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ABSTRACT 

In certain ant species, groups of ants work together to transport food and materials 

back to their nests. In some cases, the group exhibits a leader-follower behavior in which 

a single ant guides the entire group based on its knowledge of the destination. In some 

cases, the leader role is occupied temporarily by an ant, only to be replaced when an ant 

with new information arrives. This kind of behavior can be very useful in uncertain 

environments where robot teams work together to transport a heavy or bulky payload. The 

purpose of this research was to study ways to implement this behavior on robot teams. 

In this work, I combined existing dynamical models of collective transport in ants 

to create a stochastic model that describes these behaviors and can be used to control multi-

robot systems to perform collective transport. In this model, each agent transitions 

stochastically between roles based on the force that it senses the other agents are applying 

to the load. The agent’s motion is governed by a proportional controller that updates its 

applied force based on the load velocity.  I developed agent-based simulations of this model 

in NetLogo and explored leader-follower scenarios in which agents receive information 

about the transport destination by a newly informed agent (leader) joining the team. From 

these simulations, I derived the mean allocations of agents between “puller” and “lifter” 

roles and the mean forces applied by the agents throughout the motion.  

From the simulation results obtained, we show that the mean ratio of lifter to puller 

populations is approximately 1:1. We also show that agents using the role update procedure 

based on forces are required to exert less force than agents that select their role based on 

their position on the load, although both strategies achieve similar transport speeds. 
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1. INTRODUCTION 

Collective transport by multi-robot teams has been a topic of much study over the 

past two decades due to the potential applications in such a wide variety of scenarios. 

Having teams of robots perform tasks eliminates the need for high complexity in design 

and control that is required to enable only one robot perform that same task. It allows for 

more dynamic teams that can be either homogeneous (all team members having the same 

capabilities) or heterogeneous (different team members having different capabilities). With 

either implementation, what is developed is a system that has some relative latitude to 

perform an array of tasks.  

Much progress has been made in developing control strategies for single-robot 

behaviors. Path planning, trajectory control and even navigation are problems that have 

been solved for many types of environments using varying strategies. Further work is being 

devoted to the control of multi-robot team dynamics, especially using advances in decision-

making algorithms that the team members can use. For many of these problems, solutions 

can be readily found in nature. Studies of organisms that exhibit collective behaviors, 

especially social insects, reveal a “swarm intelligence” that seems to govern the actions of 

the members of the swarm (Bonabeau, et al., 1999). It then becomes a question of 

understanding the behaviors of individual organisms and applying these strategies to robot 

teams to achieve similar global behaviors, all the while taking into consideration the 

capabilities of the robot teams (Brambilla, et al., 2013).  

Over the past couple of decades, considerable effort has been invested in 

developing multi-robot systems for various use cases, including the following: 
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1. Manufacturing: This has been one of the most natural partnerships of technology 

and industry we have seen. Automotive manufacturing companies make use of 

industrial robots in their product lines, and manufacturers of products such as 

electronics, medical equipment and food processing equipment are employing 

robot teams to achieve various tasks. An example is the SWARM robot project by 

Rolls Royce, which will measure around 10mm in diameter and will be used to 

inspect the insides of engines. 

2. Medicine: Medical procedures that have been the sole domain of human 

professionals are now being assisted by robots. The I-SWARM project (Seyfried, 

et al., 2005) sought to develop micro-robots with a planned size of 2×2×1mm3 

capable of implementing swarm behavior to deliver medicines or inspect internal 

organs, reducing the need for invasive procedures. (Martel, et al., 2009) 

demonstrates the integration of bacteria with nanorobots or other micro-scale 

entities to use their molecular motors as a means of propulsion and describes their 

potential for applications in human blood vessels. Applications include targeting 

tumoral lesions for treatments. 

3. Construction: The world’s greatest builders may be termites, and we continue to 

search ways to mimic these organisms, as shown in the work on termite-inspired 

multi-robot construction in (Werfel, 2012).  

4. Space Exploration: The Mars exploration rovers (Spirit, Opportunity and Curiosity) 

are the best examples of this use case. Without the ability to send humans on these 

exploratory expeditions, robots have been our most effective tool. The “Swarmie” 

is also another example of a robot designed for applications in space exploration 
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(Leucht, 2016). When complete, the robots will be capable of scanning for water-

ice or other resources that can be turned into rocket fuel or breathable air. 

5. Home service automation: Lots of homes today have an autonomous lawnmower 

or vacuum robot. Roombas and other cleaning robots have become a part of the 

everyday technological landscape, and their popularity and functionality keep on 

increasing.  

Collective transport is one such problem that is readily solved by multiple species, 

especially in ants. Understanding how different ant species achieve this should enable the 

implementation of collective transport strategies across various robot platforms. Whilst 

there are certainly other species that could be investigated, ants are especially suitable for 

study due to their small size and relatively simple behaviors. The level of complexity in 

recreating the behavior of an individual is thus reduced significantly. 

The work in this thesis is inspired by the research carried out in Dr. Spring 

Berman’s lab on developing control policies for robotic swarms based on a study of the 

desert ant Novomessor cockerelli. The other major influence on this thesis is the work done 

by Dr. Ofer Feinerman’s lab on collective transport by the Paratrechina longicornis 

species.  

1.1 Literature Review 

This section highlights the work done in swarm robotics with respect to collective 

transport and swarming behaviors. The focus is on studies that seek to model and emulate 

or replicate collective transport behaviors in ants. Typically, these studies address some 

combination of the following three problems: 
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1. Development of a dynamical model of the transporters and their load 

2. Determining the composition of the transport team (e.g., the roles that 

robots assume during transport) 

3. Design of decentralized robot control strategies for transport 

In (Kube & Bonabeau, 2000), an ant-inspired  control strategy that allows robots to 

reposition themselves on the load during a box-pushing task is investigated. (Rubenstein, 

et al., 2013) describes a physics-based model for the dynamics of a multi-robot collective 

transport process, breaking the problem down into two phases. The first phase involves the 

robots searching for and attaching to the load, and the second phase involves the robots 

applying forces to the load to achieve transport.  

In their work on N. cockerelli, (Berman, et al., 2011) develop a hybrid dynamical 

model for group food retrieval by these ants based on experimental data. (Kumar, et al., 

2013) build on this work to develop a Stochastic Hybrid System (SHS) model for collective 

transport by ants of the same species. This SHS model describes the time evolution of ant 

behaviors (resulting from stochastic switching of ants between roles), as well as the load 

position and population counts of ants in different roles.  

Further work on these ant-inspired stochastic behaviors is presented in (Pavlic, et 

al., 2016), which allows robots to interact with each other and with the boundaries of 

multiple loads to achieve target robot populations around each type of load without 

requiring analytical expressions for the corresponding encounter rates. The work describes 

stochastic policies that allow robots to “avoid collisions with each other, bind to 

boundaries of disk-shaped regions, and command bound robots to unbind” (Pavlic, et al., 

2016).  
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(Wilson, et al., 2014) describes control policies derived from the SHS model 

developed in (Kumar, et al., 2013) and also extends the work done in (Pavlic, et al., 2016). 

This work presents three methods for designing the control policies that “mimic different 

microscopic and macroscopic properties of collective transport in ants.” 

(Pavlic, et al., 2014) also builds on this prior work and (Wilson, et al., 2014). In this 

extension of the work, they propose control policies that implement spontaneous ant 

detachment from the load as a catalytic process based on agent encounters. A reduced-

order model is also proposed which can approximate the system dynamics of the swarm.  

The Feinerman group has carried out studies on P. longicornis, whose behavior 

during collective transport allow them to incorporate information from temporary leaders. 

(Gelblum, et al., 2015) presents an Ising model of this behavior that describes the “decision 

rules that balance individuality and compliance. Macroscopically, these rules poise the 

system at the transition between random walk and ballistic motion where the collective 

response to the steering of a single informed ant is maximized.”  

1.2 Outline of Thesis 

Chapter 2 details the mathematical equations and computations used to describe 

and model the macroscopic, or population-level, and microscopic, or individual-level,  

behaviors of a swarm as it performs collective transport.1 Chapter 3 describes the agent 

controller design and implementation of the model in an agent-based simulation. 

                                                 
1 Most of these equations are taken from the (Feinerman, et al., 2018) and (Pavlic, et al., 2014) 

papers. 



6 

 

Simulation results are provided and discussed in Chapter 4. Conclusions and possible 

directions for future work are given in Chapter 5. 

1.3 Contributions of Thesis 

Most ant-inspired collective transport models assign agent roles based on the 

location of the agent on the payload. One common scheme involves dividing the payload 

into two distinct regions (front and back) with respect to the direction of transport and 

assigning each agent’s role based on which of the two regions the agent is attached to. 

While this scheme has been shown to successfully produce collective transport in 

simulation and experiments, collective transport behaviors observed in ants (at least, in P. 

longicornis) include switching of transporters between roles in response to the forces that 

they perceive are being exerted on the payload (Feinerman, et al., 2018).  

This thesis combines the model of collective transport proposed in (Pavlic, et al., 

2014) with the role change rules and role selection probabilities defined in the Ising model 

described in (Feinerman, et al., 2018). The result is a stochastic dynamical model of a 

robot-payload system that allows the agents to change roles throughout the transport task. 

Using agent-based simulations in NetLogo, an exploration is also made into the effect that 

transient leaders have on the group. It is shown that the agents achieve an equilibrium state 

where the number of agents pulling the load is approximately equal to the number of agents 

lifting the load. It is also shown that this equilibrium state is achieved irrespective of the 

points of attachment of agents on the load or the number of agents attached to the load. It 

is also shown that under the suggested role update procedure, the forces exerted by the 

members of the transport team are significantly lower than an implementation where the 

robots select roles based on their positions on the payload. 
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2 MATHEMATICAL MODEL 

The load dynamics and rules for ant selection of pulling and lifting roles while 

attached to the load are based on the work done on the effects of transiently informed 

individuals on ant group behavior (Gelblum, et al., 2015).  

The model for ant movement while searching for the load and the control policies 

for ant attachment to/detachment from the load are based primarily on the models in 

(Pavlic, et al., 2014), (Pavlic, et al., 2016) and (Wilson, et al., 2014). 

A key for the symbols and variables used in the equations in this section can be 

found in the Nomenclature table (see beginning of document). 

2.1 Load Dynamics 

Here, we present a description of the dynamical model of the load. When an ant is 

attached to the load, it exerts a force on the load in a bid to transport it to some location. 

The ant attaches itself to a point on the circumference of the load that is at an angle �
 with 

respect to a global coordinate frame, and the orientation of the ant with respect to the 

normal at that position is �
 (see Fig. 2.1). 

 

Figure 2.1 Ant Point of Attachment and Orientation on a Load 
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An attached ant can occupy one of two roles: puller or lifter. A puller attempts to 

drag the load towards a destination and in doing so, it attempts to align itself with the 

direction of the force required to achieve this motion. Lifters, on the other hand, lift the 

cargo in a bid to mitigate the effects of friction.  

The model assumes that all ants attached to the load lift with a lifting force 42 =
2.59 ): and that the load is subjected to a kinetic friction force. Based on this, the normal 

force 4; on the load can be evaluated by assuming that the load is in vertical equilibrium. 

 4; = <= − :?���42 Eq (1) 

where M = mass of the payload, = = acceleration due to gravity, and :?��� = the number 

of robots occupying the lifting role at time t.  

Given that each pulling ant applies a force ��, the net force acting on the load is given by 

 ���� = :������ − @4; Eq (2) 

where :���� = the number of ants occupying the pulling role at time t.   

During motion, the velocity of the load’s center of mass, A��, and the load’s angular 

velocity, �, are given by  

 A�� = �� − �	
�  Eq (3) 

 � = �� − �	
����  Eq (4) 



9 

 

 

Figure 2.2 Illustration Of Ants Connected To Load (blue ants are pullers, red ants are 

lifters). 

Figure 2.2 is taken from (Gelblum, et al., 2015). The constants  and ��� are load response 

coefficients for an applied force and torque, respectively, given by the expressions: 

 ��� = BC� Eq (5) 

 γ = <C� Eq (6) 

where I = moment of inertia of the payload about its centroid,  and C� is an infinitesimally 

small time period. 

From Newton’s 2nd law over time period C�, we have: 

 < C���C� = γ E C���  = ����  

 C��� =  ����γ  Eq (7) 
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Since the motion of the load occurs over a planar surface, its velocity can be 

decomposed into the following x and y components:  

 A��,F = �� G ����
  , �
� cos��
 + �
� − �	
�,   F
∈;    

 A��,M = �� G ����
  , �
� sin��
 + �
� − �	
�,   M
∈;   Eq (8) 

The angular velocity of the load is given by  

 � = �� G ����
  , �
� sin��
� − �	
�,   M
∈; ���  Eq (9) 

It is reasonable to assume that during a collective transport task, ants have the ability to 

sense the amount of force that is being exerted on the payload. This local force (�2��
 ) varies 

according to the site of an ant’s attachment. The force can be modeled as  

 �2��
 =  ��� − ����
   

 �2��
 =  ��� −  ���$ '
 E � Eq (10) 

where $ is the distance from the centroid to the point of the ant’s attachment. 

2.2 Microscopic Model of Ant Role Selection and Switching 

As the ants transport the payload, they switch roles between pulling and lifting. This 

allows the ants to easily adjust when new information is introduced into the system. 

(Gelblum, et al., 2015) show that interactions between the ants through the payload can be 

described using a one-dimensional Ising model. The probabilities of ants entering either 

state (role) from the other state are modeled as functions of the local force sensed by the 

ant, and an individuality parameter Find that determines whether or not the ant chooses to 

align its force with the load’s direction of motion: 
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3� =  11 + exp S− "
. �2��4
�. T 

 

 
32 =    11 + exp S"
. �2��4
�. T 

Eq (11) 

 0 < 4
�. < 10  

Higher values of 4
�. result in more independent behavior from the agent, whereas lower 

values result in a more coordinated motion. The polarization vector "
 relates the local 

force to the heading of the payload in the global frame. It behaves like a rotation matrix, 

since the force sensed by the agent is defined in its local frame. 

The transition rates, defined as probabilities per unit time, at which the ants switch from 

one state to the other can be quantified as: 

 V2→� =  *� exp S"
. �2��4
�. T  

 V�→2 =  *� exp S− "
. �2��4
�. T Eq (12) 

where *� is the base state transition rate of the system.2  

2.3 Macroscopic Model of Ant Behavioral Dynamics 

In (Pavlic, et al., 2016), the encounters and interactions between agents and the 

payload are modeled as a chemical reaction network (CRN). The main design parameters 

are the �"X , "Y� pair that produce a desired equilibrium allocation of robots around the 

payload, where "X is an agent’s probability of binding (attaching) to an unoccupied region 

                                                 
2 More information on the derivations of equations (3)-(12) can be found in (Gelblum, et al., 2015) 

and (Feinerman, et al., 2018). 
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of the load (called an “unbound zone”), and "Y is an agent’s probability of unbinding 

(detaching) from the load. The CRN is described by 

 ' + Z �[/\]̂ _  `      Eq (13) 

 ' + ` �\/[]̂ _  Z + 2' Eq (14) 

This model divides the payload into bound and unbound zones. Eq (13) represents the event 

during which a free (unattached) agent, denoted by r, encounters an unbound zone on the 

load, denoted by U, at the encounter rate eu and binds (attaches) to this unbound zone with 

a mass-action rate of "X�Y to generate a “bound zone”. Eq (14) represents the other event, 

during which a free agent encounters a bound zone, denoted by B, at the encounter rate eb. 

In this case, the presence of the free agent triggers the attached agent to detach with a mass-

action rate of "Y�X, giving rise to two free agents and one unbound zone.  

The macroscopic (or mean-field) model describing the population dynamics of a 

swarm of agents that follow the behaviors described by this CRN takes the form of a set of 

first-order ODEs, in which r, U, and B now represent the expected populations of the free 

agents, unbound zones, and bound zones as continuous functions of time: 

 a 'bZb̀b c = �"Y�X'` − "X�Y'Z� a 11−1c  Eq (15) 

Assume that the initial number of free agents, '�, and the initial number of bound 

agents, ̀ �, are such that  '� + `� > `∗, where ̀ ∗ is the equilibrium concentration of bound 

zones. Then this approach is shown to produce, on average, a target equilibrium allocation 

of agents around the payload such that (Pavlic, et al., 2016): 
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`∗Z∗ +  `∗ =  11 +  C  "X"Y"X"Y +  �X�Y

 Eq (16) 

where C is a correction factor that accounts for spatial effects on the load boundary in a 

physical robot scenario.  
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3 CONTROLLER AND SIMULATION SETUP 

3.1 Model Assumptions 

3.1.1 Sensory Capabilities 

We assume that the agents are informed of their position coordinates in a global 

frame. While searching for the load, agents move with a sensory cone that gives them an 

awareness of the environment. We also assume that agents can access the coordinate 

locations of entities they encounter within the environment such as nests or waypoints. The 

agents are also able to sense when a leader is attached to the payload. 

3.1.2 Communication Capabilities 

Typical models of swarms are based on the fundamental assumptions that agents 

act independently and do not communicate with each other. We apply the same 

assumptions and operate under the assumption that the agents in our case also do not 

communicate with each other. The only exceptions to this rule are the leaders which are 

able to broadcast destination information to the rest of the team when the attached to the 

load.  

Our collective transport approach incorporates a leader-follower strategy that 

allows one agent to influence the overall behavior of the transport team. This is aptly 

summarized in (Gelblum, et al., 2015): 

“By combining the analysis of the load motion with single-ant trajectory data, we 

find that while the combined force of the group determines the speed of the load, it is 

individual informed ants that steer the direction of movement.” 
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With this is mind, leader agents are given the ability to communicate desired 

destinations to the other team members. This communication is restricted to the agents 

attached to the load at the same time as the leader.   

3.1.3 Role Definitions 

Agents attached to a load may adopt particular roles, such as pullers and lifters, 

based on their position on the load relative to the direction of transport motion. However, 

in this work, we treat these roles as functions of the force the agent can sense is being 

exerted on the load by other agents also attached to the load.  

 

Figure 3.1 Redefinition of Puller Role 

Given this, we redefine the puller role from (Feinerman, et al., 2018) as two subtasks of 

pulling and pushing (Fig. 3.1). In our model, agents classified as pullers in (Feinerman, et 

al., 2018) that occupy positions on the back of the load will instead apply a pushing force 

of the same magnitude and direction as the pulling force. This prevents agents from 

positioning themselves underneath the payload, since an agent that applies a pulling force 

to the load while attached to the back of the load would have to be underneath the load. 

Agents that occupy either of these roles will be referred to as puller agents.  



16 

 

3.2 Stochastic Controller Design 

 

Figure 3.2 Control Flow Diagram of Stochastic Model from (Pavlic, et al., 2014). R is a 

random value drawn from a uniform distribution with parameters (@ = 0, f = 1)  

 

Agents exhibit three types of behaviors during the entire transport process: 

1. Search – Agents are initially not attached to a payload. They roam the 

environment following a correlated random walk (CRW) motion model. This 

means that the agents move forward for a unit time step and then make a turn 

through a random angle. The agent repeats this action indefinitely, while also 

maneuvering to avoid collisions with other agents. Agents that exhibit this 

behavior are called free agents.  

2. Agent-load interactions – These describe the agent response to encountering a 

payload. Once an agent senses a payload, it moves towards it and decides to 

attach itself or not. The agent will attach itself with a probability of "X. Once 
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an agent binds to the payload, a “bound zone” is created. Otherwise, the agent 

fails to bind and continues its correlated random walk. 

However, if an agent is designated as being informed of the desired destination 

then it attaches itself to the payload without fail. This dynamic exists in the 

scenario described later in section 3.4.2. 

3. Agent-agent interactions – As an agent performs its CRW, it may encounter 

another agent that is also in the search phase. In this case, both agents perform 

a maneuver to avoid collision.  

An agent may also find another agent has already attached itself to an 

attachment zone (creating a bound zone). In this case, the free robot commands 

the bound robot to detach from the payload with a probability "Y. Otherwise, 

the free robot just turns and continues its CRW. Equivalently, the bound robot 

can detach from the payload with probability "Y upon sensing the presence of 

a free robot nearby. 

These three behaviors can be described by a finite state machine with four states, 

shown in Fig. 3.2: search, avoid collisions, bind to load, and order bound robot to detach. 

Transitions from one state to another are triggered by the conditions shown in the figure. 

3.3 Puller-Lifter Transition Controller  

Robots attached to the payload (bound robots) occupy one of the two roles 

described previously, lifter and puller, and transition between the two roles throughout the 

transport, as described by the following chemical reaction model:  

 g����' ⇌ 3!&&�' Eq (16) 
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These transitions occur at a mass action rate V�→2  3? for the forward reaction and V2→� 3� 

for the backward reaction.  

 

Figure 3.3 Finite State Machine Representation of Role Selection. R is a random value 

drawn from a uniform distribution with parameters (@ = 0, f = 1)  

3.4 Force Controller 

In (Kumar, et al., 2013), experimental data on ants performing a collective transport 

task showed that the ants move the load at approximately a constant velocity. To this end, 

the model in this work uses a simple proportional controller to regulate the value of each 

agent’s pulling force: 

 4� = * ��?. −  �?� Eq (17) 

where �?. is the desired load velocity, and �? is the actual load velocity. 

3.5 Simulation Setup 

The simulations were run in Netlogo (Wilensky, 1999). The code for the 

simulations was based on the code used to produce the agent-based simulations from 

(Pavlic, et al., 2014). In the code, the robot role selection procedure presented in that paper 
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was changed to the one described in Section 3.3. The payload to be transported is a coin 

and the robots were simulated as ants, since they are the inspiration for this work. 

Simulations were run for two scenarios: 

1. Scenario 1 - Load transport to a target destination that is known by all the robots 

2. Scenario 2 - Leader-follower transport with periodically updated target 

destinations determined by temporary “leader” robots attaching to the load 

3.5.1 Scenario 1 

In scenario 1, all robots have knowledge of the nest position, which is the target destination 

for the load. The task then becomes working together to transport the payload to the desired 

location. The ants rely only on information they acquire during their search phase to 

execute the transport task.  

Table 3-1 Design of Experiment for Scenario 1 

Experiment 

Spontaneous 

Detachment 

Rate (Hz) 

Role Selection 

Based on Force 

Sensed by 

Robot on Load 

Role Selection 

Based on Robot 

Location on Load 

1 0.13 Yes No 

2 0 Yes No 

3 0 No Yes 

4 0.13 No Yes 

 

In Table 3-1, we have the setup for the experiments to be run for scenario 1. The 

main parameters to explored are the effects of the role selection procedure proposed in 

section 3.3 and spontaneous agent detachment from the load on the system. Column 1 of 

the table indicates whether agent detachments from the payload occur by means of the 
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catalytic reaction in equation (14) (in this case, the rate is 0), or by spontaneous detachment 

(in this case, the rate is positive). Columns 2 and 3 indicate the role update procedure that 

is being employed.  

 

Figure 3.4 Simulation Environment Setup for Scenario 1. Blue ants are free ants 

executing the search phase; white house icon is nest location. 

3.5.2 Scenario 2 

In scenario 2, the robots start with different ideas of where the target destination is. 

Each robot selfishly attempts to move the payload to its own preprogrammed destination 

coordinates. Free robots behave as scouts to identify the coordinates of a waypoint, 

defining a target location for the load along the way to the nest, and the nest itself. Once a 
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scout discovers a waypoint or the nest, it is designated as a potential leader for the transport 

team. During the transport, a leader robot may join the robot team and update the 

destination coordinates of the team. Communication only occurs between the leader and 

the rest of the robot team. The remaining team members are unable to communicate with 

one another.  

 

Figure 3.5 Simulation Environment Setup for Scenario 2. Green flag icon denotes a 

waypoint; white house icon is nest location. 
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The waypoint position is pseudo-randomly generated to be located between the coin 

starting point and the final destination (nest). Robots can determine the coordinates of the 

waypoint when they encounter it, becoming informed robots and potential leader robots. 

When there are multiple informed robots attached to the load, the leader is then the 

agent that is farthest from its target coordinate. Because of this, having multiple informed 

robots that have the same information should have no significant effect on the system.  

Table 3-2 Design of Experiment for Scenario 2 

Experiment 

Spontaneous 

Detachment 

Rate (Hz) 

Role Selection 

Based on Force 

Sensed by 

Robot on Load 

Role Selection 

Based on 

Robot  

Location on 

Load 

Informed Robots 

Forget Destination 

Coordinates 

1 0.13 Yes No Yes 

2 0.13 Yes No No 

3 0.13 No Yes No 

4 0.13 No Yes Yes 

 

As shown in Table 3-2, the design of experiments for scenario 2 focuses on the 

effects of the role selection procedure used, and whether or not the informed robots 

eventually forget the load destination. Where relevant (as determined by column 4 of Table 

3-2), the informed robots lose their coordinate information after a random time drawn from 

an exponential distribution.  

Table 3-3 Simulation Parameters 

Parameter Value 

Coin mass (M) 3.1 g 



23 

 

Coin radius (r) 8.5 mm 

Number of robots ('�) 150 

Robot length 0.8 cm 

Robot sensing cone 

i�=&�
&��=�ℎ  ==   180°

0.13  ) 

Friction coefficient (µ) 0.59 

Robot lifting force �4?� 2.59 mN 

Probability of 

attachment ("X� 1 

Probability of 

detachment ("Y) 
0.5 

Spontaneous 

detachment rate 
n0.13 op

0 op   , �� �"���i���!� #��i ℎ)���
, �� �� �"���i���!� #��i ℎ)��� 

Stopping distance from 

destination 
0.3 cm 

Desired load velocity ��?.� 
0.35 cm/s 

Simulation time step 

(dt) 
0.01 s 

Rate of forgetting 

waypoint coordinates 
n0.14 op

0 op   , �� ��'=�����= �� &!#�#
, �� �� ��'=�����=  

Rate of forgetting nest 

coordinates 
n0.1 op

0 op   , �� ��'=�����= �� &!#�#
, �� �� ��'=�����=  

 

Table 3-3 contains the parameters that are used to setup and run the simulations. 

These remain constant for all simulations to ensure consistency in the simulations. 
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4 SIMULATION RESULTS 

For each experiment listed in Tables 3.1 and 3.2, 30 simulation trials were run in 

NetLogo. In the plots below, the black line shows the average over these 30 simulations, 

and the shaded region indicates the range of +/- one standard deviation. 

4.1 Scenario 1 

This scenario considered the case where all robots are informed of the destination 

and just work together to move the load from its initial position to its destination.  

Results of Experiment 1 

 

Figure 4.1 Mean Robot Allocation over Time. Red line shows the target robot allocation 

around the payload 

Figure 4.1 shows the number of robots that attach to the payload over time and are 

involved in the transport task during experiment 1. From this figure, we observe that the 

mean number of robots approaches the target allocation value (≈ 9 '�$���) although there 

is some significant deviation throughout the transport.  
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In Figure 4.2, we observe that the payload begins significant displacement after 

about 5 s have passed. A comparison between at Figures 4.1 and 4.2 reveals that motion 

truly begins when the number of robots attached to the payload exceeds 5. 

 

Figure 4.2 Distance of Load from Destination over Time. Stopping distance is 0.3 cm 

 

Figure 4.3 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  
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Figure 4.4 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure 4.5 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals 

Throughout the transport, the robots are observed to constantly switch between 

puller and lifter roles. However, in Figure 4.3 and 4.4 we observe that the number of robots 
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in each role approaches about half the population of the current transport team. Figure 4.5 

shows that the payload experiences a significant amount of force in the beginning of the 

transport task. As the transport progresses, the number of robots attached to the load 

increases (with robots allocating themselves relatively uniformly around the load), and thus 

the robots must individually exert less force to transport the load at the same velocity. This 

phenomenon is shown in Figure 4.5. After some fluctuation, the force plot begins to 

approach zero as the velocity approaches the desired velocity of 0.35 cm/s, as seen in 

Figure 4.6. During this phase, the transport team behaves like a system in dynamic 

equilibrium as the force balance is achieved. This is however easily disrupted when there 

are sudden spikes in the force, as seen in Figure 4.5. The spikes in forces exerted are 

reflected in the load velocity, shown in Figure 4.6, where this velocity is seen to exceed 

the desired value at around t = 15 s. During the simulations, these spikes corresponded with 

changes in load direction or imbalance in robot allocation around the load.   

 

Figure 4.6 Speed of Payload over Time under Action of Forces Exerted by the Attached 

Robots. Red line shows desired load velocity, 0.35 cm/s. 
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Table 4-1 Comparison of Experiment Results for Scenario 1 

Parameter 
Experiment 

1 

Experiment 

2 

Experiment 

3 

Experiment 

4 

Mean number of 

robots attached to 

the load 

7.2270 8.9675 9.4570 8.1414 

Mean number of 

pullers 
3.6929 4.4437 1.7927 1.6071 

Mean number of 

lifters 
4.0298 4.5237 7.6647 6.5342 

Mean force exerted 

by robots on the 

load 

0.0524 mN 0.0327 mN 0.1290 mN 0.1606 mN 

Mean load velocity 

during transport 
0.3829 cm/s 0.3201 cm/s 0.3204 cm/s 0.3063 cm/s 

 

The values in Table 4-1 are average values taken over 30 simulation runs for each 

experiment. First, the mean values over time were calculated and then a mean was taken 

over the number of simulations. From the table, we observe that for the experiments that 

implemented the role selection based on the forces sensed by the agents, the mean ratio of 

pullers to lifters over the course of the transport is almost 1:1. Thus, the robots that attach 

to the payload distribute into two groups of almost equal size.  

We also observe significantly reduced force magnitudes being exerted by the robots 

in Experiments 1 and 2, compared to Experiments 3 and 4. Although the robots transport 

the payload with almost similar velocities, we see that the load forces required to achieve 

this motion are greatly reduced in Experiments 1 and 2.  

Results from Experiment 2-4 are plotted in Appendix A. 
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Figure 4.7 Bar Plots of Mean Values Shown in Table 4-1. 

a 

c d 
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4.2 Scenario 2 

In this scenario, each robot is initialized with randomly generated destination 

coordinates. This information on the destination is updated only when a leader robot joins 

the transport team.  

Results of Experiment 1 

 

Figure 4.8 Mean Robot Allocations over Time. Red line shows the target robot allocation 

around the payload (target ≈ 9) 

In Figure 4.8, we observe that the robot allocations around the payload fall just 

short of the target allocation value. We observe the increase in allocation values shows a 

direct correlation with displacement; significant displacement of the payload begins after 

the number of  attached robots reaches 6, shown in Figure 4.9. We also observe the number 

of agents in each role approaches about half of the transport team population. 
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Figure 4.9 Distance of Load from Destination over Time. Stopping distance was 0.3 cm 

 

Figure 4.10 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  
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Figure 4.11 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure 4.12 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 
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Figure 4.13 Speed of Load over Time under Action of Forces Exerted by the Attached 

Robots.  

 

Figure 4.14 Mean Number of Informed Robots Attached to Payload 

In Figure 4.14, we see that the mean number of informed robots that attach to the 

payload increases as the total number of informed  agents also increase, shown in Figures 
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4.15 and 4.16. This attachment event is however relatively low compared to the attachment 

of uninformed robots. 

 

Figure 4.15 Mean Number of Robots Informed with Nest Coordinates 

 

Figure 4.16 Mean Number of Robots Informed with Waypoint Coordinates 
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Table 4-2 Comparison of Experiment Results for Scenario 2 

 
Experiment 

1 

Experiment 

2 

Experiment 

3 

Experiment 

4 

Mean number of 

robots attached to 

the load 

8.1020 8.0789 8.6389 8.6294 

Mean number of 

pullers 
4.0412 4.0136 1.9637 2.0173 

Mean number of 

lifters 
4.0572 4.0621 6.6752 6.5961 

Mean force exerted 

by robots 
0.1216 mN 0.1055 mN 0.3862 mN 0.2996 mN 

Mean Number of 

Robots Informed 

with Waypoint 

Coordinates 

5.5685 7.3519 6.4272 6.3918 

Mean Number of 

Robots Informed 

with Nest 

Coordinates 

13.8766 15.1928 13.6084 14.8937 

Number of leader 

robots 
0.6040 0.5959 0.4731 0.3591 

Mean load velocity 

during Transport 
0.3228 0.3264 0.2810 0.3219 

 

The values in Table 4-2 were computed similarly to the values in Table 4-1. From 

Table 4-2, the force expenditure benefits significantly from the role update procedure based 

on forces sensed. Under this policy, the main trend that can be noticed is that the ratio of 

pullers to lifters is 1:1. The mean force exerted on the payload by each agent in Experiments 

1 and 2 is also significantly reduced from the forces exerted in Experiments 3 and 4.  
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The spontaneous forgetting condition has little effect on the numbers of informed 

robots. Instead, the role update procedure shows the greatest effect on the results. The mean 

robot allocation throughout the transport is seen to be relatively equal across all 

experiments. We also see relatively similar transport speeds across the experiments. 

However, as can be seen in Figure 4.17, the magnitudes of forces exerted under the force-

based role update procedure are significantly lower than under the position-based role 

update procedure. 

Results from Experiment 2-4 are plotted in Appendix B. 

 

 

b 

d c 

a 
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Figure 4.17 Bar Plots of Mean Values shown in Table 4-2. 
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5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis explores the effect of a force-based role update procedure on collective 

transport. The thesis presents the kinematics and dynamics of an agent-load system during 

collective transport. In this thesis, an investigation was made into the effect of informed 

robots that act as temporary “leaders,” searching an environment for a destination point 

and transmitting that information to a robot team to guide the transport to this destination. 

The system was modeled in NetLogo and agent-based simulations were run for different 

scenarios. From the simulations, we can draw the following conclusions. 

Updating the roles of the robots based on the forces sensed produces an 

approximately 1:1 allocation of roles. By employing the role selection algorithm, about 

half the robots tend to choose the puller role, and the other half become lifters. This is 

found to be the case even when the robots have different target coordinates.  

Experimental results also show that the force-based role update procedure results 

in less force input demand from the members of the robot team than role updates based on 

robots’ positions around the load. This can serve as a basis for designing robot controllers 

that obey physical constraints on the robots’ maximum applied forces on the load. 

5.2 Future Work 

Future expansion of this work could investigate a model where communication 

does not occur between the robots at all. In our model, communication is enabled for the 

leader robots to communicate the destination information to the rest of the robot team. This 

is a departure from the observation that ants do not actually communicate explicitly during 

collective transport.  
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The model could also be expanded to describe different attachment and detachment 

behaviors for the informed robots. In our current model formulation, the informed robots 

follow the same behavioral rules as the uninformed robots. In practice, one would expect 

that the informed robot gives greater priority to joining the robot team and updating the 

destination coordinates. 

Our model is also not constrained to sequentially follow a set of waypoints. The 

probability that the robots carry the load to a particular destination is dependent on the 

attachment of an informed ant with knowledge of that destination. Future work could focus 

on programming the robots to sort through the destination information and follow a 

sequence of coordinates.  
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APPENDIX 

A. PLOTS OF EXPERIMENTAL RESULTS FOR SCENARIO 1 
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Results of Experiment 2 

 

Figure A.1 Mean Robot Allocations over Time. Red line shows the target robot allocation 

around the payload 

 

 

Figure A.2 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 
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Figure A.3 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 

 

Figure A.4 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds. 
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Figure A.5 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure A.6 Speed of Payload over Time under Action of Forces Exerted by the Attached 

Robots. Red line shows desired load velocity, 0.35 cm/s. 
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Results of Experiment 3 

 

Figure A.7 Mean Robot Allocations over Time. Red line shows the target robot allocation 

around the payload 

 

Figure A.8 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 
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Figure A.9 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 

 

Figure A.10 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  
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Figure A.11 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure A.12 Speed of Payload over Time under Action of Forces Exerted by the Attached 

Robots. Red line shows desired load velocity, 0.35 cm/s. 
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Results of Experiment 4 

 

Figure A.13 Mean Robot Allocations over Time. Red line shows the target robot 

allocation around the payload 

 

Figure A.14 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 
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Figure A.15 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 

 

Figure A.16 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  
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Figure A.17 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure A.18 Speed of Payload over Time under Action of Forces Exerted by the Attached 

Robots. Red line shows desired load velocity, 0.35 cm/s. 
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B. PLOTS OF EXPERIMENTAL RESULTS FOR SCENARIO 2 
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Experiment 2 

 

Figure B.1 Mean Robot Allocations over Time. Red line shows the target robot 

allocation around the payload (target ≈ 9). 

 

Figure B.2 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 
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Figure B.3 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  

 

Figure B.4 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 
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Figure B.5 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 

 

Figure B.6 Speed of Payload over Time under Action of Forces Exerted by the Attached 

Robots. Red line shows desired load velocity, 0.35 cm/s. 
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Figure B.7 Mean Number of Informed Robots Attached to Payload 

 

Figure B.8 Mean Number of Robots Informed with Nest Coordinates 
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Figure B.9 Mean Number of Robots Informed with Waypoint Coordinates 

 

Experiment 3 

 

Figure B.10 Mean Robot Allocations over Time. Red line shows the target robot 

allocation around the payload (target ≈ 9). 
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Figure B.11 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 

 

Figure B.12 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  
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Figure B.13 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 

 

Figure B.14 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 
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Figure B.15 Speed of payload over time under action of forces exerted by the attached 

robots. 

 

Figure B.16 Mean Number of Informed Robots Attached to Payload 



62 

 

 

Figure B.17 Mean Number of Robots Informed with Nest Coordinates 

 

Figure B.18 Mean Number of Robots Informed with Waypoint Coordinates 
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Experiment 4 

 

Figure B.19 Mean Robot Allocations over Time. Red line shows the target robot 

allocation around the payload (target ≈ 9). 

 

Figure B.20 Distance of Load from Destination over Time. Stopping distance was set to 

0.3 cm 
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Figure B.21 Time Evolution of Number of Robots in Lifting Role, Sampled over Time 

Intervals of 0.25 seconds.  

 

Figure B.22 Time Evolution of Number of Robots in Pulling Role, Sampled over Time 

Intervals of 0.25 seconds. 
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Figure B.23 Mean Value of Force Magnitude Exerted by Each Robot on the Payload. 

Values are sampled at 0.25 second intervals. 

 

Figure B.24 Speed of payload over time under action of forces exerted by the attached 

robots. 
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Figure B.25 Mean Number of Informed Robots Attached to Payload 

 

Figure B.26 Mean Number of Robots Informed with Nest Coordinates 
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Figure B.27 Mean Number of Robots Informed with Waypoint Coordinates 

 


