) Bayesian methods [45–53]. One of

the reasons for the popularity of Bayesian methods is their previous use in tracking

problems. Here the dipoles become the object whose position is sought given the

EEG measurements which act as the detection tools. The approached taken in this

work follows the work previously carried out by the Papandreou-Suppappola group

[54–58] and that of the MIDA group [48, 51].

4.2 Data Structures and Model

To apply the particle filter method to EEG evoked potential problems it is nec-

essary to set the problem in a structure that matches the format of particle filtering

techniques. In addition, it can be shown that a number of useful simplifications such

as the Rao-Blackwellization of the filtering can be applied in this setting. The precise
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structure used in this work is described in this section.

First, the goal of the particle filters is to discern the location, as a function of

time, of a set of dipole currents that best matches the observed experimental data.

During a single experiment, of duration T seconds, the sensor data is sampled at a

frequency f . In a given experiment each of the S sensors acquires N = fT samples.

If the experiment is repeated K times, the total sensor data can be expressed as

K matrices of size S × N ; the symbol Z(k) is used for each of these matrices. The

entries of the matrices are z
(k)
s,n where k indexes the experiment, s indexes the sensor

and n indexes the sample number. It is also convenient to write znfor the vector

of measurements at time step n. The experiment number k is omitted except when

actually needed as in most cases only one experiment is analyzed at a time and

therefore, explicitly:

zn = [z1,n, . . . , zs,n, . . . , zS,n]T . (4.1)

On the other hand, it is assumed that there exist D dipoles that produce the

relevant signal observed at the sensors. The position and moment of the dipoles at

time step n for experiment k, can be organized as a vector X
(k)
n of the form

X(k)
n = [r

(k)
1,n,q

(k)
1,n, . . . , r

(k)
d,n,q

(k)
d,n, . . . , r

(k)
D,n,q

(k)
D,n]T . (4.2)

Each of the vectors of position r and dipole moment q is a 1 × 3 vector, with their

Cartesian coordinates as entries.

As presented in Chapter 2 these dipoles create a potential ψ(rs) at the locations

rsof the sensors, and their contributions are additive. The model discussed in that

chapter can be written as
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zs,n = ψ(rs;Xn) =
D∑
d=1

ψ(rs; rd,n,qd,n). (4.3)

Furthermore, since the potential is linear on the moments, one can also write, adapting

(2.10),

zs,n =
D∑
d=1

Gs(rd,n)qTd,n (4.4)

where now Gs is an operator of dimension 1×3 that effectively evaluates the potential

by multiplication with the moment of the dipole. Further details on the evaluation

of this matrix are provided in the next section. The evaluation can be arranged into

a matrix operation as:

z = GQ (4.5)

where the dipole moments are concatenated into a single vector Q of dimensions

3D × 1, and the matrix G has dimension S × 3D. Explicitly:

Q = [q1x, q1y, q1z, . . . , qdx, qdy, qdz, . . . , qDx, qDy, qDz]
T (4.6)

where (qdx, qdy, qdz) are the Cartesian components. The position vectors can be ar-

ranged as well into a single object R

R = [r1x, r1y, r1z, . . . , rdx, rdy, rdz, . . . , rDx, rDy, rDz]
T . (4.7)

In bot cases the time index n has been omitted.

In comparing the field associated with a set of dipoles and the actual sensor

measurements, it is assumed that the discrepancy n is a Gaussian random variable.

The covariance Σ of this variable can be taken to be diagonal on the sensors, and

estimated form measurements in the absence of evoked responses.
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nn = zn − ẑn ∼ N (0,Σ). (4.8)

4.3 Calculation of Matrix Elements for the Dipole Model

The relation between the dipoles states and the measured potentials is captured

in (4.5). The matrix G implements the model described in section 2.5. For conve-

nience the key results are briefly repeated here. In practice, the matrix elements are

evaluated using the EEGLAB package leadfield. This function takes as arguments

the positions of the dipole and sensors and returns a S×3 matrix. The concatenation

of the D matrices obtained, one for each dipole, form the total matrix G. The matrix

elements Gs,g with g = 3(d−1)+1, 3(d−1)+2, 3(d−1)+3 are given by the evaluation

of the potential ψ at the sensor locations, given that the dipole position is rd, and its

orientation is along the x, y, z axes respectively for dipole moments aligned with the

Cartesian directions and of unit unit magnitude. These three matrix elements are,

more explicitly,

Gs,3(d−1)+1 = ψ(rs; rd, (1, 0, 0)), (4.9)

Gs,3(d−1)+2 = ψ(rs; rd, (0, 1, 0)), (4.10)

Gs,3(d−1)+1 = ψ(rs; rd, (0, 0, 1)). (4.11)

In this way, if (qxd, qyd, qzd) are the Cartesian components of the dipole moment, the

net contribution to the potential is
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ψ(rs; rd,qd) = qxdψ(rs; rd, (1, 0, 0)) + qydψ(rs; rd, (0, 1, 0)) + qzdψ(rs; rd, (0, 0, 1))

(4.12)

or

ψ(rs; rd,qd) = Gs,3(d−1)+1qxd +Gs,3(d−1)+2qyd +Gs,3(d−1)+3qzd. (4.13)

This potential is the d-th term in expression 2.7 written in terms of the matrix

elements of G.

The EEGLAB leadfield function carries out the calculation of these matrix ele-

ments, taking as input the sensor positions rs and one dipole position rd, and returns

the s×3 matrix elements Gs,g for all s and g = 3(d−1)+1, 3(d−1)+2, 3(d−1)+3.

To start, a three dimensional rotation is carried to a new system of coordinates

(x′, y′, z′) so as to make the dipole position coincide with the z-axis and to make the

x-component of the moment to only have non-zero x′ and z′ components (i.e. to lay

on the x′ − z′ plane). The rotation is implemented by a 3× 3 matrix Rd.

In the new system of coordinates, the dipole is located at r
′

d = (0, 0, z′d), and

the rotation matrix can later be used to obtain the potentials Gs,3d+1, Gs,3d+2, and

Gs,3d+3 from the potentials for unit dipoles in the x′, y′, z′ directions. The field for

the unit dipole in the y′ direction can be obtained from a second rotation once the

field for the moment in the x′ direction is calculated, so that it is only necessary to

consider dipoles in the x′and z′ directions. These potentials are calculated by first

expanding the dipole field at locations r′ into an infinite series truncated to Nt terms.

The expressions below do not use the truncation, but this is implicit in the actual

evaluation. As the model considers several concentric spheres, the potential has a

separate expansion in every region, labeled by the superscript (h) for h = 1, . . . , Nr
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where Nr is the number of regions considered. In each region we have an expansion

of the form:

ψ(h)(r′; r′d,q
′
d) =

1

4πr′2
.

n=∞∑
n=1

2n+ 1

n

(
r′d
r′

)n−1

Xn (4.14)

with

Xn =
[
q′zdnA

(h)
n Pn(cos θ′) + q′xd cos(φ′)B(h)

n P 1
n(cos θ′)

]
(4.15)

where Pn are Legendre polynomials and Pm
n are the associated Legendre polynomi-

als. The sensor location in the rotated frame is given by the spherical coordinates

(r′, θ′, φ′).

The coefficients are determined from a solution to the 2Nr − 2 equations imple-

menting the boundary conditions (2.5) and (2.6) across the Nr − 1 interfaces. The

solutions to the equations can be generated using the following relations between

the n-th terms of the series (see [21]). The evaluation of the potential uses only the

coefficients for the outermost sphere with (h) = Nr. These coefficients are:

A(Nr)
n =

vh
n
B(Nr)
n (4.16)

B(Nr)
n =

n(2vh + 1)

(2vh + 1)[vNrm22 + (vNr + 1)m21]

(
r′d
r′

)2vb−n
[
Nr∏
k=1

(
Rk−1

Rk

)vk]
(4.17)

vh = [
√

1 + 4n(n− 1)(ζi/σi)− 1]/2 (4.18)

 m11 m12

m21 m22

 =
Nr−1∏
k=1

1

2vk + 1

 m
(k)
11 m

(k)
12

m
(k)
21 m

(k)
22

 (4.19)

m
(k)
11 = vk+1 + (σk/σk+1)(vk + 1) (4.20)
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m
(k)
12 = [(σk/σk+1)(vk + 1)− (vk + 1)](r′/Rk)

2vk+1+1 (4.21)

m
(k)
21 = [(σk/σk+1)v − vk+1](Rk/r

′)2vk+1 (4.22)

m
(k)
22 = [(vk+1 + 1) + (σk/σk+1)vk](r

′/Rk+1)2(vk+1−vk). (4.23)

In the previous expressions the following definitions and conventions are used. The

outermost sphere has maximum radius RNr = r′. The spherical region (h) has inner

radius Rh−1 and outer radius Rh. The coefficients vk depend on n and must be cal-

culated separately for each n. These expressions use the radial conductivities σh and

tangential conductivities ζh for sphere (h). The relations above are simplified when

ζh = σh as is the case for this manuscript and in the actual evaluation carried out by

leadfield. The matrix product is carried out placing the highest index matrix first.

Once the coefficients are known up to to some truncated level, the potential is

evaluated at all sensor positions for unit vectors q′ and, after rotation to the original

frame, these values provide the matrix elements required.

4.4 Estimation of Dipole Moments and Positions

The estimation of dipole positions and moments is carried out using a Rao-

Blackwellized approach since, for a fixed set of dipole positions R, the estimation

of the moments is a linear problem. The Rao-Blackwellization consists on first esti-

mating the moments and then use particle filtering for the positions.

After updating positions for the filter particles (see below), the moment estimation

is done by finding the best fit to the actual sensor recordings. The estimated moments

are chosen to minimize the discrepancy between prediction and recordings
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Q̂ = arg(min |zn −GQ|2, Q). (4.24)

This problem has a know solution based on the pseudoinverse G†of the operator G:

Q̂ = G†zn. (4.25)

Substituting this result in the model given by (4.5). After obtaining these values it

is possible to write the estimation problem for the positions as:

zn = G(R)G(R)†zn + nn. (4.26)

The Gaussian distribution for the errors n induces a posterior probability distribution

p(R|zn). The particle filtering method produces an approximation to this distribution

as a sum of delta functions as in (3.27).

Most neurological models of evoked potentials assume that the location of the

dipoles remain stationary. Therefore, the model used for the update of the positions

in the particle filter is simply:

Rn+1 = Rn + ∆ (4.27)

where ∆ is a random displacement vector of length 3D with a Gaussian distribution of

zero mean and isotropic covariance. The magnitude of the covariance is a parameter

to be chosen during data analysis and simulation.

The initial distribution for the sequential particle filter process is homogeneous

inside the brain region. The update of the particle positions is carried out in such a

way that new particles are always inside the brain region. In this scheme it is also

necessary to address the issue of equivalent points. Not only it is possible to generate

nearby points as dipole locations; an unphysical result, but the particle filter might
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reach the same set of distinct points and give them different labels. These problems

are avoided by ordering the dipole locations according to their distance from the

origin and according to their x and y coordinates if necessary. Locations too close to

each other or that fall outside the bounds are rejected during the sampling algorithm.

The implementation of the algorithm sketched above requires the computation of

the potentials due to sets of dipoles for a large number of different locations. This is

the most computationally intensive step in the application of the method. To reduce

running time, these potentials are precalculated over a grid and stored. Evaluation

at a particular point is then obtained from interpolation over the saved grid values.
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4.5 Data Set and Preprocessing

The next sections presents an example of the method described above. The data

used is the Psycophysics set, which is a commonly used as test case for new methods.

The set is part of the EEGLAB libraries [11]. As described in its distribution, a single

trial of the experiment consist on the presentation of a visual stimuli to a subject.

Five boxes, arranged horizontally, are presented to the subject at once. One of the

boxes is of a color different from the rest. The subject is asked to respond to the

stimuli by pressing a button. In some of the trials the subject is presented with a

circle instead of square and is asked to ignore this instance; that is, to not press

the button. The EEG recordings have a fixed length of 3 seconds. The stimuli is

presented to the subject at 1 second from the start of the recording. The EEG is

sampled on a standard 32 channel setup at a rate of 128 Hz. The data set comprises 80

repetitions of the experiment. As distributed, the data is annotated for the presence

of the stimuli and the types of stimuli used.

The data was preprocessed using the methods suggested by the EEGLAB system.

The data is low-pass filtered to retain only frequencies lower than 60 Hz, with the goal

of eliminating the oscillations due to the instruments alternating current. A linear

trend is subtracted from the time series to eliminate the drift on the signals. These

are all functions implemented in the user interface of EEGLAB.

For visualization purposes, the potentials can be interpolated to all locations at

the surface of the head and displayed in color maps. Snapshots of potential maps for

the first trial of the experiment are presented in Figure 4.1.

Two other important preprocessing steps are available for this and other similar

sets: averaging and artifact rejection. The first consists simply on creating a single

effective experiment from the information available through repetitions. Simply, an
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Figure 4.1: EEG potentials snapshots for one trial of the data set employed. The
graphs include the location of the sensors. The external stimuli appears at t = 0 sec.
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effective signal z̄ is obtained from average over K experiments:

z̄n =
1

K

K∑
k=

z(k)
n . (4.28)

For neatness the average signal will simply be denoted as z where there is no possibility

of confusion. This averaging step is justified in that if the goal of the experiment is

to detect the aspects common to all response trials, this average should contain a

repetition of all key signals generated in the process. As the typical response occurs

in an interval of the order of ˜500 ms, and it is in general observed that common

features have a smooth behavior in this interval, there is little risk to eliminate relevant

signals through averaging. Furthermore, this average partially addresses the presence

of artifacts such as eye blinking as these are not present in all trials. The averaging

reduces their importance even if it does not fully eliminate them. The result of this

process is illustrated in Figure 4.2. There the potential for one particular channel

(channel 10) is shown as a colored point for each of the trials, while the average is

shown at the bottom of as a function of time. The diagram also shows the power

spectrum for the average evoked potential.

The second general preprocessing technique is the determination of independent

components using the ICA method. These were obtained using the runica package

of EEGLAB. This algorithm generates a linear transformation of the form

v(k)
n = Cz(k)

n (4.29)

where C is a S×S square matrix. The s-entries (the rows) in the K instances of the

S×N matrix v
(k)
n are the so called individual components. The decomposition can be

used in two important ways: as a filter and as a dimensional reduction step towards
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Figure 4.2: Channel properties. The diagram shows the schematic location of the
channel on the top left. To the right, the potentials observed in different trials are
shown as colored dots. At the bottom of that section the average potential is shown
as a function of time. At the bottom, the scheme shows the power spectra for this
channel showing the characteristic peak at 10 Hz associated with evoked potentials.

the identification of the source dipoles.

The ICA components can be used as a filter. Each of the components can be

classified, for example, as a signal, noise or artifact component. A simple discrimina-

tion between the different components can be obtained by their spectral properties

and amplitudes. Clearly, is expected the components associated to signals to have

the largest amplitudes. In addition, it is empirically found that they tend to ex-

hibit a strong component at around 10 Hz. The components that can be labeled as

noise have a monotonically decreasing spectrum and lower amplitudes. Finally, the

components associated with artifacts have a sparse time-frequency domain presence.

Furthermore, their location in physical space appears most commonly at the sensors
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Figure 4.3: Independent components. The scheme shows the interpolated 2D pro-
jections of the potential maps of the independent components for the data set. A
heuristic interpretation of the components significance indicates, for example, that
component 6 corresponds to an eye blinking artifact.

near the eyes or at individual sensors, indicating a physical disconnection.

As an example, Figure 4.3 shows the schematic potential maps for the ICA com-

ponents for the data set used. Component 6 is identified as an artifact as it is clearly

localized in the right eye.

Further, once the ICA components have been obtained, the signal can be projected

into these components, and their time-evolution can be assessed. Figure 4.4 the

time evolution of the projection onto channel 1. It can be seen to have a strong

evoked potential component and it can therefore be classified as an evoked potential

contribution, but not as an artifact or a a noise channel. The diagram also shows the
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Figure 4.4: Component 1 properties. The diagram repeats the map of the potential
and the time run of the projection of the actual data onto the component.

power spectrum for the average evoked potential.

After the components have been labeled as signal, noise or artifacts, a reduced

signal can be created by projecting into a desired subspace. As noted below, the

projection can be made into individual components, but it can also be carried out

to simply select relevant data. For example, if the components are sorted so that

the first Sg indices s = 1, . . . , Sg correspond to signals, then a signal without noise
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components ssig, can be reconstructed by projecting onto the subspace spanned by

the first Sgcomponents. The projector Psig is a unit matrix in the first Sgrows and

columns and is zero elsewhere. Then:

zsig = C−1PsigCz (4.30)

is an expression for the signal.

The second use for the ICA is the direct interpretation of each of the components

as originating from an individual or a small set of fixed dipoles. In this case, a set of

projectors P [i] = δij for i = 1, . . . , Si determines the signal component s[i] as

z[i] = C−1P [i]Cz. (4.31)

It is then furthermore assumed that a single or small number of dipoles, say D[i]

is responsible for this signal. In addition, the dipole is assumed fixed in space and

orientation, so that the best fitting attempts to recover this signal as

ẑs,n =
D[i]∑
d=1

Gs(rd)q
T
d sd,n (4.32)

where the matrix G is constructed as above on the assumption that only D[i]dipoles

are present. The matrix depends on the positions rd that are assumed to be constant

over time so they do not depend on the index n. Similarly, the vectors qd are also

independent of the time index and can be normalized to a unit magnitude. Finally

snis allowed to change in magnitude over time modeling the activation of the dipoles.

This is the standard approach to use ICA.

In this project, the experimental data is averaged and filtered into the signal

subspace but individual dipoles are not fitted.
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4.6 Analysis Results

A typical run of the method consists on the fitting of a given number of dipoles.

The result is picture of changing dipoles with moving locations. Two measurements

(among others) can be used to assess the results. First is the discrepancy between the

predicted and the original field ‖z− ẑ‖. Second, it is possible to contrast the results

against a set of expected behaviors known from previous research: a fix localization

for active dipoles, a uniform axis for the dipole and time locking of the external stimuli

and the recovered signal. These are discussed in detail below. Additionally, a simple

way to obtain a qualitative understanding of the results is to look at the maps of

dipole locations presented as movies or a set of time-snapshots, and similarly observe

movies or snapshots of the recovered signal and the original signal. A run with D = 4

dipoles is discussed in detail here, and a summary for other values is discussed at the

end of the section.

The sequence of states produced by the filter is shown in Figure 4.5. The filter

initial condition was chosen as a set of random locations for the four dipoles; locations

for a single dipole are shown in the same color. At each step 1000 multiparticles were

used, with each multiparticle describing the location of each dipole. As can be seen,

the particle filter converges rather quickly to a set of clouds, one for each dipole

covering a relatively small region. This is observed for the time interval t < 1 in

the experiment. At times between 1 < t < 2 it is observed that each cloud further

converges into a nearly single point. This is due to the strength of the signal to noise

ratio and indicates that the location of the dipoles is well defined in this time frame.

In the final time segment it is observed a return to a not so well determined set of

positions. It is to be noted that the locations are different in these time segments. In

the first and last time intervals the locations correspond to the attempt to model as
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Figure 4.5: Particle filter run for the case of D=4 dipoles. The first 4 frames
correspond to the resting brain state and identify plausible locations of high activity.
The next 5 frames, between t=1 and t=2 clearly show the convergence to well defined
points. The approximation reverts to a less well defined state in the last second, after
the effect of the stimulus has mostly vanished.

dipoles the general behavior of the brain in a rest state, which is not considered as a

well defined problem from the physiological point of view. Therefore, the most useful

information resides in the time interval after the stimulus.

To further emphasize these results, the Figure 4.6, shows the locations of the

averages of the clouds as a function of time, for the most relevant time interval, from

< t <. It is observed that the location is not fixed, but that it remains within a

general zone of the brain.
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Figure 4.6: Most likely locations for dipoles in for a run in the case of D=4 dipoles.
The particles remain localized during the run, but there is a distinct shift to different
locations after stimuli. This is observed here in the exploration of positions with
higher z coordinate values during the process.

As with the location of the dipoles, their orientations are assumed, from a neu-

rophysiological perspective, to be fixed. The particle filter method does not assume

a fixed direction. As a result, the orientations of the dipoles receive a probability

distribution. The Figure 4.7 presents a plot of the orientations, as points on a sphere,

corresponding to the most likely particles in the ensembles for each time step and

each dipole. The size of the points is proportional to the magnitude of the dipole. It

is expected that in the time frame where there exists an evoked response, the dipole

magnitudes be stronger. The figure shows that the likely orientations of the dipoles

are not randomly distributed but do not take a sharply defined direction either. Ad-

ditionally, it is to be noted that during this period the potential is known to invert

in direction and the dipole should change to an antipodal orientation. Thus, a distri-
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Figure 4.7: Most likely orientations for dipoles for a run in the case of D=4 dipoles.
Each point lies at the surface of the unit sphere and indicates a direction in space. The
size of the points is proportional to the magnitude of the dipoles. The orientations
are not distributed randomly but do not present sharp localization.

bution conforming with the expectation of fixed directions would have two peaks at

antipodal positions.

To discern the role of the different dipoles, it is convenient to establish their

contributions to the total field. The Figure 4.8 shows the amplitude of the different

dipoles, and the ratio of the dipole amplitude to the mean square sum of all the

amplitudes taken at the same time. The bottom frames of the figure show the same

plots but within a restricted time frame. This region corresponds to the time location

of the main evoked potential. It can be seen that when the response requires the

maximum amplitudes of the dipoles, there are two that contribute the largest amount

to the total field. This indicates that the evoked potential is predominantly generated
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Figure 4.8: Magnitudes of dipoles and their relative sizes. In the bottom panels,
the same top plots are repeated for a shorter time interval that corresponds to the
presence of the evoked potential.

at two locations. As shown below, the use of more dipoles do improve the recovery

of the total field but it is likely that the the dominant response originates from these

two locations.

The measured potentials at the electrodes and the potentials obtained from the

dipoles are shown in Figure 4.9 for selected times around the maximum of the evoked

potential for a run with D = 4. The scale used in all plots is the same. It can be seen
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that the recovered potential has a clear resemblance to the original recordings.

To quantify the extent to which the selected dipoles reproduce the total field, the

difference ‖z− ẑ‖ between the original field and the estimation can be calculated. To

normalize it, this quantity is compared to the maximum value of the signal. Other

measures can be used, but this is a reasonable choice as the signal magnitude peaks in

the region of interest (the times at which an evoked potential appears). Plots of this

ratio for an instance of simulation appear in Figure 4.10. There, it can be seen that

increasing the number of dipoles improves the prediction and reduces the discrepancy.

A large change can be seen in going from 3 to to 4 dipoles.
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Figure 4.9: Color maps of the actual measured potentials, the recovered dipole
field (D=4) and the difference between these for different times around the maximum
evoked potential activity. The stimulus occurs at t = 1.
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Figure 4.10: Plots of the ratio of the RMS of the discrepancy between recovered
and original signal to the peak value of the signal. The four graphs correspond to
simulations with different number of dipoles, D=2,3,4,5 as indicated in the legend.
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Chapter 5

CHARGE AND POWER IN EEG MODELS

This chapter introduces a more detailed description of the electric processes in the

brain using the physical variables of charge and power. These are particularly useful

when considering models with realistic heads.

5.1 Inverse Problem

The EEG inverse problem is the process of determining, given a set of EEG record-

ings, sources associated with brain activity. Various methods have been developed

to solve the inverse problem [8, 59–61], including Bayesian filtering that uses simula-

tions to estimate the source probability distribution [62–64]. These methods require

knowledge of the scalp potential created by known neural sources provided by the

forward solution [16, 60, 65]. Construction of this solution is usually obtained by

solving the Geselowitz integral equation (GIE) [23] or its related symmetric formula-

tion [66]. These are integral equations for the electric potential at boundaries between

homogeneous conductive regions. Software packages are now publicly available that

implement methods to solve the inverse problem using forward solutions; these include

EEGLAB [11] based on the isolated problem approach [67–69], and OpenMEEG [12]

based on the symmetric formulation [66]. There are important connections between

a number of important GIE properties and two physical variables: surface charge

and passive dissipated power. The surface charge is the charge that accumulates at

the interfaces between contiguous head regions of homogeneous conductivity. The

passive power dissipation results from the conductive currents that appear in the re-
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gions of homogeneous conductivity. Although these variables appear naturally in the

GIE, their relation to EEG has not been previously demonstrated, to the best of our

knowledge. Both of these variables are important as they provide opportunities for

the simultaneous use of EEG methods along with other techniques. In particular,

we note that important physiological facts as well as basic assumptions in the GIE

model can be described in terms of the surface charge. For example, careful analysis

of conductivity in physiological tissues is associated with ionic concentrations in the

extracellular fluid [70]. Discussion of non-transient phenomena that determine the

time scales over which EEG models are valid also requires consideration of the ionic

redistribution that occurs within cells and neurons [15]. At a more applied level, it

can be noted that many neurological processes are associated with ion exchange [71],

and that the changes in the local ionic composition can be experimentally assessed,

for example, by optical spectroscopy [72, 73]. The use of accumulated charge and

the related concept of polarization surface charge has been used in the description of

biophysical structures [74], dielectric interfaces [75] and geophysical phenomena [76]

to name a few. The passive dissipated power is important in impedance tomography

[77], where determination of the conductivity values in a region (the Calderon prob-

lem [78]) can be shown to be extrema of a power dissipation functional. Note that

there have already been simultaneous measurements of conductivity and EEG signals

[79].

We provide a solution to the EEG forward problem using integral equations based

on the surface charge accumulated at the boundaries between homogeneous regions

[65, 80]. This surface charge method (SCM) has been used in other bioelectric prob-

lems such as the study of external electrical stimuli [74, 81]. Using variational bounds,

the passive power dissipation is used to derive a number of features of the eigenvalue

structure of the kernels that appear in the SCM and GIE integral operators. The
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structure provided by the power dissipation also allows the identification of the re-

lation between the GIE and SCM; their key operators are shown to be adjoint and

therefore have an identical eigenvalue structure. From these results, it is possible

to identify a critical eigenvalue and associated eigenspace that makes the relevant

operators non-invertible. The results obtained by considering the roles of charge and

power dissipation can be used to construct alternative methods for solving the for-

ward problem. We demonstrate this by formulating a projection method for the SCM

and GIE solution. The equations satisfied by the model are singular and require reg-

ularization that is achieved using the isolated problem approach or deflation [61, 82].

The projection method we describe eliminates a region of singular or near-singular

eigenvalues to regularize the operators.

5.2 Surface Charge Method

In the Geselowitz model, the head is considered to be composed of a number of ho-

mogeneous linear conductive regions. The currents in these regions can be described

by a steady quasi-static current density J(x), where x is a three-dimensional position

vector. There are two components to the current density: the conductive or passive

current Jc(x) and the forced current Jf (x). The forced currents arise from local-

ized neural activity where, by electrochemical processes, a large number of neurons

coherently transfer charge in a particular direction. A mesoscopic average of these

processes can be described as a set of forced current dipoles. A current dipole is a

localized current in a particular direction.

After the onset of forced currents on a region, the charge transfer produces a charge

accumulation during its transient period. This charge accumulation produce electric

fields E(x), that in turn produce the conduction currents Jc(x) =σE(x) given the
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Figure 5.1: Coherent neural activity creates a forced current density Jf and an
associated charge accumulation described by a dipole p (center top). The electric
field due to the dipole induces a conductive current Jc (left). Due to this current, a
surface charge density (SCD) ω (right) appears at the boundary between regions of
different conductivity (grey and white regions).

assumed linear behavior of the conductive regions. The conductivity σ is considered

constant throughout the physiologically different regions of the head. It is also as-

sumed that the forced currents change over time scales much larger than the relaxation

times of the mobile ion distributions. The currents, electric fields and potentials are

then quasi-static. The continuity equation satisfied by the total current can be writ-

ten as ∂t ρm(x)+∇x·J(x) = 0, where ρm is the density of mobile charges and ∇x·J(x)

computes the current divergence. In the quasi-static case, the time derivative can be

set to zero, resulting in∇x·J(x) = 0. This yields the divergenceless of the total current

and to ∇x·(Jf (x) + σE(x)) = 0. From the quasi-static assumption, E(x) =−∇xφ(x),

where ∇xφ(x) computes the gradient of the electric potential φ(x) with respect to

x. Combining with Gauss’ law results in ∇x·E(x) = ρ(x)/ε0, where ρ(x) is the net

total charge density and ε0 is the vacuum permittivity. The divergence of the forced

current can then be evaluated in a region where it is not zero and away from regions

of discontinuity of the conductivity. This results in ∇x·Jf (x) =−σρs(x)/ε0, where

the source charge density ρs(x) is due only to the forced current. For a single dipolar

source, ρs(x) =−p·∇xδ(x − xs), with p the effective dipole vector. The partial
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differential equation that describes the system has then the form:

∇ · (σE) = σρs(x)/ε0. (5.1)

5.3 Charge Accumulation at Region Interfaces

Net charges are found at the boundaries between regions of constant conductivity.

These boundaries separate regions with homogeneous properties. These boundaries

are interchangeably called interfaces or surfaces in the paper. We assume that the

head model has Nr+1 distinct regions Ri, i= 0, 1, . . . , Nr, with respective conductivi-

ties σi. The regions are assumed concentric so that the ith interface, Si, i= 1, . . . , Nr,

is defined as the boundary between regions Ri−1 and Ri. The assumption simplifies

exposition and numerical work, though is not indispensable. The interfaces are as-

sumed to be smooth so that a normal unit vector, n(x), is well-defined at all points.

At an interface, the continuity of the potential makes the tangential component of

the electric field continuous. However, the normal component of the electric field

can be discontinuous. A point in the Si interface can be reached from within the

Ri−1 and Ri regions. The limiting values of the field in each case are denoted as

Ei−1 and Ei respectively. We use a similar notation for the current density J as well.

The divergenceless condition for the current implies continuity of its normal com-

ponent at interfaces, Ji−1(x)·n(x) =Ji(x)·n(x); the tangential components need not

be continuous. Therefore, the limit values of the electric field at an interface satisfy

σi−1Ei−1(x)·n(x) =σiEi(x)·n(x).

The discontinuity of the electric field at the interface results in a net surface change

density (SCD) ω(x). Physically, this charge has two sources: the accumulation of mo-

bile ions at the interfaces during the transient period and the net mismatch in the
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dielectric polarization of two neighbouring regions. Note that the quasi-static condi-

tion implies that this charge accumulation must only occur at the interfaces or at the

source location. Physically, the interface has a finite thickness and a relatively com-

plex structure, but at the mesoscopic level, it can be modeled as a charged, infinitely

thin surface. With this approximation, the electric field is assumed discontinuous but

with a well defined value at the interface. Figure 5.1 illustrates some of the variables

described above.

In order to derive the interface condition for normal components of the electric

field, we use a standard pillbox construction. A small disk and its surface charge

are excluded from the surface; its contribution to the field is considered separately.

The construction produces a field that is zero at the center of the disk and that,

for positive charges, points away from the disk. Near the disk center, the outward

component of the field has magnitude ω(x)/(2 ε0). The field due to all other charges

in the system at the center of the disk is E(x) and is not modified by the charge in

the disk. As a result, the field value E(x) at a point x in interface Si, and the limiting

values Ei−1(x) and Ei(x) at the same location satisfy

Ei−1(x) = E(x) +
ω(x)

2 ε0

n(x)

Ei(x) = E(x)− ω(x)

2 ε0

n(x) , (5.2)

where the normal at the interface is chosen to point into region Ri−1 and away from

region Ri. Using these expressions and the continuity equation, the SCD can be

written in terms of the field at interface Si as

ω(x) = −ε0 siE(x)·n(x), (5.3)

where si = ∆σi/σ̄i = 2(σi−1 − σi)/(σi−1 + σi). Here, the mean conductivity at the

interface is σ̄i = (σi−1 + σi)/2 while the conductivity difference is ∆σi =σi−1 − σi.
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Expression (5.3) has been used in the description of bioelectric systems [74]. Similar

relations are implicit in other formulations of the EEG problem [66].

To obtain a complete set of SCD equations, we must calculate the electric field in

terms of the charges and source distributions. For this purpose, we use the geometric

Green’s function G(x,y) = (4π)−1|y − x|−1 that solves the Poisson equation in free

space: ∇x·∇xG(x,y) =−δ3(x − y). The resulting electric potential φ can then be

written as

φ(x) =
1

ε0

∫
A

G(x,y)ω(y) dAy

+
1

ε0

∫
V

G(x,y)ρs(y) dVy . (5.4)

Here, the area integral A is over all interfaces, with area differential dAy associated

with position y, while the volume integral V is over the whole space, with volume

differential dVy. This representation assumes that the potential goes to a zero refer-

ence value at points infinitely far from the head. From the potential, the electric field

is determined by E(x) =−∇xφ(x).

5.4 Surface Charge Integral Equation

Combining (5.3) and (5.4) we obtain the surface charge method (SCM) integral

equation for the SCD:

ω(x) =

∫
A

s(x)n(x)·∇xG(x,y)ω(y) dAy

+

∫
V

s(x)n(x)·∇xG(x,y) ρs(y) dVy . (5.5)

Here, the position x is assumed to be at one of the interfaces Si so that the the

conductivity ratio can also be written as s(x) = si. To simplify notation, (5.5) can

be rewritten as

ω = B ω + C ρs. (5.6)
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where operator C acts on the volumetric charge distribution ρs to yield a contribution

to the SCD defined only at the interfaces. Operator B maps an SCD onto a new SCD.

The SCDs ω and Cρs can be considered as vectors in a space of functions defined at

the surfaces. Then, B is a linear operator acting in this space. Its integral kernel is

B(x,y) = s(x)n(x) σ̄(x) · ∇xG(x,y).

The formal solution of (5.6) is

ω(x) = (I − B)−1Cρs(x) (5.7)

where I is the identity operator in the space of functions defined on the surfaces

between homogenous regions. This solution requires the operator (I − B) to be

invertible. After the SCD is obtained, the potential is calculated using (5.4) or in

operator form as, φ(x) =Gcω(x) + Gsρs(x). The integral operators Gc and Gs are

defined by the kernels in (5.4) and act on the surface and volume charge distributions,

respectively.

For reference, the GIE is given by

σ̄(x)φ(x) =

∫
A

∇yG(x,y)·n(y) s(y) σ̄(y)φ(y) dAy

+

∫
V

∇yG(x,y)·Jf (y) dVy . (5.8)

In the first integral, the normal, the discontinuity ∆σ, and the potential are evaluated

at points y in the interfaces Si. This is in contrast to the SCM integral equation in

(5.5) where the normal and the conductivity ratio are evaluated at the observation

point. The position x is arbitrary but should be taken at one of the interfaces to

obtain a closed boundary integral equation. The GIE can also be written in operator

form using as key variable the product of the average conductivity and the potential

σ̄φ at different locations of the system interfaces. The equation reads

σ̄φ = B′σ̄φ+ C ′ρs . (5.9)
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The integral kernel for of the operators in (5.9) can be obtained from the explicit

expressions in (5.8). For B′, this is given by B′(x,y) = s(y)σ̄(y)n(y) · ∇yG(x,y).

Comparing the integral kernels of the SCM and GIE, and using the symmetry of the

Green’s function we see that B′(x,y) = B′(y,x) and conclude that the operators B

and B′ are transpose to each other.

5.5 Eigenvalues of the SCM Charge Interaction Operator

We use eigenanalysis of the linear operators in (5.6) or (5.7) to analyze the proper-

ties of the SCM abstract solution. A number of results can be derived by considering

the dissipated power as a variational functional [83]. In addition, power dissipation

has independent and intrinsic significance as a physical variable. The key result of

this analysis is that the operator B has real bounded eigenvalues that satisfy λ ≤ 1.

The largest eigenvalue of B and its corresponding eigenfunction are interpreted as the

addition of a net charge to the surface of the head. Note that some previous results

on eigenvalue structure were first obtained in the development of deflation methods

[61, 82].

The solution to the SCM equation (5.7) is based on the use of the B integral

operator. We refer to this operator as the charge interaction operator as it describes

the charge accumulation at interfaces due to the fields created by these same charges.

The operator B′ in (5.9) serves a similar purpose for the GIE. We first consider the

case of the operator B for the SCM solution, and then we extend the results to B′ for

the GIE solution.

The starting point of the analysis is to note that, as the conductivity is always

positive, the product E(x)·Jc(x) = σ(x)E(x)·E is positive everywhere. This product

can be interpreted as the rate of power dissipation per unit time per unit volume.
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Integration over all space gives the net power dissipation rate P of the system as

P =

∫
V

E(x)·Jc(x) dVx ≥ 0 .

We consider the case where the fields are created by an SCD ω(x), and when there

are no forced current sources. The SCD is arbitrary and not necessarily an SCM

solution. The electric potential created by this distribution is

φ(x) =
1

ε0

∫
A

G(x,y)ω(y) dAy .

The expression for the power can be written in terms of the potentials created by the

given densities as

P =

∫
V

[
−∇xφ(x)

]
σ(x)

[
−∇xφ(x)

]
dVx

=

∫
V

φ(x)
[
−∇x·σ(x)∇xφ(x)

]
dVx .

The term in square brackets can be put in the form −∇·(σ∇φ) = −σ∇2φ −∇(φ ·

∇σ), where we omit the position x. The first term is simplified noticing that it

has contributions only at the interfaces, where charge accumulation appears: ∇2φ =

−(ω/ε0)δ(t). This expression uses a local coordinate systems where t = 0 singles out

the location of the interface. Both ω and σ must be evaluated at interface points.

There, the conductivity is averaged over the two neighboring homogeneous regions

so that this term gives σ̄ωδ(t). The second term is −∇φ · ∇σ. The gradient of the

conductivity is a vector in the direction normal to the interface, localized there as

a delta function, times a factor ∆σ = σ̄s. The whole term reads −σ̄sn · ∇φδ(t).

Integrating over the volume reduces the expression to an integral over the interfaces.

The factor σ̄ is factorized and we have:

P =

∫
A

σ̄(x)φ(x)
[
ε−1

0 ω(x)− sn(x) · ∇xφ(x)
]
dAx .
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The potential in the last term of the integrand is expressed as an integral over the

SCD and we obtain

P =

∫
A

1

ε0

σ̄ φ(x)

[
ω(x)− sn(x) ·(∫

A

∇xG(x,y)ω(y)dAy

)]
dAx , (5.10)

where the second term can be identified as the action of the charge interaction

operator B on the SCD ω(x).

We can now choose the SCD to be an eigenvector of the charge interaction oper-

ator, B ωλ(x) =λωλ(x), resulting in

P =

∫
A

1

ε0

[
σ̄ φ(x) (1− λ)ωλ(x)

]
dAx .

If we explicitly write the potential in terms of the SCD, then the non-negativity of

the power implies the following relation

1

ε0

(1− λ)

[∫
A

∫
A

ωλ(y)G(x,y)σ̄ ωλ(x) dAx dAy

]
≥ 0 . (5.11)

Note that the double integral within the square brackets in (5.11) is also non-negative.

This follows from the positivity of the two operators involved: the one defined by the

multiplication by the mean conductivity and the one defined by Green’s function. This

implies that the operator B is positive and thus have real eigenvalues. Furthermore,

we have (1 − λ)/ε0 ≥ 0 in (5.11), and thus all eigenvalues of the B operator must

satisfy

λ ≤ 1 .

This result is of great importance, as crucial aspects of the problem arise from the

behavior near the critical value λ= 1.

The eigenvalue analysis also yields a result for the lowest eigenvalue. For this one

notes that the power dissipation is bounded above by the value calculated using the
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largest conductivity in the system σmax. We have (σmax − σ)E · E ≥ 0. Integrating

this expression over all space, and following essentially the same steps as above for

P we obtain an expression similar to (5.11) but with a factor, inside the integral, of

the form (σmax/σ̄) − 1 + λ, instead of 1 − λ. Using again the properties of positive

operators, we determine the bound λ ≥ 1− (σmax/σ̄min) where σ̄min is the minimum

value of the mean conductivity, which is always non-zero.

Finally, we note that as the operator B′ in the Geselowitz formulation, (5.9), is the

transpose of the SCM operator, their eigenvalue system is the same and discussion of

the properties of one can be directly applied to the other.

5.6 Interpretation of the Maximum Eigenvalue

The maximum eigenvalue λmax = 1 and its eigenvector have a clear interpretation.

In the model used, the head is surrounded by a non-conductive medium (air), and

the outermost interface has a conductivity contrast factor of s= 2(σout − σin)/(σin +

σout) =−2. A solution to the potential equations can be constructed such that the

electric field inside the conductive region is zero. Then, the potential inside the

region must be constant, as depicted in Figure 5.2 on for the potential satisfies the

Laplace equation with a constant potential boundary condition at the interface. Such

a solution always exists. The field is discontinuous at the outmost interface with a

non-zero charge distribution ω1(x). At points just inside this surface, the total field

is zero; this is due to the cancellation of the field in the small disk around a given

point in the surface and the field due to all other charges. That is, we can use

(5.2) with the field at one of the interfaces set to zero and the field E(x) set to the

value at the surface. Therefore, we identify the necessary charge in terms of the

field to be ω1(x) =−2 ε0 n(x)·E(x). This field can be calculated by summing all the
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Figure 5.2: Solution to the SCM and GIE equations for eigenvalues λ= 1 and λ′= 1.
Inside the head, all interfaces have zero charge density and the potential is constant.
In the air, the field decays to the zero reference value at infinity.

contributions due to this same charge distribution so that

ω1(x) = 2n(x)·∇x

∫
A

G(x,y)ω1(y) dAy = B ω1(x) .

Therefore, this SCD solution is an eigenvector of the operator B with λ= 1. This

SCD creates a constant potential in the outmost surface and throughout the whole

interior of the conductive system, the head.

From this analysis, and our deduction that operators B and B′ are adjoint, then we

have also constructed the eigenvector σ̄φ1(x) corresponding to λ′= 1 for B′. Specif-

ically, the eigenvector corresponds to a potential that is constant at the outermost

interface, which also takes this constant value inside the conductor. Note, however,

that this potential is set to zero at the reference point at infinity to avoid any ambi-

guity in the GIE solution.

We can also note one more characteristic of the eigenvector corresponding to λ= 1.

Specifically, we consider the case where the constant potential at the outmost surface

is positive. The electric field just outside this surface must point outwards as the

potential must decrease to reach its zero value at infinity. Therefore, at all points of

the surface, the local charge density must be positive. Then the accumulated charge

obtained by integrating the local charge density, is also positive: Q1 =
∫
A
ω1(x) dAx 6=
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0. On the other hand, it can be shown that the eigenvectors for all other eigenvalues,

λ 6= 1, carry zero net charge, Qλ 6=1 = 0.
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Chapter 6

SOLUTIONS SPACE OF THE SURFACE CHARGE METHOD

This chapter describes the space of solutions of the forward problem and its con-

nection to the eigenvalue structure of the integral operators that appear in SCM

and GIE. Using these results, a new method of solution of the forward problem is

proposed, based on the truncation of the space of eigenvectors of these operators.

6.1 Solutions Space

The eigenanalysis discussed in the previous section can be used to construct so-

lutions to both SCM and GIE. First, is necessary to identify the space of possible

solutions. When a solution to equation (5) exists, it is not unique. If ωA(x) is a

solution to the SCM, then adding a scalar multiple of the λ = 1 eigenvector ω1(x)

produces a new solution ωA+αω1, with α a real number. A similar result also follows

for the GIE. This fact can be also be expressed indicating that the operators (I −B)

and (I − B′) have kernels of dimension one. From the results in Section 5.6, there is

a clear physical interpretation of the ambiguity in the solutions. The addition of a

multiple of the charge distribution ω1(x) does not change the fields in the inside of

the head and simply modifies the external fields. In the GIE approach, we can add a

constant value to the potential throughout the head while keeping the reference value

at infinite equal to zero. This method produces a truly new physical solution and it is

not simply a reflection of the freedom to add a constant potential value everywhere.

The argument for the non-uniqueness of the solution can also be obtained from

analysis of the PDE expressing current conservation (5.1). For this, it is convenient

again to separate space into the outer region, the air, with zero conductivity, and an
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interior region with non-zero conductivity. In the interior, in regions of homogeneous

conductivities, the PDE reduces to the Laplace or Poisson equations and also leads

to a relation between the limit values of the electric field at boundaries between

those regions. On the other hand, in the exterior region, there is no current and

the equation is null. Instead of the current conservation equation, the field there is

determined from Gauss law ∇ · E = 0. Current continuity at the interface between

the inner and outer regions (labeled i and o), σin · Ei = σon · Eo = 0, requires the

limit of the internal normal component of the field to be zero but does not restrict

the outer field. The potential at this interface is continuous. The internal region

problem thus has a Neumann condition for the potential and its solution is unique up

to a constant in that region. The external region has a Dirichlet boundary condition

given by the potential from the inner region and, in addition, can be set to have a

zero value at infinity. This construction provides a one dimensional space of solutions

for any given source. The difference between any two of these provides a solution of

the problem with no sources. Such solutions can be seen to be eigenvectors of the

GIE with λ = 1. Therefore, this eigenspace is one-dimensional.

To make the solution unique, an extra condition should be imposed. For a given

internal source, members of the one dimensional family of solutions found can be

distinguished from each other by the net charge they carry. In practical applications

is possible to assume that the human head carries no net charge. The condition

of no net charge can be used to single out a unique canonical physical solution to

the problem of determining the potential and accumulated charges for the prescribed

source. The projection method outlined below produces, in essence, such solution.
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6.2 Neural Dipole Sources

The presence of a kernel for the operators (I −B) and (I −B′) implies that there

is a restriction in the space of sources as well. In the solution of the integral equations

the inverses of these operators act on the charge directly induced by the source Cρs.

This directly induced charge should not have a component in the space of kernels of

the operators. However, this restriction has also a clear interpretation and causes no

consistency problems for the SCM and GIE. As noted above, the total surface charge

Q1 for λ= 1 is not zero, but it vanishes for all other values. Therefore, the restriction

in the space of sources is that the surface density directly induced by the source must

integrate to zero. This directly induced surface density is calculated as

ωs(x) =

∫
V

s(y)n(y)·∇xG(x,y) ρs(y) dVy,

so that the restriction that the total charge be zero is

Qs =

∫
A

ωs(x) dAx = 0 .

This condition is immediately satisfied by dipolar sources. This follows since the inte-

gration becomes a sum over all the interfaces, and at each interface, the accumulated

charge is proportional, by Gauss’ law, to the charge of the source, which for dipoles

is zero.

6.3 Projection Method

Even though the SCM equations are mathematically consistent in the case of

dipole sources, it is still necessary to develop a practical implementation method. The

formal solution ω= (I − B)−1Cρs cannot be carried out since the operator (I − B)

is not invertible. This issue can be circumvented by considering the equation in

a subspace where the critical eigenvector is excluded. In practice, this goal posses
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concrete challenges as the eigenvalues of discretized surfaces does not fully satisfy

the bounds for the operators B or B′ and in spite of its clear physical interpretation,

the eigenvectors might not be directly constructed. Furthermore, eigenvectors with

eigenvalues close to λ= 1, create high numeric sensitivity as the solution effectively

contains the value 1/(1− λ).

A practical solution to the aforementioned problems is to find a solution in an

SCD subspace that excludes a whole range of eigenvalues close to the critical value

using a projection operator P . The operators B and B′ can be easily adapted to

this subspace using their spectral decomposition. In particular, we must solve the

equation

ω = (I − B)−1
p P C ρs. (6.1)

Here, (I−B)−1
p acts as the pseudoinverse of the operator (I−B) in the subspace. The

projection eliminates a number of eigenvectors that are not singular in the solution.

The effect of this elimination can be checked in specific models, such as the set of

concentric spheres. In this example, the critical eigenvector is isolated but, upon

discretization, a number of eigenvectors appear with neighboring eigenvalues. Their

elimination by the projection procedure does not directly affect the space that carries

most of the relevant information.

6.4 Comparison to Deflation Approach

We briefly contrast the projection method with the basic deflation approach (as

discussed, for example, in [84]). In the GIE formulation, the λ = 1 eigenvector is a

function of the form ψ(x) = σ̄(x)φ(x) with φ a constant potential value. The deflation

method modifies the integral operator kernel B′(x,y) by adding a term proportional

to σ̄(x)/σ̄(y). This addition leaves the eigenvalue system unmodified except for the
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critical value λ = 1. For the modified operator, with a suitable normalization of the

added term, the same eigenvector acquires an eigenvalue λ = 0. When the operator is

applied to any other original eigenvector ψλ, it returns a value λψλ+α(λ)ψ1. The net

result is to modify solutions of the original equation by adding a constant potential

value at interfaces. This constant value can be ignored in applications that look only

at potential differences at the scalp. There are two practical problems that appear

with this method when the integral equation is discretized. First, the eigenvectors

and eigenvalues of the modified operator will not have the properties exhibited by the

continuum form and thus the solutions obtained will not exactly follow the pattern

sought. A second issue is that there might be other eigenvalues near the critical value

λ = 1 that, while not producing invertibility problems, do lead to high sensitivity of

the solutions. The projection method outlined above, by explicitly considering the

eigenvalues, avoids these problems.
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Chapter 7

FINITE ELEMENT IMPLEMENTATION OF THE SCM

This chapter provides details of the finite element implementation of the projection

method for forward. It also presents numerical examples of solutions for realistic

heads.

7.1 Surface Description

The integral equation in (5.7) can be effectively solved to obtain the induced charge

distribution for a known dipolar source given a known set of values for the conductivity

and a given explicit shape of the head environment. Numerical solutions of the

equation are obtained by discretization of the interfaces between regions of constant

conductivity. We consider the head volume to be composed of Nr + 1 concentric

regions Ri, indexed by i= 0, 1, . . . , Nr. The region R0 is the surrounding air. The

dipole source is assumed to always be within the brain region, which is assumed to be

the innermost region with index Nr. When considering only concentric regions, the

boundaries between regions of constant conductivity define a number Nr of surfaces;

these are assumed to be non-intersecting. The surfaces are oriented and the normal

vector at a surface point is always oriented outwardly.

To proceed numerically, the Nr interfaces are discretized as a set of triangulated

meshes. As the surfaces are disconnected, the discretizations are independent. The

triangles and vertices that comprise the triangulations can be grouped together into

a total set with Ng triangles and Nv vertices. The spatial location of vertex v is the

three dimensional row vector vv. The full set of vertices then forms the array V of size

Nv × 3; the row number in this array is the index of the vertex. The triangles in the
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meshes are described by the indices of their three vertices. Thus, to the gth triangle,

we associate the 3-D integer vector [vg,1, vg,2, vg,3], where vg,i are the row indices for

the vertices. During the construction of the meshes, it is useful to keep track of

the orientation of the surfaces. The order of the vertices is chosen so that if they

are followed in the order given, the circuit produces a counterclockwise circulation

around the normal vector of the triangle. The normal vectors ng of the triangles are

chosen to reproduce the orientation of the continuous surface that is represented. The

position xg of the center of the gth triangle is easily calculated as the average of the

positions of its three vertices. The area of the gth triangle is denoted as Ag. The

conductivity ratio si is uniform at each interface Si. This value is then given to each

triangle in the surface. We form the vector s of size Ng containing the values of the

ratio for each of the triangles.

The key variable of the system is the surface charge density. In the mesh, this is

described by its values at the centers of the triangles ω(xg). It is more convenient,

however, to work with the net charge in each of the mesh triangles. We construct the

vector w with entries wg =Agω(xg). That is, the charge density is evaluated at the

center of the triangles and the charge is obtained by multiplying by the area of the

triangle.

7.2 Matrix Form of Integral Equations

Upon discretization of the interfaces, the integral equation (5.6) is approximated

by a linear equation of the form

w = Bw + Cp .

In this expression, p is the current source dipole vector presented as a 3× 1 column

vector. The matrices B and C are the corresponding discretizations of the operators
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B and C. The matrix B captures the interaction between the charges at interfaces

while C couples the dipole source to these charges.

The matrix elements Bgg′ of the matrix B are obtained from evaluation of the

normal component of the electric field at the triangle g, due to a charge in triangle

g′ which is considered to be accumulated at its center, xg′ . A direct evaluation at

the center of triangle g, however, leads to poor properties of the B matrix. Instead,

it can be shown that the integration over the surface of the triangle leads to a term

proportional to the solid angle Ωgg′ defined by the triangle surface when observed

from xg′ [85]. These matrix elements are

Bgg′ = − 1

4π
sguΩg′ .

Here u is the sign of the component of the field at the surface E along the normal

n at the surface. In this definition, diagonal matrix elements can be taken as zero,

Bgg = 0. The matrix B is of dimensions Ng ×Ng.

The matrix C is of dimensions Ng × 3 and its components are proportional to

the normal component of the electric field E
(s)
n,gj due to the dipole source pointing in

the Cartesian direction j, observed at location xg. For a dipole source in a general

direction, the normal field E
(s)
n,g is

ε0E
(s)
n,g =

1

4π

[
3(∆x

(s)
g ·p)(∆x

(s)
g ·ng)

|∆x
(s)
g |5

− p·ng
|∆x

(s)
g |3

]

with ∆x
(s)
g =xg − x(s) the relative location of the gth triangle center with respect to

the source. Evaluation of this expression when the dipole vector p is a unit vector in

the jth direction defines the value of E
(s)
n,gj. We can then write the elements of the C

matrix as

Cgj = −sgAgε0E
(s)
n,gj.
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After the solution of the discretized version of the integral equation for the charge

density, the electric potential φ can be evaluated using the relation (5.4). The values

of the potential at the centers of the triangles form a vertical vector Φ of size Ng.

The discretized version of this evaluation takes the form

Φ = H(c)w + H(s)p (7.1)

The first term calculates the potential due to the charges associated to the triangles

in the mesh. The matrix H(c) is of size Ng×Ng and its non-diagonal entries have the

form

H
(c)
gg′ = (4πε0)−1|∆xgg′|−1

where, as before, ∆xgg′ is the relative position of the centers of the triangles g and

g′. The diagonal element H
(c)
gg is the potential created, at the center of the gth

triangle, by a uniform charge density in the same triangle. This value is finite and

can be calculated by constructing the g-triangle by joining or subtracting six right

triangles. Three intermediate triangles are formed by joining the center with the

vertices. Each of these subtriangles is decomposed into the join or difference of two

right triangles; the difference is needed in cases where the original triangle has an

angle larger than π/2. The matrix element is the sum over these six components

Hgg = (4πε0Ag)
−1
∑i=6

i=1±hgi, where negatives ae used for subtracted triangles. For

each triangle hgi = di ln(sec θ + tan θ) with θ the angle at the vertex corresponding

to the center of the original triangle, and di the normal distance from original center

to original side.

The second term in (7.1) calculates the potential due to the dipole at each of the

triangle centers. The potential at position xg due to a dipole p, using the notation
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introduced above, is

φg =
1

4πε0

p·∆x
(s)
g

|∆x
(s)
g |3

.

Evaluation of this expression when the dipole is a unit vector in the jth direction

defines the value φgj. These values are assembled into the Ng × 3 matrix H(s) with

entries

H
(s)
gj = φgj .

7.3 Subspace Projection

The key result of the analysis of the properties of the operator B is that its eigen-

vector with λ= 1 cannot be part of the solution and that, in addition, all eigenspaces

with eigenvalues near it can create numerical problems. If these issues were not

present, any accurate numeric matrix inversion method could be used to obtain a

solution in the form w= (I−B)−1Cp, where I is the identity matrix. On the other

hand, we have argued that the eigenspaces near λ= 1 do not carry important infor-

mation for the solution of the forward problem and can be safely eliminated. In

the discrete formulation of the integral equations, this idea can be implemented by

carrying out the operator inversion in (5.7) in a subspace that excludes eigenvalues

in a finite range.

The right eigenvalues λ and respective eigenvectors bλ of the matrix B can be

numerically obtained. We denote by Λ the set of all eigenvalues, and by W the

vector space of all possible triangulation charge vectors w. The eigenvectors bλ span

the space W. We choose a range of eigenvalues to be excluded, for example those

in a range of the form λ > λX for some value λX < 1. This selection partitions

the eigenvalues into two sets, Λ0 and Λ′. The first set contains all eigenvalues except

those, near the value 1, as selected above. The excluded values form the set Λ′. The
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sizes of these sets are NΛ0 and NΛ′ respectively. This selection defines the subspaces

W0 and W′ spanned by the eigenvectors associated to Λ0 and Λ′ respectively. We

can then construct a base change matrix L such that its first NΛ0 columns are the

eigenvectors bλ from W0 while the last NΛ′ columns are eigenvectors from W′. The

inverse of this matrix, L−1 is well defined. In a base defined by the eigenvectors, a

projector P into the subspace W0 can be constructed simply as a NΛ0 × Ng matrix

that is equal to the identity diagonal matrix in its first NΛ0 rows, and zero in the rest.

The solution to the linear problem in (7.1) is now carried out within the subspace

W0. That is, we compute the pseudo inverse R of I − B in this subspace. Our

approximate solution then reads:

w = RCp

and the pseudoinverse is explicitly constructed as

R = LPT [PL−1(I−B)LPT ]−1PL−1 .

where the superscript T denotes vector transpose. In this expression, the matrix in

the square brackets has dimensions NΛ0 ×NΛ0 and is in fact a diagonal matrix with

elements of the form 1− λ in the diagonal, where λ is a non-excluded eigenvalue.

7.4 Computational Costs

The projection method outlined above increases the complexity of the calculation

compared to that of the the simple deflation approach. Forward problem methods

that include deflation steps, such as the symmetric method [66], can be in princi-

ple modified with the use of the projection method and thus general considerations

regarding the added complexity are important beyond a direct comparison with a

simple deflation implementation. The main computational added cost of the projec-

tion method is the determination of the eigenvalues and eigenvectors of the integral
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operator. This operation adds O(N3
t ) operations to the calculation. The most impor-

tant excess storage requirement of the method is the space needed for the eigenvector

matrix of size Nt.

7.5 Numerical Examples

We applied the SCM method to two cases: a head model comprised of concentric

spheres and a realistic shape head model. In both cases, the models have five different

conductivity regions, separated by four interfaces. Proceeding inwards, these regions

are: surrounding air R0, scalp R1, skull R2, CSF R3, and, R4 the brain. The values

of the conductivities for the realistic head model and the outer radius of the spherical

model are shown in 7.1. The projection method was implemented using a cutoff

of λX = 0.97. Namely, the pseudoinverse was carried out in the space span by

eigenvectors with values lower than this limit.

Region Description Conductivity (S/m) Outer radius (m)

(realistic head model) (spherical model)

R0 Air 0 ∞

R1 Scalp 0.44 0.1

R2 Skull 0.018 0.095

R3 CSF 1.79 0.09

R4 Brain 0.25 0.085

Table 7.1: Realistic head parameters

These numerical examples presented here serve different goals. The spherical sys-

tem, though can be used as a crude head model, is presented to assess the accuracy

of the method as it can also be solved analytically as an infinite series. In addition,

we have implemented a deflation method on the same meshes and with similar finite
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Figure 7.1: Error percentages for projection and deflation methods compared to
analytical solutions for the concentric spheres system as a function of dipole position.

elements. The comparison shows the gain in accuracy that can be obtained by replac-

ing deflation by projection. Other methods that solve the forward problem achieve

better accuracy by employing double layers and higher order finite elements [66, 84]

though still make use of deflation. Incorporation of projection into these methods

should lead to increase accuracy and will be investigated in future work. For the

realistic head shape system there is no established ground truth though it can be

expected to exhibit similar error rates as the spherical one. Results for this case show

qualitative stability of the method for more complex shapes and allows us to briefly

discuss below the characteristics of the charge variables in addition to the potential

itself.

Results for the spherical case are shown in Figure 7.5 for mesh sizes and dipole

locations as indicated. The source dipole is radially directed. In all cases the dipole

is located in the innermost region. The figure shows the error in the calculation when

compared against the analytical result. The error is measured as the square root of the

area weighted mean squared deviations divided by the area weighted mean of squared

values of the analytic solution. For the projection method, increasing the grid size
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leads to errors close to 6% for most positions of the dipole. Some intermediate grid

sizes perform better for positions closer to the center. At positions closer to the first

interface, radius r=8.5 cm, convergence is very slow. As shown, the deflation method

produces a 30% error in the largest mesh used. Results for some intermediate mesh

sizes, not shown in the graph, have larger errors. These intermediate mesh sizes have

unequal triangle numbers for the different spheres, indicating considerable sensitivity

to uneven triangulations. In previous work, for the basic deflation method, it was

found that an increased mesh size could result in non-convergence [66, 84]. In the

implementation used in this article, we observe convergence albeit with the noted high

sensitivity to triangulation details. The projection method clearly improves on the

deflation approach for similar finite elements, though it also retains some sensitivity

to the triangulation. Use of more refined forms of finite elements have been shown

to further reduced overall errors [86]. We expect this will also be the case for the

projection method when implemented with higher order finite elements.

Both of the methods show non-monotonic error trends as the mesh size changes.

To understand the origin of this feature it is useful to note that electrostatic problems

of the type solved here have no characteristic microscopic length. When the surface is

discretized, solutions to the problem depend on ratios of the form γ = `/R where ` is a

typical triangle size andR a macroscopic length in the system, such as the radius of the

largest sphere. A successful discretization scheme would produce convergence to the

analytic solution as γ → 0.. We note, however, that this limit can also be understood

as increasing the size of the system while maintaining fixed the typical triangle size and

applying an overall multiplicative factor to the evaluated potentials. From this second

point of view is clear that a wide variety of limit behaviors are possible and that results

are sensitive to the explicit form of the triangulations and to the approximations

implicit in the process. For example, we note that diagonal elements in the matrices
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Figure 7.2: Results for a realistic head shape for the interfaces between the regions
identified in Table I. Due to the different separation between regions, the potential
and charge density show larger value amplitudes in the inner interfaces and are weaker
than at the air scalp interface. The direction of the source dipole is reflected in the
final potential distribution, and the SCD is alternating across consecutive interfaces.

Figure 7.3: Eigenvalue population for the realistic head model. The population near
the critical value λ = 1 is shown in the inset.

that appear in the problem need to be treated differently than off-diagonal elements

to ensure that no fictitious divergent values enter into calculations. As the number of

triangle increases, the relative relevance of the approximations in these two different

types of matrix elements changes, and can produce non-uniform behavior in evaluation

errors.

For a realist head shape, we used the CSH028 model with the provided volumet-

ric tetrahedron discretization [87]. Using this discretization, a triangular mesh was
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obtained for all interfaces between regions of constant conductivity. We edited some

of the surfaces to avoid overlaps and refined the resulting grid for higher accuracy.

The final discretization used 12,336 triangles to describe the interfaces. Figure 7.2

shows results for a dipole, located 2 cm below the top of the head, with magnitude

p = 1.0× 10−15C ·m. Both the potential and the charge acquire larger values in the

inner interfaces than at the scalp. For this example, the discretization refinements

were mainly applied to regions of the interfaces that were close to neighboring sur-

faces as well as to features with sharp edges. These two features are the main sources

of error in the numerical solution of the problem.

A histogram of the eigenvalues for the realistic head is shown in Figure 7.3. The

inset shows the eigenvalues λ near the critical value of 1 in more detail. When discrete

approximations to smooth surfaces are used, the bounds are derived above are not

strictly satisfied. In the perfectly smooth case, there is an eigenvalue λ= 1 but in

the finite element case there is a small set of eigenvalues near and above the value

of 1. Their corresponding eigenvectors are projected out to regularize the problem.

The eigenvalues depend on the structure of the finite element. In particular, we note

that the B matrix has better properties when constructed by means of solid angles

instead of a simple center point evaluation of the electric field. With this construction

method, the number of eigenvalues outside the expected bounds is greatly reduced.

This example also demonstrated that the inhomogeneous term of the linear problem

has very small components along the projected eigenvectors.
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Chapter 8

CONDUCTIVITY MODELS

Solution of the inverse problem in EEG requires the use of a physical model.

The Geselowitz integral equation (GIE), [23] for example, assumes that head tissues

are purely conductive. Experiments show, however, that biological tissues are best

described by complex conductivities indicating both conductive and capacitive behav-

ior. This chapters discusses the connection between tissue structure and macroscopic

electrical properties. The results from this work suggest that the physical models

employed in EEG analysis should consider incorporating complex conductivities to

improve their accuracy.

8.1 Confined Electrolytes in Tissues

The standard method of analysis of EEG signals for the purpose of identifying

source locations uses a description of the head as composed of a number of different

media with constant conductivities [23]. The signals are considered as associated

to quasi-static current sources producing a dipolar potential. The purpose of this

chapter is to connect this macroscopic description of head tissues with a mesoscopic,

cellular-level picture of the underlying electric processes. In the macroscopic picture,

charge concentration appears at the interface between regions with different conduc-

tivity. This phenomenon deserves more careful consideration at the mesoscopic level;

it is worth considering the nature of the accumulated charge, its origin, and proper-

ties. Furthermore, mesoscopic models can indicate proper extensions of the macro-

scopic model with constant conductivities to situations where frequency dependent

properties must be considered. The chapter discusses a novel model that addresses

85



these issues on the basis of the properties of confined liquid electrolytes which are, in

essence, fundamental electrochemical models of cells and other biological structures.

In the literature on the subject, the response of a tissue to oscillating electric fields

is usually separated into different frequency regimes [88]. When the source frequency

is in the GHz range, the response is dominated by molecular level polarization and

its features are labeled as γ-relaxation. In the MHz range, the response is dominated

by ionic polarization; this is the β relaxation regime. At low frequencies larger struc-

tures are considered. It is well established that cells in suspension act as polarizable

colloids [70, 89] and that their response is well characterized by a Debye type effective

conductivity, with a single characteristic frequency response. This is known as the

α-relaxation regime. Within most tissues, however, cells do not act as if in suspen-

sion. A model of tissues as composed of cells and other structures containing liquid

electrolytes is more useful. This observation is exploited in detail next. It is shown

that it is possible to understand a good number of electrical properties of tissues on

the basis of this model.

The basic model discussed here is a simple confined electrolyte. In this picture, a

macroscopic tissue simply consists of a group of similar confining regions, as shown in

Figure 8.1. A detailed treatment of the effective electrical properties of a single com-

partment appears in the work by McDonald [90]. The results of this work, however,

have not been applied to tissue conductivity. Application of oscillating electric fields

to bounded electrolytes produces a polarized double layer as ions accumulate at its

boundaries. Therefore, in addition to the conductive properties of the ion-rich liquid,

consideration of the accumulation of charge at boundaries is required. An important

insight of the work of MacDonald [90] is to note that during the application of ex-

ternal fields, an essentially uniform current is maintained in the bulk of the system.

This, in turn, requires the presence of a bulk electric field. More complex analysis of
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Figure 8.1: Scheme of cross section of an idealized tissue composed of multiple,
similar regions of confined electrolytes. The ions, shown in red and blue for different
charge type, move within these regions to produce net currents in the bulk of the
separate regions. The arrows indicate the direction of motion of the positive ions in
presence of a horizontal electric field.

the single compartment system has been carried out in the non-linear regime and for

its transient aspects [91], but these results are not required for the present discussion.

In connecting these ideas to tissues, it is also useful to consider the precise na-

ture of the macroscopic measurements. This is facilitated by consideration of the

displacement current, that bridges the results for a single confined electrolyte to a

full tissue.

8.2 Displacement Currents

In analyzing electrical conduction in tissues and other heterogeneous structures, it

is necessary to consider not only the movement of ions per se but also the contribution

of the electromagnetic field [92]. The total electromagnetic current J is the sum of

the ionic current j and the displacement current jD. The displacement current is

proportional to the time derivative of the electric field. In a material medium, the

displacement current is jD = ∂tD, where the displacement vector D is the product

of the relative permittivity ε, the free space permittivity ε0, and the electric field E,

that is, D = εε0E. The total elecromagnetic current is then :
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J = j + jD = j +
∂D

∂t
.

The explicit consideration of these currents is necessary as we have a system with

confined charges. Mobile ions in biologically systems, though relatively free to move

in an aqueous environment, are essentially confined to tissue substructures such as

cells and organelles. Even when ions are resent in larger structures such as blood

vessels or the cerebro-spinal fluid, the ions must remain, for the most part, within

specific spatial regions. Ions can be exchanged between regions by means of active

transfer through pores. However, such processes are not significant in the analysis

of the tissue response to external fields. Many organs, cells, and organelle walls

have an effective zero ionic conductivity. Nevertheless, the regions they bound still

contribute to an overall macroscopic conduction. The concentration of ionic species

can be different across walls, and a macroscopic description that includes charge

conservation must emerge from such settings where ions do not have large scale free-

paths and the current carriers change from region to region. An even more extreme

case of this issue occurs at the boundary between electrodes and tissues. Tissue

conductivity is ionic in nature while, in electrodes, the carriers are electrons. The

minute electronic conduction of tissues does not account for the current registered

in measuring devices connected to tissues via electrodes. Only when displacement

currents are considered can all pieces fall into place to recover a macroscopic picture

of tissues as linear conductors. The issues noted here also apply to any heterogeneous

material. However, standard frameworks allows the analysis of electric circuits to

bypass these details; in RC circuits, the charge accumulation at the capacitors can

replace the consideration of the displacement current. In the AC circuits, this charge

accumulation is replaced by an imaginary (in the mathematical sense) current and

leads to a description of the circuit with current conservation. These issues have been
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recently reviewed by Eisenberg et al. [92].

The main reason to use the electromagnetic current is that it is conserved. In

a medium, Ampere’s equation can be written as µ0(j + ∂tD) = ∇ × B, with B

the magnetic field and µ0 the magnetic permeability. Therefore, the electromagnetic

current satisfies J = µ−1
0 ∇×B. Taking the divergence on both sides leads to current

conservation:

∇ · J = 0. (8.1)

In turn, this relation leads to the ionic current continuity equation

∂t∇ ·D = ∂tρ = −∇ · j, (8.2)

with ρ the charge density. While the ionic current is conserved only up to the consid-

eration charge accumulation, the total electromagnetic current J is always conserved.

It is this conservation that allows the construction of macroscopic conserved currents

and connects the values of ionic currents across hard walls.

The structure of these currents, for the setting we are concerned, appears in Figure

8.2. The figure shows two neighboring regions with ionic content that are separated by

a hard wall. An oscillatory external electric field is applied in the horizontal direction.

The figure can be considered as showing the state of the system at the time where

the oscillating external field is largest. There are three regions with different features.

In the bulk region, far away from the wall, the combination of the external field and

local contributions due to accumulated charges still produces a net field in the same

direction as the external one. In this region, the ionic current j can be considered to

be proportional to the net local field and satisfy the constitutive equation j = σ0E,

with σ0 the conductivity of the ionic medium. The bulk region is distant from the

walls where ions accumulate, and there are no significant gradients to contribute as

driving forces, to the creation of ionic currents. The total current in this region is
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J = σ0E+ ∂tD. It can be shown that in the electrolyte bulk the second term is much

smaller than the first. In short, in an oscillatory field, the ratio of the two terms is

σ/εω, where ω is the external field frequency. For typical values in ionic systems,

this ratio is very large, up to GHz frequencies and can be ignored in low frequency

applications. Thus, in the bulk region, the electromagnetic current and the ionic

current coincide:

J ≈ jB.

The B subindex emphasizes that the ionic current is evaluated in the bulk region. In

a system that is effectively one dimensional, this implies that the current everywhere

in the system is equal to the ionic current of any bulk region, even in places where the

ionic current is zero. In more complex systems with three dimensional structures, the

electromagnetic current does change but obeys the conservation condition ∇ · J = 0.

Next to the walls of the system, there is a region called the double layer, where ions

accumulate as they are pushed by the field and diffusion gradient, but cannot escape

due to the wall. The action of the oscillatory external field creates a time dependent

accumulation of charge which in turn produces a time dependent contribution to the

net electric field. In contrast to the bulk region, changes in the charge density produce

non-negligible contributions to the displacement current. The displacement current

exhibits large spatial variations as it accounts for the accumulation of charge ∂tρ =

∇ · jD. Figure 8.2 shows a reduced ionic current and a compensating displacement

current, both of which add to the value of the conserved total electromagnetic current.

In the hard wall region, there is no ionic current j = 0, and the total current

equals the displacement contribution J = jD. The region is permeated by the time

varying electric field. In the one dimensional, case the field must be spatially uniform

since its divergence must be zero, ∇ · E = 0. In tissues and complex structures, the
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Figure 8.2: Scheme of two neighboring regions with confined electrolytes separated
by a hard wall. The electrolyte’s positive and negative ions are shown in an implicit
aqueous background, and the wall is shown in gray. An external potential difference
is applied in the horizontal direction. At the top of the scheme, the arrows indicate
the direction and magnitude of the electromagnetic current J, the ionic current j and
the displacement current jD. The electromagnetic current is conserved and therefore,
in this one-dimensional case, constant. The ionic current takes the bulk value jB
away from the wall in both of the neighboring compartments. The ion density in
the two different compartments is not the same, but the bulk currents as well as the
electromagnetic current, are the same.

field in the walls connects the electrical activity across regions.

In Figure 8.2 , the two compartments separated by the wall do not have the same

properties and have, in particular, different ionic concentrations. The effective ionic

conductivities of these two compartments, say (a) and (b), are σ(a)and σ(b), with

σ(a) 6= σ(b). In the bulk regions of the two compartments, the ionic currents are j
(a)
B

and j
(b)
B . The previous analysis then shows that in a one dimensional geometry, or in

slowly varying three dimensional structures, the ionic currents must be equal:

j
(a)
B = J = j

(b)
B .

In short, in spite of the presence of a hard wall, the ionic current is continuous.

Furthermore, if the ion rich bulk regions form the largest part of the system, these

bulk currents can be used to define the average macroscopic current which is then
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conserved. This current matches a intuitive notion of currents in tissues and heteroge-

neous structures. As such, unfortunately, it hides the role of the displacement current.

Finally, it is worth noticing that the previous discussion carries over to tissues in con-

tact with an electrode. Again, taking the view of an approximately one-dimensional

system, the bulk current in the ionic region is equal to the bulk current, this time

carried by electrons, within the wires of the measuring device. With superscripts

indicating the evaluation region, the equality between the total current and the bulk

currents in the two media is

j
(wire)
B = J = j

(tissue)
B .

Remarkably, the ionic conduction seamlessly becomes the electronic current and thus

the tissue can be simply thought as part of a standard electric circuit.

In the discussion of the bulk region for a compartment, it was noted that the ionic

current can be phenomenologically related to the net electric field j = σ0E. This net

field, however, is composed of the external field E0 and a field Ec created by charges

in the medium, E = E0 + Ec. The second field is determined by the accumulated

charge density ρ: ∇·εε0Ec = ρ. In the bulk of the compartment, it is shown below

that, in the complex representation of oscillating fields and currents, the two fields

are proportional to each other. The constitutive equation can be then expressed in

terms of the external field:

jB = σ0E = σME0.

This expression defines the effective conductivity σM , which can be identified with a

macroscopic value. For notational simplicity this value will be denoted as σ = σM . In

macroscopic measurements that relate external fields to currents, this value σ is the
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measured constant of proportionality and thus defines the macroscopic conductivity.

As shown in the next section, the value of σ can be calculated from the properties of

the confined electrolyte system. A key feature of this effective macroscopic conduc-

tivity is its dependence on the frequency ω of the applied external field. When this

point needs to be emphasized the notation σ(ω) will be used. Only at very high fre-

quencies, when the oscillation period is so short that precludes charge accumulation,

the effective conductivity and the pure parameter σ0 coincide.

8.3 Conductivity of Confined Electrolytes

The properties of the confined electrolyte can be discussed from a coarse-grained

level where average values of particle and charge density are meaningful. To simplify

some of the discussion, the electrolyte is considered to consist of two charged species

of 1:1 valence. The equilibrium number density of each of the ionic species, averaged

over the whole confined region, is denoted by n0. Though cells per se are usually

not electroneutral, their charge is balanced by ions in the intercellular space. For

simplicity, the compartments are assumed electroneutral so that both species have

equal average concentrations. The analysis assumes an effective one dimensional

geometry. The confining region is taken to be prismatic. The variable x denotes the

coordinate along the field direction. The electrolyte rich regions is −L/2 < x < L/2.

Analysis of this system leads to a dynamic version of the Poisson-Boltzmann

equation. Derivation details appear in the literature [90]. The key result is the

equation for the charge density in the electrolyte region:

∂tρ = D[∇2ρ− κ2ρ].

The inverse screening length κ is given by κ2 = σ0/(εε0D) = 2e2n0/(εε0kBTm). Here

D is the diffusion constant, kB is the Boltzmann constant, e the fundamental charge
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and Tm is the temperature.

The dynamic equation for the charge density does not fully describe the system

as, crucially, the potential is not uniquely determined for a given charge density. To

determine the potential, the Poisson equation

−εε0∇2φ = ρ

must be simultaneously solved along with the dynamic Possion-Boltzmann relation,

Equation 8.3. The boundary conditions for the compartment considered are the no-

particle flux at both hard walls, j|wall = 0, and the continuity of the displacement

vector at the walls. For the multiple compartment system, the continuity of the

potential and the displacement current provide the necessary boundary conditions.

In the case of oscillating external fields, solutions to the density and potential

equation can be written as described next. For ease of notation, dynamical variables

are expressed as the real part of complex numbers and oscillatory time dependence is

factorized. The potential, for example, is φ(x, t) = Re[φ(ω, x) exp(iωt)] where φ(ω, x)

is the frequency dependent complex amplitude. The same symbol φ(·, ·) is used for

variables in the time and frequency domains, but the quantities are differentiated by

the time t and frequency ω variables.

In the one dimensional case, the potential can be expressed as

φ(x, t) = −EB(t)x+ φc(x, t)

where φc is the solution to the Poisson equation with zero derivative at the center

point of the region x = 0. Here, E is the x-component of a constant electric field.

This field can be understood as the bulk value of the total field and it exactly matches

the total field at x = 0.

In a system with multiple similar cells, separated by finite thickness walls, solutions

for the potential and ion concentration can be constructed that assume a periodic
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behavior for the charge density and electric field and monotonic changes for the

potential. The region −L/2 < x < L/2 has ions in an aqueous environment while

the region −T − L/2 ≤ x ≤ −L/2 is the wall, of thickness T . The system repeats

periodically along the x coordinate, with periodicity L+ T .

Inside the aqueous region the ion concentration can be written as ρ(x, t) =

Re[ρ(ω, x) exp(iωt)]. The spatial dependence of the solution is ρ(ω, x) = A cosh(qx)+

B sinh(qx), where the complex inverse decay length q must satisfy the relation im-

posed by the dynamic equation,

iω = D[q2 − κ2].

At low frequencies the inverse decay length q ≈ ±κ ± iω/(2κ2). From here on, the

symbol q denotes the root with positive real value. For the low frequency case of

interest, the magnitude of the inverse decay length is of the order of the screening

length, q ∼ κ, so that the charge density decays quickly away from the boundaries.

This leads to the approximate form, near the left boundary, ρ(ω, x) = A exp[−q(x+

L/2)]. Near the right boundary it is, similarly, ρ(ω, x) = −A exp[q(x−L/2)]. In these

expressions, A is a complex amplitude that will be determined so as to be consistent

with a prescribed value of the externally applied field.

Near the left boundary, the accumulated charge generates a potential of the form

φc(ω, x) = [A/ε0εq] exp[q(x+ L/2)]

The field associated to this potential is

Ec(ω, x) = −[A/ε0ε] exp[q(x+ L/2)]

The diffusion current jf = −D∇ρ is given by the gradient of the charge. The hori-

zontal component of the frequency domain amplitude of this current is
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jf (ω, x) = −qDA exp[q(x+ L/2)].

The net ionic current near this boundary is then

j(ω, x) = [σEB + (
σA

εε0q
− qDA) exp(q(x+ L/2))].

This quantity is zero at the left boundary. Solving this relation for the amplitude,

and using the dispersion relation in Equation (8.3) leads to a value for the charge

amplitude in terms of the bulk field.

A =
iqDκ2

ω
ε0εEB =

iqσ

ω
EB.

The amplitude of the potential due to charge accumulation, evaluated at the left and

right boundaries, x = ±L/2, is denoted by φc,L and φc,R(ω), respectively. Similarly,

φL and φR denote the evaluation of the total potential φ at these points, which

includes the contribution of the bulk field. Their values are given by

φc,L = −iDκ
2

qω
EB, (8.3)

with φc,R = −φc,L. The total potential also satisfies φR = −φL, and at the left

boundary,

φL =

[
−iDκ

2

qω
+
L

2

]
EB. (8.4)

In the wall region, with −T −L/2 ≤ x ≤ −L/2, the field is spatially uniform and

the ion concentration is zero. In this region the field is given by

E(x, t) = Re[EW exp(iωt)],

and the potential is
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φ(x, t) = Re[−EW (x+ L/2) + φL] exp[iωt]

where φL is the left boundary value of the potential. The ionic current in this region

is zero

j(ω, x) = 0.

The displacement current in this region is

jD(ω, x) = iωεWEW .

At the boundary between wall and aqueous region, the field satisfies the relation

εWEW = εEL

where EL is the amplitude of the field at the left boundary and εW is the relative per-

mittivity of the wall. In terms of the bulk field value, this is EL = (1− iDκ2/ω)EB =

(iDq2/ω)EB. Therefore, the amplitude of the oscillating field in the wall is

EW = i
ε

εW

Dq2

ω
EB (8.5)

and the displacement current is

jD(ω) = iωεDq2EB.} (8.6)

The potential difference across the wall region is

∆φW = −TEW = i
ε

εW

TDq2

ω
EB.} (8.7)

To summarize, Equations 8.3, 8.3 and 8.7 relate the amplitudes of the density, and

potential at the edges of the electrolyte region and the wall, to the bulk value of the
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electric field. Next, this value will be determined for a prescribed external potential

difference.

Figure 8.3 shows plots of the behavior described by these results. For these plots,

the position along the current direction, x, is measured in units of the inverse screening

length κ. The unit repeated cell has length κ(L + LW ) = 20. The conductivity is

scaled so that σ0 = 1. The potential is scaled so that the amplitude of the potential

difference on a single repeating cell is ∆V = 1. The field is scaled to units of potential

times characteristic length.

In the context of electric circuits, the most important relation is the one between

the potential difference at the boundaries of a circuit element and its current. The

potential drop V , across a region consisting of an aqueous bulk of length L, with

surrounding walls of thickness T , is

V (ω) = φL − φR −∆φW = 2φc + LEB −∆φW .

This value can be expressed in terms of the bulk field EB as

V (ω) = [L− iA ε

εW

Dq2

ω
− i2Dκ

2

qω
]EB.

At this point, it is useful to introduce the complex frequency ωα, to denote the

characteristic relaxation frequency of the macroscopic system. This is given by

ωα =
Dκ

L
[2 +

ε

εW

q2

κ
T ] ≈ Dκ

L
[2 +

ε

εW
κT ].

The approximate value in the right hand side of the equation is real. The second

term in the square brackets of the approximate form can be large compared to 2, due,

for example, to the large contrast of permittivities. The key feature of this quantity,

however, is its dependence on the length L of the aqueous region.
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Figure 8.3: Plots of the real and imaginary parts of (a) potential, (b) charge den-
sity, (c) current and, (d) electric field, for a system with confined electrolytes un-
der the action of an external, horizontal, oscillating field with complex potential
Φext = Φ0 exp(iωt). The figures assume multiple similar confined regions along the
horizontal direction. The region corresponding to the wall is shaded.
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The ionic current density at the bulk locations jB is

jB = σ0EB =
ω

ω − iωα
σ0
V

L
.

The total ionic current I through a transversal section of area S is

I =
ω

ω − iωα
σ0
SV

L
.

From this expression, the complex impedance of the region of volume S × (L+ T ) is

given by

Z =
L

S

[
1− iωα

ω

] 1

σ0

This expression roughly corresponds to a simple RC series combination with the

caveat that the frequency ωα is complex. The resistance is simply provided by the

bulk ionic conduction over the length of the compartment

R ≈ 1

σ0

L

S
.

This is not an identity relation as the α frequency, as defined, is complex instead of

purely real. The capacitance C at low frequencies is

C ≈ σ0

Re(ωα)

S

L
.

In essence, this is the capacitance of the parallel plate capacitor with plate separation

κ−1 + Tε/εW . At the macroscopic level, the whole confined region acts, therefore, as

a single entity with effective macroscopic complex conductivity σ given by the Debye

form

σ(ω) =
ω

ω − iωα
L

L+ T
σ0 =

ω

ω − iωα
σ0av.

100



Here, to simplify the expression, the average value σ0av over the region including the

wall is used. It is standard to decompose this expression into its real and imaginary

parts, σ′M and σ′′M , so that σM = σ′M + iσ′′M . As noted above, the characteristic

frequency is complex but has a larger real part at low frequencies. In that case, the

real and imaginary parts are

σ′(ω) ≈ ω2

ω2 + ω2
α

σ0av,

σ′′(ω) ≈ ωωα
ω2 + ω2

α

σ0av.

These results indicate that, for frequencies near the α frequency, the AC effective

conductivity is of the order of the free ion conductivity in the aqueous medium.

The imaginary part of the conductivity can be interpreted as a frequency dependent

permittivity ε(ω) = σ′′/ε0ω so that

ε(ω) ≈ ωα
ω2 + ω2

α

σ0av

ε0

.

Figure 8.4 depicts plots of scaled real and imaginary parts of the conductivity

and scaled permittivity. The figure also presents the Cole plot associated with these

values. The deviation from the semicircular shape is due to the frequency dependence

of the characteristic inverse length q. The conductivity plots are scaled to units where

σ0 = 1 and ε(0) = 1.

8.4 Comparison to Observed Properties

The previous calculations show that a Debye type response can be obtained from

the model of confined electrolytes. For typical values of ionic concentrations, in

the millimolar range, and structures of size of microns, the predicted α relaxation
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Figure 8.4: Plots of the (a) conductivity and permittivity and (b) Cole diagrams of
the confined electrolyte.

frequency is 104 Hz, which is well within the range of the observed features.

The model described can be modified to include important details that apply

to specific cases. In particular, modifications are required when the electrolyte-rich

region occupies a much smaller region with more complex geometry. This would be

the case, for example, when the electrolyte-rich region is an extracellular region, as

is the case of the CSF.

Future work will address precise extensions of the model to other geometries and

discuss the application to different types of tissues and physiological systems.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

This work has addressed three different aspects of the properties and applications

of EEG. Namely, the implementation of sequential filters in source identification,

elucidation of the structure of the forward problem when described using accumulated

charge and power variables, and a mesoscopic view of the conductive properties of

tissues.

9.1 Source Identification

The central objective of this component of the project is the application of a group

of techniques, in particular sequential particle filters, to the problem of localization

of evoked potentials in the presence of artifacts. The resulting method, is capable to

recover the location of individual dynamic dipoles in test cases [93].

The method described was employed in a simplified setting with a three sphere

head model. Its application becomes more difficult in the case of realistic heads as

this requires solution of the forward problem as an intermediate step. The need

for effective ways to solve the forward problem prompted a more detailed study of

its solution methods. This work presents two contributions that aim at improving

the accuracy of the solutions. The first is the use of power and charge variables to

elucidate the properties of the forward problem as is commonly formulated, namely,

as a solution of the Geselowitz integral equation [23]. The second contribution aimed

to establish the validity of assumptions used in its most common formulation.
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9.2 Power and Charge Variables

The second component of this work is the use of charge and power variables as part

of the description of the EEG problem. Their use elucidates several of its features,

both from the point of view of its physical interpretation and its mathematical struc-

ture. In particular, important features of the spectrum of the integral operator that

defines the problem were obtained. A critical eigenvalue, that obstructs the straight-

forward solution of the forward problem was identified and interpreted. Key results

have been described in this document and have appeared in publications [65, 80, 94].

Future work in this area includes further investigation of the consequences of

the eigenvalue structure. The work presented here focused on implications for first

order discretizations of surfaces, but consequences for higher order schemes should

also be considered. Additionally, the explicit evaluation of surface charge densities

at interfaces provides opportunities to connect this work with other approaches in

the investigation of neural activity such as impedance tomography[95]. Results from

this work are also likely of to be relevant in other bioelectricity problems such as the

analysis of cardiac signals [74].

9.3 Tissue Models

The section on tissue modeling aims to examine commonly made assumptions in

EEG investigations regarding the properties of head tissues. The Geselowitz model

applies to conditions where the currents are considered to be in steady state and

tissues are described by a constant conductivity [15, 23]. However, biological tissues

exhibit frequency dependent conductivities [96]. The contribution in this work is to

show that this second view is more accurate. The frequency dependence observed

in experiments matches the properties that emerge from consideration of mesoscopic
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models of cells. In particular, the model of tissues as confined electrolytes leads to

Debye type relaxation characteristics often found in experimental investigations [96].

This work will be extended in several ways. First, it can be noted that the basic

assumptions on which it is based apply not only to head tissues but to many other

biological tissues. Therefore, its results can be tested and applied in other contexts.

For EEG applications, the model provides a rational approach to the construction of

whole head models that incorporate frequency dependence effects.
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