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ABSTRACT

Plagiarism is a huge problem in a learning environment. In programming classes

especially, plagiarism can be hard to detect as source codes’ appearance can be easily

modified without changing the intent through simple formatting changes or refac-

toring. There are a number of plagiarism detection tools that attempt to encode

knowledge about the programming languages they support in order to better detect

obscured duplicates. Many such tools do not support a large number of languages

because doing so requires too much code and therefore too much maintenance. It

is also difficult to add support for new languages because each language is vastly

different syntactically. Tools that are more extensible often do so by reducing the

features of a language that are encoded and end up closer to text comparison tools

than structurally-aware program analysis tools.

Kitsune attempts to remedy these issues by tying itself to Antlr, a pre-existing

language recognition tool with over 200 currently supported languages. In addition,

it provides an interface through which generic manipulations can be applied to the

parse tree generated by Antlr. As Kitsune relies on language-agnostic structure mod-

ifications, it can be adapted with minimal effort to provide plagiarism detection for

new languages. Kitsune has been evaluated for 10 of the languages in the Antlr

grammar repository with success and could easily be extended to support all of the

grammars currently developed by Antlr or future grammars which are developed as

new languages are written.
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Chapter 1

INTRODUCTION

1.1 An Introduction to the Process of Source File Plagiarism Detection

Plagiarism detection is a daunting task. When done among large files sets, it can

be extremely difficult to maintain both efficient and accurate results (Mozgovoy et al.,

2005). Source file plagiarism detection presents a whole new set of challenges in that

many programs can be easily modified to look completely different with little to no

work. Detecting this easily becomes a language-specific problem and can be difficult

to generically represent as can be seen by the lack of success of major plagiarism tools

which support a large number of languages. There are also a wide number of reasons

to detect plagiarism, or more generically source code duplication, which adds to the

difficulty of finding tools which support a given need. This paper will introduce a

new tool, Kitsune, which is intended as a more adaptable solution to contemporary

open source tools available to professors. In this effort, Kitsune will be bench-marked

against a number of major tools to measure its success in a variety of factors which

may be of importance in discerning its practicality as a contender to currently existing

solutions.

1.2 Applications of Code Similarity Detection

1.2.1 Academic Plagiarism Detection

As the main aim of this thesis, it is critical to understand the needs of an academic

environment. The main setting for plagiarism detection tools in academic environ-

ments is for alleviating the difficulty teachers face in identifying students working
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together. There are a number of reasons teachers might look to a tool for this, most

stemming from the difficulty of manually sifting through students submissions and

finding matches. Large programs can be difficult to remember and thus identify

copied segments, especially when there are a large number of students (Hage et al.,

2010). On top of this, teachers often grade with the help of a TA and are not able to

look over every assignment themselves. Finally, many times plagiarism is not visually

apparent and can be obscured by simple changes which make code appear visually

different but semantically identical. Coupled with the problem that in the end, the

goal of the students is to produce a program which often has identical aims, a fourth

problem arises in that students are to some degree expected to have similar responses

to homework assignments (Schleimer et al., 2003) (Hage et al., 2010). These responses

should, however, demonstrate that the student has come up with their own, generally

unique solution (Hage et al., 2010) (Clough, 2000). More importantly, the student

should not have collaborated with any other student working on the same solution

when prohibited from doing so (Clough, 2000). Detecting this requires balancing

some level of expected similarity on assignments with an expectation that not every-

thing should be the same between two students. There is, however, an expectation

that file sets submitted to such tools will not be generally massive in size (students

are not, in fact, able to produce industry-sized-applications in the short time span

that most university classes provide). This allows for certain assumptions which may

not be applicable in other environments that afford additional accuracy.

1.2.2 Commercial Plagiarism Detection

In comparison to an academic environment, commercial plagiarism detection tools

have a much different set of problems. Usually, there are far fewer entities (students/-

companies) which need to have code compared, but the size of the code sets is usually

2



much larger at a commercial level (Ragkhitwetsagul, 2018). There is also a much dif-

ferent expectation for the degree of expected similarity (Zeidman, 2010) (Ragkhitwet-

sagul, 2018). Usually, companies are not expected to produce the exact same result

and thus any resemblance should be considered more of an issue than general struc-

tural similarities a student answering a strict prompt might incur (Ragkhitwetsagul,

2018). Depending on the situation, commercial-level plagiarism detection tools may

also face a number of other limitations including: a lack of available source code (only

the binaries may be available) (Luo et al., 2014), an expectation of highly accurate

results as in the case of law suits between companies (Zeidman, 2010), interweaving of

open source code or frameworks (Ragkhitwetsagul, 2018), and many more limitations

specific to each case. Often, companies who are searching for such plagiarism will do

so either when they believe another party has wrongfully utilized their code against

licensing restrictions and wishes to prove it (Zeidman, 2010) (Ragkhitwetsagul, 2018).

In some cases, companies will also search through their own code in an attempt to

prevent such cases from arising accidentally (Luo et al., 2014).

Commercial plagiarism cases can also often be extremely high profile. This fur-

ther stresses the need for accurate results. Famous court cases such as Google v.

Oracle which began in 2010 (Ragkhitwetsagul, 2018) and is currently still active and

awaiting trial in the Supreme Court (Oracle, 2018) have pointed out the major rami-

fication that plagiarism can have on companies. Oracle’s lawsuit for over 9 billion US

dollars hinges on evidence of plagiarism from 12 source files and 37 Java specifica-

tions (Ragkhitwetsagul, 2018). In more recent times, cases like Sonos v. Google have

further evidenced the impact of plagiarism yet again, with Sonos claiming Google

stole their code while working with them to implement the Google Assistant feature

before Google had begun manufacturing smart speakers of their own (Sonos, 2020).

Cases such as these have driven companies to great lengths to both prove and prevent

3



such lawsuits. In pursuit of such tools, the Computing and Communication Founda-

tions Division of the National Science Foundation awarded CoP, one such commercial

plagiarism tool, a $500,000 grant to pursue research into the detection of such cases

(their paper cites IBM’s $400 million settlement Compuware as a driving factor in

their research) (Luo et al., 2014).

1.2.3 Code Clone Detection and Bug Detection

A third application of source file similarity detection is in code clone detection

and bug detection. Rather than looking for similarities across files or across related

projects, many tools aim to reduce code clutter by targeting duplicate code. This

is inherently a very similar problem, but minor differences change the overarching

goals enough that certain aspects are different. For one thing, many code clone

detection tools are aimed at finding clones in extremely large projects. Multiple of

the duplication tools that were surveyed have been tested on major projects such as

GCC and the Linux Kernel ranging up to 4 million lines of code (Ducasse et al., 1999)

(Kamiya et al., 2002) (Li et al., 2004). Not only is the scale of duplication programs

often different, the aim sometimes differs as well. There is a widely accepted notion

of different ”levels” of similarity in duplicated code (Ragkhitwetsagul, 2018). A type

1 duplication is identical (Ragkhitwetsagul, 2018). A type 2 duplication changed

identifiers (Ragkhitwetsagul, 2018). A type 4 duplication is actually different enough

that the code might have a completely different algorithm that achieves the same

purpose (Ragkhitwetsagul, 2018). This level of similarity is useful for abstraction in

projects. Think for example, if a tool identified two places where a sorting algorithm

was implemented. One might be able to simply keep only the better sorting algorithm

and remove the other code (Ragkhitwetsagul, 2018). In an academic environment

however, if two students implement the same goal (i.e. complete the assignment

4



according to instruction) this ”duplication” can be safely ignored (in fact it should

often be expected!).
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Chapter 2

RELATED WORKS

2.1 An Overview of Modern Plagiarism Detection

Almost every English class uses some form of plagiarism detection to detect stu-

dents copying from other students’ papers. While these tools exist for coding classes,

perhaps due to the difficulty of the problem, there are few practical solutions. In

2015, a survey of major plagiarism tools mentioned six tools intended for program

analysis including MOSS, JPlag, GPlag, Marble, Plaggie, and SIM (Ahmed, 2015).

Another recent survey of software analysis tools published in 2016 listed the major

tools considered for their study as NICAD, Plague, YAP, CoP, Sherlock, Sim, JPlag,

CCFinder, CPMiner, iClones, and Moss (Ragkhitwetsagul et al., 2016). A more re-

cent thesis on the topic from 2018 selected JPlag, Sherlock, SIM, and Plaggie as

their primary tools to investigate, but included mentions of 12 other tools: YAP,

CCFinder, MOSS, NICAD, CoP, GPlag, SID, Accuse, Duploc, Simian, CPD, and

iClones (Ragkhitwetsagul, 2018). Of these three surveys, only one tool was published

in the last twelve years and of the 24 tools investigated, only six were known to have

been updated within the last five years, three of which are intended for single project

duplicate code detection, not cross-project comparisons (ref. table 2.1). Of the tools

analyzed, this leaves three tools which are active and which can be used by teachers to

detect plagiarism: JPlag, MOSS, and SIM. These tools (especially MOSS and JPlag,

ref. table 2.2) are also often commonly cited by other tools as the “state of the art”

in plagiarism detection.
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Tool Public Launch Last Update # Lang. Purpose

Accuse No 1981 Unknown 2 Plagiarism

CCFinder Binary 2002 2009 7 Duplicated Code

CodeMatch Binary 2004 Unknown Text Plagiarism

Cogger No 1993 Unknown 1 Plagiarism

CoP No 2014 Unknown Binary Comm. Plagiarism

CPD Yes 2002 2020 15 Refactoring/Bugs

CPMiner No 2004 Unknown 2 Duplicated Code

Duploc No 1999 Website Down Text Duplicated Code

FPDS No 2005 Unknown 1 Plagiarism

Gplag No 2006 Unknown 3 Comm. Plagiarism

Jones No 2001 Unknown 1 Plagiarism

Jplag Yes 2000 2019 6 Plagiarism

Marble No 2002 Website Down 4 Plagiarism

Moss Service 1994 2018 25 Plagiarism

NICAD Yes 2008 2015 4 Duplicated Code

Pdetect Yes 2004 Website Down 1 Plagiarism

Plaggie Binary 2006 2006 1 Plagiarism

PlagioGuard No 2008 Unknown 2 Plagiarism

Plague No 1990 Website Down Unknown Plagiarism

Sherlock Yes 1994 Website Down Text Plagiarism

SID Yes 2004 Website Down 2 Plagiarism

SIM Yes 1989 2017 8 Plagiarism

Simian Binary 2003 2018 Text Refactoring/Bugs

Yap3 No 1996 Website Down Unknown Plagiarism

Table 2.1: Overview of Notable Tools
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3

Accuse (Grier, 1981) X

CCFinder (Kamiya et al., 2002) X X

CodeMatch (Zeidman, 2010) X

Cogger (Cunningham, 1993) X

CoP (Luo et al., 2014) X X X

CPD (No Paper) X

CPMiner (Li et al., 2004) X X X X X

Duploc (Ducasse et al., 1999) X

FPDS (Mozgovoy et al., 2005) X X X X

GPlag (Liu et al., 2006) X X X

Jones (Jones, 2001) X X X

Jplag (Prechelt et al., 2002) X X X

Marble (Hage, 2006) X

Moss (Schleimer et al., 2003) X

NICAD (Roy and Cordy, 2008) X X X

Pdetect (Moussiades and Vakali, 2005) X X X X

Plaggie (Ahtiainen et al., 2006) X X X X X

PlagioGuard (Goel et al., 2008) X X X X X X

Plague (Whale, 1990) X

Sherlock (Joy and Luck, 1999) X X X

SID (Chen et al., 2004) X X X X X

SIM (Grune and Huntjens, 1989) X

Simian (No Paper) X

Yap3 (Wise, 1996) X X X

Totals 1 2 1 0 0 0 0 3 0 0 0 8 0 9 0 0 1 0 3 3 0 2 0 5

Table 2.2: Occurrences of Plagiarism Tools in Other Tools’ Introductory Papers

(Obtainable Tools in Gray)
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Tool Text Token Graph Metrics Other

Accuse X X

CCFinder X

CodeMatch X

Cogger X X(“AI”/Statistical)

CoP X(CFG) X X(Binary)

CPD

CPMiner X X(F.P. Mining)

Duploc X X

FPDS

Gplag X(PDG)

Jones X

Jplag X

Marble X

Moss X X

NICAD X

Pdetect X X(Clustering)

Plaggie X

PlagioGuard X

Plague X

Sherlock X

SID X

SIM X

Simian Undisclosed

Yap3 X X

Table 2.3: Approximate Classification of Employed Approaches by Surveyed

Plagiarism Tools (Obtainable Tools Shown in Gray)
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2.2 Highlighted Approaches

While many of the tools surveyed took a wide variety of approaches (ref. table

2.3), it is possible to classify these approaches under a number of generic categories.

Many contemporary tools, for example, rely on a parsing engine generating tokens

which either represent language level tokens or more abstract groupings of terms

(Prechelt et al., 2002) (Grune and Huntjens, 1989). Other tools rely on language

agnostic text-based comparisons. Some rely on graph-based analysis such as control

flow, program dependency, or graph clustering. There were a number of (mostly

older) tools which relied on metric based analysis such as counts of identifiers or

method complexities. Often this was done due to computational constraints of more

detailed analysis (Grier, 1981). There were also a number of approaches that lie

outside of common methods such as analysis of the binaries produced, and AI/data

science techniques like frequent pattern mining. All of the available tools which can

be tested fall into the categories of text and token-based comparisons. The three

most up-to-date obtainable tools, MOSS, JPlag, and SIM, all rely heavily on token

based comparisons. Out of the text-focused tools, Sherlock seems to be the most well

known (ref. Table 2.2 and cited tool which also focuses on plagiarism detection (ref.

Table 2.1).

2.2.1 MOSS’s Approach

Moss’s approach is more heavily intertwined with modern similarity analysis re-

search. Their approach, “Winnowing”, is a code-focused improvement upon a major

text similarity algorithm called MinHash. The basis for this approach was first pro-

posed in 1997 by Andrei Broder (p. 2), a computer scientist working for Google in

1997 in a paper entitled “Syntactic Clustering of the Web.” The intent of this paper
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was to provide “[A] mechanism for discovering when two documents are ‘roughly the

same’; that is, for discovering when they have the same content except for modifica-

tions such as formatting, minor corrections, webmaster signature, or logo” in order to

deal with “[t]he proliferation of documents that are identical or almost identical” on

the web. Broder’s algorithm worked by breaking the documents into an overlapping

windows called “shingles” of 10 words. For example, the sentence “The quick brown

fox jumps over the lazy dog” with a shingle size of 3 would contain the shingles “The

quick brown”, “quick brown fox”, “brown fox jumps”, etc. as in Figure 2.1.

Figure 2.1: Shingling Approach in MOSS’s Winnowing Algorithm (MinHash)

Each of the shingles is then passed through a hash function. This then allows

samples to be randomly selected based on the hash output value such that the random

choice would be consistent across documents. For example, by choosing all samples

divisible by 25, as Broder did, or by taking the smallest N samples as is typically done

in modern implementations of MinHash (such as MOSS’s). This “sampling” is useful

because it works as an accurate estimate for the similarity of the document with a

much lower cost; Once the tokens are selected, the time to compare any 2 documents

is the same, independent of size.
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There are a number of issues with directly applying MinHash to programs which

MOSS attempted to solve. One issue, noted in Broder’s own paper, is the difference

between “containment” and “resemblance” of documents. A plagiarism detection

tool needs to be able to find sections of the code which are contained as opposed

to detect the resemblance of an entire program. Students could easily copy only

a section (like a single function) and the “resemblance” of a large program might

remain low (Schleimer et al., 2003). MOSS attempts to remedy this issue by pulling

samples from a second sliding window such that at least one sample comes from each

window. MOSS also attempts to rate programs on the number of concurrent lines

which contain similar text at a later post processing step. This allows users to view

sections of contained code as opposed to merely the resemblance of overall documents.

MOSS’s source code is not public, but the authors have made a number of statements

about MOSS’s behaviour outside of their 2003 paper on the general approach.

Moss is quite conservative about what it considers to be matching passages

of code. If Moss says that two passages look alike, then they almost

certainly look quite alike. Moss also excludes all code that appears in too

many of the submitted programs. Thus, all matches reported by Moss

fairly accurately approximate the signature of plagiarized code: a passage

of similar code in two programs that does not also appear in very many

other programs. (Aiken, 2018)

These comments lend towards the idea that there is a further modification of

the similarity percentages such that minor similarities are excluded beyond what an

implementation of the Winnowing algorithm presented in their 2003 paper would

generate.
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MOSS also applies a number of other techniques such as removing unneeded char-

acters like whitespace, renaming of volatile but meaningless tokens like variable names

(students can easily change these with no effect on the outcome of a program to hide

plagiarism), etc. Though MOSS attempts to provide some language intelligence, all

steps taken to do so occur at the stage of token preparation before the similarity

comparison occurs (Schleimer et al., 2003). All comparisons are done text-wise as if

on any piece of text.

2.2.2 JPLAG’s Approach

JPlag’s approach performs a higher level of abstraction upon the programs it com-

pares. Whereas MOSS relied on any language intelligence primarily for token identi-

fication and renaming (i.e. variables), JPLAG’s frontend is connected to ANTLR4, a

language recognition tool primarily intended for compiler development. JPLAG uses

custom grammars written for ANTLR4 along with a small amount of frontend code

(around 1000 lines each for the 5 currently supported languages) to generate a token

stream (Prechelt et al., 2002). These token streams are not tokens as represented

by the programming language, but logical groups of language level tokens that form

constructs (i.e. “public class Name {” in Java is not 4 tokens, but a single token:

“BEGINCLASS”) (Prechelt et al., 2002).

JPlag’s method for comparing the token streams, much like MOSS, employs pre-

viously researched string comparison algorithms. JPlag uses a common fuzzy string

comparison method, “greedy string tilling” introduced by Michael Wise in 1993

(Prechelt et al., 2002). Greedy String Tilling attempts to match sections of length

N starting at an upper bound and iterating downwards (Prechelt et al., 2002). Once

a match is found, those characters are bound and removed from possible characters
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remaining to match (Prechelt et al., 2002). In JPlag, instead of characters, the tokens

are compared.

2.2.3 SIM’s Approach

Dick Grune’s SIM has a much less formalized approach. There is a small report

which details its behaviour, but Grune himself has referred to the report as a “(prob-

ably obsolete) terse technical report” (Grune and Huntjens, 1989). Looking at the

code itself, and using the old technical report as a supplemental reference, it seems

that the general description is approximately correct. The algorithm consists of what

is essentially five steps. These steps are: tokenizing the files, create a forward ref-

erence table, finding “runs”, finding the corresponding newlines, and generating the

similarity report.

SIM generates tokens similarly to JPlag. While JPlag uses a more established

parser engine, it should be noted that SIM was originally published 11 years before

JPlag. SIM’s use of the parsing engine is much more direct – whereas JPlag reduces

token sequences to more abstract blocks, SIM leaves tokens to their language equiv-

alent and performs a direct comparison. The next step generates a lookup table for

sequence positions. This allows the third step, “finding runs”, to perform an opti-

mized form of longest common subsequence matching. The token indexes which were

identified as the start and ends of “runs” (sequences) are then converted into line

numbers. Finally, the report can be generated in a readable “diff” style format.

2.2.4 Sherlock’s Approach

Unlike the other four approaches, Sherlock does not employ any language-specific

mechanism for generating tokens or renaming values. Most papers about Sherlock

are rather unspecific about the approach that Sherlock employs beyond this. Looking
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at the comments left by the authors in Sherlock’s open source source code, Sherlock’s

approach seems to be an approximation of what MinHash attempts to do. First, Sher-

lock reads in “words” by delimiting on common punctuation symbols and whitespace,

generating a list. Second, it takes ‘N ’ consecutive “words” and hashes these. It then

randomly discards a number of those hashes. The “set size consecutive sequences”

Sherlock collects are known in MinHash as shingles. Furthermore, one of the com-

ments (ref. Figure 2.2) describes their metric for similarity as a percentage of the

similar/shared words divided by the sum of the count of words in each file minus the

shared words. This value can be seen as the intersection of the two sets of tokens

from each of the programs, “the shared”, divided by the union of the two sets (ref.

Figure 2.3). Adding the size of two sets and subtracting the intersection produces

the unions by removing the duplicates. This metric, known as the Jaccard Index, is

the same value that MinHash attempts to produce. Instead of selecting the smallest

‘N ’ hashes, Sherlock discards in a more arbitrary fashion.

Sherlock is very similar to MOSS, but rather than adding language sense to detect

tokens, it relies on common traits of programming languages such as using whitespace,

parenthesis, etc. for separating tokens. This allows it more flexibility than any of the

other tools by trading away some of the features such as variable renaming.
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...
return 100 * nsimilar / (s0->nval + s1->nval - nsimilar);

}

/*
* Let f1 == filesize(file1) == A+B
* and f2 == filesize(file2) == A+C
* where A is the similar section and B or C are dissimilar
*
* Similarity = 100 * A / (f1 + f2 - A)

Figure 2.2: Sherlock’s Similarity Metric

Figure 2.3: Sherlock’s Algorithm Converted to Set Theory is a Jaccard

Approximation Like MinHash
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Chapter 3

KITSUNE: STRUCTURE AWARE ANALYSIS

3.1 Parse Tree Generation using Antlr

Both JPlag and Kitsune rely on Antlr for some part of their pipeline. Despite

this, the ways in which the parser is used is quite different. JPlag focuses on using

Antlr for providing tagging on identified tokens. It allows, for example, identifiers

to be located and the beginnings of its abstract token analysis to occur. However,

much of the functionality of Antlr is not utilized. Kitsune uses the tokens and the

tagging done by Antlr, but it also preserves the entirety of the parse tree structure

that it generates. This allows it to take a much more structural view of the code

as a whole. Whereas JPlag sees a program as a sequence of tokens, Kitsune views

it as a tree. This presents a number of useful distinctions when analyzing source

code for plagiarisms. Usually, students see programs more in blocks and in terms

of structure than as an unrelated sequential list of tokens. A student would be, for

example, unlikely to copy the end of one function and the start of the next from

another student and much more likely to look at each function as a unit. In fact,

this is an area that many of the tools suffer. SIM’s internal engine works more like

a scanner than an actual parser and thus loses most concept of scope. Sherlock has

no concept of programming languages to begin with and views the code simply as

text. MOSS portrays its results using lines and the length of token streams in its

Winnowing algorithm. This unique approach allows Kitsune a more accurate view of

the code. It also means that many of the problems that other tools had to overcome

through careful algorithms or analysis were taken care of from the start. For example,
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shifting blocks of code around does less to affect Kitsune because it already compares

two files at the block level instead of file to file.

Figure 3.1: Hello World Python Parse Tree

In order to do this, Kit-

sune generates signatures for

each of the major units of code.

To identify these, Kitsune first

takes the parse tree generated

by Antlr and abstracts a number

of things out. In Figure 3.1, for

example, the tree contains many

redundant nodes created while

descending through the gram-

mar rules (see 3.1, numbers 1

and 2). These nodes do not con-

tain useful information for Kit-

sune as they are generated by

traversing the precedence rules

from the grammar. After this

is done, the relationships labeled

“Parent” are no longer used and

queries are performed using the

more minimal twelve node tree

between “AbstractParent” rela-

tionships. The other nodes are

abstracted out both for storage

constraints in the resulting representation and for efficiency reasons while traversing
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the tree. This leaves the tree with only the grammar rules that directly matched parts

of the code and the tokens which were matched: print (3), ’(’ (4), ”Hello World!” (5),

’)’ (6), and the two newlines (7 and 8). For the current configuration of python3, both

the ’print’ token and ”Hello World!” token are then reduced to a generic identifier

and string token respectively.

In a small program like hello world, this reduces a large amount of the state

of the program. In a larger program however, this allows Kitsune to ignore small

modifications to things like volatile strings which are only used for displaying content

or variable names which can easily be changed. A sliding hash window of three

tokens is then generated. For example, the tokens ’print’, ’(’, and ’[[string]’ are then

hashed (see the red node number 9). Currently, Kitsune shares a similar algorithm to

both Sherlock and MOSS where these hashes are coalesced, sorted, and the minimum

hashes are selected. The sample size is chosen such that Kitsune has an accuracy

on any given comparison of 95%. Finally, an information node is added above the

root node of the program which contains data about the program such as a unique

identifier, whether it had any parse errors, the batch / directory it was added from

(again a unique identifier), and any other important identifying data which might be

displayed to the user.

3.2 Code Block Identification

Due to the way Kitsune represents source files internally using the tree that was

generated by Antlr, Kitsune has a number of advantages over many of the other

tools. The following example highlights this behaviour. The following is one of

the file comparisons that all five tools identified as plagiarism. It is impossible to

determine why Sherlock detected plagiarism definitively, but for the four other tools

which generated representations to visually inspect the tools (seen in 3.2, 3.3, 3.5,
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and 3.6), it is clear that there is a specific function which accounts for much of the

similarity. Because MOSS, JPlag, and SIM see this function as a stream of sequential

tokens, however, their detection of its plagiarism identifies it as multiple separate

instances of plagiarism, despite the entire encapsulating function being plagiarized

and simply reordered. Kitsune on the other hand has the wherewithal to identify a

single, large case of plagiarism due to its representation of the block not as a stream

of sequential tokens, but as a node in a tree where all of the plagiarized sections fall

inside the same branch. This distinction becomes especially apparent when looking

at the similarities detected by JPlag (see 3.3) where the match actually spans across

the function and into the next function. Especially because JPlag is fairly generous

with its token identification, this leads it to believe that the next functions declaration

is part of the similarity despite the next function in each program being completely

different. In fact, Kitsune identified the second function for ”A3 57.py” (shown on the

right in 3.3 and 3.2) as being plagiarised from the third function of ”A3 6.py” (shown

on the left) a match JPlag did not catch, perhaps due to this overlap subtracting

possible match tokens (the second match from Kitsune can be seen in 3.4).
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Figure 3.2: Kitsune’s Block Detection Shown in “A3 6.py” (left) and “A3 57.py”

(right)
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Figure 3.3: JPlag’s Results for “A3 6.py” (left) and “A3 57.py” (right)
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Figure 3.4: Kitsune’s Matching Skips the Second Function of “A3 6.py” (left) in

Favor of the More Correct Third Function
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Figure 3.5: MOSS’s Results for “A3 6.py” (right) and “A3 57.py” (left)
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Figure 3.6: SIM’s Results for “A3 6.py” (left) and “A3 57.py” (right)
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Chapter 4

KITSUNE: LANGUAGE ADAPTABILITY

4.1 Parse Tree Modifications using Cypher and Neo4j

One problem that using the parse tree presented was the difficulty of modifications

to any such structure. Token streams are much easier to work with because they are

stored as a flat list. Initially, the idea of continuing with an in-memory representation

was floated. This however quickly became unmanageable and hard to maintain. In

order to keep modifications to the representation simple, Neo4j, a graph database

was used after parse tree generation. By inserting the tree generated by Antlr into

a Neo4j database, most of the modifications to the tree became fairly simple. Figure

4.2, for example, shows a Cypher query to replace all variables with a set token value

(a measure to avoid dissimilarity from irrelevant changes). Within this five line query,

Cypher is able to identify all programs that were added in the last directory (line 1),

get the unique IDs for every one of those programs (line 2), find every single terminal

node that matches the specified name for identifiers in the grammar (line 3), limit

those nodes to the identified programs (line 4), and finally replace the text of each

with a chosen identifier token (line 5). Most interestingly, this query can be reused

for every grammar thus far identified since the only requirement is that the add-on

developer add the identifier’s name and replacement text to a configuration file. It

also is generic enough that the same query could be used to, for example, replace the

text inside a string or other node depending on what was needed for a given language.

This flexibility means that Kitsune does not require additional code for many of these

simple tasks, nor does it require a grammar to be written in a specific way.
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1 | MATCH (program:Program { directoryID: {directoryID}})
2 | WITH collect(DISTINCT program.programID) as programIDs
3 | MATCH (n:Node {category: "terminal", type: {type}})
4 | WHERE n.programID in programIDs
5 | SET n.text = {replaceWith}

Figure 4.1: Cypher Query to Generically Replace all Identifiers in a Batch of
Programs

4.2 Swapable Configurations

Because of the generic nature of most of Kitsune’s code, a need arose to be able

to specify a minimal set of features in a language. The goal, however, was to keep

this set as small as possible so as to present the developer with the least amount of

work to introduce a new language to Kitsune. Currently, the average configuration

contains about 8 lines of code that change and a set export statement that takes 7

lines (see 4.2). Thus a new language takes 8 lines of code to introduce once an Antlr4

grammar has been written for it. Currently, the main Antlr4 grammar repository

contains around 200 programming languages and is by no means a definitive source

for Antlr4 grammars. If Kitsune decided to support all 200 programming languages,

the language section would be only a little larger than the rest of the codebase, and

leave Kitsune with less lines than many of the surveyed tools.
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1 | const startRuleName = "file_input";
2 | const matchRules = ["if_stmt", "while_stmt", "for_stmt",

"try_stmt", "with_stmt", "funcdef",
"classdef", "decorated"];

3 | const similarityThreshold = 0.70;
4 | const replaces = [
5 | ["STRING_LITERAL-local", "[[string]]"],
6 | ["NAME-local", "[[identifier]]"]
7 | ];
8 | const fileExtensions = [".py"];
9 | module.exports = {

10 | startRuleName,
11 | matchRules,
12 | similarityThreshold,
13 | replaces,
14 | fileExtensions
15 | };

Figure 4.2: Kitsune Configuration File for Python 3
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Chapter 5

KITSUNE: ACCURATE COMPARISONS

Kitsune goes through a number of lengths to assure the accuracy of the com-

parisons it generates while reducing the sample size for efficiency. As mentioned

earlier, Kitsune’s goal is to maintain at least 95% accuracy in the comparisons it

makes between any two code fragments. To explain how Kitsune achieves this, some

background on MinHash needs to be given.

There are two forms of MinHash. In the first, the hash algorithm which is used

to find the smallest token will be changed each time a sample is chosen (Plank,

2019). In the second, the same hash function will be used for all of the tokens and

rather than selecting the smallest token, the n smallest tokens will be chosen (Plank,

2019). The latter is a more recent development which builds on the idea of sampling

without replacement (Plank, 2019). Usually, the simpler version (former) is used as

an upper bound for the sample size required to estimate the similarity (Plank, 2019).

This version has a required sample size of 1/E2 where E is the desired error margin

(Plank, 2019). This version acts as a sampling-with-replacement type problem while

the N-minimum version acts as a sampling-without-replacement (Plank, 2019). For

a large document, the gains in accuracy are insignificant as the proportion of the

sample to the population is rather small. As the 5% mark is approached however,

this is no longer true (Plank, 2019). As you sample more and more of the document,

you approach having definitive knowledge of the entire document and thus are able to

make more confident statements about the interval in which the similarity lies (Plank,

2019). The sample size required for a confidence interval of .05 (5% similarity) at
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95% confidence for an infinitely sized document can be expressed by the following

formula:

s =
Z2(p)(1− p)

c2

Where s is the required sample size, Z is the z value from the normal distribu-

tion (given that the hash function produces normally distributed hashes), p is the

proportion of the documents that intersects, and c is the accuracy desired. At 95%

confidence, the Z value is 1.96. The desired confidence is simply what we hope to

obtain. 5% deviation in accuracy should be enough to make a claim about whether

the documents are similar. The only difficult measure to answer is p since without

first comparing the documents we can not know the overlap. However, we can solve

this by simply finding the upper bound where s is maximized. This value occurs at

p = .5, a 50% overlap of the two programs. Thus we have

s =
1.962(.5)(1− .5)

.052
= d384.16e = 385

So, for a theoretically infinitely sized program we would need 385 samples to give the

similarity of the two documents within 5% with a 95% confidence. To adjust this for

a finite set, we can use the equation

s′ =
s

1 + s−1
P

Where s’ is the adjusted sample size, s is the old sample size, and P is the total

population size. There is however a problem with this. Our sample comes from the

population that is the Union of the two sets of tokens from each document. Because

we don’t know how many repeat tokens there were amongst the documents, we do not

know the exact population size. We do however know that the maximum population

size would occur when there is no overlap in the two programs (and thus every token
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in each is distinct). Thus, the new sample size will be maximized at P = |A| + |B|

where |A| is the magnitude of the set of tokens from the first document and |B| is

the magnitude of the set of tokens from the second. Putting it all together, we have

s′ =
s

(1 + (s− 1)/(|A|+ |B|))

=
(s/1)

((|A|+ |B|+ s− 1)/(|A|+ |B|))

=
(s(|A|+ |B|))

(|A|+ |B|+ s− 1)

=
(384.16(|A|+ |B|))

((|A|+ |B|) + 383.16)

So for example with 2 programs, one with 400 tokens and the other with 500, the

sample size required would be

(384.16(400 + 500))

((400 + 500) + 383.16)
= 270

as opposed to the 400 tokens we would have taken before.

There are two main advantages of using MinHash for program comparison in this

way. The first is that comparison across a large set of programs can be done in a very

short amount of time. The second is that MinHash will be resilient to some level of

difference between the two programs. By changing shingle size, MinHash balances the

importance of token order against the possibility of code being rearranged slightly.

For example, switching the order that two functions are defined in would only result

in a similarity difference of the shingles that overlapped the two functions, which is

relatively small compared to the size of the program.
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Chapter 6

METHODOLOGY

6.1 Quality in Software Systems

In order to investigate the success of Kitsune’s method of plagiarism detection, a

rubric to compare it to existing tools needs to be identified. To do so, it is necessary

to understand what traits are needed in a quality plagiarism detection system. In

that effort, a definition for quality software systems in general will first be established

and later applied in the context of a plagiarism detection system.

There have been a number of well regarded models for evaluating the quality of

a software system. Though the exact terms vary, most agree that a software system

which has high quality should demonstrate certain characteristics including maintain-

ability, efficiency, reliability, usability, portability, and functionality (ref. Table 6.1).

A system which exhibits these traits can be said to be a “quality” software system. It

is important to note, however that these terms are not absolute metrics, but context

dependent criteria. What is considered efficient for a software comparison tool, for

example, might not be what is considered efficient in a time critical system.

6.2 Quality in Plagiarism Tools

A rubric which attempts to gauge the quality of different plagiarism detection

tools should exemplify measurable characteristics that demonstrate the software pos-

sesses each of these traits. Each of these traits should be defined in the context

of a plagiarism detection system, and from this, a measurement should be created
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Attributes McCall Boehm Dromey FURPS ISO 9126

Maintainability X X X

Efficiency X X X X

Reliability X X X X X

Usability X X X X

Portability X X X X

Functionality X X X

Table 6.1: Agreed Upon Characteristics of Quality Software Systems Adapted from

“Quality Models in Software Engineering” by Rafa E. Al-Qutaish, PhD, 2010,

Journal of American Science, 6.3, p. 175

to determine which tools successfully demonstrate these characteristics and to what

degree.

ISO 9126 goes on to define each of these traits further. Maintainability is “the

capability of the software product to be modified. Modifications may include correc-

tions, improvements or adaptation of the software to changes in environment, and in

requirements and functional specifications. (ISO, 2016)” To this extent, a maintain-

able plagiarism detection tool should demonstrate a number of properties, including:

a small general codebase (excluding additional language support), an adaptable lan-

guage with good support for new operating environments, and a small amount of

required code for each additional language.

Efficiency under ISO9126 is defined as “the capability of the software product

to provide appropriate performance, relative to the amount of resources used, under

stated conditions. (ISO, 2016)” This includes reasonable consumption of both time

and system resources (ISO, 2016). In a plagiarism detection system, this means that
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the software should be able to run on a normal laptop or desktop that the average

professor or grader might have. It also means that for a sufficient classroom size,

a teacher can compare the entire set and expect to get results in time to grade the

assignment.

Reliability is “[t]he capability of the software product to maintain a specified

level of performance when used under specified conditions (ISO, 2016)” A “reliable”

plagiarism tool should identify all sections of sufficient size which are likely plagiarized

– or at least merit manual inspection – in the file set and should not return false

positives. As this is hard to demonstrate for most real world test sets, a reliable

plagiarism detection tool can be seen as a tool which detects at least the cases that

other tools find and which does not return cases where no other tool sees plagiarism

or where, upon manual analysis, the tool detects cases where no other tool does due

to extended capabilities of the tool.

Usability is “the capability of the software product to be understood, learned,

used, and attractive to the user, when used under specified conditions. (ISO, 2016)”

This can be more subjective than other traits and hard to define, however, some likely

necessary characteristics include: a clean UI which is easy to use and clearly displays

matches, and a simplistic system to obtain and run the tool.

Portability is “the capability of the software product to be transferred from one

environment to another. (ISO, 2016)” To this extent, a plagiarism detection tool

should support common Operating Systems including Windows, Linux, and MacOS.

Another capability some tools displayed which might be favorable is the ease of de-

ploying it as a web service for increased access.

Functionality is “the capability of the software product to provide functions which

meet stated and implied needs when the software is used under specified conditions.

(ISO, 2016)” A plagiarism tool which shows “functionality” is one which demonstrates
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a broad feature set – in this case support for a large array of languages and which

can be tuned for things different teachers would desire such as exclusion of template

code, threshold modifications, etc.

There are obvious trade-offs between many of these traits. A tool which aims to

provide functionality through support for as many languages as possible with high

reliability might become un-maintainable given that support for each additional lan-

guage requires extensive additions to the codebase. Likewise, a tool which aims to

support all languages through text only comparison might find it’s reliability falter.

Each of the tools surveyed presented cases for a variety of different approaches, each

valuing a different combination of goals to different degrees. Through a holistic rat-

ing system, it will be possible to determine which tool(s) utilize the most balanced

approach.

6.3 Defining a Rubric

It would be difficult to remain objective while rating a tool on a numeric scale such

as 1-10 as other authors have done in the past (Hage et al., 2010) (Durić and Gasevic,

2013). For this reason, a more generalized scale from “Inadequate” to “Exemplary”

with two mid range levels for “Acceptable” and “Excellent” will be used. In addition,

every attempt will be made to create a full rubric with hard rules as to where a

tool falls to avoid subjective or non-replicable scoring. Using this level of granularity,

many of the aforementioned traits are quite easy to grade with quantitative evidence.

Looking at each of the traits we analyzed previously, our final goal is to attempt to

categorize each into these 4 bins.

Under maintainability, we identified 3 criterion: the size of the base codebase, the

size of additional language add-ons, and the suitability/adaptability of the language

to new environments. Many of the tools analyzed vary greatly in code size. There is
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also not always a clear break between language dependent code and base code size.

For this reason, the size estimate must be able to represent this range across the 4 bins.

In order to avoid arbitrary coalition, an order of magnitude type comparison seems

apt. It likely also makes sense for a program which is less than 1 KLOC to be seen as

exemplary in terms of maintainability while a program doing the same actions of over

100 KLOC would be seen as “Inadequate” in terms of maintainability. Keeping with

this scale for the additional language support code size, an exemplary program would

be one that does not add any code or for which a user could easily enter information.

This would mean that any language could easily be supported with zero work on the

side of developers and with no maintenance. Going from there, small code changes are

less desirable as some issues requiring maintenance might occur, but still excellent.

A program requiring 100-1K LOC seems typical of most of the programs analyzed

and thus is likely adequate in terms of maintenance. Finally, a program going beyond

this would require extensive updates for language additions and likely would not see

many languages introduced at a fast rate. In terms of language adaptability, it would

be difficult to use a fully quantitative measure. The easiest way to measure whether

the language supports systems well is perhaps how often it receives updates. If a

language has been depreciated for a long time or is too new, then it likely would be

inadequate for a stable system. Likewise a language which is stable but still receiving

regular updates would be much stronger as a choice. Out of the tools analyzed, it

is unlikely that any will have trouble with this category and thus a stronger metric

is likely not needed. For other tools, especially older, less supported tools, a more

accurate measure would likely be needed.

Under efficiency, the main identified criteria was simply that the software could

be run by the professor in a feasible time. This can be further broken apart to

talk about what size set can be run feasibly. In order to test this, 3 sample sets of
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varying size in terms of both lines of code and number of students will be executed

on the same computer and timed. In order to avoid discrepancies in the hardware

two measures will be taken. First, the times will be an average of 3 runs on each

set. Stored results (including automatic caching as in a database) will be cleared to

prevent unfair speedups. Second, as in the case of lines of code measurements, the

rubric shall be on a scale of magnitude to illustrate only large deviations. Thus we

have 3 sets, running the average execution time, and binning across that time on a

scale from less than 1 min, to less than 1 hour, to less than 1 day, to times exceeding

1 day. Any times exceeding 1 day will be cut off after 1 hour past and it will be

assumed that this 1 hour is sufficient to say that future attempts will not be less than

the 1 day mark.

Reliability is a harder trait to quantify. It would not be difficult to manufacture

a plagiarised program and introduce it into an otherwise clean set as done by many

other authors (Roy and Cordy, 2008) (Liu et al., 2006) (Chen et al., 2004). How-

ever, doing so brings into question whether the intentional modifications applied by a

knowledgeable programmer successfully mimic those of a student under actual duress

and time pressure. For this reason, an alternative approach presented by the author

of one of the tools not being analyzed, FPDS, will be used. In this system, it is

assumed that the majority of plagiarism tools which are widely used are successful in

general and that their failures can primarily be attributed to the extremely apparent

discrepancies between them (Mozgovoy et al., 2005). Put another way, the tools can

act as a “jury” for the programs that are analyzed. The larger the consensus of the

tools in the jury, the worse it is for a tool to fall outside this jury. For example,

if 4 tools agreed that a case was plagiarism and a single tool did not, this tool is

likely incorrect. The frequency with which these deviations occur can be seen as the

reliability of this tool (Mozgovoy et al., 2005). The same can be said for the reverse
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case when 4 tools say that a case is not plagiarism and a single believes that it is

(Mozgovoy et al., 2005). To avoid issues with certain tools failing only on certain

languages or certain problems more often, the tools will be graded on the number

of test sets where they significantly (seen as 1 stdev above the average fail count)

deviate from the results of the other tools. Each tool will be tested on 6 test sets

of various language and size. three of these sets (one Python, one Java, and one C)

are from actual classroom submissions at the sophomore, junior, and graduate level.

The other 3 sets will be gatherd online from publicly posted code competitions which

host the results. Four languages are supported by all 5 tools - Python3, C, C++, and

Java. In order to thoroughly test the capabilities of each tool, all 4 languages will be

tested.

For the data sets used to test both reliability and efficiency, the goal will be to

maintain as realistic of sets as possible. Generating sets manually, either plagiarised or

otherwise, will be avoided in the hopes of keeping the data as realistic to a real world

setting as possible. To this goal, there will be 2 main sources for the programs used

in these tests. Most of the sets will be gathered from CodeChef (CodeChef, 2020),

a nonprofit coding competition website. CodeChef provides the solutions to already

completed competitions to users doing them for practice can see these answers. This

provides 2 main advantages as a test set. First, while users are encouraged to not

use these other programs, because they are available, a number of the submissions

have been “plagiarised” from the displayed solutions. Second, because the solutions

are public, downloading them to run with the tools is possible. There is also strong

evidence for using plagiarism detectors on these sets as after completion of competi-

tions, the site actually uses MOSS to check that the winning submissions have not

been plagiarised. In addition to the sets gathered from CodeChef, one of the sets

used will be a larger program set taken from a graduate level Software Engineering
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course which uses Python. This will provide both a benchmark for a larger set, and

will also provide a good test for code actually used in a classroom at a higher level.

A full investigation into the usability of each tool would likely require extensive

usability studies. As this is currently out of the scope of this investigation, the

usability of each tool will instead by classified by the presence of certain absolute

features. There are two main stages to using any plagiarism tool: setting it up, and

running the detection. Running it involves user interactions with an interface, either

command line or UI based. Because of the wide variety of users of a plagiarism

detection tool, it should not be assumed that every user is technically capable of

running a command line tool. For this reason a UI based tool presents an advantage

in terms of userbase size. This can be further broken down into which parts of the tool

support graphical usage. Many of the tools expect command line input but generate

views afterwards which are more user friendly. On the note of obtaining the tools, the

actual process of finding the website, etc. will be ignored. From there the difficulty

of actually using the tool will be rated. A tool which requires compiling source code,

for example, would be much worse in terms of usability than a tool with a traditional

installer.

The portability of the system was broken down into two characteristics, its ability

to support major operating systems and the ability to be web deployed for easy out-

reach to other users. An inadequate system can be seen as one that does not support

a single common operating system (seen for this study to be Windows and MacOS

as these operating systems constitute an estimated 98% of the personal computer

market among general users (StatsCounter, 2020) (Steam, 2020) and 74.5% of all

developers (StackOverflow, 2019)). An adequate tool would be one that supports at

least one major platform since it could be used by a large number of users. Preferred

would be a tool that supports both of the major platform. An exceptional tool would
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support Linux as well giving the tool support for at least 99% (StackOverflow, 2019)

(StatsCounter, 2020) (Steam, 2020) of personal computers professors or graders would

have access to. As web deploy-ability was not the intent of many of the tools, it would

be unfair to rate whether they currently support online usage only. Thus the level of

modifications to support such an important feature should be compared instead. An

inadequate tool would be one for which it is completely impractical to web-deploy,

either due to language restrictions or architecture choices. An adequate tool would

be one that could be deployed with some effort (including even a complete rewrite

of the UI component). An excellent tool would be one that could easily be deployed

with minor modifications, especially one that would not require a UI rewrite. Even

better would be a tool that already supports web deployment or has supported it in

the past (and thus it could easily be revived).

Finally, the functionality of the system was earlier broken down into two traits:

the support of languages, and the support of additional tuning features, namely tem-

plate code, removal of common code, and threshold modification. These three traits

have been singled out by a large majority of authors as intrinsically necessary for a

plagiarism tool to support. A tool which does not support template code often fails to

work for assignments where the professor allows either using code from the textbook

or other sources or provides a starting place for students to work from. A tool which

does not remove common code often produces false, often random similarities which

might be tied to the language or the problem. For example, a student who’s code

contains the java code “public static void main(String args[])” should not be penal-

ized for this. Finally, tuning of the threshold allows professors and graders to more

easily view only the code they need to and access what level of similarity is plagiarism

themselves. A tool which supports none of these would liekly be inadequate for most

use cases. Each of these traits likely add to its usability. The language support of a
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tool can be seen it two lights: commonly used languages and less common languages.

In this study, common programming languages will be defined as the top 20 most used

programming languages according to the 2019 stackoverflow survey (StackOverflow,

2019). Any other languages will be grouped separately. This prioritizes tools which

have functionality which is desired by the majority of users as opposed to those which

support more esoteric purposes which, though absolutely provide useful functionality,

likely do not benefit the majority of users. From the investigation of major tools

(ref. Table 2.1) it appears as though most tools fluctuate between the range of 1

language to 25 languages. Thus the most “exemplary” of these tools should support

all or almost all (75%) of the top 20 languages. An excellent tool would support at

least half (50%) of the most common languages. An adequate tool should support at

least 5 (25%). An inadequate tool would support less than 5 (less than 25%). For

less common languages, there is no clear bound to the number of languages. Some

of the tools which supported less language dependent methods can support any lan-

guage. While this is certainly exceptional, it likely falls outside of expectations of

most tools. As most tools focus on common languages, a tool which supports more

than 20 other languages (thus supporting more uncommon languages than common)

would certainly be exceptional even if it does not support all languages generically.

From there, the same scale can be used at 75%, 50%, and 25% of this expectation.

While the methodology that they arrived at their rubrics was not the same, it

should be noted that other surveys which attempted to compare tools holistically

have used similar features to analyze them. One survey, for example, rated 5 tools

on 10 features that they deemed important for any tool which was to be used by pro-

fessors for student submissions (Hage et al., 2010). The survey included “Supported

Languages”, “Extendability”, “Presentation of Results”, “Usability”, “Exclusion of

Template Code”, “Local or Web Based” and “Open Source” among their list of traits.
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Of the 10 traits, 7 were represented in the rubric that was developed (Hage et al.,

2010). Of the 10, only “Historical Comparisons”, “Submission or File-based Rating”

and “Exclusion of Small Files” were not noted. This is because these 3 traits seemed

to be heavily based on the specific usage that the survey was done for and not true

for plagiarism detection in general, or because every tool surveyed seemed to almost

unanimously support this trait . Their definition of “Historic Comparisons’ for exam-

ple was defined as “there must be a way to distinguish older submissions from newer

ones. Either by indicating which are the new or old submissions when starting the

tool, or by putting different incarnations in different directories” (Hage et al., 2010,

p. 4). Of the available tools, not a single tool was unable to separate submissions,

so this seemed unnecessary as a criterion. Another survey additionally included mea-

sures including “Platform Independence”, “Local or Remote”, “Usability”, “Number

of Supported Languages”, and “Algorithm Extensibility” among their analysis which

were all included in the developed rubric (Durić and Gasevic, 2013).
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Inadequate (0) Acceptable (1) Excellent (2) Exemplary (3)
M

ai
n
ta

in
ab

il
it

y
Base
code size
(LOC)

Unmanagably
large base
code
(100K+)

Manageable
code base
(10K-100K)

Small
codebase
(1K-10K)

Tiny
codebase
(0-1k)

Additional
language
code size
(LOC)

Additional
languages
require
extensive
code updates
(>1K per
language)

Additional
languages
require some
code updates
(100-1K per
language)

Additional
languages
require minor
code updates
or
configuration
files (0-100
per language)

Additional
languages
require no
changes or
changes
which could
easily be
entered by
non-technical
users

Adaptable
develop-
ment
language
/ envi-
ronment

The language
used is not
supported
anymore or is
under heavy
development

The language
used has
infrequent or
major
updates for
new
environments

The language
used has
periodic
small updates
for new
environments

The language
used has
regular but
transparent
updates

E
ffi

ci
en

cy

Time to
run for
small
sample
( 50 files
of 100
LOC)

Execution
could not be
performed or
takes longer
than a day

Execution
takes between
1 day and 1
hour

Execution
takes between
1 hour and 1
min

Execution is
less than 1
min

Medium
sample
( 100
files 200
LOC)

Same as
above

Same as
above

Same as
above

Same as
above

Large
sample
( 200
files 500
LOC)

Same as
above

Same as
above

Same as
above

Same as
above
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R
el

ia
b
il
it

y
Likely
matches
(False
Nega-
tives)

The tool
missed likely
plagiarism
cases where 4
tools
identified
plagiarism by
more than 1
stdev above
average in 3
of the test
sets

The tool
missed likely
plagiarism
cases where 4
tools
identified
plagiarism by
more than 1
stdev above
average in 2
of the test
sets

The tool
missed likely
plagiarism
cases where 4
tools
identified
plagiarism by
more than 1
stdev above
average in 1
of the test
sets

The tool
missed likely
plagiarism
cases where 4
tools
identified
plagiarism by
more than 1
stdev above
average in 0
of the test
sets

Unlikely
matches
(False
Posi-
tives)

The tool
found
unlikely
plagiarism
cases where
only 1 tool
identified
plagiarism
more often
than 1 stdev
above average
in 3 of the
test sets

The tool
found
unlikely
plagiarism
cases where
only 1 tool
identified
plagiarism
more often
than 1 stdev
above average
in 2 of the
test sets

The tool
found
unlikely
plagiarism
cases where
only 1 tool
identified
plagiarism
more often
than 1 stdev
above average
in 1 of the
test sets

The tool
found
unlikely
plagiarism
cases where
only 1 tool
identified
plagiarism
more often
than 1 stdev
above average
in 0 of the
test sets

U
sa

b
il
it

y

Clean,
easy to
use UI

The tool has
a command
line execution
and does not
support
comparing
matches

The tool has
a command
line execution
but generates
a readable
report to
compare
matches

The tool
supports UI
based input
and viewing
of matches

The tool
supports UI
based input
and viewing
of matches
and is
interactive
beyond plain
text displays
of info

Simple
to obtain
and use

The tool
requires
difficult or
many steps
to obtain or
requires
extensive
developer
knowledge to
begin using

The tool
requires some
developer
knowledge
that most
users are
likely to have
to begin
using

The tool
requires no
developer
knowledge to
begin using

The tool has
guided
installation
that most
non-
programming
users could
follow
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P
or

ta
b
il
it

y
Support
for OS

The system
cannot be
run directly
on any major
operating
system
(Windows/-
MacOS) or
requires
portability
tools to
operate on
common
environments.

There is
support for
at least 1
major
operating
system
(Windows/-
MacOS).

There is
support for
both
Windows and
MacOS.

There is
support for
both
Windows,
MacOS, and
Linux.

Web De-
ployable

It would be
difficult to
deploy such a
system to the
web without
recreating
large
sections.

The system
could be
deployed to
the web with
some effort.

The system
would need
no major
modifications
to deploy to
the web.

The system is
currently
hosted or has
previously
been hosted
on the web.

F
u
n
ct

io
n
al

it
y

Support
for
common
lan-
guages

The system
supports less
than 5 of the
top 20
languages.

The system
supports 5 of
the top 20
languages.

The system
supports 10
of the top 20
languages.

The system
supports
almost all of
the top 20
languages (15
or more).

Support
for other
lan-
guages

The system
supports at
least 5 less
common
languages.

The system
supports 10
other
languages

The system
supports 15
other
languages

The system
supports 20
or more other
languages.

Support
for
tuning
features

The system
does not
support
template
code,
common code
removal, or
threshold
modification.

The system
supports 1 of
the following:
template
code,
common code
removal, or
threshold
modification.

The system
supports 2 of
the following:
template
code,
common code
removal, or
threshold
modification.

The system
supports all
of the
following:
template
code,
common code
removal, and
threshold
modification.

Table 6.2: A Quality Rubric for Plagiarism Detection Tools
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Chapter 7

RESULTS

7.1 Overall Results

Kitsune scored extremely well in comparison to the current state of the art in

plagiarism detection tools. While scoring each tool on the rubric, a number of de-

ficiencies and places where each tools excels both became apparent. In the further

sections, the result of each test/investigation will be detailed and any notes beyond

what the rubric allowed will be noted.

7.2 Maintainability

JPlag’s source code is publicly available on GitHub. Because of this, it was fairly

easy to see how much code goes into both its base work and each additional language.

After deleting all language specific code (they are separated neatly into packages) and

running a lines of code count on only the remaining java code (i.e. ignoring html,

pom.xml files from maven, etc.) JPlag’s current code base came up to 28,379 lines

(Malpohl, 2019). This places it in the “Acceptable” range from 10K to 100K lines.

Counting the language specific module code for each of the supported languages, the

average came up to 1,340 lines per language (Malpohl, 2019). Attempts were made to

remove any code that is believed to have been generated by either Antlr or JavaCC.

The grammars themselves were included based on notes from the authors that the

grammars are not the same as language grammars intended for compiler generation

and should instead be written with plagiarism detection in mind to yield much merit
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Prechelt et al. (2002) Malpohl (2019). Keeping this in mind, JPlag exceeds the 1000

LOC mark per language putting it in the “Inadequate” section for language additions.

Though MOSS’s source code is not public, a lot of insight into its maintainability

was gained through direct correspondence with the Author. Moss is primarily written

in C and is about 5000 lines of code, ignoring language specific additions. Aiken has

developed a domain-specific language for adding new languages and estimated that

additions were just shy of 100 LOC per additional language. This puts MOSS’s lan-

guage support maintainability at “Excellent” falling short only of having no additions

required or additions that do not require programming. It should also be noted that

maintainability is also a key focus of MOSS as can be seen in notes from the author

inside the tool (as in the following quote on the results sharing system). This quote

also highlights points about the author’s statement on the portability of MOSS’s sys-

tem which will be developed upon later.

Q. Couldn’t you mail the HTML results back to me instead of putting them on

the Web?

A. While this would be an inherently more secure design, it is impractical for

maintenance reasons. At least 90% of the time in maintaining Moss is spent

dealing with problems users have with the submission script in various mutually

incompatible environments. Widening the interface to include results returned

from the server can only exacerbate this problem. Because Moss is not a com-

mercial service, the time spent maintaining it must be kept low. (Aiken, 2018)

Sherlock is extremely small in size (∼400 lines of C code) and thus easily falls

under “Exemplary” in this aspect. It does not have a “language specific” section

as it is intended to do text-based analysis that is fairly independent of the language

itself. This again means that Sherlock scores “Exemplary” since it does not require
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language specific add-ons. Because of this, Sherlock was the most maintainable of all

of the tools that were surveyed.

SIM’s codebase falls in the middle of the “Excellent” range with 4252 lines of

C code. It has its own parser syntax based on Flex and for the existing languages

averages 254 lines of code per language. Out of both curiosity and in order to facilitate

testing on available data sets, a specification for python 3 using SIM was developed

based on the existing languages and documentation from the author. This will be

discussed further in the reliability section, however from this experience it should be

noted that additions to SIM were not particularly hard, but certainly require a good

understanding of the language that is being added and is not a trivial task.

Finally, Kitsune’s base code size including the GUI (which did not exist in any

of the other tools) falls just shy of the 1000 lines of code mark including both JS

code for the UI, database queries, HTML UI code, and installer code which was not

present in other tools (in fact pom.xml, html files for the generated UI, etc. were

strictly ignored for other tools). This puts Kitsune safely in the “Exemplary” range.

Additional languages require configuration code (which currently would not be able

to be done by the average user, though there are plans for this) which have not as of

yet exceeded 15 lines of code. This places Kitsune under “Excellent” falling short only

of Sherlock’s non language specific implementation and tying with MOSS’s domain-

specific language.

The five tools that were surveyed all used strongly established programming lan-

guages for their main codebase and thus do not suffer in this respect (though some suf-

fer under portability and OS support for other, less language-related choices). JPlag,

MOSS, Sherlock, SIM, and Kitsune use Java, C, C, C, and NodeJS respectively. All

tools were scored as “Exemplary” because of this.
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7.3 Efficiency

Kitsune’s definitely had a slower execution time on average than the other tools

analyzed, likely due to the fact that the other tools primarily deal with in-memory

analysis of the programs whereas Kitsune has to read a representation of each program

into the database. While this is certainly unfortunate, even in the worst test case

with nearly 200 students and 500 lines of code, Kitsune performed within a reasonable

amount of time for teachers to be able to use it.

JPlag and Moss had a large increase in time from the first set to the third as well

and thus their execution times passed the threshold from ”Exemplary” to ”Excellent”

as well. Though Kitsune did not behave as well as these two tool in terms of execution

speeds for inserting new sets, this demonstrates for for very large scale submissions,

JPlag and Moss will start degrading as well. Future work will be in improving the

efficiency of Kitsune, including looking into other similarity algorithms.

SIM behaved oddly for the second, middle sized test set. It’s time actually de-

creased from the small set. There are two possible explanations for this. The first is

that the execution time for SIM was small enough in general that such fluctuation is

rather insignificant. The second is that the smaller set was in C while the middle set

was in Python. It is possible that the transition effected MOSS’s execution time by

enough if it’s Python Parser was more efficient.

7.4 Reliability

Kitsune has demonstrated a great deal of reliability in finding the issues that

other tools identified. The only tool that consistently varied from the results of other

tools by a significant amount was Sherlock. In fact, the only times where Sherlock’s

deviations were within a single standard deviation of the average were when the tools
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Iteration Tool Small Set Time (s) Medium Set Time (s) Large Set Time (s)
E

x
ec

u
ti

on
1

JPlag 0.166 20.691 29.483

MOSS 10.11 17.704 69.509

Sherlock 0.241 1.427 2.141

SIM 0.679 0.44 0.628

Kitsune 29.81 1067.60 1136.25

E
x
ec

u
ti

on
2

JPlag 0.159 19.688 43.019

MOSS 10.644 17.341 19.436

Sherlock 0.252 1.413 1.467

SIM 0.72 0.43 0.654

Kitsune 26.514 946.36 1262.11

E
x
ec

u
ti

on
3

JPlag 0.17 14.07 33.554

MOSS 12.342 16.58 20.408

Sherlock 0.253 1.333 1.50

SIM 0.696 0.455 0.635

Kitsune 27.54 974.78 1274.61

A
v
g.

E
x
ec

u
ti

on
T

im
e

JPlag 0.165 18.15 35.352

MOSS 11.032 17.208 36.451

Sherlock 0.249 1.391 1.703

SIM 0.698 0.442 0.639

Kitsune 27.955 996.247 1224.323

Table 7.1: Runtimes Across Different Sized Test Sets
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were vastly disagreeing across the board (which usually occurred when there was very

little cheating or on extremely small programs. SIM did not behave favorably on the

smaller C set, and ended up failing both at identifying likely matches and in avoiding

identifying unlikely matches.

In Figure 7.1, the distributions for each of the tools were plotted in a stacked

bar chart (i.e. times when the only that tool found plagiarism are in blue at the

bottom, then 2 tools, 3 tools, 4 tools, all 5 tools) for 4 of the sets. The other set was

much larger and did not process well in excel. These charts allow easy visualization

of strong deviation. Preferably, the bottom section should be as small as possible.

Some disagreement is expected, however when a tool falls outside that amount it can

be seen as an unexpected failure of that tool. For example, in the Python A1 set,

Sherlock clearly stands out with 78.21% of its guessed plagiarisms not being guessed

by any of the other 4 tools.

Since only Sherlock and SIM had a single case where they fell far outside the

bounds of acceptability, all 3 of the other tools fall into the “Exemplary” category.

Manually looking at many of the cases where Sherlock was the only tool to find

plagiarism shows a general trend - often the files bear some degree of general similarity

in the tokens or names used, but this is often arbitrary and spread throughout the file.

It is difficult to say exactly where Sherlock fails because of the lack of representation

with which to explain its results, but based on inferences from the general algorithm,

Sherlock appears to have trouble distinguishing between 2 files that share many tokens

and 2 files that share many sequential chunks of tokens.

It was also interesting to cross compare each pair of tools to determine which tools

each agreed with the largest majority of time. Across all 6 of the tested sets, Kitsune

most frequently agreed with JPlag, followed by MOSS, then SIM, then Sherlock. In

fact, in every single one of the test sets, JPlag was the most similar and in 4 of the 5
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Figure 7.1: Jury Presence Distributions for Chosen Problem Sets
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sets, MOSS was the second most similar (and was 3rd in the other 2 sets). This does

well to demonstrate the success of Kitsune at producing results which are comparable

to more widely accepted and state of the art of current plagiarism detection systems.

7.5 Usability

JPlag ships as an executable jar file which can be run from the command line

(see 7.2. When run, it generates a simplistic webpage based UI which can be used

to navigate the results (see 7.3. Though simple, JPlag’s UI provides some degree of

navigability and allows prioritization based on higher percentage similarity (i.e. the

user can easily choose to skip looking at a 5% similarity document). Staying objective

in line with the rubric, JPlag’s has a CLI based input process but a GUI based results

section giving it a score of “Acceptable”. In terms of obtaining and using the tool,

JPlag is fairly simple. It requires having the correct version of Java installed and

command line execution which may be considered “developer knowledge”, but being

lenient on the basis that most users are comfortable with Java versions and can run

“java -jar jplag.jar” Jplag has an “Excellent” rating for obtaining and starting, falling

short of “Exemplary” due to the lack of a typical installer type installation or guided

process.

MOSS is very similar to JPlag in terms of usage. MOSS comes shipped as a Perl

script which submits the files to a server running the MOSS web platform. MOSS

then generates a webpage (see 7.4 the interface for which was actually written by the

author of JPlag) and responds with the link. JPlag used to have a similar web based

submission, but released the source code and became an open source tool to decrease

workload in maintaining it. MOSS has the same score in this category because of

the requirement of executing the Perl script from command-line. There are a number

of GUIs floating around for MOSS that have been developed, but none of them are
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Figure 7.2: JPlag’s CLI Interface

Figure 7.3: JPlag’s Comparison Interface

54



Figure 7.4: MOSS’s Comparison Interface

official and were not included because of this. The three mentioned under related

community works on MOSS’s website all look fairly inactive as well, the most active

of the three having a total of 35 commits from between 2011 and 2017 and no recent

activity. Unfortunately, obtaining MOSS is actually quite a process. In order to

“sign up” for the MOSS service, the user needs to email an automated service a

register command which contains the email you are signing up with. This email is

extremely sensitive – even misplaced spaces (or a hyperlink automatically added by

Outlook) can cause the email to respond “Could not find email address in registration

request.” Upon successful registration, MOSS replies with a unique Perl script which

can be executed to submit the files after this. Given the atypical and finicky nature

of MOSS’s sign up, MOSS fell under the “Inadequate” bin because to “[t]he tool

requires difficult or many steps to obtain.”

Sherlock was perhaps one of the least usable of the three tools. Sherlock does not

provide a graphical interface for either viewing results or inputting them. It also does

not provide any visualization of the results – even at a command-line level. The only
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output from Sherlock is a list of file pairs with a percentage (see 7.6). This makes it

extremely difficult, especially in large files, to determine why the files were deemed

similar. There is also no readily available distribution from Sherlock, so the only way

to run it is to run the C Makefile and generate the binary, a feet likely out of reach

for non-technically oriented users. Keeping this in mind, Sherlock received an rating

of “Inadequate” for both measures under usability.

Figure 7.5: Sherlock’s Output

SIM, like Sherlock does not provide a graphical mechanism for comparing files.

Instead, SIM outputs every comparison it finds in a diff like format. This is slightly

better than Sherlock as it is at least explainable and provides users with a way of

identifying and manually looking over identified sections, but can be quite unruly for

large sets. The console – or even a piped-to file becomes difficult to manage for large

sets with many similar sections. The largest of the sets in the efficiency tests produced

a 75,000 line text file of output full of diff-like comparisons. Combing through this

would be as impractical as simply finding the similarities while grading. Because of
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this SIM also scored under “Inadequate” for user interface. Unlike Sherlock, however,

SIM provided an executable format to run it which simplified the process of obtaining

and using it. Besides command-line execution, SIM requires very little developer

knowledge to begin using and thus, along with JPlag, is the second tool to fit the

“Excellent” category for obtaining and beginning usage.

57



Figure 7.6: SIM’s Output

Unlike the other 4 tools, Kitsune provides a graphical interface for both inputting

files, tuning parameters, and comparing the results (see 7.7). Kitsune also allows for

regeneration of results with different parameters, allows navigating results including

filtering out results based on the viewers discretion (for example such that low simi-
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larity comparisons are removed, or such that only files the user chooses are included

(as in 7.8). The tool also has a guided installer (see 7.9) which can set up the ap-

plication on the system as a full application that can be used normally. Because of

these features, Kitsune scores “Examplary” under both its UI and the setup process.

Figure 7.7: Kitsune’s Interface
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Figure 7.8: Kitsune’s Filtering Interface

Figure 7.9: Kitsune’s Installer
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7.6 Portability

JPlag, Sherlock, and Kitsune all support both MacOS, Windows, and Linux with

no issues. Only two tool presented issues with portability in terms of operating system

support – MOSS and SIM. SIM provided binaries only for “MSDOS” (which run fine

on Windows 10 today). It is theoretically possible to recompile for other systems,

however the Makefile is not set up for this and would require major revisions. There

also may be some minor amounts of code which would need rewrites. Because of this

the average user would be unable to use SIM on either Linux or MacOS. MOSS’s

website states that “[t]he current Moss submission script is for Linux” and does not

provide support for different systems. MOSS’s script can be run through Cygwin,

WSL, etc. but is not indented to natively run on any system besides Linux. Beause

of this MOSS does not meet the minimum criteria and received an “Inadequate”

rating for portability.

JPlag has run a web service in the past and in fact still includes the code to do so

in the open source repository. MOSS is available only as an web submission service

and thus is also web deployable. Kitsune’s main UI is currently based on electron

and can be ported to a web deployable service using webpack fairly easily (this has

been tested). Many of the comparison operations and overhead are also run through

Neo4j Graph Database. Because of this, Kitsune actually acts like a client to this

remote host which could quite easily be installed on a central server should the need

arise. Sherlock and SIM are both C based application. It would certainly be possible

to route execution with a thin wrapper or CGI type approach, but would still require

adding a decent amount of new code. Because there is no native support for doing

so, both were scored under “Adequate”.
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7.7 Functionality

JPlag currently supports 5 of the top 20 languages: C, C++, Java, Python, and

C#. This gives it a score of “Adequate” in terms of language support. Ignoring these

5 languages, JPlag supports one other language, Scheme. This gives it a score of

‘Inadequate” in terms of support for languages outside of the top 20. JPlag currently

supports threshold adjustments, and is able to take in a template to exclude from

results. It does not currently support exclusion of commonly repeating code, meaning

it scores “Excellent” in the support for commonly requested features.

MOSS was the tool that supported the most languages out of every tool surveyed

which did not have a general purpose algorithm such as Sherlock. Eleven of the lan-

guages MOSS has listed on their website are included in the top 20 languages from

the 2019 survey: C, C++, Java, C#, Python, Visual Basic, Javascript, Lisp, MIPS

assembly, a8086 assembly, and a8086 assembly. The three assembly languages sup-

ported by MOSS are all grouped under ”assembly” on the survey, but leaving them

there, MOSS scores “Adequate” in the common language support area. Especially

given the many years MOSS has been running and the slow rate of additional lan-

guage support to keep up with modern language trends (the oldest WayBack Machine

Internet Archive of the website from October 11, 2006 still has MOSS with the exact

same languages supported, meaning there has been no added languages in at least

14 years), this is a rather remarkable feat. On the side of support for less common

languages, MOSS supports FORTRAN, ML, Haskell, Scheme, Pascal, Modula2, Ada,

Perl, TCL, Matlab, VHDL, Verilog, Spice, and HCL2, putting it just shy of the 15

language mark and thus giving it a score of “Adequate”. MOSS supports template

code exclusion, and automatically removes common code across the sets (the number

required to be ‘common” can also be changed). There is currently no way to adjust
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the threshold for the degree of similarity. This means that MOSS supported two of

the tuning features giving it a score of “Excellent” for commonly requested features.

SIM supports C, C++, Java, Lisp, and 8086 assembler code giving it support for

exactly five of the common languages from the 2019 StackOverflow survey (StackOver-

flow, 2019). It also supports three other languages: Pascal, Modula-2, and Miranda.

This gives SIM a score of “Adequate” for the common languages and ‘Inadequate” for

support for less common languages. SIM does not support common code exclusion or

template code. It does however support threshold adjustments for it’s output, again

giving it a score of “Adequate” for commonly requested features.

Because of Sherlock’s completely language agnostic text-based comparison, Sher-

lock has no trouble supporting any language you throw at it. Because of this, Sherlock

scores “Exemplary” in both common and uncommon language support. Sherlock, like

SIM, only supports changing the threshold for output, giving it a score of “Adequate”

for commonly requested features.

Because Kitsune does not require much in the way of a configuration for a given

language, Kitsune can be configured to support a new language within around 5

minutes given any antlr4 grammar already exists. This means that Kitsune has no

difficulty supporting the already massive repository of grammars Antlr4’s grammar

repository contains, as well as the many grammars that can be found across GitHub

which are not contained in that repository. Kitsune’s accuracy does not seem to de-

pend too highly on the level that the grammar is tuned for plagiarism task either.

That is to say, Kitsune does about the same using JPlag’s grammars which are tuned

with plagiarism detection in mind as it does with any of the compiler oriented gram-

mars in the repository. Through a quick search on GitHub, grammars for the top

20 languages which both compile and are open source can be found through minimal

effort. Though the accuracy of most of these languages has not been tested, Kitsune
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was able to detect visually accurate matches in in a wide variety of languages including

Python, Java, Javascript, Lua, CSS, HTML, C++, C, bash, and VBA. These lan-

guages present a wide array of languages with many different syntax and code styles.

Because of this, Kitsune scored an ”Exemplary” in both of the language categories.

Currently, Kitsune supports only threshold tuning and does not support template

code exclusion or common code detection, though common code detection has be-

gun development. Because of this, Kitsune score “Adequate” in common requested

feature support.

JPlag Moss Sherlock SIM Kitsune

M
ai

n
ta

in
ab

il
it

y Base code size
(LOC)

1 2 3 2 3

Additional lan-
guage code size
(LOC)

0 2 3 1 2

Adaptable de-
velopment lan-
guage / envi-
ronment

3 3 3 3 3

Total 4 7 9 6 8

E
ffi

ci
en

cy

Time to run for
small sample
( 50 files of 100
LOC)

3 3 3 3 3

Time to run for
medium sample
( 130 files 150
LOC)

3 3 3 3 2

Time to run for
large sample
( 130 files 300
LOC)

2 2 3 3 2

Total 8 8 9 9 7

R
el

ia
b
il
it

y Likely matches 3 3 0 2 3

Unlikely
matches

3 3 0 1 3

Total 6 6 0 3 6
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U
sa

b
il
it

y Clean, easy to
use UI

1 1 0 0 3

Simple to ob-
tain and use

2 0 0 2 3

Total 3 1 0 2 6
P

or
ta

b
il
it

y Support for OS 3 0 3 1 3

Web Deploy-
able

3 3 1 1 3

Total 6 3 4 2 6

F
u
n
ct

io
n
al

it
y Support for

common lan-
guages

1 2 3 1 3

Support for
other languages

0 1 0 0 3

Support for
tuning features

2 2 1 1 1

Total 3 5 4 2 7

Total 30 30 26 24 40

Table 7.2: Rubric Scores for the Five Evaluated Tools
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Figure 7.10: Rubric Scores for the Five Evaluated Tools (Chart)
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Chapter 8

CONCLUSION

8.1 Achievements

Kitsune has performed extremely well when compared with popular available so-

lutions. It has been benchmarked against other tools in four programming languages

and been comparable in all four. Additionally, it has been tested for 6 other lan-

guages and had no issues producing visibly accurate results among test sets. Kitsune

requires minimal effort (usually 5 to 10 minutes) to add additional language support

from start to finish and requires very little code. Only a basic read through of most

Antlr4 grammars used was required to identify major block type units of code such as

classes, functions, structs, procedures, etc., especially when the language was known.

Since the initial two languages, no adjustments have been required to Kitsune’s

algorithms to adapt it to new languages. Especially when considering the versatility in

the syntax of the chosen languages (Powershell and CSS for example when compared

to Python or C) this shows promise that Kitsune could quickly be adapted to include

the entire Antlr4 grammar repository in its language set. This would mean support

for around 170 languages not supported any of the tools analyzed which showed

consistently reliable results. For these languages, Kitsune would be the only tool

teachers could use to prevent plagiarism in a class not using one of the small list of

languages commonly supported by existing plagiarism tools.

In addition to the work done to provide sophisticated analysis of languages, Kit-

sune provides a robust system for visual syntax highlighting also performed using

the Antlr4 grammar. Currently, 4 of the tested languages have syntax highlighting
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schemes written for them. While not necessary, these make interpreting results from

the tool much easier and make the tool appear much more professional than a plain

text display. Currently it takes around 20 lines of CSS code to implement a syntax

highlighter for a given language (see figure 8.1).

/* Matches all tokens which were not read by the Antlr4 parser.
This includes comments, non-compilable code, etc. */

.no-match {
color: rgb(128, 128, 128) !important ;

}

/* Matches all identifiers */
.NAME-local {

color: #BF74D5 !important ;
}

/* Matches all of the python number types */
.DECIMAL_INTEGER-local, .OCT_INTEGER-local, .HEX_INTEGER-local,
.BIN_INTEGER-local, .FLOAT_NUMBER-local, .IMAG_NUMBER-local {

color: #5FAAE8 !important ;
}

/* Matches strings */
.str-local {

color: #88AF6E !important ;
}

/* Keyword list - Taken from Antlr4 Tokens file */
.FALSE-local, .NONE-local, .TRUE-local, .AND-local, .AS-local,
.ASSERT-local, .ASYNC-local, .AWAIT-local, .BREAK-local,
.CLASS-local, .CONTINUE-local, .DEF-local, .DEL-local,
.ELIF-local, .ELSE-local, .EXCEPT-local, .FINALLY-local,
.FOR-local, .FROM-local, .GLOBAL-local, .IF-local, .IMPORT-local,
.IN-local, .IS-local, .LAMBDA-local, .NONLOCAL-local, .NOT-local,
.OR-local, .PASS-local, .RAISE-local, .RETURN-local, .TRY-local,
.WHILE-local, .WITH-local, .YIELD-local {

color: #E1A437 !important ;
}

Figure 8.1: CSS for Python3 Syntax Highlighting
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8.2 Issues and Future Work

One of the areas where Kitsune did not score as highly as other surveyed tools

was efficiency. There are two main reasons that Kitsune suffers in this area. The

first is that Kitsune has to insert the files into a database in the first place. This is

generally slower and would be difficult to remedy. However, this process is generally

a linear increase on the size of the set and does not present a pressing issue. More

of concern is the time to compare files after inserting. Currently, Kitsune uses a

technique similar to MOSS and to Sherlock based on MinHash. This process requires

Kitsune to identify the minimum hashes for nodes under major subtrees. Because this

has to be done for every subtree each time Kitsune runs a comparison (it would also

be prohibitively expensive to store a list of minimum nodes for every block of code

for every program), this process does not scale well. Initial research into the idea of

using an alternative comparison algorithm, SimHash, has been performed. SimHash

was the main competitor to MinHash in Google’s research into removing duplicate

webpage results from searches Manku et al. (2007). In the end SimHash won out due

to memory contraints and efficiency improvements (Manku et al., 2007). Unlike Min-

Hash, SimHash creates a minimal representation for documents (in this case blocks of

code). Because of this, SimHash could be pre-computed a single time upon insertion

leaving the comparison process a matter of calculating the differences between the

two generate hashes. This not only speeds up the initial runtime, but saves a major

section of the work done for the comparison so that should a comparison need to be

rerun (i.e. with different parameters) the comparison can skip large amounts of work.

In many of the larger sets, Kitsune’s comparison time has been similar to many of

the other tools after the database insertion.
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Another possible goal would be to aim Kitsune at being integrated with submission

systems so that preprocessing could be done upon submission (similarly to the way

many universities use systems like Turnitin (Turnitin, 2020) to check for plagiarism

in papers). This would allow Kitsune to do pre-processing up front, leaving only the

comparison when the professor needs to compile results. In order to scale to the size

of such a system as Turnitin, Kitsune could index the hashes generated by SimHash

using a hierarchical clustering scheme. Preprocessing the code block hashes in this

way, it is possible that Kitsune could be further optimized such that similar blocks

of code could be found in extremely large sets, making it possible for Kitsune to be

scaled to a more commercial sized plagiarism detection system, or at the very least,

such that a teacher could compare years worth of their own submissions to verify

students did not find past submissions online. Hierarchical clustering is popular for

use in gene sequencing tasks (ref. 8.2). Essentially, it groups sequences of numbers

across two variables into ”clusters”, or groups, which are similar. In gene sequencing,

this is commonly used to show correlations. For example in the example in 8.2, the

heat map displays a cross section of patients (columns) and genes (rows) and shows

a correlation between the genes of patients with either ”Acute Rejection”, ”Normal”

reaction, or ”Chronic Allograft Nephropathy” to kidney transplants. In Kitsune, this

technique would be useful for grouping similar blocks of code together such that only

closely packed hashes would need to be compared. The ”Hamming” distance (defined

as the number of bits in the hashes that differ) could be used as a distance function

to create the dendrograph (the ordering of clusters). In this way, only the closest

hashes would need to be compared to a given hash, meaning that after indexing the

clustering, the time to process new values would be O(1).
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Figure 8.2: Example of Hierarchical Clustering For Gene Sequencing (Chua et al.,

2003)

While Kitsune’s language configuration is already extremely small and simple,

it would be preferred to allow regular users who may not be familiar with Antlr to

add new grammars as they are developed. This would decrease the work required

for developers to maintain Kitsune, and would also allow users to compare languages

that Kitsune does not support. One method this could be accomplished is by utilizing

Antlr4’s grammar in order to parse itself. This would allow analysis of the grammar to

be performed using Antlr itself and then provide the user a graphical UI to configure a

new language. It would also be possible to provide suggestions for the language about

what grammar rules might match blocks in the language for languages that follow
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common conventions for naming units. I.E. a languages that utilized ”procedures”

and has a grammar rule that contains this word would be easy to suggest to the user.

Many of the parameters such as similarity threshold did not change often between

programs and could easily have default values. Through this process, a user could

easily choose a grammar file for Antlr4 from online and add new support themselves.
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